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Abstract

We present “Ouroboros,” the first blockchain protocol based on proof of stake with rig-
orous security guarantees. We establish security properties for the protocol comparable to
those achieved by the bitcoin blockchain protocol. As the protocol provides a “proof of stake”
blockchain discipline, it offers qualitative efficiency advantages over blockchains based on proof
of physical resources (e.g., proof of work). We showcase the practicality of our protocol in
real world settings by providing experimental results on transaction processing time obtained
with a prototype implementation in the Amazon cloud. We also present a novel reward mech-
anism for incentivizing the protocol and we prove that given this mechanism honest behavior
is an approximate Nash equilibrium, thus neutralizing attacks such as selfish mining and block
withholding.

1 Introduction

A primary consideration regarding the operation of blockchain protocols based on proof of work
(PoW)—such as bitcoin [17]—is the energy required for their execution. At the time of this writing,
generating a single block on the bitcoin blockchain requires a number of hashing operations ex-
ceeding 260, which results in striking energy demands. Indeed, early calculations placed the energy
requirements of the protocol in the order of magnitude of a country; see, e.g., [19].

This state of affairs has motivated the investigation of alternative blockchain protocols that
would obviate the need for proof of work by substituting it with another, more energy efficient,
mechanism that can provide similar guarantees. It is important to point out that the proof of work
mechanism of bitcoin facilitates a type of randomized “leader election” process that elects one of
the miners to issue the next block. Furthermore, provided that all miners follow the protocol, this
selection is performed in a randomized fashion proportionally to the computational power of each
miner. (Deviations from the protocol may distort this proportionality as exemplified by “selfish
mining” strategies [9, 23].)

A natural alternative mechanism relies on the notion of “proof of stake” (PoS). Rather than
miners investing computational resources in order to participate in the leader election process, they
instead run a process that randomly selects one of them proportionally to the stake that each
possesses according to the current blockchain ledger.
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In effect, this yields a self-referential blockchain discipline: maintaining the blockchain relies on
the stakeholders themselves and assigns work to them (as well as rewards) based on the amount
of stake that each possesses as reported in the ledger. Aside from this, the discipline should make
no further “artificial” computational demands on the stakeholders. In some sense, this sounds
ideal; however, realizing such a proof-of-stake protocol appears to involve a number of definitional,
technical, and analytic challenges.

Previous work. The concept of PoS has been discussed extensively in the bitcoin forum.1 Proof-
of-stake based blockchain design has been more formally studied by Bentov et al., both in conjunc-
tion with PoW [4] as well as the sole mechanism for a blockchain protocol [3]. Although Bentov
et al. showed that their protocols are secure against some classes of attacks, they do not provide
a formal model for analysing PoS based protocols or security proofs relying on precise definitions.
Heuristic proof-of-stake based blockchain protocols have been proposed (and implemented) for a
number of cryptocurrencies.2 Being based on heuristic security arguments, these cryptocurrencies
have been frequently found to be deficient from the point of view of security. See [3] for a discussion
of various attacks.

It is also interesting to contrast a PoS-based blockchain protocol with a classical consensus
blockchain that relies on a fixed set of authorities (see, e.g., [7]). What distinguishes a PoS-based
blockchain from those which assume static authorities is that stake changes over time and hence
the trust assumption evolves with the system.

Another alternative to PoW is the concept of proof of space [2, 8], which has been specifically
investigated in the context of blockchain protocols [20]. In a proof of space setting, a “prover”
wishes to demonstrate the utilization of space (storage / memory); as in the case of a PoW, this
utilizes a physical resource but can be less energy demanding over time. A related concept is proof
of space-time (PoST) [16]. In all these cases, however, an expensive physical resource (either storage
or computational power) is necessary.

The PoS Design challenge. A fundamental problem for PoS-based blockchain protocols is to
simulate the leader election process. In order to achieve a randomized election among stakeholders,
entropy must be introduced into the system, and mechanisms to introduce entropy may be ma-
nipulated by the adversary. For instance, independently of the solution, an adversary controlling
a set of stakeholders may choose to simulate the protocol execution trying different sequences of
stakeholder participants so that it finds a favorable chain continuation that biases the leader elec-
tion. To prevent this manipulation, honest stakeholders must be able to add sufficient entropy and
counter any lookahead performed by the adversary.

Our Results. We present “Ouroboros”, a provably secure proof of stake system. To the best of
our knowledge this is the first blockchain protocol of its kind with a rigorous security analysis. In
more detail, our results are as follows.

First, we provide a model that formalizes the problem of realizing a PoS-based blockchain proto-
col. The model we introduce is in the spirit of [12], focusing on persistence and liveness, two formal
properties of a robust transaction ledger. Persistence states that once a node of the system pro-
claims a certain transaction as “stable”, the remaining nodes, if queried and responding honestly,

1See “Proof of stake instead of proof of work”, Bitcoin forum thread. Posts by user “QuantumMechanic” and
others. (https://bitcointalk.org/index.php?topic=27787.0.).

2A non-exhaustive list includes NXT, Neucoin, Blackcoin, Tendermint, Bitshares.
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will also report it as stable. Here, stability is to be understood as a predicate that will be parame-
terized by some security parameter k that will affect the certainty with which the property holds.
(E.g., “more than k blocks deep”.) Liveness ensures that once an honestly generated transaction
has been made available for a sufficient amount of time to the network nodes, say u time steps,
it will become stable. The conjunction of liveness and persistence provides a robust transaction
ledger in the sense that honestly generated transactions are adopted and become immutable. Our
model is suitably amended to facilitate PoS-based dynamics.

Second, we describe a novel blockchain protocol based on PoS. Our protocol assumes that parties
can freely create accounts and receive and make payments, and that stake shifts over time. We
utilize a secure multiparty implementation of a coin-flipping protocol to produce the randomness
for the leader election process. This distinguishes the approach from other previous solutions that
either defined such values deterministically based on the current state of the blockchain or used
collective coin flipping as a way to introduce entropy [3]. Also, unique to our approach is the fact
that the system ignores round-to-round stake modifications. Instead, a snapshot of the current set
of stakeholders is taken in regular intervals called epochs; in each such interval a secure multiparty
computation takes place utilizing the blockchain itself as the broadcast channel. Specifically, in
each epoch a set of randomly selected stakeholders form a committee which is then responsible
for executing the coin-flipping protocol. The outcome of the protocol determines the set of next
stakeholders to execute the protocol in the next epoch as well as the outcomes of all leader elections
for the epoch.

Third, we provide a set of formal arguments establishing that no adversary can break persistence
and liveness. Our protocol is secure under a number of plausible assumptions: (1) the network is
highly synchronous, (2) the majority of the selected stakeholders is available as needed to participate
in each epoch, and (3) the stakeholders do not remain offline for long periods of time. At the core
of our security arguments is a probabilistic argument regarding a combinatorial notion of “forkable
strings” which we formulate, prove and verify experimentally.

Fourth, we turn our attention to the incentive structure of the protocol. We present a novel
reward mechanism for incentivizing the participants to the system which we prove to be an (ap-
proximate) Nash equilibrium. In this way, attacks like block withholding and selfish-ming, [9, 23],
are mitigated by our design.

Fifth, we introduce a stake delegation mechanism that can be seamlessly added to our blockchain
protocol. Delegation is particularly useful in our context as we would like to allow our protocol
to scale even in a setting where the set of stakeholders is highly fragmented. In such cases, the
delegation mechanism can enable the stakeholder to delegate her “voting rights”, i.e., the right
of participating in the committees running the leader selection protocol in each epoch. As in
liquid democracy, (a.k.a. delegative democracy [11]), stakeholders have the ability to revoke their
delegative appointment when they wish independently of each other.

Sixth, given our model and protocol description we also explore how various attacks considered
in practice can be addressed within our framework. Specifically, we discuss double spending attacks,
transaction denial attacks, 51% attacks, nothing-at-stake, desynchronization attacks and others.

Finally, we survey our prototype implementation and report on benchmark experiments run in
the Amazon cloud that showcase the power of our proof of stake blockchain protocol in terms of
performance.

Paper overview. We lay out the basic model in Sec. 2. To simplify the analysis of our protocol,
we present it in four stages that are described in Section 3. In short, in Sec. 4 we describe and
analyze the protocol in the static setting; we then transition to the dynamic setting in Sec. 5.
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Our incentive mechanism and the equilibrium argument is presented in Sec. 6 and our delegation
mechanism in Sec. 7. Following this, in Sec. 8 we discuss the resilience of the protocol under various
particular attacks of interest. Finally, in Sec. 9 we discuss performance results obtained from a
prototype implementation running in the Amazon cloud.

2 Model

Time, slots, and synchrony. We consider a setting where time is divided into discrete units
called slots. A ledger, described in more detail below, associates with each time slot (at most) one
ledger block. Players are equipped with (roughly synchronized) clocks that indicate the current
slot. This will permit them to carry out a distributed protocol intending to collectively assign a
block to this current slot. In general, each slot slr is indexed by an integer r ∈ {1, 2, . . .}, and we
assume that the real time window that corresponds to each slot has the following properties.

• The current slot is determined by a publicly-known and monotonically increasing function of
current time.

• Each player has access to the current time. Any discrepancies between parties’ local time are
insignificant in comparison with the length of time represented by a slot.

• The length of the time window that corresponds to a slot is sufficient to guarantee that
any message transmitted by an honest party at the beginning of the time window will be
received by any other honest party by the end of that time window (even accounting for
small inconsistencies in parties’ local clocks). In particular, while network delays may occur,
they never exceed the slot time window.

Transaction Ledger Properties. A protocol Π implements a robust transaction ledger provided
that the ledger that Π maintains is divided into “blocks” (assigned to time slots) that determine the
order with which transactions are incorporated in the ledger. It should also satisfy the following
two properties.

• Persistence. Once a node of the system proclaims a certain transaction tx as stable, the
remaining nodes, if queried, will either report tx in the same position in the ledger or they will
not report as stable any transaction in conflict to tx. Here the notion of stability is a predicate
that is parameterized by a security parameter k; specifically, a transaction is declared stable
if and only if it is in a block that is more than k blocks deep in the ledger.

• Liveness. If all honest nodes in the system attempt to include a certain transaction, then
after the passing of time corresponding to u slots (called the transaction confirmation time),
all nodes, if queried and responding honestly, will report the transaction as stable.

In [15] it was shown that persistence and liveness can be derived from the following three
elementary properties provided that protocol Π derives the ledger from a data structure in the
form of a blockchain.

• Common Prefix (CP); with parameters k, ` ∈ N. The chains C1, C2 possessed by two
external observers at the onset of the slots sl1 < sl2 with sl2 at most ` slots ahead of sl1, are
such that Cdk1 � C2, where Cdk1 denotes the chain obtained by removing the last k blocks from
C1, and � denotes the prefix relation.
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• Chain Quality (CQ); with parameters µ ∈ (0, 1] → (0, 1] and k ∈ N. For any subset
S of (possibly malicious) stakeholders with relative stake α and any portion of length k in a
chain possessed by an honest party at the onset of a certain slot, the ratio of blocks originating
from members of S can be at most µ(α).

• Chain Growth (CG); with parameters τ ∈ (0, 1], s ∈ N. Consider the chains C1, C2
possessed by two honest parties at the onset of two slots sl1, sl2 with sl2 at most s slots ahead
of sl1. Then it holds that len(C2)− len(C1) ≥ τ · s. We call τ the speed coefficient.

Some remarks are in place. Regarding the notion of common prefix, we point out that if ` = 0
this notion coincides with the common prefix property as originally formulated in [12]. A stronger
formulation of common prefix would set ` to be the lifetime of the system itself; this amounts to
strong common prefix [15] that includes the self-consistence property of [22]. Positing a bound `
smaller than the system’s lifetime indicates that forks deeper than k blocks might be feasible in the
chains of honest parties (or even of the same party) if the parties are observed between two rounds
that are more than ` slots away. This relaxation is necessary to be able to prove the common
prefix property in the PoS setting. With foresight, anticipating the implication of persistence from
common prefix, we will need the additional assumption that no honest stakeholder is offline for too
many rounds.

Regarding chain quality, the function µ satisfies µ(α) ≥ α for protocols of interest. In an
ideal setting, µ would be the identity function: in this case, the percentage of malicious blocks in
any sufficiently long chain segment is proportional to the cumulative stake of a set of (malicious)
stakeholders.

It is worth noting that for bitcoin we have µ(α) = α/(1− α), and this bound is in fact tight—
see [12], which argues this guarantee on chain quality. The same will hold true for our protocol
construction.

Finally chain growth concerns the rate at which the chain grows (for honest parties). As in
the case of bitcoin, the longest chain plays a preferred role in our protocol; this provides an easy
guarantee of chain growth.

Security Model. We adopt the model introduced by [12] for analysing security of blockchain
protocols enhanced with an ideal functional F . We denote by VIEWP,F

Π,A,Z(κ) the view of party P
after the execution of protocol Π with adversary A, environment Z, security parameter κ and access
to ideal functionality F . We note that multiple different “functionalities” can be encompassed by
F .

We stress that contrary to [12], our analysis is in the “standard model”, and without a random
oracle functionality. Nevertheless we do employ a “diffuse” functionality that operates in a similar
fashion with the additional property of sender anonymity. Specifically the operation of diffusion is
as follows.

• Diffuse functionality. It maintains a incoming string for each party Ui that participates. A
party, if activated, is allowed at any moment to fetch the contents of its incoming string
hence one may think of this as a mailbox. Furthermore, parties can give the instruction to
the functionality to diffuse a message. The functionality keeps rounds and all parties are
allowed to diffuse once in a round. Rounds do not advance unless all parties have diffused
a message. The adversary, when activated, can also interact with the functionality and is
allowed to read all inboxes and all diffuse requests and deliver messages to the inboxes in any
order it prefers. At the end of the round, the functionality will ensure that all inboxes contain
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all messages that have been diffused (but not necessarily in the same order they have been
requested to be diffused). In order to preserve sender anonymity the functionality will strip
the

• Key and Transaction functionality. The key registration functionality is initialized with n
users, U1, . . . , Un and their respective stake s1, . . . , sn; given such initialization, the func-
tionality will consult with the adversary and will accepted a (possibly empty) sequence of
(Corrupt, U) messages and mark the corresponding users U as corrupt. For the corrupt users
the functionality will allow the adversary to set their public-keys while for honest users the
functionality will sample public/secret-key pair and record it. Subsequently, any sequence
of the following actions may take place: (i) A user may request to retrieve its public and
secret-key, whereupon, the functionality will return it to the user. (ii) The whole directory of
public-keys may be required in whereupon, the functionality will return it to the requesting
user. (iii) A new user may be requested to be created by a message (Create, U) from the
environment, in which case the functionality will follow the same procedure as before: it will
consult the adversary regarding the corruption status of U and will set its public and possibly
secret-key depending on the corruption status. The functionality will return the public-key
back to the environment upon successful completion of this interaction. (v) A transaction
may be requested on behalf of a certain user by the environment, by providing a template for
the transaction (which should contain a unique nonce) and a recipient. The functionality will
adjust the stake of each stakeholder accordingly. (iv) An existing user may be requested to be
corrupted by the adversary via a message (Corrupt, U). A stakeholder can only be corrupted
after a delay of D slots after its stake becomes 0.

