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Privacy-Preserving Distributed Linear Regression on
High-Dimensional Data
Abstract: We propose privacy-preserving protocols for com-
puting linear regression models, in the setting where the train-
ing dataset is vertically distributed among several parties. Our
main contribution is a hybrid multi-party computation proto-
col that combines Yao’s garbled circuits with tailored proto-
cols for computing inner products. Like many machine learn-
ing tasks, building a linear regression model involves solving
a system of linear equations. We conduct a comprehensive
evaluation and comparison of different techniques for securely
performing this task, including a new Conjugate Gradient De-
scent (CGD) algorithm. This algorithm is suitable for secure
computation because it uses an efficient fixed-point represen-
tation of real numbers while maintaining accuracy and conver-
gence rates comparable to what can be obtained with a classi-
cal solution using floating point numbers. Our technique im-
proves on Nikolaenko et al.’s method for privacy-preserving
ridge regression (S&P 2013), and can be used as a building
block in other analyses. We implement a complete system and
demonstrate that our approach is highly scalable, solving data
analysis problems with one million records and one hundred
features in less than one hour of total running time.
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1 Introduction

Predictive modeling is an essential tool in decision making
processes in domains such as policy making, medicine, law
enforcement, and finance. To obtain more accurate models, it
is common that organizations cooperate to build joint training
datasets, specially when the analysis at hand involves com-
plex phenomena whose study requires vast amounts of data.
However, collaborative analyses involving private data are of-
ten limited by ethical and regulatory constraints. As an exam-
ple, consider a research project consisting of a study to pre-
dict medical conditions given data related to socio-economic
background. While databases holding medical, judicial, and
tax records linkable by common unique identifiers (e.g., so-
cial security numbers) exist, they are often held by different
institutions.

One solution is to rely on a trusted third-party that is pro-
vided with the databases from each party in the clear, which
then performs the analysis over the data and returns the result
to all parties. This approach requires all participants to agree
on one party they trust, and poses an obvious privacy threat to
the data. Finding effective ways of limiting the amount of trust
to be placed on such third-party is an ongoing research chal-
lenge being tackled simultaneously from many perspectives.

Our goal is to enable such joint analyses without the
need to expose each organization’s sensitive data to any other
party. We consider a natural setup where parties have incen-
tives to collaborate in obtaining the parameters of a regres-
sion model, but are not willing to disclose any information
about their data beyond what is revealed by the learned model.
Secure Multi-Party Computation (MPC) protocols provide a
general mechanism for multiple parties to jointly compute a
function on their private inputs. However, existing out-of-the-
box MPC techniques do not yet scale to problem sizes en-
countered in real-world data analysis applications. The goal
of this work is to circumvent such limitations by develop-
ing application-specific efficient protocols with better perfor-
mance than generic MPC techniques.

The motivation to join databases in the medical example
above is to build a more accurate model by using a joint train-
ing dataset of higher dimensionality than any of the original
ones. This is known as data analysis on vertically-partitioned
datasets, as the columns (i.e., features) in the training dataset
are distributed among several parties. This is in contrast with
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the horizontally-partitioned setting, where parties produce a
joint dataset by contributing rows (i.e., data points) involving
a fixed set of features.

Linear regression is a fundamental machine learning task
that fits a linear curve over a set of high-dimensional data
points. An important property of this problem is that it can
be cast as an optimization problem whose solution admits
a closed-form expression. Formally, linear regression can be
reduced to solving a system of linear equations of the form
Aθ = b. Interestingly, solving systems of linear equations is
a basic building block of many other machine learning algo-
rithms [54]. Thus, secure MPC solutions for solving linear sys-
tems can also be used to develop other privacy-preserving data
analysis algorithms.

Contributions. In this paper, we propose a solution for se-
curely computing a linear regression model from a vertically-
partitioned dataset distributed among an arbitrary number of
parties. Our protocols are the result of securely composing a
protocol for privately computing the coefficients of the sys-
tem of equations Aθ = b from distributed datasets (aggrega-
tion phase), and a protocol for securely solving linear systems
(solving phase). Our main contributions are as follows:
– Scalable MPC protocols for linear regression on vertically

partitioned datasets (Section 3). We design, analyze, and
evaluate two hybrid MPC protocols allowing for different
trade-offs between running time and the availability of ex-
ternal parties that facilitate the computation.

– A fast solver for high-dimensional linear systems suitable
for MPC (Section 5). Our solver relies on a new Conju-
gate Gradient Descent (CGD) algorithm that scales better,
both in terms of running time and accuracy, than the best
previous MPC-based alternative.

– We conduct an extensive evaluation of our system on real
data from the UCI repository [46] (Section 6.4). The re-
sults show that our system can produce solutions with
accuracy comparable to those obtained by standard tools
without privacy constraints.

Our work is also the first to undertake a formal analysis of the
effect different number representations have on the accuracy
of privacy-preserving regression protocols. We further propose
a thorough data pre-processing pipeline to mitigate accuracy
loss (Section 4).

While the basic versions of our protocols are secure
against semi-honest adversaries, in Section 7 we discuss exten-
sions of our protocol beyond semi-honest security. We imple-
mented a protocol extension providing stronger security guar-
antees for the solving phase and observed that it introduces
minimal overhead over the semi-honest solution.

Code for our complete system is publicly available under
open-source licenses [75].

Related work. Questions of privacy-preserving data mining
and private computation of machine learning algorithms have
been considered in several works [19, 40, 48, 71], provid-
ing theoretical protocols without implementations or practi-
cal evaluations of their efficiency. Early implementations of
privacy-preserving linear regression protocols [21, 65] either
don’t use formal threat models, or leak additional information
beyond the result of the computation.

Hall et al. [35] were the first to propose a protocol for
linear regression with formally defined security guarantees.
However, due to the dependence on expensive homomorphic
encryption, the resulting system does not scale well to large
datasets.

Another implementation of linear regression is given by
Bogdanov et al. [6]. They compare multiple methods for solv-
ing regression problems, including standard Conjugate Gradi-
ent Descent. However, they work in a threat model with three
computing parties and a honest majority among those. Al-
though they allow for more than three input parties, this means
that they cannot handle the two-party case. Furthermore, their
evaluation is limited to problems with at most 10 features.

Nikolaenko et al.’s work [59] on secure computation for
linear regression is the one most similar to ours. In partic-
ular, their approach also considers a protocol split into ag-
gregation and solving phases implemented using multiple
MPC primitives. However, Nikolaenko et al. only consider the
horizontally-partitioned setting while we focus on the more
challenging case of vertically-partitioned datasets. Our imple-
mentation of the solving phase using CGD improves the re-
sults obtained using Nikolaenko et al.’s secure Cholesky de-
composition in terms of both speed and accuracy for datasets
with more than 100 features (experiments in [59] were limited
to datasets with at most 20 features). Furthermore, our CGD
algorithm can also be used directly to improve other MPC pro-
tocols requiring a secure linear system solver [33, 35, 59].

Vertically-partitioned databases have been also studied
from the perspective of privacy-preserving querying of statis-
tical databases [22]. This work falls under the paradigm of dif-
ferential privacy [23], where the goal is to mitigate the privacy
risks incurred by revealing to an attacker the model computed
by a machine learning algorithm. Our work addresses an or-
thogonal concern, namely that of preserving privacy during
the computation the model. Combining MPC and differential
privacy is an interesting problem we plan to address in future
work.
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2 Background

The following two sections provide background on linear re-
gression and MPC techniques that will be used in this paper.

2.1 Linear Regression

Linear regression is a fundamental building block of many ma-
chine learning algorithms. It produces a model given a train-
ing set of sample data points by fitting a linear curve through
them. Formally, a linear model is a real-valued function on d-
dimensional vectors of the form x 7→ 〈θ,x〉, where x ∈ Rd is
the input vector, θ ∈ Rd is the vector of parameters specify-
ing the model, and 〈θ,x〉 =

∑d
j=1 θjxj is the inner product

between θ and x. The term linear comes from the fact that the
output predicted by the function 〈θ,x〉 is a linear combination
of the features represented in x.

The learning algorithm has access to a training
set of samples representing the input-output relation the
model should try to replicate. These are denoted as
(x(1), y(1)), . . . , (x(n), y(n)) with x(i) = (x(i)

1 , . . . ,x(i)
d ) ∈

Rd and y(i) ∈ R for i ∈ [n].
A standard approach to learn the parameters of a linear

model is to solve the ridge regression optimization:

argmin
θ

1
n

n∑
i=1

(y(i) − 〈θ,x(i)〉)2 + λ‖θ‖2 (1)

Here, λ‖θ‖2 is known as a ridge (or Tikhonov) regularization
term weighted by the regularization parameter λ > 0. When
λ = 0, this optimization finds the parameter vector θ minimiz-
ing the mean squared error between the predictions made by
the model on the training examples x(i) and the desired out-
puts y(i). The ridge penalty is used to prevent the model from
overfitting when the amount of training data is too small.

The optimization problem (1) is convex and its solution
admits a closed-form expression. A way to derive this solution
is to reformulate the optimization problem by writing X ∈
Rn×d for the matrix with n rows corresponding to the different
d-dimensional row vectors x(i)> so that X(i, j) = x

(i)
j , and

Y ∈ Rn for a column vector with n entries corresponding to
the training labels y(i). With this notation, (1) is equivalent to

argmin
θ

1
n
‖Y −Xθ‖2 + λ‖θ‖2 .

