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We propose multi-party computation protocols for securely computing a linear
regression model from a training dataset whose columns are distributed among
several parties. Our solution enables organizations to collaborate in the con-
struction of a predictive model while keeping their training data private. Our
approach is based on a hybrid MPC protocol combining garbled circuits with
an offline phase enabled by a semi-trusted external party. As part of our contri-
bution, we evaluate several algorithms and implementations for solving systems
of linear equations using garbled circuts. Experiments conducted with an im-
plementation of our protocols show that our approach leads to highly scalable
solutions that can solve data analysis problems with one million records and one
hundred features in less than one hour.

1 Introduction

Predictive modelling is an essential technique used in practice by enterprises and govern-
ments in spaces as diverse as policy making, medicine, law enforcement, banking, and the
work place. While some of such data analyses are unfeasible due to technical constraints,
others are limited by ethical/regulatory constraints, or conflicting interests of the parties
contributing their data.

For example, nowadays big companies such as Google, Amazon, Netflix and many others
use machine learning techniques to build predictive models from the data collected from their
users. However, oftentimes different companies have information about the same set of users
contributing different features to their profiles. For instance, Google has information about
the clickstream of their users on the advertisements that they place on different websites,
while an online merchant advertising with Google has information about the purchases
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of its users. Being able to correlate the two datasets can allow the merchant to build
a better advertising strategy. Another common scenario is when the same patients have
been treated at different hospitals and the information of their complete medical profiles is
distributed between multiple institutions. Medical data is extremely sensitive information
and is subject to very strict sharing restrictions, but at the same time being able to analyze
complete patient profiles can lead to important insights for their treatment. While being
able to build predictive models on joint databases where the contents are contributed by
different sources has clear benefits, this can raise several risks and concerns. Sharing data
between different companies can lead to many privacy risks for their users. Legal agreements
can provide one type of mitigation for such risks, however, such solutions are often imperfect
and unable to account for security breaches. Thus, many times the privacy policies that
companies offer to protect users explicitly exclude the possibility of data sharing.

These scenarios demonstrate that the assumption that the whole database is available
in the clear in the same place might be an unreasonable requirement for many practical
applications of machine learning involving private data. In all of these settings having a
method to run a machine learning algorithm privately using data from multiple sources will
bring a substantial improvement. While there are cryptographic techniques such as secure
multiparty computation (MPC) [5,17,40] and fully homomorphic encryption (FHE) [7,8,15]
that provide general solutions for the problem of computation on private data, using these
techniques in a black-box way rarely scales to problem sizes commonly found in real-world
applications requiring privacy-preserving data analysis on massive datasets. The search for
practical alternatives has lead to the design of hybrid approaches where carefully engineered
protocols combine existing MPC tools in order to taking advantage of specific optimizations
applicable to the given scenario.

In this work we consider the question of privately computing a linear regression in settings
with vertically partitioned input databases. Linear regression is a fundamental building
block of many machine learning algorithms which solves the task of finding a best-fit linear
curve through a set of input data points stored in a database as vectors of features. A
vertically partitioned database means that the features for each record are partitioned among
different input parties, i.e. if each record is a row in the database, then the input parties
provide different subsets of the database columns. Next we elaborate on the exact problem
that we are addressing.

1.1 Problem statement

Linear regression is a data analysis task where one is interested in fitting a linear model for
predicting a real-valued attribute given a vector of features. For example, in a health care
environment one might be interested in predicting what is the right dosage of a certain drug
for a patient as a function of representative features e.g. age, weight, and concentration of
certain chemicals in her blood. Formally speaking, a linear model is a real-valued function
on d-dimensional vectors of the form x 7→ 〈θ, x〉, where x ∈ Rd is the input vector, θ ∈ Rd is
the vector of parameters specifying the model, and 〈θ, x〉 =

∑d
j=1 θjxj is the inner product

between θ and x. The term linear comes from the fact that the output predicted by the
function 〈θ, x〉 is a linear combination of the features represented in x. In the example
above, each coordinate in x would contain the value of one attribute associated to a patient,
and the predicted dosage would be obtained as a weighted sum of such attributes.
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In order to find this linear model one assumes access to a training set of samples rep-
resenting the input-output relation the model should try to replicate. These are denoted
as (x1, y1), . . . , (xn, yn) with xi ∈ Rd and yi ∈ R for i ∈ [n]. In our example these might
represent historic data where each sample represents the characteristics of a patient and the
amount of medication an expert decided to give to that patient. A possible motivation for
building a model in this case could be to assist general practitioners and reduce the depen-
dence on particular experts. Given the training data, a standard way to find the parameters
of the linear model is to solve a ridge regression problem given by the optimization

argminθ
1

n

n∑
i=1

(yi − 〈θ, xi〉)2 + λ‖θ‖2 , (1)

where λ > 0 is a regularization parameter. Ignoring the the term weighted by λ for a
moment, this optimization can be interpreted as finding a parameter vector θ which mini-
mizes the average squared error between the predictions made by the model on the training
examples xi and the desired outputs yi. The ridge penalty weighted by λ is used to prevent
the model from overfitting when the amount of training data is too small (see Section 3.2
for more details on ridge regression). An important feature of this optimization problem is
that its solution can be written in closed form. To simplify the presentation, let us write
X ∈ Rn×d for a matrix with n rows corresponding to the different vectors xi, and Y ∈ Rn
for a vectors with n entries corresponding to the labels yi. In this case the training data
is represented by the pair (X,Y ) and the solution to (1) reduces to solving the following
system of linear equations: (

1

n
X>X + λI

)
θ =

1

n
X>Y . (2)

For convenience we henceforth write A = 1
nX
>X + λI and b = 1

nX
>Y , in which case the

system of equations can be written as Aθ = b.
The formula above makes ridge regression an easy problem to solve in general by just rely-

ing on numerical linear algebra procedures for solving linear systems. However, an important
problem arises when it is not possible to have the whole training data set {(xi, yi)}ni=1 in
a single database before the training of the model begins. In particular, two simple set-
tings where the training data is not contained in a single database can be considered. The
first one is the case where the data is horizontally partitioned, in which case a fraction of
the n training samples is in the possession of one party and the rest of the data is in the
possession of another party. This corresponds to splitting the rows of X into two disjoint
parts. A second scenario can occur when the data is vertically partitioned, in which case a
party owns data from all samples corresponding to a fraction of the d features, and another
party owns the rest of features and the desired outputs. This corresponds to splitting the
columns of X into two disjoint parts. It is easy to imagine how such situations can occurs
in applications where the data that has to analyzed is sensitive to privacy concerns. In our
medical example horizontally partitioned data can occur when two different health provides
want to put together historic records of different patients to get a better predictor than
what each of them could do by itself. Similarly, vertically partitioned data can occur when
different attributes about the same patients (e.g. historic data and results of blood tests)
are held by different healthcare providers. A solution for ridge regression with horizontally
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partitioned datasets was implicitly provided in [35]. In this paper we focus on the vertically
partitioned case, which we will see gives rise to a different set of problems. Next section
provides a brief outline of the contributions of the paper.

1.2 Our Contributions

We propose secure computation protocols for solving ridge regression on a vertically par-
titioned dataset. Our protocols are divided in two phases of independent interest: (1) the
secure computation of the coefficients A and b defining the linear system Aθ = b described
above; and, (2) the solution of such a system when the coefficients are securely held by two
or more parties in the form of additive shares. We develop the following tools in order to
solve each of these phases securely:
Phase 1. We construct a two-party computation protocol where several parties that hold
vertical partitions of matrix X compute additive shares of X>X and X>Y securely. This
protocol builds upon a protocol for secure inner product that relies on a semi-trusted party,
Phase 2. In this phase we have to solve a private system of linear equations Aθ = b with a
positive definite coefficient matrix like the ones arising in ridge regression. Here we assume
that the inputs A and b are additively shared between two parties, which is a setup also
arising in [35]. We evaluate several methods for solving such systems, and in particular show
that iterative methods such as coordinate gradient descent (CGD) can be used to enable
analysis on high dimensional data.

Our protocols are implemented using state of the art two-party computation using garbled
circuit. In particular, we used the framework Obliv-C extended with a bigint library to
handle fixed point arithmetic computations with arbitrary precision.

