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Abstract

Let (b1, . . . ,bn) be a lattice basis with Gram-Schmidt orthogonalization (b∗1, . . . ,b
∗
n), the ratios ‖b1‖/‖b∗i ‖ for

i = 1, . . . , n do arise in the analysis of many lattice algorithms and are somehow related to their performances. In this
paper, we study the problem of minimizing the ratio ‖b1‖/‖b∗n‖ over all bases (b1, . . . ,bn) of a given n-rank lattice. We
first prove that there exists a basis (b1, . . . ,bn) for any n-rank lattice L such that ‖b1‖ = minv∈L\{0} ‖v‖, ‖b1‖/‖b∗i ‖ ≤ i
and ‖bi‖/‖b∗i ‖ ≤ i1.5 for 1 ≤ i ≤ n. This leads us to introduce a new NP-hard computational problem, namely the
smallest ratio problem (SRP): given an n-rank lattice L, find a basis (b1, . . . ,bn) of L such that ‖b1‖/‖b∗n‖ is minimal.
The problem inspires a new lattice invariant µn(L) = min{‖b1‖/‖b∗n‖ : (b1, . . . ,bn) is a basis of L} and a new lattice
constant µn = max µn(L) over all n-rank lattices L: both the minimum and maximum are justified. Some properties
of µn(L) and µn are investigated. We also present an exact algorithm and an approximation algorithm for SRP.

This is the first sound study of SRP. Our work is a tiny step towards solving an open problem proposed by Dadush-
Regev-Stephens-Davidowitz (CCC ’14) for tackling the closest vector problem with preprocessing, that is, whether
there exists a basis (b1, . . . ,bn) for any n-rank lattice such that max1≤i≤ j≤n ‖b∗i ‖/b

∗
j‖ ≤ poly(n).

1 Introduction
A lattice L in Rm is a discrete and additive subgroup of Rm, or equivalently, the set of all integer linear combinations
of n linearly independent vectors b1, . . . ,bn in Rm (m ≥ n): L = {

∑n
i=1 xibi : xi ∈ Z}. Such a set (b1, . . . ,bn) forms

a basis of L, which has a unique Gram-Schmidt orthogonalization (b∗1, . . . ,b
∗
n): for each i, b∗i is the component of bi

orthogonal to b1, . . . ,bi−1. The integer n is the rank of L. All the bases of L have the same n-dimensional volume,
called the co-volume vol(L) of L. As usual, L(B) or L(b1, . . . ,bn) denotes the lattice generated by the n columns of a
basis B = (b1, . . . ,bn).

Two of the most important lattice problems are the shortest vector problem (SVP) and the closest vector problem
(CVP). Given a basis of a lattice L endowed with the Euclidean norm, SVP is to find a shortest nonzero vector in L, and
CVP asks for a closest vector in L to a target vector t. SVP is NP-hard under randomized reductions [Ajt98] and CVP
is NP-complete [vEB81]: further, both problems are NP-hard to approximate to within any factor less than nc/ log log n

for some constant c > 0 under reasonable complexity-theoretic assumptions [CN98, Mic01, Kho05, HR12, Mic12,
ABSS93, DKRS03]. Algorithms for solving SVP and CVP either exactly or approximately have proved invaluable in
many fields of mathematics and computer science, notably in cryptology (see, e.g., [Ajt96, MG02, JS98, NV10]).

The most basic approach for solving both SVP and CVP exactly is enumeration, which requires nO(n)-time and
polynomial space (see, e.g., [Kan87, SE94, HS07, GNR10, MW15]). The classical approach for approximating SVP
is known as lattice reduction, which is to find good reduced bases consisting of reasonably short and almost orthogonal
vectors: it was revived with the celebrated LLL algorithm [LLL82] and continued with blockwise algorithms [Sch87,
SE94, GN08, MW16]. Both enumeration and lattice reduction are still very active in recent years (see, e.g., [MW15,
MW16, AWHT16, ANSS18, ABF+20, ALNS20, ABLR21, LN20]).

The most famous approximation algorithm for CVP is perhaps the Babai nearest plane algorithm [Bab86]. Given
a basis B = (b1, · · · ,bn) of a lattice L and a target vector t ∈ Rm, Babai’s algorithm size-reduces t with respect to B
into a new vector t − x with x ∈ L such that

‖t − x‖ ≤

max
1≤i≤n

√∑i
j=1 ‖b∗j‖2

‖b∗i ‖

 ×min
y∈L
‖t − y‖.

In other words, Babai’s algorithm approximates the closest vector problem with preprocessing (CVPP) to within

max1≤i≤n

√∑i
j=1 ‖b∗j‖2

‖b∗i ‖
factor, when using the basis B as preprocessing. CVPP has applications in coding theory and

cryptography [MG02, DRS14]. Dadush-Regev-Stephens-Davidowitz (DRS) [DRS14] proposed an open problem
∗A preliminary version of this work appeared in Proceedings of ISSAC ’21 as [Li21].
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whether every lattice has a basis that one can use to obtain a polynomial approximation for CVPP. Once special-
ized to Babai’s algorithm, DRS’s open problem is equivalent to Seysen’s open problem [Sey93] whether there exists
a basis (b1, . . . ,bn) for any n-rank lattice such that the Gram-Schmidt decay max1≤i≤ j≤n ‖b∗i ‖/b

∗
j‖ ≤ poly(n). The best

known upper bound is n(1+ln n)/2 [Sch87, LLS90, Ajt08, HS08] using a HKZ-reduced basis introduced by Hermite
[Her50] and Korkine and Zolotareff [KZ73].

We fail to solve DRS/Seysen’s open problem. Recall that any HKZ-reduced basis (b1, . . . ,bn) of an n-rank lattice L
satisfies [LLS90]: ‖b1‖ = λ1(L), ‖b1‖/‖b∗i ‖ ≤ i(1+ln i)/2 and ‖bi‖/‖b∗i ‖ ≤ i1+ 1

2 ln i for i = 1, . . . , n, where λ1(L) denotes the
(Euclidean) length of the shortest nonzero vector in L. This inspires us to consider an interesting relaxation of the above
open problem whether there exists a basis (b1, . . . ,bn) for any n-rank lattice L such that all of the ratios ‖b1‖/λ1(L),
‖b1‖/‖b∗i ‖ and ‖bi‖/‖b∗i ‖ simultaneously have upper bounds polynomial in i for i = 1, . . . , n. The motivation comes
from the fact that the ratios ‖b1‖/‖b∗i ‖ and ‖bi‖/‖b∗i ‖ do come up in the analysis of many lattice algorithms and are
somehow related to their performances:
• The cost of enumeration is somehow related to the ratios ‖b1‖/‖b∗i ‖: the smaller the heuristic estimation

max1≤k≤n

(∏n
i=n−k+1

‖b1‖√
k‖b∗i ‖

)
, the faster the enumeration (see, e.g., [GNR10, HS07]).

• Since ‖b1‖/vol(L)1/n =
∏n

i=1(‖b1‖/‖b∗i ‖)
1/n and ‖b1‖/λ1(L) ≤ max1≤i≤n ‖b1‖/‖b∗i ‖, the ratios ‖b1‖/‖b∗i ‖ are re-

lated to the Hermite factor ‖b1‖/vol(L)1/n and approximation factor ‖b1‖/λ1(L), both of which are typically
used to assess the quality of a reduced basis (b1, . . . ,bn) (see, e.g., [LLL82, Sch87, GHGKN06, GN08, HPS11,
MW16, ALNS20]). More precisely, some classical lattice reduction algorithms follow the paradigm below (see
Appendix A for the proof).
Claim 1.1 (Paradigm of lattice reduction). Let L be an n-rank lattice where n = pk with p, k ≥ 1. If a basis
B = (b1, . . . ,bn) of L satisfies the following two sets of conditions:

1. Hermite conditions: ‖b∗ik+1‖ ≤ g(k) × vol(B[ik+1,ik+k])1/k for i = 0, . . . , p − 1;
2. Gluing conditions: ‖b∗ik+1‖ ≤ h(k + 1) × ‖b∗ik+k+1‖ for i = 0, . . . , p − 2,

where both g(k) and h(k) are functions of k. Then

‖b1‖ ≤ g(k) · h(k + 1)(n−k)/2k × vol(L)1/n.

Furthermore, if ‖b∗ik+1‖ ≤
√

1 + ελ1(L(B[ik+1,ik+k])) for i = 0, . . . , p − 1 with factor ε ≥ 0, then

‖b1‖ ≤
√

1 + ε · h(k + 1)(n−k)/k × λ1(L).

Here, B[i, j] denotes the projected block of the vectors bi, . . . ,b j over span(b1, . . . ,bi−1)⊥.
It can be checked that the LLL-reduction [LLL82], BKZ-reduction [Sch87, SE94], semi k-reduction [Sch87]

and slide reduction (achieving the best time/quality trade-off among known lattice reduction algorithms) [GN08,
ALNS20] follow the paradigm. This means that at least in theory, the local ratios ‖b∗ik+1‖/‖b

∗
ik+k+1‖ might play a

more important role on the output quality of lattice reduction than the local Hermite factors ‖b∗ik+1‖/vol(B[ik+1,ik+k])1/k.
• The ratios ‖bi‖/‖b∗i ‖ are natively related to the orthogonality defect

∏n
i=1(‖bi‖/‖b∗i ‖), which measures the or-

thogonality of a basis (b1, . . . ,bn) [Len82, LLS90].
In order to study the minimality of multiple ratios ‖b1‖/‖b∗i ‖ for i = 1, . . . , n, a natural way is to resolve it into

a more basic problem of minimizing the single ratio ‖b1‖/‖b∗n‖ over all bases (b1, . . . ,bn) of a given n-rank lattice.
A natural question is whether there is a basis (b1, . . . ,bn) for any n-rank lattice such that ‖b1‖/‖b∗n‖ is minimal. If
yes, one may be interested to further investigate the hardness and algorithmic aspects of the computational problem of
finding such a basis.

In mathematics, SVP is tightly related to the study of Hermite’s constant γn, namely γn = max λ1(L)2 over all
n-rank lattices L of unit co-volume. This fundamental parameter in the geometry of numbers is typically used in the
study of both enumeration algorithms and lattice reduction algorithms, e.g., to measure the running time [Hel85, HS07]
and output quality [GN08, HPS11, MW16, ALNS20] respectively. By analogy with this case, one may wonder what
should be the lattice parameters related to the problem of minimizing the ratio ‖b1‖/‖b∗n‖.

This paper first formalizes and answers the aforementioned questions, excluding DRS/Seysen’s open problem.
Our work is a tiny step towards solving DRS/Seysen’s open problem and might be useful in the design and analysis of
better lattice algorithms for SVP and CVP.

Our results. Our first main result of this paper is as follows:

Theorem 1.2. For any n-rank lattice L in Rm, there exists a basis (b1, . . . ,bn) of L such that the following inequalities
simultaneously hold:

‖b1‖ = λ1(L),
‖b1‖ ≤ i‖b∗i ‖ for i = 1, . . . , n,

‖bi‖ ≤ i1.5‖b∗i ‖ for i = 1, . . . , n.
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Furthermore, finding such a basis is polynomial-time equivalent to solving SVP.

This means that there exists a basis (b1, . . . ,bn) for any n-rank lattice L such that max1≤i≤n(‖bi‖/‖b∗i ‖) ≤ n1.5.
It indeed solves a weaker version of the so-called well-conditioned basis problem [HL90, Sey93] minimizing the
quantity S (B) = max1≤i≤n(‖bi‖ · ‖di‖) over all bases B = (b1, . . . ,bn) of a given lattice L, where (d1, . . . ,dn) is the dual
basis of B: it is known that there exists a basis B for any n-rank lattice L such that S (B) ≤ nO(log n) [Sey93].