Now, by taking the gradient of this objective function and
equating it to zero one can see that the optimization (1) re-
duces to solving this system of linear equations:(

1
n
X>X + λI

)
θ = 1

n
X>Y (2)

where I represents the d× d identity matrix.
Therefore, ridge regression reduces to solving a system of

linear equations of the form Aθ = b, where the coefficients
A = 1

nX
>X + λI and b = 1

nX
>Y only depend on the train-

ing data (X,Y ). Since the coefficient matrixA is positive def-
inite by construction ridge regression can be solved using one
of the many known algorithms for solving positive definite lin-
ear systems.

2.2 Multi-Party Computation

Multi-Party Computation (MPC) is an area of cryptography
concerned with enabling multiple parties to jointly evalu-
ate a public function on their private inputs, without leak-
ing any information about their respective inputs (other than
their sizes and whatever can be inferred from the result of
the computation). Several generic techniques have been devel-
oped for MPC including Yao’s garbled circuits protocol [70],
the GMW protocol [31], and other secret-sharing based tech-
niques [7, 41, 50]. These differ in several aspects including the
number of parties they support, the representation they use for
the evaluated function (e.g., binary vs. arithmetic circuits), the
function families that can be evaluated securely with these so-
lutions (e.g., bounded-degree polynomials vs. arbitrary poly-
nomials), as well trade-offs in terms of communication, com-
putation, and security guarantees that they provide. In Sec-
tion 3, we keep these differences in mind in order to choose the
right MPC techniques for each part of the computation. Pop-
ular applications used for the empirical evaluation of practical
MPC systems include graph algorithms [5, 32, 42, 51, 57], data
structure algorithms [42, 51], string matching and distance al-
gorithms [36, 37, 66] and AES [3, 36, 37, 66].

Other than in Section 7, this paper assumes semi-honest
adversaries. Such adversaries are limited to observing the full
trace of the protocol execution without influencing it. This
contrasts with malicious adversaries, that take complete con-
trol of protocol participants, and may deviate from the pro-
tocol in arbitrary ways. For detailed definitions of security in
both models see Goldreich [30]. To prove security, we use a
simulation-based approach [30, 47] where one argues that a
protocol is secure if it can be simulated in an ideal environ-
ment in which there is no data leakage by definition.

For our solving phase, we use Yao’s two-party garbled cir-
cuits protocol, which was formally-described and proven se-
cure by Lindell and Pinkas [49]. In its basic form, this protocol
provides semi-honest security for computing arbitrary func-
tions represented as a binary circuit. A two-party computation
protocol based on garbled circuits has three phases: circuit gar-
bling, input garbling and garbled circuit evaluation. In the first
step one of the parties (the garbler) creates a garbled represen-
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tation of the evaluated Boolean circuit where wire values are
represented with cryptographic keys (garbled labels) and the
circuit gates are implemented as garbled tables of ciphertexts
that are encrypted using the wire labels. The garbled circuit
consisting of all garbled gates is provided to the other party
(the evaluator) who can evaluate it on the input for which it
is given the corresponding input garbled labels. These input
garbled values are provided in the input garbling phase. While
the garbler can directly send the garbled values for its input
bits, the parties need to run an oblivious transfer (OT) proto-
col [55, 62] to enable the evaluator to obtain the input garbled
labels corresponding its input bits without revealing those in-
puts to the generator.

3 Protocol description

We consider the problem of solving a ridge regression problem
when the training data (X ∈ Rn×d,Y ∈ Rn) is distributed
vertically (by columns) among several parties. As in previous
work on privacy-preserving ridge regression [35, 59], we as-
sume that the regularization parameter λ is public to all the
parties, and hence the implementation of a secure data anal-
ysis pipeline including hyper-parameter tuning (e.g., cross-
validation) is beyond the scope of this paper. Furthermore, we
also make the assumption in the vertically partitioned case that
the correspondence between the rows in the datasets owned by
different parties is known a priori. This assumption is easy to
enforce in databases with unique identifiers for each record,
given that efficient private set intersection protocols exist. The
more complex task of privacy-preserving entity resolution is
beyond the scope of this paper.

As discussed in Section 2.1, solving a ridge regression
problem reduces to the solution of a positive definite linear
system. A superficial inspection of Equation (2) shows that
this can be seen as two sequential tasks: (i) compute the matrix
A = 1

nX
>X + λI and the vector b = 1

nX
>Y , and (ii) solve

the system Aθ = b. In the distributed privacy-preserving set-
ting, task (i) above corresponds to an aggregation phase where
data held by different parties has to be combined. In contrast,
we refer to (ii) as the solving phase, where the system of lin-
ear equations resulting from the aggregation is solved and all
the parties obtain the solution in some form. It is important to
note that in practice, ridge regression is used on problems with
n� d, and that, while the input of the aggregation phase is of
the order of n×d, the solving phase has input size independent
of n, i.e., of the order of d2. This demonstrates the importance
of having an efficient aggregation phase.

As mentioned in the introduction, the scenario where
(X,Y ) is partitioned horizontally among the parties was stud-

ied by Nikolaenko et al. [59]. With this partitioning, the com-
putation ofA and b can be cast as an addition of matrices com-
puted locally by the parties. More concretely, in that case one
can write A =

∑n
i=1 Ai + λI with Ai = x(i)x(i)>/n, and

similarly b =
∑n
i=1 = bi with bi = x(i)y(i)/n. The absence

of the need for secure multiplication is crucial from a secure
computation perspective, and guided the design of the protocol
of [59], as non-linear operations are expensive in secure com-
putation. In contrast, the setting where the data is vertically
partitioned requires secure computation of inner products on
vectors owned by different parties. In the following section,
we analyze the exact requirements for this setting, and propose
secure computation protocols to overcome this challenge.

3.1 Aggregation Phase

For clarity of presentation, we first describe the two-party case,
where X is vertically partitioned among two parties P1 and
P2 as X1 and X2, and Y is held by one of the parties, say
P2. As described above, the goal of this phase is to have the
parties hold additive shares of (A, b). With this notation, the
functionality f of the aggregation phase can be described as
follows:

f(X1,X2,Y ) =
(
(A−A2, b− b2), (A2, b2)

)
,

where (A− A2, b− b2) and (A2, b2) are the outputs received
by the first and the second party respectively.

Our protocol implements f in a secure way. Let us now
have a closer look at what needs to be computed. For simplic-
ity, assume that each party holds a block of contiguous fea-
tures. Then, the following equations show how the content of
the output matrix depends on the inputs of the two parties.

X> =
[
X>1
X>2

]
X = [X1 X2]

X>X =
[
X>1 X1 X>1 X2
X>2 X1 X>2 X2

]
Observe that the upper left part of the matrix M = X>X de-
pends only on the input of party P1 and the lower right part
depends only on the input of party P2. Hence, the correspond-
ing entries of M can be computed locally by P1, while P2
simply has to set her shares of those entries to 0. On the other
hand, for entries Mij of M such that features i and j are held
by distinct parties, the parties need to compute an inner prod-
uct between a column vector from X1 and a column vector
from X2. To do so, we rely on a secure inner product protocol
which we present next (Section 3.1.1). We note also that be-
cause the two off-diagonal blocks of M are transpositions of
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each other, computing only one of these blocks is enough to
get an additive share of M .

In the multi-party case, similarly to the two-party case,
the vertical partitioning of the database implies that each party
holds a subset of the columns ofX and a corresponding subset
of the rows of X>. Since each value in A is an inner product
between a row vector of X> and a column vector of X , this
means that each value in A depends on the inputs of at most
two parties. Thus, also in the multi-party case, the aggrega-
tion phase for vertically-partitioned datasets can be reduced
to secure two-party computation of inner products. At the end
of the aggregation phase, the parties will obtain A in a form
where each entry is either known to one party or is shared be-
tween some pair of input parties.

3.1.1 Secure Inner Product

In this section, we present protocols for two parties P1 and P2,
holding vectors ~x and ~y, respectively, to securely compute the
inner product of their vectors and obtain additive shares of the
result. As mentioned before, we use a fixed-point encoding for
real numbers (see Section 4 for details). Thus, our numbers
can be represented as elements of a finite field Zq , and hence
the functionality we need can be described as

f(~x, ~y) = (r, 〈~x, ~y〉 − r) (3)

where ~x, ~y ∈ Znq , r is a random element of Zq , and each party
gets one of the components of the output. There are several
techniques that can be used for this task as, essentially, it cor-
responds to secure multiplication.

Generally, MPC techniques represent the implemented
functionality either as arithmetic circuits (e.g., SPDZ [15],
TinyOT [58]) or as Boolean circuits (e.g., Yao’s protocol [70],
GMW [31]). While the former makes it possible to represent
arithmetic operations very efficiently, the latter is better for
performing bit-level operations. A second important property
of MPC protocols is round complexity. Most notably, some
techniques such as Yao’s garbled circuits have a constant num-
ber of rounds, while for others (e.g., SPDZ, TinyOT, GMW),
the number of rounds increases with the multiplicative depth
of the circuit being evaluated (for Boolean circuits, this is
the AND-depth). Note that the functionality in Equation (3)
only consists of additions and multiplications. Furthermore,
all multiplications can be done in parallel. Thus, a representa-
tion as an arithmetic circuit with constant multiplicative depth
is the natural choice.