1.3 Outline of the paper

Section 2 gives a high-level description of the architecture and threat models our protocols
are based on. Necessary preliminaries on linear systems, ridge regression, and MPC are given
in Section 3. The details of our protocol for phase 1 in the 2 party case are given in Section 4.
A discussion of different approaches for solving phase 2 is presented in Section 5. Next, in
Section 6, we present an architecture and protocols to address the more general setting
when X is partitioned among more than 2 parties. In Section 7 we present experimental
results obtained from an implementation of our protocols.

2 Architecture and Threat Model

We consider two main settings for our protocols that have different system architecture. The
first setting assumes that the input database is vertically partitioned between two parties
who want to build a model of the data evaluating a ridge regression over the data. The
output model can be either shared between the two parties or obtained by one or both
parties. We assume that the parties are semi-honest and follow the prescribed steps in a
protocol. Under this assumption we want to guarantee that neither party learns more about
the input data than its designated output. Similarly to the architecture presented in the
work of Nikolaenko et al. [35] we further assume a trusted initializer for the system, which
we also name as in [35] “Crypto Service Provider” (CSP) (see Figure 1a). For the purposes
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(a) Two Parties
(b) Many Parties

Figure 1: System Archtecture

of our protocols the CSP will provide correlated randomness for the parties. It is assumed
to be semi-honest. Also, all of its work can be done offline before the inputs for the protocol
are available.

In the second setting that we consider, the database is vertically partitioned among many
parties, which we will call data providers. While there are multi-party computation protocols
that allow any number of parties to evaluate jointly any functionality, the most efficient such
protocols [10, 28] require a preprocessing stage where all parties interact. However, in our
setting the parties who will jointly compute the prediction model only have to come online
to run the protocol, and to do so, only bilateral computations are needed. Hence, such
preprocessing model does not bring any advantage for this scenario. We leverage the CSP
party, which is assumed to be semi-honest and not colluding in order to avoid preprocessing
that involves all data providers. All preprocessing will be done by the CSP and could be
done independently of the exact parties who will be later involved in the computation. We
also consider how we can use an additional party to facilitate the efficiency of the protocols,
but also give a variant of our protocols where that role can be fulfilled by some of the parties.

More concretely, we in fact adopt the full architecture of Nikolaenko et al. [35], which in
addition to the CSP includes an Evaluator, both of which are assumed to be semi-honest (see
Figure 1b). The Evaluator collects inputs from all parties and computes a ridge regression
model. We allow communication between the parties during the collection process for their
inputs. As long as we assume that there is no collusion between input parties and Evaluator
we can guarantee that the CSP’s work is completely offline. In order to protect against
such collusions we require the CSP to interact with the data providers during the input
contribution. We note that once we protect against collusions between Evaluator and the
input parties, we no longer need to assume that Evaluator is not input contributor and thus
can be instantiated by one of the parties.
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3 Preliminaries

3.1 Solving Systems of Linear Equations

A linear system with m equations and d unknowns is an expression of the form Aθ = b
where A ∈ Rm×d and b ∈ Rm are the coefficients of the system and θ ∈ Rd contains the
unknowns. Finding solutions of such equations is one the most important operations in
numerical linear algebra. In this paper we will be dealing exclusively with systems where
the coefficient matrix A is symmetric (i.e. m = d and A> = A) and positive definite (i.e.
θ>Aθ > 0 for all θ ∈ Rd). Such systems are among the easiest to solve, in part because they
admit a unique solution, and in part because it is possible to factorize a positive definite
matrix in ways that make the system easier to solve.

Many factors can influence the choice of algorithm when a linear system needs to be
solved in practice. Roughly speaking, algorithms for solving linear systems can be classified
in three large groups. The first group is that of direct algorithms which apply a variant of
Gaussian elimination to reduce the coefficient matrix to row echelon form and afterwards
solve the resulting system via forward substitution. Different variants can be obtained
depending on the details of the reduction algorithm, and sophisticated pivoting strategies
are sometimes implemented in order to obtain numerically stable algorithms. The second
group of algorithms apply a pre-processing step in which the coefficient matrix is factorized
as the product of two or more coefficient matrices of easily solvable linear systems, and then
the corresponding systems are solved sequentially until the solution of the original problem
is obtained. The efficiency and stability of these algorithms heavily depends on that of the
particular factorization being used, and are commonly used for classes of matrices admitting
a particular class of decompositions. The third method casts the solution of Aθ = b as the
problem of minimizing ‖Aθ− b‖ and then applies an iterative optimization algorithm. The
main advantage of this approach is that the method produces a sequence of refined solutions
at each iteration and provides a way to find an approximate solution even if the algorithms
is stopped before convergence. The number of iterations required to find a good solution
typically depends on the condition number of A.

Details of the particular algorithms we implement to solve phase 2 of our protocols are
given in Section 5. In particular we implement two algorithms based on matrix factoriza-
tions, and one iterative algorithm. All these algorithms are especially designed to solve
systems of equations with positive definite coefficient matrices.

3.2 Statistical Setup of Ridge Regression

Recall that in a linear regression problem one is given a dataset with n pairs of the form
(xi, yi) with xi ∈ Rd, yi ∈ R, 1 ≤ i ≤ n, and is asked to find a vector of parameters θ̂ ∈ Rd
that can be used to make predictions of the form 〈θ̂, xi〉 about the yi associated to a given
xi. One way to justify the least-squares and ridge regression algorithms is by assuming the
input pairs satisfy yi = 〈θ∗, xi〉 + εi for some unknown θ∗ ∈ Rd and ask for a method to
estimate a parameter vector θ̂ converging to θ∗ as n → ∞. Two common assumptions in
this setup are that the errors εi ∼ N (0, σ2) are independent random Gaussian noises with
zero mean and variance σ2, and that the observed feature vectors xi are sampled i.i.d. from
some unknown probability distribution on Rd.
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Under these assumptions it can be shown that the asymptotically optimal solution as
n→∞ is to take the least squares solution θ̂ = argminθ

1
n

∑n
i=1(yi−〈θ, xi〉)2. In cases where

the amount of available samples n is not big enough, this approach might lead to overfitting
and yield parameters θ̂ with poor predictive performance on unobserved x’s. This is typically
remedied by considering a regularized optimization problem where the least squares criterion
is augmented with a ridge penalty, leading to the well-known formulation of ridge regression
given in (1). A statistical analysis of the generalization error of the output of this algorithm
suggests that a good choice for the regularization parameter is λ = σ2d/n‖θ∗‖2. This is the
setup we will be using in the experiments described in Section 5. Note that this choice of λ
depends on quantities that might not be known when working with real data, in which case
the data analysis pipeline has to include a parameter tuning strategy, e.g. cross-validation.
The implementation of a secure data analysis pipeline including hyper-parameter tuning
is beyond the scope of this paper; here we only focus on solving a secure ridge regression
problem with fixed parameters.

3.3 Garbled Circuits

Cryptographic methods for two party computation allow two parties with inputs x1 and
x2 to evaluate a function f that depends on their private inputs without revealing any-
thing more than the output of the computation f(x1, x2). One of the most popular and
widely used approaches for two party computation is the protocol based on Yao garbled
circuits (GCs) [40]. A garbling protocol consists of the following algorithms (GC.GarbCirc,
GC.GarbInp, GC.Eval), which work as follows:
GC.GarbCirc(C): this protocol takes as input a boolean circuit C and outputs a garbled
circuit C̃, which is computed as follows. For each wire i of the circuit the garbler generates
two random values (wi,0, wi,1), which can be used as keys for a symmetric encryption scheme
(Gen,Enc,Dec). For each gate g in the circuit that has input wires i and j and output wire
k, the garbler computes a garbled gate g̃, which consists of the following four ciphertexts in
randomly permuted order:

Encwi,0
(
Encwj,0(wk,g(0,0))

)
Encwi,0

(
Encwj,1(wk,g(0,1))

)
Encwi,1

(
Encwj,0(wk,g(1,0))

)
Encwi,1

(
Encwj,1(wk,g(1,1))

)
,

where g(b1, b2) is the output bit of the gate on input bits b1 and b2. Then, the garbled
circuit C̃ is defined to be {g̃}g∈C .
GC.GarbInp(x, {(wi,0, wi,1)}i∈[n]): Let x = x[1] . . . x[n] be the bit representation of the inputs.

