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ABSTRACT. We study cryptosystems based on supersingular isogenies. This is an active area of research in post-quantum
cryptography. Our first contribution is to give a very powerful active attack on the supersingular isogeny encryption scheme.
This attack can only be prevented by using a (relatively expensive) countermeasure proposed by Kirkwood et al. Our second
contribution is to show that the security of all schemes of this type depends on the difficulty of computing the endomorphism
ring of a supersingular elliptic curve. This result gives significant insight into the difficulty of the isogeny problem that
underlies the security of these schemes. Our third contribution is to give a reduction that uses partial knowledge of shared
keys to determine an entire shared key. This can be used to retrieve the secret key, given information leaked from a side-
channel attack on the key exchange protocol. A corollary of this work is the first bit security result for the supersingular
isogeny key exchange: Computing any component of the j-invariant is as hard as computing the whole j-invariant.

Our paper therefore provides an improved understanding of the security of these cryptosystems. We stress that our work
does not imply that these systems are insecure, or that they should not be used. However, it highlights that implementations
of these schemes will need to take account of the risks associated with various active and side-channel attacks.
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1. INTRODUCTION

In 2011, Jao and De Feo [JF11] introduced the supersingular isogeny Diffie–Hellman key exchange protocol
as a candidate for a post-quantum key exchange. The security of this scheme is based on so-called supersingu-
lar isogeny problems. Similar problems had appeared in a previous hash function construction by Charles–Lauter–
Goren [CLG09], and were subsequently used to build other cryptographic functions such as public-key encryption,
undeniable signatures and designated verifier signatures [FJP14, JS14, XTW12]. As with classical Diffie–Hellman,
the basic version of the key exchange protocol uses ephemeral elements, but the encryption scheme and some of the
more sophisticated applications use static values for at least one element.

The idea behind the supersingular isogeny key exchange protocol is largely based on the isogeny protocol for
ordinary elliptic curves proposed in [RS06]. However, there is a (subexponential) quantum algorithm [CJS14] to break
the system in the ordinary case (in part since the ordinary case is based on commutative ring theory). In contrast, the
case of supersingular curves is non-commutative and seems to be a promising candidate for a post-quantum-secure
system [BJS14, FJP14].

One particular feature of Jao and De Feo’s protocols compared to other schemes based on isogeny problems is the
publication of auxiliary points, which are used to get around the difficulties of non-commutativity. These auxiliary
points open the door to active attacks on the encryption scheme (or key exchange where one party uses a static key).
To be precise, one could try to perform some kind of “small subgroup” or “invalid curve” attacks such as have been
proposed for DLP cryptosystems in the past [LL97, CJ05]. The possibility of active attacks has been mentioned by
Kirkwood, Lackey, McVey, Motley, Solinas and Tuller [KLM+15] and Costello, Longa and Naehrig [CLN16]. Both
papers discuss “validation” techniques that are designed to prevent such attacks, but neither paper demonstrates all the
details of the attacks. Some of the validation methods discussed in [CLN16] use pairings, but we observe a stronger
property of pairings that makes detecting such attacks easier. Note that [CLN16] is only concerned with ephemeral
Diffie–Hellman key exchange, and so their scheme is not subject to attacks on static keys.

The first contribution of our paper (Section 3) is to describe a general active attack against the static-key variant of
the protocol. Our attack allows to recover the whole static key with the minimum number of queries and negligible
computation. Our attack is not prevented by any of the validation techniques introduced in [CLN16], nor by our
stronger validation technique using pairings. Our attack is prevented by the method in [KLM+15] (see Section 2.5),
but this adds significant cost to the running time of the system.
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The second contribution of our paper (Section 4) is to explore the security of the schemes assuming there is an
efficient algorithm to compute the endomorphism ring of a supersingular elliptic curve. It is known that computing en-
domorphism rings of supersingular curves is equivalent to computing isogenies between supersingular elliptic curves,
and it is believed that both these problems are hard [JF11, CLG09]. But previous techniques were not sufficient to
break the Jao–De Feo cryptosystems if the endomorphism ring was known (the resulting isogeny would have too high
degree). We present a new method to find an isogeny of the correct degree in the special case of the isogeny problem
arising in these cryptosystems. This shows that the hardness of computing endomorphism rings is necessary for the
security of any cryptosystem based on the Jao and De Feo concept (it is not restricted to ElGamal or key exchange,
and requires no interaction with a user). We give heuristic and experimental evidence that our algorithm is practical.

Our third contribution (Section 5) is to define and analyse an isogeny analogue of the hidden number problem.
Our main result is an algorithm to compute the j-invariant of a “hidden” elliptic curve given partial information of
the j-invariants of “nearby” curves. We believe that, as with the original hidden number problem in finite fields, this
result will have applications of two flavours. On the one hand, our theorem shows how to mount a type of side-channel
attack on the key exchange protocol: An attacker can compute the shared secret with high probability if they can get
partial information of the shared key during “correlated” executions of the key exchange protocol. On the other hand,
the result gives the first bit security result for the supersingular isogeny key exchange: Computing one component of
the finite field representation of the j-invariant is as hard as computing the whole j-invariant. A consequence of this
result is that it is secure for an implementation to use only one component of the j-invariant of the shared key.

The paper is organised as follows. Section 2 quickly reviews the Jao–De Feo cryptosystem and other preliminaries.
Our results and discussions are given in Sections 3, 4 and 5. In Section 6 we present our conclusions.

2. PRELIMINARIES

2.1. Supersingular Elliptic Curves and Isogenies. Fix a prime p and a prime power q = pk and let E1 and E2

be elliptic curves defined over Fq . An isogeny between E1 and E2 is a non-constant morphism defined over Fq that
sends the identity in E1 to the identity in E2. Then φ is a group homomorphism from E1(Fq) to E2(Fq) [Sil09,
III.4.8]. The degree of φ as an isogeny is equal to the degree of φ as a morphism. In addition, if φ is separable, then
deg φ = # kerφ [Sil09, III.4.10]. In this case, we say that E1 and E2 are isogeneous.

The isogeny is defined by its kernel in the sense that for every finite subgroup G ⊂ E1, there is a unique E2 (up to
isomorphism) and a separable isogeny φ : E1 → E2 such that kerφ = G [Sil09, III.4.12]. We sometimes write E1/G
for E2. Vélu [Vél71] gave an algorithm to construct an isogeny given a finite subgroup. Notice that the total number
of distinct isogenies with degree `, which we now call `-isogenies, is equal to the number of distinct subgroups of E1

of order `. For every prime ` not dividing p, there are ` + 1 isogenies of degree ` since the group of `-torsion points
form a subgroup E[`] = Z/`Z⊕ Z/`Z [Sil09, III.6.4].

If G = 〈P 〉 ⊂ E1 is a cyclic group of order `n then the isogeny with kernel G factors as a chain of isogenies

E1 → E2 → · · · → E`+1

such that each φi : Ei → Ei+1 is an isogeny of degree ` with kernel in Ei[`]. We will use the following notation

G1 = G, Gi+1 = φi(Gi) ,

P1 = P, Pi+1 = φi(Pi) .

Now, note that φi(Gi) = 〈φi(Pi)〉 ⊆ Ei+1[`n−i]. The kernel of φ1 is 〈[`n−1]P 〉 and for i > 1 the kernel of φi is
〈[`n−i]φi−1(Pi−1)〉.

For every φ : E1 → E2, there exists an isogeny φ̂ : E2 → E1 such that

φ ◦ φ̂ = [deg φ] = φ̂ ◦ φ .

We call φ̂ the dual isogeny of φ. This allows us to define an equivalence relation on elliptic curves that are isogenous.
If we have a pair of isogenies φ : E1 → E2 and ψ : E2 → E1 such that φ ◦ ψ and ψ ◦ φ are the identity, then we

say that φ and ψ are isomorphisms. We also then say that E1 and E2 are isomorphic curves. This naturally defines an
equivalence relation and the isomorphism classes can be represented by the j-invariants [Sil09, III.1.4(b)].