We propose two protocols for the functionality in Equa-
tion (3). The first is an extension of OT-based secure multipli-
cation, which was originally proposed by Gilboa [29], and is
used in different MPC contexts [18, 41]. It uses OT to compute

Parties: P1, P2, and Trusted Initializer TI.
Inputs: P1 : ~x ∈ Zn

q ; P2 : ~y ∈ Zn
q .

Outputs: P1 : s1 ∈ Zq ; B : s2 ∈ Zq such that s1 + s2 = 〈~x, ~y〉.

Protocol:
1. TI generates random vectors ~a,~b ∈ Zn

q and a random number
r ∈ Zq , and sets z = 〈~a,~b〉 − r. It sends (~a, r) to P1, and
(~b, z) to P2.

2. P1 sends ~x+ ~a to P2.
3. P2 sends ~y −~b to P1.
4. P1 computes its output share as s1 = 〈~x, ~y −~b〉 − r.
5. P2 computes its output share as s2 = 〈~x+ ~a,~b〉 − z.

Fig. 1. Secure two-party inner product/multiplication supported by
a trusted initializer. Its security relies on the fact that the TI does
not collude with the data providers, as described in Lemma 1.

additive shares of the product of two numbers in a binary field,
which can be trivially extended to securely compute the inner
product of two vectors.

Our second secure inner product protocol uses only sym-
metric key operations and is much more efficient than the pre-
vious one. It builds upon techniques based on precomputation
of multiplicative triples [2], as the secret sharing techniques
mentioned above, and relies on an initializer that aids in the
computation. Our protocol can also be seen as a modification
of the construction presented by Du and Attalah [20] where
the trusted initializer does not keep a share of the result, and is
presented in Figure 1.

In both our protocols, we exploit the facts that, in our case,
(i) the input vectors are each completely owned by one of the
parties, and not shared among them, (ii) only two-party com-
putations are needed, (ii) we are concerned about semi-honest
security at this point. These observations lead to simpler pro-
tocols than general MPC protocols based on secret sharing.

In Section 6.3 we present an evaluation of our two proto-
cols for secure inner product, in the context of our implemen-
tation of the aggregation phase for secure linear regression.

3.2 Solving Phase

After the aggregation phase, the parties hold additive shares of
a square, symmetric, positive definite matrix A and a vector b,
and the task is to securely solve Aθ = b.

In line with previous work [35, 59], and in order to
achieve constant round-complexity, we choose Yao’s garbled
circuits for our solving phase, and introduce two additional
non-colluding parties. These aid in the computation without
learning neither the result, nor anything about the parties’ in-
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Parties: Data providers P1 . . . ,Pn, CSP, and Evaluator.
Inputs: Pi : share (Ai, bi) of an equation Aθ = b.
Output: The data providers learn a solution of Aθ = b.

Protocol:
1. The CSP generates a garbled circuit C for a functional-

ity f((A1, b1), . . . , (An, bn)) that reconstructs and solves
Aθ = b and sends it to the Evaluator.

2. Each data provider Pi runs oblivious transfers with the CSP to
obtain garbled values (Âi, b̂i) for (Ai, bi) in C and forwards
them to the Evaluator.

3. The Evaluator evaluates C and shares θ̂ with the data
providers.

4. The CSP sends the decryption mappings for the data providers
to obtain θ from θ̂.

Fig. 2. The solving phase of our protocol. Its security in the semi-
honest threat model follows from the security proof for Yao’s proto-
col in [49].

put. In fact, our architecture relying on two external parties can
be seen as a way of reducing a multi-party problem to a two-
party problem, and had been used before in [59] and [56].
Analogously to the presentation in [59], we call our additional
roles Crypto Service Provider (CSP) and Evaluator. For clar-
ity, from now on, we will call our parties data providers. The
CSP is in charge of generating a garbled circuit for solving
Aθ = b, while the Evaluator will do the evaluation. In contrast
to [59], the Evaluator does not necessarily learn the solution of
the system in our protocol. The solving phase of our protocol
is presented in Figure 2.

Note that the CSP and the Evaluator are only required
to be non-colluding and hence, for the protocol in Figure 2,
their roles could be taken by some of the data providers. In
particular, for the case with two data providers, no additional
parties are needed. We discuss security considerations of the
solving phase protocol in the next section, where we present
our complete protocol for secure linear regression.

Finally, let us note that we have not specified the details
of the circuit C yet. It is important to remark that, after having
designed a fast aggregation phase, the bottleneck of our proto-
col in terms of running time will now be in the solving phase.
Hence, the concrete algorithm for solving Aθ = b is a crucial
element for the scalability of our protocol for secure linear re-
gression. In Sections 5 and 4 we discuss desirable properties
of a good algorithm for solving systems of linear equations
tailored for MPC, and propose a Conjugate Gradient Descent
algorithm. Finally, let us mention that, as we will see in Sec-
tion 5, the circuit C has high degree. As mentioned in the pre-
vious section this motivates the choice of GCs as underlying

CSP/TI Evaluator

P1

P2

...

Pk

(a)

(a)

(a)

(c)

(d)

(d)

(d)

(e)

(e)

(e)

(b)

Aggregation phase

Solving phase

Fig. 3. The multi-party protocol: (a,b) The data providers compute
additive shares of Aθ = b, by doing local precomputations and
executing several instances of the inner product protocol of Fig-
ure 1. (c) The CSP generates a garbled circuit C for a functionality
that reconstructs and solves Aθ = b and sends it to the Evaluator.
(d) Each data provider Pi obtains garbled values for their shares
using OT and forwards them to the Evaluator. (e) The Evaluator
evaluates C and shares the garbling of the result θ̂ with the data
providers. Finally, The CSP sends the decryption mappings for the
data providers to obtain θ from θ̂.

MPC technique. An extensive evaluation of MPC techniques
for the task of linear system solving is left for further work.

3.3 Secure Linear Regression

Our main protocol is depicted in Figure 3. In this case, the
composition between the aggregation and solving phases is
implemented in steps (d) and (e) by means of oblivious trans-
fers between the CSP and the data providers. Here, the roles
of Trusted Initializer and CSP in the aggregation and solving
phases are taken by a single additional non-colluding party,
while the role of the Evaluator could be taken by one of the
data providers.

In the two-party case, the roles of the CSP and the
Evaluator can be taken by the data providers, and the com-
position of the two phases is straightforward, while the role
of Trusted Initializer in the aggregation phase is taken by an
additional non-colluding party that aids in the computation.

A variant of our protocol described above implements
the aggregation phase using the protocol based on OT (Sec-
tion 3.1.1). In this way, we remove the need for an external
non-colluding party. We will consider the performance of this
variant in the experimental evaluation, and revisit it when we
consider extensions of our protocol to withstand malicious ad-
versaries.

Up to this point we have focused on design and correct-
ness aspects of our protocols, without discussing their security
guarantees. We undertake that task in the following section.
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3.3.1 Security Against Semi-Honest Adversaries

Our work is in the semi-honest – also known as honest-but-
curious – threat model. Security in this model does not pro-
vide privacy, correctness, or even fairness guarantees if a party
deviates from the protocol. However, the semi-honest setting
is appropriate for distributed machine learning applications
where parties are generally trusted, but should be prevented
from sharing their data in the clear for legal reasons, or the
computation is run in a controlled environment. This condi-
tions are reasonably easy to meet in scenarions where the par-
ties are corporations or government agencies. In this section
we formally argue the correctness of our protocol in the semi-
honest threat model, and in Section 7 we discuss an extension
to guarantee correctness of the result.

Similarly to how we presented our protocols, we argue
security of our linear regression protocol with a modular ap-
proach, by proving the security of the protocol based on the
security of its subprotocols.

Let us thus first argue security of our protocols for the
inner product functionality: while for the security of the OT-
based protocol we refer the reader to [18, 29], we state the
correctness and security of the protocol based on a Trusted
Initializer in the following lemma.

Lemma 1. The protocol in Figure 1 is a secure two-party
computation protocol against semi-honest adversaries for the
functionality f(~x, ~y) = (r, 〈~x, ~y〉 − r). where (~x, ~y) and
(r, 〈~x, ~y〉 − r) are the inputs and outputs of the parties.

Proof. Correctness can be easily verified from the definition
of the resulting shares. To prove security, we construct sim-
ulators Sim1 and Sim2, which simulate the views of the two
parties.
Sim1 generates a view for P1 given ~x and P1’s output in the
ideal functionality, denoted s∗1. The message from the TI is
simulated as (~a′, 〈~x, ~b′〉 − s∗1), while the message from P2 is
simulated as ~b′, where ~a′, ~b′ ∈ U(Znq ). The resulting view has
the same distribution as P1’s view in the real protocol execu-
tion.
Similarly, Sim2 generates a view for P2 given ~y and s∗2 as fol-
lows: the message from the TI is simulated as (~b′, 〈~a′, ~b′〉−s∗2),
while the message from P1 is simulated as ~a′, where ~a′, ~b′ ∈
U(Znq ). These messages have the same distribution as P2’s
view in the real execution, which completes the proof.

The security of our main protocol depicted in Figure 3 is
stated in the following theorem. Informally, the theorem states
that, as long as the participants do not deviate from the proto-
col, and the external parties (CSP/TI and Evaluator) are non-
colluding, none of the parties learn anything from the inputs

of the data providers that cannot be deduced from the result
of the computation, namely the regression parameter θ. More-
over, recall that the external parties do not obtain θ.