The corresponding garbled input x̃ is defined to be {wi,x[i]}i∈[n].

GC.Eval(C̃, x̃): The evaluator evaluates the gates of the circuit in topological order which
guarantees that a gate is evaluated when its input wires have already been assigned values.
Thus, for each gate g of the circuit the evaluator proceeds as follows: it has two input
garbled values wi,b1 and wj,b2 and uses them to decrypt one of the ciphertexts in g̃. It
assigns the decrypted value to be the garbled value for the output wire of the gate.

A two party computation protocol using garbled circuits proceeds as follows: one of the
parties generates a garbled circuit and sends it to the other party together with the garbled
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values for its own inputs. For each input bit of the evaluator the two parties run an oblivious
transfer protocol (OT) [32,37] with inputs the garbled values for that input wire (wi,0, wi,1)
and the input bit b, which enables the evaluator to learn only the value wi,b. Once the
evaluator has all input garbled labels, it can evaluate GC.Eval(C̃, x̃). If the evaluator needs
to learn the output of the protocol, then it is also given the mappings between real and
garbled values on the output wires.

3.4 Fixed-Point Arithmetic

In many data analysis problems the training data is given as real numbers encoded using
a floating-point representation. Secure multiparty computation solutions capable of per-
forming floating-point arithmetic are the subject of current research. For example, recent
advances have provided proof-of-concept implementations of floating point primitives using
garbled circuits [11]. However, the publicly available tools in this area do not yet scale to
the throughtput required for data analysis tasks involving large datasets. Therefore, the
protocols presented in this paper rely on fixed-point encodings of real numbers. We will see
that under proper normalizations of the input data and an adequate choice of the precision,
these encodings can guarantee that the computations in our protocols are very efficient and
only incur a small, controlled amount of error with respect to the value one would obtain
using floating-point arithmetic. Additionally, this error decreases as the number of bits
used in the fixed point encoding increases, yielding a useful knob for trading off speed and
accuracy in our protocols.

Our fixed-point encoding strategy follows closely previous works on secure linear regres-
sion [9, 19, 35]. However, unlike these works, we shall undertake a formal analysis of the
errors such encondings introduce when used to simulate operations in floating-point arith-
metic. The encoding has two parts: one mapping reals into integers, and another mapping
integers to integers modulo some large q. The purpose of the first part is to represent all
reals up to a certain precision using integers, thus creating equivalence classes of reals that
cannot be distinguished using the given precision. The second part makes models the fact
that a computer can only represent finitely many integers, and gives a way to simulate
operations on the integer-encoded reals in a finite ring provided q is large enough to avoid
overflows. In addition, using the fact that one can sample uniformly at random from finite
rings it is possible to leverage this representation to construct statistically secure multi-
party computation protocols. The encoding and decoding maps that we introduce next are
summarized in the following diagram:

R
φδ
�
φ̃δ

Z
ϕq
�
ϕ̃q

Zq

The effect of the precision when encoding real numbers using integers is controlled by
a parameter δ > 0 which is used to define an mapping from reals to integers given by
φδ(r) = [r/δ]. Here [·] returns the rounding of a real number to the closest integer, with
ties favoring the number closest to 0. For example, for a given δ one can see that φ
maps the interval [−δ/2, δ/2] to 0, (δ/2, 3δ/2] to 1, and [−3δ/2,−δ/2) to −1. Thus, δ can
be interpreted as the smallest number that can be represented by the encoding φ, e.g. if
δ = 10−∆ for some integer ∆ then φδ(r) yields a representation of r truncated to the ∆th
decimal. When integers are represented in binary it is convenient to take δ = 2−∆. Using
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the precision parameter δ we also define a decoding of integers to real numbers acting as
an approximate inverse of the encoding φδ. This decoding is given by φ̃δ(z) = zδ, and it is
easy to see that it satisfied |r − φ̃δ(φδ(r))| ≤ δ for any real number r.

The most important property of a fixed-point encoding is how well the ring operations
on Z operating on encoded reals can approximate the corresponding operations in real
arithmetic. Addition is simple since using linearity of the decoding map it easy to show
that for any reals r, r′ one has |(r+r′)− φ̃δ(φδ(r)+φδ(r

′))| ≤ 2δ. Multiplications are slightly
more involved because in general 2∆ decimals are required to represent exactly the fractional
part of the result of multiplying two numbers with ∆ decimals. Taking this into account,
one can show the following bound on the error introduced by performing multiplications in
fixed-point: |(rr′) − φ̃δ2(φδ(r)φδ(r

′))| ≤ (|r| + |r′|)δ + δ2. Note this bound depends on the
magnitude of the numbers being multiplied and the decoding is done using precision δ2.

When using φδ to encode reals bounded by M , i.e. |r| ≤M , we obtain integers in the finite
range [−M/δ] ≤ φδ(r) ≤ [M/δ]. There are at most K = 2dM/δe+ 1 integers in this range,
and therefore it is possible to map them injectively into the ring Zq of integers modulo q
with q > K using the map ϕq(z) = z mod q. For integers in the range −q/2 ≤ z ≤ q/2
this map is given by ϕq(z) = z if z ≥ 0 and ϕq(z) = q + z for z < 0. Thus it makes sense
to define a decoding map ϕ̃q : Zq → Z with ϕ̃q(u) = u if 0 ≤ u ≤ q/2 and ϕ̃q(u) = u− q for
q/2 < u ≤ q − 1. Then we have ϕ̃q(ϕq(z)) = z for any −q/2 ≤ z ≤ q/2.

Although ϕq is a ring homomorphism translating operations in Z into operations in Zq,
decoding from Zq to Z after performing ring operations on encoded integers will not in
general yield the desired result due to the occurrence of overflows. To avoid such overflows
one must check that the result fall in the interval where the coding ϕq is the inverse of ϕ̃q:
suppose z, z′ are integers such that |z|, |z′| ≤ q/2, then

1. if |z + z′| ≤ q/2, then z + z′ = ϕ̃q(ϕq(z) + ϕq(z
′)), and

2. if |zz′| ≤ q/2, then zz′ = ϕ̃q(ϕq(z)ϕq(z
′)).

4 Two Party Case

In this section we consider the two party setting for the problem where the database is
vertically partitioned between two parties A and B and at the end of the protocol the
parties hold shares of the model constructed by solving ridge regression on the data. We
will use this case to introduce important observation that we use later in our protocol for
an arbirary number of parties.

As explained above, our problem reduces to securely solving a system of linear equations
Aθ = b where A = 1

nX
>X + λI and b = 1

nX
>Y , where X ∈ Rn×d is a matrix with n

rows corresponding to the different vectors xi, and Y ∈ Rn for a vectors with n entries
corresponding to the labels yi.

Note that in most applications of data analysis one can assume n� d. Hence, it is critical
for scalability purposes that the computations that depend on n are very efficient.

A naive approach to solve the ridge regression problem is to execute the whole computa-
tion using one large garbled circuit. However, this computation results in a the evaluation
of a huge circuit, since only calculating X>X involves computing inner products over vector
of length n.
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Instead we take a more careful look at output that the two parties need to compute. In
particular, we can divide the problem in two well defined phases as mentioned above:

1. At the end of the first phase, the parties A and B hold a share of the matrix X>X+λI
and the vector X>Y . In other words, our first phase is a two-party computation
resulting in an additive share of the coefficients of the system Aθ = b. Note that this
computation has cost O(nd2).

2. In our second phase, we run a two-party multiparty computation to solve the shared
system obtained in the previous phase. Note that the input of this phase has size is
of the order of d2, and hence is independent of the number of records in the database.

A similar partitioning of the problem was used in [35] to tackle the variant of our problem
where the input database is horizontally partitioned among the parties. Moreover, solv-
ing a linear system of equations is a central problem in machine learning, and hence our
contributions regarding the second phase of our solution are of independent interest.

4.1 Phase 1: Securely Computing X>X

In this section, we focus of the main task of the first phase of our protocol: computing
shares of X>X. We note that once this computation is done, obtaining A is easy because
it amounts to adding a publicly known matrix to X>X. In addition, the computation of
X>Y can be done using exactly the same protocol.

