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Abstract. The two classical hard problems underlying the security of lattice-based cryp-
tography are the shortest vector problem (SVP) and the closest vector problem (CVP). For
SVP, lattice sieving currently has the best (heuristic) asymptotic time complexity: in high
dimensions d, sieving can solve SVP in time 20.292d+o(d), using 20.208d+o(d) memory [Becker–
Ducas–Gama–Laarhoven, SODA’16]. The best heuristic time complexity to date for CVP is
20.377d+o(d), using 20.292d+o(d) memory [Becker–Gama–Joux, ANTS’14].

In practice, the memory requirements of exponential-space algorithms makes it difficult
to run these directly on high-dimensional lattices, and perhaps the most promising applica-
tion of such methods is as part of a hybrid with lattice enumeration. A faster algorithm for
solving the closest vector problem with preprocessing (CVPP) in low dimensions could be
used to speed up enumeration for solving SVP or CVP in high dimensions, but so far it is
not even clear whether the fastest heuristic SVP algorithms can solve CVP at all.

Our contributions are two-fold. First, we show that with sieving, we can heuristically
solve CVP with equivalent asymptotic costs as SVP, improving upon the best complexities of
Becker–Gama–Joux. Our second and main contribution is that by constructing approximate
Voronoi cells of the lattice as preprocessing, we obtain significantly better complexities for
CVPP. We can heuristically solve CVPP in 2d/4+o(d) time and space, and the time complexity
can be further reduced to as little as 2εd+o(d) for arbitrary ε > 0, using (1/ε)O(d) space.

Preliminary experiments for CVPP support these claims, and in dimension 50 we
roughly obtain a factor 2000 speedup compared to the fastest sieving algorithms for solv-
ing SVP/CVP (without preprocessing). This may be a first step towards a practical hybrid
between enumeration and sieving-based methods.

Keywords: lattices, sieving algorithms, Voronoi cells, shortest vector problem (SVP), clos-
est vector problem (CVP), bounded distance decoding (BDD)

1 Introduction

Hard lattice problems. Lattices are discrete subgroups of Rd: given a basis B =
{b1, . . . , bd} ⊂ Rd, the lattice generated by B is defined as L = L(B) := {∑d

i=1 λibi :
λi ∈ Z}. Given a basis of a lattice L, the Shortest Vector Problem (SVP) asks to find a
shortest non-zero vector in L under the Euclidean norm, i.e., a non-zero lattice vector s
of norm ‖s‖ = λ1(L) := minv∈L\{0} ‖v‖. Given a basis of a lattice and a target vector

t ∈ Rd, the Closest Vector Problem (CVP) asks to find a lattice vector s ∈ L closest to t.
The preprocessing variant of CVP (CVPP) asks to preprocess the input data such that,
when later given a target vector t, one can quickly find a closest lattice vector to t.

SVP and CVP are fundamental in the study of lattice-based cryptography, as the se-
curity of these schemes is directly related to their hardness in high dimensions. Various
other hard lattice problems, such as the Learning With Errors (LWE) and Shortest Integer
Solution (SIS) problems are closely related to SVP and CVP; see e.g. [Mic08,vdP11,Ste16]
for reductions between different lattice problems. These reductions show that understand-
ing the hardness of SVP and CVP is crucial for accurately estimating the security of
lattice-based cryptographic schemes.

A preliminary version of this paper previously appeared at SAC 2016 [Laa16].
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Provable SVP/CVP algorithms. Although SVP and CVP are both central in the
study of lattice-based cryptography, algorithms for SVP have received somewhat more
attention, including a benchmarking website to compare different methods [SG15]. Various
SVP algorithms have been studied which can solve CVP as well, such as the polynomial-
space, superexponential-time enumeration studied in e.g. [Kan83, FP85, GNR10, MW15].
More recently, several methods were proposed to solve SVP and/or CVP using only single
exponential time (but also single exponential space). By constructing the Voronoi cell of
the lattice [AEVZ02, SFS09, MV10a, BD15], Micciancio and Voulgaris showed that SVP
and CVP(P) can provably be solved in time 22d+o(d), where Bonifas and Dadush improved
the complexity for CVPP to 2d+o(d). In high dimensions this method outperforms provable
algorithms based on lattice sieving [AKS01b,AKS01a,NV08,PS09], running in 22.465d+o(d)

time or more [PS09], but currently the best provable complexities for SVP and CVP are
due to the discrete Gaussian sampling approach of [ADRS15, ADS15], provably solving
both problems in 2d+o(d) time and space on arbitrary lattices.

Heuristic SVP/CVP algorithms. When considering and comparing these methods in
practice, we get a completely different picture. For dimensions of practical interest (say
d ≈ 100), both the Voronoi cell algorithm and the discrete Gaussian sampling approach
seem completely impractical, while the asymptotically-inferior enumeration and lattice
sieving turn out to perform much better than their provable asymptotics suggest.

The fastest heuristic methods in high dimensions are based on lattice sieving, and
after a long series of theoretical works on constructing efficient heuristic sieving algo-
rithms [NV08, MV10b, WLTB11, ZPH13, Laa15a, LdW15, BGJ15, BL16, BDGL16] as well
as applied papers studying how to further speed up these algorithms in practice [MS11,
Sch11,Sch13,FBB+14,IKMT14,MTB14,MODB14,MLB15,BNvdP16,MB16,MLB17], the
best heuristic time complexity for solving SVP currently stands at 20.292d+o(d) [BDGL16,
MLB17], using 20.208d+o(d) memory. The current best heuristic time complexity for CVP
is 20.377d+o(d) using 20.292d+o(d) memory, using sieving on a tower of overlattices [BGJ14].

In moderate dimensions, enumeration-based methods still dominate, as the cross-over
point with single-exponential time algorithms like sieving seems to lie in higher dimensions.
Moreover, the exponential memory of e.g. lattice sieving makes it not only hard to run this
method at all in high dimensions, but it also significantly slows down the algorithm due to
the large number of random memory accesses. Furthermore, parallelizing sieving efficiently
is less trivial than parallelizing enumeration [MS11, IKMT14, BNvdP16, MLB17]. Some
previous work focused on obtaining a tradeoff between enumeration and sieving, using less
memory for sieving [BLS16,HK16] or using more memory for enumeration [KF16].

CVPP instances inside lattice enumeration. A well-known potential application of
fast CVP(P) algorithms is as a subroutine within enumeration methods. As described in
e.g. [GNR10, MW15], at any given level in the enumeration tree, one is attempting to
solve a CVP instance in a lower-dimensional sublattice of L, where the target vector is
determined by the path from the root to the current node in the tree. Each node at this
level in the tree corresponds to a CVP instance in the same sublattice, but with a different
target. If we can preprocess this sublattice such that the amortized time complexity of
solving many CVP instances in this sublattice is small, then this may speed up processing
the bottom part of the enumeration tree. This in turn might help speed up the lattice basis
reduction algorithm BKZ [Sch87, SE94, CN11], which commonly uses enumeration as its
SVP subroutine in practice, and is key in assessing the security of lattice-based schemes.
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1.1 Contributions

In this paper we revisit heuristic lattice sieving methods, as well as the recent trend to
speed up these algorithms using nearest neighbor searching, and we investigate how these
algorithms can be modified to solve CVP(P) and its variants efficiently. The resulting
CVPP algorithm is perhaps best understood in terms of Voronoi cells, as explained below.

Solving CVP with sieving. To solve CVP efficiently, we show how to adapt lattice
sieving algorithms based on the Nguyen–Vidick sieve [NV08] to a target vector t, so
that we can also solve CVP. Since the resulting algorithm is tailored specifically to the
given CVP instance, this leads to the best asymptotic complexity for solving a single
CVP instance: we can heuristically solve CVP in time 20.292d+o(d) and space 20.208d+o(d),
matching the best complexities for SVP of [BDGL16]. This improvement is depicted in
Figure 1. An open problem is to apply similar ideas to sieving methods based on the
GaussSieve [MV10b], which would likely lead to improved complexities in practice.

Solving CVPP using approximate Voronoi cells. For solving CVPP efficiently, our
approach is to first generate a long list of the shortest lattice vectors (using e.g. enumer-
ation or sieving) as preprocessing, and then using this list of short lattice vectors as the
preprocessed data for finding closest vectors to arbitrary targets faster. The preprocessed
data can best be understood as an approximate Voronoi cell of the lattice, where the size of
the preprocessed list determines how good this approximation is. Our algorithm for finding
closest vectors is then essentially a nearest neighbor optimized form of the iterative slicing
method of Sommer–Feder–Shalvi [SFS09].

To (heuristically) guarantee correctness of the resulting CVP method, we take two
different approaches, leading to two different sets of time/space complexities for CVPP.
Denoting V and VL the exact and approximate Voronoi cells of the lattice (generated by
the preprocessed list L), the two methods differ in how well VL approximates V:

– Vol(VL) ≈ Vol(V)Vol(VL) ≈ Vol(V)Vol(VL) ≈ Vol(V): If the approximate Voronoi cell is a good approximation of the
exact Voronoi cell, then with high probability over the randomness over the target
vectors, the iterative slicer returns the closest lattice vector to the target. To guarantee
Vol(VL) ≈ Vol(V) we heuristically need a preprocessed list L of size 2d/2+o(d), where
more memory can be used to speed up the nearest neighbor part of the iterative slicer.
The resulting time/space complexities (ignoring preprocessing costs) are sketched in
Figure 1, starting from (Space,Time) = (20.500d, 20.292d).

– Vol(VL)� Vol(V)Vol(VL)� Vol(V)Vol(VL)� Vol(V): If the preprocessed list is much shorter, then with overwhelming
probability the iterative slicer will not return the closest lattice point to a target.
However, similar to pruning in lattice enumeration [GNR10], the running time of this
method is decreased by a much more significant factor compared to the above method
than the success probability: e.g. the success probability may be 0.001, but the time
complexity decreases by a factor more than 1000. By appropriately rerandomizing the
iterative slicing procedure, we obtain the improved complexities depicted in Figure 1.

Note that the costs for the second method are better, but are based on the additional
assumption that running the randomized slicer N times for the same target increases the
success probability of finding the closest vector by a factor approximately N . Also note
that the curves for both methods keep decreasing as the available preprocessed space
increases – for arbitrary ε > 0, one can achieve an amortized time complexity for CVP of
2εd+o(d) at the cost of (1/ε)O(d) preprocessed space.
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Fig. 1. Heuristic query complexities for solving CVP and CVPP. The red curve shows the previous best
asymptotic CVP complexities of Becker–Gama–Joux [BGJ14], the dashed green line denotes our CVP
complexities. The rightmost blue curve shows the complexities for CVPP without rerandomizations, while
the lower blue curve denotes the improved complexities using randomized slicing. Note that this curve
passes just below the CVP curve, i.e. solving a batch of 2εd CVP instances for small ε > 0 can be done
with the same asymptotic time and space complexities as solving one CVP instance.

Experiments for solving CVPP. Preliminary experiments for sieving as a CVPP-
solver, based on the fast but asymptotically suboptimal HashSieve [Laa15a], support the
conjectured heuristic speedups/complexities, and the additional assumption behind reran-
domizing the slicing procedure. In dimension 50, we obtain a speedup of a factor approxi-
mately 2000 for solving CVPP compared to solving SVP with the HashSieve on the same
lattice. These first results suggest that the crossover point between sieving and enumera-
tion may be in much lower dimensions for CVPP than for SVP or CVP.