Given the above we will assume that the execution of the protocol is with respect to a functional-
ity F that is incorporating the above two functionalities as well as possibly additional functionalities
to be explained below. Note that a corrupted stakeholder U will relinquish its entire state to A;
from this point on, the adversary will be activated in place of the stakeholder U . Beyond any
restrictions imposed by F , the adversary can only corrupt a stakeholder if it is given permission
by the environment Z running the protocol execution. The permission is in the form of a mes-
sage (Corrupt, U) which is provided to the adversary by the environment. In summary, regarding
activations we have the following.

• At each slot slj , the environment Z is allowed to activate any subset of stakeholders it
wishes. Each one of them will possibly produce messages that are to be transmitted to other
stakeholders.

• The adversary is activated last in each slj , is allowed to read all messages sent by honest
parties and may deliver them in the next slot to each stakeholder in any order it wishes,
potentially including messages of its own. Adversarial messages may be delivered only to a
selected set of honest stakeholders (at A’s discretion).

• If a stakeholder is not activated in a certain slot then all the messages written to its commu-
nication tape are lost.

It is easy to see that the model above confers such sweeping power on the adversary that one
cannot establish any significant guarantees on protocols of interest. It is thus important to restrict
the environment suitably (taking into account the details of the protocol) so that we may be able
to argue security. With foresight, the restrictions we will impose on the environment are as follows.
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Restrictions imposed on the environment. The environment, which is responsible for acti-
vating the honest parties in each round, will be subject to the following constraints.

• At each slot there will be an identified set of elected shareholders, and the adversary will be
permitted to corrupt only a minority of those.

• At each slot there will be a uniquely identified party, called the slot leader. If a stakeholder
is honest and is the slot leader at a certain slot, the environment will activate it in the slot
before and in the slot that it is the slot leader.

• In each round there will be at least one honest activated stakeholder (independently of whether
it is a slot leader).

• There will be a parameter k ∈ Z that will signify the maximum number slots that an honest
shareholder can be offline.

3 Our Protocol: Overview

We first provide a general overview of our protocol design approach. The protocol’s specifics depend
on a number of parameters as follows: (i) k is the number of blocks a certain transaction should
have “on top of it” in order to be considered confirmed by honest stakeholders, (ii) ε is the advantage
in terms of stake of the honest stakeholders against the adversarial ones; (iii) D is the corruption
delay that is imposed on the adversary, i.e., an honest stakeholder will be corrupted after D slots
when a corrupt message is delivered by the adversary during an execution; (iv) L is the lifetime of
the system, measured in slots; (v) R is the length of an epoch, measured in slots.

We present our protocol description in four stages successively improving the adversarial model
it can withstand. In all stages an “ideal functionality” FD,FLS is available to the participants. The
functionality captures the resources that are available to the parties as preconditions for the secure
operation of the protocol (e.g., the genesis block will be specified by FD,FLS ).

1. (case for static stake; D = L). In the first stage, the trust assumption is static and remains
with the initial set of stakeholders. There is an initial stake distribution which is hardcoded
into the genesis block that includes the public-keys of the stakeholders, {(vki, si)}ni=1. Based
on our restrictions to the environment, honest majority with advantage ε is assumed among
those initial stakeholders. Specifically, the environment initially will allow the corruption of a
number of stakeholders whose relative stake represents 1−ε

2 for some ε > 0. The environment
allows party corruption by providing tokens of the form (Corrupt, U) to the adversary; note
that due to the corruption delay imposed in this first stage any further corruptions will
be against parties that have no stake initially and hence the corruption model is akin to
“static corruption.” FD,FLS will subsequently sample ρ which will seed a “weighted by stake”
stakeholder sampling and in this way lead to the election of a subset of m keys vki1 , . . . , vkim
to form the committee that will possess honest majority with overwhelming probability in m,
(this uses the fact that the relative stake possessed by malicious parties is 1−ε

2 ; a dependency
of m to ε−2 will be imposed at this stage). In more detail, the committee will be selected
implicitly by appointing a stakeholder with probability proportional to its stake to each one
of the L slots. Subsequently, stakeholders will issue blocks following the schedule that is
determined by the slot assignment. The longest chain rule will be applied and it will be
possible for the adversary to fork the blockchain views of the honest parties. Nevertheless, we
will prove with a Markov chain argument that the probability that a fork can be maintained
over a sequence of n slots drops exponentially with

√
n, cf. Theorem 4.11.
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2. (dynamic state with a beacon, epoch period of R slots long, D = R� L). The central idea for
the extension of the lifetime of the above protocol, is to consider the sequential composition
of several invocations of it. We detail a way to do that, under the assumption that a trusted
beacon emits a uniformly random string in regular intervals. More specifically, the beacon,
during slots {j · R + 1, . . . , (j + 1)R}, reveals the j-th random string that seeds the leader
election function. The critical difference compared to the static state protocol is that the
stake distribution is allowed to change and is drawn from the blockchain itself. This means
that at a certain slot sl that belongs to the j-th epoch (with j ≥ 2), the stake distribution
that is used is the one reported in the most recent block with time stamp at most j ·R− k.
Regarding the evolving stake distribution, transactions will be continuously generated and
transferred between stakeholders by the environment and players will incorporate posted
transactions in the blockchain based ledgers that they maintain. In order to accomodate
the new accounts that are being created, the FD,FLS functionality enables a new (vk, sk) to be
created on demand and assigned to a new party Ui. Specifically, the environment can create
new parties who will interact with FD,FLS for their public/secret-key in this way treating it as
a trusted component that maintains the secret of their wallet. Note that the adversary can
interfere with the creation of a new party, corrupt it, and supply its own (adversarially created)
public-key instead. As before, the environment, may request transactions between accounts
from stakeholders and it can also generate transactions in collaboration with the adversary on
behalf of the corrupted accounts. Recall that our assumption is that at any slot, in the view
of any honest player, the stakeholder distribution satisfies honest majority with advantage
ε (note that different honest players might perceive a different stakeholder distribution in a
certain slot). Furthermore, the stake can shift by at most σ statistical distance over a certain
number of slots. The statistical distance here will be measured considering the underlying
distribution to be the weighted by stake sampler and how it changes over the specified time
interval. The security proof can be seen as an induction in the number of epochs L/R with
the base case supplied by the proof of the static stake protocol. In the end we will argue
that in this setting, a 1−ε

2 − σ bound in adversarial stake is sufficient for security of a single
draw (and observe that the size of committee, m, now should be selected to overcome also an
additive term of size ln(L/R)). The corruption delay remains at D = R which can be selected
arbitrarily smaller than L, thus enabling the adversary to perform adaptive corruptions as
long as this is not instantaneous.

3. (dynamic state without a beacon, epoch period of R slots long, R = Θ(k) and delay D ∈
(R, 2R) � L). In the third stage, we remove the dependency to the beacon, by introducing
a secure multiparty protocol with “guaranteed output delivery” that simulates it. In this
way, we can obtain the long-livedness of the protocol as described in the stage 2 design
but only under the assumption of the stage 1 design, i.e., the mere availability of an initial
random string and an initial stakeholder distribution. The core idea is the following: given
we guarantee that an honest majority among elected stakeholders will hold with very high
probability, we can further use this elected set as participants to an instance of a secure
multiparty computation (MPC) protocol. This will require the choice of the length of the
epoch to be sufficient so that it can accommodate a run of the MPC protocol. From a security
point of view, the main difference with the previous case, is that the output of the beacon
will become known to the adversary before it may become known to the honest parties.
Nevertheless, we will prove that the honest parties will also inevitably learn it after a short
number of slots. To account for the fact that the adversary gets this headstart (which it may
exploit by performing adaptive corruptions) we increase the wait time for corruption from R
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to a suitable value in (R, 2R) that negates this advantage.

4. (stakeholder delegates and input endorsers). In the final stage of our design, we augment the
protocol with two new roles for the entities that are running the protocol. First, the delegation
feature allows stakeholders to transfer committee participation to selected delegates that
assume the responsibility of the stakeholders in running the protocol (including participation
to the MPC and issuance of blocks). Delegation naturally gives rise to “stake pools” that
can act in the same way as mining pools in bitcoin. Finally, input-endorsers create a second
layer of transaction endorsing prior to block inclusion. This mechanism enables the protocol
to withstand deviations such as block-withholding and selfish mining and enables us to show
that honest behaviour is an approximate Nash equilibrium.

In Section 4 we present the stage 1 of the design (the static protocol). Then in Sections 5.1
and 5.2 we present the two stages of the design for dynamic stake (using a beacon and with an
MPC simulating the beacon). Finally, the enhancement with Input endorsers and incentives are
discussed in Sections 5.4 and 6, while stake delegation is introduced in Section 7.

4 Our Protocol: Static State

4.1 Basic Concepts and Protocol Description

We begin by describing the blockchain protocol πSPoS in the “static stake” setting, where leaders
are assigned to blockchain slots with probability proportional to their (fixed) initial stake. To
simplify our presentation, we abstract this leader selection process, treating it simply as an “ideal
functionality” that faithfully carries out the process of randomly assigning stakeholders to slots.
In the following section, we explain how to instantiate this functionality with a specific secure
computation.

We remark that—even with an ideal leader assignment process—analyzing the standard “longest
chain” preference rule in our PoS setting appears to require significant new ideas. The challenge
arises because large collections of slots (epochs, as described above) are assigned to stakeholders at
once; while this has favorable properties from an efficiency (and incentive) perspective, it furnishes
the adversary a novel means of attack. Specifically, an adversary in control of a certain population
of stakeholders can, at the beginning of an epoch, choose when standard “chain update” broadcast
messages are delivered to honest parties with full knowledge of future assignments of slots to
stakeholders. In contrast, adversaries in typical PoW settings are constrained to make such decisions
in an online fashion. We remark that this can have a dramatic effect on the ability of an adversary
to produce alternate chains; see the discussion on “forkable strings” below for detailed discussion.

In the static stake case, we assume that a fixed collection of n stakeholders U1, . . . , Un interact
throughout the protocol. Stakeholder Ui possesses si stake before the protocol starts. For each
stakeholder Ui a verification and signing key pair (vki, ski) for a signature scheme is generated and
we assume without loss of generality that each verification key vki is known by all stakeholders.
Before describing the protocol, we establish basic definitions following the notation of [12].

Definition 4.1 (Genesis Block). The genesis block B0 contains the list of stakeholders identified
by their public-keys, their respective stakes {(vk1, s1), . . . , (vkn, sn)} and auxiliary information ρ.

With foresight we note that the auxiliary information ρ will be used to seed the slot leader
election process.
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Definition 4.2 (Block). A block B generated at a slot sli ∈ {sl1, . . . , slR} contains the current state
st ∈ {0, 1}λ, data d ∈ {0, 1}∗, the slot number sli and a signature σ = Signski

(st, d, sl) computed
under ski corresponding to the stakeholder Ui generating the block.
Definition 4.3 (State). A state is a string st ∈ {0, 1}λ.
Definition 4.4 (Blockchain). A blockchain (or simply chain) relative to the genesis block B0 is a
sequence of blocks B1, . . . , Bn associated with a strictly increasing sequence of slots for which the
state sti of Bi is equal to H(Bi−1), where H is a prescribed collision-resistant hash function. The
length of a chain len(C) is its number of blocks. The rightmost block is the head of the chain,
denoted head(C). We treat the empty string ε as a legal chain and by convention set head(ε) = ε.

Let C be a chain of length n and k be any non-negative integer. We denote by Cdk the chain
resulting from removal of the k rightmost blocks of C. If k ≥ len(C) we define Cdk = ε. We let
C1 � C2 indicate that the chain C1 is a prefix of the chain C2.
Definition 4.5 (Epoch). An epoch is a set of R adjacent slots S = {sl1, . . . , slR}.
(The value R is a parameter of the protocol we analyze in this section.)
Definition 4.6 (Adversarial Stake Ratio). Let UA be the set of stakeholders controlled by the
adversary, the adversarial stake ratio is defined as

α =
∑
j∈UA

sj∑n
i=1 si

where n is the total number of stakeholders and si is stakeholder Ui’s stake.

Slot Leader Selection. In the protocol described in this section, for each 0 < j ≤ R, a slot
leader Ej is determined who has the (sole) right to generate a block at slj . Specifically, for each
slot a stakeholder Ui is selected as the slot leader with probability pi proportional to its stake
registered in the genesis block B0; these assignments are independent between slots. In this static
stake case, the genesis block as well as the procedure for selecting slot leaders are determined by
an ideal functionality FD,FLS , defined in Figure 1. This functionality is parameterized by the list
{(vk1, s1), . . . , (vkn, sn)} assigning to each stakeholder its respective stake, a distribution D that
provides auxiliary information ρ and a leader selection function F defined below.
Definition 4.7 (Leader Selection Process). A leader selection process (D,F) is a pair consisting
of a distribution and a deterministic function such that, when ρ ← D it holds that for all slj ∈
{sl1, . . . , slR}, F(ρ, slj) outputs Ui ∈ {U1, . . . , Un} with probability

pi = si∑n
k=1 sk

where si is the stake held by stakeholder Ui (we call this “weighing by stake”); furthermore the
family of random variables Ui = F (ρ, slj) are independent.