Isogenies that have the same domain and range are known as endomorphisms. For an elliptic curve E, we write
End(E) for the set of all endomorphisms φ : E → E together with the zero morphism. In fact, we can define
addition and multiplication on endomorphisms by setting (φ + ψ)(P ) = φ(P ) + ψ(P ) and (φ · ψ)(P ) = φ(ψ(P ))
for all φ, ψ ∈ End(E) and P ∈ E. This gives it a ring structure. The multiplication-by-n maps are examples of
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endomorphisms and so Z ↪→ End(E). In fact, over a finite field, End(E) is isomorphic to either a maximal order in
a quaternion algebra or to an order in an imaginary quadratic field [Sil09, III.9.3]. In the former case, we say that E is
supersingular, otherwise, we say that it is ordinary.

An elliptic curve E/Fpk is supersingular if and only if |E(Fpk)| ≡ 1 (mod p). It is known that there are approxi-
mately p/12 isomorphism classes of supersingular elliptic curves E over Fp [Sil09, V.4.1]. It is also known that every
supersingular curve is isomorphic to one defined over Fp2 [Sil09, V.3.1(a)(iii)]. A theorem of Tate states that E1 and
E2 are isogenous over Fpk if and only if |E1(Fpk)| = |E2(Fpk)| [Tat66, §3].

2.2. Hard Problem Candidates Related to Isogenies. Starting from the work of Charles–Lauter–Goren [CLG09]
and later Jao–De Feo [JF11], several recent cryptosystems have been based on the computational hardness of comput-
ing isogenies between supersingular elliptic curves. The main problem in this area can be described as follows:

Definition (Supersingular isogeny problem). Given a finite field K and two supersingular elliptic curves E1, E2

defined over K such that |E1| = |E2|, compute an isogeny ϕ : E1 → E2.

We stress that this isogeny is not unique (in fact there are infinitely many of them without additional restrictions).
Further, the most natural representations of an isogeny are either as a pair of rational maps or as a kernel, and both these
representations generally require exponential space. However, one can also represent an isogeny of smooth degree as
a composition of low degree isogenies, and this can be done in polynomial space. Hence the computational problem
makes sense.

This problem has been studied in a number of previous works. The cryptanalysis of Charles–Lauter–Goren’s hash
function requires to compute isogenies of degree `e for some small, fixed prime `. Similarly, the Jao–De Feo schemes
involve isogenies of the same form with an additional condition on e.

Another important problem in this area is the problem of computing the endomorphism ring of a given elliptic
curve.

Definition (Endomorphism ring computation). Given an elliptic curve E defined over a finite field K, compute its
endomorphism ring.

This problem was studied by Kohel [Koh96]. In the supersingular case Kohel described a probabilistic algorithm
running in time Õ(p), where p is the characteristic of the field. This was later improved to Õ(

√
p) by Galbraith [Gal99]

using birthday paradox arguments. We remark that for some supersingular elliptic curves the problem is easy (for
example when j = 0), but the problem is believed to be hard on average.

Heuristically, one can turn an algorithm that computes isogenies into an algorithm that computes the full endomor-
phism ring of an elliptic curve; the reduction actually underlies Kohel’s algorithm.

It turns out that the converse is also true, at least heuristically. There is an equivalence of categories between the
set of supersingular curves and the set of maximal orders of a quaternion algebra (see [Deu41, Koh96, KLPT14]).
Given the endomorphism rings of the two elliptic curves, one can identify the corresponding maximal orders in the
quaternion algebra, and then use techniques developed in [KLPT14] to compute paths between them in the quaternion
algebra and translate these paths into isogeny paths.

The algorithm in [KLPT14] solves the quaternion algebra analog of the supersingular isogeny problem, which
requires to compute an ideal with a smooth norm connecting two given maximal orders. However, the degree of the
ideal returned by this algorithm is about p7 in general and p7/2 if one of the orders is special (a p-extremal order, as
defined in [KLPT14]), whereas a degree about p is expected to suffice in general, and a degree about p1/2 would be
needed to break the Jao–De Feo cryptosystems. Here p is the characteristic of the field.

2.3. Jao–De Feo scheme.

2.3.1. Key exchange protocol. There are three steps in the key exchange protocol: The set-up, the key exchange and
the key derivation.

In the set-up, a prime of the form p = 2n · 3m · f − 1 is generated where f is small and 2n ≈ 3m (more generally
p = `nA`

m
B f ± 1 where `A, `B are small primes). A supersingular elliptic curve E over Fp2 is constructed, and linearly

independent points PA, QA ∈ E[2n] and PB , QB ∈ E[3m] are chosen. Here “linearly independent” means that the
group 〈PA, QA〉 generated by PA and QA has order 22n, and similarly, |〈PB , QB〉| = 32m.

In the key exchange, Alice picks random integers 0 ≤ a1, a2 < 2n (not both divisible by 2) and Bob picks random
integers 0 ≤ b1, b2 < 3m (not both divisible by 3). Alice and Bob compute

GA = 〈[a1]PA + [a2]QA〉 , GB = 〈[b1]PB + [b2]QB〉
3



respectively. Using Vélu’s formulas [Vél71], they will then be able to compute the isogenies φA and φB with respective
kernels GA and GB . They then compute EA = φA(E) = E/GA, φA(PB), φA(QB) and EB = φB(E) = E/GB ,
φB(PA), φB(QA) respectively. Their respective messages in the protocol will be

(EA, φA(PB), φA(QB)) , (EB , φB(PA), φB(QA)) .

Upon receipt of Bob’s message, to derive the shared key, Alice would compute

〈[a1]φB(PA) + [a2]φB(QA)〉 = 〈φB([a1]PA + [a2]QA)〉 = φB(GA) .

Alice then computes the isogeny fromEB , with kernel equal to this subgroup. Bob will perform a similar computation
and the resulting isogeny will be generated byGA andGB (since the subgroups have a trivial intersection). The shared
secret will be

EAB := E/〈GA, GB〉 = EA/〈φA(GB)〉 = EB/〈φB(GA)〉 .
This can be summarised in the following diagram, where we use the notation from above.

E

E/GA

E/GB

E/〈GA, GB〉

φA

φB

The Jao–De Feo key exchange scheme originates from a similar scheme for ordinary elliptic curves proposed by
Rostovtsev and Stolbunov [RS06]. The ordinary case is based on a commutative mathematical structure, however
this structure enables a subexponential-time quantum algorithm [CJS14] to break the system. On the other hand, the
supersingular curves variant is based on a non-commutative structure and so it seems to be a promising candidate for
a post-quantum-secure system. The auxiliary points included in the protocol messages allow Jao and De Feo to get
around the difficulties of non-commutativity.

We stress that the isogeny problem involved here differs from a general one in several ways. On the one hand, the
special primes used and the auxiliary points given to an attacker may make the supersingular isogeny problem easier
than the general isogeny problem. On the other hand there is a very strong constraint imposed on the degree of the
isogeny, and this might a priori make the problem harder; we discuss this issue in more detail in Section 4. We remark
that our first and third results use the auxiliary points in essential ways. However the result of Section 4 does not use
the auxiliary points and only uses the fact that the required isogeny has a strongly constrained degree.

2.3.2. Encryption protocol. The public-key encryption scheme is constructed from the key exchange scheme with a
few adaptations [FJP14]. Namely, the shared secret would be used as a key for a symmetric encryption scheme (below
we use the one-time pad) to encrypt the message. We will use the same notation as above and assume that Bob wants
to send a message to Alice. There are four steps to the encryption protocol: The set-up, key generation, encryption
and decryption.

The set-up is almost identical to the key exchange protocol, where the two parties Alice and Bob agree on a prime of
the form p = 2n · 3m · f − 1, a supersingular elliptic curve over Fp2 , and linearly independent points PA, QA ∈ E[2n]
and PB , QB ∈ E[3m]. In addition, they agree on a keyed hash function Hk that sends Fp2 to the set {0, 1}w of w-bit
strings.

In the key generation phase, Alice picks random integers 0 ≤ a1, a2 < 2n (not both divisible by 2) and computes

EA, φA(PB), φA(QB)

as above. She also chooses a random ephemeral key, k, for the hash and publishes the tuple

(EA, φA(PB), φA(PB), k)

as her public key. She retains (a1, a2) as her private key.
Upon the receipt of Alice’s public keys, Bob selects a w-bit message m ∈ {0, 1}w and chooses random integers

0 ≤ b1, b2 < 3m (not both divisible by 3) and computes

EB , φB(PA), φB(QA) .
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Using his randomly generated keys b1 and b2, he can also compute EAB as in the key-exchange protocol. He then
computes

c = m⊕Hk(j(EAB))

and sends the tuple
(EB , φB(PA), φB(QA), c)

to Alice.
To decrypt Bob’s message, Alice computes EAB using EB , φB(PA), φB(QA) and a1, a2 and recovers the message

m by computing
m = c⊕Hk(j(EAB)) .