Variants of CVP(P). For easier variants of CVP, such as when the target lies closer
to the lattice than expected or an approximate solution to CVP suffices as a solution,
we obtain considerable gains in both the time and space complexities when using prepro-
cessing. For instance, approximate CVPP with approximation factor 2 can heuristically be
solved in time and space 20.05d+o(d), with preprocessing costs similar to the costs of solving
SVP with sieving. We further obtain polynomial time and space complexities for approxi-
mate CVPP iff the desired approximation factor scales as Ω(

√
d/ log d). This heuristically

closes the gap between the decision-CVPP approximation factor of Ω(
√
d/ log d) of [AR04]

and the search-CVPP approximation factor of Ω(d/
√

log d) of [DRS14] required to obtain
polynomial time and space complexities for solving approximate CVPP.

Outline. In Section 2 we describe preliminaries on lattices, lattice sieving, Voronoi cells,
and nearest neighbor searching. Section 3 describes how to solve CVP with equivalent
asymptotic costs as SVP. Section 4 describes how to solve CVPP without randomizing the
slicing algorithm, while Section 5 continues with a more general analysis based on arbitrary
success probabilities for the slicer, and a way to randomize the latter procedure. Section 6
describes experiments to verify the heuristic assumptions and the claimed speedups. Sec-
tions 7 and 8 discuss variants of CVPP, and how the asymptotic complexities change for
the preprocessing approach. Finally, Section 9 concludes with open problems.
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2 Preliminaries

2.1 Problem statements

Problems without preprocessing. We first recall the definitions of some common hard
lattice problems, and the problems often described in the (approximate) nearest neighbor
searching literature. The problems below are without preprocessing.

Definition 1 (Shortest Vector Problem (SVP)). Given a description of a lattice
L ⊂ Rd, find a non-zero vector s ∈ L such that ‖s‖ = minv∈L\{0} ‖v‖.

Definition 2 (Closest Vector Problem (CVP)). Given a description of a lattice L ⊂
Rd and a target vector t ∈ Rd, find a vector s ∈ L with ‖s− t‖ = minv∈L ‖v − t‖.

Definition 3 (Bounded Distance Decoding (BDDδ)). Given a description of a lat-
tice L ⊂ Rd, a target vector t ∈ Rd, and a distance guarantee δ ∈ (0, 1) such that
minv∈L ‖v − t‖ ≤ δλ1(L), find a vector s ∈ L with ‖s− t‖ = minv∈L ‖v − t‖.

Definition 4 (Approximate Closest Vector Problem (CVPκ)). Given a description
of a lattice L ⊂ Rd, a target vector t ∈ Rd, and an approximation factor κ ≥ 1, find a
vector s ∈ L with ‖s− t‖ ≤ κ ·minv∈L ‖v − t‖.

Problems with preprocessing. We denote the preprocessing versions of CVP, CVPκ,
and BDDδ, by CVPP, CVPPκ, and BDDPδ respectively. In the preprocessing variants,
the lattice is given first and may be preprocessed so that, when given a target vector later,
a solution to the problem can be provided faster than without preprocessing the lattice
basis. For SVP clearly a preprocessing variant does not make sense, as the shortest vector
could be precomputed.

Related to nearest neighbor searching, we recall the following problems. These are
all problems where preprocessing is essential, and the most general statements of these
problems are given below.

Definition 5 (Nearest Neighbor Searching (NNS)). Given a data set L ⊂ Rd, pre-
process this data in such a way that, when given a target vector t ∈ Rd later, one can
quickly find a vector s ∈ L such that ‖s− t‖ = minv∈L ‖v − t‖.

Definition 6 (Approximate Nearest Neighbors (ANNc)). Given a data set L ⊂ Rd
and an approximation factor c ≥ 1, preprocess the data in such a way that when given
a target vector t ∈ Rd later, one can quickly find a vector s ∈ L such that ‖s − t‖ ≤
c ·minv∈L ‖v − t‖.

NNS is essentially equivalent to CVPP, except that (1) the data set in nearest neighbor
searching is not assumed to be structured, and (2) the data set is assumed to be of
finite cardinality n <∞. Naive algorithms for nearest neighbor searching take O(n) time
and O(n) space without any preprocessing costs, and the literature commonly focuses
on sublinear time algorithms, running in time O(nρ) for ρ < 1, commonly with O(n1+ρ)
space and preprocessing costs. Note that in the context of lattice sieving one commonly
has n = 2Θ(d), whereas the literature commonly focuses on the case n = 2o(d); therefore
it is not clear whether lower bounds on the query complexity for (approximate) nearest
neighbor searching (e.g. [ALRW17,Chr17]) also apply in the context of lattice sieving.
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2.2 Nearest neighbor algorithms

A celebrated technique for finding near neighbors in high dimensions is Locality-Sensitive
Hashing (LSH) [IM98,Cha02,AI06,AR15,AIL+15,WSSJ14], where the idea is to construct
many random partitions of the space, and store the list L in hash tables with buckets
corresponding to regions. Preprocessing then consists of constructing these hash tables,
and a query t is answered by doing a lookup in each of the hash tables, and searching
for a(n approximate) nearest neighbor in the buckets containing t. For a data set of size
|L| = n, this commonly leads to a sublinear time complexity O(nρ) (ρ < 1). LSH has
also been used to speed up lattice sieving, and more details on this can be found in
e.g. [Laa15a,LdW15,BGJ15,BL16], as well as implicitly in [WLTB11,ZPH13].

Similar to locality-sensitive hash functions, Locality-Sensitive Filters (LSF) [BDGL16,
Laa15b, ALRW17, Chr17] divide the space into regions, with the added relaxation that
these regions do not have to form a partition; regions may overlap, and part of the space
may not even be covered by any region. This turns out to lead to improved results compared
to known LSH techniques when n is exponential in d [BDGL16, Laa15b], and this allows
for more natural time-space tradeoffs compared to LSH for arbitrary n [Laa15b,ALRW17,
Chr17]. For the case of n = 2o(d), this leads to optimal tradeoffs for nearest neighbor
searching within certain frameworks [ALRW17,Chr17].

Below we restate the main result of [Laa15b] for our applications, where n is assumed
to be exponential in d. The specific problem considered here is: given a data set L sampled
uniformly at random from the unit sphere Sd−1, and a random query t ∈ Sd−1, return a
vector w ∈ L such that the angle between w and t is at most θ ∈ (0, π2 ). The following

result further assumes that the list L contains exactly n = (1/ sin θ)d+o(d) vectors, denoted
the critical density in [Laa15b]. The following is a restatement of [Laa15b, Corollary 1].

Lemma 1 (Nearest neighbor costs for spherical data sets). Let θ ∈ (0, 12π), and

let u ∈ [cos θ, 1/ cos θ]. Let L ⊂ Sd−1 be a list of n = (1/ sin θ)d+o(d) vectors sampled
uniformly at random from Sd−1. Then, using spherical LSF with parameters αq = u cos θ
and αu = cos θ, one can preprocess L in time n1+ρu+o(1), using n1+ρu+o(1) space, and with
high probability answer a random query t ∈ Sd−1 correctly in time nρq+o(1), where:

nρq =

(
sin2 θ (u cos θ + 1)

u cos θ − cos 2θ

)d/2
, nρu =

(
sin2 θ

1− cot2 θ (u2 − 2u cos θ + 1)

)d/2
. (1)

2.3 Lattice sieving algorithms

Heuristic lattice sieving algorithms for solving SVP are based on the following two ob-
servations: (1) if v,w ∈ L, then their sum/difference v ± w is also a lattice vector; and
(2) if we have a sufficiently long list L of lattice vectors, then we expect there to be pairs
v,w ∈ L with ‖v ±w‖ < ‖v‖, ‖w‖. This intuitively describes the approach: we generate
a long list of lattice vectors, and keep combining vectors in our list to form shorter and
shorter lattice vectors until we (hopefully) find a shortest lattice vector in our list.

To make sure the algorithm makes progress in finding shorter lattice vectors, L needs
to contain many lattice vectors; for vectors v,w ∈ L of similar norm, the vector v − w
is shorter than v,w iff the angle between v,w is smaller than π/3, which for random
vectors v,w of similar norm would occur with probability (3/4)d/2+o(d). This is exactly
the assumption used in analyzing these heuristic sieving algorithms: when normalized,
vectors in L follow the same distribution as vectors sampled uniformly at random from
the unit sphere.
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Heuristic assumption 1. When normalized, the list vectors w ∈ L behave as i.i.d. uni-
formly distributed random vectors from the unit sphere Sd−1 := {x ∈ Rd : ‖x‖ = 1}.

Note that this is only a simplifying assumption to facilitate a (hopefully) more accurate
analysis of the costs of sieving. This assumption may well be false if the lattice L contains
additional structure, and may become less precise as the list vectors become shorter and
the discrete nature of the lattice presents itself more.

The expected space complexity of heuristic sieving algorithms follows from the previous
observation: if we sample (4/3)d/2+o(d) vectors uniformly at random from the unit sphere,
then we expect a significant number of pairs of vectors to have angle less than π/3, leading
to many short difference vectors. Therefore, if we start by sampling a list L of (4/3)d/2+o(d)

long lattice vectors, and iteratively consider combinations of vectors in L to find shorter
vectors, we expect to keep making progress. Naively, combining all pairs of vectors in a
list of size (4/3)d/2+o(d) ≈ 20.208d+o(d) takes time at least (4/3)d+o(d) ≈ 20.415d+o(d).

The Nguyen-Vidick sieve. The heuristic sieve of Nguyen and Vidick [NV08] starts by
sampling a list L of (4/3)d/2+o(d) reasonably long lattice vectors, sampled from a discrete
Gaussian with large standard deviation, and uses a sieve to map L, with maximum norm
R := maxv∈L ‖v‖, to a new list L′, with maximum norm at most R′ := γR for 0� γ < 1
close to 1. By repeatedly applying this sieve, after poly(d) iterations we expect to find
a long list of lattice vectors of norm at most γpoly(d)R = O(λ1(L)), which then (with
high probability) contains a shortest vector in the lattice. Algorithm 1 describes a sieve
equivalent to Nguyen-Vidick’s original sieve, to map L to L′ in |L|2 time (ignoring costs
polynomial in d). The presented algorithm is a more intuitive but equivalent version of
the original sieve; see [Laa15a, Appendix B] for details on this equivalence.

Algorithm 1 The quadratic Nguyen-Vidick sieve for finding shortest vectors
Require: An LLL-reduced basis B of a lattice L(B)
Ensure: The algorithm finds a shortest lattice vector
1: Initialize empty lists L,L′ and set γ ← 1− 1/d
2: Sample (4/3)d/2+o(d) lattice vectors and add them to L
3: Set R← maxw∈L ‖w‖
4: repeat
5: for each w1,w2 ∈ L do . NNS techniques can be used to speed this up
6: if ‖w1 −w2‖ < γR then
7: Add w1 −w2 to the list L′

8: Replace L← L′, set L′ ← ∅, and recompute R← maxw∈L ‖w‖
9: until L contains a shortest lattice vector

Without any further modifications to this algorithm, the heuristic complexities for
solving the shortest vector problem with this method are as follows, as described in [NV08,
Section 4].

Lemma 2 (Complexities of the Nguyen–Vidick sieve for SVP). Assuming heuris-
tic assumption 1. holds, the Nguyen-Vidick sieve solves SVP in space S and time T, with

S = (4/3)d/2+o(d) ≈ 20.208d+o(d), T = (4/3)d+o(d) ≈ 20.415d+o(d). (2)

By applying more sophisticated techniques for indexing the list L and searching for
pairs of vectors that can be combined to form shorter vectors, the time complexity can
be further reduced to (3/2)d/2+o(d) ≈ 20.292d+o(d) [BDGL16]. Using a trick first described
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in [BGJ15], this can be done without increasing the space complexity, i.e. maintaining an
asymptotic space complexity of only 20.208d+o(d), as the following result (a restatement
of [BDGL16, Corollary 8]) shows.