We note that weighing by stake sampling can be implemented in a straightforward manner.
For instance, a simple process operates as follows. Let p̃i = si/

∑n
j=i si. First, the process flips a

p̃1-biased coin to see whether the first stakeholder is selected; subsequently, for all j ≥ 2, it flips
a (1 − p̃1) . . . (1 − p̃j−1)p̃j biased coin to see whether the j-th stakeholder is selected. When we
implement it as a function F (·) a sufficient amount of randomness should be allocated to simulate
the biased coin flips. If we implement the above with λ precision for each individual coin flip, then
selecting a stakeholder will require ndlog λe random bits in total. Note that using a pseudorandom
number generator (PRG) one may use a shorter “seed” string and then stretch it using the PRG
to the appropriate length.
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Functionality FD,F
LS

FD,F
LS is parameterized by the public keys and respective stakes of the stakeholders
{(vk1, s1), . . . , (vkn, sn)}, a distribution D and a function F so that (D,F) is a leader selection
process. FD,F

LS interacts with stakeholders U1, . . . , Un as follows:
• Upon receiving (genblock req, Ui) from stakeholder Ui, FD,F

LS proceeds as follows. If B0 = ∅, FD,F
LS

samples ρ← D and sets B0 = ((vk1, s1), . . . , (vkn, sn), ρ). Finally, FD,F
LS sends (genblock, B0,F) to

Ui.

Figure 1: Functionality FD,FLS .

A Protocol in the FD,FLS -hybrid model. We start by describing a simple PoS based blockchain
protocol considering static stake in the FD,FLS -hybrid model, i.e., where the genesis block B0 (and
consequently the slot leaders) are determined by the ideal functionality FD,FLS . The stakeholders
U1, . . . , Un interact among themselves and with FD,FLS through Protocol πSPoS described in Figure 2.

The protocol relies on a maxvalidS(C,C) function that chooses a chain given the current chain
C and a set of valid chains C that are available in the network. In the static case we analyze the
simple “longest chain” rule. (In the dynamic case the rule is parameterized by a common chain
length; see Section 5.)

Function maxvalidS(C,C): Returns the longest chain from C ∪ {C}. Ties are broken in
favor of C, if it has maximum length, or arbitrarily otherwise.

Protocol πSPoS

πSPoS is a protocol run by stakeholders U1, . . . , Un interacting among themselves and with FD,F
LS over a

sequence of slots S = {sl1, . . . , slR}. πSPoS proceeds as follows:
1. Initialization When πSPoS starts, each stakeholder Ui ∈ {U1, . . . , Un} sends (genblock req, Ui) to
FD,F

LS , receiving (genblock, B0,F) as answer. Ui sets an internal blockchain C = B0 and a initial
internal state st = H(B0).

2. Chain Extension For every slot slj ∈ S, every online stakeholder Ui performs the following
steps:

(a) Collect all valid chains received via broadcast into a set C, verifying that for every chain
C′ ∈ C and every block B′ = (st′, d′, sl′, σ′) ∈ C′ it holds that Vrfvk′(σ′, (st′, d′, sl′)) = 1,
where vk′ is the verification key of the stakeholder U ′ ← F(ρ, sl′). Ui calls the function
maxvalidS(C,C) to select a new internal chain C ∈ C and sets state st = H(head(C)).

(b) If Ui is the slot leader determined by F(ρ, slj), it generates a new block B = (st, d, slj , σ)
where st is its current state, d ∈ {0, 1}∗ is the transaction data and σ = Signski

(st, d, slj) is
a signature on (st, d, slj). Ui extends C by appending B, obtains C = C|B and broadcasts
the new C.

Figure 2: Protocol πSPoS.

4.2 Forkable Strings

In our security arguments, we will treat strings over {0, 1}∗ as an abstraction to indicate which
slots—among a particular window of slots—have been assigned to adversarial stakeholders.
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Definition 4.8 (Characteristic String). Fix an execution with genesis block B0, adversary A, and
environment Z. Let S = {sli, . . . , slj}, where i < j, be a sequence of slots of length |S| = n. The
characteristic string w ∈ {0, 1}n of S is defined so that wk = 1 if and only if the adversary controls
the slot leader of slot slk.

For such a characteristic string w ∈ {0, 1}∗ we say that the slot i is adversarial if wi = 1 and
honest otherwise.

We start with some intuition on our approach to analyze the protocol. Let w ∈ {0, 1}n be a
characteristic string for a sequence of slots S. Consider two observers that (i.) go offline immediately
prior to the commencement of S, (ii.) have the same view C0 of the current chain prior to the
commencement of S, and (iii.) come back online at the last slot of S and request an update of their
chain. A fundamental concern in our analysis is the possibility that such observers can be presented
with a “diverging” view over the sequence S: specifically, the possibility that the adversary can
force the two observers to adopt two different chains C1, C2 whose common prefix is C0.

We observe that not all characteristic strings permit this. For instance the (entirely honest)
string 0n ensures that the two observers will adopt the same chain C which will consist of n new
blocks on top of the common prefix C0. On the other hand, other strings do not guarantee such
common extension of C0; in the case of 1n, it is possible for the adversary to produce two completely
different histories during the sequence of slots S and thus furnish to the two observers two distinct
chains C1, C2 that only share the common prefix C0. In the remainder of this section, we establish
that strings that permit such “forkings” are quite rare—indeed, we show that they have density
2−Ω(

√
n) so long as the fraction of adversarial slots is 1/2− ε.

To reason about such “forkings” of a characteristic string w ∈ {0, 1}n, we define below a formal
notion of “fork” which captures the relationship between the chains broadcast by honest slot leaders
during an execution of the protocol πSPoS. In preparation for the definition, we recall that honest
players always choose to extend a maximum length chain among those available to the player on
the network. Furthermore, if such a maximal chain C includes a block previously broadcast by an
honest player, the prefix of C prior to this honest block must entirely agree with the chain broadcast
by this previous honest player. Thus any chain C broadcast by an honest player must consist of a
(perhaps empty) sequence of adversarial blocks that extend a chain produced by a previous honest
player. It follows that the chains broadcast by honest players form a natural directed tree. The
fact that honest players reliably broadcast their chains and always build on the longest available
chain introduces a second important property of this tree: the “depths” of distinct blocks added by
honest players during the protocol must all be distinct. The definition of “fork” below formalizes
these requirements and will be the basis for our arguments establishing that “forkable” strings are
scarce.

Forks and forkable strings. We define, below, the basic combinatorial structures we use to
reason about the possible views observed by honest players during a protocol execution with this
characteristic string.

Definition 4.9 (Fork). Let w ∈ {0, 1}n and let H = {i | wi = 0} denote the set of honest indices.
A fork for the string w is a directed, rooted tree F = (V,E) with a labeling ` : V → {0, 1, . . . , n} so
that

• each edge of F is directed away from the root;

• the root r ∈ V is given the label `(r) = 0;

• the labels along any directed path in the tree are strictly increasing;
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Figure 3: A fork F for the string w = 010100110; vertices appear with their labels and honest
vertices are highlighted with double borders. Note that the depths of the (honest) vertices associated
with the honest indices of w are strictly increasing. Two tines are distinguished in the figure: one,
labeled t̂, terminates at the vertex labeled 9 and is the longest tine in the fork; a second tine t
terminates at the vertex labeled 3. The quantity gap(t) indicates the difference in length between t
and t̂; in this case gap(t) = 4. The quantity reserve(t) = |{i | `(v) < i ≤ |w| and wi = 1}| indicates
the number of adversarial indices appearing after the label of the last vertex v of the tine; in this
case reserve(t) = 3. As each leaf of F is honest, F is closed.

• each honest index i ∈ H is the label of exactly one vertex of F ;

• the function d : H → {1, . . . , n}, defined so that d(i) is the depth in F of the unique vertex v
for which `(v) = i, is strictly increasing. (Specifically, if i, j ∈ H and i < j, then d(i) < d(j).)

As a matter of notation, we write F ` w to indicate that F is a fork for the string w.

If a vertex v of a fork is labeled with an adversarial index (i.e., w`(v) = 1) we say that the vertex
is adversarial; otherwise, we say that the vertex is honest. In particular, for concreteness we declare
the root vertex to be honest. We say that a fork is trivial if it contains a single vertex, the root.

Note that the label `(v) of any non-root vertex v is an index of the string w and that adversarial
indices may, in general, appear as the label of many (or no) vertices of the tree.

A path in a fork originating at the root is called a tine. For a tine t we let length(t) denote
its length, equal to the number of edges on the path. The height of a fork (as usual for a tree) is
defined to be the length of the longest tine. We write t1 � t2 if t1 is a prefix of the tine t2. As
described above, a fork effectively determines the structure of the chains (tines) broadcast by the
honest players during a run of the protocol. See Figure 3 for an example, which also demonstrates
some of the quantities defined above and in the next section.

Definition 4.10. We say that a fork is flat if it has (at least) two edge-disjoint tines of length equal
to the height of the fork. A string w ∈ {0, 1}∗ is said to be forkable if there is a flat fork F ` w.

Our goal is to establish the following upper bound on the number of forkable strings.

Theorem 4.11. Let ε ∈ (0, 1) and let w be a string drawn from {0, 1}n by independently assigning
each wi = 0 with probability (1 + ε)/2. Then Pr[w is forkable] = 2−Ω(

√
n).

Structural features of forks: closed forks, prefixes, and margin. We begin by defining a
natural notion of inclusion for two forks:

Definition 4.12 (Fork prefixes). If w′ is a prefix of the string w ∈ {0, 1}∗, F ′ ` w′, and F ` w,
we say that F ′ is a prefix of F , written F ′ v F , if F ′ is a consistently-labeled subgraph of F .
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Specifically, every vertex and edge of F ′ appears in F and, furthermore, the labels given to any
vertex appearing in both F ′ and F are identical.

If F ′ v F , each tine of F ′ appears as the prefix of a tine in F . In particular, the labels appearing
on any tine terminating at a common vertex are identical and, moreover, the depth of any honest
vertex appearing in both F ′ and F is identical.

In many cases, it is convenient to work with forks that do not “commit” anything beyond final
honest indices.

Definition 4.13 (Closed forks). A fork is closed if each leaf is honest. For concreteness, we define
the trivial fork, consisting solely of a root vertex, as closed.

Note that a closed fork has a unique longest tine (as all maximal tines terminate with an honest
vertex, and these must have distinct depths). Note, additionally, that if w′ is a prefix of w and
F ` w, then there is a unique closed fork F ′ ` w′ for which F ′ v F .

Definition 4.14 (Gap, reserve and margin). Let F ` w be a closed fork and let t̂ denote the
(unique) tine of maximum length in F . We define the gap of a tine t, denoted gap(t), to be the
difference in length between t̂ and t; thus

gap(t) = length(t̂)− length(t) .

We define the reserve of a tine t to be the number of adversarial indices appearing in w after the
largest honest index in t; specifically, if t is given by the path (r, v1, . . . , vk), where r is the root of
F , we define

reserve(t) = |{i | wi = 1 and i > `(vk)}| .

We remark that this quantity depends both on F and the specific string w associated with F . For
two tines t and t′, we write t ∼ t′ if they share an edge in F ; otherwise we write t 6∼ t′. Finally,
we define the margin of a fork F by the rule

margin(F ) = max
t6∼t̂

(reserve(t)− gap(t)) .

The relevance of margin to the notion of forkability is reflected in the following proposition.

Proposition 4.15. A string w is forkable if and only if there is a closed fork F ` w with
margin(F ) ≥ 0.

Proof. If w has no honest indices, then the trivial fork consisting of a single root node is flat, closed,
and has non-negative margin; thus the two conditions are equivalent. Consider a forkable string w
with at least one honest index and let î denote the largest honest index of w. Let F be a flat fork
for w. As mentioned above, there is a unique closed fork F ` w obtained from F by removing any
adversarial vertices from the ends of the tines of F . Note that the tine t̂ containing î is the longest
tine in F , as this is the largest honest index of w. On the other hand, F is flat, in which case there
are two edge-disjoint tines t1 and t2 with length at least that of t̂. At least one of these—call it
t—must be edge-disjoint with t̂ and it follows that the prefix of t in F has reserve no less than its
gap, as desired.

On the other hand, suppose w has a closed fork with margin(F ) ≥ 0, and let t̂ denote the longest
tine. As margin(F ) ≥ 0, there is a particular tine t, edge-disjoint with t̂, for which reserve(t) −
gap(t) ≥ 0 and we can produce a flat fork by simply adding gap(t) vertices labeled with these
subsequent adversarial indices to the tine t.
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In light of this proposition, for a string w we may focus our attention on the quantity

margin(w) = max
F`w,

F closed

margin(F ) .

(Note that this overloads the notation margin(·) so that it applies to both forks and strings, but
the setting will be clear from context.)

The full proof of Theorem 4.11 appears in Appendix A. We devote the remainder of this section
to an in-depth account of the proof of Theorem 4.11 in the “two-tine” case, when forks may have
no more than two tines. This shows off the basic features of the proof without the more elaborate
bookkeeping required for the general case.

Intuition for the proof of Theorem 4.11: The two-tine case. The two-tine proof relies on
the fact that margin can be given a purely syntactic description when margin is maximized over
only two-tine forks. We say that a fork is a 2-fork if it can be expressed as the union of two tines
and, for the remainder of this section we work with the quantity

margin2(w) = max
F`w,

F closed 2-fork

margin(F ) .

(Note that margin2(w) ≤ margin(w).)
We provide a syntactic description of margin2() over the set

T0 = {w0 | w ∈ {0, 1}∗} ∪ {ε}

of strings ending with an honest index (to which we add the string ε for convenience). Specifically,
define the function rm : T0 → Z by the recursive rule

rm(ε) = 0 ,

rm(w′1s0) =
{
s− 1, if −s ≤ rm(w′) ≤ 0,
rm(w′) + s− 1, otherwise.

(Note that any nonempty string w ∈ T0 can be written uniquely as w′1s0 for a string w′ ∈ T0.) We
will later extend this definition to all strings.

Theorem 4.16. For every w ∈ T0, rm(w) = margin2(w).

