
Parallelized Side-Channel Attack Resisted Scalar Multiplication
Using q-Based Addition-Subtraction k-chains

Kittiphop Phalakarn
Department of Computer Engineering

Chulalongkorn University
email: kittiphop.ph@student.chula.ac.th

Kittiphon Phalakarn
Department of Computer Engineering

Chulalongkorn University
email: kittiphon.p@student.chula.ac.th

Vorapong Suppakitpaisarn
Department of Computer Science

The University of Tokyo
email: vorapong@is.s.u-tokyo.ac.jp

Abstract—This paper presents parallel scalar multiplication
techniques for elliptic curve cryptography using q-based addition-
subtraction k-chain which can also effectively resist side-channel
attack. Many techniques have been discussed to improve scalar
multiplication, for example, double-and-add, NAF, w-NAF, ad-
dition chain and addition-subtraction chain. However, these
techniques cannot resist side-channel attack. Montgomery ladder,
random w-NAF and uniform operation techniques are also widely
used to prevent side-channel attack, but their operations are not
efficient enough comparing to those with no side-channel attack
prevention. We have found a new way to use k-chain for this
purpose. In this paper, we extend the definition of k-chain to
q-based addition-subtraction k-chain and modify an algorithm
proposed by Jarvinen et al. to generate the q-based addition-
subtraction k-chain. We show the upper and lower bounds of
its length which lead to the computation time using the new
chain techniques. The chain techniques are used to reduce the
cost of scalar multiplication in parallel ways. Comparing to w-
NAF, which is faster than double-and-add and Montgomery
ladder technique, the maximum computation time of our q-
based addition-subtraction k-chain techniques can have up to
25.92% less addition costs using only 3 parallel computing
cores. We also discuss on the optimization for multiple operand
point addition using hybrid-double multiplier which is proposed
by Azarderakhsh and Reyhani-Masoleh. The proposed parallel
chain techniques can also tolerate side-channel attack efficiently.1

keywords—Information and Communication Security;
Efficient Implementations; Parallel Algorithms; Elliptic Curve
Cryptography; Scalar Multiplication; k-Chain; Side-Channel
Attack Countermeasure

I. INTRODUCTION

Today’s cryptosystem requires faster computation for more
security. The cost of scalar multiplication is very important for
elliptic curve cryptography. Many works try to decrease this
calculation cost, for example, double-and-add technique (cf.
[1]) which uses simple binary representation. It can be cal-
culated faster using NAF [2] and w-NAF [3] technique. NAF
technique uses binary representation with digit set {−1, 0, 1}
and w-NAF representation uses larger digit set. Another tech-
nique used today is wr-NAF [4] which generalizes w-NAF
using base r representation.

There is another kind of techniques which is different
from double-and-add. Addition chain (cf. [5]) and addition-
subtraction chain (a/s chain) [6] techniques are used for the

1This paper has been accepted for publication at proceedings of the Fourth
International Symposium on Computing and Networking (CANDAR 2016),
which is published by IEEE. It is subject to further editorial revision by IEEE.
A final version of the article will then be appearing at IEEE Xplore.

same purpose as the general cases for double-and-add and
NAF [7], [8]. There are many variations on the addition chain
and a/s chain such as addition-multiplication chain [9], q-
addition chain [10] and k-chain [11]. Currently, k-chain is
only used to improve finite field element inversion [11] and
we are interested in using this k-chain to improve scalar
multiplication.

One important problem for scalar multiplication is side-
channel attack. The power used in each calculation step can
be measured and give information on which type of operation
is being calculated. This is called ‘power attack’ [12]. Time
of each computation step can also be measured for the same
purpose. The latter attack is called ‘timing attack’ [13]. The
sequences of the monitored operations can tell which scalar
has been used to multiply. The multiplication techniques
mentioned earlier are not tolerate side-channel attack. Some
studies try to add some random dummy operations to hide
the real power and time used, but these operations increase
the calculation costs which are now close to the worst case
of each technique. Montgomery ladder [14], random w-NAF
[15] and uniform operation techniques [16] are widely used
to prevent side-channel attack, but their operations are not
efficient enough comparing to those with no side-channel
attack prevention.

A. Contribution of this paper

To efficiently resist the side-channel attack, we have found a
new way to use k-chain for scalar multiplication. In this paper,
we generalize the definition of k-chain to addition-subtraction
k-chain (a/s k-chain) and q-based addition-subtraction k-chain
(q-based a/s k-chain). We modify the algorithm from [11] to
generate the q-based a/s k-chain. From the algorithms, we
found that summation of all digits in the number representation
affects the length of the chain. This summation is called ‘re-
laxed cost’ [17]. We use the relaxed reduced representation’s
properties from [17] to prove the theorem of the maximum
relaxed cost of the representation. This leads to the upper and
lower bounds of the chain’s length and the worst case of the
computation time for scalar multiplication using q-based a/s
k-chain technique.

We propose a parallel technique of 2-based a/s 4-chain and
generalize to q-based a/s k-chain for any positive integers
q and k greater than 2. We also propose an optimization
technique for multiple operand point addition for twisted

Edwards curves [18] by using hybrid-double multiplier [19],
[20].