Lemma 3 (Complexities of the optimized Nguyen–Vidick sieve for SVP). As-
suming that heuristic assumption 1. holds, the Nguyen-Vidick sieve with spherical LSF
solves SVP in space S and time T, with

S = (4/3)d/2+o(d) ≈ 20.208d+o(d), T = (3/2)d/2+o(d) ≈ 20.292d+o(d). (3)

Micciancio and Voulgaris’ GaussSieve. Micciancio and Voulgaris used a slightly
different approach in their GaussSieve algorithm [MV10b]. This algorithm reduces the
memory usage by immediately reducing all pairs of lattice vectors that can be combined
to form shorter lattice vectors. The algorithm uses a single list L, which is continuously
kept in a state where for all w1,w2 ∈ L, ‖w1 ± w2‖ ≥ ‖w1‖, ‖w2‖. Each time a new
vector v ∈ L is sampled, its norm is reduced with vectors in L by adding/subtracting
vectors w ∈ L which would lead to a shorter vector. After v can no longer be reduced
with L, the vectors in L are reduced with v, so that if v is finally added to the list, the
pairwise reduction property is maintained. Modified list vectors are added to a stack to
be reconsidered later. Algorithm 2 describes this procedure using pseudocode.

By immediately reducing all pairs of vectors, the GaussSieve achieves significantly
better practical time and space complexities than the Nguyen-Vidick sieve. At the same
time however, Nguyen and Vidick’s (heuristic) proof technique does not apply to the
GaussSieve, and there is no proven theoretical bound on the time complexity of the
GaussSieve, even using heuristic assumptions. However, it is commonly believed that the
Nguyen-Vidick sieve and the GaussSieve have the same heuristic asymptotic space and
time complexities, i.e. using 20.208d+o(d) space and 20.415d+o(d) time without any further
modifications, and using only 20.292d+o(d) time using nearest neighbor searching [BDGL16].
However, to apply nearest neighbor techniques the space complexity would increase to
20.292d+o(d) as well, as the same trick from e.g. [BGJ15,Laa15a] cannot be applied here.

Algorithm 2 The GaussSieve algorithm for finding shortest vectors
Require: A basis B of a lattice L(B)
Ensure: The algorithm finds a shortest lattice vector
1: Initialize an empty list L and an empty stack S
2: repeat
3: Get a vector v from the stack (or sample a new one if S = ∅)
4: for each w ∈ L do . NNS techniques can be used to speed this up
5: if ‖v −w‖ < ‖v‖ then
6: Replace v ← v −w

7: if ‖w − v‖ < ‖w‖ then
8: Replace w ← w − v
9: Move w from the list L to the stack S (unless w = 0)

10: if v has changed then
11: Add v to the stack S (unless v = 0)
12: else
13: Add v to the list L (unless v = 0)

14: until v is a shortest lattice vector
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2.4 Voronoi cells

We recall some definitions and results regarding the Voronoi cell of a lattice from [VB96,
AEVZ02, SFS09, MV10a]. First, the Voronoi cell of a lattice is essentially the region of
points closer to the origin than to any other lattice point.

Definition 7 (Voronoi cell of a lattice). The Voronoi cell of a lattice L is defined as
the region V ⊂ Rd such that v ∈ V iff ‖v‖ ≤ ‖v − x‖ for all x ∈ L \ {0}.

The Voronoi cell of a lattice is a convex polytope, and its facets are closely related to
the relevant vectors, defined below.

Definition 8 (Relevant vectors). Given a lattice L, a vector r ∈ L is a relevant vector
of the lattice iff V and r+V share a non-empty boundary. We denote the set of all relevant
vectors by R.

The relevant vectors of the lattice shape the boundary of V, and the set R can be seen
as a way to represent/store the Voronoi cell of the lattice. Fortunately the size of R is
finite, and can be bounded as follows (see e.g. [MV10a, Corollary 2.5] for a proof).

Lemma 4 (Number of relevant vectors). The set R has cardinality less than 2d+1.

As a result, a description of the Voronoi cell of a lattice can be stored in 2d+o(d)

memory. Given this description, Micciancio and Voulgaris [MV10a] described algorithms
with proven time complexities at most quadratic in the space complexity (i.e. 22d+o(d)) for
solving SVP, CVP and CVPP, and described a way to construct R in 22d+o(d) time and
2d+o(d) space. Bonifas and Dadush later showed how to improve the time complexity for
CVPP to 2d+o(d), by bounding the number of iterations of the algorithm to poly(d).

For completeness, Algorithm 3 describes the lattice slicer of Sommer–Feder–Shalvi [SFS09]
for solving CVPP for a target vector t, given the Voronoi cell of the lattice as input, within
a finite number of steps [SFS09, Theorem 1]. Micciancio–Voulgaris later showed that by
selecting relevant vectors for reduction in a specific order, the number of iterations can
be bounded by 2d+o(d) [MV10a, Lemma 3.2]. As described in [SFS09, Lemma 5], using a
different list L instead of R, this algorithm succeeds in solving CVPP for arbitrary targets
iff R ⊆ L.

Algorithm 3 The lattice slicer of [SFS09] for finding closest vectors
Require: The relevant vectors R ⊂ L and a target t
Ensure: The algorithm finds a closest lattice vector s to t
1: Initialize t′ ← t
2: for each r ∈ R do
3: if ‖t′ ± r‖ < ‖t′‖ then
4: Replace t′ ← t′ ± r and restart the for-loop

5: return s = t− t′

By similar techniques as in heuristic lattice sieving (or as in [BD15]), one can bound the
number of iterations of this slicer until termination. Given a target t, one can use e.g. Babai
rounding on an LLL-reduced basis of the lattice to get an initial guess t′ ∈ t+L satisfying
‖t′‖ ≤ 2O(d) mins∈t+L ‖s‖. Then, by only performing reductions whenever ‖t′±r‖ < γ‖t′‖
for some geometric factor γ = 1− 1/dk for certain k > 1, one can ensure that the number
of iterations is polynomially bounded by log1/γ ‖t′‖ = O(d1+k). At the same time, due to
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this geometric factor γ, after the algorithm terminates we might only have t′ ∈ (1/γ)V
instead of t′ ∈ V. Since Vol(V/γ) = Vol(V)/γd, we therefore expect this algorithm to
succeed with probability proportional to γd = 1−O(d1−k) = 1−o(1) over the randomness
of t. As k increases, the (polynomial) number of iterations increases further, while the
success probability becomes (polynomially) overwhelming.

Bonifas and Dadush [BD15] described a different method to bound the number of
iterations to poly(d), by carefully choosing which relevant vectors to use for reduction in
each step. Although there is no formal proof that other approaches allow for solving exact
CVP as well, in the remainder of this paper we will assume (heuristically) that the number
of iterations of this slicer (until termination) is only poly(d).

3 Solving CVP

For solving CVP directly without any preprocessing, we adapt the entire Nguyen–Vidick
sieve to the target vector t, to obtain the best overall time complexity for solving one
problem instance. When solving several CVP instances on the same lattice, the costs
roughly scale linearly with the number of instances.

Using one list. The main idea behind this method is to translate the sieving algorithm
of Nguyen and Vidick (for solving SVP) by the target vector t; instead of generating a
long list of lattice vectors reasonably close to 0, we generate a list of lattice vectors close
to t, and combine lattice vectors to find lattice vectors even closer to t. The final list then
hopefully contains a closest vector to t.

One quickly realizes that the naive way to do this does not work, as the fundamental
property of lattices does not hold for the lattice coset t + L: if w1,w2 ∈ t + L, then
w1±w2 /∈ t+L. If we have two lattice vectors close to t, then we can only combine them
to form lattice vectors close to 0 or to 2t, but not to t.

Using two lists. To make the idea of translating the whole problem by t work, we make
the following modification: rather than using one list, we keep track of two lists L = L0

and Lt of lattice vectors close to 0 and t respectively, and we construct a sieve which maps
two input lists L0, Lt to two output lists L′0, L

′
t of lattice vectors slightly closer to 0 and

t. Similar to the original Nguyen-Vidick sieve, we then apply this sieve several times to
two initial lists (L0, Lt) with a large radius R, to end up with two final lists L0 and Lt
of lattice vectors very close to 0 and t. The reasoning that this algorithm works is almost
identical to that for solving SVP with the Nguyen-Vidick sieve, where we now make the
following slightly different heuristic assumption.

Heuristic assumption 2. When normalized, the list vectors L0 and Lt in the modified
Nguyen-Vidick sieve are distributed as i.i.d. uniformly random vectors from Sd−1.

The resulting algorithm, based on the Nguyen-Vidick sieve, is presented in Algorithm 4.
Here the first for-loop is essentially identical to the Nguyen–Vidick sieve for solving SVP,
while the second for-loop shows how to also construct a list of lattice vectors close to a
given target t. If one would like to solve CVP for k targets t1, . . . , tk, one would simply
adapt Algorithm 4 to use k + 1 lists L0, Lt1 , . . . , Ltk .

The (heuristic) correctness of this algorithm follows directly from the correctness of
the original NV-sieve, together with the slightly different heuristic assumption described
above. As nearest neighbor techniques can be applied to this algorithm in a similar way
as for solving SVP, we immediately obtain the following result. Note that as we are using
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Algorithm 4 The Nguyen-Vidick sieve for finding closest vectors

Require: An LLL-reduced basis B of a lattice L(B), a target t ∈ Rd
Ensure: The algorithm finds a closest lattice vector to t
1: Initialize empty lists L0, L

′
0, Lt, L

′
t and set γ ← 1− 1/d

2: Sample (4/3)d/2+o(d) vectors from L (resp. t + L) and add them to L0 (resp. Lt)
3: Set R← max{maxw∈L0 ‖w‖,maxw∈Lt ‖w − t‖}
4: repeat
5: for each w1,w2 ∈ L0 do . NNS can be used to speed this up
6: if ‖w1 −w2‖ < γR then
7: Add w1 −w2 to the list L′0
8: for each w1 ∈ Lt and w2 ∈ L0 do . NNS can be used to speed this up
9: if ‖(w1 −w2)− t‖ < γR then

10: Add w1 −w2 to the list L′t
11: Update (L0, L

′
0, Lt, L

′
t)← (L′0, ∅, L′t, ∅), and recompute R as above

12: until Lt contains a closest lattice vector to t

the Nguyen-Vidick sieve, the space complexity does not increase using nearest-neighbor
techniques, as we can process the hash tables sequentially, rather than simultaneously.

Theorem 1 (Complexities of the optimized Nguyen–Vidick sieve for CVP).
Assuming that heuristic assumption 2. holds, the Nguyen-Vidick sieve with spherical LSF
solves CVP in space S and time T, with

S = (4/3)d/2+o(d) ≈ 20.208d+o(d), T = (3/2)d/2+o(d) ≈ 20.292d+o(d). (4)

An open question remains whether these techniques can also be applied to the faster
GaussSieve algorithm, to solve CVP with better practical complexities. As the GaussSieve
seems to make even more use of the property that the sum of two lattice vectors is also
in the lattice, and operations in the GaussSieve in L cannot as easily be translated to the
lattice coset t + L as for the Nguyen–Vidick sieve, it is not clear if this can be done.