Proof. In preparation for the proof, we make some general comments about forks of “neighboring”
strings in T0. Consider a closed 2-fork F ′ for a string w′ ∈ T0; appending the string 1s0 to the end
of w′ results in another string w = w′1s0 ∈ T0 with exactly one more honest index. We consider
the various closed 2-forks F ` w which are consistent with F ′ in the sense that F ′ v F . As both
F and F ′ are closed and w contains single honest index not appearing in w′, these two forks differ
only along the longest tine of F which, in fact, terminates with a vertex labeled by the new honest
index at the end of w. In particular, F may be constructed from F ′ by adding to the end of a tine
t (of F ′) a directed path labeled with some of the symbols appearing in the suffix 0s1. Note that a
time t of F ′ may only be augmented in this way if s ≥ gap(t)− reserve(t) (as the augmented tine
must necessarily become the longest tine in F ). The corresponding effect of such augmentation on
margin() depends on whether or not the augmented tine is t̂, the longest tine of F ′. We consider
these two cases separately: when t̂ is augmented, we call this an extension; in the other case, where
the augmented tine t shares no edges with t̂, we call this a crossover.
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Extension. It is always possible to add the new honest index to the longest tine t̂ of F ′ (as
gap(t̂) = 0). This corresponds to augmenting t̂ by adding a directed path of vertices labeled
with indices that correspond to a string of the form 1r0 for some r ≤ s (so that these symbols
can be drawn from the appended string 1s0). Note that this changes the gap by r + 1 while
s is added to the reserve. Thus margin(F ) = margin(F ′) + s− (r + 1).

Crossover. If s+ margin(F ′) ≥ 0, the new honest index may be added to the shorter tine (which
shares no nontrivial prefix with t̂), creating a “crossover.” The shorter tine tmay be augmented
by adding a directed path labeled with the string 1gap(t)1r0 for some 0 ≤ r ≤ s+ reserve(t)−
gap(t). Note in this case that the new gap is 1 + r and the reserve is s. Thus margin(F ) =
s− (r + 1).

Returning to the statement of the theorem, we first prove that for any w ∈ T0, rm(w) ≥ margin2(w).
The proof proceeds by induction on the number of honest indices in w. If w has no honest indices,
then w = ε and rm(w) = 0 = margin2(w), as desired. If w has at least one honest index, we may
write w = w′1s0 for some w′ ∈ T0 and, by induction, we may assume that rm(w′) ≥ margin2(w′).
Let F ` w be closed and let F ′ ` w′ be the unique closed fork for which F ′ v F . Then

margin(F ′) ≤ margin2(w′) ≤ rm(w′) .

As described above, F is either formed by extending F ′ or by crossover, and we handle these two
cases separately. If F is formed by extending F ′, then

margin(F ) = margin(F ′) + s− (r + 1) ≤ rm(w′) + (s− 1) ,

where r is determined as in the description of the “extend” case above. Note, however, that
rm(w) ≥ rm(w′) + (s− 1) in this case: either −s ≤ rm(w′) ≤ 0 so that rm(w′) + s− 1 ≤ s− 1 =
rm(w) or rm(w′) is outside this range so that rm(w) = rm(w′) + s− 1. Thus

margin(F ) ≤ rm(w′) + (s− 1) ≤ rm(w) ,

as desired. Alternatively, suppose that F is formed from F ′ by crossover, which requires that

0 ≤ margin(F ′) + s ≤ margin2(w′) + s .

Then margin(F ) = s− (r+1) ≤ s−1 where r is determined as in the description of the “crossover”
case above. Note, however, that rm(w) ≥ s−1 in this case: either rm(w′) ≤ 0 so that rm(w) = s−1
or rm(w′) > 0 so that rm(w) = rm(w′) + (s− 1) ≥ s− 1. In any case,

margin(F ) = s− (r + 1) ≤ s− 1 ≤ rm(w) ,

as desired.
It remains to prove that for any w ∈ T0, rm(w) ≤ margin2(w). For this purpose, for each

string w ∈ T0 we construct a particular “canonical” 2-fork Fw for which margin(Fw) = rm(w).
We define Fε to be the trivial fork, and note that rm(ε) = margin(Fε). In general, the fork Fw
is defined by induction: writing w = w′1s0 the fork Fw is determined from Fw′ depending on the
quantities rm(w′) and s. If −s ≤ rm(w′) ≤ 0, Fw is obtained from Fw′ by a crossover in which
r = 0—specifically, the shorter tine t is extended by gap(t) − reserve(t) adversarial vertices and a
vertex corresponding to the final honest index of w. Otherwise, the longer tine t̂ of Fm′ is extended
by adding a single vertex corresponding to the new honest index in w. In either case, we find that
margin(Fw) = rm(w) by construction. See Figure 4 for an example of the canonical forking for a
particular string.

We remark that the “canonical two-tine” fork Fw defined in the proof above has minimal depth,
in the sense that the longest tine always has length equal to the number of honest indices in w.
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Figure 4: The “canonical two-tine” fork Fw for the string w = 010100110. Nodes use the same
conventions as in Figure 3. The upper tine of the canonical two-tine fork terminates at the vertex
labeled 6; the addition of the adversarial vertex labeled 7 to the upper tine results in a flat fork for
this string.

Bounding the density of forkable strings; the Markov chain for margin2(). We extend
the definition of rm to the set of all strings {0, 1}∗. For a string w ∈ {0, 1}∗, let tail(w) denote
the number of trailing 1’s in the string (that is, max{k | w = w′1k for some w′}); then (re-)define
rm(w) by the rule

rm(ε) = 0 ,
rm(w0) = rm(w)− 1 ,

rm(w1) =
{

rm(w) + 1 if rm(w) + 1 6= 0,
tail(w1) if rm(w) + 1 = 0. (†)

It is easy to establish by induction that these two definitions of rm agree on T0. (The “crossover
case” in the original definition of rm, when −s ≤ rm(w′) ≤ 0, is correctly accounted for by the
case (†) above.)

In general, rm(w) is not equal to margin2(w) on strings w 6∈ T0. The rule (†) above can inflate
rm() in preparation for correctly accounting for margin when a following honest index is added.
However, for any w we have margin2(w) ≤ rm(w), which is enough for our density bounds.

Lemma 4.17. For all w ∈ {0, 1}∗, margin2(w) ≤ rm(w).

Proof. For a string w ∈ {0, 1}∗, we may (uniquely) express w = w′1s for a string w′ ∈ T0. If s = 0
then w ∈ T0, and rm(w) = margin2(w) by Theorem 4.16. Note that appending an adversarial index
to the end of a string w′ increases the reserve of every tine in a closed fork F ` w′ by exactly one.
Thus margin2(w′1s) = margin2(w′) + s. On the other hand, from the recursive description of rm
above it is easy to check that rm(w′1s) ≥ rm(w′) + s. (Note that tail(w′1) ≥ 1 ≥ rm(w′) + 1 = 0
in the case when rule (†) applies.) Thus rm(w) ≥ margin2(w)) for all w ∈ {0, 1}∗.

Recall that a string is forkable if and only if margin(w) ≥ 0. To continue our discussion of
2-tine forks, we say that a string is 2-forkable if margin2(w) ≥ 0. We wish to prove a two-tine
analogue of Theorem 4.11:

Pr[w is 2-forkable] = Pr[margin2(w) ≥ 0] = 2−Ω(
√
n) ,

where w ∈ {0, 1}n is chosen by independently selecting each wi ∈ {0, 1} so that

Pr[wi = 0] = 1 + ε

2 = 1− Pr[wi = 1] .

Specifically, consider the random variables Xt = rm(w1 . . . wt). Our goal is to analyze

Pr[margin2(w) ≥ 0] ≤ Pr[Xn ≥ 0]
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and the proof focuses on the last of these quantities. Note that if it were not for the exotic behavior
around zero (that is, the case that rm(w) + 1 = 0), the random variables Xt would simply describe
a biased random walk. In particular, they would arise from the familiar Markov chain of Figure 5.
where p = (1 + ε)/2 and q = 1− p.

0−1· · · 1 · · ·
p

qq

p p

q

p

q

Figure 5: The simple biased walk.

With the exotic transition rm(w1) = tail(w1) (when rm(w) = −1), we note that this process
is no longer strictly Markovian, as this transition depends on the number of “recent” 1 symbols in
the sequence. We can reflect this with a richer Markov chain over the state space Z × Z, which
simultaneously maintains rm(m) and tail(m). This permits the chain to correctly handle the exotic
rule associated with rm() = −1; the chain is described in Figure 6.

k
`

k − 1
0

k + 1
`+ 1

1+ε
2

1−ε
2

(a) The dynamics at nodes with k 6= −1.

−1
`

. . . `+ 1
`+ 1

−2
0

1−ε
2

1+ε
2

(b) The dynamics at k = −1.

Figure 6: Diagram of the lifted Markov chain. The first coordinate, k, maintains the current
rm(); the second coordinate, `, maintains the current tail(). Transitions with probability (1 + ε)/2
correspond to addition of a 0 to the string; those with probability (1− ε)/2 correspond to addition
of a 1.

The basic event we wish to analyze is the event that after n steps on this Markov chain, the
resulting margin is negative, that is

Pr[Xn ≥ 0]

for the random variables Xt defined above. Write w = w(1) · · ·w(
√
n) where b

√
nc ≤ |w(i)| ≤ d

√
ne

for each i. Fix δ < ε to be a small constant. Let L(i) denote the event that there is a contiguous
sequence of “1” symbols of length exceeding δ

√
n in the string w(i). Then Pr[L(i)] ≤

√
n2−δ

√
n =

2−Ω(
√
n). We remark that these events are independent for distinct values of i, as they involve

non-overlapping sets of symbols of w.
Let mt = rm(w(1) · · ·w(t−1)). We define three events based on this margin:

Hot We let Hott denote the event that mt ≥ 2δ
√
n or L(t−1) occurred.

Volatile We let Volt denote the event that −2δ
√
n ≤ mt < 2δ

√
n and L(t−1) did not occur.

Cold We let Coldt denote the event that mt < −2δ
√
n.
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(We assume, by convention, that L(−1) does not occur.) Note that for each t, exactly one of these
events occurs—they partition the probability space. Then we will establish that

Pr[Coldt+1 | Coldt] ≥ 1− 2−Ω(
√
n) , (1)

Pr[Coldt+1 | Volt] ≥ Ω(ε) , (2)

Pr[Hott+1 | Volt] ≤ 2−Ω(
√
n) . (3)

Cold

Vol

Hot≈ 1

θ(1)

θ(1) ≈ 0

Figure 7: An illustration of the transitions between Cold, Vol, and Hot.

Note that the event Vol1 occurs by definition. We wish to show that the system is very likely
to eventually become cold, and stay that way. Note that the probability that the system ever
transitions from volatile to hot is no more than 2−Ω(

√
n) (as transition from Vol to Hot is bounded

above by 2−Ω(
√
n), and there are no more than

√
n possible transition opportunities). Note, also,

that while the system is volatile, it transitions to cold with constant probability during each period.
In particular, the probability that the system is volatile for the entire process is no more that
2−Ω(

√
n). Finally, note that the probability that the system ever transitions out of the cold state

is no more than 2−Ω(
√
n) (again, there are at most

√
n possible times when this could happen, and

any individual transition occurs with probability 2−Ω(
√
n)). It follows that the system is cold at the

end of the process with probability 1− 2−Ω(
√
n).

In preparation for establishing the three inequalities (6), (7), and (8), we note two facts about
the simple biased walk (of Figure 5) with p = (1 + ε)/2 and ε > 0.

Constant escape probability. As ε > 0, the probability that an infinite walk beginning at state
0 ever visits the state 0 again is a constant less than 1 (depending only on ε). (See, e.g., [13,
Chapter 12].)

Concentration. Consider s steps of the Markov chain beginning at state 0; then the resulting value
is tightly concentrated around −εs. Specifically, let Z1, . . . , ZS be i.i.d. {±1}-valued random
variables with Pr[Zs = 1] = (1 − ε)/2, in which case the expected value E[

∑S
s=1 Zs] = −εS.

Then
Pr
[∑
s

Zs > −
εS

2

]
= 2−Ω(S) . (4)

(The constant hidden in the Ω() notation depends only on ε. See, e.g., [1, Cor. A.1.14].)
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Inequality (6) follows directly from the concentration statement above: Note that unless the
Markov chain visits a state for which k = −1, it behaves like the simple unbiased walk. Let D(i)

denote the event that there is a contiguous sequence of symbols x in w(i) for which #1(x)−#0(x) ≥
δ
√
n. By the same Chernoff bound of (4) above, Pr[D(i)] ≤ 2−Ω(

√
n). (Observe that such an event

can only happen if the sequence of symbols has length at least δ
√
n, in which case the Chernoff

bound can be applied.) As the chain starts with mt < 2δ
√
n, unless Dt occurs, the Markov chain

cannot possibly visit the state −1. It follows, again from (4), that the probability that mt+1 ≥ 2δ
√
n

is 2−Ω(
√
n). (In fact, the Chernoff bound shows that with high probability, the value of mt+1 has

significantly decreased.) Finally, the probability of Lt is 2−Ω(
√
n). Thus the probability of Coldt+1

is 2−Ω(
√
n), as desired.

As for inequality (7), note that if the system starts with mt ≤ −1 then with constant probability
it will never visit k = −1 during (the rest of) m(t) and, conditioned on that, will end with a margin
< −2δ

√
n with probability 1 − 2−Ω(

√
n) (by (4)). If, on the other hand, the system starts with

mt > −1 (but less than 2δ
√
n), again by a Chernoff bound it will visit the node (k = −1, ` = 0)

with probability 1 − 2−Ω(
√
n) during the first half of the string w(t). As in the other case, the

probability that it never returns to margin −1 and ends up below −2δ
√
n is a constant. The result

follows.
Finally, consider inequality (8). Note that, first of all, by the union bound, L(t) occurs with

probability no more than
√
n2−Ω(

√
n) = 2−Ω(

√
n). The other way for the event Hott+1 to occur is

that the margin, initially smaller than 2δ
√
n, “escapes” to a value exceeding this. We separate this

analysis into two cases: if the initial margin is positive (or zero), note with probability at least
1 − 2−Ω(

√
n), the margin will return to 0 during w(t) by (4). After this, note that assuming that

neither L(t) or D(t) occur, the maximum possible margin that can appear in the remainder of w(t)

is 2δ
√
n, as desired. (The factor of 2 arises due to the possibility that a transition through zero

induces a tail() of size δ
√
n.) On the other hand, if the initial margin is negative, as L(t−1) did not

occur, the same argument concludes that the maximum final margin is no more than 2δ
√
n.