We compare each technique using worst case computation
time due to the properties of side-channel attack. Comparing to
the best w-NAF (with w = 5) [4], which is faster than double-
and-add and Montgomery ladder technique, the maximum
computation time of our q-based addition-subtraction k-chain
technique using 128-bit scalar is slightly smaller with 2 com-
puting cores. For large scalar, our chain technique can have
up to 25.92% less additions using only 3 parallel computing
cores, but if using 2 computing cores, our technique can have
up to 11.11% more additions.

Finally, we discuss on the appropriate value of k in q-based
a/s k-chain and have some security analysis of the proposed
chain techniques on side-channel attack.

B. Paper Organization

The paper is structured as follows: In Section II, we present
some previous works on this topic, including relaxed reduced
representation, k-chain, double-and-add technique, w-NAF
technique and how to calculate the cost of scalar multipli-
cation. In Section III, we give definitions on a/s k-chain and
q-based a/s k-chain. We also modify the k-chain algorithm
to generate q-based a/s k-chain. In Section IV, we prove the
maximum relaxed cost of signed digit representations and
propose a theorem on the upper and lower bounds of q-based
a/s k-chain length. This theorem leads us to the computation
time using the chain techniques. In Section V, we propose
some parallel techniques and give an optimization on multiple
operand point addition using hybrid-double multiplier [19],
[20]. We compare the costs of our techniques in Section VI
and compare to other well-known techniques, w-NAF and
Montgomery ladder. In the same section, we also discuss on
the value of k and give some security analysis of the proposed
chain techniques on side-channel attack. Finally, we conclude
our paper in Section VII.

II. PRELIMINARIES

In this section, we present some previous works, including
relaxed reduced representation [17], k-chain [11], double-and-
add technique (cf. [1]) and w-NAF technique [3] for scalar
multiplication.

A. Relaxed Reduced Representation

We use the definitions and theorems from [17], and we will
focus on relaxed cost because they are more compatible with
our applications.

Definition 1 (set of all representations [17]). The set of all
representations of an integer n in base q ≥ 2 is defined as

Rq(n) :=

{
ε = 〈ε0, ..., ε`〉q

∣∣∣∣
` ∈ N, εi ∈ Z, ε` 6= 0, n =

∑̀
i=0

εiq
i

}

and for each ε ∈ Rq(n), ` is called the length of the
representation ε and written as |ε|.

Example 2. Given n = 15 and q = 4, we have some
representations 〈3, 3〉4, 〈−1, 0, 1〉4, 〈11, 1〉4 ∈ R4(15) with
length 1, 2 and 1, respectively.

Definition 3 (relaxed cost of the representation [17]). The
relaxed cost of representation ε ∈ Rq(n) is defined as

c′(ε) = c′
(
〈ε0, ..., ε`〉q

)
:=
∑̀
i=0

|εi|.

Definition 4 (relaxed reduced representation). The represen-
tation ε∗ ∈ Rq(n) is relaxed reduced if

ε∗ ∈ argmin
ε∈Rq(n)

c′(ε).

Example 5. From Example 2, the relaxed costs of the example
representations are 6, 2 and 12, respectively. It is easy to see
that 〈−1, 0, 1〉4 is relaxed reduced representation of R4(15).

Definition 6 (reduction rules [17]). Given ε ∈ Rq(n), f :
Rq(n) → Rq(n) is defined as follows. The rules are applied
in this order at the first occurrence from the left side until
ε first changes and return the result. If there is no match,
f(ε) = ε.

For |η0| > q
2 , η1 ∈ Z, and u :=

⌈∣∣∣ η0
2(q−1)

∣∣∣⌉ :
〈η0, η1〉q → 〈η0 − uq sign(η0), η1 + u sign(η0)〉q.

For η0 < 0 and 2 | q :〈q
2
, η0

〉
q
→
〈
−q
2
, η0 + 1

〉
q
.

For η0 > 0 and 2 | q :〈
−q
2
, η0

〉
q
→
〈q
2
, η0 − 1

〉
q
.

For η0 < q
2 and 2 | q :〈q
2
,
q

2
, η0

〉
q
→
〈
−q
2
,−q

2
+ 1, η0 + 1

〉
q
.

For − q
2 < η0 and 2 | q :〈
−q
2
,−q

2
, η0

〉
q
→
〈q
2
,
q

2
− 1, η0 − 1

〉
q
.

Theorem 7 ([17]). The reduction rules can be applied to the
representation ε ∈ Rq(n) many times until there is no change.
The representation ε is relaxed reduced if and only if f(ε) = ε.

Theorem 8 (Average Relaxed Cost of Relaxed Reduced Rep-
resentation [17]). Given positive integer m and base q ≥ 2,
the average relaxed cost of the relaxed reduced representations
of the integer 0, ..., qm − 1 is

qm−1∑
i=0

c′(ε∗ ∈ Rq(i))
qm

=

(
q
4 −

1
4q

)
m+O(1) if 2 - q,(

q
4 −

1
2(q+1)

)
m+O(1) if 2 | q.