4 Solving CVPP – Approximate Voronoi cells

The main results of this paper concern solving CVP with preprocessing with lattice siev-
ing, i.e. reducing the amortized complexity for CVP beyond the complexities stated in the
previous section. The first method we present is deterministic; although the preprocessing
is potentially randomized, after being given the target vector the algorithm follows a de-
terministic procedure to find a closest vector in the lattice. For analyzing the performance
of our CVPP algorithms, we split the algorithm in two phases, and we keep track of four
costs of the algorithm:

– Preprocessing phase: Preprocess the lattice L, without knowledge of the target t;
S1: The memory used during the preprocessing phase;
T1: The time used during the preprocessing phase;

– Query phase: Process the query t and output a closest lattice vector s ∈ L to t;
S2: The memory used during the query phase;
T2: The time used during the query phase.

Intuitively the main goal is to reduce the complexities of the query phase (S2,T2)
compared to a non-preprocessed CVP algorithm. However, in any practical application
we need to perform the preprocessing at least once, and therefore CVPP algorithms with
enormous preprocessing costs may be useless even if the query complexities are great.
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Also note that as we are interested in reducing the query complexity compared to solving
CVP, and this usually comes at the cost of a higher preprocessing cost, we generally have
T2 ≤ T ≤ T1, where T is the corresponding asymptotic time complexity for CVP. As we
will see later (cf. Figure 1), it is asymptotically possible to achieve T2 � T = T1, i.e.
achieve significantly better amortized CVP time complexities with preprocessing time and
space complexities comparable to the costs for solving a single CVP instance.

4.1 Approximate Voronoi cells

Before describing the algorithm, we start with the definition of approximate Voronoi cells.
Below we use the following definition of half spaces H(x) := {v ∈ Rd : ‖v‖ ≤ ‖v − x‖},
whose boundaries are the hyperplanes normal to 1

2x.

Definition 9 (Approximate Voronoi cells). Let L ⊆ L \ {0}. Then the approximate
Voronoi cell generated by L is defined as VL :=

⋂
±r∈LH(r).

Note that if R ⊆ L, the approximate Voronoi cell generated by L is exactly V, while R
is the smallest set with this property. To quantize the ‘quality’ of an approximate Voronoi
cell VL (or a list L), recall that the volume of the exact Voronoi cell V, denoted Vol(V),
is equal to the volume of the lattice Vol(L) = det(L) =

√
det(BTB) where B is any basis

matrix of the lattice. If R is not contained in L, then VL will have a larger volume, and
so the following quantity can serve as a guideline as to how well VL (or L) approximates
V (R).

Definition 10 (Approximation factor). Given a lattice L and a list L ⊂ L, we define
the approximation factor for the approximate Voronoi cell VL generated by L as AL :=
Vol(VL)/Vol(V).

Clearly AL ≥ 1 with equality iff R ⊂ L. Now, the main result regarding approximate
Voronoi cells which the heuristic algorithm from this section builds on, is the following,
stating how big L must be to obtain approximation factors approaching 1.

Lemma 5 (Achieving approximation factor 1 + o(1)). Let L consist of the αd+o(d)

shortest vectors in a lattice L. Then heuristically, AL = 1 + o(1) iff α ≥
√

2 + o(1).

Lemma 5 essentially states that |L| =
√
|R| of the relevant vectors suffice to obtain

a very good approximation of the Voronoi cell of the lattice – the other |R| −
√
|R|

relevant vectors only help to smoothen the corners, shaving off a negligible total volume. An
example of exact and approximate Voronoi cells is given in Figure 2, where the approximate
Voronoi cell is generated by a fraction 1/3 fewer vectors than the exact Voronoi cell, leading
to a 1/4 increase in the volume of the approximate cell relative to the exact Voronoi cell.

Note that in the example of Figure 2, by taking L = r2, r3, r5, r6} ⊂ R as the set of
the four shortest vectors in R, one can do even better and achieve approximation factor
AL = 10/9, using the same number of vectors as in Figure 2b.

4.2 Proof of Lemma 5

To prove Lemma 5, we will prove the equivalent statement that with high probability,
the slicing procedure returns a closest vector to the target with high probability if the
preprocessed list contains the 2d/2+o(d) shortest lattice vectors.

Suppose we have a target vector t, which after reductions with L turns into t′ ∈ t+L,
and suppose that t′ is no longer reducible with L. In other words, t′ is contained in VL.
First, by the Gaussian heuristic (restated below), we expect the distances from t and t′

to the lattice to be approximately λ1(L).
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(a) The exact Voronoi cell V of the lattice L, with
volume Vol(V) = det(L) = 6.
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O

(b) An approximate Voronoi cell VL of L with
volume Vol(VL) = 15

2
, corresponding to AL = 5

4
.

Fig. 2. Exact and approximate Voronoi cells of the lattice L ⊂ R2 generated by B = {(2, 1), (0, 3)}.

Heuristic assumption 3. (Gaussian heuristic) For random t ∈ Rd, a ball of radius
r · λ1(L) around t contains rd+o(d) lattice points. In particular, this ball is non-empty iff
r ≥ 1 + o(1).

To guarantee that 0 is the closest lattice vector to the reduced vector t′, so that also
t′ ∈ V, we therefore heuristically need t′ to have norm at most approximately λ1(L).
We start with the following lemma regarding the probability of reduction between two
uniformly random vectors with given norms.

Lemma 6. Let v, w > 0 and let v = v · ev and w = w · ew. Then:

Pev ,ew∼Sd−1

(
‖v −w‖2 ≤ ‖v‖2

)
∼
[
1−

( w
2v

)2]d/2+o(d)
. (5)

Proof. Expanding ‖v − w‖2 = v2 + w2 − 2vw 〈ev, ew〉 and ‖v‖2 = v2, the condition
‖v −w‖2 ≤ ‖v‖2 equals w

2v ≤ 〈ev, ew〉. The result follows from [BDGL16, Lemma 2.1].

For now, suppose that |L| = αd+o(d), where we will later conclude that α ≥
√

2 is
necessary to guarantee correctness. Assuming Heuristic 1. holds, we obtain a relation
between the choice of α for the input list size and the expected norm β · λ1(L) of the
reduced vector t′ as follows.

Lemma 7. Let L ⊂ α · Sd−1 be a list of αd+o(d) uniformly random vectors of norm α > 1,
and let t ∈ β · Sd−1 be sampled uniformly at random. Then, for high dimensions d, with
non-negligible probability there exists a v ∈ L such that ‖t− v‖ ≤ ‖t‖ if and only if

α4 − 4β2α2 + 4β2 ≤ 0. (6)

Furthermore, if θt,v denotes the angle between t and v, then α4 − 4β2α2 + 4β2 = 0 and
‖v −w‖ ≤ ‖v‖ together imply that θt,v ≤ arcsin(1/α).
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Proof. By Lemma 6 we can reduce t with v ∈ L with probability p = [1 − α2

4β2 ]d/2+o(d).

Since we have n = αd+o(d) such vectors v ∈ L, the probability that none of them can
reduce t is (1− p)n, which is o(1) if n� 1/p and 1− o(1) if n� 1/p. Expanding n · p, we
obtain the given equation (6), where α4 − 4β2α2 + 4β2 > 0 implies n� 1/p.

For the second part, consider the triangle formed by 0, t,v. If ‖t − v‖ = ‖t‖, then
this triangle has two sides β and one side α, and two angles θt,v and one angle π − 2θt,v.
By the sine law, α sin θt,v = β sin(π − 2θt,v) = 2β sin θt,v cos θt,v. Simplifying, we get
cos θt,v = α/(2β), or sin2 θt,v = 1− α2/(4β2). Multiplying by α2 yields

α2 sin2 θt,v =
4β2α2 − α4

4β2
=

4β2

4β2
= 1, (7)

where the next-to-last equality follows from α4−4β2α2+4β2 = 0. Therefore ‖t−v‖ = ‖t‖
corresponds to sin θt,v = 1/α, or equivalently θt,v = arcsin(1/α). If ‖t − v‖ < ‖t‖, then
the angle θt,v further decreases, leading to θt,v ≤ arcsin(1/α).

As a result of the second part of the previous lemma, reducing t with L can be done by
searching for vectors v ∈ L at angle at most θt,v = arcsin(1/α) from t: if t can be reduced
with some vector v ∈ L, then with high probability a vector v at this angle from t exists
which can reduce t. This will be necessary for applying Lemma 1 later, as that lemma
assumes that the list size |L| = n and target angle θ satisfy the relation n = (1/ sin θ)d+o(d).
In our setting n = αd+o(d) and θ = arcsin(1/α), which means this relation is satisfied.

Note that we do not just assume that L contains αd+o(d) lattice vectors of norm ap-
proximately α · λ1(L): we heuristically expect to find almost all shortest vectors in L,
including all those vectors even shorter than α · λ1(L). In other words, for any α0 ∈ [1, α]

we expect L to contain α
d+o(d)
0 lattice vectors of norm at most α0 · λ1(L). To obtain a

reduced vector t′ of norm β · λ1(L), we therefore obtain the condition that for some value
α0 ∈ [1, α], it must hold that α4

0 − 4β2α2
0 + 4β20 ≤ 0. Factoring the LHS of (6) in terms of

its roots for α yields

p(α) = α4 − 4β2α2 + 4β2 =
(
α2 − 2β

(
β −

√
β2 − 1

))(
α2 − 2β

(
β +

√
β2 − 1

))
. (8)

The polynomial p(α) has two roots r1 <
√

2 < r2 (both with multiplicity 2), which both
lie close to

√
2 if β ≈ 1. The condition that p(α0) ≤ 0 for some α0 ≤ α is equivalent to

the condition that α is at least equal to the smallest root:

α ≥ r1 =

√
2β
(
β −

√
β2 − 1

)
. (9)

For β = 1 + o(1) this implies that α ≥
√

2 + o(1), and we must use n = 2d/2+o(d)

initial vectors to guarantee that w.h.p. the algorithm succeeds. This proves that (i) using
2d/2+o(d) vectors suffices to guarantee correctness with high probability, and (ii) using
|L| = 2(1/2−ε)d+o(d) vectors will lead to an exponentially small success probability, for
fixed ε > 0. A sketch of the above analysis is also given in Figure 3a.

4.3 Algorithm description

The query phase of the CVPP algorithm now follows directly from applying the slicer
of [SFS09] described in Algorithm 3 (or equivalently the GaussSieve reduction step [MV10b])
to the target vector t and a preprocessed list L ⊂ L of size 2d/2+o(d). Algorithm 5 describes
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√
2 · λ1(L)

λ1(L)
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t′
λ1(L)
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√
2 · λ1(L)

(a) For solving CVPP, we must reduce t to a
vector t′ ∈ t + L of norm at most λ1(L). The
nearest lattice point to t′ lies in a ball of radius
approximately λ1(L) around t′ (blue), and al-
most all the mass of this ball is contained in the
(black) ball around 0 of radius

√
2 · λ1(L). So if

s ∈ L\{0} had lain closer to t′ than 0, we would
have reduced t′ with s, since s ∈ L.

α · λ1(L)

β · λ1(L)

0

t

t′ δ · λ1(L)
s

√
β2 + δ2 · λ1(L)

(b) For variants of CVPP, a choice α for the list
size implies a norm β · λ1(L) of t′. The nearest lat-
tice vector s to t′ lies within δ · λ1(L) of t′ (δ = 1
for approx-CVP), so with high probability s has
norm approximately (

√
β2 + δ2) ·λ1(L). For BDDδ,

if
√
β2 + δ2 ≤ α then we expect the nearest point

s to be in the list L. For CVPκ, if β ≤ κ, then the
lattice vector t− t′ has norm at most κ · λ1(L).