Experiments In order to gain further insight regarding the density of forkable strings we ex-
plicitly computed the number of 2-forkable strings of various sizes and densities. The experiments
were run on a cluster of 4 servers equipped with Hexa-core Intel Xeon E5-2420 at 1.90GHz, 16GB
RAM, and one 1TB SATA disk, running CentOS 7 Linux.

Our results are presented in Figure 8. As one can observe, as n grows the ratio of 2-forkable
strings decays (for ε > 0).

4.3 Common Prefix

Recall that the chains constructed by honest players during an execution of πSPoS correspond to
tines of a fork, as defined and studied in the previous sections. The random assignment of slots to
stakeholders given by FD,FLS guarantees that the coordinates of the associated characteristic string w
follow the binomial distribution with probability equal to the adversarial stake. Thus Theorem 4.11
establishes that no execution of the protocol πSPoS can induce two tines (chains) of maximal length
with no common prefix.

In the context of πSPoS, however, we wish to establish a much stronger common prefix property:
The chains reported by any two honest players must have a “recent” common prefix, in the sense
that removing a small number of blocks from the shorter chain results in a prefix of the longer
chain.

To formally articulate and prove this property, we introduce some further definitions regarding
tines and forks. We say that a tine is honest if it ends with an honest vertex. We also borrow the
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Figure 8: Graph of the density of 2-forkable strings as a function of the density of adversarial slots
for n = 40, 60, 80, 100.

“truncation operator,” described earlier in the paper for chains: for a tine t we let tdk denote the
tine obtained by removing the last k edges; if length(t) ≤ k, we define tdk to consist solely of the
root. Finally, let F be a fork for a string w ∈ {0, 1}∗. For two honest tines t1 and t2 of F , define
their divergence to be the quantity

div(t1, t2) = min
i

(length(ti)− length(t1 ∩ t2)) ,

where t1 ∩ t2 denotes the common prefix of t1 and t2. (Observe that if div(t1, t2) ≤ k and, say
length(t1) ≤ length(t2), the tine tdk1 is a suffix of t2.) Then define the divergence of w to be the
maximum such divergence over all pairs of honest tines over all possible forks for w:

div(w) = max
F`w

max
t1,t2

honest
tines of F

div(t1, t2) .

We first establish that a string with large divergence must have a large forkable substring. We
then apply this in Theorem 4.19 below to conclude that characteristic strings arising from πSPoS
are unlikely to have large divergence and, hence, possess the common prefix property.

Theorem 4.18. Let w ∈ {0, 1}∗ with div(w) ≥ k. Then there is a forkable substring w̌ of w with
|w̌| ≥ k.

Proof. Consider a fork F ` w and a pair of honest tines (t1, t2) so that div(t1, t2) = div(w); we
assume the tines are identified so that length(t1) < length(t2). Let zi denote the last vertex on the
tine ti and let y denote the last vertex on the tine t1 ∩ t2 as in the diagram below.

y

z1

z2

t1

t2
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Without loss of generality we may assume that `(z2), the honest index labeling t2, is in fact the
first honest index in w appearing after `(z1). To justify this, let β denote the first honest index of
w after `(z1) and let x denote the unique vertex of F for which `(x) = β. Note that d(x) > d(z1).
If the tine t ending at x shares an edge with t1 after y, then t is disjoint from t2 after y and it
follows that div(t, t2) > div(t1, t2), a contradiction. Thus t shares no edges with t1 after y, and
length(t) > length(t1); it follows that div(t1, t) = div(t1, t2) and we may assume t2 = t in the
remainder of the argument.

Let α = `(y) denote the label of y and, as indicated above, let β = `(z2). We wish to show
that the string w̌ = wα+1 . . . wβ−1 is forkable. Our strategy will be to construct a flat fork for w̌
by showing that—after applying some minor restructuring to F—treating the vertex y as the root
for the portion of F labeled with indices of w̌ yields a flat fork.

Observe, that y cannot be adversarial: otherwise it is easy to construct a fork F̃ ` w and a
pair of tines that achieve larger divergence. Specifically, construct F̃ from F by adding a new
(adversarial) vertex ỹ to F for which `(ỹ) = `(y), adding an edge to ỹ from the vertex preceding
y, and replacing the edge of t1 following y with one from ỹ; then the other relevant properties of
the fork are maintained, but the divergence of the resulting tines has increased by one. (See the
diagram below.)

y

ỹ

t1

t2

A similar argument implies that the fork F0 ` w1 . . . wα, obtained by including only the vertices
with labels less than or equal to α = `(y), does not contain two distinct vertices of depth d(y).
In the presence of another vertex ỹ (of F0) with depth d(y), “redirecting” t1 through ỹ (as in the
argument above) would result in a fork with larger divergence.

Finally, we observe that the fork F may be “pinched” so that any tine terminating at an honest
vertex associated with an index in w̌ passes through the vertex y. In particular, consider a tine
t ending at such an honest vertex v (with α < `(v) < β). Consider the vertex x on this tine for
which d(x) = d(y). If x = y, this tine already has the property we wish to ensure; otherwise x 6= y
and it follows that x is adversarial (as it has the same depth as y, which is honest). Consider now
`(x): note that it is not possible for `(x) < `(y), because then x would be the end of a tine in F0
with depth equal to that of y, which was ruled out above. It follows that `(x) > `(y), in which case
the edge in this tine terminating at x can safely be redirected to originate from y; note that this
surgery does not change the depth of any vertices on the tine and maintains the increasing label
condition. By applying this surgery (perhaps to multiple tines) we arrive at a fork F ∗ for w so that
the induced subgraph of F ∗ including the vertex y and all vertices labeled with w̌ is a rooted tree.
Subtracting `(y) from the labels in F ∗ indeed yields a fork F̌ for the string w̌. Note that the tine
t1 in this fork contains the deepest honest vertex (as the next honest index of w appears beyond
the end of the string w̌). By trimming all tines longer than t1 so they have length exactly that of
t1, we obtain a flat fork for w̌, as desired.

Note, finally, that |w̌| is at least the length of any particular tine in F ∗; thus |w̌| ≥ length(t1)−
div(w) ≥ k.

Theorem 4.19. Let k,R ∈ N and ε ∈ (0, 1). The probability that the πSPoS protocol, when executed
with a (1− ε)/2 fraction of adversarial stake, violates the common prefix property with parameters
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k,R throughout a period of R is no more than exp(−Ω(
√
k) + lnR); the constant hidden by the Ω()

notation depends only on ε.

Proof. The characteristic string w ∈ {0, 1}R for such an execution of πSPoS is determined by
assigning each wi = 1 independently with probability (1− ε)/2.

Observe that an execution of πSPoS violates the common prefix property with parameters k,R
precisely when the fork F induced by this execution has div(F ) ≥ k. Thus we wish to show that
the probability that div(w) ≥ k is no more than exp(−

√
k+ logR). Let Bad denote the event that

div(w) ≥ k.
It follows from Theorem 4.18 that if div(w) ≥ k, there is a forkable substring w̌ of length at

least k. Thus

Pr[Bad] ≤ Pr [∃α, β ∈ {1, R} so that α+ k − 1 ≤ β and wα . . . wβ is forkable]
=

∑
1≤α≤R

∑
α+k−1≤β≤R−1

Pr[wα . . . wβ is forkable]

︸ ︷︷ ︸
(∗)

.

According to Theorem 4.11 the probability that a string of length t drawn from this distribution is
forkable is no more than exp(−c

√
t) for a positive constant c. Note that for any α ≥ 1,

R∑
t=α+k−1

e−c
√
t ≤

∞∑
t=k

e−c
√
t ≤

∫ ∞
k−1

e−c
√
t = (2/c2)(1 + c

√
k − 1)e−c

√
k−1 = e−Ω(

√
k)

and it follows that the sum (∗) above is exp(−Ω(
√
t)). Thus

Pr[Bad] ≤ R · exp(−Ω(
√
k)) ≤ exp(lnR− Ω(

√
k)) ,

as desired.

4.4 Chain Growth and Chain Quality

We will start with the chain growth property.

Theorem 4.20. The πSPoS protocol satisfies the chain growth property with parameters τ = 1 −
α, s ∈ N throughout an epoch of R slots with probability at least 1 − exp(−ε2s + lnR) against an
adversary holding an α− ε portion of the total stake.

Proof. Define Hama(α) to be the event that the Hamming weight ratio of the characteristic string
that corresponds to the slots [a, a + s − 1] is up to α. Given that the adversarial stake is α − ε,
each of the k slots has probability α − ε being assigned to the adversary and thus the probability
that the Hamming weight is more than αs drops exponentially in s. Specifically, using the additive
version of the Chernoff bound, we have that Pr[¬Hama(α)] ≤ exp(−2ε2s). It follows that,

Pr[Hamα] ≥ 1− exp(−2ε2s).

Given the above we know that when Hamα happens there will be at least (1− α)s honest slots in
the period of s rounds. Given that each honest slot enables an honest party to produce a block,
all honest parties will advance by at least that many blocks. Using a union bound, it follows
that the speed coefficient can be set to τ = (1 − α) and it is satisfied with probability at least
1− exp(−2ε2s+ ln(R)).
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Having established the chain growth property we now turn our attention to the chain quality
property. Recall that the chain-quality property parameterized with k and it states that every k
blocks in a chain observed at a certain slot the blocks corresponding to a set of stakeholders that
hold cumulative stake ratio β are τβ. In the next theorem we establish bounds for the parameter
τ .

Theorem 4.21. The πSPoS protocol satisfies the chain quality property with parameters µ =
α/(1− α), k ∈ N throughout an epoch of R slots with probability at least

1− exp
(
−ε2(1− α)−1k + lnR

)
where α− ε is the ratio of the cumulative stake of the set of malicious stakeholders.

Proof. First, using a similar argumentation as in the chain growth Theorem 4.20, we know that in
a segment of s rounds the honest parties would advance by at least (1− α)s blocks. Furthermore
the adversary can produce at most αs blocks in the same period. It follows that in the chain of
any honest party one would find at most α/(1− α) ratio of blocks originating from the adversary
with probability 1 − exp(−ε2s + lnR) among the blocks produced in the period that corresponds
to that segment. It suffices to choose s ≥ (1 − α)−1k. In this case we know that there will be at
least k blocks produced in any segment of s rounds.

5 Our Protocol: Dynamic Stake

5.1 Using a Trusted Beacon

In the static version of the protocol in the previous section, we assumed that stake was static during
the whole execution (i.e., one epoch), meaning that stake changing hands inside a given epoch does
not affect leader election. Now we put forth a modification of protocol πSPoS that can be executed
over multiple epochs in such a way that each epoch’s leader election process is parameterized by
the stake distribution at a certain designated point of the previous epoch, allowing for change in
the stake distribution across epochs to affect the leader election process. As before, we construct
the protocol in a hybrid model, enhancing the FD,FLS ideal functionality to now provide randomness
and auxiliary information for the leader election process throughout the epochs (the enhanced
functionality will be called FD,FDLS). We then discuss how to implement FD,FDLS using only FD,FLS and
in this way reduce the assumption back to the simple common random string selected at setup.

Before describing the protocol for the case of dynamic stake, we need to explain the modifi-
cation of FD,FLS so that multiple epochs are considered. The resulting functionality, FD,FDLS, allows
stakeholders to query it for the leader selection data specific to each epoch. FD,FDLS is parameterized
by the initial stake of each stakeholder before the first epoch e1 starts; in subsequent epochs, parties
will take into consideration the stake distribution after the previous epoch’s first R−k slots, where
k is the number of slots needed to achieve common prefix as supplied by the parties. Notice that
it is necessary to consider the stake distribution of previous epochs only in the slots where it is
guaranteed that common prefix is achieved. In any case, the functionality FD,FDLS provides only a
random string and leaves the interpretation according to the stakeholder distribution to the party
that is calling it. The functionality FD,FDLS is defined in Figure 9.

We now describe protocol πDPoS, which is a modified version of πSPoS that updates its genesis
block B0 (and thus the leader selection process) for every new epoch. The protocol also adopts
an adaptation of the static maxvalidS function, defined so that it narrows selection to those chains
which share common prefix. Specifically, it adopts the following rule, parameterized by a prefix
length k:
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Functionality FD,F
DLS

FD,F
DLS is parameterized by the public keys and respective stakes of the stakeholders S0 =
{(vk1, s

0
1), . . . , (vkn, s

0
n)} before epoch e1 starts, a distribution D and a leader selection function F.

FD,F
DLS interacts with stakeholders U1, . . . , Un as follows:
• Upon receiving (genblock req, Ui) from stakeholder Ui it operates as functionality FD,F

LS on that
message.

• Upon receiving (genblock req, Ui, ej ,Sj) from stakeholder Ui, if j ≥ 2 is the current epoch, FD,F
DLS

proceeds as follows. If Bj
0 = ∅, FD,F

DLS samples ρj ← D and sets Bj
0 = 〈Sj , ρ

j〉. Finally, FD,F
DLS sends

(genblock, Bj
0,F) to Ui.

Figure 9: Functionality FD,FDLS.

Function maxvalid(C,C). Returns the longest chain from C ∪ {C} that does not fork
from C more than k blocks. If multiple exist it returns C, if this is one of them, or it
returns the one that is listed first in C.

Protocol πDPoS is described in Figure 10 and functions in the FD,FDLS-hybrid model.

Protocol πDPoS

πDPoS is a protocol run by a set of stakeholders, initially equal to U1, . . . , Un, interacting among them-
selves and with FD,F

LS over a sequence of L slots S = {sl1, . . . , slL}. πDPoS proceeds as follows:
1. Initialization When πSPoS starts, each stakeholder Ui ∈ {U1, . . . , Un} sends (genblock req, Ui) to
FD,F

LS , receiving (genblock, B0,F) as answer. Ui sets an internal blockchain C = B0 and a initial
internal state st = H(B0).

2. Chain Extension For every slot sl ∈ S, every online stakeholder Ui performs the following steps:
(a) If a new epoch ej , with j ≥ 2, has started, Ui defines Sj to be the stakeholder distribution

R−k blocks into the epoch ej−1 as reflected in C and sends (genblock req, Ui, ej ,Sj) to FD,F
LS ,

receiving (genblock, Bj
0,F) as answer. Ui includes Bj

0 in the auxiliary data to be included in
the next block to be produced, aux = Bj

0, and parameterizes the leader selection function F
with ρj from Bj

0 = 〈Sj , ρ
j〉.