Our second main result is to study the so-called smallest ratio problem (SRP): given an n-rank lattice L, find a
basis (b1, . . . ,bn) of L such that ‖b1‖/‖b∗n‖ is minimal. The existence of such a basis is proved. It allows to construct
a basis (b1, . . . ,bn) for any n-rank lattice L such that max1≤i≤n/2

‖b∗i ‖
‖b∗n−i+1‖

≤ n: yet, it is just a tiny step towards solving
DRS/Seysen’s open problem.

SRP can also be equivalently defined as finding a pair of orthogonal nonzero vectors v and w in L and its dual
lattice such that ‖v‖ · ‖w‖ is minimal. Assume that w is already found, finding v is equivalent to solving SVP on the
sublattice L ∩ span(w)⊥ of rank n − 1. This intuitively suggests that SRP is related to SVP.

We show that for both the search problem and the promise problem, approximating SRP with any factor γ ≥ 1 is
at least as hard as approximating SVP with the same factor γ. This means that it is NP-hard to approximate SRP with
any factor less than nc/ log log n for some constant c > 0 under reasonable complexity-theoretic assumptions.

We define the lattice invariant µn(L) = min{‖b1‖/‖b∗n‖ : (b1, . . . ,bn) is a basis of L} and lattice constant µn =

max µn(L) over all n-rank lattices L: the maximum is also justified. We then investigate some properties of µn(L)
and µn. Interestingly, the new constant µn has close relations with classical Hermite’s constant γn, Bergé-Martinet’s
constant γ′n [BM89] and Korkine-Zolotareff’s constant γ′′n [KZ73, Sch87, BM89, Ajt08]: for instance, γ′n ≤ µn ≤ γ

′′
n

and µn ≤
√
γn−1
√
γn

n/(n−1) for n ≥ 2. This implies the following asymptotical bounds on µn:

n
2πe

+
log(πn)

2πe
+ o(1) ≤ µn ≤

1.744n
2πe

+ o(n).

Our third main result is to consider the algorithmic aspects of SRP. We provide a deterministic enumeration-based
algorithm for solving SRP on any n-rank integer lattice with n

n
e 2O(n) time and polynomial space.

Notice that Kannan’s CVP (resp. SVP) enumeration algorithm [Kan87] solves CVP (resp. SVP) on any n-rank
integer lattice with n

n
2 2O(n) (resp. n

n
2e 2O(n)) time and polynomial space [HS07]. We hence conjecture that SRP is not

harder than CVP. SRP might be useful in understanding the gap between the NP-hardnesses of SVP and CVP.
We also present a polynomial-time blockwise reduction algorithm for approximating SRP, which is an efficient

algorithmic version of the new inequality µn ≤ µ
(n−1)/(k−1)
k where k − 1 divides n − 1 with k ≥ 2. More precisely, given

a basis of an n-rank integer lattice L, a blocksize k satisfying n = p(k− 1) + 1 for some p ≥ 1, a reduction factor ε > 0,
and an exact SRP-oracle for any lattice of rank k, the algorithm outputs a basis (b1, . . . ,bn) of L such that

‖b1‖ ≤ (
√

1 + εµk)(n−1)/(k−1)‖b∗n‖,

and the number of oracle quires is O(p2n2/ε) (independent of the input basis).

Roadmap. Section 2 recalls background on lattices. Section 3 proves Theorem 1.2. Section 4 studies SRP and related
lattice parameters. Section 5 is devoted to the algorithmic aspects of SRP. Appendices A-D provide missing details.

2 Background
Notation. This paper uses bold lower case letters to denote column vectors, and uses column-representation for
matrices which are written in capital letters. The set of m×n matrices with coefficients in the ringA is denoted byAm×n,
and we identify Am with Am×1. Let ‖ · ‖ and 〈·, ·〉 denote respectively the Euclidean norm and inner product over Rm.
For a matrix B = (bi, j) = (b1, . . . ,bn) of n columns, we denote ‖B‖ = max{‖b1‖, . . . , ‖bn‖} and ‖B‖∞ = maxi, j |bi, j|. The
size of an object is the length of its binary representation. The notation log(·) stands for the base 2, and poly(x1, . . . , xi)
means

∏i
j=1 xc j

j for some constants c j > 0. For any integers a ≤ b, we define [a, b]
Z

= [a, b]
⋂
Z.

2.1 Lattices
GSO. Let B = (b1, . . . ,bn) ∈ Rm×n be a basis of a lattice. It is usual for lattice algorithms to consider the orthogonal
projections πi : Rm → span(b1, . . . ,bi−1)⊥ for i = 1, . . . , n. The vectors b∗i = πi(bi) for i = 1, . . . , n are the Gram-
Schmidt vectors of B. The Gram-Schmidt orthogonalization (GSO) of B is B∗ = (b∗1, . . . ,b

∗
n). Then b∗1 = b1 and

b∗i = bi −
∑i−1

j=1 µi, jb∗j for i = 2, . . . , n, where µi, j =
〈bi,b∗j〉
〈b∗j ,b

∗
j〉

. For completeness, let µi,i = 1 and µi, j = 0 for i < j. Let µ

denote the unit upper triangular matrix (µi, j)T
1≤i, j≤n. Then B has a classical decomposition B = B∗µ.

If B is integral, then B∗ and µ are rational, both of which can be computed in polynomial time [LLL82].
We will use the notation B[i, j] for the projected block (πi(bi), πi(bi+1), . . . , πi(b j)). In particular, B[1, j] = (b1, . . . ,b j).
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Isometry. Two bases (b1, . . . ,bn) and (c1, . . . , cn) are isometric if 〈bi,b j〉 = 〈ci, c j〉 for all 1 ≤ i, j ≤ n. Two lattices of
the same rank are isometric iff they have isometric bases.
Duality. For any n-rank lattice L in Rm, its dual lattice is L× = {y ∈ span(L) : 〈x, y〉 ∈ Z for all x ∈ L}. If L has
basis B, then L× has basis B× , B(BT B)−1, which is called the dual basis of B. The reversed dual basis of B is
B−s = RmB×Rn [GHGN06], where Rn = (ri, j)1≤i, j≤n is the reversed identity matrix: ri, j = 1 if i + j = n + 1 and ri, j = 0
otherwise. In lattice reduction, it is more convenient to consider B−s than to consider B× [GN08, LN14]. The main
advantage is that the reversed duality preserves upper triangular, lower triangular, diagonal and orthogonal matrices;
it is fully compatible with the matrix product, for instance, (M · N)−s = M−s · N−s for any matrices M,N ∈ Rn×n; the
lattice generated by B−s is isometric to the standard dual lattice L×. For instance, we will use the properties below:

Lemma 2.1. Let B = (b1, . . . ,bn) ∈ Rm×n be a basis of a lattice L, C = (c1, . . . , cn) be B× with its columns in reversed
order, and B−s = (d1, . . . ,dn). Let (b∗1, . . . ,b

∗
n), (c∗1, . . . , c

∗
n) and (d∗1, . . . ,d

∗
n) be their GSO, respectively. Then

b∗i =
c∗n−i+1

‖c∗n−i+1‖
2 for i = 1, . . . , n, (See, e.g., [Reg04, Claim 7]) (2.1)

‖c∗i ‖ = ‖d∗i ‖ for i = 1, . . . , n, (2.2)
‖b∗1‖
‖b∗n‖

=
‖b∗1‖ · vol(B[1,n−1])

vol(L)
=
‖b∗1‖

2 · vol(B[2,n−1])
vol(L)

= ‖b∗1‖ · ‖d
∗
1‖ =

‖d∗1‖
‖d∗n‖

. (2.3)

Proof. Since B−s is simply C with its rows in reversed order (i.e., B−s = RmC), it follows that for i = 1, . . . , n, ci = Rmdi

implies c∗i = Rmd∗i and hence Eq. (2.2) holds.
By Eq. (2.1), we have ‖b∗1‖ = 1

‖c∗n‖
. Then Eq. (2.2) implies ‖b∗1‖ · ‖d

∗
n‖ = 1. Similarly, ‖d∗1‖ · ‖b

∗
n‖ = 1. Therefore,

‖b∗1‖/‖b
∗
n‖ = ‖b∗1‖ · ‖d

∗
1‖ = ‖d∗1‖/‖d

∗
n‖. This proves Eq. (2.3) since the other equalities are trivial. �

Hermite’s constant. The Hermite invariant of an n-rank lattice L is γn(L) = λ1(L)2/vol(L)2/n, where λ1(L) =

minv∈L\{0} ‖v‖ is the first minimum of L. Hermite’s constant of dimension n is the maximum γn = max γn(L) over
all n-rank lattices L. Its exact value is known for 1 ≤ n ≤ 8 and n = 24, and we have γn ≤

n+6
7 for n ≥ 3 (see [Neu17]).

Bergé-Martinet’s constant ([BM89, Def. 2.1]). The Bergé-Martinet invariant of an n-rank lattice L is γ′n(L) =

λ1(L)λ1(L×). Bergé-Martinet’s constant of dimension n is the maximum γ′n = max γ′n(L) over all n-rank lattices L.
Korkine-Zolotareff’s constant ([BM89, Def. 1.3]). The Korkine-Zolotareff invariant of an n-rank lattice L is γ′′n (L) =

max ‖b1‖

‖b∗n‖
over all HKZ-reduced bases (b1, . . . ,bn) of L. Korkine-Zolotareff’s constant of dimension n is the maximum

γ′′n = max γ′′n (L) over all n-rank lattices L.
Primitive vector. Let L be a lattice with basis (b1, . . . ,bn). A vector b =

∑n
i=1 xibi ∈ L with xi ∈ Z is primitive for L

iff it can be extended to a basis of L, or equivalently, gcd(x1, . . . , xn) = 1 [Sie89, Th. 32].

2.2 Lattice reduction
Let B = (b1, . . . ,bn) be a basis of a lattice L.
Size reduction and LLL reduction. B is size-reduced if |µi, j| ≤

1
2 for all 1 ≤ j < i ≤ n. The single vector bi is

size-reduced (w.r.t. B) if |µi, j| ≤
1
2 for all 1 ≤ j < i. For ε ∈ [0, 3), B is ε-LLL-reduced [LLL82] if it is size-reduced and

every 2-rank projected block B[i,i+1] satisfies Lovász’s condition: ‖b∗i ‖
2 ≤ (1 + ε)(‖b∗i+1‖

2 + µ2
i+1,i‖b

∗
i ‖

2). This implies
Siegel’s condition: ‖b∗i ‖

2 ≤
4(1+ε)

3−ε ‖b
∗
i+1‖

2. Given as input a basis B ∈ Zm×n and ε > 0, the LLL algorithm [LLL82]
outputs an LLL-reduced basis in time polynomial in (log ‖B‖,m, 1/ε).
SVP reduction and its extensions. B is SVP-reduced if ‖b1‖ = λ1(L). Then ‖b1‖ ≤

√
γnvol(B)1/n.

B is DSVP-reduced [GN08] (where D stands for dual) if its reversed dual basis B−s is SVP-reduced.
B is HKZ-reduced [Her50, KZ73] if it is size-reduced and B[i,n] is SVP-reduced for i = 1, . . . , n.

Rankin reduction. For 1 ≤ r ≤ n, we will use the notation:

mr(L) := min
x1 ,...,xr∈L

vol(x1 ,...,xr ),0

vol(x1, . . . , xr).

The Rankin invariant γn,r(L) = mr(L)2/vol(L)2r/n [Ran53] suggests to define: B is r-Rankin-reduced [GHGKN06] if
vol(B[1,r]) = mr(L). There exist r-Rankin reduced bases for any given lattice. By duality, any n-rank lattice basis is
(n − 1)-Rankin-reduced iff it is DSVP-reduced.