We stress that encryption is just one possible application where a static key may be used for at least one element in
the protocol. We anticipate that as the subject develops further there will be more protocols of this type.

2.3.3. Equivalent keys and Normalisation. The Vélu formulas tell us that the isogeny is determined solely by its
kernel. In Alice’s case, there are 3 · 2n−1 choices of kernels, and the total number of choices for (a1, a2) is about 22n,
so there will be private keys that correspond to the same public keys.

We define an equivalence relation on the private keys, by saying (a1, a2) ∼ (a′1, a
′
2) if the two keys lead to the same

subgroup for all possible input points. The relation is satisfied by (a′1, a
′
2) = (θa1, θa2) for any θ ∈ Z∗2n , and so the

equivalence class is a point in projective space over a ring. We may define a unique equivalence class representative
by “normalising” as explained in the following lemma (this fact is also used by [CLN16]).

Lemma 2.1. Let P,Q ∈ E[2n] be linearly independent generators of E[2n]. Then for some (a1, a2) ∈ Z2 (not
simultaneously even), we have that (a1, a2) ∼ (1, α) or (a1, a2) ∼ (α, 1) for some α ∈ Z (using the equivalence
relation defined above).

Proof. If a1 is odd, then it is invertible modulo the order of the group, so let θ ≡ a−11 (mod 2n), then θ must be odd,
hence

〈[a1]PA + [a2]QA〉 = 〈[θa1]PA + [θa2]QA〉 = 〈PA + [α]QA〉 ,
where the first equality stems from the fact that θ is co-prime to the order of the generator, and the last equality is
obtained by setting α = θa2.

If a1 is even, then a2 must be odd, and repeating the procedure gives (α, 1). � �

This result tells us that there is no loss of generality for Alice to restrict her secret key to be (1, α) or (α, 1). This
was noted by [CLN16]. However, even if Alice does not employ such a simplification, the result also tells us that there
is no loss of generality for an attacker to assume the secret key is of one of these two forms. This observation is used
repeatedly in the adaptive attack presented in section 3.

2.4. Active Attacks and Validation Methods. Active attacks are a standard type of attack on cryptosystems that use
a static private key. These first arose in the setting of protocols based on the discrete logarithm problem, where a user
can be treated as an oracle that takes as input a group element g and returns ga for some long-term secret value a.
A first kind of attack is the “small subgroup” attack of Lim and Lee [LL97]. Here a group element g of small order
` is sent, so that on receipt of the value ga one can do a search and learn a (mod `). Similar ideas have been used
based on “invalid curve” attacks, which involve providing a point that lies in a different group altogether (see Ciet and
Joye [CJ05]).

In the context of the isogeny cryptosystem, if Alice has a fixed key (a1, a2) then a dishonest Bob can send her
(E,P,Q) and then Alice will compute an isogeny φ : E → E′ with kernel 〈[a1]P + [a2]Q〉. The idea is to try to
learn something about Alice’s secret key (a1, a2) using knowledge of E′. The possibility of such attacks is mentioned
in [KLM+15] and [CLN16], but neither paper presented full details of them.

The concept of “validation” is intended to prevent active attacks. In the case of protocols based on the DLP, the
typical countermeasures check that g does lie in the correct group, and that the order of g is the correct value. In the
context of supersingular isogeny cryptosystems the validation of (E,P,Q) should test that E really is a supersingular
elliptic curve, that P and Q lie on the curve and have the correct order, and that P and Q are independent. Methods to
do this are given in [CLN16].

In particular, Section 9 of [CLN16] presented some explicit validation steps. Their two requirements are: The
points in the public key have full order and they are independent. They use the Weil pairing of the two points to check
independence. We remark that it is not necessary to use the Weil pairing: Since the DLP is easy in a group of order
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2n one can just try to solve the DLP of Q to the base P , and if the algorithm fails then the points are independent. In
particular, to show that 〈P,Q〉 = E[2n] it suffices to compute [2n−1]P and [2n−1]Q and verify that these points are
both different, and neither is the identity.

Remark. We now observe that the Weil pairing can be used to check a lot more than just independence. A standard
fact is that if φ : E → E′ is an isogeny and if P,Q ∈ E[N ] then

eN (φ(P ), φ(Q)) = eN (P,Q)deg(φ)

where the first Weil pairing is computed on E′ and the second on E (for details see [Sil09, III.8.2] or [BSS05, IX.9]).
This allows to validate not only that the points are independent but also that they are consistent with being the image
of the correct points under an isogeny of the correct degree. Hence, a natural validation step for Alice to run in the
Jao–De Feo scheme is to check

e2n(φB(PA), φB(QA)) = e2n(PA, QA)3
m

.

This will give her some assurance that the points φB(PA), φB(QA) provided by Bob are consistent with being the
images of the correct points under an isogeny of the correct degree. However, as we will show, this validation step is
not sufficient to prevent all adaptive attacks. It will be necessary to use a much stronger protection, which we describe
in the next section.

2.5. The Kirkwood et al. Validation Method. Kirkwood et al. [KLM+15] presented a general method to secure any
key exchange protocol of a certain type. The idea is to complete the key exchange protocol and then for each party
to encrypt to the other party the randomness used in the protocol so that they can check that the protocol has been
performed correctly. Note that [KLM+15] does not contain a formal analysis of the security of the resulting protocol.

We now briefly describe the key exchange protocol that arises when the Kirkwood et al. transform is applied to the
Jao–De Feo protocol. In the following description, we show what Bob should do and how Alice can verify that Bob
has followed the protocol correctly (this is suited for the case where Alice is using a static key and where Bob is a
potential adversary).

(1) Bob obtains Alice’s static public key (EA, φA(PB), φA(QB)).
(2) Bob chooses a random seed rB and derives his private key using a pseudo-random function PRF (Kirkwood

et al. call this a key derivation function).

(b1, b2) = PRF(rB) .

He then computes his message (EB , φB(PA), φB(QA)) where φB is defined to have kernel 〈[b1]PB +
[b2]QB〉.

(3) Bob derives the shared secret value EAB from (EA, φA(PB), φA(QB)) and (b1, b2) and computes a session
key (SK) and validation key (VK) via a key derivation function (KDF)

SK | VK = KDF(j(EAB)) .

(4) Bob then sends (EB , φB(PA), φB(QA)) and cB = EncVK(rB ⊕ SK) to Alice.
(5) From (a1, a2) and (EB , φB(PA), φB(QA)), Alice derives E′AB , then SK ′ and VK ′.
(6) Alice computes

r′B = DecVK′(cB)⊕ SK ′ .
She then computes PKDF(r′B) and recomputes Bob’s operations. If the resulting message is equal to the
value (EB , φB(PA), φB(QA)) originally sent by Bob then Alice terminates the protocol correctly and uses
SK ′ = SK for future communicate with Bob. If not, the protocol terminates in a non-accepting state.

Notice that this protocol requires that Bob reveals his secret key to Alice, so it compels him to change his secret key
after each verification. This validation method can be used for both the key-exchange and the encryption protocols.

3. ADAPTIVE ATTACK

In this section, we will assume that Alice is using a static key (a1, a2), and that a dishonest user is playing the role
of Bob and trying to learn her key. Our discussion is entirely about Alice’s key and points in E[2n], but it should
be clear that the same methods would work for points in E[`m] for any small prime ` (see Remark 3.3 for further
discussion).

There are two attack models that can be defined in terms of access to an oracle O:
6



(1) O(E,R, S) = E/〈[a1]R+ [a2]S〉. This corresponds to Alice taking Bob’s protocol message, completing her
side of the protocol, and outputting the shared key.

(2) O(E,R, S,E′) which returns 1 if j(E′) = j(E/〈[a1]R+ [a2]S〉) and 0 otherwise. This corresponds to Alice
taking Bob’s protocol message, completing her side of the protocol, and then performing some operations
using the shared key that return an error message if the shared key is not the same as the j-invariant provided
(e.g., the protocol involves verifying a MAC corresponding to a key derived from the session key).

Our attacks can be mounted in both models. To emphasise their power we explain them in the context of the second,
weaker, model.