We start by having a closer look at what needs to be computed. Recall that X is parti-
tioned vertically among the two parties A and B and, for simplicity, assume that each party
holds half of the features. More concretely, as illustrated in Figure 2 Party A holds a matrix
XA which contains half of the features for each record in the database and party B holds
a matrix XB which contains of the other half of the features for records. Figure 2 shows
how the content of the output matrix depends on the inputs of the two parties. We observe
that the upper left part of the matrix M = X>X depends only on the input of party A and
the lower right part depends only on the input of party B. In that case, the corresponding
entries of M can be computed locally by A, while B simply has to set her shares of those
entries to 0. On the other hand, for entries Mij of M such that features i and j are held by
distinct parties, the parties need to compte an inner product between a column vector from
XA and a column vector from XB. To do so, we rely on a protocol for computing secure
distributed inner product, which we present next.

4.1.1 Secure inner product

In this section, we present a two party computation protocol which enables two parties, each
of which holds an input vector, to compute the inner product of their vectors and obtain
additive shares of the result. As mentioned above, our numbers are represented as elements
of a finite field Zq, and hence such functionality can be described as

f(~x, ~y) = (r, 〈~x, ~y〉 − r),where ~x, ~y ∈ Znq , r ← U(Zq)

There are several techniques that can be used for this task as, essentially, it corresponds
to secure multiplication. Note that this task is the only point in the whole linear regression
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Figure 2: Computation of X>X.

Parties: A, B, and trusted initializer T.
Inputs: A : ~a ∈ Znq ; B : ~b ∈ Znq .

Outputs: A : rA ∈ Zq; B : r∈Zq such that rA + rB = 〈~a,~b〉.

Protocol:

1. T generates random vectors ~x, ~y ∈ Znq and a random number r ∈ Zq, and sets
z = 〈~x, ~y〉 − r. It sends (~x, r) to A, and (~y, z) to B.

2. A sends ~a+ ~x to B.

3. B sends ~b− ~y to A.

4. A computes its output share as rA = 〈~a,~b− ~y〉 − r.

5. B computes its output share as rB = 〈~a+ ~x, ~y〉 − z.

Figure 3: Secure two-party inner product/multiplication supported by a trusted initializer.

computation where we need to perform computations on data whose size is of the order of
n, namely the number of records in the database.

A first alternative is based in additive homomorphic encryption, where A encrypts all the
entries in her vector and sends them to B. Then, B uses the homomorphic properties of the
encryption to compute the encrypted inner product and also subtract its own share, and
finally sends the result to A, which decrypts the ciphertext and obtains its output share.
This protocol requires expensive homomorphic operations. Instead, we use a very efficient
protocol, presented in Figure 3, that uses only symmetric key operations. The protocol
leverages the use of a trusted initializer party, which in our architecture is instantiated
by the CSP, who provides correlated randomness for the execution of the protocol. The
work of this party can be done offline before the inputs of the computation are available.
Our protocol is a modification of the construction presented by Du and Attalah [13] and is
presented in Figure 3.

We now argue correctness and security of our protocol for inner product in Figure 3.
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Correctness. To establish correctness, simply note that

rA + rB = 〈~a,~b− ~y〉 − r + 〈~a+ ~x, ~y〉 − (〈~x, ~y〉 − r)

= 〈~a,~b〉 − 〈~a, ~y〉 − r + 〈~a, ~y〉+ 〈~x, ~y〉 − 〈~x, ~y〉+ r

= 〈~a,~b〉

Security. We show semi-honest security by providing simulators SimA and SimB that
produce A’s and B’s view of the protocol given the corresponding input and output. To
prove security, our simulators satisfy that the generated views are undistinguishable from
the view of the corresponding party in the actual protocol. For relevant precise definition
we refer the reader to [16].
SimA generates a view for A given ~a and A’s output in the ideal functionality, denoted r∗A.

The message from the TI is simulated as (~x′, 〈~a, ~y′〉 − r∗A), while the message from B is

simulated as ~y′, where ~x′, ~y′ ∈ U(Znq ).

Similarly, SimB generates a view for B given ~b and r∗B as follows: the message from the

TI is simulated as (~y′, 〈~x′, ~y′〉 − r∗B), while the message from A is simulated as ~x′, where
~x′, ~y′ ∈ U(Znq ).

To conclude this section, we analyze our protocol also from an accuracy perspective,
taking into account that, although our protocols operate on a finite ring, they correspond
to the encoding real numbers.
Accuracy. We can also provide a bound on the accuracy of the result of our protocol
when the vectors in Znq are in fact encodings of real vectors. Suppose ~a = ϕq(φδ(u)) and
~b = ϕq(φδ(v)) for some parameters δ0 and q. Here u, v are n-dimensional real vectors with
entries bounded by R: |ui|, |vi| ≤ R for i ∈ [n]. If the size of Zq satisfies q ≥ 2nR2/δ2 then
we have

|〈u, v〉 − φ̃δ2(ϕ̃q(〈~a,~b〉))| ≤ 2nRδ + nδ2 .

To get this bound, we first observe that any number occurring in the computation of the
inner product 〈φδ(u), φδ(v)〉 of the integer encodings of u and v is bounded by nR2/δ2.
Therefore, the condition on q ensures there are no overflows in the computation in Zq and

therefore 〈φδ(u), φδ(v)〉 = ϕ̃q(〈~a,~b〉). Now we use the formulas for the error of sum and
product of integer encodings from Section 3.4 and the linearity of φ̃δ2 to show that

|〈u, v〉−φ̃δ2(〈φδ(u), φδ(v)〉)|

= |
n∑
i=1

uivi − φ̃δ2(
n∑
i=1

φδ(ui)φδ(vi))|

≤
n∑
i=1

|uivi − φ̃δ2(φδ(ui)φδ(vi))|

≤ n(2Rδ + δ2) .

We note that R can be chosen arbitrarily because it only involves a normalization that the
parties can do locally without any information or interaction with the other parties (as long
as the value R is known to both parties). Thus, in practice it is convenient to normalize the
real vectors u and v such that their entries are bounded by 1/

√
n. In this case, the bounds
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above can be used to show that if a final accuracy of ε > 0 is desired, this can be achieved
by taking δ = ε/2

√
n and q = 8n/ε2. Using these expression we see that encodings with

O(log(n/ε)) bits are enough to achieve accuracy ε in n-dimensional inner products.

5 Secure linear system solving

The second phase of our algorithm, as presented in the previous section, consists in solving
a linear system shared between two parties P1 and P2 holding secret additive shares (Ai, bi)
of the matrix A and vector b in a linear system Aθ = b; that is, A = A1 +A2 and b = b1 +b2.

We implement three well-known methods typically used in numerical linear algebra for
solving systems with positive definite coefficient matrices: Cholesky, LDLT, and conjugate
gradient descent. Details about each method and a discussion of their relative merits from
an MPC point of view are given next. After the methods are presented, we delve into the
intricacies of our implementations based on Yao’s garbled circuits protocol [40] using the
Obliv-C framework [43]. Finally, we present illustrative experiments showing that conju-
gate gradient descent is the best choice for dealing with high-dimensional linear systems,
and that a careful implementation using fixed-point arithmetic can achieve comparable re-
sults to floating-point implementations while yielding much more scalable algorithms. It
is important to note that most of this section is application-agnostic, implying that our
findings and implementations can be used to solve generic positive definite linear systems
in a secure MPC setting not necessarily arising from ridge regression.

5.1 Solution Methods

Several variants of our protocol for solving phase 2 of the private multi-party ridge regression
problem can be obtained by considering different methods for solving systems of linear
equations with positive definite coefficient matrices. Now we present the details of three of
these algorithms.

The first algorithm is based on the Cholesky decomposition. Any positive definite matrix
admits a unique Cholesky decomposition of the form A = LL>, where L is a d × d lower
triangular matrix with Lij = 0 for all i < j. If this decomposition is given, then the system
LL>θ = b can be solved by first finding the solution of Lθ′ = b and then the solution
of L>θ = θ′. By exploiting the lower triangular structure of L, the first system can be
efficiently solved by forward substitution taking θ′1 = b1/L11 and θ′i = (bi−

∑
j<i Lijθ

′
j)/Lii

for i = 2, . . . , d. Similarly, the second system is solved by backward substitution taking
θd = θ′d/Ldd and θi = (θ′i−

∑
j>i Ljiθj)/Lii for i = d−1, . . . , 1. Note that these substitutions

are a particular instance of Gaussian elimination where the initial coefficient matrices are
already in almost echelon form (with the exception that the diagonal coefficients may be
different from 1). Since the Cholesky decomposition of a positive definite matrix A can be
efficiently computed in O(d3) floating point operations, this yields an efficient algorithm for
solving the system Aθ = b. Cholesky’s algorithm enjoys two important properties that make
it a very natural choice for solving private linear systems: it does not involve any pivoting
strategy, thus yielding data-agnostic algorithms; and, it is numerically robust, making it
suitable for implementations using finite-precision numeric representations.