2.3 Basic lemmas
Besides Lemma 2.1, this paper will use the following basic lemmas.

Lemma 2.2 ([LW13, Lemma 3.8]). Let B = (b1, . . . ,bn) be an n-rank lattice basis. If the projected block B[i, j] is
DSVP-reduced for some indices 1 ≤ i < j ≤ n, then B[k, j] is DSVP-reduced for all k = i, i + 1, . . . , j − 1.
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Lemma 2.3 ([DM13, Lemma 3.2]). Let B be a r-Rankin-reduced basis of a lattice L. Then λ1(L(B[1,r])) ≤ γrλ1(L).

The dual strategy used in the classical proof of Mordell’s inequality (see [Mor44] or [GN08, §3.1]) implies the
assertion below:

Lemma 2.4. If a basis B = (b1, . . . ,bn) of rank n ≥ 2 is in either of the two cases below:
1. B is SVP-reduced and B[2,n] is DSVP-reduced;

2. B is DSVP-reduced and B[1,n−1] is SVP-reduced,
then

‖b1‖/‖b∗n‖ ≤
√
γn−1
√
γn

n/(n−1) <
3
5

n. (2.4)

Proof. Since Case 1 and Case 2 have similar proofs, we only verify Case 2.
Since B[1,n−1] is SVP-reduced, we have ‖b1‖

n−1 ≤ γ(n−1)/2
n−1 vol(B[1,n−1]). Since B is DSVP-reduced, we have vol(B) ≤

γn/2
n ‖b∗n‖n (see [GN08]), or equivalently, vol(B[1,n−1]) ≤ γ

n/2
n ‖b∗n‖n−1. This implies ‖b1‖/‖b∗n‖ ≤

√
γn−1
√
γn

n/(n−1).
Now, it remains to show

√
γn−1
√
γn

n/(n−1) < 3
5 n. To do so, we distinguish two cases:

• For n = 2, 3, it can be checked that
√
γn−1
√
γn

n/(n−1) < 3
5 n using the exact value of γn.

• For n ≥ 4, we have n+5
7

(
n+6

7

)n/(n−1)
<

(
3
5 n

)2
, because the function f (n) = 2 log

(
3
5 n

)
− log n+5

7 − log
(

n+6
7

)n/(n−1)

increases over n ≥ 4 by considering its derivative. Then γn−1γ
n/(n−1)
n ≤ n+5

7

(
n+6

7

)n/(n−1)
<

(
3
5 n

)2
.

This proved
√
γn−1
√
γn

n/(n−1) < 3
5 n for n ≥ 2. Thus, Eq. (2.4) holds for Case 2. This completes the proof. �

3 A new type of reduced basis
In this section, we prove Theorem 1.2 and formalize its related lattice problem and lattice parameters.

3.1 Proof of Theorem 1.2
We first recall the definition of HKZ-reduction and its classical property proved in [LLS90]: A basis B = (b1, . . . ,bn)
is HKZ-reduced if it is size-reduced and B[i,n] is SVP-reduced for i = 1, . . . , n; then

‖b1‖ = λ1(L(B)), ‖b1‖ ≤ i(1+ln i)/2‖b∗i ‖ and ‖bi‖ ≤ i(2+ln i)/2‖b∗i ‖ for i = 1, . . . , n.

Proof of Theorem 1.2. Our goal is to show that there exists a basis B = (b1, . . . ,bn) for any n-rank lattice L such that

‖b1‖ = λ1(L), ‖b1‖ ≤ i‖b∗i ‖ and ‖bi‖ ≤ i1.5‖b∗i ‖ for i = 1, . . . , n.

Our approach is to inductively combine SVP-reduction and DSVP-reduction.
We prove the existence of the desired basis by induction on lattice rank n. For the initial cases n = 1, 2, any

HKZ-reduced basis of the lattice is as desired. Assume that the existence holds for any lattice of rank n − 1 ≥ 2.
Let L be a lattice of rank n. There exists a size-reduced basis C = (c1, . . . , cn) of L with GSO (c∗1, . . . , c

∗
n) such

that C is SVP-reduced, C[2,n] is DSVP-reduced and C[1,n−1] is HKZ-reduced. We explain the existence of C. First,
let P = (p1, . . . ,pn) be an arbitrary SVP-reduced basis of L. Second, there is a unimodular matrix U ∈ Z(n−1)×(n−1)

s.t. P[2,n]U is a DSVP-reduced basis of the projected lattice L(P[2,n]). Let Q = (p1,q2, . . . ,qn) = (p1, (p2, . . . ,pn)U)
with GSO (p1,q∗2, . . . ,q

∗
n). Then Q is also an SVP-reduced basis of L s.t. Q[2,n] = P[2,n]U is DSVP-reduced, namely

1/‖q∗n‖ = λ1(L(Q[2,n])×). Third, there is a unimodular matrix V ∈ Z(n−2)×(n−2) s.t. Q[2,n−1]V is HKZ-reduced. Let
S = (p1, (q2, . . . ,qn−1)V,qn). Then S is an SVP-reduced basis of L satisfying the following properties:
• S [2,n] is DSVP-reduced. Indeed, L(S [2,n]) = L(Q[2,n]) and the last Gram-Schmidt vector of S is still q∗n, so that

the DSVP-reducedness 1/‖q∗n‖ = λ1(L(S [2,n])×) still holds.

• S [2,n−1] = Q[2,n−1]V is HKZ-reduced, so is S [1,n−1].
Finally, S can be size-reduced into the desired basis. This proves the existence of C.

We have ‖c1‖ = λ1(L) and ‖c∗1‖/‖c
∗
n‖ <

3
5 n by Lemma 2.4.

Let i ∈ [2, n− 1]
Z
. Since C[i,n] is DSVP-reduced (by Lemma 2.2) and C[i,n−1] is SVP-reduced, applying Lemma 2.4

to the projected block C[i,n], we have

‖c∗i ‖/‖c
∗
n‖ <

3
5

(n − i + 1) for i = 2, . . . , n − 1.

Since C is size-reduced, the inequality ‖cn‖/‖c∗n‖ < n1.5 follows from the calculation:

‖cn‖
2 ≤ ‖c∗n‖

2 +
1
4

n−1∑
i=1

‖c∗i ‖
2 <

1 +
1
4

n−1∑
i=1

9
25

(n − i + 1)2

 ‖c∗n‖2 < 1
5

n3‖c∗n‖
2.
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By the induction hypothesis, there exists a basis (b1, . . . ,bn−1) for the sublattice L(C[1,n−1]) such that

‖b1‖ = λ1(L(C[1,n−1])), ‖b1‖ ≤ i‖b∗i ‖ and ‖bi‖ ≤ i1.5‖b∗i ‖ for i = 1, . . . , n − 1.

Let B = (b1, . . . ,bn−1, cn). Since ‖b1‖ = ‖c1‖ = λ1(L) and the Gram-Schmidt vector of cn in the set B is still c∗n, it
follows that B is a desired basis of L. This proved the existence of a desired basis for any lattice of any rank.

The above proof can be easily converted into a recursive algorithm. Specifically, the algorithm finds the basis
vectors b1,bn,bn−1, . . . ,b2 in turn by totally calling n(n−1)

2 SVP-solvers in ranks ≤ n. This completes the proof. �

3.2 Lattice problem and lattice parameters related to Theorem 1.2
Theorem 1.2 can be essentially formulated and resolved into the subproblems of minimizing the ratio ‖b1‖/‖b∗i ‖ over
all bases (b1, . . . ,bi) of the sublattice L(b1, . . . ,bi) in turn for i = n, . . . , 1.

This is reminiscent of HKZ-reduction, that is, any HKZ-reduced basis B = (b1, . . . ,bn) of an n-rank lattice min-
imizes the ratio ‖b∗i ‖/vol(B[i,n])1/(n−i+1) with respect to the projected lattice L(B[i,n]) in turn for i = 1, . . . , n. The
minimization problem related to HKZ-reduction is the well-known SVP problem.

As mentioned in Section 1, the ratios ‖b1‖/‖b∗i ‖ do come up in the analysis of many lattice algorithms and are
somehow related to their performances. By analogy with SVP, this suggests to formalize a more basic problem of
minimizing the single ratio ‖b1‖/‖b∗n‖ over all bases (b1, . . . ,bn) of a given n-rank lattice.

Definition 3.1 (Smallest Ratio Problem (SRP)). Given an n-rank lattice L, find a basis (b1, . . . ,bn) of L such that
‖b1‖/‖b∗n‖ is minimal.

The justification of SRP is guaranteed by Theorem 4.1. We then define the lattice parameters related to SRP.

Definition 3.2. For any n-rank lattice L, the lattice invariant µn(L) is defined as

µn(L) = inf
{
‖b1‖/‖b∗n‖ : (b1, . . . ,bn) is a basis of L

}
.

The lattice constant µn of dimension n is defined as µn = sup µn(L) over all n-rank lattices L.

Both the infimum and supremum are well-defined, because any basis (b1, . . . ,bn) of L satisfies ‖b1‖/‖b∗n‖ ≥√
γn(L)γn,n−1(L) (by Identity (2.3)) and µn(L) ≤ n (by Theorem 1.2).

Further, both µn(L) and µn are reached, which we will show in the next section.
The new invariant µn(L) is different from the Hermite invariant γn(L), the Bergé-Martinet invariant γ′n(L) and the

Korkine-Zolotareff invariant γ′′n (L). This is illustrated in the two examples below.

Example 1. Consider the following matrices B and B−s where the columns of B generate a lattice L:

B =


1 + ε 1+ε

2 0
0

√
3

2 (1 + ε) 0
0 0 1

 and B−s =


1 0 0
0 2

√
3(1+ε)

− 1
√

3(1+ε)
0 0 1

1+ε

 ,
where 0 < ε < (4/3)1/7 − 1. It is not hard to deduce that λ1(L) = λ1(L×) = 1, γ3(L) =

(
4

3(1+ε)4

)1/3
, γ′3(L) = 1 and

µ3(L) = 1 + ε. We have γ′3(L) < µ3(L) < γ3(L).

Example 2. Consider a 3-rank lattice L with HKZ-reduced basis B:

B = (b1,b2,b3) =


1 0 0
0 1 + ε 1+ε

2

0 0
√

3
2 (1 + ε)

 ,
where 0 < ε < (4/3)1/4 − 1. We have µ3(L) = 1 + ε < 2

√
3(1+ε)

=
‖b1‖

‖b∗3‖
≤ γ′′3 (L).

4 The smallest ratio problem and related lattice parameters
In this section, we first prove that SRP is solvable, i.e., the infimum µn(L) is reached at some basis of any given n-rank
lattice L. Second, we argue that SRP is at least as hard as SVP, including in the approximate sense. Third, we show
that the supremum µn is reached at some n-rank lattice. Fourth, we investigate some properties of lattice parameters
µn(L) and µn: for instance, we prove µn ≤ µ

(n−1)/(k−1)
k if k − 1 divides n − 1, which has an efficient algorithmic version

(see Section 5.2).
For simplicity, the set of all bases of a lattice L is denoted by B(L) in what follows.
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4.1 Solvability of SRP
The theorem below shows that SRP is solvable and µn(L) = min{‖b1‖/‖b∗n‖ : (b1, . . . ,bn) ∈ B(L)}.

Theorem 4.1. For any n-rank lattice L, there exists a basis (b1, . . . ,bn) of L such that ‖b1‖/‖b∗n‖ is minimal, that is,
µn(L) = ‖b1‖/‖b∗n‖.

Proof. Recall that µn(L) = inf{‖b1‖/‖b∗n‖ : (b1, . . . ,bn) ∈ B(L)} and any lattice of rank ≥ 2 has infinitely many bases.
Our approach is to express µn(L) as the infimum of some finite set so that the infimum can be replaced by minimum.