Theorem 1 (Security). Let Π1 be a secure two-party compu-
tation protocol for the inner product functionality defined in
Section 3.1.1 with security against semi-honest adversaries,
and Π2 be a two-party computation protocol based on garbled
circuits with semi-honest security. The construction in Figure 3
is a secure computation protocol that provides security against
semi-honest adversaries, in the setting where the CSP/TI and
the Evaluator do not collude with neither the data providers
nor each other.

Proof. We need to show simulation security against a semi-
honest non-colluding adversary that controls the CSP, a semi-
honest non-colluding adversary that controls the Evaluator,
and a semi-honest adversary that controls a subset of the in-
put parties.

The security of the inner product protocol Π1 implies that
there exist simulators SimP1 and SimP2 which can simulate the
view of each of the two parties in the execution of the protocol.
The security of the two party computation protocol based on
garbled circuits Π2 implies the existence of simulators Simgarb
and Simeval which work as follows. Simgarb simulates the view
of the garbling party, which consists of the execution of the
OT protocols as a sender. Simeval simulated the view of the
Evaluator which consists of the garbled circuit itself as well at
the view in the execution of the OT protocols as a receiver. We
will use these simulators in our proof.
Semi-honest CSP. The view of the CSP in the secure compu-
tation protocol consists only of the messages exchanged in the
garbled circuit computation where it has no input, and the mes-
sages exchanged in the OT executions with the data providers.
Both can be simulated using Simgarb.
Semi-honest Evaluator. Similarly to the case of the CSP, the
view of the Evaluator in the execution of the protocol consists
of the messages exchanged in the execution of the garbled cir-
cuit evaluation where it has no inputs. Therefore, we can use
the simulator Simeval that can simulate its view.
Semi-honest Input Parties. The view of an adversary who con-
trols a subset of the input parties in the protocol in Figure 2
consists of the messages exchanged in the executions of the
inner product protocol in the aggregation phase with other in-
put parties not controlled by the adversary, the messages in
the OT executions with the CSP in the solving phase together
with mappings for the output garbled labels as well as the
garbled output the parties receive from the Evaluator. We can
use the simulators SimP1 and SimP2 to obtain the view of the
adversary in the aggregation phase. Additionally, we can use
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Simgarb for Π2 to simulate the view of the adversary in the OT
executions. Given the value θ of the output solution, which the
parties will receive, the simulator Simgarb can also generate
mappings for the output garbled labels to real values and a set
of garbled labels for the output that open to θ. This completes
the proof.

The above security argument can be easily adapted to the case
where the evaluator is one of the data providers, as long as
CSP/TI does not collude with any other party.

We can further extend the security guarantees of our
protocol, to the setting where the roles of the CSP and the
Evaluator are executed by two of the parties, as long as these
two parties are semi-honest and non-colluding with each other.
In this scenario, we use the OT-based protocol for the aggre-
gation phase, as it does not require a Trusted Initializer (which
was instantiated by the CSP). The security guarantees for this
variant in which no external parties are required, are stated in
the next theorem.

Theorem 2 (Security without external parties). Let Π be an
instantiation of the protocol described in Figure 3 where the
roles of CSP and the Evaluator are implemented by two dis-
tinct input providers, and the aggregation phase is instantiated
with the OT-based inner product protocol. Then, Π provides
security against semi-honest adversaries in the setting where
the CSP and the Evaluator do not collude.

In Section 6 we provide an experimental evaluation of the pro-
tocols of the two theorems above where we quantify the speed-
up obtained by relying on an offline phase performed by a non-
colluding external party acting as Trusted Initializer.

4 Number Representation

Implementing secure MPC protocols to work with numerical
data poses a number of challenges. In our case, the most signif-
icant of those challenges is choosing an encoding for numer-
ical data providing a good trade-off between efficiency and
accuracy. The IEEE 754 floating-point representation is the
standard choice used by virtually every numerical computation
software because of its high accuracy and numerical stability
when working with numbers across a wide range of orders of
magnitude. However, efficient implementations of IEEE 754-
compliant secure MPC protocols are a subject of on-going re-
search [17, 61], with the current state-of-the-art yielding 32 bit
floating-point multiplication circuits running in time compara-
ble to computers from the 1960’s [68]. Unfortunately, these
implementations do not yet scale to the throughput required
for data analysis tasks involving large datasets, and forces us

to rely on fixed-point encodings like previous work in this
area [10, 35, 59]. The rest of this section presents the details of
the particular fixed-point encoding used by our system, with a
particular emphasis on its effect on the accuracy of the proto-
col. We further introduce data normalization and scaling steps
that play an important role in the context of linear regression.

4.1 Fixed-Point Arithmetic

Our use of fixed-point encodings follows closely previous
works on secure linear regression [10, 35, 59]. However, un-
like these, we provide a formal analysis of the errors such en-
codings introduce when used to simulate operations on real
numbers.

In a fixed-point signed binary encoding scheme each num-
ber is represented using a fixed number of bits b. These bits are
subsequently split into three parts: one sign bit, bf bits for the
fractional part, and bi bits for the integral part, with the ob-
vious constraint b = bi + bf + 1. For each possible value of
bf and bi one gets an encoding capable of representing all the
numbers in the interval [−2bi+2−bf−1, 2bi+1−2−bf−1] with
accuracy 2−bf . In general, arithmetic operations with fixed-
point numbers can be implemented using signed integer arith-
metic, though special care is required to deal with operations
that might result in overflow. We point the reader to [24] for
an in-depth discussion of fixed-point arithmetic.

In order to implement the secure inner product protocol
described in Figure 1 we need to simulate fixed-point arith-
metic over a finite ring Zq whose elements can be represented
using b bits. Thus, the encoding used by our protocols involves
two steps: mapping reals into integers, and mapping integers
to integers modulo q with q = 2b. We introduce encoding and
decoding maps for each of these two steps, as summarized in
the following diagram:

R
φδ
�
φ̃δ

Z
ϕq
�
ϕ̃q

Zq .

The map encoding reals into integers is given by φδ(r) =
[r/δ], where the parameter δ = 2−bf controls the encoding
precision and [·] returns the rounding of a real number to the
closest integer (with ties favouring the largest integer). In par-
ticular, δ is the smallest number that can be represented by
our encoding φδ . The integer decoding mapping is given by
φ̃δ(z) = zδ. Next we recall several well-known facts [24]
about the error introduced by operating under a fixed-point en-
coding with finite precision δ. For any reals r, r′ ∈ R we have
the following:
1. |r − φ̃δ(φδ(r))| ≤ δ,
2. |(r + r′)− φ̃δ(φδ(r) + φδ(r′))| ≤ 2δ,
3. |(rr′)− φ̃δ2(φδ(r)φδ(r′))| ≤ (|r|+ |r′|)δ + δ2.
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Note the last fact involves a decoding with precision δ2 to ac-
count for the increase in the number of fractional bits required
to represent the product of two fixed-point numbers.

Encoding reals in a bounded interval [−M ,M ] with φδ
yields integers in the range [−M/δ] ≤ φδ(r) ≤ [M/δ]. This
interval contains K = 2M/δ + 1 integers. Thus, it is possible
to map this interval injectively into any ring Zq of integers
modulo q with q ≥ K. We obtain such injection by defining
the encoding map ϕq(z) = z mod q, which for integers in
the range −q/2 ≤ z ≤ q/2 yields ϕq(z) = z if z ≥ 0 and
ϕq(z) = q + z for z < 0. The corresponding decoding map
is given by ϕ̃q(u) = u if 0 ≤ u ≤ q/2 and ϕ̃q(u) = u − q
for q/2 < u ≤ q − 1. Although ϕq is a ring homomorphism
mapping operations in Z into operations in Zq , decoding from
Zq to Z after operating on encoded integers might not yield the
desired result due to overflows. To avoid such overflows one
must check that the result falls in the interval where the coding
ϕq is the inverse of ϕ̃q . In particular, the following properties
only hold for integers z, z′ such that |z|, |z′| ≤ q/2:
1. ϕ̃q(ϕq(z)) = z,
2. |z + z′| ≤ q/2 implies z + z′ = ϕ̃q(ϕq(z) + ϕq(z′)),
3. |z · z′| ≤ q/2 implies z · z′ = ϕ̃q(ϕq(z) · ϕq(z′)).

4.2 Accuracy of Inner Product

The properties of the encodings described in the previous sec-
tion can be used to provide a bound on the accuracy of the
result of the inner product protocol given in Figure 1. At the
end of the protocol, both parties have an additive share of of
〈~x, ~y〉 for some integer vectors ~x, ~y ∈ Znq . Therefore, we want
to show that when the input vectors ~x, ~y provided by the par-
ties are fixed-point encodings of some real vectors ~u,~v ∈ Rn,
then the result of the inner product over Zq can be decoded into
a real number approximating 〈~u,~v〉. We note that the compar-
ison here is against real arithmetic, while in the experimental
section we will be comparing against floating-point arithmetic,
which can represent real arithmetic to high degrees of accuracy
across a much larger range of numbers [43].