3.1. First Step of the Attack. From Lemma 2.1, we may assume that the private key is normalised. In the following
exposition, we will assume that the normalisation is (1, α). The case where we have (α′, 1) where α′ is even is
performed in exactly the same way with some tweaks. Note that if α′ is odd then it can be converted to the (1, α) case,
so we may assume α′ is even in the second case.

To differentiate between (1, α) and (α′, 1) an attacker honestly generates Bob’s ephemeral values (EB , R =
φB(PA), S = φB(QA)) and follows the protocol to compute the resulting key EAB . Then the attacker sends
(EB , R, S + [2n−1]R) to Alice and tests the resulting j-invariant. Expressing this in terms of the oracle access:
The attacker queries an oracle of the second type on (EB , R, S + [2n−1]R,EAB). If the oracle returns 1 then the
curveEB/〈[a1]R+[a2](S+[2n−1]R)〉 is isomorphic toEAB and so 〈[a1]R+[a2](S+[2n−1]R)〉 = 〈[a1]R+[a2]S〉.
Hence, by the following Lemma, a2 is even and we are in the first case. If the oracle returns 0 then a2 is odd.

Lemma 3.1. Let R,S ∈ E[2n] be linearly independent points of order 2n and let a1, a2 ∈ Z. Then

〈[a1]R+ [a2](S + [2n−1]R)〉 = 〈[a1]R+ [a2]S〉
if and only if a2 is even.

Proof. If a2 is even then [a2][2n−1]R = 0 and so the result follows. Conversely, if the two groups are equal then there
is some λ ∈ Z∗2n such that

λ([a1]R+ [a2](S + [2n−1]R)) = [a1]R+ [a2]S .

Since the points are independent we have λa2 = a2 and so λ = 1. Hence, since S has order 2n, we have a22n−1 ≡ 0
(mod 2n) and a2 is even. � �

Note that the Weil pairing

e2n(R,S + [2n−1]R) = e2n(R,S) = e2n(PA, QA)3
m

and so the attack is not detectable using pairings.
Similarly one can call the oracle on (EB , R + [2n−1]S, S,EAB). The oracle returns 1 if and only if a1 is even.

Hence, we can determine which of the two cases we are in and determine if α is even or odd. Having recovered a
single bit of α, we will now explain how to use similar ideas to recover the rest of the bits of α.

3.2. Continuing the Attack. We now assume that Alice’s static key is of the form (1, α) and we write

α = α0 + 21α1 + 22α2 + · · ·+ 2n−1αn−1 .

The attacker will learn one bit of α for each query of the oracle. Algorithm 1 gives pseudo-code for the attack.
We now give some explanation and present the derivation of the algorithm. Suppose an attacker has recovered the

first i bits of α, so that
α = Ki + 2iαi + 2i+1α′ ,

where Ki is known but αi ∈ {0, 1} and α′ ∈ Z are not known.
The attacker generates EB , R = φB(PA), S = φB(QA) and EAB as in the protocol. To recover αi, the attacker

will choose suitable integers a, b, c, d and query the oracle on

(EB , [a]R+ [b]S, [c]R+ [d]S,EAB) .

The integers a, b, c, and d will be chosen to satisfy the following conditions:
(1) If αi = 0, then 〈[a+ αc]R+ [b+ αd]S〉 = 〈R+ [α]S〉.
(2) If αi = 1, then 〈[a+ αc]R+ [b+ αd]S〉 6= 〈R+ [α]S〉.
(3) [a]R+ [b]S and [c]R+ [d]S both have order 2n.
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(4) The Weil pairing e2n([a]R+ [b]S, [c]R+ [d]S) must be equal to

e2n(φB(PA), φB(QA)) = e2n(PA, QA)deg φB = e2n(PA, QA)3
m

.

The first two conditions help us distinguish the bit αi and the latter two prevent the attack from being detected via
order checking and Weil pairing validation checks respectively.

Consider the following integers:

ai = 1 , bi = −2n−i−1Ki ,

ci = 0 , di = 1 + 2n−i−1 .

One can verify that they satisfy the third condition. To satisfy the fourth condition we need to use a scaling by θ
that we will discuss later.

To show that the first two conditions are satisfied, note that 〈[a]R+ [b]S + [α]([c]R+ [d]S)〉 is equal to

〈R− [2n−i−1Ki]S + [α][1 + 2n−i−1]S〉
= 〈R+ [α]S + [−2n−i−1Ki + 2n−i−1(Ki + 2iαi + 2i+1α′)]S〉
= 〈R+ [α]S + [αi2

n−1]S〉

=

{
〈R+ [α]S〉 if αi = 0 ,

〈R+ [α]S + [2n−1]S〉 if αi = 1 .

By the following Lemma, these two subgroups are different. Hence the response of the oracle tells us αi.

Lemma 3.2. Let R and S be linearly independent elements of the group E[2n] with full order, then the subgroups

〈R+ [α]S + [2n−1]S〉 and 〈R+ [α]S〉
are different.

Proof. The proof is very similar to the proof of Lemma 3.1. The subgroups have order 2n, since R has order 2n, and
R and S are linearly independent. Then if the subgroups are the same, we must have some λ such that

[λ]R+ [λα]S = R+ [α]S + [2n−1]S .

By the linear independence of R and S, we can compare coefficients and conclude that λ = 1, and that [2n−1]S = O,
which implies that S has order a factor of 2n−1, which is a contradiction. � �

Algorithm 1: Adaptive attack using oracle O(E,R, S,E′).
Data: n, E, PA, QA, PB , QB , EA, φA(PB), φA(QB)
Result: α

1 Set K0 ← 0;
2 for i← 0 to n− 3 do
3 Set αi ← 0;
4 Choose random (b1, b2);
5 Set GB ← 〈[b1]PB + [b2]QB〉;
6 Set EB ← E/GB and let φB : E → EB be the isogeny with kernel GB ;
7 Set (R,S)← (φB(PA), φB(QA));
8 Set EAB ← EA/〈[b1]φA(PB) + [b2]φA(QB)〉;
9 Set θ ←

√
(1 + 2n−i−1)−1 (mod 2n);

10 Query the oracle on
(
EB , [θ](R− [2n−i−1Ki]S), [θ][1 + 2n−i−1]S,EAB

)
;

11 if Response is false then αi = 1;
12 Set Ki+1 ← Ki + 2iαi;
13 end
14 Brute force αn−2, αn−1 using E and EA and Kn−2 = α (mod 2n−2) to find α (this requires no oracle calls);
15 Return α;
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Finally, we address the fourth condition. We need that

e2n([a]R+ [b]S, [c]R+ [d]S) = e2n(R,S)ad−bc = e2n(PA, QA)3
m

.

The idea is that we can mask the points chosen from the attack above to satisfy the fourth condition. Recall that the
points we wish to send to Alice are

(R′, S′) = (R− [2n−i−1Ki]S, [1 + 2n−i−1]S) .

Computing the Weil pairing of the two points, we have

e2n(R′, S′)

= e2n(R− [Ki2
n−i−1]S, [1 + 2n−i−1]S)

= e2n(R, [1 + 2n−i−1]S) · e2n(−[Ki2
n−i−1]S, [1 + 2n−i−1]S)

= e2n(R,S)1+2n−i−1

,

which is not the correct value. So we choose θ such that

e2n(θR′, θS′) = e2n(R,S)θ
2(1+2n−i−1) = e2n(PA, QA)3

m

= e2n(R,S) .

Note that 〈[θ]R′ + [α][θ]S′〉 = 〈[θ](R′ + [α]S′)〉 = 〈R′ + [α]S′〉 as long as θ is coprime to the order 2n. Hence we
need θ to be the square root of 1 + 2n−i−1 modulo 2n. The following lemma shows that such a square root exists as
long as n− i− 1 ≥ 3. Note that θ will be odd, as required.

Lemma 3.3. If a is an odd number and m = 8, 16, or some higher power of 2, then a is a quadratic residue modulo
m if and only if a ≡ 1 (mod 8).

The condition n− i− 1 ≥ 3 means we may not be able to launch the attack in an undetected way for the last two
bits. This is why we use a brute force method to determine these bits.

The attack in the case (α′, 1) follows by swapping the roles of R and S.

3.3. Analysis and Complexity of the Attack. The attack requires fewer than n ≈ 1
2 log2(p) interactions with Alice.

This seems close to optimal for attack model 2, where the attacker only gets one bit of information at each query. We
can reduce the number of queries by doing more computation (increasing the range of the brute-force search).