First, there exists a basis A = (a1, . . . , an) of L with GSO (a∗1, . . . , a
∗
n) such that A is DSVP-reduced (or equivalently,

(n − 1)-Rankin-reduced) and A[1,n−1] is SVP-reduced.
Let S1 = {(b1, . . . ,bn) ∈ B(L) : ‖b1‖ ≤ ‖a1‖}. We have ‖a1‖ ≤ γn−1λ1(L) (by Lemma 2.3) and claim that

µn(L) = inf{‖b1‖/‖b∗n‖ : (b1, . . . ,bn) ∈ S1}. (4.1)

Indeed, for any (b1, . . . ,bn) ∈ B(L) such that ‖b1‖/‖b∗n‖ ≤ ‖a1‖/‖a∗n‖, we have

‖b1‖ ≤
‖a1‖ · vol(A[1,n−1]) · ‖b∗n‖

vol(A)
=
‖a1‖ · mn−1(L)
vol(B[1,n−1])

≤ ‖a1‖.

Then
{
(b1, . . . ,bn) ∈ B(L) : ‖b1‖/‖b∗n‖ ≤ ‖a1‖/‖a∗n‖

}
⊆ S1 ⊆ B(L) implies Eq. (4.1).

Next, consider the finite set S2 =
{
b ∈ L : b is primitive for L such that ‖b‖ ≤ ‖a1‖

}
⊆ {x ∈ L : ‖x‖ ≤ γn−1λ1(L)}.

For any b ∈ S2, define the set Bb(L) = {B ∈ B(L) : b is the first column of B}. Then S1 can be expressed as a union of
finitely many subsets:

S1 =
⋃
b∈S2

Bb(L). (4.2)

For each b ∈ S2, there is a basis C = (b, c2, . . . , cn) ∈ Bb(L) with GSO (b, c∗2, . . . , c
∗
n) such that C[2,n] is DSVP-

reduced. Consider the (n − 1)-rank projected lattice πb(L), where πb denotes the projection over span(b)⊥. Since

‖b‖
‖c∗n‖

=
‖b‖2 · mn−2(πb(L))

vol(L)
, σ(b),

the set {‖b1‖/‖b∗n‖ : (b1, . . . ,bn) ∈ Bb(L)} has minimum σ(b). By Eq. (4.1) and Eq. (4.2), this implies

µn(L) = inf
b∈S2

(
inf

{
‖b1‖/‖b∗n‖ : (b1, . . . ,bn) ∈ Bb(L)

})
= inf{σ(b) : b ∈ S2}.

Thus, we obtain µn(L) as the minimum of a finite set: µn(L) = min{σ(b) : b ∈ S2}. That is, µn(L) = σ(b) for some
b ∈ S2. Since the real value σ(b) is reached at some basis in the set Bb(L), µn(L) is reached at such a basis. This
completes the proof. �

In summary, this algorithmic proof implies the following identity, which can be turned into an enumeration-based
algorithm for solving SRP exactly (see Section 5.1):

µn(L) = min
{
‖b∗1‖/‖b

∗
n‖ : B = (b1, . . . ,bn) ∈ B(L), ‖b1‖ ≤ ‖a1‖ and B[2,n] is DSVP-reduced

}
. (4.3)

Geometrically, SRP or µn(L) can also be defined using orthogonality and duality:1

Proposition 4.2. Let L be a lattice of rank n. Then

µn(L) = min
{
‖v‖ · ‖w‖ : v ∈ L\{0} is orthogonal to w ∈ L×\{0}

}
.

Proof. For any primitive vector v ∈ L and any primitive vector w ∈ L× such that 〈v,w〉 = 0, we claim that

‖v‖ · ‖w‖ ≥ µn(L).

Indeed, w can be extended into a basis (w,wn−1, . . . ,w1) of L×. Let (a1, . . . , an) be the dual basis of (w1, . . . ,wn−1,w).
Then v ∈ L ∩ span(w)⊥ = L(a1, . . . , an−1) and hence v can be extended into a basis (v, v2, . . . , vn−1) of L(a1, . . . , an−1).
Thus, (v, v2, . . . , vn−1, an) is a basis of L: its GSO (v, v∗2, . . . , v

∗
n−1, a

∗
n) satisfies a∗n = w

‖w‖2 (by Eq. (2.1)), which implies
‖v‖ · ‖w‖ = ‖v‖/‖a∗n‖ ≥ µn(L).

Let (b1, . . . ,bn) be a basis of L satisfying µn(L) = ‖b1‖/‖b∗n‖ and with dual basis (cn, . . . , c1). By Eq. (2.1), we
have b∗n = c1

‖c1‖
2 . Then µn(L) = ‖b1‖ · ‖c1‖ and 〈b1,b∗n〉 = 0 ensures 〈b1, c1〉 = 0. The proposition follows. �

1This observation came from an anonymous reviewer for previous submission of this paper.
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If one leaves aside the orthogonality requirement, the problem is equivalent to two independent SVP computations
(on the primal lattice and its dual lattice, respectively), and the optimal value µn(L) becomes the Bergé-Martinet
invariant γ′n(L). Thus, γ′n(L) = λ1(L)λ1(L×) ≤ µn(L) for any lattice L of rank n.

This intuitively suggests that SRP is an NP-hard lattice problem related to SVP, as shown in the next subsection.
Theorem 4.1 allows us to define SRP-reduced bases, which will be convenient in what follows.

Definition 4.3 (SRP-reduction). A basis B = (b1, . . . ,bn) of a lattice L is SRP-reduced if ‖b1‖/‖b∗n‖ = µn(L).

With the existence of SRP-reduced bases, we can solve a weaker version of DRS/Seysen’s open problem:

Corollary 4.4. For any n-rank lattice L, there exists a basis (b1, . . . ,bn) of L such that max1≤i≤n/2
‖b∗i ‖
‖b∗n−i+1‖

≤ n.

Proof. First, there exists an SRP-reduced basis B(1) = (b1,p2, . . . ,pn−1,bn) of L. Next, there exists a unimodular
matrix U ∈ Z(n−2)×(n−2) such that B(1)

[2,n−1]U is an SRP-reduced basis of the projected lattice L(B(1)
[2,n−1]). Let B(2) =

(b1,b2,q3, . . . ,qn−2,bn−1,bn) := (b1, (p2, . . . ,pn−1)U,bn). Since the last Gram-Schmidt vectors of both B(1) and B(2)

are the same, B(2) is still an SRP-reduced basis of L. Further, B(2)
[2,n−1] = B(1)

[2,n−1]U is also SRP-reduced.
By recursively using the existence of SRP-reduced bases for (projected) lattices of rank k over k = n, n−2, n−4, . . .,

we eventually find a basis B = (b1, . . . ,bn) of L with GSO (b∗1, . . . ,b
∗
n) such that B[i,n−i+1] is SRP-reduced and hence

‖b∗i ‖
‖b∗n−i+1‖

= µn−2i+2(L(B[i,n−i+1])) ≤ n − 2i + 2 over i = 1, 2, . . . , bn/2c. Then max1≤i≤n/2
‖b∗i ‖
‖b∗n−i+1‖

≤ n, as desired. �

4.2 Hardness of SRP
We first recall the search variant and the promise variant of the well-known SVP-approximation problem (γ ≥ 1):
• The search problem SVPγ: Given a basis of a lattice L, find a nonzero vector v ∈ L such that ‖v‖ ≤ γ · λ1(L).

• The promise problem GapSVPγ: Given a basis of a lattice L and a parameter d > 0, distinguish between a YES
instance where λ1(L) ≤ d and a NO instance where λ1(L) > γ · d.

Similarly, Th. 4.1 allows us to define the SRP-approximation problem as follows:

Definition 4.5. Let L be an n-rank lattice endowed with the Euclidean norm and γ ≥ 1 be an approximation factor.
• The search problem SRPγ: Given a basis of L, find a basis (b1, . . . ,bn) of L such that ‖b1‖

‖b∗n‖
≤ γ · µn(L).

• The promise problem GapSRPγ: Given a basis of L and a parameter d > 0, distinguish between a YES instance
where µn(L) ≤ d and a NO instance where µn(L) > γ · d.

The hardness argument of (Gap)SRPγ relies on the following sufficient condition for being SRP-reduced:

Claim 4.6 (Sufficient Condition). Let B = (b1, . . . ,bn) be a basis of an n-rank lattice L. If B is both SVP-reduced and
DSVP-reduced, then B is SRP-reduced. Conversely, it may not be true.

Proof. Let C = (c1, . . . , cn) be an SRP-reduced basis of L. Since B is SVP-reduced and DSVP-reduced (or equiva-
lently, (n − 1)-Rankin-reduced), we have ‖b1‖ ≤ ‖c1‖ and vol(B[1,n−1]) ≤ vol(C[1,n−1]). Thus, Identity (2.3) implies

µn(L) ≤
‖b1‖

‖b∗n‖
=
‖b1‖ · vol(B[1,n−1])

vol(L)
≤
‖c1‖ · vol(C[1,n−1])

vol(L)
=
‖c1‖

‖c∗n‖
= µn(L).

Then ‖b1‖

‖b∗n‖
= µn(L). This proves the first assertion.

The second assertion follows from Example 1: the basis B in Example 1 is SRP-reduced and not SVP-reduced.
This completes the proof of the claim. �

(Gap)SRPγ on lattices of rank n is at least as hard as (Gap)SVPγ on lattices of rank (n − 1):

Theorem 4.7. Let γ ≥ 1 be an arbitrary approximation factor.
1. There is a deterministic polynomial time Cook-reduction from SVPγ on any lattice of rank (n − 1) to SRPγ on a

lattice of rank n.

2. There is a deterministic polynomial time Karp-reduction from GapSVPγ on any lattice of rank (n−1) to GapSRPγ

on a lattice of rank n.

Proof. Let L be an (n − 1)-rank lattice with basis B. We define an n-rank lattice Λ with basis Diag(B, t) :=
(

B
t

)
,

where t is an arbitrary rational number satisfying t > γ · ‖B‖.
We first show µn(Λ) = λ1(L)λ1(Λ×). Let C = (c1, . . . , cn−1) be an SVP-reduced basis of L. Then D = Diag(C, t) is

also a basis of Λ with the following properties:
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• D is SVP-reduced. Indeed, since ‖c1‖ = λ1(L) ≤ ‖B‖ < t, we have

‖c1‖ ≤

∥∥∥∥∥∥
(

Bw
tx

)∥∥∥∥∥∥ =

∥∥∥∥∥∥Diag(B, t)
(

w
x

)∥∥∥∥∥∥
for any non-zero integer vector

(
w
x

)
∈ Zn where w ∈ Zn−1 and x ∈ Z. Then ‖c1‖ = λ1(Λ) implies the

SVP-reducedness of D.

• D is DSVP-reduced. Indeed, it can be checked by the definition that D−s = Diag(t−1,C−s). Using the transfer-
ence theorem λ1(L×)λn−1(L) ≥ 1 [Ban93] and the fact λn−1(L) ≤ ‖B‖ < t, we have t−1 < λn−1(L)−1 ≤ λ1(L×).
Since L(C−s) is isometric to L×, we have λ1(L×) = λ1(L(C−s)). Then t−1 < λ1(L(C−s)) implies

t−1 ≤

∥∥∥∥∥∥
(

t−1y
C−sz

)∥∥∥∥∥∥ =

∥∥∥∥∥∥D−s
(

y
z

)∥∥∥∥∥∥
for any non-zero integer vector

(
y
z

)
∈ Zn where y ∈ Z and z ∈ Zn−1. Thus, t−1 = λ1(L(D−s)) = λ1(Λ×) and

hence D−s is SVP-reduced. This implies the DSVP-reducedness of D.
By Claim 4.6, D is an SRP-reduced basis of Λ such that µn(Λ) =

‖c1‖

t = λ1(L)λ1(Λ×), as desired.
We show Item 1. One calls the SRPγ oracle on the input instance Diag(B, t) to find a basis G = (g1, . . . , gn) of Λ s.t.

its GSO satisfies ‖g1‖

‖g∗n‖
≤ γ · µn(Λ). Then g1 =

(
v
tξ

)
for some vector v in L and some integer ξ satisfying ‖v‖ + |ξ| , 0.