A drawback of Cholesky’s decomposition A = LL> is that the algorithm requires com-
puting O(d) square roots. Since our goal is to implement linear system solvers on top of a
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secure multi-party computation architecture, this can represent a problem since MPC tech-
nologies generally only provide basic arithmetic operations like addition and multiplication.
Though it is possible to implement iterative algorithms for computing square roots using
MPC approaches, an alternative approach is to use a different matrix decomposition whose
computation does not involve square roots. A common option along these lines is the LDLT
decomposition, a slight variation on the Cholesky decomposition for positive definite matri-
ces where one writes A = LDL> with L lower triangular and D diagonal with non-negative
entries. It is easy to see that the linear system LDL>θ = b also admits an efficient substitu-
tion algorithm very similar to the one given above for the Cholesky decomposition. Solving
Aθ = b via the LDLT decomposition of A enjoys the same properties as the Cholesky-based
solution, with the difference that instead of the square roots one has to perform one more
substitution phase when solving the factorized system.

Factorizing the coefficient matrix A in order to make the solution easier to compute is not
the only way to solve a positive definite linear system. An entirely different approach is that
of iterative algorithms which construct a monotonically improving sequence of approximate
solutions converging to the desired solution. These algorithms typically involve a few vector
inner products and one or more matrix-vector products per iteration and their asymptotic
running time is again O(d3) if run until convergence. However, they can also be used
to find approximate solutions for systems where the matrix A is too big to be factorized
entirely by incorporating an early stopping criterion. When the coefficient matrix is positive
definite, the default iterative solution is the conjugate gradient descent (CGD) algorithm.
One approach to derive the CGD algorithm is to realize the solution to Aθ = b is also
the solution to the optimization problem argminθ ‖Aθ − b‖2 and solve it using the method
of conjugate gradients where the descent direction chosen at each iteration is orthogonal
to all previous descent directions. For the purpose of this paper, the importance of GCD
is twofold: first, since intensive computations inside an MPC framework can be expensive,
iterative algorithms provide a natural way to spend a fixed computational budget on finding
an approximation to the desired solution; and second, that for linear regression problems
with noisy data it usually suffices to find an approximate solution whose accuracy is on the
same order as the noise present in the data. See [31] for a thorough discussion on how to
implement CGD with finite-precision arithmetic.

5.2 Implementation Details

The three algorithms described above are quite standard and detailed implementation guide-
lines can be found in the literature; e.g. [36]. On the one hand, for LDLT and Cholesky,
our implementations are based on these standard pseudo-codes, with the difference that we
used fixed-point arithmetic instead of floating-point. On the other hand, to obtain a CGD
algorithm with a good trade-off between accuracy and scalabity when executed as a garbled
circuit required a taylored approach.

To set up the secure multi-party computation infrastructure required for Yao’s garbled
circuit protocol we use the Obliv-C system. In this system code get compiled from a high-
level language based on C and onto a garbled circuit that will be securely executed using
inputs from two or more parties.

In order to deal with real numbers, we implement fixed-point arithmetic on top of Obliv-C
basic types, including the square root computation of [35]. Our implementation represents
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Figure 4: Comparison between different methods for solving linear systems. (left) Gate
count for the garbled circuits implementing Cholesky and CGD (with 5, 10, and
15 iterations) as a function of input dimension. (middle) Convergence of CGD
with the number of iterations. For various values of d and n = 100000, the er-
ror is plotted against the number of iterations used, averaged over 30 samples
with average condition number 1.77. (right) Difference in ridge regression objec-
tive value between floating-point and fixed-point implementations of CGD (100
different problems with d = 20).

real numbers using 32 bits split between the integral part (4) and the fractional part (28).
To make the most of the fixed-point representation, in our implementation each party locally
normalizes its input data to ensure that the entries in the matrix A all satisfy |Aij | ≤ 1/d.
This is particularly useful for CGD, since it helps prevent overflows of the integral part
when computing intermediate values of the form θ>Aθ required by the line search step of
each iteration.

5.3 Experimental Results

Now we present experimental results in order to illustrate two important points about the
implementation of linear system solvers in secure MPC settings. The first point is that for
high-dimensional systems running a few iterations CGD yields a more scalable algorithm
than using any of the exact methods at a comparatively very small price in terms of accuracy.
The second point is that for the types of systems occurring in ridge regression problems
implementations of CGD with fixed-point arithmetic can yield results comparable to those
obtained with floating-point implementations.

To investigate the first point we start by showing in Figure 4 (left) the number of gates of
the circuit resulting from the Obliv-C compilation of the algorithms implementing Cholesky,
LDLT, and CGD with different number of iterations. We observe that, for dimensions larger
than 100, CGD with 10 iterations corresponds to smaller circuits than the one for solving
the full systems via Cholesky or LDLT. For CGD with 15 iterations, such break even point
is at d = 200.

On the other hand, in Figure 4 (middle) we show the convergence of CGD with the
number of iterations in our implementation, when securely solving linear systems arising
from ridge regression with several values of d and n = 105. The error is measured as
|LS(s)−LS(scgd)|/LS(s), where LS denotes least squares funtion to be minimized, s denotes
the exact solution obtained with floating point arithmetic, and scgd denotes the solution
obtained using our implementation of CGD with fixed point arithmetic.
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Note that the plot in Figure 4 (middle) already indicates that a fixed-point implemen-
tation of CGD using the normalizations discussed in the previous section can yield results
comparable to that of a floating-point implementation. Since it is known that the speed
of convergence of CGD can be affected by the condition number of the coefficient matrix
A, and the condition number of such a matrix in a ridge regression problem depends on
the number of samples n, we must also investigate if there is a substantial difference in
the speeds of convergence between the fixed-point and the floating-point implementation of
CGD depending on the condition number. For that purpose we generate 100 different ridge
regression using random data with different sizes, and we consider the same error measure
than in the previous plot: difference in objective value between the floating-point solution
and the solution obtained by our fixed-point implementation. For each setting of d and n,
we sample n data points xi from a standard d-dimensional Gaussian distribution, a vector
of parameters θ∗ with independent coordinates sampled uniformly in the interval [0, 1], and
the labels are taken to be yi = 〈θ∗, xi〉 + εi where εi ∼ N (0, 0.1). The regularization pa-
rameter is set to the optimal choice according to the discussion in Section 3.2. The results,
shown in Figure 4 (right), confirm the effect of the condition number of the input matrix,
and indicate that the benefit of running CGD for more iterations decreases as the condition
number increases. On the other hand, the precision of Cholesky remains stable accross all
tested condition numbers.

6 Many Input Parties

Next we consider the case when the initial database in vertically partitioned among several
parties. Currently the most efficient multi-party computation protocol [28] is based on the
BMR construction [2] combined with a preprocessing stage, which relies on a multi-party
variant of garbled circuits. Our construction will be a different variant of multi-party garble
circuits since as we discussed in Section 2 we will leverage the assumptions for the CSP to
avoid preprocessing that involves all parties.

We also introduce the Evaluator party mentioned in Section 2 to facilitate the protocol
providing an evaluator of the garbles circuits that contributes no input and takes care of
the most costly computation. The naive approach, similarly to the two party case, is have
each party share its database part between the CSP and the Evaluator and then execute
a two party computation using a garbled circuit to compute A = X>X and then solve
the system of linear equations. However, this approach will require multiplication of large
dimension matrices to compute A = X>X from the parties shares, which is inefficient using
GCs. Instead, analogously to what we did in the two party case, we will construct a tailored
protocol for Phase I to enable the CSP and the Evaluator to obtain additive shares of the
matrix A = X>X.