We now consider the attack in the context of [KLM+15] and [CLN16]. Due to our third and fourth conditions, the
attack passes the validation steps in [CLN16], and even the stronger check of taking the degree of the isogeny into
account as mentioned in Remark 2.4.

The approach in [KLM+15] would be able to detect the attack. This is because the auxiliary points sent to Alice in
the attack are not the correct values generated in an honest protocol run.

Remark. We now say a few words about attacking odd prime power isogenies. Let ` be an odd prime such that
`n | (p + 1) and E[`n] ⊂ E(Fp2). Let PA, QA be generators of E[`n]. Alice would compute an `n-isogeny
with kernel 〈[a1]PA + [a2]QA〉 and a dishonest user Bob is trying to learn her key a1, a2, where a1 and a2 are not
simultaneously divisible by `. As above, we take Alice’s secret key to be (1, α).

The obvious generalisation for this attack is to set R = φB(PA) and S = φB(QA) and to send Alice points

(R− [x`n−i−1]S, [1 + `n−i−1]S) .

In her computation for the subgroup, Alice would compute

〈R+ [α]S + [`n−i−1][α− x]S〉 .
Since we want to compare this subgroup against 〈R+ [α]S〉, we need

(`n−i−1)(α− x) ≡ 0 (mod `n)

to ensure the subgroups computed are the same. Hence for each coefficient of a power of ` in the `-expansion of α,
we will need at most `− 1 queries to recover it.

For ` = 3 this is as good as one would expect (at most two queries), but for primes ` ≥ 5 this seems not optimal
since one would hope that given an oracle that returns one bit of information one could learn the value with only
dlog2(`)e queries. In Appendix B we specify a simple attack, that is easily detectable and uses a stronger oracle, but
can be used to efficiently handle the case ` > 3.
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4. SOLVING THE ISOGENY PROBLEM WHEN THE ENDOMORPHISM RING IS KNOWN

Let p = `nA`
m
B f − 1 as in the Jao–De Feo cryptosystems, and let E and EA be two supersingular elliptic curves

such that there exists an isogeny φA : E → EA of degree `nA between them. In this section we additionally suppose
that we know (or can compute) the endomorphism rings End(E) and End(EA), and we provide an efficient algorithm
to recover φA assuming a certain natural heuristic holds. A formal statement of our reduction is below and we will
prove this in Section 4.2.

Theorem 4.1. Let E and EA be supersingular elliptic curves over Fp2 such that E[`nA] ⊆ E(Fp2) and there is an
isogeny φA : E → EA of degree `nA from E to EA. Suppose there is no isogeny φ : E → EA of degree < `nA. Then,
given an explicit description of End(E) and End(EA), there is an efficient algorithm to compute φA.

As recalled in Section 2.2, computing the endomorphism ring of a supersingular elliptic curve is a problem es-
sentially equivalent to computing an arbitrary isogeny between two supersingular elliptic curves. However, the the
algorithm of [KLPT14] does not produce an isogeny that satisfies the additional constraint that it must be of small
degree, as is required in the Jao–De Feo cryptosystems (`nA ≈ p1/2). Hence the current state of knowledge does not
give a reduction of the form we require. The aim of this section is to present an alternative method to [KLPT14] in
this context. We use the notation of [KLPT14].

4.1. The Importance of the Correct Isogeny. We first explain that to break the Jao–De Feo protocol it is not suffi-
cient to compute any isogeny from E to EA. There are infinitely many such isogenies, but to break the Jao and De Feo
cryptosystems it is necessary to find the right sort of isogeny, as we now explain.

Suppose there are curves E and isogenies φA : E → EA, φB : E → EB with ker(φA) = GA, ker(φB) = GB
satisfying the usual isogeny diagram from Section 2.3:

E

EA = E
GA

EB = E
GB

EAB = E
〈GA,GB〉

φA

φB

The correctness of the protocol follows from the fact that E/〈GA, GB〉 = EA/〈φA(GB)〉 = EB/〈φB(GA)〉 and that
φA(GB) and φB(GA) can be computed by the honest parties.

Suppose an attacker given E,EA, EB can compute an isogeny φ′ : E → EA. So the picture now looks like:

E

EA = E
GA

EB = E
GB

EAB = E
〈GA,GB〉

φA

φ′

φB

The natural approach for an attacker to try to compute EAB is to compute φB(ker(φ′)) and hence an isogeny from EB
with this kernel. However, the attacker only has the points φB(PA), φB(QA) to work with, and so can only compute
φB(ker(φ′)) if ker(φ′) ⊆ 〈PA, QA〉 (in which case φ′ is an isogeny of degree dividing 2n). A random isogeny φ′

is unlikely to have this property. Indeed, φA is likely to be the only isogeny from E to EA with kernel in 〈PA, QA〉
(apart from composing with an automorphism, which is of no consequence).

This is the crux of the difficulty in giving a reduction from computing endomorphism rings to computing the secret
key in the Jao–De Feo cryptosystem: Known algorithms to compute an isogeny from E to EA, given End(E) and
End(EA), are not likely to give an isogeny of the correct degree. However, as we now explain, the particularly small
degree of the secret key gives the reduction an advantage that does not arise in the general case.

4.2. Reduction of Problem to Computation of Endomorphism Ring. We show how the existence of a small de-
gree isogeny actually helps the cryptanalysis of Jao–De Feo’s cryptosystems, assuming we know (or we are able to
compute) the endomorphism rings of the curves in play.
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We write Bp,∞ for the quaternion algebra ramified at p and∞ and use the standard notions of reduced trace and
reduced norm (see Vigneras [Vig80] for background). One extends the reduced norm to ideals in Bp,∞.

Given two maximal ordersO andOA, one can compute in polynomial time an ideal I that connects them (see [KLPT14,
Lemma 8]). Computing an isogeny of the correct degree corresponds to computing an equivalent ideal of the correct
norm. In order to find such an equivalent ideal we use the following lemma.

Lemma 4.2. [KLPT14, Lemma 5] Let I be a left O-ideal of reduced norm N and α an element in I . Then Iγ, where
γ = ᾱ/N , is a left O-ideal of norm n(α).

We observe that in the context of Jao–De Feo cryptosystems, there exists by construction an element α of small
norm N`nA in I , corresponding via this lemma to an ideal of norm `nA. Moreover as Minkowski bases can be computed
in polynomial time for lattices of dimension up to 4 [NS04], this element α can be efficiently recovered as long as it is
in fact the smallest element in I . These observations lead to the following first simple algorithm:

Algorithm 2: Computing small degree isogenies in Jao–De Feo cryptosystems given an algorithm to compute the
endomorphism ring of a random supersingular elliptic curve.

Data: `A, n, E, EA, O = End(E), OA = End(EA) such that E and EA are connected by an isogeny of degree
`nA

Result: Isogeny ϕA : E → EA of small degree `nA, or failure
1 Compute an ideal I connecting O and OA as in [KLPT14, Lemma 8];
2 Compute a Minkowski-reduced basis of I;
3 Let α be the non-zero element in I of minimal norm;
4 if n(α) 6= n(I)`nA then return failure;
5 Compute an ideal I ′ = Iᾱ/n(I) ;
6 Compute the isogeny ϕA that corresponds to I ′ using Vélu’s formulae;
7 Return ϕA;

All the steps in this algorithm can be performed in polynomial time. The above discussion forms the proof of
Theorem 4.1.

Theorem 4.1. Given an explicit representation of the endomorphism rings, we can translate the endomorphism rings
into maximal orders of quaternion algebras. One can then find, in polynomial time, an ideal I connecting them
by [KLPT14, Lemma 8].

By Lemma 4.2, it is sufficient to find an element of I of the correct norm. But given that the norm we seek is
the smallest norm in the ideal, we can use lattice reduction methods to recover the smallest norm in polynomial time.
Then using methods in [KLPT14], we can recover the isogeny we seek. � �

In the remainder of this section, we study the success probability of this algorithm on average, and show how to use
it to achieve a very large success probability.