We claim that v is a solution to SVPγ on L, namely v ∈ L with 0 < ‖v‖ ≤ γ · λ1(L). Indeed, by Eq. (2.1), the dual
basis (h1, . . . ,hn) of G satisfies 1

‖g∗n‖
= ‖hn‖ ≥ λ1(Λ×). Then ‖g1‖

‖g∗n‖
≤ γ · µn(Λ) = γ · λ1(L)λ1(Λ×) implies:

0 < ‖g1‖ =

√
‖v‖2 + ξ2t2 ≤ γ · λ1(L) ≤ γ · ‖B‖ < t.

It follows that ξ = 0 and 0 < ‖v‖ ≤ γ · λ1(L), as desired. This proves Item 1.
It remains to show Item 2. Given as input a GapSVPγ instance (B, d) with parameter d > 0, the output of the

reduction is the tuple
(
Diag(B, t), d

t

)
:

• If (B, d) is a YES GapSVPγ instance, then λ1(L) ≤ d. Since µn(Λ) =
λ1(L)

t , this implies µn(Λ) ≤ d
t . Thus,(

Diag(B, t), d
t

)
is a YES GapSRPγ instance.

• If (B, d) is a NO GapSVPγ instance, then λ1(L) > γ · d. Since µn(Λ) =
λ1(L)

t , this implies µn(Λ) > γ · d
t . Thus,(

Diag(B, t), d
t

)
is a NO GapSRPγ instance.

This proves Item 2 and completes the proof of Th. 4.7. �

Combining with the best known hardness result for (Gap)SVPγ [HR12, Th. 1.1] (building on work of [Ajt98,
CN98, Mic01, Kho05]), Th. 4.7 immediately implies the following hardness result for (Gap)SRPγ:

Corollary 4.8. 1. For any constant γ ≥ 1, both SRPγ and GapSRPγ are NP-hard under randomized polynomial-
time reductions. I.e., there is no randomized polynomial-time algorithm for (Gap)SRPγ unless NP ⊆ RP.

2. For 1 ≤ γ ≤ 2(log n)1−ε
with any constant ε > 0, both SRPγ and GapSRPγ on n-rank lattices are NP-hard

under randomized quasipolynomial-time reductions. I.e., there is no randomized polynomial-time algorithm for
(Gap)SRPγ unless NP ⊆ RTIME(2poly(log n)).

3. For 1 ≤ γ ≤ nc/ log log n with some universal constant c > 0, both SRPγ and GapSRPγ on n-rank lattices are NP-
hard under randomized subexponential-time reductions. I.e., there is no randomized polynomial-time algorithm
for (Gap)SRPγ unless NP ⊆ RSUBEXP :=

⋂
δ>0 RTIME(2nδ ).

4.3 Reachability of µn

Our main result of this subsection is as follows, which implies µn = max µn(L) over all n-rank lattices L.

Theorem 4.9. There exists an n-rank lattice L such that µn = µn(L).

Our proof of Theorem 4.9 uses Lemmas 4.10 and 4.11 below.

Lemma 4.10. Let (b1, . . . ,bn) be an n-rank lattice basis such that ‖b1‖ ≤ ‖b2‖ ≤ · · · ≤ ‖bn‖ and 1 ≤ ‖b1‖ ·
∏n−1

i=1 ‖bi‖ ≤∏n
i=1 ‖bi‖ ≤ (n!)2. Then 1/(n!)2n ≤ ‖b1‖, . . . , ‖bn‖ ≤ (n!)4.

9



Proof. Since ‖b1‖
n ≤

∏n
i=1 ‖bi‖, we have ‖b1‖ ≤ (n!)2/n. Note that 1 ≤ ‖b1‖ ·

∏n−1
i=1 ‖bi‖ ≤

‖b1‖(n!)2

‖bn‖
, then ‖bn‖ ≤

(n!)2‖b1‖ ≤ (n!)2+2/n. It follows from 1 ≤ ‖b1‖ ·
∏n−1

i=1 ‖bi‖ ≤ ‖b1‖ · ‖bn‖
n−1 that ‖b1‖ ≥ 1/‖bn‖

(n−1) ≥ 1/(n!)2n. This
implies 1/(n!)2n ≤ ‖b1‖ ≤ ‖b2‖ ≤ · · · ≤ ‖bn‖ ≤ (n!)2+2/n, as desired. �

Lemma 4.11. LetS =
{
B = (b1, . . . ,bn) ∈ Rn×n : 1/(n!)2n ≤ ‖b1‖, . . . , ‖bn‖ ≤ (n!)4 and det(B) = 1

}
and f (B) = µn(L(B))

for every B ∈ S. Then f is continuous on the bounded closed set S.

Proof. We first show compactness of S. Let S1 =
{
(b1, . . . ,bn) ∈ Rn×n : 1/(n!)2n ≤ ‖b1‖, . . . , ‖bn‖ ≤ (n!)4

}
and S2 =

{B ∈ Rn×n : det(B) = 1}. Clearly, S1 is a bounded closed set in Rn×n. Since det(·) is a continuous mapping from Rn×n

to R and {1} is a closed set in R, S2 is closed in Rn×n. Hence, S = S1
⋂
S2 is a bounded closed set.

We next show continuity of f . For each B ∈ S, since vol(L(B)) = det(B) = 1, Theorem 4.1 and Lemma 2.1 imply

f (B) = µn(L(B)) = min{‖Bu1‖ · vol(B(U[1,n−1])) : U = (u1, . . . ,un) is an n × n unimodular matrix}.

For any B,C ∈ S, we may assume without loss of generality that f (C) ≥ f (B) and f (B) = ‖Bu1‖ · vol(B(U[1,n−1]))
for some unimodular matrix U = (u1, . . . ,un). Then,

| f (C) − f (B)| = f (C) − f (B) ≤ ‖Cu1‖ · vol(C(U[1,n−1])) − ‖Bu1‖ · vol(B(U[1,n−1])).

For ∀ ε > 0, since g(B) := ‖Bu1‖ · vol(B(U[1,n−1])) is continuous at B, there exists δ > 0 such that |g(C) − g(B)| <
ε if ‖C − B‖F < δ, where ‖ · ‖F denotes the Frobenius norm. This implies

| f (C) − f (B)| < ε if ‖C − B‖F < δ.

Thus, f is continuous at B. By the arbitrariness of B, f is continuous on S. This completes the proof. �

We now show Theorem 4.9 as follows:
Proof of Theorem 4.9. Recall that µn = sup µn(L) over all n-rank lattices L. Our approach is to express µn as the
supremum of a continuous mapping on some bounded closed set, so that the extreme value theorem in calculus implies
the conclusion.

Define the set Ln = {L ⊂ Rn : L is a lattice of rank n such that vol(L) = 1 and µn(L) ≥ 1}. It is classical that any
n-rank lattice in Rm is isometric to some n-rank lattice in Rn (see, e.g., [BP87, p. 57]) and two isometric lattices have
the same value on µn(·). Together with homogeneity and µn(Zn) = 1, we have

µn = sup{µn(L) : L ∈ Ln}. (4.4)

For any L ∈ Ln, by Theorem 1.2, there exists a basis C = (c1, . . . , cn) of L such that

‖c1‖ ≤ ‖c2‖ ≤ · · · ≤ ‖cn‖ and 1 ≤ ‖c1‖ ·

n−1∏
i=1

‖ci‖ ≤

n∏
i=1

‖ci‖ ≤ (n!)1.5,

where we used the facts that det(C) = vol(L) = 1 and ‖c1‖ ·
∏n−1

i=1 ‖ci‖ ≥ vol(L)µn(L) ≥ 1 (by Lemma 2.1).
By Lemma 4.10, C ∈ S ,

{
B = (b1, . . . ,bn) ∈ Rn×n : 1/(n!)2n ≤ ‖b1‖, . . . , ‖bn‖ ≤ (n!)4 and det(B) = 1

}
. Thus,

L = L(C) ∈ {L(B) : B ∈ S} and hence Ln ⊆ {L(B) : B ∈ S}. Combining with Eq. (4.4), this implies

µn = sup{µn(L(B)) : B ∈ S} (4.5)

By Lemma 4.11, the mapping B 7→ µn(L(B)) is continuous on the bounded closed set S. By the extreme value
theorem in calculus, there exists a basis B0 ∈ S such that µn(L(B)) ≤ µn(L(B0)) for ∀ B ∈ S. By Eq. (4.5), this implies
µn = µn(L(B0)) and the conclusion follows. �

4.4 Properties of µn(L) and µn

In this subsection, we investigate some elementary properties of lattice parameters µn(L) and µn including relations
with other classical lattice parameters. The characterization in Proposition 4.2 and bounds in Proposition 4.12 and
Theorem 4.13 show that it is natural for µn(L) and µn to arise.

Proposition 4.12. Let L be an n-rank lattice.
1. µn(L) = µn(L×).

2. γ′n(L) ≤ µn(L) ≤ γ′′n (L).

3. µn(L) = µn(ρ · L) for any real ρ , 0.
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Proof. By Identity (2.3) and the definitions of µn(L), γ′n(L) and γ′′n (L), the proof is trivial. �

The new constant µn has close relations with classical Hermite’s constant γn, Bergé-Martinet’s constant γ′n and
Korkine-Zolotareff’s constant γ′′n , as shown below.

Theorem 4.13. For n ≥ 2, we have:
1. γ′n ≤ µn ≤ γ

′′
n ;

2. µn ≤
√
γn−1
√
γn

n/(n−1);

3. 1
2 (γn − 1) ≤ µn ≤

√
4
3γn;

4. γ′n ≤ µn ≤
4
√

3

(
γ′n + 1

2

)
;

5. 3
8µn+1 −

1
2 ≤ µn ≤

8
3

(
µn+1 + 1

2

)
;

6. µn has the asymptotical bounds: n
2πe +

log(πn)
2πe + o(1) ≤ µn ≤

1.744n
2πe + o(n).

Proof. Proposition 4.12.2 and Eq. (2.4) imply Items 1 and 2, respectively.
Since γn ≤ (

√
4/3)n−1 = γn−1

2 [Her50] and γn−1 ≤ γ
n/(n−1)
n [New63], Item 2 implies

µn ≤
√
γn−1
√
γn

n/(n−1) ≤ γn/(n−1)
n ≤

√
4
3
γn. (4.6)

Let ωn denote the volume of the n-dimensional unit Euclidean ball and ϑ(n) be the closest integer to
(

5
3ω
−1
n

)2/n
.

Then ϑ(n) = n
2πe +

log(πn)
2πe + o(1) [MH73, p. 31]. By Conway-Thomson’s Theorem (see [MH73, Th. 9.5]), there is an

n-rank lattice L with L = L× such that λ1(L)λ1(L×) ≥ ϑ(n). Thus, µn ≥ γ
′
n ≥ γ

′
n(L) ≥ ϑ(n). Since ϑ(n) ≥

(
5
3ω
−1
n

)2/n
− 1

2

and 2ω−2/n
n ≥ γn [Bli14], we have

1
2

(γn − 1) ≤
1
2

(
5
3

)2/n

γn −
1
2
≤ ϑ(n) ≤ µn,

γ′n ≤ µn ≤

√
4
3
γn ≤

4
√

3
ω−2/n

n ≤
4
√

3

(
ϑ(n) +

1
2

)
≤

4
√

3

(
γ′n +

1
2

)
.