According to the previous section, there are two sources
of error when working with fixed-point encoded real numbers:
the systematic error induced by working with finite precision
(which can be mitigated by increasing bf ), and the occasional
error that occurs when the numbers in Zq overflow (which can
be mitigated by increasing bi). To control the overflow error
we assume that ~u and ~v are n-dimensional real vectors with
entries bounded by R, |ui|, |vi| ≤ R for i ∈ [n], and ~x =
ϕq(φδ(~u)) and ~y = ϕq(φδ(~v)) are encodings of those vectors
with precision δ.

Theorem 3 ([69, Ch. 3]). If q > 2nR2/δ2, then:

|〈u, v〉 − φ̃δ2(ϕ̃q(〈~x, ~y〉))| ≤ 2nRδ + nδ2 .

The proof is straightforward and is provided in Appendix A
for the sake of completeness. We note that the assumption of
a bound R on the entries of the vectors ~u and ~v is not very
stringent: if both parties agree on a common boundR, or there
is a publicly known R, then the vectors can be normalized lo-
cally by each party before the execution of the protocol. Thus,
in practice it is convenient to normalize the real vectors u and
v such that their entries are bounded by C/

√
n for some con-

stant C > 0. In this case, the bounds above can be used to
show that if one requires the final inner product to have error
at most ε, this can be achieved by taking δ = ε/2C

√
n and

q = 8C2n/ε2. Using these expressions we see that an encod-
ing with b = O(log(n/ε)) bits is enough to achieve accuracy
ε when performing n-dimensional inner products with fixed-
point encoded reals.

4.3 Data Standardization and Scaling

The statistical theory behind ridge regression generally as-
sumes that the covariates in the columns of X are normally
distributed with zero mean and unit variance. In practical ap-
plications this is not always satisfied. However, it is a common
practice to standardize each column of the training data to have
zero mean and unit variance. This column-wise procedure is
implemented as part of the local pre-processing done by each
party in our linear regression protocol. We use X̄ to denote the
data matrix obtained after standardization.

The importance of proper data scaling to prevent over-
flows in the aggregation phase is the key message from The-
orem 3 (Section 4.2). Additionally, a critical phenomenon oc-
curring in the solving phase is the degradation in the quality of
the solution when the encoding is fixed and the dimension of
the linear system grows. To alleviate the effect of the dimen-
sion on the accuracy of the solving phase, our pre-processing
re-scales every entry in X̄ and Y by 1√

d
. We note that these

scalings can be performed locally by the parties holding each
respective column.

The standardization and scaling steps described above im-
ply that our protocols effectively solve the linear system(

1
nd
X̄>X̄ + λI

)
θ = 1

nd
X̄>Y .

This scaling has no effect on the linear regression problem be-
ing solved beyond changing the scale of the regularization pa-
rameter. On the other hand, the standardization step needs to
be reversed if one wants to make predictions on test data fol-
lowing the same distribution as the original training data. This
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task corresponds to a simple linear computation that can be
efficiently implemented in MPC, both in the case where the
model θ is disclosed to the parties and the case where it is kept
shared among the parties and the prediction task using θ is it-
self implemented in a secure way using MPC.

5 Solving Linear Systems

As discussed in Section 3.2, the solving phase of our protocol
involves solving positive definite linear systems of the form
Aθ = b in a garbled circuits protocol. A wide variety of so-
lutions to this problem can be found in the numerical analysis
literature, though not all of them are suitable for MPC. For
example, any variant of Gaussian elimination involving data-
dependent pivoting can be immediately ruled out because im-
plementing non-data-oblivious algorithms inside garbled cir-
cuits produces unnecessary blow-ups in the circuit size. This
limitation has already been recognized by previous works on
private linear regression using garbled circuits and other MPC
techniques [35, 59]. In particular, these works consider two
main alternatives: computing the full inverse of A, or solving
the linear system directly using the Cholesky decomposition
of A as an intermediate step. Although both of these methods
have an asymptotic computational cost of O(d3), in practice
Cholesky is faster and numerically more stable. This justifies
the choice of Cholesky as a procedure for solving linear sys-
tems in garbled circuits made in [59]. However, as we show
in Section 6.2, Cholesky’s cubic cost in the dimension can be-
come prohibitive when working with high-dimensional data,
in which case one must resort to iterative approximate algo-
rithms like Conjugate Gradient Descent (CGD).

In the following Section we present a novel CGD al-
gorithm tailored for working with fixed-point arithmetic and
compare it to the classical CGD algorithm.

5.1 Conjugate Gradient Descent

Factorizing the coefficient matrix A in order to make the so-
lution easier to compute, as in Cholesky’s algorithm, is not
the only efficient way to solve a system of linear equations.
An entirely different approach relies on iterative algorithms
which construct a monotonically improving sequence of ap-
proximate solutions θt converging to the desired solution. The
main virtue of iterative algorithms is the possibility to reduce
the cost of solving the system below the cubic complexity re-
quired by exact algorithms at the expense of providing only
an approximate solution. In particular, for linear systems aris-
ing from ridge regression the practical importance of iterative
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Fig. 4. Fixed-point CGD Implementations (with 64 bits on a sys-
tem of dimension 50). (left) Textbook CGD [60]. (right) Our Fixed-
point CGD.

algorithms is twofold: since intensive computations inside an
MPC framework can be expensive, iterative methods provide
a natural way to spend a fixed computational budget on find-
ing an approximation to the desired solution by stopping af-
ter a fixed number of iterations; and, since the coefficients of
the linear system occurring in ridge regression are inherently
noisy because they are computed from a finite amount of data,
finding an approximate solution whose accuracy is on the same
order of magnitude as the noise in the coefficients is gener-
ally sufficient for optimizing the predictive performance of the
model.

When the coefficient matrix of the linear system Aθ = b

is positive definite, a popular iterative method is the conjugate
gradient descent (CGD) algorithm. The CGD algorithm can
be interpreted as solving the system by iteratively minimizing
the objective ‖Aθ − b‖2 with respect to the parameter vector
θ using the method of conjugate gradients [60]. However, the
numerical stability of CGD is in general worse than that of
Cholesky’s algorithm, making it very sensitive to the choice of
fixed-point encoding. This can be observed in Figure 4 (left),
where we plot the behavior of the residual ‖Aθt − b‖ as a
function of t for several settings of the number of number of
integer bits bi when solving a system with d = 50 using 64-
bit fixed-point encodings. This plot shows that CGD is very
sensitive to the choice of bi, and even in the optimal setting
(bi = 10) the convergence rate is much slower than the one
achieved by the corresponding floating-point implementation
(dashed black curve).

After a thorough investigation of the behavior of a fixed-
point implementation of CGD we concluded that the main
problem occurs when the norm of the conjugate gradients de-
creases too fast and consequently the step sizes grow at each
iteration. This motivates a variant of CGD, which we call fixed-
point CGD (FP-CGD), and whose pseudo-code is given in Fig-
ure 5. The only difference between standard CGD and FP-
CGD is the use of normalized gradients g̃t = gt/‖gt‖∞ in
the computation of the conjugate search directions pt; in par-
ticular, by taking g̃t = gt one recovers the classical textbook
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Inputs: positive definite system (A, b), number of iterations T .
Output: approximate solution θT with AθT ≈ b.

Algorithm:
1. θ0 ← 0, g0 ← Aθ0 − b, g̃0 ← g0

‖g0‖∞
, p0 ← g̃0

2. For t = 0 . . . T − 1 repeat:

(a) θt+1 ← θt −
(

p>
t gt

p>
t

Apt

)
pt.

(b) gt+1 ← gt −
(

p>
t gt

p>
t

Apt

)
Apt.

(c) g̃t+1 ←
gt+1

‖gt+1‖∞
.

(d) pt+1 ← g̃t+1 −
(

p>
t g̃t+1

p>
t

Apt

)
pt.

Fig. 5. Our variant of the Conjugate Gradient Descent algorithm,
which is optimized for the use with fixed-point encoded numbers
as described in Section 5.1.

algorithm. While CGD has been used in the context of secure
computation in previous work [6], to the best of our knowl-
edge, this modification of CGD has not been considered in the
literature before.

It is easy to show that CGD and FP-CGD produce exactly
the same sequence of approximate solutions θt when work-
ing in exact arithmetic. However, normalizing the search di-
rections in FP-CGD makes the method much more stable with
respect to the errors introduced by fixed-point arithmetic. This
is illustrated by Figure 4 (right), where we show the evolution
of the residuals for the same system and fixed-point encod-
ings that we used to test standard CGD. Here, we observe that
we recover the same converge rate as CGD with floating-point
arithmetic while only suffering a loss between 2 and 3 dig-
its of accuracy. We will see later in our experiments with real
data (Section 6.4) that this loss in accuracy is negligible in real
applications, and it is comparable (or better) than the accu-
racy provided by a fixed-point implementation of Cholesky’s
method. In terms of computation, we note that each iteration of
FP-CGD is slightly more expensive than an iteration of stan-
dard CGD due to the normalization step, but the asymptotic
cost per iteration is in Θ(d2) in both cases.