(b) Collect all valid chains received via broadcast into a set C, verifying that for every chain
C′ ∈ C and every block B′ = (st′, d′, sl′, σ′) ∈ C′ it holds that Vrfvk′(σ′, (st′, d′, sl′)) = 1,
where vk′ is the verification key of the stakeholder U ′ ← F(ρj′

, sl′) with F parameterized by
ej′ be the epoch in which the slot to which B′ belongs to (as determined by sl′). Ui calls the
function maxvalid(C,C) to select a new internal chain C ∈ C and sets state st = H(head(C)).

(c) If Ui is the slot leader determined by F(ρj , sl) in the current epoch ej , it generates a new
block B = (st, d, sl, σ) where st is its current state, d ∈ {0, 1}∗ is data including aux and
σ = Signski

(st, d, sl) is a signature on (st, d, sl). Ui extends C by appending B, obtains
C = C||B and broadcasts the new C.

Figure 10: Protocol πDPoS

5.2 Simulating a Trusted Beacon

While protocol πDPoS handles multiple epochs and takes into consideration changes in the stake
distribution, it still relies on FD,FDLS to perform the leader selection process. In this section, we
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show how to implement FD,FDLS through Protocol πDLS, which allows the stakeholders to compute
the randomness and auxiliary information necessary in the leader election.

Recall, that the only essential difference between FD,FLS and FD,FDLS is the continuous generation
of random strings ρ2, ρ3, . . . for epochs e2, e3, . . .. The idea is simple, protocol πDLS will use a coin
tossing protocol to generate unbiased randomness that can be used to define the values ρj , j ≥ 2
bootstrapping on the initial random string and initial honest stakeholder distribution. However,
notice that the adversary could cause a simple coin tossing protocol to fail by aborting. Thus, we
build a coin tossing scheme with “guaranteed output delivery.”

Commitments and Coin Tossing. A coin tossing protocol allows two or more parties to obtain
a uniformly random string. A classic approach to construct such a protocol is by using commitment
schemes. In a commitment scheme, a committer carries out a commitment phase, which sends
evidence of a given value to a receiver without revealing it; later on, in an opening phase, the
committer can send that value to the receiver and convince it that the value is identical to the
value committed to in the commitment phase. Such a scheme is called binding if it is hard for
the committer to convince the receiver that he was committed to any value other than the one for
which he sent evidence in the commitment phase, and it is called hiding if it is hard for the receiver
to learn anything about the value before the opening phase. We denote the commitment phase
with randomness r and message m by Com(r,m) and the opening as Open(r,m).

In a standard two-party coin tossing protocol [5], one party starts by sampling a uniformly
random string u1 and sending Com(r, u1). Next, the other party sends another uniformly random
string u2 in the clear. Finally, the first party opens u1 by sending Open(r, u1) and both parties
compute output u = u1 ⊕ u2. Note, however, that in this classical protocol the committer may
selectively choose to “abort” the protocol (by not opening the commitment) once he observes the
value u2. While this is an intrinsic problem of the two-party setting, we can avoid this problem
in the multi-party setting by relying on a verifiable secret sharing scheme and an honest majority
amongst the protocol participants.

Verifiable Secret Sharing (VSS). A secret sharing scheme allows a dealer PD to split a secret
σ into n shares distributed to parties P1, . . . , Pn, such that no adversary corrupting up to t parties
can recover σ. In a Verifiable Secret Sharing (VSS) scheme [10], there is the additional guarantee
that the honest parties can recover σ even if the adversary corrupts the shares held by the parties
that it controls and even if the dealer itself is malicious. We define a VSS scheme as a pair of efficient
dealing and reconstruction algorithms (Deal,Rec). The dealing algorithm Deal(n, σ) takes as input
the number of shares to be generated n along with the secret σ and outputs shares σ1, . . . , σn. The
reconstruction algorithm Rec takes as input shares σ1, . . . , σn and outputs the secret σ as long as
no more than t shares are corrupted (unavailable shares are set to ⊥ and considered corrupted).
Schoenmakers [24] developed a simple VSS scheme based on discrete logarithms suitable for our
purposes.

Constructing Protocol πDLS. The main problem to be solved when realizing FD,FDLS with a
protocol run by the stakeholders is that of generating uniform randomness for the leader selection
process while tolerating adversaries that may try to interfere by aborting or feeding incorrect
information to parties. In order to generate uniform randomness ρj for epoch ej , j ≥ 2, the
elected stakeholders for epoch ej−1 will employ a coin tossing scheme for which all honest parties
are guaranteed to receive output as long as there is an honest majority. The protocol has two
stages, commit and reveal which are split into phases. The stages of the protocol are presented in
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Figure 11: The two stages of the protocol πDPoS that use the blockchain as a broadcast channel.

Figure 11. In the Commitment Phase covers the whole commitment stage, and proceeds as follows:
for 1 ≤ i ≤ n, stakeholder Ui samples a uniformly random string ui ∈ {0, 1}R log τ and randomness
ri for the underlying commitment scheme, generates shares σi1, . . . , σin, and posts Com(ri, ui) to
the blockchain together with the encryptions of the all the shares under the public-key of each
respective shareholder. After 4k slots, players remove the k most recent blocks of their chain, and
if commitments from a majority of stakeholders are posted on the blockchain and shares from a
majority of stakeholders have been received, the reveal stage starts (in the other case the protocol
halts). In the reveal stage there are two phase: the Reveal Phase and the Recovery Phase. In the
reveal phase, for 1 ≤ i ≤ n, stakeholder Ui posts Open(ri, ui) to the blockchain. After 4k slots
players remove the most recent k blocks and identify all stakeholders that have issued openings
of the form Open(ri, ui). In the final Recovery Phase, lasting 2k slots, if a stakeholder Ua that
initially submitted a commitment is identified as not posting an opening to its commitment, the
honest parties can post all shares σa1 , . . . , σan in order to use Rec(σa1 , . . . , σan) to reconstruct ua.
Finally, each stakeholder uses the values ui obtained in the second round to compute ρj =

∑
i ui.

Protocol πDLS is described in figure Figure 12. We remark that it is possible to run the reveal and
recovery phases in parallel, however for improved efficiency we choose to run them sequentially.

Protocol πDLS

πDLS is a protocol run by stakeholders U1, . . . , Un interacting among themselves over a sequence of L
slots S = {sl1, . . . , slL} and proceeds as follows for every epoch ej that lasts R = 10k slots:

1. Commitment Phase (4k slots) When epoch ej starts, for 1 ≤ i ≤ n, stakeholder Ui samples a
uniformly random string ui and randomness ri for the underlying commitment scheme, generates
shares σi

1, . . . , σ
i
n ← Deal(n, ui) and encrypts each share σi

k under stakeholder Uk’s public-key.
Finally, Ui posts the encrypted shares and commitments Com(ri, ui) to the blockchain.

2. Reveal Phase (4k slots) After slot 4k, for 1 ≤ i ≤ n, stakeholder Ui opens its commitment by
posting Open(ri, ui) to the blockchain, provided that the chain Cdk contains commitments from
the majority of Ui.

3. Recovery Phase (2k slots) After slot 8k, for any stakeholder Ua that has not participated
in the reveal phase, i.e., it has not posted in Cdk an Open(ra, ua) message, for 1 ≤ i ≤ n, Ui

submits its share σa
i for insertion to the blockchain. When all shares σa

1 , . . . , σ
a
n are available,

each stakeholder Ui can compute Rec(σa
1 , . . . , σ

a
n) to reconstruct ua (independently of whether Ua

opens the commitment or not).
• Given input (genblock req, Ui, ej ,Sj), Ui uses the values above to compute ρj =

∑
l∈L ul

where L is the subset of stakeholders that participated in epoch ej . It returns
(genblock, B0,Sj) with B0 = (Sj , ρ

j).

Figure 12: Protocol πDLS.
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Security Proof Sketch. (Reducing FD,FDLS to FD,FLS via protocol πDLS). As before, we consider
an adversary who holds a strict minority portion of the total stake. We set the epoch to be
R = 10k and observe that in the first 4k slots, i.e., the Commitment Phase, the Chain Growth
property proven in Theorem 4.20 guarantees that at least 2k blocks will be added to the chain of all
honest parties, the common prefix property, proven in Theorem 4.19, ensures that the remaining
blockchain after chopping off k blocks will have at least k blocks and the chain quality property
proven in Theorem 4.21 guarantees that a constant fraction of these blocks were generated by
honest stakeholders with overwhelming probability. Thus, we know that at least one honest block
containing all the honest parties’ commitments was generated and included in the joint view of
all honest parties. By a similar argument, by the end of the Reveal Phase, we are guaranteed
to have all openings included in the blockchain and agreed upon by the honest stakeholders. In
case a stakeholder does not post a valid opening to its commitment, yet by the same argument
(but without needing common prefix), we have a guarantee that by the end of the Recovery at
least n/2 + 1 shares will be posted (due to the honest majority) and agreed upon by the honest
stakeholders, allowing them to recover the original input to the unopened commitments. Notice
that if a majority of the stakeholders are honest, they either obtain enough values ul to compute a
uniformly random string ρj by the end of the reveal phase or manage to recover such value if the
respective stakeholders do not open their commitments.

5.3 Robust Transaction Ledger

Recall that in the dynamic stake case, we would have to conceive a way to prevent deep forks. To
see this, consider a player who is offline and joins the system after a number of epochs have passed.
Even if in the system execution the current set of stakeholders satisfies honest majority, it could
be the case that honest majority is violated in one of the previous epochs by this time and hence
the adversary may produce an alternative history consistent with the view of an honest party. In
order to capture the interaction between security and the modification of stake we introduce the
following property.

Definition 5.1. Consider two slots sl1, sl2, an honest player U and an execution E. The stake
shift w.r.t. U between sl1, sl2 is the statistical distance of the two weighted by stake distributions
that are defined using the stake reflected in the chain C of U in the most recent blocks before sl1
and sl2 respectively as reflected in the execution E.

Taking into account the definition above we can now express the following theorem about the
common prefix property.

Theorem 5.2. Fix parameters k,R, L ∈ N, ε, σ ∈ (0, 1). Let R be the epoch length and L the total
lifetime of the system. Assume the adversary is restricted to 1−ε

2 − σ relative stake and that the
πSPOS protocol satisfies the common prefix property with parameters R, k and probability of error
εCP, the chain quality property with parameters µ ≥ 1/k, k and probability of error εCQ and the
chain growth property with parameters τ ≥ 1/2, k and probability of error εCG.

Then, the πDPOS protocol satisfies the persistence with parameters k and liveness with parameters
u = 2k throughout a period of L slots with probability 1−R(εCQ +εCG +εCG), assuming that σ is the
maximum stake shift over 6k slots, corruption delay D ≥ 2R − 4k and no honest player is offline
for more than k slots.

Proof. (sketch) Observe that with probability of error εCQ + εCG + εCG the πSPOS protocol executed
in the first epoch, given the assumptions imposed to the environment, will enable the parties to use
the blockchain as a broadcast channel to simulate the trusted beacon and produce the randomness
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required to seed the leader election in the next epoch (this combines Theorems 4.19, 4.21, 4.20 and
the results of the previous section). The corruption delay of D ≥ 2R − 4k will ensure that the
adversary does not receive an adaptive corruption advantage for learning the next beacon value
ahead of time. It follows that with probability 1− (L/R)(εCQ + εCG + εCG) all epochs in the lifetime
of the system will be seeded correctly and the πSPOS protocol can be bootstrapped and will continue
to operate properly in each next epoch.

5.4 Input Endorsers

We next present an extension of our basic protocol that assigns two different roles to stakeholders
and introduces our incentive structure. As before in each epoch there is a set of elected stakeholders
that runs the secure multiparty coin flipping protocol and are the slot leaders of the epoch. Together
with those there is a (not necessarily disjoint) set of stakeholders called the endorsers. Now each
slot has two types of stakeholders associated with it; the slot leader who will issue the block as
before and the slot endorser who will endorse the input to be included in the block. Moreover,
contrary to slot leaders, we can elect multiple slot endorsers, say m, for each slot. While this
seems like an insignificant modification it gives us a room for improvement because of the following
reason: endorsers’ contributions will be acceptable even if they are d slots late, where d ∈ N is a
parameter.

Note that in case no valid endorser input is available when the slot leader is about to issue the
block, the leader will go ahead and issue an empty block, i.e., a block without any actual inputs
(e.g., transactions in the case of a transaction ledger). Note that slot endorsers just like slot leaders
are selected by weighing by stake and thus they are a representative sample of the stakeholder
population. In the case of a transaction ledger the same transaction might be included by many
input endorsers simultaneously. In case that a transaction is multiply present in the blockchain its
first occurrence only will be its “canonical” position in the legder.

The enhanced protocol, πDPOSwE, can be easily seen to have the same persistence and liveness
behaviour as πDPOS: the modification with endorsers does not provide any possibility for the
adversary to prevent the chain from growing, accepting inputs, or being consistent. However, if
we measure chain quality in terms of number of endorsed inputs included this produces a more
favorable result: it is easy to see that the number of endorsed inputs originating from a set of
stakeholders S in any k-long portion of the chain is proportional to the relative stake of S with
high probability. This stems from the fact that it is sufficient that a single honest block is created
for all the endorsed inputs of the last d slots to be included in it. Assuming d ≥ 2k, any set of
stakeholders S will be an endorser in a subset of the d slots with probability proportional to its
cumulative stake, and thus the result follows.

6 Incentive Structure

While the fundamental blockchain analysis we perform is in the cryptographic setting of [12], we
include in this section a discussion regarding the incentive structure of our system. For these
purposes we adopt a standard game-theoretic framework, analogous to those successfully applied
for other blockchains (see [14] for a recent analysis of bitcoin).

As in bitcoin, shareholders that issue blocks are incentivized to participate in the protocol by
collecting transaction fees. Contrary to bitcoin, of course, one does not need to incentivize share-
holders to invest computational resources. Rather, availability is incentivized. Any shareholder, at
minimum, must be online in the following circumstances.
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• In the slot prior to a slot she is the elected shareholder so that she queries the network and
obtains the currently longest blockchain.

• In the slot during which she is the elected shareholder so that she issues the block.

• In a slot during the commit stage of an epoch where she is supposed to issue the VSS
commitment of her random string.