Together with Eq. (4.6), these inequalities imply Items 3 and 4.
Applying the inequalities γn ≤ γ(n+1)/n

n+1 and γn ≤ γn−1
2 again, together with Mordell’s inequality γn+1 ≤ γn/(n−1)

n
[Mor44], Item 5 follows from the calculations below:

µn ≤ γ
n

n−1
n ≤ γ

2
n−1 (1− 1

n+1 )
n γn+1 ≤ γ

2
22ω−2/(n+1)

n+1 ≤
8
3

(
ϑ(n + 1) +

1
2

)
≤

8
3

(
µn+1 +

1
2

)
,

µn ≥
1
2
γn −

1
2
≥ γn+1

(
2γ1/(n−1)

n

)−1
−

1
2
≥

√
3

4
γn+1 −

1
2
≥

3
8
µn+1 −

1
2
.

Since γn ≤
1.744n

2πe + o(n) [KL78] and γ1/(n−1)
n = 1 + o(1), the inequalities ϑ(n) ≤ µn ≤ γ

n/(n−1)
n implies Item 6. This

completes the proof. �

We mention in passing that Schnorr [Sch87] used the notation αk for Korkine-Zolotareff’s constant γ′′k to assess
the quality of BKZ-reduced bases with blocksize k: it is known that γ′′k = k

ln k
2 +O(1) ≤ k

ln k
2 + 1

2 for any k ≥ 2 [HS08,
LLS90]; our Theorem 4.13 suggests that the term O(1) should be great than logk µk −

ln k
2 (e.g., we have logk µk −

ln k
2 ∈

(−2.51,−1.85) for feasible blocksize k = 150 [SG]).
The following theorem upper bounds the lattice constant µn in high dimension using µk in low dimension.

Theorem 4.14. For n ≥ k ≥ 2, if k − 1 divides n − 1, then µn ≤ µ
(n−1)/(k−1)
k .

Proof. It suffices to show that µp(k−1)+1 ≤ µ
p
k for p ≥ 1, which is done by induction over p.

It holds trivially when p = 1. Assume that it holds for some p. Let L be a lattice of rank n = (p + 1)(k − 1) + 1 and
B = (b1, . . . ,bn) be an m-Rankin-reduced basis of L with m = p(k − 1) + 1. Let (c1, . . . , cm) be an SRP-reduced basis
of the sublattice L(B[1,m]) with GSO (c∗1, . . . , c

∗
m). Then C = (c1, . . . , cm,bm+1, . . . ,bn) is a basis of L such that

‖c1‖ · vol(C[1,m−1])
vol(C[1,m])

= µm(L(B[1,m])) ≤ µm. (4.7)

Since k = n − m + 1, there is a k × k unimodular matrix U such that C[m,n]U is an SRP-reduced basis of the
projected lattice L(C[m,n]). Let (dm, . . . ,dn) = (cm,bm+1, . . . ,bn)U and D = (c1, . . . , cm−1,dm, . . . ,dn) with GSO
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(c∗1, . . . , c
∗
m−1,d

∗
m, . . . ,d∗n). Then D is also a basis of L such that D[m,n] = C[m,n]U is SRP-reduced and vol(C[m,n]) =

vol(D[m,n]). Therefore,
‖d∗m‖ · vol(D[m,n−1])

vol(C[m,n])
= µk(L(C[m,n])) ≤ µk. (4.8)

We claim that ‖c∗m‖/‖d∗m‖ ≤ 1. Indeed, since B is m-Rankin-reduced, we have vol(C[1,m]) = vol(B[1,m]) ≤
vol(D[1,m]). Note that vol(C[1,m]) = vol(C[1,m−1]) · ‖c∗m‖ and vol(D[1,m]) = vol(C[1,m−1]) · ‖d∗m‖, this implies ‖c∗m‖ ≤ ‖d∗m‖.

As a result, it follows from Eq. (4.7) and Eq. (4.8) that

µn(L) ≤
‖c1‖ · vol(D[1,n−1])

vol(D)
=
‖c1‖ · vol(C[1,m−1])

vol(C[1,m])
·

vol(D[m,n−1])
vol(C[m+1,n])

≤ µm ·
vol(D[m,n−1])
vol(C[m+1,n])

= µm ·
‖d∗m‖ · vol(D[m,n−1])

vol(C[m,n])
·
‖c∗m‖
‖d∗m‖

≤ µm · µk.

Then the inductive hypothesis µm ≤ µ
p
k implies µn(L) ≤ µp+1

k . By the arbitrariness of L, this implies µn ≤ µ
p+1
k . Thus,

we proved µp(k−1)+1 ≤ µ
p
k by induction over p ≥ 1. This completes the proof. �

Theorem 4.15 below implies µ4 > µ
3/2
3 : hence, µn ≤ µ

(n−1)/(k−1)
k does not always hold for n ≥ k ≥ 2.

Similarly to classical lattice constants γn, γ
′
n and γ′′n , it is hard to determine the exact value of µn. The following

theorem summarizes the explicit values of some µn in low dimensions.

Theorem 4.15. µ2 = 2
√

3
, µ3 =

√
3
2 , µ4 =

√
2,
√

2 ≤ µ5 <
3
2 ,

√
8
3 ≤ µ6 ≤

29/10

31/10 ,
√

3 ≤ µ7 ≤
2

31/12 and µ8 = 2.

Proof. By [BM89, Prop. 2.13], we have γ′′2 = γ′2 = γ2 = 2/
√

3, γ′′3 = γ′3 =

√
3
2 <

3√2 = γ2 and γ′′4 = γ′4 = γ4 =
√

2.
This implies the exact values of µ2, µ3 and µ4 by Theorem 4.13.1. Since the exact values of γn and γ′n are known for
1 ≤ n ≤ 8 (see [BM89, SWO10]), together with γ′′5 < 3

2 [KZ73], the inequalities γ′n ≤ µn ≤ min{γ′′n ,
√
γn−1
√
γn

n/(n−1)}

imply the remainder assertions. �

We provide the critical lattices for µ2, µ3, µ4 and µ8 in Appendix B.

5 Algorithms for the smallest ratio problem
We present an exact algorithm and an approximation algorithm for SRP in Sections 5.1 and 5.2 respectively.

Our main result on the exact SRP algorithm is as follows: given as input a LLL-reduced basis B0 of an n-rank lattice
L ⊆ Zm, the algorithm outputs an SRP-reduced basis B of L and an n×n unimodular matrix U within poly(log ‖B0‖,m)·
n

n
e 2O(n) bit operations and polynomial space such that B = B0U, ‖B‖ ≤ 2(n−1)/2‖B0‖ and ‖U‖∞ ≤ 2(n−1)/2‖B0‖

n.
Our main result on the SRP-approximation algorithm is the following: given as input a basis of an n-rank integer

lattice L, a blocksize k such that k − 1 divides n − 1, a reduction factor ε > 0, and an SRP-subroutine computing
SRP-reduced bases for any lattice of rank k, the algorithm outputs a basis (b1, . . . ,bn) of L such that

‖b1‖ ≤ (
√

1 + εµk)(n−1)/(k−1)‖b∗n‖,

and has running time upper bounded by a polynomial factor in the input size times the cost of the SRP-subroutine.
All the proofs of this section are relegated to Appendix D.

5.1 An exact SRP algorithm
Our exact SRP algorithm is Alg. 1, which is a deterministic enumeration-based algorithm for computing an SRP-
reduced basis of a given integer lattice. The main idea stems from the algorithmic proof of Theorem 4.1, more
precisely, is based on Identity (4.3): if B = (b1, . . . ,bn) is an SRP-reduced basis of an integer lattice L, then ‖b1‖ ≤

R for some computable radius R ∈ [λ1(L), γn−1λ1(L)] and B[2,n] is DSVP-reduced. One can simply enumerate all
primitive vectors b ∈ {x ∈ L : ‖x‖ ≤ R} and then extend every b into a basis C of L such that C[2,n] is DSVP-reduced:
by comparing all their quantities ‖b‖ · vol(C[1,n−1]), one extracts an SRP-reduced basis of L.

Alg. 1 uses three local algorithms, two out of which are related to SVP:
• An enumeration algorithm (see, e.g., [HS07, Fig.1]) which, given a basis of an n-rank integer lattice L in Zm

and a radius R ∈ R+, outputs all vectors in the set {x ∈ L : ‖x‖ ≤ R}. In particular, Kannan’s SVP enumeration
algorithm [Kan87] finds a shortest nonzero vector for L within poly(log ‖Binput‖,m) · n

n
2e 2O(n) bit operations and

polynomial space [HS07].
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• A DSVP-algorithm (see [GN08, Alg. 3]2), which performs a DSVP-reduction of a given block. Given as input
a basis B ∈ Zm×n and an index i ∈ [1, n − 1]

Z
such that B[i,n] is LLL-reduced, the algorithm (dominated by an

SVP computation in rank n− i + 1) outputs a basis C of L(B) such that C[1,i−1] = B[1,i−1], C[i,n] is DSVP-reduced
and ‖C‖ ≤ 2O(n2) × ‖B‖.

• A basis extension algorithm, which extends a primitive vector for a lattice L into a basis of L. Given as input
(b, B) where b is a primitive vector for L with basis B ∈ Zm×n, the Li-Nguyen XGCD-based basis algorithm
[LN19, Alg. 7] outputs a basis C of L in O(mn4 log2 β) bit operations (without fast integer arithmetic) such that
b is the first column of C, ‖C∗‖ ≤ β and ‖C‖ ≤

√
n × β, where β = max{‖b‖, ‖B‖}.

In order to avoid “intermediate entries explosion”, Alg. 1 performs LLL-reductions at Step 11 and Step 16. In fact,
if LLL-reducing a basis (b1, . . . ,bn), then both ‖b1‖/‖b∗n‖ and max1≤i≤n ‖b∗i ‖ can never increase. Therefore, there exists
a basis for any lattice which is both LLL-reduced and SRP-reduced.

Algorithm 1 Computing an SRP-reduced basis of an integer lattice
Input: A 1

3 -LLL-reduced basis B = (b1, . . . ,bn) of an integer lattice L.
Output: An SRP-reduced basis of L and the corresponding unimodular transformation.

1: Store B0 ← B
2: DSVP-reduce B using [GN08, Alg. 3] and then HKZ-reduce B[1,n−1]

3: Size-reduce bn w.r.t. B and store A = (a1, . . . , an)← B
4: if ‖a1‖ = λ1(L) then
5: Go to Step 18 //The current basis B is already SRP-reduced (by Claim 4.6) and 1

3 -LLL-reduced.
6: else
7: for each b ∈ S , {x ∈ L : ‖x‖ ≤ ‖a1‖} do
8: //In order to reduce memory space, one extracts every element from S (for Steps 9-14) one by one via running the

enumeration algorithm [HS07, Fig.1] on the strongly reduced basis A
9: if b is primitive for L then

10: Extend b into a basis C of L by calling the XGCD-based basis algorithm on (b, B0)
11: 1

3 -LLL-reduce C[2,n] and then size-reduce C
12: DSVP-reduce C[2,n] using [GN08, Alg. 3]
13: if ‖b‖ · vol(C[1,n−1]) < ‖b1‖ · vol(B[1,n−1]) then B← C
14: end if
15: end for
16: 1

3 -LLL-reduce B
17: end if
18: Compute the unimodular transformation U such that B = B0U
19: return B and U

Our main result on Alg. 1 is the following:

Theorem 5.1. Given as input a 1
3 -LLL-reduced basis B0 of an n-rank lattice L ⊆ Zm, Alg. 1 outputs an SRP-reduced

basis B of L and an n × n unimodular matrix U such that

B = B0U, ‖B‖ ≤ 2(n−1)/2 × ‖B0‖ and ‖U‖∞ ≤ 2(n−1)/2 × ‖B0‖
n.