Further justificiation for the use of FP-CGD instead of
other iterative methods is provided by its favorable theoretical
properties. In exact arithmetic, FP-CGD inherits two impor-
tant properties from CGD: (i) it converges to the exact solu-
tion of Aθ = b in exactly d iterations; and (ii) it achieves the
optimal convergence rate among all first-order methods, yield-
ing a solution with error at most ε after O(

√
κ(A) log(1/ε))

iterations. Property (i) is important because not all iterative al-
gorithms for solving linear systems are guaranteed to produce
an exact solution after a finite number of iterations, including

standard gradient descent methods like the ones implemented
in [33] using leveled homomorphic encryption. Furthermore,
property (ii) says essentially that it is not possible to find a
first-order method producing more accurate approximate solu-
tions than CGD, and that only a few iterations of CGD are
required to accurately solve linear systems with small con-
dition number κ(A). In principle, these properties might not
be preserved by the fixed-point implementations of CGD and
FP-CGD due to the numerical errors introduced by the finite-
precision arithmetic. In the case of CGD, [52] shows that when
working with a finite number of bits for the fractional part and
an infinite number of bits for the integer part, several impor-
tant properties of the exact version, including the convergence
rate, are preserved up to small order modifications. However,
the assumption of infinite bits for the integer part is not re-
alistic in practice, and the experiments in Figure 4 show that
when a fixed number of bits needs to be split between the in-
teger and fractional part of the representation a crucial tension
arises. FP-CGD is designed to alleviate such tension by mak-
ing sure that a minimal number of bits in the integer part suf-
fice to solve a properly scaled system accurately. We demon-
strate this through our experimental evaluations in Section 6,
where we also compare the accuracy and running time of FP-
CGD against the method based in Cholesky decomposition
used in [59], and study the effect of the condition number κ(A)
on both methods.

6 Experimental Results

This section presents an extensive empirical evaluation of
our protocols. We start by describing the details about the
concrete implementation of our system and the experimental
setup. Then we present experiments for different implementa-
tions of the solving phase using FP-CGD and Cholesky, com-
paring them in terms of accuracy and running time across a
wide range of settings. The second set of experiments evalu-
ates two implementations for the aggregation phase: one based
on the inner product protocol relying on a trusted initializer,
and the one based on OT. Finally, we present an evaluation
of the complete system on nine real datasets from the UCI
repository with different algorithms in the solving phase and
compare the resulting predictive performance of the learned
model against the performance obtained in the non-private set-
ting. Overall, our experiments highlight the importance of us-
ing FP-CGD for high-dimensional data, and provide a guide
on how to choose a good fixed-point encoding depending on
the characteristics of the problem.
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6.1 Implementation and Setup

We implemented our MPC protocols using Obliv-C [72], an
extension of the C programming language for secure compu-
tation. Obliv-C includes an implementation of Yao’s garbled
circuit protocol that incorporates recent optimizations includ-
ing free XOR [44], garbled row reduction [56], fixed key block
ciphers [3], and half gates [73]. Further, it features efficient
implementations of OT extension, including variants such as
correlated OT [1].

To support arbitrary precision arithmetic, we implemented
a big integer library [74] for multi-party computation as an ex-
tension of Obliv-C. This library composes an arbitrary number
of garbled integers to represent larger integer values in two’s
complement binary. It features standard operations such as
comparisons, bit manipulation and shifts, and arithmetic func-
tions including addition, multiplication, integer division and
modulo computation. All the arithmetic operations are imple-
mented using common, efficient algorithms for extended pre-
cision arithmetic; in particular, we implement the Karatsuba-
Comba [39] method for multiplication, and Knuth’s algo-
rithm D [43] for division.

For fixed-point arithmetic, we implement two variants of
our protocols. One uses Obliv-C’s native integer types to rep-
resent fixed-point numbers. Since for fixed-point multiplica-
tion, the bit width of intermediate values can be large as the
sum of the arguments’ bit widths, this version is limited to 32-
bit numbers. Our second fixed-point implementation uses the
big integer library described above, allowing to represent num-
bers with arbitrary precision. This arrangement incurs some
overhead relative to using Obliv-C’s native types. However,
this overhead is justified in cases where 32-bit arithmetic in-
troduces large errors. Although in principle, our second im-
plementation allows for an arbitrary number of bits, we only
evaluate it with 64 bit numbers. As the results in Section 6.4
show, this is enough to get accurate results on real datasets.

For the solving phase, we implemented the Cholesky and
FP-CGD methods described by Nikolaenko et al. [59] and Sec-
tion 5, respectively. Cholesky descomposition requires square
root computation. Nikolaenko et al. use an iterative algorithm
for computing square roots in garbled circuits based on New-
ton’s method. Our implementation of Cholesky’s method fol-
lows closely their approach and is based on the pseudo-code
given in [59].

For the experiments in Sections 6.2 and 6.3, where each
phase of the protocol is evaluated separately, we use syntheti-
cally generated data. For each setting of d and n, we sample n
data points x(i) from a standard d-dimensional Gaussian dis-
tribution and a d-dimensional vector of parameters θ∗ with in-
dependent coordinates sampled uniformly in the interval [0, 1].
The training labels are obtained as y(i) = 〈θ∗,x(i)〉 + ε(i),

where ε(i) is a noise term sampled from a Gaussian distribu-
tion with zero mean and variance σ2 = 0.1. The regulariza-
tion parameter in the solving phase is set to λ = σ2d/n‖θ∗‖2,
which is the optimal choice suggested by the statistical theory
of ridge regression.

For the experiments with synthetic data using 64 and 32
bit fixed-point encodings we used 60 and 28 bits for the frac-
tional part, respectively. In the experiments with real data, the
split between the fractional and integer part of the fixed-point
encoding was optimized individually for each problem to ob-
tain the best predictive performance.

The experiments were executed using Amazon EC2 C4
instances, each having 4 CPU cores, 7.5 GiB of RAM and
1 Gbps bandwidth. All our code, including the programs used
for synthetic data generation, is publicly available under open
source licenses [75].

6.2 Solving Phase

Figure 6 (left) compares the running times of the solving phase
using Cholesky and FP-CGD for dimensions ranging from 10
to 500. For FP-CGD, we give the running time for 5, 10, 15,
and 20 iterations. The top plot corresponds to the 64-bit im-
plementation and the bottom plot to the 32-bit implementa-
tion. While Cholesky is faster than CGD for lower values of
d, its cubic dependence on the dimension makes running a
fixed number of iterations of FP-CGD faster as d increases.
Thus, for high-dimensional data the iterative FP-CGD method
is preferable in terms of computation time. The time spent run-
ning oblivious transfers is also shown, and accounts for a small
fraction of the running time. For example, for the 64-bit imple-
mentations with d = 200, FP-CGD with 15 iterations runs in
less than 45 minutes, while Cholesky takes more than an hour
and a half. For d = 500, Cholesky takes more than 24 hours
while FP-CGD with 15 iterations takes less than 4.5 hours.
Similar results reporting circuit size instead of running time
are presented in Appendix B due to space limitations (Fig-
ure 7).

Next, we compare both algorithms in terms of accuracy of
the results. Here, the error is measured using the Euclidean dis-
tance to the optimal solution, obtained via floating-point com-
putation. Figure 6 (middle) shows how the accuracy of the re-
sult is affected by the condition number of the input matrix A,
comparing Cholesky with FP-CGD for varying numbers of it-
erations on problems with d = 20. We observed that FP-CGD
achieves the same accuracy as Cholesky in the 64-bit version,
and has even lower error when using only 32 bits. Moreover,
the influence of the input condition number decreases with the
number of iterations. After convergence, the error remains the
same for all tested condition numbers. This advantage over
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Fig. 6. (Left) Comparison between different methods for solving linear systems: Running time (seconds) of Cholesky and FP-CGD (with
5, 10, 15, and 20 iterations) as a function of input dimension. (Middle) Accuracy of Cholesky and CGD depending on the condition num-
ber of the input matrix A with d = 20. (Right) Accuracy of Cholesky and CGD, as a function of the input dimensionality d. (Top) Fixed-
point numbers with b = 64 bits, with bf = 60 in the fractional part. (Bottom) b = 32, bf = 28.

Cholesky increases with higher d, as is shown in Figure 6
(right). For both the 32-bit and 64-bit versions, FP-CGD is
more accurate than Cholesky as soon as d > 50.

6.3 Aggregation Phase

Table 1 shows a comparison between the running times of
the 64-bit versions of our two aggregation protocols: OT is
the protocol using the OT-based inner product protocol, and
TI is the protocol that leverages a Trusted Initializer for the
inner product protocol. We vary the number of records, n,
from 50,000 up to one million, and the number of features,
d, from 20 to 200. As expected, the protocol that takes advan-
tage of the Trusted Initializer performs significantly better in
all cases. However, since the TI’s resources are the bottleneck
in this setting, the protocol does not scale well to multiple data
providers, as the fraction of the coefficient matrix A that can
be computed locally shrinks as the number of parties increases.
The OT-based version, on the other hand, handles many par-
ties very well, due to the fact that OTs between different pairs
of parties can be performed in parallel. Timing results our pro-
tocols for the aggregation phase for a more extensive set of
configurations can be found in Tables 4 and 5 of Appendix B.

As a baseline, we implemented a garbled circuit protocol
for performing a single inner product in Obliv-C. The running
time for n = 106 was over 90 minutes. This implies that our
protocol outperforms this naïve approach by several orders of
magnitude.

n d

Number of parties

2 3 5

OT TI OT TI OT TI

5 · 104 20 1m50s 1s 1m32s 2s 1m7s 2s
5 · 104 100 42m12s 25s 34m39s 32s 24m58s 37s
5 · 105 20 18m18s 15s 14m29s 18s 12m10s 21s
5 · 105 100 7h3m56s 4m47s 5h20m52s 6m1s 4h17m8s 6m58s
1 · 106 100 - 10m1s - 12m42s - 14m48s
1 · 106 200 - 39m16s - 49m56s - 59m22s

Table 1. Comparison of running times between OT-based (left)
and TI-based (right) aggregation protocols using 64 bit numbers.
The running time of the Trusted Initializer, which is an offline pre-
processing phase, is included. The complete results with addi-
tional parameter values can be found in Appendix B.