Heuristically, we can approximate the probability that E and EA are connected by an isogeny of degree ` by
estimating the probability that two randomly chosen supersingular elliptic curves are connected by an isogeny of the
same degree. 1

Random pairs of elliptic curves over Fp2 are unlikely to be connected by isogenies of degrees significantly smaller
than
√
p. Indeed, when ` =

∏
i p
ei
i , there are exactly

a(`) :=
∏
i

(pi + 1)pei−1i

isogenies of degree ` from any curve E, hence any curve E is connected to at most
∑
`≤D a(`) curves EA by an

isogeny of degree at most D. A calculation given in Appendix A shows that this sum converges to
15

2π2
D2

1The argument is not totally accurate as E and EA are slightly closer in the `A-isogeny graph than random pair of curves would be. This may
a priori impact the probabilities, however a significant distortion of these probabilities would reveal some unexpected properties of the graph, such
as the existence of more or fewer loops of certain degrees than expected.
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as D tends to infinity. As there are roughly p/12 supersingular invariants over Fp2 we can evaluate the success
probability of the above algorithm as

SR ≈ max

(
0, 1− 90

π2

`2nA
p

)
.

For the parameters used in Jao–De Feo’s cryptosystems we expect this basic attack to succeed with a probability larger
than 50% as soon as f > 180

π2 ≈ 18.23, where f is the cofactor in p = `nA`
m
B f ± 1.

The success rate of our attack can be easily improved in two ways. First, we can apply the algorithm separately on
all curves that are at distance `eA of EA for some small constant e, until it succeeds for one of them. Clearly one of
these curves will be connected to E by an isogeny of degree `n−eA , and as a result the success rate will increase to

SR ≈ max

(
0, 1− 90

π2

`
2(n−e)
A

p

)
.

With `A = 2 and e = 10 this method will lead to a success rate above 99%, even when f = 1. Second, we can try to
use the Minkowski-reduced basis computed in Step 3 of the algorithm to find an element α of the appropriate norm,
even when it is not the smallest element. We explore two heuristic methods in that direction in our experiments below.

4.3. Experimental Results. We tested our algorithm in Magma with `A = 2 and with a λ-bit prime p, a randomly
selected maximal order, another random maximal order connected to the first by a path of length dlog`A(p)e+ δ, with
δ ∈ {−5, . . . , 5}. One can traverse from the first order to the second via dlog`A(p)e+ δ steps in the `A-isogeny tree.

The first three columns of Table 1 (“First basis element”) correspond to the attack described in the previous section.
The next three columns (“All basis elements”) correspond to a variant where instead of considering only the smallest
element in Step 4 of the algorithm, we try all elements in the Minkowski-reduced basis. Finally, the last three columns
(“Linear combinations”) correspond to a variant where we search for α of the right norm amongst all elements of the
form

∑4
i=1 ciβi, where ci ∈ {−4, . . . , 4} and βi are the Minkowski-reduced basis elements. Each percentage in the

table corresponds to a success rate over 100 experiments.

First basis element All basis elements Linear combinations
λ λ λ

100 150 200 100 150 200 100 150 200

δ

−5 100% 99% 99% 100% 100% 99% 100% 100% 100%
−4 93% 99% 94% 98% 99% 100% 100% 100% 100%
−3 83% 84% 88% 92% 95% 99% 100% 100% 100%
−2 40% 43% 45% 81% 74% 76% 100% 100% 100%
−1 0% 2% 0% 35% 42% 35% 100% 100% 99%
0 0% 0% 0% 3% 4% 3% 100% 100% 100%
1 0% 0% 0% 1% 0% 0% 97% 99% 98%
2 0% 0% 0% 0% 0% 0% 95% 94% 91%
3 0% 0% 0% 0% 0% 0% 57% 68% 70%
4 0% 0% 0% 0% 0% 0% 25% 28% 18%
5 0% 0% 0% 0% 0% 0% 0% 3% 1%

TABLE 1. Experimental results for δ values. ` = 2.

The experimental results are entirely convincing, so we leave better strategies to identify α from the Minkowski-
reduced basis to further work.

5. ISOGENY HIDDEN NUMBER PROBLEM

In this section we present an algorithm that takes partial information about the shared j-invariant j(EAB) of Alice
and Bob, and recovers the entire j-invariant, i.e. their shared key. This algorithm can therefore be used as a tool to
obtain the shared key from a side-channel attack and to prove a bit security result.

Influenced by work on Diffie–Hellman key exchange in Z∗p, we propose the isogeny hidden number problem as a
useful abstraction for analysing different cases where partial information is provided.
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Hidden number problems have been used in other research. For example, [BV96] proved that some bits are hardcore
for Diffie–Hellman shared keys in Z∗p, [HS01, NS02, NS03] studied partial leakage of nonces in DSA and EC-DSA
signatures, and [AFG+14, MHMP14] discussed side-channel attacks in the context of signatures.

Definition (Isogeny hidden number problem). Let Es be an unknown supersingular elliptic curve over Fp2 . The
isogeny hidden number problem is to compute the j-invariant j(Es) given an oracle O such that O(r) outputs partial
information on j(E′) for some curve E′ which is r-isogenous to Es.

We now explain how the oracleO in this problem can be realized in the context of the supersingular isogeny Diffie–
Hellman key exchange. We use the same notation as earlier in the paper, so that PA, QA, PB , QB ∈ E are known,
and so are Alice and Bob’s session values: EA, EB , φA(PB), φA(QB), φB(PA), φB(QA). We set Es := EAB to be
the unknown elliptic curve. We suppose we have another oracle O′ that takes these values and produces some partial
information on j(EAB), which we interpret as the oracle query O(1).

As a second stage, the adversary chooses a small integer r (coprime to Alice’s prime `) and a point R ∈ EB [r] of
full order. Let φBC : EB → EC be an isogeny of degree r with kernel 〈R〉, that is EC = EB/〈R〉. Note that there is
a curve E′ := EAC and an r-isogeny EAB → EAC corresponding to the image of R under the isogeny from EB to
EAB . We also have that EAC = EC/φC(GA) where GA is the kernel of φA and φC = φBC ◦ φB . This situation is
pictured below.

E

EA

EB

EAB

φA

φB
EAC

ECφBC

The curves EA, EC and the corresponding values φA(PB), φA(QB), φC(PA) = φBC(φB(PA)), φC(QA) =
φBC(φB(QA)) can be used to perform a key exchange, which will constitute the curve EAC (this is the dotted arrow
in the figure).

Querying the oracle O′ on these values results in some partial information on j(EAC). We interpret this as the
oracle query O(r).

We give a full solution to the isogeny hidden number problem in the case where the oracle outputs an entire
component of the j-invariant, and propose an attack where the oracle outputs some most significant bits of both
components. This leads to a bit security result and to an active attack, which can be realized by a side-channel attack,
when Alice uses a static key.

5.1. Algorithms for the Isogeny Hidden Number Problem. We recall that each j-invariant is an element in Fp2 .
Let Fp2 = Fp(θ), where θ2 +Aθ +B = 0, with A,B ∈ Fp. We write j = j1 + j2θ. For simplicity we only consider
two cases of partial knowledge:

(1) Oracle returns an entire component ji of each j-invariant.
(2) Oracle returns the most significant bits of both components.

Other models of partial information could be considered as well.
We first remark that, since there are only around p/12 supersingular j-invariants, one might expect that knowledge

of one component ji uniquely determines the entire j-invariant. This is not true in general, and it seems to be the
case that there is no bound independent of p on the number of supersingular j-invariants in Fp2 with a fixed value for
ji (one exception is the rare class of j-invariants that actually lie in Fp and so are uniquely determined by their first
component; the number of such j-invariants grows proportional to

√
p). Furthermore, there seems to be no known

efficient algorithm that computes the other component j3−i given the value ji together with the fact that the curve is
supersingular. Hence, even the first case is not trivial.

Our result is based on the modular polynomials Φr(x, y), which have the property that there is an isogeny φ :
E → E′ of degree r with cyclic kernel if and only if Φr(j(E), j(E′)) = 0. We refer to [Cox89, Section 11.C],
[BSS99, Section III.8] for background. These polynomials give a way to relate the known information on the different
j-invariants. The degree of Φr(x, y), as well as their number of monomials, grow with r. Since the degree of these
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polynomials influences the complexity of the computation, it is desirable to work with the smallest possible r (in
practice we can take either r = 2 or r = 3). For r = 2 we have

Φ2(x, y) = x3 + y3 − x2y2 + 1488x2y + 1488xy2

− 162000x2 − 162000y2 + 40773375xy

+ 8748000000x+ 8748000000y − 157464000000000 .