Similarly to the two-party case we observe that the vertical partitioning of the database
means that each party holds a subset of the columns of X and a corresponding subset of
the rows of X>. Since each value in A is a dot product between a row vector of X> and a
column vector of X, this means that each value in A depends on the inputs of at most two
input parties. Thus, using the inner product protocol from Section 4 between corresponding
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pairs of parties we can obtain A in a form where each entry is either known to one of the
inputs parties or is shared between some pair of input parties.

At this point, in the second phase of our protocol, all parties contribute their shares of
the entries of A in a garbled form to Evaluator and it will reconstruct A inside the garbled
circuit, which subsequently implement the solution for the system of linear equations from
Phase II presented in Section 5. The garbled circuit is generated by the CSP and provided
to the Evaluator. We consider two options for the input garbling part of the protocol. In
the first setting we assume that neither input party is colluding with the Evaluator – in
this case for each input wire the CSP can directly send both input garbled labels to the
corresponding party, which based on its input bit will forward the correct input garbled
label to the Evaluator. If we do not want to make the assumption for non-collusion between
input parties and Evaluator, we run an oblivious transfer protocol between the CSP and the
corresponding party for each input wire. At the end all parties hold the garbling of their
inputs, which they prove to the Evaluator. Figure 5 describes the steps in the protocol.

Although the architecture and overall distribution of responsibilities resembles the pro-
tocols presented in [35] for the horizontally partition case, there are a some important
differences between their approach and ours:

• Our parties have to communicate with each other during the online phase of the
protocol (this is due to the fact that in contrast with the horizontally partitioned
setting, in the vertically partitioned setting each entry in the coefficient matrix A
involves products between numbers held by two different parties).

• Our two proposed approaches do not use HE (this is achieved by using additive shares;
this optimization can also be applied to the protocol of Nikolaenko et al. by having
the CSP distributed correlated randomness between the parties holding the data).

• One of our solutions does not need any oblivious transfer, at the cost of assuming
that the Evaluator does not collude with any of the parties (note this assumption
is reasonable in scenarios where the Evaluator represents a provider of outsourced
computation).

7 Experiments

The experiments were conducted using Amazon EC2 C4 instances, each having 4 CPU
cores, 7.5 GiB of RAM and 1 Gbps bandwidth. Datasets were generated as described in
Section 5.3, and a precision of 64 bits was used (with 54 bits for the fractional part).

We built the multi-party protocols atop Obliv-C [43], a derivative of the C language
supporting two party computation with a number of recent optimizations, including Free
XOR [26], Garbled Row Reduction [33], Fixed Key Block Ciphers [3], and Half Gates [44].
To support arbitrary precision arithmetic, we used a big integer library [1] for multi-party
computation. This library represents values in two’s compliment binary, split between an
arbitrary number of machine-native garbled “digits”. It implements all the operations we
require using common, efficient algorithms for extended precision arithmetic; in particular,
it implements the Karatsuba-Comba [22] method for multiplication, and Knuth’s algorithm
D [25] for division. We extended this library to support fixed precision arithmetic via the
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Parties: k input parties P1, . . . ,Pk, and CSP, Evaluator.
Inputs: Pi : Xi ∈ Zdi×nq for all i ∈ [k], where X = X1| · · · |Xk.
Outputs: A←⊥; Pi ←⊥ and Evaluator← β.
Circuit: Let C be a circuit that first reconstructs A from input shares (A[i, j] is
obtained from two input shares if X[i] and X[j] are hold by different parties, and is
provided as input otherwise), and then solves Ax = b.

Protocol:

1. For all i, j ∈ [d], let Pidi and Pidj be the parties that hold rows i and j from X.
If idi = idj , then party Pidi computes A[i, j] = 〈X[i], X[j]〉. Otherwise, parties
Pidi and Pidj run the two-party inner product protocol from Figure 3 to compute
A[i, j], where the CSP acts as the trusted initializer.

2. CSP generates garbled circuit and input garbled labels (C̃, {wi,0, wi,1}i∈N ) ←
GC.GarbCirc(C) and sends C̃ to Evaluator.

3. For all i ∈ [N ], let Pidi be the party who contributes the i-th input bit and bi be
the value of its input bit:

Non-Colluding Parties The CSP sends {wi,0, wi,1} to the party Pidi and
Pidi sends wi,bi to Evaluator.

Colluding Parties The CSP and the party Pidi run an oblivious transfer
protocol with inputs {wi,0, wi,1} and bi respectively. Pidi obtains wi,bi and
sends it to Evaluator.

4. The Evaluator evaluates GC.Eval(C̃, {wi,bi}i∈[N ]) to obtain the output.

Figure 5: Multi-party computation of linear regression.
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same techniques used for native types. This arrangement incurs some overhead relative to
using native types, even when the number of bits is equivalent.

We implemented both versions of the protocol of Figure 5. We found that there is no
significant improvement in removing the oblivious transfers under the assumptions that the
Evaluator and the parties do not collude. We therefore assume potentially colluding parties
in the sequel. Moreover, as the time spent in computing oblivious transfers in between
phases is negligible, the total running time is, with very high accuracy, the sum of the times
spent in each of the two phases. For this reason, we report the experiments for each of our
phases independently in this section. For example, our implementation of ridge regression
with n = 106 runs in less than 3 hours if d = 200, less than 1 hour if d = 100, and less than
2 minutes if d = 20.

7.1 Phase 1

The first phase of our protocol was executed with different numbers of parties, with the
inputs shared evenly among them. The computation time was recorded for CSP and each
party, so was the total running time. Table 1 shows our results. For n = 106 and two data
providers, the total running time is less than an hour when d = 200, less than 5 minutes
if d = 100 and less than 5 seconds if d = 10. To compare our approach (based on a semi-
trusted CSP) to a purely garbled circuit based approach, note that, using only Obliv-C, a
single inner product of two secret vectors of length n takes over 50 seconds, 5 minutes, and
90 minutes, for n = 104, n = 105, and n = 106, respectively.

Note that while the average computation time for the data providers unsurprisingly de-
creases with increasing number of parties, both the computation time for the CSP and the
total running time increase. The former can be attributed to the fact that with increasing
number of parties, a smaller portion of the covariance matrix can be computed locally, which
is why the CSP has to generate more random numbers. The latter is because our imple-
mentation is not fully parallel, leaving some room for improvement by future applications.

Similar behaviour can be seen in Table 2. Here, the total amount of data transferred from
the CSP and the average data provider is shown, as well as the input size for comparison.
Again, the CSP has more work with increasing number of parties, while each data provider’s
work decreases.

7.2 Phase 2

While Figure 4 in Section 5.3 shows gate counts for several variants of CGD and Cholesky,
Figure 6 shows the corresponding timings, which are, as expected, correlated with circuit
size. Again, it becomes clear that CGD with a fixed number of iterations outperforms
Cholesky for larger values of d. For d = 200, both Cholesky and CGD with 15 iterations
take less than 2 hours. For d = 500, Cholesky takes more than 24 hours while CGD 15
takes less than 9 hours.

8 Related Work

Cryptographic solutions for the secure computation of any functionality have been known for
than thirty years [5,17,40]. Yet, implementations of MPC protocols and evaluations of their

19



n d

Number of parties (data providers)

2 3 5

CSP DP Total CSP DP Total CSP DP Total

1000

10 0.005 0.007 0.020 0.006 0.007 0.021 0.007 0.006 0.019
20 0.013 0.021 0.070 0.017 0.020 0.077 0.021 0.016 0.074
50 0.073 0.092 0.377 0.097 0.087 0.449 0.120 0.067 0.470

100 0.286 0.349 1.495 0.377 0.312 1.783 0.474 0.232 1.913
200 1.121 1.335 5.947 1.488 1.230 7.136 1.869 0.865 7.635
500 7.049 8.878 28.212 9.268 7.748 36.822 11.561 5.651 45.959

2000

10 0.008 0.014 0.030 0.010 0.013 0.030 0.012 0.012 0.029
20 0.025 0.040 0.098 0.034 0.037 0.110 0.042 0.030 0.108
50 0.142 0.180 0.528 0.196 0.163 0.631 0.235 0.127 0.678

100 0.550 0.664 2.051 0.764 0.588 2.497 0.950 0.437 2.725
200 2.205 2.498 7.994 3.017 2.203 9.789 3.624 1.618 10.833
500 13.785 15.968 41.563 18.653 13.466 52.856 22.387 9.815 64.572