Fig. 3. Comparison of the list size complexity analyses for CVPP (left) and BDD/approximate CVPP
(right), without rerandomizations. The point t represents the target vector, and after a series of reductions
with the sieve of Algorithm 5, we obtain a shorter vector t′ ∈ t + L, for which we hope that the closest
lattice vector is 0. The blue balls around t′ illustrate the region where we expect the closest lattice point
s to t′ to lie, where the blue shaded area indicates a negligible part of this ball in high dimensions
by [BDGL16, Lemma 2]. Using rerandomizations, we treat s as if it were sampled uniformly at random
from the blue ball, and use this distribution to compute the probability p that the algorithm succeeds.

Algorithm 5 The query phase for solving CVPP

Require: A list L ⊂ L and a target t ∈ Rd
Ensure: The output vector s is a close lattice vector to t
1: Initialize t′ ← t
2: for each w ∈ L do . NNS can be used to speed this up
3: if ‖t′ −w‖ < ‖t′‖ then
4: Replace t′ ← t′ −w and restart the for-loop

5: return s = t− t′

how to answer queries, given a preprocessed list containing the αd+o(d) shortest lattice vec-
tors – in our applications, α =

√
2.

For the preprocessing phase, i.e. generating the list of the αd+o(d) lattice vectors of
norm at most α ·λ1(L), we can use different methods. In moderate dimensions, the fastest
way may be to use lattice enumeration [GNR10,KF16], but asymptotically heuristic lattice
sieving will most likely lead to the best complexities. As we are interested in (heuristic)
asymptotics, let us consider the preprocessing costs for sieving.
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Algorithm 6 The GaussSieve-based preprocessing phase for solving CVPP

Require: A basis B of a lattice L(B), a parameter α ≥
√

4/3

Ensure: The output list L ⊂ L contains αd+o(d) vectors of norm at most α · λ1(L)
1: Initialize an empty list L and an empty stack S
2: repeat
3: Get a vector v from the stack (or sample a new one if S = ∅)
4: for each w ∈ L do . NNS can be used to speed this up
5: if ‖v −w‖2 < (2− 2

α

√
α2 − 1) · ‖v‖2 then

6: Replace v ← v −w

7: if ‖w − v‖2 < (2− 2
α

√
α2 − 1) · ‖w‖2 then

8: Replace w ← w − v
9: Move w from the list L to the stack S (unless w = 0)

10: if v has changed then
11: Add v to the stack S (unless v = 0)
12: else
13: Add v to the list L (unless v = 0)

14: until v is a shortest vector
15: return L

Recall that with standard heuristic sieving methods, we reduce pairs of lattice vectors
iff their angle is at most θ = π

3 , resulting in a list of size (sin θ)−d+o(d). To generate

a list of the αd+o(d) shortest lattice vectors with e.g. the GaussSieve, rather than the
(4/3)d/2+o(d) lattice vectors one would normally get, we relax the reduction step in sieving:
we reduce a list vector v with another list vector w only if their pairwise angle is less than
θ = arcsin(1/α), which for vectors v,w of similar norm corresponds to the condition ‖v−
w‖ <

√
2(1− cos θ) · ‖v‖ =

√
2− 2

α

√
α2 − 1 · ‖v‖. This leads to the modified GaussSieve

described in Algorithm 6. Note that for α =
√

2, the reduction criterium becomes ‖v −
w‖ <

√
2−
√

2 · ‖v‖.
Observe that reductions between vectors only make sense if vectors get shorter; if v

and w have similar norms, then one cannot reduce v with w if their pairwise angle is larger
than π

3 . To generate a list with αd+o(d) short vectors with α <
√

4/3, one can just run

the algorithm for α =
√

4/3 (corresponding to the regular GaussSieve), and afterwards
discard lattice vectors which are too long. Alternatively, if one is interested in minimizing
the memory complexity, one could use tuple lattice sieving approaches discussed in [BLS16,
HK16]. Here we restrict our attention to sieving using pairwise reductions, and we leave a
complexity analysis based on tuple reductions to future work.

4.4 Main result

With the algorithm in place, the optimized complexities for solving CVP now follow from
applying nearest neighbor searching with the right parameters. In the preprocessing phase
the algorithm first generates a list of size 2d/2+o(d) by combining pairs of vectors, and
naively this can be done in time T1 = 2d+o(d) and space S1 = 2d/2+o(d). The query phase
corresponds to a polynomial number of reductions of the target with the list, which naively
can be done with query time and space complexities T2 = S2 = 2d/2+o(d).1 Using nearest
neighbor searching (Lemma 1), the query time complexity T2 as well as the preprocessing
time complexity T1 can be further reduced, at the cost of slightly larger space requirements
S1,2, as explained in the following theorem.

1 To guarantee a polynomial number of reductions, again one can replace the condition ‖t′ − v‖ ≤ ‖t′‖
by ‖t′ − v‖ ≤ γ · ‖t′‖ for γ = 1− o(1) as in the Nguyen-Vidick sieve, as explained in the preliminaries,
or use techniques as described in [BD15].
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Theorem 2. Let u ∈ (12
√

2,
√

2). Using approximate Voronoi cells, we can heuristically
solve CVPP with high probability (over the randomness of t) with preprocessing time and
space T1 and S1, and query time and space complexities T2 and S2 as follows:

S1 = S2 = T1 =

(
1

u(
√

2− u)

)d/2+o(d)
, T2 =

(√
2 + u

2u

)d/2+o(d)
. (10)

Proof. These complexities follow from Lemma 1 with θ = π
4 , noting that the first phase

can be performed in time and space T1 = S1 = n1+ρu (plus the initial costs of the
GaussSieve, which are smaller), and the second phase in time T2 = nρq and space S2 =
n1+ρu . Subexponential terms, such as the number of iterations, are omitted here.

To illustrate the time and space complexities of Theorem 2, we highlight three special
cases u as follows. The full tradeoff curve for u ∈ (12

√
2,
√

2) is depicted in Figure 1.

– Setting u = 1
2

√
2, we obtain S1,2 = T1 = 2d/2+o(d) and T2 =

(
3
2

)d/2+o(d) ≈ 20.2925d+o(d).

– Setting u = 1, we obtain S1,2 = T1 ≈ 20.6358d+o(d) and T2 ≈ 20.1358d+o(d).
– Setting u = 1

2(
√

2 + 1), we get S1,2 = T1 = 2d+o(d) and T2 ≈ 20.0594d+o(d).

The first result shows that the query complexity is never worse than for solving CVP di-
rectly; only the space and preprocessing complexities are potentially worse. Note also that
setting u = 1

2

√
2 ensures that the data structure for the nearest neighbor searching does

not use more data than storing the list in memory, corresponding to the quasi-linear space
regime. The second and third results show that CVPP can be solved in significantly less
time using more preprocessing, even with preprocessing and space complexities bounded
by 2d+o(d).

Minimizing the query complexity. As u→
√

2, the query complexity keeps decreasing
while the memory and preprocessing costs increase. For arbitrary ε > 0, we can set u =
uε ≈

√
2 as a function of ε, resulting in asymptotic complexities T1,S1,2 = (1/ε)O(d)

and T2 = 2εd+o(d). This shows that it is possible to obtain a slightly subexponential
query complexity, at the cost of superexponential space and preprocessing costs, by taking
ε = o(1) as a function of d.

Corollary 1 (Subexponential query complexities for CVPP). For arbitrary ε > 0,
we can heuristically solve CVPP with preprocessing time and space complexities T1, S1,2 =
(1/ε)O(d), in time T2 = 2εd+o(d). In particular, we can solve CVPP in T2 = 2o(d) time,
using T1, S1,2 = 2ω(d) space and preprocessing.

Being able to solve CVPP in subexponential time with superexponential preprocessing
and memory is neither trivial nor quite surprising. A naive approach to the problem, with
a large amount of memory, could for instance be to index the entire fundamental domain
of L in a hash table. One could partition this domain into small regions, solve CVP for the
centers of each of these regions, and store all the solutions in memory. Then, given a query,
one looks up which region t lies in, and returns the answer corresponding to that vector.
With a sufficiently fine-grained partitioning of the fundamental domain, the answers given
by the look-ups are accurate, and such an algorithm likely also runs in subexponential
time, given enough space and preprocessing time.

Although it may not be surprising that it is possible to solve CVPP in subexponential
time with (super)exponential space, it is not clear what the complexities of other meth-
ods would be. Our method presents a clear tradeoff between the complexities, where the
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constants in the preprocessing exponent are quite small; for instance, we can solve CVPP
in time less than 20.06d+o(d) with less than 2d+o(d) memory, which is the same amount of
memory/preprocessing of the best provable SVP and CVP algorithms [ADRS15,ADS15].
Indexing the fundamental domain (or any other CVPP method with a subexponential
query complexity) may well require much more memory than this.

5 Solving CVPP – Randomized slicing

As described in the previous section, to solve exact CVPP with high probability using
a single application of the slicing algorithm, we need a preprocessed list size/memory
complexity of at least 2d/2+o(d), where to obtain better query complexities we need to
further increase the memory for the nearest neighbor data structure. As the memory
complexity is often the biggest bottleneck in exponential-space algorithms for SVP/CVP,
being able to use a smaller list size would significantly increase the practicability of the
algorithm. However, to guarantee a constant success probability of finding the nearest
lattice vector s to t′ in L with the slicer, we inevitably need L to contain 2d/2+o(d) vectors.
Otherwise, there is only a small probability that the closest vector to the reduced vector
t′ is 0.

5.1 Randomized slicing

To improve upon both the time and space complexities of Theorem 1, we use two ideas.
First, similar to e.g. pruning and rerandomizing the basis in fast heuristic lattice enumer-
ation methods [GNR10], we allow for arbitrary success probabilities p of correctly finding
the closest vector to the target with the slicing algorithm, and we measure the query time
complexity by the expected time complexity E[T2/p]. This however does not solve the is-
sue that the probability p is computed only over the randomness of the targets – it might
therefore happen that for certain targets, the algorithm never succeeds, even after several
attempts. The second idea is a heuristic way to overcome this problem: given a target t,
we rerandomize the target by shifting it with a random lattice vector, before proceeding
with the reductions. Here we hope that these rerandomizations of the same target indeed
produce fresh, independent results, so that repeating the algorithm O(1/p) times indeed
leads to a large/constant success probability.

Let us start by analyzing the success probability p of the slicer, as a function of |L| =
αd+o(d), where the randomness is over the targets t sampled uniformly at random from
a very large region. By the Gaussian heuristic we again assume that s lies at distance
(1+o(1))λ1(L) from t′ as in Figure 3a, but instead of assuming that with high probability
s − t′ is approximately orthogonal to t′, we make the following additional assumption.
Here B(x, r) := {y ∈ Rd : ‖y − x‖ ≤ r} denotes a ball of radius r around x.

Heuristic assumption 4. After reducing t to t′ ∈ t+L, the closest lattice vector s to t′ is
uniformly distributed on the sphere of radius λ1(L) around t′. Furthermore, reducing t+p
to t′′ for sufficiently large p ∈ L, the resulting vectors t′ and t′′ are statistically independent
and with high probability follow the same distribution over R = (t + L) ∩ B(0, β · λ1(L)).