The framework is the following. Let x = x1 + x2θ, y = y1 + y2θ. We call x1 a “coefficient of 1” and x2 a
“coefficient of θ”. Then Φ2(x, y) = F1(x1, x2, y1, y2) + F2(x1, x2, y1, y2)θ for F1, F2 ∈ Fp[x1, x2, y1, y2], of total
degree 4. Let j = j(E) = j1 + j2θ and j′ = j(E′) = j′1 + j′2θ, then if Φ2(j, j′) ≡ 0 (mod p) it holds that
F1(j1, j2, j

′
1, j
′
2) = F2(j1, j2, j

′
1, j
′
2) ≡ 0 (mod p).

Given some most significant bits of x, a common approach is to write

h := MSBk(x) = x− e, for |e| < p

2k+1
,

so e is a relatively small integer. If all the bits are given, then e = 0. Substituting the known values that the oracle
provides into each Fi, one constructs new polynomials Gi whose roots can be used to fully recover the j-invariant
j(E). The problem reduces to the problem of recovering desired roots of Gi.

5.1.1. Complete component. In this case we assume the attacker has a whole component for each j-invariant. We
show that two samples are sufficient to recover the secret j-invariant j(Es). That is, we need one component of j(Es)
and one component of another j(E′). Moreover, we can work with any pair of components (the components do not
have to be in the same position).

Theorem 5.1. Let the oracle O in the isogeny hidden number problem output one component of the finite field rep-
resentation of j(E′) ∈ Fp2 . Then there is an algorithm to solve the isogeny hidden number problem that makes two
queries to O and succeeds with probability at least 1/18 if both components are coefficients of 1, with probability at
least 1/12 if both components are coefficients of θ, and with probability at least 1/15 otherwise.

Proof. Let Es be the desired elliptic curve. The query O(1) gives one component of j(Es) and the query O(2) gives
one component of j(E′) where Φ2(j(Es), j(E

′)) = 0.
Writing j(Es) = j1 + j2θ and j(E′) = j′1 + j′2θ then, as explained, Φ2(j, j′) = 0 can be expressed as

F1(j1, j2, j
′
1, j
′
2) = F2(j1, j2, j

′
1, j
′
2) = 0 for two polynomials F1, F2.

The oracle queries provide values x3−k = j3−k, y3−l = j′3−l for k, l ∈ {1, 2}. Plugging these values into the
polynomials Fi, we construct two bivariate polynomials Gi in variables xk, yl where the highest degree of each
variable is at most 3. By taking the resultant of these polynomials with respect to yl we get a univariate polynomial in
xk of degree at most 18. We show in Appendix C that the resultant is not the constant zero. One can then factor this
polynomial to get at most 18 roots over Fp, where one of the roots is jk. As we have jk and j3−k, we can construct
j(Es). Hence, taking one of these solutions at random, we have determined the unknown j-invariant of Es with
probability at least 1/18.

Note that if the oracle queries yield j2, j′2, then G2 is of degree 2, and so the resultant is of degree at most 12 (see
Appendix C). Therefore, there are at most 12 possibilities of Fp-solutions to the remaining unknown, which bound
the success probability by 1/12. Similarly, if only one of the components is a coefficient of θ, then the degree of the
variable associated to this component in G2 is 2, and so the resultant is of degree at most 15. � �

Remark. The solution given in Theorem 5.1 applies directly to any degree r. Note that the degree of Φr(x, y)
increases with r, so we get more candidates for jk. The proof holds with non-negligible probability for any low degree
r. Notice that one can run the algorithm for several different degrees r and test if there is only one root which is
common to all lists of candidates, this will be jk.

This solution assumes the oracle always gives the correct answer. An oracle that gives correct answers with some
probability can be treated using the ideas in the next partial information model.

Theorem 5.1 provides the following bit security result for the supersingular isogeny key-exchange in a manner
analogous to how the hidden number problem is used to give bit security results for Diffie–Hellman key exchange in
Z∗p [BV96].

Theorem 5.2. Computing any component of the shared j-invariant j(EAB) in the supersingular isogeny key exchange
is as hard as computing the entire j-invariant j(EAB).
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Indeed, the isogeny hidden number problem in this case can be derived from the oracle O′ described above, that
takes the public parameters as well as the values EA, EC , φA(PB), φA(QB), φC(PA), φC(QA) and outputs a com-
ponent of j(EAC) (if Alice’s prime ` is 2, one can take r = 3 or work with Bob’s values and EBC). We have just
shown that, given an algorithm that computes a component of the shared j-invariant from the public keys, there is an
algorithm that computes the entire j-invariant.

5.1.2. Partial components. In this case we assume the attacker has most significant bits of both component for each
j-invariant. Therefore, we write ji = hi + ei and j′i = h′i + e′i for i = 1, 2 and for a pair of j-invariants j, j′.
Substituting these values to the equations of Fi, we construct two new polynomials G1, G2 ∈ Fp[u1, u2, v1, v2] of
degree 4, such that

G1(e1, e2, e
′
1, e
′
2) = G2(e1, e2, e

′
1, e
′
2) ≡ 0 (mod p) .

The problem of computing the hidden j-invariant can therefore be expressed in terms of finding a small solution
to a system of multivariate polynomial equations modulo p. One can then solve the problem by applying the well-
known lattice-based techniques due to Coppersmith and Howgrave-Graham. We refer to [JM06] for a survey of these
methods, where multivariate polynomials are considered.

These lattice methods require several relations, so we expect to need more than the six relations that are coming
from the three 2-isogenous curves to Es. To get more relations one can take isogenies of higher degrees, but we
suggest working with degree 2 to get a stronger attack. That is, instead of fixing Es and taking several r-isogenous
curves E′ for increasing r, we suggest following a (short) path in the 2-isogeny graph rooted at Es. This ensures that
the only polynomial being used is Φ2, which has minimal degree and the minimal number of monomials.

The main idea is to consider a part of the 2-isogeny graph close to Es (typically it will be a tree rooted at Es). For
every edge in the graph we obtain partial information on a j-invariant, which gives rise to two polynomials, namely
G1, G2, which are satisfied by a simultaneous “small” solution.

Once enough polynomials are gathered, one can apply the techniques mentioned above to get a solution to the entire
system where some of the roots are small (coming from the coordinates of a short vector in a corresponding lattice).
Given these roots, one can recover the j-invariant for a curve Ed in this path. Using the modular polynomials, we can
“travel back” to find the j-invariant of the root Es. Indeed, suppose our path is E0 = Es, E1, . . . , Ek. Then as we
know j(Ed) for some d ≤ k, we can use Φ2 to compute j(Ed−1) by solving Φ2(j(Ed), y) ≡ 0 (mod p). We get
at most 3 candidates for j(Ed−1), and we proceed recursively to find candidates for j(Ed−2), . . . , j(E0). Since the
distance from Ed to the root Es is short, this results in a small list of candidates for j(Es).

We remark that in practice the polynomials G1, G2 consist of many monomials, and therefore this approach would
require knowledge of many bits. However, Coopersmith’s method shows how to generate more relations, which help
to reduce the number of bits, and as an attack one can also rely on lattice algorithms working better in practice than
theoretically guaranteed.

5.2. Active Attack When Alice Uses a Static Key. We assume that Alice uses a static key for encryption or key
exchange. A legitimate key exchange protocol takes place between Alice and Bob, and an adversary Eve who sees
the protocol messages wishes to obtain the resulting shared j-invariant jAB . Hence Eve knows (E,EA, EB) and the
corresponding points.

We further assume that Eve can (adaptively) engage in protocol sessions with Alice (who always uses the same
static secret key) and that, through some side-channel or other means, Eve is able to obtain partial information on the
shared key computed by Alice on each protocol session.

Here, Alice acts as the oracle O that provides the partial information. Eve first observes a protocol exchange
between Alice and Bob, and so sees (EB , φB(PA), φB(QA)). She learns some partial information on j(EAB).

Eve then chooses a small integer r coprime to Alice’s prime `, and as described above computes an isogeny φC , the
curve EC and the corresponding points φC(PA), φC(QA). She sends (EC , φC(PA), φC(QA)) to Alice as part of a
key exchange session. Alice then computes EAC = EC/φC(GA) and some partial information about this j-invariant
j(EAC) is leaked. This leads to the scenario described in the isogeny hidden number problem, and using one of the
solutions to this problem yields the desired j-invariant j(EAB).