Moreover, if Alg. 1 performs its (D)SVP computations at Step 2, Step 4 and each Step 12 using Kannan’s SVP enu-
meration algorithm, then it requires poly(log ‖B0‖,m) · n

n
e 2O(n) bit operations and polynomial space.

We mention that if Alg. 1 performs its (D)SVP computations using the Micciancio-Voulgaris SVP algorithm [MV10]
(instead of Kannan’s SVP enumeration algorithm), then it requires poly(log ‖B0‖,m) · n

n
2e 2O(n) bit operations and

poly(log ‖B0‖,m) · 2n space.
Alg. 1 is unavoidably expensive because of the NP-hardness of SRP. Naturally, it becomes interesting to find

polynomial-time algorithms for approximating SRP, which is done in the next subsection.

5.2 An approximation algorithm for SRP
Recall that blockwise approximation algorithms for SVP rely on an exact algorithm in low rank. By analogy, the exact
SRP algorithm suggests finding an approximation algorithm for SRP using an exact algorithm in low rank.

We define an SRP-oracle as any algorithm which, given a basis B ∈ Zm×k, outputs a k × k unimodular matrix U
such that BU is both SRP-reduced and LLL-reduced. Forcing the output to be LLL-reduced allows us to bound the
coefficients of U (see Cor. C.2). Obviously, Alg. 1 is an SRP-oracle.

2[GN08, Alg. 3] performs a DSVP-reduction up to a relaxation factor of (1 + ε) for any ε ≥ 0. By setting ε = 0, [GN08, Alg. 3] actually does
an exact DSVP-reduction.
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In what follows, we first introduce a new reduction notion called block-ratio reduction. Then we present a deter-
ministic polynomial-time reduction algorithm to compute block-ratio reduced bases. The algorithm approximates SRP
in rank n within a factor essentially µ(n−1)/(k−1)

k , using polynomially many calls to an SRP-oracle in rank k, provided
that k − 1 divides n − 1. Hence, block-ratio reduction can be viewed as an algorithmic version of Theorem 4.14.

5.2.1 Definition and properties

We will use a natural relaxation of SRP-reduction: a basis (b1, . . . ,bn) of an n-rank lattice L is (1 + ε)-SRP-reduced
for ε ≥ 0 if ‖b1‖

‖b∗n‖
≤
√

1 + εµn(L).

Definition 5.2 (Block-ratio reduction). A basis B of an n-rank lattice L where n = p(k − 1) + 1 with p ≥ 1 is
(ε, k)-block-ratio reduced (with blocksize k and factor ε ≥ 0) if it is size-reduced and the block B[i(k−1)+1,i(k−1)+k] is
(1 + ε)-SRP-reduced for i = 0, . . . , p − 1.

Block-ratio reduction achieves the new inequality µn ≤ µ
(n−1)/(k−1)
k where k − 1 divides n − 1, like slide reduction

achieved Mordell’s inequality γn ≤ γ
(n−1)/(k−1)
k for n ≥ k ≥ 2 (see [GN08, MW16, ALNS20]):

Theorem 5.3. If a basis B = (b1, . . . ,bn) of an n-rank lattice L is (ε, k)-block-ratio reduced where n = p(k − 1) + 1
with p ≥ 1 and ε ≥ 0, then

‖b1‖ ≤ (
√

1 + εµk)(n−1)/(k−1)‖b∗n‖.

This approximation factor is essentially tight in the worst-case. More precisely, the upper-bound in Theorem 5.3
can be matched in the worst-case if ε = 0, as shown below.

Proposition 5.4. For n = p(k − 1) + 1 and any ε ≥ 0, there exists a (ε, k)-block-ratio reduced basis B = (b1, . . . ,bn)
of rank n such that ‖b1‖ = µ(n−1)/(k−1)

k ‖b∗n‖.

5.2.2 A reduction algorithm

Our block-ratio reduction algorithm is Alg. 2, which uses one local algorithm based on an SRP-oracle: Alg. 3 performs
a (1 + ε)-SRP-reduction of a given block.

Algorithm 2 Block-ratio reduction of an integer lattice
Input: A blocksize k ≥ 2, a reduction factor ε > 0, and a 1

3 -LLL-reduced basis B = (b1, . . . ,bn) ∈ Zm×n of rank n = p(k − 1) + 1.
Output: A (ε, k)-block-ratio reduced basis of L(B).

1: while B is modified by the loop do
2: //⇔While B is not block-ratio reduced
3: for i = 0 to p − 1 do
4: (1 + ε)-SRP-reduce B[i(k−1)+1,i(k−1)+k] using Alg. 3
5: ε-LLL-reduce B and update the GSO matrices B∗ and µ
6: end for
7: end while
8: return B.

Algorithm 3 SRP-reduction of the block B[i(k−1)+1,i(k−1)+k]

Input: A blocksize k, a factor ε, and a basis B = (b1, . . . ,bn) ∈ Zm×n with GSO matrices B∗ and µ.
Output: The block B[i(k−1)+1,i(k−1)+k] becomes (1 + ε)-SRP-reduced and the basis vectors outside the block remain unchanged.

1: Let j = i(k − 1)
2: if i = 0 then C ← B[1,k]

3: else
4: Compute B[ j+1, j+k] ← (b∗j+1, . . . ,b

∗
j+k)(µı, )T

j+1≤ı, ≤ j+k

5: Compute C ← det((B[1, j])T B[1, j]) × B[ j+1, j+k] ∈ Z
m×k //Note that µk(L(C))2 = µk(L(B[ j+1, j+k]))2 ∈ Q.

6: end if
7: Call the SRP-oracle on C to output a k × k unimodular matrix U such that CU is both SRP-reduced and ε-LLL-reduced, and

then compute µk(L(C))2

8: if (1 + ε)µk(L(C))2 <
‖b∗j+1‖

2

‖b∗j+k‖
2 then

9: Compute (b j+1, . . . ,b j+k)← (b j+1, . . . ,b j+k)U
10: end if
11: return B.

We first show correctness of Alg. 2:
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Theorem 5.5. For all ε ≥ 0, Alg. 2 terminates, and outputs a (ε, k)-block-ratio reduced basis.

We next show that the running time of Alg. 2 is dominated by poly(n, 1/ε) times the cost of an SRP-oracle in rank
k. Hence, Alg. 2 is polynomial in the same sense as blockwise reduction algorithms for approximating SVP [Sch87,
GHGKN06, GN08, MW16, ALNS20]. In particular, if k ≤ log n

log log n and we select Alg. 1 as the SRP-oracle, then Alg. 2
runs in polynomial time.

Theorem 5.6. Given as input a blocksize k ≥ 2, a reduction factor ε ∈ (0, 1]
⋂
Q, and a 1

3 -LLL-reduced basis
B0 ∈ Z

m×n of rank n = p(k − 1) + 1 with p ≥ 1, then any execution of Alg. 2 satisfies:
1. The number of calls to the SRP-oracle is O(p2n2/ε);

2. Each coefficient passed to the SRP-oracle has size O(n(n + log ‖B0‖));

3. Apart from the calls to the SRP-oracle, the algorithm only performs arithmetic operations on rational numbers
such that the number of arithmetic operations is polynomial in (log ‖B0‖,m, 1/ε), and the size of the rational
numbers remains polynomial in (log ‖B0‖, n).

Technically, our complexity analysis uses a ratio potential r(B) =
∏p−1

i=0

( vol(B[1,i(k−1)+1])
mi(k−1)+1(L(B0)) ·

vol(B[1,(i+1)(k−1)])
m(i+1)(k−1)(L(B0))

)
≥ 1, rather

than the standard integral potential P(B) =
∏p−1

i=0 vol(B[1,i(k−1)+1])2vol(B[1,(i+1)(k−1)])2 ∈ Z+ as used in [LLL82, GN08,
LN14, ALNS20]: it makes the number of oracle quires in Item 1 independent of the input basis when being LLL-
reduced; see Appendix D for details.

This strategy also works well for analyzing blockwise reduction algorithms presented in [GN08, LN14, ALNS20].
We detailed it in another full paper [LW21].
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A Proof of Claim 1.1
Proo f o f Claim 1.1. We first bound ‖b1‖/vol(L)1/n. The gluing conditions imply:

‖b1‖ ≤ h(k + 1)i‖b∗ik+1‖ for i = 0, . . . , p − 1. (A.1)

Together with the Hermite conditions, we have

‖b1‖ ≤ g(k)h(k + 1)ivol(B[ik+1,ik+k])1/k for i = 0, . . . , p − 1.

The product of the above p inequalities for i = 0, . . . , p − 1 gives rise to: ‖b1‖ ≤ g(k)h(k + 1)(n−k)/2kvol(L)1/n.
It remains to bound ‖b1‖/λ1(L) under the assumption. Let u be a shortest nonzero vector of L. Then u can be

written as u =
∑t

i=1 αibi where αt , 0. Thus, qk + 1 ≤ t ≤ qk + k for some q ∈ [0, p − 1]
Z
. Since πqk+1(u) is a nonzero

vector of L(B[qk+1,qk+k]), we have ‖πqk+1(u)‖ ≥ λ1(L(B[qk+1,qk+k])). Therefore,

‖b∗qk+1‖
√

1 + ε
≤ λ1(L(B[qk+1,qk+k])) ≤ ‖πqk+1(u)‖ ≤ ‖u‖ = λ1(L).

By Eq. (A.1), this implies ‖b1‖/λ1(L) ≤
√

1 + ε‖b1‖/‖b∗qk+1‖ ≤
√

1 + εh(k + 1)(n−k)/k. This completes the proof. �
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B Critical lattices for µn

An n-rank lattice L is critical for µn if µn(L) = µn. Consider the following upper triangular matrix:

B =



1 1
2

1
2 0 0 0 0 0

0
√

3
4

1
√

12
1
√

3
0 0 0 0

0 0
√

2
3

1
√

6

√
3
8 0 0 0

0 0 0 1
√

2
1
√

8
1
√

2
0 0

0 0 0 0 1
√

2
1
√

8
1
√

2
0

0 0 0 0 0
√

3
8

1
√

6

√
2
3

0 0 0 0 0 0 1
√

3
1
√

12
0 0 0 0 0 0 0 1

2



.

Let B(i) denote the upper left i × i block of B for i = 1, . . . , 8. The following properties hold:
1. A2 = L(B(2)),A3 = L(B(3)),D4 = L(B(4)),D5 = L(B(5)),E6 = L(B(6)),E7 = L(B(7)) and E8 = L(B(8)) (see [Mar02,

Chapter 4] for details);

2. B is i-Rankin reduced for 1 ≤ i ≤ 7 (see [SWO10, Prop. 1]).
Our main result of this appendix is as follows:

Proposition B.1. µ2 = µ2(A2) = 2
√

3
, µ3 = µ3(A3) =

√
3
2 , µ4 = µ4(D4) =

√
2, µ5 ≥ µ5(D5) =

√
2, µ6 ≥ µ6(E6) =

√
8
3 ,

µ7 ≥ µ7(E7) =
√

3 and µ8 = µ8(E8) = 2.

Proof. For each i ∈ [2, 8]
Z
, by Property 2, B(i) is SVP-reduced and (i−1)-Rankin reduced. Then B(i) reaches µi(L(B(i)))

by Claim 4.6. The conclusion follows easily from Theorem 4.15. �

C Bounding the size of transformation
Both Lemma C.1 and Cor. C.2 can be used to efficiently bound the size of transformation.