The first part states that s − t′ is usually orthogonal to t′, and provides us with
asymptotics on the distribution of 〈s− t′, t′〉. It can also be interpreted as giving us the
probability that the closest lattice vector to t′ is contained in the ball of radius α · λ1(L)
around the origin, in which case s would be contained in L.
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Algorithm 7 The randomized query phase for solving CVPP

Require: A list L ⊂ L and a target t ∈ Rd
Ensure: The output vector s is a close lattice vector to t
1: repeat
2: Sample a random p ∈ L (e.g. from a discrete Gaussian with large variance)
3: Initialize t′ ← t + p
4: for each w ∈ L do
5: if ‖t′ −w‖ ≤ ‖t′‖ then
6: Replace t′ ← t′ −w and restart the for-loop

7: s← t− t′

8: until s is a closest lattice vector to t
9: return s

The second statement in Heuristic 4. is what we will use for rerandomizations: if we
fail, and the reduced vector t′ is not the shortest vector in t+L, then we can start over by
adding a random, sufficiently large perturbation vector p ∈ L to t and running the same
reduction algorithm from Algorithm 5 again with this shifted target vector, pretending
that this gives us a fresh, independent result. This leads to Algorithm 7. Note that the
second assumption is far from trivial, but as our experiments will show, if p is large, then
rerandomizing indeed leads to a roughly linear increase in the success probability.

To compute the asymptotics of the probability p = pα that the vector s has norm
at most α · λ1(L), given that the initial list had size αd+o(d) and the reduced vector t′

has norm βα · λ1(L) (where βα follows from Equation (6)), we make use of the following
lemma, restated from [BLS16, Lemma 2.4]. Here |B| denotes the volume of the ball B.

Lemma 8. [BLS16, Lemma 2.4] Two balls B(v1, r1) and B(v2, r2) at distance ‖v1−v2‖ =
D with centers v1,v2 and radii r1, r2, such that

√
|r21 − r22| < D < r1 + r2, satisfy

|B(v1, r1) ∩ B(v2, r2)|
|B(0, 1)| =

(
−D4 + 2D2

(
r21 + r22

)
−
(
r21 − r22

)2
4D2

)d/2+o(d)
. (11)

Lemma 8 shows that if x ∈ B(v1, r1) is drawn uniformly at random, then the proba-
bility that it lies at distance at most r2 from v2 is given by the RHS of (11), multiplied

by a factor |B(0, 1)|/|B(0, r1)| = r
−d+o(d)
1 .

To apply this lemma, recall that we assumed that s is essentially uniformly distributed
in the ball of radius λ1(L) around t′, while t′ lies at distance at most β · λ1(L) from the
origin after reductions, where β is a function of α as in Lemma 7. To obtain the probability
that s has norm at most α · λ1(L), so that s ∈ L, we therefore apply the lemma with
(v1,v2, r1, r2, D) = (t′,0, λ1(L), αλ1(L), βλ1(L)) leading to

pα =
|B(t′, λ1(L)) ∩ B(0, αλ1(L))|

|B(t′, λ1(L))| =

(
−β4 + 2β2

(
1 + α2

)
−
(
α2 − 1

)2
4β2

)d/2+o(d)
. (12)

Using the relation α2 = 2β(β −
√
β2 − 1), or equivalently β2 = α4/(4α2 − 4), we can

express the probability pα in terms of α:

pα =

(−9α8 + 64α6 − 104α4 + 64α2 − 16

16α4 (α2 − 1)

)d/2+o(d)
. (13)

Observe that the denominator is non-zero for arbitrary α ∈ (1,
√

2), while the numerator
has one root in this interval, at α ≈ 1.03396. For this value of α, we have β = α+ 1 and so
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the two balls around t′ and 0 of radii {1, α}·λ1(L) are disjoint, resulting in p = 0. For α =√
2 the expression between brackets evaluates to 1 as expected, while for α = β =

√
4/3

(using the same list size as in sieving for SVP) we obtain p√
4/3

= (13/16)d/2+o(d). So if

we used a standard GaussSieve as preprocessing for CVPP, we would expect the success
probability of a single reduction to be (13/16)d/2+o(d) ≈ 2−0.150d+o(d). We illustrate this
with a simple corollary as follows:

Proposition 1. Using the output list from a standard GaussSieve with spherical LSF as
the preprocessed list L, the randomized slicer succeeds with probability p = (13/16)d/2+o(d),
leading to preprocessing and query time and space complexities for solving CVPP of

S1,2 = T1 = (3/2)d/2+o(d), T2 = (18/13)d/2+o(d). (14)

These complexities follow directly from [BDGL16], where we note that the query com-
plexity for a single query is (9/8)d/2+o(d), which together with the rerandomization costs of
1/p = (16/13)d/2+o(d) lead to T2 = (9/8·16/13)d/2+o(d). In Figure 1, this would correspond
to the point (20.2925d, 20.2347d), which is slightly above the curve with the best complexities,
obtained by optimizing both the nearest neighbor search parameters and the preprocessed
list size.

5.2 Main result

Let us now try to obtain the optimized complexities for randomized slicing. Compared to
the previous section, the costs of the algorithm are mostly the same in terms of α, except
that the (expected) time complexity T2 for the query phase is multiplied by a factor 1/p,
to account for the expected number of trials necessary to find a closest vector. On the
positive side, this means that we do not need to fix α =

√
2 in advance. In its most general

form, including the nearest neighbor parameter u from Lemma 1, we obtain the following
result. Note that S1 and T1 are lower bounded by the costs for solving SVP, which based
on the current best complexities for (pairwise) sieving are (4/3)d/2+o(d) and (3/2)d/2+o(d)

respectively. Using tuple sieving [BLS16,HK16], it is possible to eliminate this lower bound
on S1, at the cost of worse preprocessing time complexities.

Theorem 3. Let α ∈ (1.03996,
√

2) and u ∈ (
√

α2−1
α2 ,

√
α2

α2−1), and let pα be as defined in

(13). With randomized slicing, we can heuristically solve CVPP with preprocessing time
and space T1 and S1, and query time and space T2 and S2, where

S1 = max

{
S2,

(
4

3

)d/2+o(d)}
, T1 = max

{
S2,

(
3

2

)d/2+o(d)}
, (15)

S2 =

(
α

α− (α2 − 1)(αu2 − 2u
√
α2 − 1 + α)

)d/2+o(d)
, (16)

T2 =

 α+ u
√
α2 − 1

pα

(
−α3 + α2u

√
α2 − 1 + 2α

)
d/2+o(d)

. (17)

Proof. These complexities follow from applying Lemma 1 with θ = arcsin(1/α), and again
observing that the preprocessing can be performed in time T1 = n1+ρu + (3/2)d/2 and
space S1 = n1+ρu + (4/3)d/2, where the additive terms come from the minimum costs for
solving SVP. For the query phase we can potentially discard part of the preprocessed space
(if α, u are small), and the query time is T2 = nρq .
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Fig. 4. Complexities for randomized slicing. Different curves correspond to different values α and different
success probabilities pα. The right blue curve corresponds to α =

√
2 and pα ≈ 1, i.e. not using randomized

slicing as in Section 4, and purple curves inbetween correspond to smaller values α with smaller values
pα. Dashed purple curves correspond to fixing the nearest neighbor parameter u and varying α. No single
curve lies below all others, and the minimum over all curves is depicted by the bottom blue curve.

For α =
√

2, Theorem 3 leads to the exact same complexities as without rerandomiza-
tions, while for instance for α =

√
4/3 we can vary the parameter u to obtain a different

tradeoff:

– Setting u = 1
2 leads to S2 ≈ 20.2075d+o(d) and T2 = (20/13)d/2+o(d) ≈ 20.3107d+o(d).

– Setting u = 1 leads to S2 ≈ 20.2925d+o(d) and T2 = (18/13)d/2+o(d) ≈ 20.2347d+o(d).
– Letting u→ 2, the preprocessing and space complexities become 2ω(d), while the query

time complexity becomes 2o(d).

The time-space curve Cα corresponding to α =
√

4/3, as well as a few other values α, is
shown in Figure 4. By taking the minimum over all these curves {Cα}α∈(1.03396,√2), where

curves are defined by varying u ∈ (
√

1− 1/α2,
√

1 + 1/(α2 − 1)), we obtain the thick
blue curve in Figure 4, which is also depicted in Figure 1. There seems to be no simple
expression for this curve; for a particular choice of the space complexity, the best query time
complexity T2 can be found by considering all different α, and for each α computing the
value u such that the space complexity is as desired, and taking the minimum over all these
values. Note that due to the condition α > 1.03396 (which follows from pα > 0), the curve
terminates on the left side at a minimum space complexity of 1.03396d+o(d) ≈ 20.0482d+o(d);
with this method we cannot obtain a space complexity S2 = 2o(d) for exact CVPP.

6 Solving CVPP – Experiments

To verify the heuristic assumptions, as well as to provide a preliminary assessment of the
practicality of the proposed CVPP methods, we tested the approximate Voronoi cell algo-
rithm with randomized slicing for finding closest vectors on the 50-dimensional lattice of
the SVP challenge [SG15] with seed 0. The experiments were conducted by (1) generating
a large set of short lattice vectors (by using the algorithm described in Algorithm 6); (2)
indexing these in a nearest neighbor data structure; and (3) running the randomized slicer
to find closest vectors for random targets.
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6.1 Nearest neighbor data structure

For nearest neighbor indexing, in our experiments we chose to use the HashSieve data
structure as described in [Laa15a] rather than the LDSieve of Lemma 1 for several rea-
sons. First, for the HashSieve, the only parameters that need to be chosen are k (the num-
ber of hyperplanes) and t (the number of hash tables). As described in [Laa15a,MLB15],
the asymptically optimal parameter choices k = 0.2206d and t = 20.1290d seem quite
accurate as near-optimal parameters for small/moderate dimensions as well, which essen-
tially means fewer parameters need to be chosen for our experiments, and there will be
a smaller variance in the results. This in contrast to the asymptotically superior LDSieve
of [BDGL16, Laa15b], where several parameters must be chosen with less clear optimal
choices in moderate dimensions. Secondly, for solving SVP in dimension 50, a proof-of-
concept HashSieve outperforms the LDSieve [BDGL16, Figure 3] by a factor more than
2. Using the LDSieve may ultimately lead to better timings in higher dimensions, with
optimized code and an accurate analysis of how to choose parameters, but that lies be-
yond the scope of this section. The main target here is to verify/disprove the heuristic
assumptions, and get an idea of the speedup compared to heuristic sieving for SVP/CVP.

For the experiments in dimension 50, we used the HashSieve with the same parameter
choice of k = 11 hyperplanes and t = 87 hash tables as in [Laa15a]. We varied both the
number of lattice vectors indexed in the data structure (out of all the vectors obtained
from the preprocessing stage), and the number of rerandomizations before calling the
search for a closest vector to this target a failure. We naturally sorted the preprocessed
vectors by norm, so that using fewer vectors means that only the shortest of the lattice
vectors found during the preprocessing phase are used. For randomizations, we sampled
a random lattice vector from a discrete Gaussian over the lattice (similar to how lattice
vectors are sampled for the sieve), added it to the target vector, and reduced this new
target instead. All experiments were further performed on a Medion Erazer P6661 laptop
with an Intel Core i7-6500U processor (2.50GHz), with more than enough RAM for these
experiments. Experiments typically consumed about 25% of the total CPU power, i.e. 50%
of one of the two cores.

6.2 Validating the heuristic assumptions

First, let us describe the preprocessed data set in more detail. Our complete preprocessed
data set consists of about 250 000 lattice vectors of norm less than 3000, with the majority
of them having norm less than 2500. Figure 5a shows the number of vectors in the data set
below a certain norm, and compares it to the prediction based on the Gaussian heuristic.
If the Gaussian heuristic is accurate, then the data set indeed contains almost all of the
lattice vectors of norm less than 2300.