Note that this attack can be detected by the countermeasure of Kirkwood et al. [KLM+15], since the query on EC
is not on a correct execution of the protocol. However, the protocol still requires Alice to compute EAC and so in the
context of a side-channel attack, an attacker might already have received enough information to determine the desired
secret key j(EAB).
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6. CONCLUSION

We have given several results on the security of cryptosystems based on the Jao–De Feo concept. Our main con-
clusion is that it seems very hard to prevent all active attacks using simple methods. Our first active attack seems to
be undetectable using pairings or any other tools, as the curves and points appear to be indistinguishable from correct
executions of the protocol. Similarly, our side-channel attack based on leakage of partial knowledge of the key seems
to be hard to detect (without storing all previous sessions and each user checking that all curves EC sent to her are
not related to previous curves EB by an isogeny of small degree). However, both these active attacks are detected by
the heavy-duty countermeasure of Kirkwood et al. [KLM+15]. The latter attack comes from a reduction that gives the
first bit security result for the supersingular isogeny key exchange.

Our paper therefore suggests that there is no way to avoid the use of such general countermeasures. It also shows
that there is a risk of side-channel and fault attacks on these protocols, and these topics will no doubt generate a small
following of literature in the coming years.

We have also discussed the connection between the problem of computing endomorphism rings and computing
isogenies. In general, knowledge of End(EA) does not immediately lead to a 2-power isogeny of low degree from E
to EA. But in the setting of the Jao and De Feo scheme such an isogeny can be efficiently computed when End(E)
and End(EA) are known. This demonstrates that the isogenies considered in these cryptosystems are special, which
is natural to suspect since they are too short to provide good mixing in the expander graph.
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APPENDIX A. NUMBER OF ISOGENIES OF DEGREE SMALLER THAN D

To the sum
∑D
n=2 a(n) with a(n) =

∏
pe|n(p + 1)pe−1 we can associate a Dirichlet series d(s) =

∑
n≥1

a(n)
ns .

This Dirichlet series is in fact equal to d(s) = ζ(s)ζ(s−1)
ζ(2s) by applying Euler’s product formula. The function has a pole

at s = 2 with residue equal to ζ(2)/ζ(4). Using Perron’s formula and Cauchy’s Residue theorem, we arrive at∑
n≤D

a(n) ∼ c ·D2

where

c = Res(s = 2) =
1

2

ζ(2)

ζ(4)
=

15

2π2
.

APPENDIX B. LOW ORDER ADAPTIVE ATTACK

In this appendix, we will discuss an adaptive attack that is easily detected but can be more powerful than the attack
in Section 3. This adaptive attack uses points of small order; in particular, the attacker uses points

(
R, [`k]S

)
, where

R,S ∈ E[`n]. We will illustrate the attack using the first oracle model and when ` > 3.
As with the attack presented in Section 3, we will assume that Alice is using a static key (1, α), and that a dishonest

user is playing the role of Bob to learn her key. It will be immediately clear that the attack will not stand up to the
validations proposed by [CLN16].

Let Alice be working in E[`n] ⊂ E(Fp2), where `n | (p + 1) and ` > 3. Suppose that an attacker has recovered
the first i bits of α, so that

α = Ki + `iαi + `i+1α′

where Ki is known but αi ∈ {0, 1, . . . , `− 1} and α′ are not known.
The attacker computes EB , R = φB(PA), S = φB(QA) and queries the oracle on (EB , R, [`

n−i−1]S). The
resulting elliptic curve that the oracle computes is

EB/〈R+ [α][`n−i−1]S〉 = EB/〈R+ [`n−i−1][Ki + `iαi + `i+1α′]S〉
= EB/〈R+ [`n−i−1][Ki]S + [`n−1αi]S〉.
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Since the component R + [`n−i−1][Ki]S is known, the attacker can recover αi if he knows the j-invariant by trying
all of the ` different values of αi. For each `-ary bit, we only need one oracle interaction. This therefore solves the
problem mentioned in Remark 3.3. The pseudo-code for this attack is presented in Algorithm 3.

Notice that with the second oracle model the attacker would need to make at most ` queries to the O(E,R, S,E′)
oracle to recover αi.

Algorithm 3: Low order adaptive attack using oracle O(E,R, S).
Data: n, E, PA, QA, PB , QB , EA, φA(PB), φA(QB)
Result: α

1 Set K0 ← 0;
2 for i← 0 to n− 1 do
3 Choose random (b1, b2);
4 Set GB ← 〈[b1]PB + [b2]QB〉;
5 Set EB ← E/GB and let φB : E → EB be the isogeny with kernel GB ;
6 Set (R,S)← (φB(PA), φB(QA));
7 Set ji ← Query the oracle on

(
EB , R, [`

n−i−1]S
)

;
8 for x← 0 to `− 1 do
9 Set jatt ← j(EB/〈R+ [Ki]S + [x]S〉) ;

10 if jatt = ji then αi ← x;
11 end
12 Set Ki+1 ← Ki + αi`

i;
13 end
14 Return Kn;

APPENDIX C. THE RESULTANT OF G1(xk, yl) AND G2(xk, yl)

Let p, q ∈ k[x, y] be two polynomials, and k some field. The resultant of p and q with respect to y, denoted
Res(p, q, y), is given by the determinant of the Sylvester matrix of p and q as univariate polynomials in y, that is, we
consider p, q ∈ k(x)[y]. The resultant Res(p, q, y) is a univariate polynomial in x, so belongs to k[x]. For background
on the resultant we refer to Sections 5 and 6 of Chapter 3 in [CLO07].

We show that the resultant Res(G1, G2, yl), considered in Section 5.1.1, is not identically zero. We will use the fact
that the modular polynomial Φr(X,Y ) ∈ Fp[X,Y ] is absolutely irreducible (irreducible over the algebraic closure).
We therefore consider Φr, as well as G1, G2, in Fp[X,Y ]. Recall that there are four cases depending on the values of
(k, l). For example when (k, l) = (1, 2) we have G1(x1, y2) +G2(x1, y2)θ = Φ2(x1 + j2θ, j

′
1 + y2θ).

Assume for contradiction that Res(G1, G2, yl) ≡ 0. By Proposition 1(ii) in [CLO07, Chapter 3, §6], Res(G1, G2, yl) ≡
0 if and only if there exists a polynomial h ∈ Fp[xk, yl] with positive degree in yl such that h | G1 and h | G2.

Consider the following linear substitution of variables:

• If k = 1 then set x1 = X − j2θ and if k = 2 then set x2 = (X − j1)θ−1.
• If l = 1 then set y1 = Y − j′2θ and if l = 2 then set y2 = (Y − j′1)θ−1.

One can check that these substitutions give

G1(xk, yl) +G2(xk, yl)θ = Φr(X,Y ) .

Hence, letting h̄(X,Y ) be the polynomial obtained by evaluating h(xk, yl) with these substitutions we have

h̄(X,Y ) | Φr(X,Y ) .

From the facts that the degree of h̄ is equal to the degree of h, and that Φr is irreducible, it follows that (since we
assumed h is non-constant) that h is a constant multiple of both G1 and G2. But by comparing the monomials in
G1, G2, it is easy to see that they are not constant multiples of each other. Hence we have a contradiction and the
resultant is non-zero.
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We now explain the degrees arising in the proof of Theorem 5.1. Given the components j3−k, j′3−l, consider
Φ2(x, y) and the corresponding polynomials G1(xk, yl), G2(xk, yl). We have

degxk
Res(G1, G2, yl) =

 12 if k = l = 1,
18 if k = l = 2,
15 otherwise .

It follows from the following lemma, since degx1
F1 = degy1 F1 = 3, degx2

F1 = degy2 F1 ≤ 3, degx1
F2 =

degy1 F2 ≤ 2 and degx2
F2 = degy2 F2 ≤ 3.

Lemma C.1. Let p, q ∈ k[x, y] be two polynomials with

degx p = nx , degy p = ny ,

degx q = mx , degy q = my .

Then degx Res(p, q, y) ≤ mynx + nymx.

Proof. The Sylvester matrix of p and q with respect to y is a (my + ny) × (my + ny) matrix. The first my rows,
coming from the coefficients of p, contain polynomials in x of degree at most nx. Similarly, the last ny rows contain
polynomials in x of degree at most mx. The resultant Res(p, q, y) is given by the determinant of this matrix, which is
formed by summing products of an entry from each row. The first my rows contribute at most mynx to the degree of
x, and the last ny rows contribute at most nymx. � �
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