5000

10 0.018 0.034 0.057 0.024 0.032 0.061 0.029 0.029 0.061
20 0.060 0.093 0.174 0.081 0.086 0.199 0.102 0.072 0.209
50 0.348 0.420 0.892 0.482 0.381 1.124 0.577 0.299 1.226

100 1.356 1.485 3.334 1.840 1.343 4.292 2.283 1.023 4.854
200 5.386 5.584 13.003 7.324 4.998 16.558 8.644 3.694 19.260
500 33.565 35.374 73.895 45.352 31.320 97.195 53.921 22.389 116.003

10000

10 0.034 0.068 0.101 0.050 0.064 0.111 0.062 0.057 0.111
20 0.122 0.185 0.299 0.157 0.170 0.351 0.202 0.143 0.376
50 0.688 0.848 1.499 0.940 0.766 1.875 1.158 0.601 2.088

100 2.699 3.015 5.664 3.622 2.684 7.140 4.439 2.031 8.163
200 10.783 11.339 21.708 14.258 10.115 27.916 17.383 7.451 32.246
500 67.171 70.143 124.308 88.791 61.758 163.028 108.381 44.654 195.330

20000

10 0.066 0.137 0.188 0.088 0.128 0.207 0.110 0.114 0.212
20 0.233 0.371 0.553 0.310 0.341 0.649 0.394 0.288 0.701
50 1.365 1.706 2.766 1.868 1.533 3.429 2.375 1.207 3.889

100 5.390 6.027 10.216 7.181 5.402 13.026 8.880 4.076 15.055
200 21.174 22.752 39.594 29.031 20.291 51.259 34.254 14.939 59.812
500 133.874 139.446 234.949 180.684 123.391 309.776 217.714 88.795 367.198

50000

10 0.164 0.342 0.453 0.214 0.319 0.502 0.273 0.286 0.522
20 0.576 0.932 1.327 0.774 0.857 1.566 0.971 0.728 1.757
50 3.714 4.319 6.655 4.528 3.928 8.445 5.547 3.061 9.577

100 13.384 15.229 24.525 17.926 13.709 31.510 21.709 10.359 36.890
200 53.209 57.567 95.244 70.266 51.090 122.332 85.390 37.814 144.797
500 327.277 349.400 568.443 436.707 316.512 767.693 526.281 224.212 892.206

100000

10 0.332 0.686 0.907 0.436 0.645 1.009 0.552 0.576 1.043
20 1.164 1.905 2.718 1.551 1.751 3.214 1.897 1.481 3.598
50 6.993 8.782 13.675 9.202 7.940 16.957 11.189 6.244 19.706

100 27.197 30.899 49.773 36.473 27.963 64.077 43.098 21.033 75.125
200 106.098 116.875 191.752 141.750 104.366 249.667 169.827 77.018 293.731
500 651.692 713.298 1153.575 880.312 629.066 1516.056 1049.437 457.018 1802.101

200000

10 0.646 1.400 1.852 0.878 1.315 2.181 1.100 1.166 2.313
20 2.339 4.008 5.801 3.126 3.657 6.862 3.824 3.057 7.689
50 13.791 18.993 29.870 18.415 16.853 36.626 22.133 13.032 41.877

100 54.552 65.691 106.936 71.151 58.871 135.884 85.957 44.149 159.043
200 216.787 252.963 420.397 284.148 223.026 539.589 338.485 163.462 632.491
500 1305.504 1533.265 2507.263 1750.723 1343.198 3261.326 2095.598 965.710 3839.518

500000

10 1.660 3.521 4.883 2.203 3.283 5.766 2.704 2.901 6.642
20 6.030 9.969 14.817 7.903 9.035 18.042 9.778 7.539 21.066
50 35.708 47.658 76.599 47.104 42.060 95.111 57.257 32.419 111.185

100 136.578 170.530 286.751 184.484 149.449 360.543 221.563 110.986 417.770
200 540.070 655.201 1132.075 734.639 573.464 1447.904 886.833 412.219 1662.864
500 3382.436 4001.079 6832.068 4477.094 3451.451 8755.041 5440.699 2456.102 10 252.712

1000000

10 3.444 6.998 9.980 4.468 6.542 11.786 5.521 5.790 13.451
20 12.365 19.821 30.779 16.109 17.992 37.435 19.682 15.091 43.889
50 72.054 94.408 159.847 96.601 83.677 201.290 118.332 64.426 233.262

100 285.408 340.410 601.394 376.270 297.646 761.816 451.015 220.557 888.193
200 1129.410 1303.508 2356.076 1507.230 1127.955 2995.634 1828.218 827.767 3561.551

Table 1: Phase 1 computation time (seconds) for 2, 3, and 5 data providers and different
values of n (number of records) and d (number of features). For each number of
data providers, computation time of the CSP (left) and the data providers (middle,
averaged) is reported, as well as total running time (right).
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n d Input Size
Number of parties (data providers)

2 3 5

CSP DP CSP DP CSP DP

1000

10 78.1 KiB 557.8 KiB 278.6 KiB 725.0 KiB 241.5 KiB 892.3 KiB 178.3 KiB
20 156.2 KiB 2.0 MiB 1021.4 KiB 2.6 MiB 891.6 KiB 3.2 MiB 653.8 KiB
50 390.6 KiB 11.8 MiB 5.9 MiB 15.7 MiB 5.2 MiB 18.9 MiB 3.8 MiB

100 781.2 KiB 46.3 MiB 23.1 MiB 61.7 MiB 20.5 MiB 74.1 MiB 14.8 MiB
200 1.5 MiB 183.4 MiB 91.6 MiB 244.4 MiB 81.4 MiB 293.4 MiB 58.6 MiB

2000

10 156.2 KiB 1.1 MiB 556.6 KiB 1.4 MiB 482.6 KiB 1.7 MiB 356.4 KiB
20 312.5 KiB 4.0 MiB 2.0 MiB 5.2 MiB 1.7 MiB 6.4 MiB 1.3 MiB
50 781.2 KiB 23.6 MiB 11.8 MiB 31.3 MiB 10.4 MiB 37.7 MiB 7.5 MiB

100 1.5 MiB 92.5 MiB 46.2 MiB 123.3 MiB 41.1 MiB 148.0 MiB 29.6 MiB
200 3.1 MiB 366.3 MiB 183.1 MiB 488.3 MiB 162.7 MiB 586.1 MiB 117.2 MiB

5000

10 390.6 KiB 2.7 MiB 1.4 MiB 3.5 MiB 1.2 MiB 4.3 MiB 890.5 KiB
20 781.2 KiB 10.0 MiB 5.0 MiB 13.0 MiB 4.3 MiB 15.9 MiB 3.2 MiB
50 1.9 MiB 58.9 MiB 29.4 MiB 78.3 MiB 26.1 MiB 94.2 MiB 18.8 MiB

100 3.8 MiB 231.0 MiB 115.5 MiB 308.0 MiB 102.6 MiB 369.7 MiB 73.9 MiB
200 7.6 MiB 915.1 MiB 457.5 MiB 1.2 GiB 406.6 MiB 1.4 GiB 292.8 MiB

10000

10 781.2 KiB 5.4 MiB 2.7 MiB 7.1 MiB 2.4 MiB 8.7 MiB 1.7 MiB
20 1.5 MiB 19.9 MiB 10.0 MiB 26.1 MiB 8.7 MiB 31.9 MiB 6.4 MiB
50 3.8 MiB 117.8 MiB 58.9 MiB 156.5 MiB 52.2 MiB 188.4 MiB 37.7 MiB

100 7.6 MiB 462.0 MiB 231.0 MiB 615.8 MiB 205.2 MiB 739.2 MiB 147.8 MiB
200 15.3 MiB 1.8 GiB 914.8 MiB 2.4 GiB 813.0 MiB 2.9 GiB 585.5 MiB

20000

10 1.5 MiB 10.9 MiB 5.4 MiB 14.1 MiB 4.7 MiB 17.4 MiB 3.5 MiB
20 3.1 MiB 39.9 MiB 19.9 MiB 52.2 MiB 17.4 MiB 63.8 MiB 12.8 MiB
50 7.6 MiB 235.5 MiB 117.7 MiB 313.0 MiB 104.3 MiB 376.8 MiB 75.4 MiB