A critical assumption we made in Section 5 is that rerandomizations (reducing a target
vector again by first adding a random lattice vector to it) lead to independent successes and
roughly a linear increase in the success probability as more trials are performed (Heuris-
tic 4.). Figure 5b plots the total success probability against the number of rerandomizations
(trials), for various sizes of the list indexed in the data structure. Figure 5b seems to indi-
cate that indeed, if the success probability is small, then this probability roughly increases
linearly with the number of trials.

6.3 Experimental results

As stated before, for the CVPP experiments we fixed the HashSieve parameters as k = 11
and t = 87. Focusing on the query costs, what remains is optimizing the size of the list L
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Fig. 5. Verifying the heuristic assumptions. Figure 5a compares the norms of the vectors in the data set
to the expected norms of the shortest vectors in the lattice, based on the Gaussian heuristic. Figure 5b
depicts how rerandomizations affect the success probability. Different curves in Figure 5b correspond to a
different number of preprocessed vectors being used for reductions.

to use for the reductions, and assessing the precise practical impact of rerandomizations
on the success probability and the time complexity. Note that by Heuristic 4. the number
of rerandomizations should not severely impact the normalized time complexity (the time
complexity divided by the success probability), although in practice it might.

Figures 6a–6d show the results of these experiments, where we measured the average
time complexity per target vector (Figure 6a), the average success probability for each
instance (Figure 6b), the normalized time complexity per instance (Figure 6c), and the
preprocessed space complexity for these experiments (Figure 6d). Different curves in Fig-
ures 6a–6c correspond to different numbers of rerandomizations, and although this affects
the success probability and the time complexity, in Figure 6c we once again see a confir-
mation that the normalized time complexity is essentially independent of the number of
trials. Figure 6c further shows that the normalized time complexity seems to be smallest
when the list size is between 10 000 and 15 000, in which case the query time complexity T2

for solving one CVPP instance is approximately 0.002 seconds. The memory complexity
S2 when using this number of list vectors is approximately 10MB.

6.4 Comparison with sieving for solving SVP

To put these time complexities into perspective, let us compare the (normalized) time
complexities for CVPP with the complexities of sieving for solving SVP, which by Section 3
we estimate are comparable to the costs for sieving for CVP. First, we observe that with
the same amount of optimization, the HashSieve algorithm solves SVP in approximately
4 seconds on the same machine. This means that in dimension 50, the expected time
complexity for CVPP with the HashSieve is approximately 2000 times smaller than the
time for solving SVP. To explain this gap, observe that the list size for solving SVP is
approximately 4000, and so roughly speaking the HashSieve algorithm needs to perform
4000 reductions of newly sampled vectors with a list of maximum size 4000. For solving
CVPP, we only need to reduce 1 target vector with the list, but the list is now between
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10 000 and 15 000 vectors long. This means that we save a factor 4000 on the number of
searches through the list, but the searches are slightly more expensive as the list size is
longer, leading to a speed-up of a factor slightly less than 4000.

To make these estimates more precise, note that the HashSieve for solving SVP [Laa15a]
reported time complexities in dimension d of approximately 20.45d−19 seconds, which cor-
responds to approximately 11.3 seconds in dimension 50, i.e. a factor 3 slower than our
implementation. As explained above, this is based on doing n = 20.21d+o(d) reductions. If
for simplicity we assume that doing only one of these searches in a slightly larger list takes
a factor 20.21d less time, and we take into account that for SVP the time complexity is
now a factor 3 less than in [Laa15a], then we obtain an estimated complexity in dimension
d of 20.24d−19/3, which for d = 50 corresponds to approximately 0.0026 seconds with our
implementation, closely matching the observed time complexity. A rough extrapolation
would then lead to a time complexity in dimension 100 of approximately 11 seconds.

6.5 Comparison with enumeration for SVP/CVP

In low dimensions, the fastest algorithms for solving SVP and CVP are based on enumera-
tion. To compare the preprocessing approach to sieving with enumeration-based methods,
we list several of the reported complexities for SVP and CVP with enumeration from
the literature below, in chronological order. The list complexities are all for lattices in
dimension 50.

– Agrell–Eriksson–Vardy–Zeger [AEVZ02, Figure 2] give costs for CVP which, when
extrapolated to dimension 50, would correspond to between 10 and 20 seconds.

– Nguyen–Vidick [NV08, Figure 4] report costs of Schnorr-Euchner enumeration with
BKZ-20 preprocessing between 2 and 3 minutes.

– Hermans–Schneider–Buchmann–Vercauteren–Preneel [HSB+10, Table 2] give an esti-
mate of between 5 and 7 seconds for enumeration with BKZ-20 preprocessing.

– Gama–Nguyen–Regev [GNR10, Table 1] give four data points for the number of nodes
processed during enumeration for three different versions of enumeration, which when
fitted to the model 2ad

2+bd, give 20.00416d
2+0.255d (full enumeration), 20.00379d

2+0.115d

(Schnorr-Hörner pruning), and 20.00387d
2+0.059d (linear pruning). Taking into account

their estimated rate of 107 nodes processed per second, in dimension d = 50 this leads to
a sequential time complexity of approximately 0.94 seconds (full enumeration), 0.0038
seconds (Schnorr-Hörner pruning) and 0.00062 seconds (linear pruning). For extreme
pruning, only two data points are provided, which is not enough to extrapolate to
dimension 50.

– Dagdelen–Schneider [ODS10, Table 1] report timings between 6 and 8 minutes for
running their sequential implementation and for running fplll’s enumeration with LLL
preprocessing.

– Micciancio–Walter [MW15, Figure 7] give an experimental time complexity of Fincke-
Pohst enumeration of approximately 30 seconds.

– Correia–Mariano–Proenca–Bischof–Agrell [CMP+16, Figure 6b] state a time complex-
ity of enumeration for solving CVP in dimension 50 of approximately 10 seconds with
BKZ-20 preprocessing.

Calling shortest vector() within fplll 4.0 on the machine used for the experiments in
this section (on a BKZ-20 reduced basis), the algorithm returns a shortest vector in ap-
proximately 30 seconds. In the most recent release of fplll (version 5) [dt16], this currently
takes approximately 5 seconds.
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Fig. 6. Experimental results for solving CVPP with randomized sieving. Figure 6a displays the average
time complexity per instance. Figure 6b shows the average success probability after rerandomizations.
Figure 6c displays expected time costs, taking into account the success probability. Figure 6d displays the
space complexity of the data set and the indexed data structure. Each data point corresponds to 10 000
random target vectors for this choice of parameters.

To summarize, all reported experimental time complexities for enumeration in dimen-
sion 50 are significantly worse than our 0.002 seconds per target. On the other hand, enu-
meration with linear pruning (and likely also extreme pruning) is still expected to solve
more SVP (CVP) instances per second than our proof-of-concept CVPP algorithm based
on the HashSieve, in dimension 50. Based on the very rough estimates of 20.00387d

2+0.059d/107

seconds for enumeration with linear pruning and 20.24d−19/3 for a HashSieve-based CVPP
solver, the crossover point however may already lie around dimension 60. We therefore ex-
pect that this algorithm will already clearly outperform enumeration with linear pruning
in terms of the CVPP complexity in dimensions of interest in practice (e.g. d = 100).
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Note that for state-of-the-art enumeration methods based on extreme pruning, giving
a fair comparison is not so easy, as little explicit experimental data using extreme pruning
is known, and most data points are in much higher dimensions; extrapolating backwards
to dimension 50 or 60 might not give reliable estimates.

7 Solving BDD(P)δ

In this section and the next, we take a look at specific instances of CVP which are easier
to solve than the general problem, such as when the target t lies unusually close to the
lattice. This problem naturally appears in lattice-based cryptography, when a private key
consists of a good basis of a lattice with short basis vectors, and the public key is a bad basis
of the same lattice. An encryption of a message could then consist of the message being
mapped to a lattice point s ∈ L, and a small error vector e being added to s (t = s + e)
to hide s. If the noise e is small enough, then with a good basis one can decode t to
the closest lattice vector s, while someone with the bad basis cannot decode correctly. As
decoding for arbitrary t (solving CVP) is known to be hard even with knowledge of a good
basis [Mic01, FM02, Reg04, AKKV05], e needs to be very short for decryptions to work,
and t must lie very close to the lattice. So instead of assuming that target vectors t are
sampled at random, suppose that t lies at distance at most δ ·λ1(L) from L, for δ ∈ (0, 1).

Without preprocessing. For the CVP algorithm from Section 3, recall that the list size
(4/3)d/2+o(d) is the minimum initial list size one can hope to use to obtain a list of short
lattice vectors with pairwise sieving (again, see the recent [BLS16, HK16] for promising
directions in using even less space and more time for heuristic lattice sieving), and it
remains an open problem to study if the complexities for sieving (without preprocessing)
can be improved beyond the costs for SVP or CVP. As CVP is not harder than BDD we
may obtain the same complexities for BDD as for CVP, but future work might focus on
solving BDD faster with sieving, without preprocessing.

With preprocessing. For the approximate Voronoi cell approach for CVPP, it may well
be possible to reduce the complexities for δ < 1 by modifying the analysis. Let us again
start by assuming that the preprocessed list L contains almost all αd+o(d) lattice vectors of
norm at most α ·λ1(L). The choice of α implies a maximum norm β ·λ1(L) of the reduced
vector t′, as described in Lemma 7. We assume the nearest lattice vector s to t′ lies within
radius δ ·λ1(L) of t′, and using Lemma 8 we then find the (heuristic) probability of finding
the closest lattice vector among the list to be:

pα,δ =
|B(t′, δ) ∩ B(0, α)|

|B(t′, δ)| =

(
−β4 + 2β2

(
δ2 + α2

)
−
(
α2 − δ2

)2
4β2δ2

)d/2+o(d)
. (18)

See also Figure 3b, where the shaded area can be considered asymptotically negligible to
obtain success probability p ≈ 1, or we can assume that s is sampled at random from the
blue ball to obtain smaller success probabilities depending on the fraction of the blue ball
that is covered by the black ball.

Without rerandomizations, to achieve p ≈ 1, we need
√
β2α + δ2 ≤ α to expect the

nearest lattice vector to t′ to be contained in L, so that ultimately 0 is nearest to t′ after
reductions. Substituting α4 − 4β2α2 + 4β2 = 0 and β2 + δ2 ≤ α2, and solving for α > 1,
without rerandomizing this leads to the condition α2 ≥ 2

3(1 + δ2) + 2
3

√
(1 + δ2)2 − 3δ2.

Taking δ = 1, corresponding to exact CVP, leads to the condition α ≥
√

2 as expected,
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while in the limiting case of δ → 0 we obtain the condition α ≥
√

4/3. This matches
experimental observations using the GaussSieve, where after finding the shortest vector,
newly sampled lattice vectors often cause collisions (i.e. being reduced to the 0-vector).
In other words, Algorithm 5 quite often reduces target vectors t which essentially lie on
the lattice (δ → 0) to the 0-vector when the list has size (4/3)d/2+o(d). This explains why
collisions in the GaussSieve are common when the list size grows to size (4/3)d/2+o(d).

Randomized slicing. With rerandomizations, a choice of α implies a norm β of the
reduced vector t′, and a probability pα,δ that the closest lattice vector is then found with
the algorithm. For each α we can further use nearest neighbor searching with varying
parameters u as in Lemma 1, and we can vary α ∈ (α0, α1) where α0, α1 follow from the
equations pα0,δ = 0 and pα1,δ = 1 respectively. In other words, α1 satisfies β2α1

+ δ2 = α2
1,

and α0 is a root of the denominator of (18). This leads to the following theorem.