6.4 Experiments on Real Datasets

Although we have discussed the accuracy of our aggregation
and solving protocols independently, we still have to evaluate
our protocol in the task of building a ridge regression model.
We evaluate our secure multi-party ridge regression system on
9 different regression problems selected from the UCI repos-
itory [46]. Each problem comes with a set of n examples
of some dimension d which are randomly split into training
(70%) and test sets (30%). Details about the names, original
references where the dataset appeared, dimensions and num-
ber of examples in each task are given in Table 2. The dimen-
sions of the problems range from 7 to 384, and the number of
training examples ranges from over 200 to almost 3 million.
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Examples in the test set are used to evaluate the predic-
tive accuracy of the learned models in terms of their root mean
squared error (RMSE). The predictive accuracy of the model
will depend on the particular regularization parameter λ used
in the regression: larger values prevent overfitting and should
be used on small datasets, while smaller values reduce the bias
in the regression and should be used on large datasets. Hyper-
parameter tuning algorithms can use a set of test examples to
evaluate the predictive power obtained with different regular-
ization parameters and find a near-optimal setting. In principle,
any hyper-parameter tuning algorithm based on solving the re-
gression multiple times with different regularization parame-
ters could be run on top of our system at the cost of execut-
ing the protocol repeatedly. This would involve many repeated
computations but it is also possible to design a variation of our
protocol to avoid most of these repetitions, in particular the
computation of X>X . We leave this optimization for future
work and concentrate on evaluating our ridge regression pro-
tocol with a fixed regularization λ for each problem selected a
priori using the given train and test split. Table 2 gives the val-
ues selected for each task in addition to the condition number
of the resulting linear system.

In each case, the features were split evenly between two
parties. The scalings and normalizations described in Sec-
tion 4.3 are performed locally by each party during the ag-
gregation phase. We use the version of our protocol with the
aggregation phase implemented using the inner product proto-
col of Figure 1, and the reported bit width of 32 or 64 bits in
each case. We compare four implementations for the solving
phase: Cholesky and Fixed-Point CGD, both in their 32 and 64
bits versions. In the case of CGD, we fixed the number of itera-
tions to 20, regardless of the dimension or any other feature of
the problem. For each task, we select the number of bits bf for
the fractional part in order to make sure we have enough bits
bi in the integer part for representing the largest coefficient ap-
pearing in the linear system (A, b). The particular settings for
each problem are also given in Table 2.

The results are presented in Table 3. We give the total run-
ning time of the protocol and RMSE on the test set for each of
the four different implementations of the solving phase. The
RMSE of each algorithm is compared to the one obtained
using an insecure ridge regression algorithm implemented in
Matlab that uses 64-bit floating-point representations (given
in the column headed Optimal). The percentages in parenthe-
ses next to each RMSE give the relative increase – or in very
few cases, decrease – on the error incurred using the private
algorithm. Remarkably, the differences in accuracy are almost
negligible for both 64 bit implementations, while in the 32 bit
implementations, CGD is better than Cholesky except in one
task.

In terms of running time, we note that both bit settings ob-
serve the same pattern: Cholesky is faster for small dimensions
d ≤ 100, and CGD is faster for large dimensions d > 100.
However, even in the cases where Cholesky is faster, CGD is
not far behind (a bit over 3 minutes in the worst case). On the
other hand, in the cases where CGD is faster Cholseky has
prohibitive running times, e.g., CGD takes ∼ 4h on the largest
problem (d = 384) while Cholesky takes practically half a
day.

Overall, we observe that for except for the last task, Fixed-
point CGD with 32 bits always obtains relative errors below
1% and runs in less than 45 minutes, thus offering a very com-
petitive solution. For the last dataset, that has large number
of training examples, 64 bits are required to achieve good ac-
curacies, mainly due to the errors introduced in the aggrega-
tion phase when the number of examples is large and there
are not enough bits to represent the intermediate values of
the computation ofX>X with sufficient precision. A possible
workaround to this problem would require having a different
number of bits in the aggregation and solving phases; we will
consider this optimization in future work.

7 Beyond Semi-Honest Security

The protocols that we discussed in Section 3 guarantee secu-
rity in an adversarial setting where all parties, including the
data providers, the CSP, and the Evaluator, are semi-honest,
and the CSP and the Evaluator do not collude. While security
against semi-honest adversaries may be enough in a federated
learning setting as argued in Section 3.3.1, some applications
require stronger guarantees.

In this section, we propose an extension of our protocol
that allows the data providers to check the correctness of the
result of the second phase, which is computed by CSP and
Evaluator. This correctness check works even if one of these
two is malicious, or actively corrupted, i.e., they may devi-
ate arbitrarily from the protocol description. We stress, how-
ever, that this correctness check is not enough to satisfy the
definition of security against malicious adversaries as given
by Goldreich [30]. In particular, a malicious CSP can cause
the correctness check to succeed or fail depending only on
one of the parties’ private inputs. This selective failure attack
has been discussed thoroughly in the context of garbled cir-
cuits [38, 53].

Our correctness check comes in the form of a third phase,
which we call the verification phase. It is implemented us-
ing another small garbled circuit, which is secure against
malicious adversaries. The general idea of using a tailored,
lightweight verification procedure with high security guaran-
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id Name Reference d n λ κ(A) bf (b = 32) bf (b = 64)

1 Student Performance [11, 14] 30 395 1.4 · 10−2 5.5 · 100 30 62
2 Auto MPG [76] 7 398 2.2 · 10−3 9.0 · 101 28 61
3 Communities and Crime [63, 64] 122 1994 2.0 · 10−4 1.1 · 103 24 53
4 Wine Quality [12, 13] 11 4898 2.9 · 10−3 6.8 · 101 29 60
5 Bike Sharing Dataset [25, 26] 12 17 379 8.2 · 10−7 2.2 · 102 28 60
6 Blog Feedback [8, 9] 280 52 397 1.1 · 10−5 1.3 · 104 25 54
7 CT slices [34] 384 53 500 9.3 · 10−6 1.6 · 104 25 51
8 Year Prediction MSD [4] 90 515 345 1.1 · 10−5 1.7 · 102 26 58
9 Gas sensor array [27, 28] 16 4 208 261 4.1 · 10−7 1.2 · 105 26 53

Table 2. Specifications of UCI datasets considered in our evaluation. The number of samples n is split randomly into training (70%)
and test sets (30%). For each dataset, the regularization parameter λ and the number of fractional bits bf were chosen as described in
Section 6.1. The condition number κ was computed after data standardization and scaling (Section 4.3).

id
Optimal FP-CGD (32 bits) Cholesky (32 bits) FP-CGD (64 bits) Cholesky (64 bits)

RMSE time RMSE time RMSE time RMSE time RMSE

1 4.65 19s 4.65 (-0.0%) 5s 4.65 (-0.0%) 1m53s 4.65 (-0.0%) 35s 4.65 (-0.0%)
2 3.45 2s 3.45 (-0.0%) 0s 3.45 (-0.0%) 13s 3.45 (0.0%) 1s 3.45 (0.0%)
3 0.14 4m27s 0.14 (0.3%) 4m35s 0.14 (-0.0%) 24m24s 0.14 (0.2%) 26m31s 0.14 (-0.0%)
4 0.76 3s 0.76 (-0.0%) 0s 0.80 (4.2%) 23s 0.76 (-0.0%) 4s 0.76 (-0.0%)
5 145.06 4s 145.07 (0.0%) 1s 145.07 (0.0%) 26s 145.06 (0.0%) 4s 145.06 (0.0%)
6 31.89 24m5s 31.90 (0.0%) 53m24s 32.19 (0.9%) 2h3m39s 31.90 (0.0%) 4h40m23s 31.89 (-0.0%)
7 8.31 44m46s 8.34 (0.4%) 2h13m31s 8.87 (6.7%) 3h51m51s 8.32 (0.1%) 11h49m40s 8.31 (-0.0%)
8 9.56 4m16s 9.56 (0.0%) 3m50s 9.56 (0.0%) 16m43s 9.56 (0.0%) 13m28s 9.56 (0.0%)
9 90.33 48s 95.05 (5.2%) 42s 95.06 (5.2%) 1m41s 90.35 (0.0%) 1m9s 90.35 (0.0%)

Table 3. Results of the evaluation of our system on UCI datasets. For each choice of algorithm and bit width, running time is reported,
and the root mean squared error (RMSE) of the solution obtained by our system and an insecure implementation of ridge regression
using floating point are compared.

tees to ensure correctness of a protocol with semi-honest se-
curity has been used by de Hoogh et. al. [16] for linear pro-
gramming, Laud and Pettai [45] for sorting, and Nikolaenko
et al. [59] for ridge regression.

7.1 The Verification Phase

First, note that for the aggregation phase, we need to use the
inner product protocol based on OT (Section 3.1.1), since we
can no longer assume that the CSP can act as a trusted ini-
tializer. Since neither the CSP nor Evaluator take part in this
aggregation phase, it needs no further analysis.