100 15.3 MiB 923.8 MiB 461.9 MiB 1.2 GiB 410.5 MiB 1.4 GiB 295.6 MiB
200 30.5 MiB 3.6 GiB 1.8 GiB 4.8 GiB 1.6 GiB 5.7 GiB 1.1 GiB

50000

10 3.8 MiB 27.2 MiB 13.6 MiB 35.3 MiB 11.8 MiB 43.5 MiB 8.7 MiB
20 7.6 MiB 99.6 MiB 49.8 MiB 130.4 MiB 43.5 MiB 159.4 MiB 31.9 MiB
50 19.1 MiB 588.7 MiB 294.3 MiB 782.5 MiB 260.8 MiB 941.9 MiB 188.4 MiB

100 38.1 MiB 2.3 GiB 1.1 GiB 3.0 GiB 1.0 GiB 3.6 GiB 739.0 MiB
200 76.3 MiB 8.9 GiB 4.5 GiB 11.9 GiB 4.0 GiB 14.3 GiB 2.9 GiB

100000

10 7.6 MiB 54.3 MiB 27.2 MiB 70.6 MiB 23.5 MiB 86.9 MiB 17.4 MiB
20 15.3 MiB 199.2 MiB 99.6 MiB 260.8 MiB 86.9 MiB 318.8 MiB 63.8 MiB
50 38.1 MiB 1.1 GiB 588.7 MiB 1.5 GiB 521.6 MiB 1.8 GiB 376.7 MiB

100 76.3 MiB 4.5 GiB 2.3 GiB 6.0 GiB 2.0 GiB 7.2 GiB 1.4 GiB
200 152.6 MiB 17.9 GiB 8.9 GiB 23.8 GiB 7.9 GiB 28.6 GiB 5.7 GiB

200000

10 15.3 MiB 108.7 MiB 54.3 MiB 141.3 MiB 47.1 MiB 173.9 MiB 34.8 MiB
20 30.5 MiB 398.5 MiB 199.2 MiB 521.6 MiB 173.9 MiB 637.6 MiB 127.5 MiB
50 76.3 MiB 2.3 GiB 1.1 GiB 3.1 GiB 1.0 GiB 3.7 GiB 753.5 MiB

100 152.6 MiB 9.0 GiB 4.5 GiB 12.0 GiB 4.0 GiB 14.4 GiB 2.9 GiB
200 305.2 MiB 35.7 GiB 17.9 GiB 47.6 GiB 15.9 GiB 57.2 GiB 11.4 GiB

500000

10 38.1 MiB 271.7 MiB 135.8 MiB 353.2 MiB 117.7 MiB 434.7 MiB 86.9 MiB
20 76.3 MiB 996.2 MiB 498.1 MiB 1.3 GiB 434.7 MiB 1.6 GiB 318.8 MiB
50 190.7 MiB 5.7 GiB 2.9 GiB 7.6 GiB 2.5 GiB 9.2 GiB 1.8 GiB

100 381.5 MiB 22.6 GiB 11.3 GiB 30.1 GiB 10.0 GiB 36.1 GiB 7.2 GiB
200 762.9 MiB 89.3 GiB 44.7 GiB 119.1 GiB 39.7 GiB 142.9 GiB 28.6 GiB

1000000

10 76.3 MiB 543.4 MiB 271.7 MiB 706.4 MiB 235.5 MiB 869.4 MiB 173.9 MiB
20 152.6 MiB 1.9 GiB 996.2 MiB 2.5 GiB 869.4 MiB 3.1 GiB 637.6 MiB
50 381.5 MiB 11.5 GiB 5.7 GiB 15.3 GiB 5.1 GiB 18.4 GiB 3.7 GiB

100 762.9 MiB 45.1 GiB 22.6 GiB 60.1 GiB 20.0 GiB 72.2 GiB 14.4 GiB
200 1.5 GiB 178.6 GiB 89.3 GiB 238.1 GiB 79.4 GiB 285.8 GiB 57.2 GiB

Table 2: Amount of data transferred in phase 1 by the CSP (left) and the data providers
(right, averaged). Similarly to Table 1, the amount of work for the CSP increases
with the number of data providers, while each data provider’s work decreases.
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10 0.052 2.751 7.585 15.099 22.608
20 0.146 12.507 23.492 46.798 70.089
50 0.698 124.918 120.002 239.209 358.467

100 2.509 841.372 446.744 890.811 1334.814
200 9.608 6144.301 1713.717 3417.499 5121.407
500 57.791 89 193.308 10 474.579 20 888.350 31 300.942

Figure 6: Comparison between different methods for solving linear systems: Running time
(seconds) of our Cholesky and CGD (with 5, 10, and 15 iterations) implemen-
tations as a function of input dimension. While Cholesky is faster than CGD
for lower values of d, it is quickly overtaken by the latter as d increases. This
shows that for high-dimensional data, iterative methods are preferable in terms of
computation time. The time spent running oblivious transfers is also shown, and
corresponds to a small fraction of the running time.
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practical efficiency have become well established part of the research agenda in this area only
in the last several years [4,6,18,20,21,24,29,30,34,35,39,42,45]. Popular applications used for
the empirical evaluation of implemented systems include graph algorithms [6, 18, 24, 29, 34,
45], data structure algorithms [24,29,42], string matching and distance algorithms [20,21,39]
and AES [4,20,21,39]. Questions of privacy preserving data mining and private computation
of machine learning algorithms including linear regression have been considered in several
works [12, 14, 23, 27, 38, 41] which offer theoretical protocols without implementation and
practical evaluations of their efficiency. The work of Hall et al. [19] proposes a protocol
for computing linear regression on vertically partitioned database based on homomorphic
encryption and runs a simulation for the protocol, which is several orders of magnitude
slower than our results (for database of size n ≈ 50000 with d ≈ 20 features their protocol
runs for two days).

The most relevant previous work to our paper is the work of Nikolaenko et al. [35] which
also considers the question of secure computation for ridge regression but in a different
setting. It addresses the setting of a horizontally partitioned database, where each record
is contributed by a different user. They divide their computation protocol in the same two
phases that we use. The horizontal partitioning of the database affects the first phase of
the computation. In particular in this case each entry of the covariance matrix M can be
expressed as a sum of terms, each of which can be computed by a single party. This enables
the authors of [35] to use additively homomorphic encryption for the inputs of different
users and compute M . In our setting of vertically partitioned data the entries of A require
multiplication of inputs coming from different parties. Non-interactivity for the first phase
was important in the case of [35], since this does not require users that contribute records in
the database to be online and participate in the protocol. In our setting the potential input
parties that hold vertical partitions of the database will be several companies/organizations
which come together to build a model over their joint data. Interactivity in this scenario is
not of vital importance and we choose to construct interactive protocols that achieve better
computation efficiency avoiding expensive homomorphic encryption, which in our case will
have to handle both addition and a single multiplication.

For the second phase of the secure ridge regression protocol, Nikolaenko et al. [35] imple-
ment Cholesky’s algorithm for solving systems of linear equations. We implemented three
different techniques for solving systems of linear equations: Cholesky, LDLT and CGD, and
showed that iterative methods like the latter enable higher dimensionality at the cost of a
resonable accuracy loss. In fact, phase II of our protocol coincides with the one in [35], and
hence our contribution is also valuable in the setting considered there.

9 Discussion

The problem of securely running machine learning algorithms when the training data is
distributed among several parties is an important milestone for the development of privacy-
preserving data analysis tools. In this paper we focus on a linear regression task widely
used in practical applications. We showed how the setting in which the training database
is vertically partitioned gives rise to technical problems different from the ones encountered
in the horizontally partitioned setup previously considered in the literature. We present a
hybrid secure multi-party computation protocol for solving this problem that involves an
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inner product protocol and a linear system solving protocol. By using tools based on shared
randomness and garbled circuits we obtain a highly scalable solution that can efficiently
solve linear regression problems on large-scale datasets. Our experiments show that it is
possible to apply these ideas to high-dimensional problems using an implementation of
conjugate gradient descent with fixed-point arithmetic and early stopping. In future work
we plan to extend our protocols to support secure hyper-parameter tuning in order to deal
with the entire data analysis pipeline. In addition we will extend our implementation to
deal with non-linear regression problems based on kernel ridge regression by implementing
secure multi-party evaluation of kernel functions typically used in machine learning.
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