Lemma C.1. Let B ∈ Zm×n have rank n and x ∈ Z j−i+1 for 1 ≤ i < j ≤ n. If B[i, j]x = b, then ‖x‖∞ ≤ ‖B‖n−1‖b‖.

Proof. Let k = j − i + 1, A = B[i, j] = (a1, . . . , ak) and As = (a1, . . . , as−1,b, as+1, . . . , ak) for s = 1, . . . , k. Define:

y = det(AT A) and zs = det(AT As) for s = 1, . . . , k.

Since Ax = b is equivalent to AT Ax = AT b and AT A is a nonsingular square matrix, Cramer’s rule implies x =

( z1
y , . . . ,

zk
y )T . To complete the proof, it suffices to upper bound the

∣∣∣∣ zs
y

∣∣∣∣’s.

Let d0 = 1 and d` = det((B[1,`])T B[1,`]) for ` = 1, . . . , n. Then d` ∈ Z+ and d` ≤ ‖B∗‖2` for ` = 1, . . . , n. In
particular, we have det(AT A) = vol(L(A))2 = vol(L(B[1, j])2/vol(L(B[1,i−1])2 = d j/di−1.

Note that | det(AT As)|2 ≤ det(AT A) det(AT
s As) (see [Lut96, p. 54]) with 0 ≤ det(AT

s As) ≤ ‖A‖2k−2‖b‖2, this implies

∣∣∣∣∣ zs

y

∣∣∣∣∣ =

∣∣∣∣∣∣det(AT As)
det(AT A)

∣∣∣∣∣∣ ≤
√

det(AT
s As)

det(AT A)
≤

√
di−1

d j
‖A‖k−1‖b‖ ≤ ‖B‖ j−i‖B∗‖i−1‖b‖ for s = 1, . . . , k.

Thus, ‖x‖∞ ≤ ‖B‖ j−i‖B∗‖i−1‖b‖ ≤ ‖B‖n−1‖b‖. This completes the proof. �

Corollary C.2. Let B ∈ Zm×n be an n-rank lattice basis. Let 1 ≤ i < j ≤ n be indices such that j − i + 1 = k and let
U ∈ Zk×k be a unimodular matrix. If C = B[i, j]U is ε-LLL-reduced for ε ≥ 0, then

‖C‖ ≤ α(k−1)/2 × ‖B‖ and ‖U‖∞ ≤ α(k−1)/2 × ‖B‖n

where α = 4(1 + ε)/(3 − ε).

Proof. The classical property of LLL-reduced bases [LLL82, Prop. 1.12] implies ‖C‖2 ≤ αk−1‖B[i, j]‖
2. Applying

Lemma C.1 to the equality C = B[i, j]U, we have ‖U‖∞ ≤ ‖B‖n−1‖C‖ ≤ α(k−1)/2‖B‖n. This completes the proof. �
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D Proofs of Section 5
Proo f o f Theorem 5.1. We first show correctness. If Steps 4-5 occur, then the output basis B is already SRP-reduced
(by Claim 4.6). Assume that Step 6 occurs. Recall Identity (4.3), we have

µn(L) = min
{
‖c1‖ · vol(C[1,n−1])

vol(L)
: C = (c1, . . . , cn) ∈ B(L), c1 ∈ S and C[2,n] is DSVP-reduced

}
,

where S = {x ∈ L : ‖x‖ ≤ ‖a1‖} is defined by Step 7. Steps 7-15 execute this equality exactly: hence, the resulting
basis B at Step 15 is indeed SRP-reduced. The LLL requirement (at Step 16 or see Step 5) ensures good magnitudes
for both the output SRP-reduced basis and the corresponding unimodular transformation (by Cor. C.2). This proves
the correctness.

Next, we analyze the complexity. The main issue is to upper bound the magnitudes of intermediate bases occurring
during the algorithm. We have

‖B‖ ≤
{

2O(n2) × ‖B0‖ right after Step 2,
2(n−1)/2 × ‖B0‖ right after Step 3 or Step 16,

(D.1)

‖C‖ ≤
{

n1.5 × ‖B0‖ right after Step 10 or Step 11,
2O(n2) × ‖B0‖ right after Step 12.

(D.2)

Indeed, since the basis A = (a1, . . . , an) at Step 3 is (n − 1)-Rankin-reduced and A[1,n−1] is HKZ-reduced, Lemma
2.3 implies ‖a1‖ ≤ γn−1λ1(L) ≤ n‖B0‖. Then the current basis C during Steps 10-11 always has short Gram-Schmidt
vectors: ‖C∗‖ ≤ max{‖a1‖, ‖B0‖}. It follows that ‖C‖ ≤ n1.5 × ‖B0‖ right after Step 10/Step 11. Then the properties of
both the DSVP-reduction performed by [GN08, Alg. 3] and the LLL-reduction (see Cor. C.2) imply Eq. (D.1) and
Eq. (D.2).

From Eq. (D.1) and Eq. (D.2), all intermediate bases during execution have size O(n2 + log ‖B0‖). Then both Steps
1-5 and every single execution of Steps 9 -14 require poly(log ‖B0‖,m) · n

n
2e 2O(n) bit operations and polynomial space.

It remains to count the cardinality of the set S = {x ∈ L : ‖x‖ ≤ ‖a1‖} defined by Step 7. Again, since A is DSVP-
reduced and A[1,n−1] is HKZ-reduced, we have

max
I⊆[1,n]

Z

 ‖a1‖
|I|

(
√

n)|I|
∏

i∈I ‖a∗i ‖

 ≤ n
√

n
· max

I⊆[1,n−1]
Z

 ‖a1‖
|I|

(
√

n − 1)|I|
∏

i∈I ‖a∗i ‖

 (by Lemma 2.4)

≤
√

n · (
√

n − 1)
n−1

e (by [HS07, Th. 3])

≤ n
n
2e + 1

2 .

By Hanrot-Stehlé’s analysis of Kannan’s SVP enumeration algorithm [HS07, §4.1], S has cardinality:

|S| ≤ 2O(n) · max
I⊆[1,n]

Z

 ‖a1‖
|I|

(
√

n)|I|
∏

i∈I ‖a∗i ‖

 ≤ 2O(n) · n
n
2e .

Since Steps 9-14 occur at most |S| times, we conclude that Alg. 1 totally requires poly(log ‖B0‖,m) · n
n
e 2O(n) bit

operations and polynomial space. This completes the proof. �
Proo f o f Theorem 5.3. By the definition, the block B[i(k−1)+1,i(k−1)+k] satisfies: ‖b∗i(k−1)+1‖ ≤

√
1 + εµk‖b∗i(k−1)+k‖ for i =

0, . . . , p − 1. This implies the conclusion. �
Proo f o f Proposition 5.4. The technical idea stems from the worst-case analysis of slide reduction [GN08, §4].
By Theorems 4.1 and 4.9, there exists a k-rank lattice L with SRP-reduced basis C = (c1, . . . , ck) such that µk =

µk(L) = ‖c1‖/‖c∗k‖, where (c∗1, . . . , c
∗
k) is the GSO of C. It is classical that C has a unique Gram-Schmidt decomposition

C = QDµ, where Q = ( c∗1
‖c∗1‖

, . . . ,
c∗k
‖c∗k‖

) is an orthonormal set, D = Diag(‖c∗1‖, . . . , ‖c
∗
k‖), and µ = (µi, j)T

1≤i, j≤k is upper
triangular. Then the block T = Dµ is upper triangular with diagonal entries ‖c∗i ‖. Further, T is also SRP-reduced and
reaches µk, because T is isometric to C. This elementary “brick” T can be duplicated and rescaled p times to form a
big n-rank upper-triangular matrix B = (b1, . . . ,bn) as follows: one will match the bottom right coefficient with the
top left coefficient of the next block, in such a way that B[i(k−1)+1,i(k−1)+k] = αi ·T where α = ‖c∗k‖/‖c1‖ = µ−1

k < 1. Then
B is (ε, k)-block-ratio reduced such that ‖b1‖/‖b∗n‖ = ‖c1‖/(αp−1‖c∗k‖) = µ

p
k . This completes the proof. �

Proo f o f Theorem 5.5. Let B0 denote the input 1
3 -LLL-reduced basis and B denote the current basis during execution.

Consider the following ratio potential

r(B) =

p−1∏
i=0

(
vol(B[1,i(k−1)+1])
mi(k−1)+1(L(B0))

·
vol(B[1,(i+1)(k−1)])
m(i+1)(k−1)(L(B0))

)
≥ 1. (D.3)

Initially, log r(B0) ≤ O(pn2) (by the classical property of LLL-reduced bases [PT08, Eq. (2)]). Every operation in
Alg. 2 either preserves or strictly decreases r(B). More precisely, if each (1 + ε)-SRP-reduction modifies the block
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B[i(k−1)+1,i(k−1)+k] for some i ∈ [0, p−1]
Z
, or each special swap of LLL (at Step 5) between two indices (i(k−1)+1, i(k−

1) + 2) or ((i + 1)(k − 1), i(k − 1) + k) occurs, then r(B) is reduced by a multiplicative factor < 1
√

1+ε
. Therefore, there

is a bounded number of such (1 + ε)-SRP-reductions and special swaps even if ε = 0. The operations which preserve
r(B) cannot modify the basis indefinitely. Hence, Alg. 2 terminates for all ε ≥ 0.

It is easy to see that Alg. 2 finally outputs a (ε, k)-block-ratio reduced basis. Indeed, the output basis is size-reduced
due to the LLL-reduction; each block B[i(k−1)+1,i(k−1)+k] is (1 + ε)-SRP-reduced due to the use of Alg. 3. This completes
the proof. �
Proo f o f Theorem 5.6. We consider again the rato potential r(B) defined by Eq. (D.3). Since ε > 0, the number of
calls to the (1 + ε)-SRP-reduction subroutine and special swaps of LLL is at most log r(B0)

log
√

1+ε
. Thus, Alg. 2 terminates

after at most log r(B0)
log
√

1+ε
loops. Since every loop has p SRP-reductions, the total number of calls to the SRP-oracle is at

most O( p2n2

log(1+ε) ).
It remains to bound the size of intermediate numbers and the cost of operations (apart from oracle queries) used

by Alg. 2. The key is to upper bound ‖B‖ during execution with respect to ‖B0‖. We have

‖B‖ ≤
{

2n2+2k × ‖B0‖
n+1 right after Step 4,

2n−1 × ‖B0‖ right after Step 5.

Indeed, since the current basis B right after Step 5 is ε-LLL-reduced for ε ∈ (0, 1], Cor. C.2 implies ‖B‖ ≤ 2n−1‖B0‖.
Consider Step 4, where Alg. 3 is called: for index i ∈ [0, p − 1]

Z
, the integer matrix C appearing in Alg. 3 satisfies

‖C‖ ≤ (2n‖B0‖)2i(k−1)+k ≤ (2n‖B0‖)2n−k and the SRP-oracle outputs a unimodular transformation U such that ‖U‖∞ ≤
2k−1(2n−1‖B0‖)n (by Cor. C.2); then the current basis B right after Step 4 has magnitude: ‖B‖ ≤ k‖U‖∞(2n−1‖B0‖) ≤
k2n2+k‖B0‖

n+1.
Therefore, we always have log ‖B‖ ≤ 2n(n + log ‖B0‖) throughout Alg. 2: by the classical analysis of the LLL

algorithm [LLL82, Prop. 1.26], every single execution of Steps 4-5 (except the oracle) runs in time polynomial in
(log ‖B0‖,m, 1/ε) and runs on rational numbers which have size polynomial in (log ‖B0‖, n) during execution. This
completes the proof of Theorem 5.6. �
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