Nikolaenko et al. [59] made a perceptive observation that
in the setting of linear regression, the correctness of the result
can be verified simply by checking that the solution θ of the
system Aθ = b indeed minimizes the least squares expression
of equation (1). This is done by verifying that θ evaluates to 0
in the derivative of the least squares function in equation (2),
which is much cheaper than computing θ with malicious secu-
rity. Concretely, this means checking that ‖2(Aθ − b)‖ = 0.

As we are working with finite-precision arithmetic, the equal-
ity check must be approximated as ‖2(Aθ − b)‖ ∈ [−u,u],
for some u chosen by the parties. We assume that the election
of u is done correctly, in the sense that, if the CSP does not
deviate from the protocol, then ‖2(Aθ − b)‖ ∈ [−u,u] holds.
If we consider the infinity norm, then the verification check of
a solution θ, corresponds to checking

∀i ∈ [d] : ~vi ∈ [−u,u] (4)

where ~v = Aθ − b, and A, b are additively shared among
the data providers as (A1, b1), . . . , (Ak, bk) as a result of the
aggregation phase. We call this check the verification phase,
which is run after the solving phase. Hence, as mentioned
above, we use a semi-honest protocol for the solving phase,
and then run a verification protocol with malicious security.

In our protocol for the semi-honest case of Figure 3, θ is
revealed to the data providers as a result of the solving phase.
Consequently, an additive share of ~v in (4) can be precom-
puted locally by the parties, and hence securely evaluating (4)
only requires additions and comparisons. Using this, we im-
plemented the verification phase as follows.
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1. The data providers generate a uniformly pseudorandom
vector ~vi,1 ∈ Zdq and locally compute ~vi,2 = Aiθ −
bi − ~vi,1. Then, they send ~vi,1 to the CSP and ~vi,2 to the
Evaluator.

2. CSP and Evaluator add up their received shares and ob-
tain ~v1 =

∑k
i=1 ~vi,1 and ~v2 =

∑k
i=1 ~vi,2, and then run

a two-party garbled circuit protocol with malicious secu-
rity. In the circuit, ~v = ~v1 + ~v2 is recovered, and a single
bit is returned, indicating whether (4) holds.

3. CSP and Evaluator send the result of the verification cir-
cuit to all data providers.

Note that since not both CSP and Evaluator cannot be mali-
cious at the same time, the parties only need to check if both
bits they received are 1.

We implemented and evaluated the garbled circuit with
malicious security for this verification phase, as an extension
for our solving phase, using the EMP framework [67]. As ex-
pected, it runs extremely fast: in our experiments, garbling and
execution took less than 3 seconds for d ≤ 500. This is in con-
trast with the time needed for the solving phase for d = 500:
30 minutes, for 10 iterations of CGD and a bit width of 32 bits
(see Figure 6, left).

8 Discussion

The problem of securely running machine learning algorithms
when the training data is distributed among several parties
is an important milestone for the development of privacy-
preserving data analysis tools. In this paper, we focus on a
linear regression task widely used in practical applications.
Beyond the settings described in this paper, our implemen-
tation of secure conjugate gradient descent with fixed-point
arithmetic and early stopping can also be used to deal with
non-linear regression problems based on kernel ridge regres-
sion, given MPC protocols for evaluating kernel functions typ-
ically used in machine learning. Moreover, as mentioned in
Section 3, an extensive evaluation of MPC techniques for the
task of linear system solving, including our conjugate gradient
descent algorithm, is an interesting continuation of the work
proposed here. From a more theoretical perspective, the prob-
lem of providing security guarantees against malicious adver-
saries for approximate MPC functionalities poses interesting
open challenges both in general and from the perspective of
concrete machine learning tasks.
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A Proof from Section 4.2

Theorem 3. If q > 2nR2/δ2, then:

|〈u, v〉 − φ̃δ2(ϕ̃q(〈~x, ~y〉))| ≤ 2nRδ + nδ2 .

Proof. In the first place we observe that any number occurring
in the computation of the inner product 〈φδ(~u),φδ(~v)〉 of the
integer encodings of u and v is bounded by nR2/δ2. There-
fore, the condition on q ensures there are no overflows in the
computation in Zq and we have 〈φδ(u),φδ(v)〉 = ϕ̃q(〈~x, ~y〉).
Now we use the formulas for the error of sum and product of
integer encodings from previous section to show that∣∣〈~u,~v〉 − φ̃δ2 (〈φδ(~u),φδ(~v)〉)

∣∣
=

∣∣∣∣∣
n∑
i=1

uivi − φ̃δ2

(
n∑
i=1

φδ(ui)φδ(vi)

)∣∣∣∣∣
≤

n∑
i=1

∣∣uivi − φ̃δ2(φδ(ui)φδ(vi))
∣∣

≤ n(2Rδ + δ2) ,

where the first inequality follows by the triangle inequality and
linearity of the decoding map φ̃δ2 .
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B Further Experimental Results
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Fig. 7. Circuit sizes for 64 bits (left), 32 bits (right) as a function of the input dimensionality d. One can see a clear correlation between
the circuit size and the execution time shown in Figure 6 (left).

n d

Number of parties (data providers)

2 3 5

b = 64 b = 32 b = 64 b = 32 b = 64 b = 32

10000

20 24s 13s 20s 11s 14s 8s
50 2m20s 1m16s 1m55s 1m2s 1m22s 43s

100 9m6s 4m58s 7m18s 3m55s 5m13s 2m47s

20000

20 45s 24s 38s 20s 29s 15s
50 4m26s 2m18s 3m39s 1m56s 2m39s 1m21s

100 17m25s 9m58s 14m9s 7m24s 10m10s 5m14s

50000

20 1m50s 56s 1m32s 47s 1m7s 35s
50 10m47s 5m27s 8m58s 4m37s 6m31s 3m12s

100 42m12s 21m25s 34m39s 17m41s 24m58s 12m32s

100000

20 3m40s 1m50s 3m1s 1m33s 2m18s 1m7s
50 21m40s 10m47s 17m25s 9m6s 13m5s 6m40s

100 1h25m14s 42m18s 1h7m30s 35m3s 50m16s 24m12s

200000

20 7m25s 3m40s 5m57s 3m4s 4m46s 2m18s
50 43m47s 21m43s 34m14s 18m26s 26m47s 12m40s

100 2h52m8s 1h25m6s 2h11m35s 1h10m39s 1h43m12s 49m23s

500000

20 18m18s 9m10s 14m29s 7m27s 12m10s 5m52s
50 1h47m59s 54m13s 1h23m49s 45m0s 1h8m8s 32m14s

100 7h3m56s 3h32m37s 5h20m52s 2h53m54s 4h17m8s 2h4m53s

Table 4. Computation time of the aggregation phase using using the OT-based inner product protocol, for 2, 3, and 5 data providers and
different values of n (number of records) and d (number of features). Note that unlike the TI-based protocol in Table 5, this algorithm
scales well with the number of parties.
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n d

Number of parties (data providers)

2 3 5

CSP DP Total CSP DP Total CSP DP Total

100000

20 1s 2s 3s 2s 2s 3s 2s 1s 4s
50 7s 9s 14s 9s 8s 17s 11s 6s 20s

100 27s 31s 50s 36s 28s 1m4s 43s 21s 1m15s
200 1m46s 1m57s 3m12s 2m22s 1m44s 4m10s 2m50s 1m17s 4m54s
500 10m52s 11m53s 19m14s 14m40s 10m29s 25m16s 17m29s 7m37s 30m2s

200000

20 2s 4s 6s 3s 4s 7s 4s 3s 8s
50 14s 19s 30s 18s 17s 37s 22s 13s 42s

100 55s 1m6s 1m47s 1m11s 59s 2m16s 1m26s 44s 2m39s
200 3m37s 4m13s 7m0s 4m44s 3m43s 9m0s 5m38s 2m43s 10m32s
500 21m46s 25m33s 41m47s 29m11s 22m23s 54m21s 34m56s 16m6s 1h4m0s

500000

20 6s 10s 15s 8s 9s 18s 10s 8s 21s
50 36s 48s 1m17s 47s 42s 1m35s 57s 32s 1m51s

100 2m17s 2m51s 4m47s 3m4s 2m29s 6m1s 3m42s 1m51s 6m58s
200 9m0s 10m55s 18m52s 12m15s 9m33s 24m8s 14m47s 6m52s 27m43s
500 56m22s 1h6m41s 1h53m52s 1h14m37s 57m31s 2h25m55s 1h30m41s 40m56s 2h50m53s

1000000

20 12s 20s 31s 16s 18s 37s 20s 15s 44s
50 1m12s 1m34s 2m40s 1m37s 1m24s 3m21s 1m58s 1m4s 3m53s

100 4m45s 5m40s 10m1s 6m16s 4m58s 12m42s 7m31s 3m41s 14m48s
200 18m49s 21m44s 39m16s 25m7s 18m48s 49m56s 30m28s 13m48s 59m22s

Table 5. Computation time of the aggregation phase using the TI-based inner product protocol with 64 bits, for 2, 3, and 5 data providers
and different values of n (number of records) and d (number of features). For each number of data providers, computation time of the
CSP (left) and the data providers (middle, averaged) is reported, as well as total running time (right).
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