Theorem 4. Let α ∈ (α0, α1) where α0, α1 are such that pα0,δ = 0 and pα1,δ = 1, with

pα,δ as described in (18). Let u ∈ (
√

α2−1
α2 ,

√
α2

α2−1). Using approximate Voronoi cells with

randomized slicing, we can heuristically solve BDDPδ with complexities S1,2,T1,2 described
in Theorem 3 with pα replaced by pα,δ.

For arbitrary δ, similar to Section 5 we can do a search over all values of α and u to
obtain the best time/space tradeoff. For various δ the resulting tradeoffs are depicted in
Figure 7. Note that in the limit δ → 0, we have α0, α1 →

√
4/3: for δ → 0, either the blue

ball in Figure 3b is completely contained in the black ball, or (by slightly decreasing α) it
is completely outside the black ball. In other words, we then always have p→ 0 or p→ 1
as δ → 0, which means that rerandomizations do not help; either the algorithm almost
always succeeds, or it always fails.

To further illustrate the behavior of the limiting case δ → 0 (with α→
√

4/3), note:

– For u = 1
2 , we have S1,2 ≈ 20.2075d+o(d) and T2 = (5/4)d/2+o(d) ≈ 20.1610d+o(d).

– For u = 1, we have S1,2 ≈ 20.2925d+o(d) and T2 = (9/8)d/2+o(d) ≈ 20.0850d+o(d).

In the limit of large u →
√

α2

α2−1 we again obtain S1,2,T1 → 2ω(d) and T2 → 2o(d)

(regardless of δ) similar to solving CVPP without a distance guarantee.

8 Solving CVP(P)κ

Besides BDD, where t lies unusually close to the lattice, another easier variant of CVP is
the Approximate Closest Vector Problem. Given a lattice L and a target vector t ∈ Rd,
approximate CVP with approximation factor κ asks to find a vector s ∈ L such that ‖s−t‖
is at most a factor κ larger than the real distance from t to L. For random instances t, by
the Gaussian heuristic this means a lattice vector s counts as a solution for approximate
CVP with approximation factor κ iff s lies at distance at most κ · λ1(L) from t.

Without preprocessing. Similar to BDD, it seems impossible to improve upon the
complexities of sieving for solving CVP directly (without preprocessing), unless κ is very
large (at least superconstant) – with less time than 20.292d+o(d) and less memory than
20.208d+o(d), we cannot even solve approximate SVP with constant approximation factors
κ, let alone solve approximate CVP. This again seems closely related to a long-standing
open problem in (heuristic) lattice sieving: is it possible to obtain significantly better
asymptotic time/space complexities for sieving (for SVP) when an approximate solution
suffices? We leave this problem for future work.
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Fig. 7. Heuristic complexities for solving Bounded Distance Decoding (BDD) and approximate CVP with
preprocessing. The top curves (blue-purple) correspond to BDD for different δ ∈ {0, 0.2, . . . , 1}, where
smaller δ correspond to better complexities when using more space, but also a larger lower bound α0

on α leading to potentially worse query time complexities when the space complexity is small. For δ →
0, there is only one allowed value α =

√
4/3, and the tradeoff follows from varying u; this tradeoff

is indicated by the thick purple line. The curves below this line (purple-red) correspond to approximate
CVP with approximation factors {

√
4/3, 1.2, 1.3, 1.5, 2}. Larger approximation factors correspond to better

complexities, while the (tail of the) curve for κ =
√

4/3 overlaps with the BDD curve for δ = 0.

With preprocessing. For the approach from Sections 4–6, we may hope to further
improve upon the query complexities (after the preprocessing phase), similar to BDD.
Without rerandomizations, instead of reducing t to a vector t′ of norm at most λ1(L),
as is needed for solving exact CVP (β = 1), we now update the analysis to take into
account that we want to make sure that the reduced vector t′ has norm at most κ · λ1(L)
(β = κ). If this is the case, then the vector t − t′ is a lattice vector lying at distance
at most κ · λ1(L) from t, which w.h.p. qualifies as a solution. This means that instead
of substituting β = 1 in Lemma 7 for exact CVPP (without rerandomizations), we now
substitute β = κ, leading to the condition that α4−4κ2α2 +4β2 ≤ 0. By a similar analysis

α must therefore be larger than the smallest root r1 =
√

2κ(κ−
√
κ2 − 1) of this quartic

polynomial. A sanity check shows that κ = 1, corresponding to exact CVP, indeed results
in α ≥

√
2, while in the limit of κ→∞ a value α ≈ 1 suffices to obtain a vector t′ of norm

at most κ · λ1(L). In other words, to solve approximate CVP with very large (constant)
approximation factors, a preprocessed list of size (1 + ε)d+o(d) suffices. Further note that
κ =

√
4/3 leads to the same value α =

√
4/3 as in BDD with δ → 0.

Randomized slicing. With rerandomizations, the analysis can be updated as follows.
Instead of asking that the single closest vector s at distance λ1(L) from t′ is contained in
the list L (and has norm at most α · λ1(L)), we now want that at least one of the κd+o(d)

lattice vectors s at distance at most κ · λ1(L) from t′ has norm at most α · λ1(L). This
leads to the following alternative definition for the success probability:

pα,κ = κd · |B(t′, κ) ∩ B(0, α)|
|B(t′, κ)| =

(
−β4 + 2β2

(
κ2 + α2

)
−
(
α2 − κ2

)2
4β2

)d/2+o(d)
. (19)
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The conditions on the parameter α are analogous to BDD: we require that the asymptotic
formulas for p lie in the range [0, 1]. More precisely, if this asymptotic expression exceeds 1,
then the conditions of Lemma 8 are not met, and we instead have p = 1−o(1). As increasing
α beyond the smallest value for which p ≈ 1 only leads to worse complexities, we can simply
assume that α is chosen such that for these asymptotic expressions, p ≤ 1. Substituting
the above expressions for p, with rerandomizations we now obtain the following result.

Theorem 5. Let α ∈ (α0, α1) where α0, α1 are the smallest values larger than 1 such that

pα0,κ = 0 and pα1,κ = 1 respectively, with pα,κ as in (19). Let u ∈ (
√

α2−1
α2 ,

√
α2

α2−1). Using

approximate Voronoi cells with randomized slicing, we can heuristically solve CVPPκ with
complexities S1,2,T1,2 described in Theorem 3 with pα replaced by pα,κ.

Various optimized tradeoffs for different values κ are depicted in Figure 7, with the
curve for κ =

√
4/3 partially overlapping with the BDD-curve for δ → 0. Recall that for

0-BDD, the interval for α only contains one value, resulting in one tradeoff. For
√

4/3-
CVP, this interval is not just one value, and choosing α <

√
4/3 leads to better space

complexities than for 0-BDD.
Also observe that from the bottom (thick, red) curve in Figure 7, we can see that

(after preprocessing the lattice) we can solve 2-CVPP in time and space both less than
20.05d+o(d), which follows from setting α ≈ 1.035 and u ≈ 0.381, and only storing a small
list of vectors L in memory. As κ increases, both α0, α1 tend to 1 + 1/(8κ2) +O(κ−4), and
for arbitrary superconstant κ we therefore obtain query time and space complexities both
tending to 2o(d).

Corollary 2. For arbitrary ε > 0, for sufficiently large κ we can use approximate Voronoi
cells to heuristically solve approximate CVPP with approximation factor κ with preprocess-
ing time T1 = (3/2)d/2+o(d), preprocessing space S1 = (4/3)d/2+o(d), and query time and
space complexities T2,S2 = 2εd+o(d). In particular, for κ = ω(1), we can solve approximate
CVPP in 2o(d) time and space.

The corresponding algorithm is rather simple as well: (1) run a standard sieve for
solving SVP; (2) discard all but the 2εd+o(d) shortest vectors found by the algorithm;
and (3) use Algorithm 5 to find a sufficiently close lattice vector to t. To obtain slightly
subexponential query complexities one does not even need rerandomizations or nearest
neighbor searching; these subexponential costs follow directly from κ = ω(1).

To compare Corollary 2 with previous work, note that α0, α1 both tend to 1+1/(8κ2)+
O(κ−4) as κ grows. The query space and time complexities are both proportional to αΘ(d).
To obtain polynomial query complexities, we can solve for κ, leading to the following result.

Corollary 3. Using approximate Voronoi cells we can heuristically solve approximate
CVPP with approximation factor κ in polynomial query time and space iff κ = Ω(

√
d/ log d).

Proof. The query time and space complexities are given by αΘ(d), where α = 1 +Θ(1/κ2).
To obtain polynomial complexities in d, we must have αΘ(d) = dO(1), or equivalently:

1 +Θ

(
1

κ2

)
= α = dO(1/d) = exp O

(
log d

d

)
= 1 +O

(
log d

d

)
. (20)

Solving for κ leads to the given relation between κ and d.

This is equivalent (minus the heuristic assumptions) to a result of Aharonov and
Regev [AR04], who previously showed that the decision version of CVPP with approx-
imation factor κ = Ω(

√
d/ log d) can provably be solved in polynomial time. This also
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heuristically improves upon results of [LLS90, DRS14], who showed how to solve the
search-version of CVPP with polynomial time and space complexities for κ = O(d3/2)
and κ = Ω(d/

√
log d) respectively. These comparisons suggest that this sieving-based

method may well be optimal from a theoretical point of view as well.

9 Open problems

Faster enumeration with sieving as a CVPP subroutine. As stated in the intro-
duction, the most likely practical application of the approximate Voronoi cell approach is
as a subroutine within enumeration methods, to speed up the searches in the bottom part
of the tree. An open question remains whether this would indeed lead to faster algorithms
for SVP/CVP in practice, or if the preprocessing/query costs are too high. As a concrete
example, one might for instance try running enumeration (with pruning) in dimension
120, where approximate Voronoi cells (with randomized slicing) is used in a sublattice of
dimension 80 as a subroutine. Note however that the CVP instances in the 80-dimensional
sublattice might actually be BDD instances as well, and the pruning used in enumeration
heavily influences the type of CVP instances and the number of CVP instances encoun-
tered in the bottom part of the tree. Optimizing all parameters involved may be a complex
task.

Sieving in the dual lattice. For the application of CVPP within enumeration, observe
that a decisional CVPP oracle may actually be sufficient; most branches of the enumeration
tree will not lead to a solution, and therefore in most cases running an accurate decision-
CVPP oracle is enough to determine that this subtree is not the right subtree. For those
few subtrees which potentially do contain a solution, one could then run a full CVP(P)
algorithm at a slightly higher cost. Improving the complexities for the decision-version of
CVPP may therefore be an interesting future direction, and perhaps one approach could
be to combine this with ideas from [AR04], by running a lattice sieve on the dual lattice
to find many short vectors in the dual lattice, which can then be used to check if a target
vector lies close to the primal lattice or not.

Quantum complexities. As lattice-based cryptography is often advertised as being
quantum-resistant [BBD09], it is also important to study the (potential) asymptotic com-
plexities of SVP/CVP-algorithms on quantum computers, so that the parameters can be
chosen to be secure in a quantum world as well. For lattice sieving for solving SVP, the
time complexity exponent potentially decreases by approximately 25% [LMvdP15], and
so for CVP(P) one might also expect the exponents to decrease by approximately 25%.
Studying the exact quantum asymptotics of sieving for CVP(P) is left for future work.
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