• In a slot during the reveal stage of an epoch where she is supposed to issue the required
opening shares as well as the opening to her commitment.

• In general, in sufficient frequency, to check whether she is an elected shareholder for the next
or current epoch.

• In a slot during which she is the elected input endorser so that she issues the endorsed input
(e.g., the set of transactions).

In order to incentivize the above actions in the setting of a transaction ledger, fees can collected
from those that issue transactions to be included in the ledger which can then be transfered to the
block issuers. In bitcoin, for instance, fees can be collected by the miner that produces a block
of transactions as a reward. In our setting, similarly, a reward can be given to the parties that
are issuing blocks and endorsing inputs. The reward mechanism does not have to be immediate as
advocated in [21]. In our setting, it is possible to collect all fees of transactions included in a sequence
of k blocks in a pool and then distribute that pool to all shareholders that participated during these
k slots. For example, all input endorsers that were active may receive reward proportional to the
number of inputs they endorsed during the period of k rounds (independently of the actual number
of transactions they endorsed).

Other ways to distribute transaction fees are also feasible (including the one that is used by
bitcoin itself—even though the bitcoin method is known to be vulnerable to attacks, e.g., the
selfing-mining attack).

We proceed to make the reward mechanism more explicit in the case that the endorsed inputs
to the ledger are sequences of transactions. First we set the reward interval to match the epoch
duration, i.e., d = 6k. Let C be a chain consisting of blocks B0, B1, . . .. Consider the sequence of
blocks of the µ-th epoch denoted by B1, . . . , Bs with timestamps in {µd + 1, . . . , (µ + 1)d} that
contain an r ≥ 0 sequence of endorsed inputs. Suppose that the total reward pool R, as defined by
transaction fees, is equal to the sum of the transaction fees that are included in the endorsed inputs.
If a transaction occurs multiple times (as part of different endorsed inputs) or even in conflicting
versions, only the first occurrence of the transaction is taken into account (and is considered to
be part of the ledger) in the calculation of R, where the total order used is induced by the order
the endorsed inputs are included in C. In the sequence of these blocks, we identify by L1, . . . , Ld
the slot leaders corresponding to the slots of the epoch and by E1, . . . , Er the input endorsers that
contributed the sequence of r endorsed inputs. Subsequently, the i-th stakeholder Ui can claim3 a
reward up to the amount (|{j | Ui = Ej}|/(2r) + |{j | Ui = Lj}|/(2d))R.

Observe that the above reward mechanism has the following features: (i) it rewards elected
committee members for just being committee members, independently of whether they issued a
block or not, (ii) it rewards the input endorsers with the inputs that they have contributed. We
proceed to show that our system is a δ-Nash (approximate) equilibrium, cf. [18, Section 2.6.6].

3Claiming a reward is performed by issuing a “coinbase” type of transaction at any point after k blocks in a
subsequent epoch to the one that a reward is being claimed from.
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Specifically, the theorem states that any party deviating from the protocol can get at most (1 + δ)
of the rewards compared to the participants following the protocol.

Proposition 6.1. The honest strategy in the protocol is a δ-Nash equilibrium provided that all
players command a stake less than (1− ε)/2−σ for some constants ε, σ ∈ (0, 1) as in Theorem 5.2,
for δ > 0.

Proof. (sketch) Consider a rational player U restricted as in the statement of the theorem, that
engages in a protocol execution together with a number of other players that follow the protocol
faithfully for a total number of L epochs. We will show that any deviation from the protocol will
not result in substantially higher rewards for U . Observe that based on Theorem 5.2, no matter
the strategy of U , the protocol will enable all honest users to get at least (1 − δ) fraction of the
rewards they are entitled to as slot leaders and input endorsers with overwhelming probability in k.
The latter stems from persistence and liveness: at least a number of honest blocks will be included
in each epoch and as a result all input endorsers will have an opportunity to get their rewards.
Given the above, player U will be rewarded proportionally to how many times she is selected as
a slot leader (independent of her strategy), and moreover proportionally to how many inputs she
contributes as an endorser. It thus follows that any other strategy that U may follow will lead to
the same, or smaller amount of rewards.

7 Stake Delegation

As discussed in the previous section, stakeholders must be online in order to generate blocks when
they are selected as slot leaders. However, this might be unattractive to stakeholders with a small
stake in the system. Moreover, requiring that a majority of elected stakeholders participate in the
coin tossing protocol for refreshing randomness introduces a strain on the on the stakeholders and
the network, since it might require broadcasting and storing a large number of commitments and
shares.

We mitigate these issues by providing a method for reducing the size of the group of stakeholders
that engage in the coin tossing protocol. Instead of the elected stakeholders directly forming the
committee that will run coin tossing, a group of delegates will act on their behalf. In more detail, we
put forth a delegation scheme, whereby stakeholders will authorize other entities, called delegates,
who may be stakeholders themselves, to represent them in the coin tossing protocol. A delegate may
participate in the protocol only if it represents a certain number of stakeholders whose aggregate
stake exceeds a given threshold. Such a participation threshold ensures that a “fragmentation”
attack, that aims to increase the delegate population in order to hurt the performance of the
protocol, cannot incur a large penalty.

7.1 Minimum Committee Size

To appreciate the benefits of delegation, recall that in the basic protocol (πDPoS) a committee
member selected by weighing by stake is honest with probability 1/2 + ε (this being the fraction
of the stake held by honest players). Thus, the number of honest players selected by k invocations
of weighing by stake is a binomial distribution. We are interested in the probability of a malicious
majority, which can be directly controlled by a Chernoff bound. Specifically, if we let Y be the
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number of times that a malicious committee member is elected then

Pr[Y ≥ k/2] = Pr[Y ≥ (1 + δ)(1/2− ε)k]
≤ exp(−min{δ2, δ}(1/2− ε)k/4)
< exp(−δ2(1/2− ε)k/4)

for δ = 2ε/(1− 2ε). Assuming ε < 1/4, it follows that δ < 1.
Consider the case that ε = 0.05; then we have the bound exp(−0.00138 · k) which provides

an error of 1/1000 as long as k ≥ 5000. Similarly, in the case ε = 0.1, we have the bound
exp(−0.00625k) which provides the same error for k ≥ 1100.

We observe that in order to withstand a significant number of epochs, say 215 (which, if we
equate a period with one day, will be 88 years), and require error probability 2−40, we need that
k ≥ 32648.

In cases where the wealth in the system is not concentrated among a small set of stakeholders
the above choice is bound to create a very large committee. (Of course, the maximum size of the
committee is k.)

7.2 Delegation Scheme.

To facilitate a smaller committee size we introduce a simple delegation idea that can enable stake-
holders to delegate the committee participation rights to other entities that they trust. The concept
of delegation is simple: any stakeholder can allow a delegate to generate blocks on her behalf. In
the context of our protocol, where a slot leader signs the block it generates for a certain slot, such
a scheme can be implemented in a straightforward way based on proxy signatures [6].

A stakeholder can transfer the right to generate blocks by creating a proxy signing key that
allows the delegate to sign messages of the form (st, d, slj) (i.e., the format of messages signed in
Protocol πDPoS to authenticate a block). In order to limit the delegate’s block generation power
to a certain range of epochs/slots, the stakeholder can limit the proxy signing key’s valid message
space to strings ending with a slot number slj within a specific range of values. The delegate
can use a proxy signing key from a given stakeholder to simply run Protocol πDPoS on her behalf,
signing the blocks this stakeholder was elected to generate with the proxy signing key. This simple
scheme is secure due to the Verifiability and Prevention of Misuse properties of proxy signature
schemes, which ensure that any stakeholder can verify that a proxy signing key was actually issued
by a specific stakeholder to a specific delegate and that the delegate can only use these keys to sign
messages inside the key’s valid message space, respectively.

We remark that while proxy signatures can be described as a high level generic primitive, it
is easy to construct such schemes from standard digital signature schemes through delegation-by-
proxy as shown in [6]. In this construction, a stakeholder signs a certificate specifying the delegates
identity (e.g., its public key) and the valid message space. Later on, the delegate can sign messages
within the valid message space by providing signatures for these messages under its own public
key along with the signed certificate. As an added advantage, proxy signature schemes can also be
built from aggregate signatures in such a way that signatures generated under a proxy signing key
have essentially the same size as regular signatures [6].

An important consideration in the above setting is the fact that a stakeholder may want to
withdraw her support to a stakeholder prior to its proxy signing key expiration. Observe that
proxy signing keys can be uniquely identified and thus they may be revoked by keeping a certificate
revocation list within the blockchain.
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7.2.1 Eligibility threshold

Delegation as described above can ameliorate fragmentation that may occur in the stake distribu-
tion. Nevertheless, this does not prevent a malicious stakeholder from dividing its stake to multiple
accounts and, by refraining from delegation, induce a very large committee size. To address this,
as mentioned above, a threshold T , say 1%, may be applied. This means that any delegate repre-
senting less a fraction less than T of the total stake is automatically barred from being a committee
member. This can be facilitated by redistributing the voting rights of delegates representing less
than T to other delegates in a deterministic fashion (e.g., starting from those with the highest stake
and breaking ties according to lexicographic order).

7.2.2 Size of the committee of delegates

Suppose that a committee has been formed, C1, . . . , Cm, from a total of k draws of weighing by
stake. Each committee member will hold ki such votes where

∑m
i=1 ki = k. Based on the eligibility

threshold above it follows that m ≤ T−1 (the maximum possible value is the case when all stake is
distributed in T−1 delegates each holding T of the stake).

8 Attacks Discussion

We next discuss a number of practical attacks and indicate how they are reflected by our modeling
and mitigated.

Double spending attacks In a double spending attack, the adversary wishes to revert a trans-
action that is confirmed by the network. The objective of the attack is to issue a transaction, e.g.,
a payment from an adversarial account holder to a victim recipient, have the transaction confirmed
and then revert the transaction by, e.g., including in the ledger a second conflicting transaction.
Such an attack is not feasible under the conditions of Theorem 5.2. Indeed, persistence ensures
that once the transaction is confirmed by an honest player, all other honest players from that point
on will never disagree regarding this transaction. Thus it will be impossible to bring the system to
a state where the confirmed transaction is invalidated (assuming all preconditions of the theorem
hold).

Transaction denial attacks In a transaction denial attack, the adversary wishes to prevent a
certain transaction from becoming confirmed. For instance, the adversary may want to target a
specific account and prevent the account holder from issuing an outgoing transaction. Such an
attack is not feasible under the conditions of Theorem 5.2. Indeed, liveness ensures that, provided
the transaction is attempted to be inserted for a sufficient number of slots by the network, it will
be eventually confirmed.

Desynchronization attacks In a desynchronization attack, a shareholder behaves honestly but
is nevertheless incapable of synchronizing correctly with the rest of the network. This leads to
ill-timed issuing of blocks and being offline during periods when the shareholder is supposed to
participate. Such an attack can be mounted by preventing the party’s access to a time server or
any other mechanism that allows synchronization between parties. Moreover, a desynchronization
may also occur due to exceedingly long delays in message delivery. Our model allows parties to
become desynchronized by incorporating them into the adversary. No guarantees of liveness and
persistence are provided for desynchronized parties.
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Eclipse attacks In an eclipse attack, message delivery to a shareholder is violated due to a
subversion in the peer-to-peer message delivery mechanism. As in the case of desynchronization
attacks, our model allows parties to be eclipse attacked by incorporating them into the adversary.
No guarantees of liveness or persistence are provided for such parties.

51% attacks A 51% attack occurs whenever the adversary controls more than the majority of
the stake in the system. It is easy to see that any sequence of slots in such a case is with very high
probability forkable and thus once the system finds itself in such setting the honest stakeholders
may be placed in different forks for long periods of time. Both persistence and liveness can be
violated.

Nothing at stake and past majority attacks As stake moves our assumption is that only the
current majority of stakeholders is honest. This means that past account keys (which potentially do
not hold any stake at present) may be compromised. This leads to a potential vulnerability for any
PoS system since a set of malicious shareholders from the past can build an alternative blockchain
exploiting such old accounts and the fact that it is effortless to build such a blockchain. In light
of Theorem 5.2 such attack can only occur against shareholders who are not frequently online to
observe the evolution of the system or in case the stake shifts are higher than what is anticipated
by the preconditions of the theorem. This is a special instance of the “nothing at stake” problem
which refers in general to attacks against PoS blockchain systems that are facilitated by shareholders
continuing simultaneously multiple blockchains exploiting the fact that little computational effort
is needed to build a PoS blockchain. Provided that stakeholders are frequently online, nothing
at stake is taken care of by our analysis of forkable strings: even if the adversary brute-forces all
possible strategies to fork the evolving blockchain in the near future, there is none that is viable.
It is also worth noting that, contrary to PoW-based blockchains, in our protocol it is infeasible to
have a fork generated in earnest by two shareholders. This is because slots are uniquely assigned
and thus at any given moment there is a single uniquely identified shareholder that is elected to
advance the blockchain. Players following the longest chain rule will adopt the newly minted block
(unless the adversary presents at that moment an alternative blockchain using older blocks).

Selfish-mining In this type of attack, an attacker withholds blocks and releases them strategi-
cally attempting to drop honestly generated blocks from the main chain. In this way the attacker
reduces chain growth and increases the relative ratio of adversarially generated blocks. In conven-
tional reward schemes, as that of bitcoin, this has serious implications as it enables the attacker
to obtain a higher rate of rewards compared to the rewards it would be receiving in case it was
following the honest strategy. Using our reward mechanism however, selfish mining attacks are
neutralized. The intuition behind this, is that input endorsers, who are the entities that receive
rewards proportionally to their contributions, cannot be stifled because of block withholding: any
input endorser can have its contribution accepted for a sufficiently long period of time after its
endorsement took place, thus ensuring it will be incorporated into the blockchain (due to sufficient
chain quality and chain growth). Given that input endorsers’ contributions are (approximately)
proportional to their stake this ensures that reward distribution cannot be affected substantially
by block withholding.
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Figure 13: Graph of transaction rates for an Ouroboros prototype run over a wide area network
with flat and skewed stake distributions.

9 Experimental Results

We have implemented a prototype instantiation of Ouroboros in Haskell in order to evaluate its
concrete performance. More specifically, we have implemented Protocol πDPoS using Protocol πDLS
to generate leader selection parameters (basically generating fresh randomness for the weighed stake
sampling procedure). For this instantiation, we use the PVSS scheme of [24] implemented over the
elliptic curve secp256r1. This PVSS scheme’s share verification information includes a commitment
to the secret, which is also used as the commitment specified in protocol πDLS; this eliminates the
need for a separate commitment to be generated and stored in the blockchain. In order to obtain
better efficiency, the final output ρ of Protocol πDLS is a uniformly random binary string of 32
bytes. This string is then used as a seed for a PRG (ChaCha in our implementation) and stretched
into R random labels of log τ bits corresponding to each slot in an epoch. The weighing by stake
leader selection process is then implemented by using the random binary string associated to each
epoch to perform the sequence of coin-flips for selecting a stakeholder. The signature scheme used
for signing blocks is ECDSA, also implemented over curve secp256r1.

Experimental Setup. In our experiments we consider a total number of stakeholders that varies
from 1 (for the sake of a centralized baseline) to 100 communicating through a peer-to-peer network.
Although these numbers of stakeholders might seem low, notice that delegation can be used to
limit the size of the committee of stakeholders actively participating in the protocol while still
supporting a much larger number of stakeholders. We consider both situations where the stake is
equally distributed among all stakeholders and situations with skewed stake distributions where a
small number of stakeholders have most of the stake (resembling the distribution of computational
power across mining pools in Bitcoin). The prototype implementation for each stakeholder is run
on t2.large Amazon EC2 nodes equally spread among Asia, Europe, North America and South
America. The slot duration is set to 20 seconds and the epoch length is R = 6k slots, where k = 6.
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Experiments. In our experiments we measure the maximum Transaction Per Second (TPS)
rates that our protocol sustains in each situation described above. Apart from the nodes that
implement stakeholders running the protocol, our experiments employ an extra node that acts as
a Transaction Generator (henceforth referred to as TxGen). The stakeholders participating in the
experiment are registered in the genesis block and TxGen starts by generating a number of initial
transactions from each of the stakeholders distributing their initial stake in number of maxTPS
outputs to themselves, which form an output pool for each stakeholder. In the first phase, called
warm-up, TxGen uses the outputs of each transaction pool as inputs to generate a number of
currentTPS transactions from each stakeholder to itself in regular intervals. These transactions
(as well as future transactions in this experiments) are sent into the peer-to-peer network connecting
the stakeholders. Once a transaction is confirmed (meaning that it appears in a block of depth k
in the current blockchain), TxGen uses the output of this transaction as input to generate a new
transaction with an output to the same stakeholder that owns the input. After the warm-up phase,
the system is populated with a number of transactions that are both generated from the output
pool of each stakeholder and from the outputs of confirmed transactions. In the next phase, called
interim, the same transaction creation procedure continues but now TxGen increments a variable
counter (initially set to 0) for each transaction (from/to any stakeholder) that is confirmed in the
blockchain. In a final phase, called cool-down, no new transactions are generated at all but counter
continues to be incremented for each confirmed transaction. By the end of the cool-down phase, a
variable realTPS is calculated by dividing counter by the total time elapsed from the beginning of
the interim phase to the end of the cool-down phase. If realTPS is bigger than currentTPS, the
experiment is rerun with an incremented value of currentTPS in order to measure the maximum
TPS rate the system can sustain. Otherwise, the past currentTPS value is considered as the
highest TPS rate the system can achieve. Our results are summarized in Figures 13 and 14.

Known Prototype Caveats. Our implementation is a first rendering of a working prototype
and we anticipate substantial improvements can be still attained. When analysing our current
experimental results, one should keep in mind that our prototype implementation currently incurs
several overheads that are not intrinsic to our protocol. One of the main issues is the naive peer-
to-peer layer, which is not optimized and causes a heavy communication overhead as the number
of nodes grows. These overheads explain why the TPS rates fall rapidly as the number of nodes
increases. In an ideal network, the TPS of our system would approximate the average local TPS
across all participating nodes, where local TPS corresponds to the performance of a node when
is ran as a central transaction processor. Notice that the PVSS scheme from [24] requires O(n2)
exponentiations for share generation and validation (where n is the size of the committee), which
results in a concrete execution time that increases quadratically with committee size, limiting the
size of the committees that our prototype implementation supports given the chosen slot duration.
This limitation can be easily mitigated by using our delegation scheme with a threshold or devising
a PVSS scheme with better computational complexity, which is an interesting open question.
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Nodes TPS; flat TPS; skewed
1 82 82
20 40 46
40 45 41
60 33 34
80 14 14
100 10 11.5

Figure 14: Transaction rates for an Ouroboros prototype run over a wide area network with flat
and skewed stake distributions.
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A The Proof of Theorem 4.11

We return now to prove Theorem 4.11 in full generality (with forks of arbitrary structure). We
recall the statement of the theorem:

Theorem 4.11, restated. Let ε ∈ (0, 1) and let w be a string drawn from {0, 1}n by independently
assigning each wi = 0 with probability (1 + ε)/2. Then Pr[w is forkable] = 2−Ω(

√
n).

As in Section 4.2, we place a probability distribution on {0, 1}n by independently selecting each
wi ∈ {0, 1} so that

Pr[wi = 0] = 1 + ε

2 = 1− Pr[wi = 1] .

As w is forkable if and only if margin(w) ≥ 0, our goal is to show that

Pr[margin(w) ≥ 0] = 2−Ω(
√
n)

when w is drawn with this distribution.
In preparation for the proof, we introduce some further terminology.

Definition A.1 (Component). Let w ∈ {0, 1}∗ and consider a tine t of a fork F ` w; the compo-
nent of t is the union of all tines t′ so that t ∼ t′. We write [t] to denote the component associated
with a tine t and treat components as subgraphs of F . For convenience, we let ε denote the empty
tine consisting of the path of length zero containing only the vertex r; while ε 6∼ ε, we define [ε] to
be a component containing only this trivial path; this component we call the trivial component.

Note that all tines in a nontrivial component [t] share the same initial edge from r (the root)
and, in general, a fork has a unique description as a union of nontrivial components. We extend
the notion of margin to components in the obvious way:

margin([t]) = max
t′ a tine of [t]

(reserve(t′)− gap(t′)) .

Note that gap() still refers to the longest tine t̂ of the (entire) fork and that

margin(F ) = max
t6∼t̂

margin([t]) .

For a fork F , we let cmF denote the multiset of component margins:

cmF = {margin([t])| | [t] a component of F} ,

where the multiplicity of k ∈ cm(F ) is given by the number of components with margin k. Thus
cm(F ) has cardinality equal to the number of components of F , including the trivial component.
We remark that [t̂], the component of the longest tine of F , always has non-negative margin. Note
finally that

margin(F ) ≥ 0⇐⇒ cmF = {0} or cm(F ) has multiple non-negative elements .
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Components and fork extension. As in Section 4.2, we consider the relationship between forks
for “neighboring” strings; specifically, consider two closed forks F ′ v F where F ′ ` w and F ` wa,
where w ∈ {0, 1}∗ and a is a single symbol in {0, 1}. In the case where a = 1, we have F = F ′

(as the forks are assumed to be closed), and it is easy to see that the margin of each component
[t′] of F ′ has increased by exactly one when viewed as a component in F (for the string w1). We
write marginF ([t′]) = marginF ′([t′]) + 1, where we introduce the notation margin�() to denote the
margin in a particular fork. Thus

cm(F ) = {m+ 1 | m ∈ cm(F ′)} ,

where we understand this notation to mean that the multiplicity of m+ 1 in cm(F ) is the same as
that of m in cm(F ′).

The case when a = 0 is more delicate. Here F is obtained from F ′ by adding a path labeled with
a string of the form 1s0 to the end of a tine t′ of F ′. (In fact, it is easy to see that we may always
assume that this is appended to an honest tine.) In order for this to be possible, gap(t′) ≤ reserve(t′)
and, in particular, gap(t′) ≤ s ≤ reserve(t′): for the first inequality, note that the depth of the new
honest vertex must exceed that of the deepest current (honest) vertex in F so s ≥ gap(t′); as for the
second inequality, there are only reserve(t′) possible adversarial indices that may be added to t′ so
s ≤ reserve(t′). We write s = gap(t′)+r and let t denote the tine (of F ) resulting by extending t′ in
this way. The typical resulting marginF ([t]) is exactly marginF ′([t′])− (r+ 1), as the length of the
longest tine has increased by r+ 1; however, there is a special case arising when marginF ′([t′]) = r;
then marginF ([t]) = 0 (rather than −1), as the new honest tine is counted among those in [t]. The
effect on other components is straightforward: if t0 6∼ t′, marginF ([t0]) = marginF ′([t0])− (r + 1).
(Note that the special case above accounts for the fact that the margin of [t̂], where t̂ is the longest
tine of a fork, must be non-negative.) A final remark: in case t′ is the empty tine, this process
actually introduces a new component in F . To summarize these cases,

cm(F ) =


{m− (r + 1) | m ∈ cm(F ′)} if margin([t′]) > r and t′ 6= ε,

{m− (r + 1) | m ∈ cm(F ′) \ {r}} ∪ {0} if margin([t′]) = r and t′ 6= ε,

{m− (r + 1) | m ∈ cm(F ′)} ∪ {margin([ε])− (r + 1)} if margin([t′]) > r and t′ = ε,

{m− (r + 1) | m ∈ cm(F ′)} ∪ {0} if margin([t′]) = r and t′ = ε.

Above, we adopt the convention that canonical set operations such as ∪ and \ change the multiplic-
ity of the relevant elements by no more than 1 (so that, for example, {1} ∪ {0} = {0, 0, 1} \ {0} =
{0, 1} \ {2} = {0, 1}).

While the full rule is complicated by the exotic cases when t′ = ε or when r saturates margin([t′]),
we single out the simple features that are directly relevant for the proof. For a multiset of integers M
of cardinality at least 2, we let max0(M) denote the maximum element of the multiset M \max(M).
Consider now circumstances where F is nontrivial (so that |cm(F )| > 1), r is always chosen to be
1 (in which case the adversary chooses the most conservative possible extension of the tine that can
still feasibly place the new honest vertex at an appropriate height), and t′ 6= ε (which will occur
with high probability except with a small number of exceptions at the beginning of a string), we
note that when max0(cm(F ′)) > 0 the resulting max0(cm(F )) satisfies

max0(cm(F )) =
{

max0(cm(F ′)) + 1 when a = 1,
max0(cm(F ′))− 1 when a = 0 .

In fact, the very same rule applies when max0(cm(F )) < 0, in which case there is a unique tine of
F with non-negative margin. Note that any honest index must be added to this unique tine and,
in this case, the remaining tines (which determine max0()) obey the simple ±1 rule given above.
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For the string w1, . . . , wn chosen with the probability distribution above, define the random
variables

Xt =

⊥ if F trivial,
max

F`w1...wt

max0 cm(F ) otherwise.

Preparing to study the Xt, we recall two basic facts about the standard biased walk: Let Zi ∈ {±1}
(for i = 1, 2, . . .) denote a family of independent random variables for which Pr[Zi = 1] = (1− ε)/2.
Then the biased walk given by the variables Yt =

∑t
i Zi has the following two properties:

Constant escape probability. As ε > 0, the probability that an infinite walk beginning at state
0 ever visits the state 0 again is a constant less than 1 (depending only on ε). Specifically,
with constant probability Yt 6= 0 for all t > 0. (See, e.g., [13, Chapter 12].)

Concentration (the Chernoff bound). Consider s steps of the biased walk beginning at state
0; then the resulting value is tightly concentrated around −εs. Specifically, E[Ys] = −εS and

Pr
[
Ys > −

εS

2

]
= 2−Ω(S) . (5)

(The constant hidden in the Ω() notation depends only on ε. See, e.g., [1, Cor. A.1.14].)

Write w = w(1) · · ·w(
√
n) where b

√
nc ≤ |w(i)| ≤ d

√
ne for each i. Let X(0) = 0 and X(t) = X`

where ` = |w(1) . . . w(t)|. Fix δ < ε to be a small constant.
Let L denote the event that for each t ≥

√
n, wt(w1 . . . wt) < t/2. By the Chernoff bound above

and a union bound over the n −
√
n various values of t, we conclude that Pr[L] ≥ 1 − n2−Ω(

√
n),

and we will condition on this event throughout the rest of the proof. Let F√n v F√n+1 v . . . v Fn
denote any sequence of forks so that Ft ` w1 · · ·wt. Observe that when L occurs, no honest index
after position

√
n in w can possibly have been added to the trivial tine ε: it follows that the numbers

of components in the forks F√n, . . . are all the same. (Furthermore, the number of components in
these forks is no more than

√
n, though we will not exploit this particular fact.)

We define three events based on the random variables X(t):

Hot We let Hott denote the event that X(t) ≥ 2δ
√
n.

Volatile We let Volt denote the event that −2δ
√
n ≤ X(t) < 2δ

√
n.

Cold We let Coldt denote the event that X(t) < −2δ
√
n.

Note that for each t, exactly one of these events occurs—they partition the probability space. Then
we will establish that

Pr[Coldt+1 | Coldt] ≥ 1− 2−Ω(
√
n) , (6)

Pr[Coldt+1 | Volt] ≥ Ω(ε) , (7)

Pr[Hott+1 | Volt] ≤ 2−Ω(
√
n) . (8)

Note that the event Vol0 occurs by definition. Assuming these inequalities, we observe that the
system is very likely to eventually become cold, and stay that way. Note that the probability that
the system ever transitions from volatile to hot is no more than 2−Ω(

√
n) (as transition from Vol to

Hot is bounded above by 2−Ω(
√
n), and there are no more than

√
n possible transition opportunities).

Note, also, that while the system is volatile, it transitions to cold with constant probability during
each period. In particular, the probability that the system is volatile for the entire process is no
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Figure 15: An illustration of the transitions between Cold, Vol, and Hot.

more that 2−Ω(
√
n). Finally, note that the probability that the system ever transitions out of the

cold state is no more than 2−Ω(
√
n) (again, there are at most

√
n possible times when this could

happen, and any individual transition occurs with probability 2−Ω(
√
n)). It follows that the system

is cold at the end of the process with probability 1− 2−Ω(
√
n).

Observe that when Cold√n occurs, it follows that w is not forkable, as desired. The statements
above now follow from reasoning analogous to that of Section 4.2.
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