Algorithm 1 has been proposed in [17] to generate relaxed
reduced representation of an integer.

Algorithm 1 [17] generating base q relaxed reduced represen-
tation of positive integer n
Input: n > 0, q ≥ 2
Output: relaxed reduced representation ε∗ ∈ Rq(n)

1: ε∗ ← 〈 〉q
2: m← n
3: while m > 0 do
4: a← (m mod q)
5: if a > q/2 or (a = q/2 and m mod q2 ≥ q2/2) then
6: a← a− q
7: end if
8: m← (m− a)/q
9: concatenate a to the right end of ε∗

10: end while
11: return ε∗

To generate reduced representation (the relaxed reduced
representation with the shortest length), change the condition
in the if statement in line 5 to “not (a < q/2 or (a =
q/2 and m mod q2 < q2/2) or m = (q + 1)/2 or m =
q/2 + q2/2)”.

B. k-Chain

We give the definition of k-chain from [11]. Previous works
on addition chain, a/s chain and k-chain can be found in [5],
[6], [11].

Definition 9 (k-chain [11]). Given positive integer k ≥ 2 and
n, a k-chain for n is defined as

v = [v(0), ..., v(s)]k

with v(0) = 1, v(s) = n, and v(i) =
∑k−1
h=0 v(ih) for all

0 < i ≤ s and −1 ≤ ih < i with v(−1) = 0. The length of
the chain is equal to s.

The algorithm for generating k-chain from traditional base
k representation is given in [11] and we show it below. The
same paper also proved the upper and lower bounds of the
length of the optimal k-chain by using the given algorithm.
We state it in Theorem 10.
Remark: At line 3 of Algorithm 2, the length of the output
k-chain will be the same regardless to the order of xi being
chosen.

Theorem 10 (bound of k-chain’s length [11]). Given positive
integers k ≥ 2 and n, The upper and lower bounds of the
optimal length s of k-chain for n are

dlogk ne ≤ s ≤ blogk nc+
⌈
c′(ε)− 1

k − 1

⌉
where ε ∈ Rk(n) is a traditional base k representation, i.e.,
using digit set {0, 1, ..., k − 1}.

C. Current Techniques on Scalar Multiplication

To calculate nP from the given integer n and elliptic curve
point P , the most simple technique used is double-and-add (cf.
[1]). Assume that we have the traditional binary representation

Algorithm 2 [11] Algorithm for generating k-chain for integer
n

Input: k, n =
∑`
i=0 nik

i = 〈n0, ..., n`〉k (traditional repre-
sentation)

Output: k-chain for n
1: v(i)← ki for 0 ≤ i ≤ `
2: j ← 0
3: for all xi 6= 0 in x = {n0, n1, ..., n`−1, n` − 1} do
4: (tj , tj+1, ..., tj+|xi|−1)← (i, ...i)
5: j ← j + |xi|
6: end for
7: (tj , tj+1, ..., tdj/(k−1)e(k−1)−1)← (−1,−1, ...,−1)
8: for i = 0 to bj/(k − 1)c do
9: v(`+ i+ 1)← v(`+ i) + v(ti(k+1)) + v(ti(k+1)+1)

10: + · · ·+ v(ti(k+1)+k−2)
11: end for
12: return v

of n, 〈n0, ..., n`〉2, we can compute nP from 2(· · · 2(2(n`P)+
n`−1P) + · · ·) + n0P

Example 11. The binary representation of 10 is 〈0, 1, 0, 1〉2.
Thus, we can calculate 10P from 2(2(2(1P)+0P)+1P)+0P .

To see the calculation cost of this technique, we define the
cost of point doubling as D and point addition as A. Given
positive integer n and traditional binary representation ε ∈
R2(n), the cost for scalar multiplication with double-and-add
technique is defined as

Costn,double = D × |ε|+A× (c′(ε)− 1).

Remark: For twisted Edwards curves [18], which is the
current fastest curve, the cost for point addition A is now
recorded at 11M where M is the cost for field elements
multiplication. The cost for point doubling D is recorded at
7M.

Given n as an m-bit integer where m := blog2 nc+ 1, We
define average and maximum costs for scalar multiplication as
follows.

Avgm,technique =

∑2m−1
i=0 Costi,technique

2m

Maxm,technique = max
0≤i≤2m−1

Costi,technique

Given a positive integer n with m bits, the length of its
binary representation is exactly m. From Subsection II-A, we
have average relaxed cost equals to 1

2m+O(1) and it is easy
to see that the maximum relaxed cost equals to m + O(1).
Thus, the final average and maximum costs for double-and-
add technique are

Avgm,double = D ×m+A× 1

2
m+O(1),

Maxm,double = D ×m+A×m+O(1).

Another technique widely used is w-NAF technique. The
w-NAF technique was introduced in [3] and generalized to
wr-NAF in [4]. The paper stated that given the window size

w and base r, the nonzero density of the base r representation
is r−1

w(r−1)+1 and the number of points that have to be pre-

computed is rw−rw−1−2
2 . It is easy to see that the worst case

for nonzero density is 1
w . With wr-NAF, we use number of

nonzero digits instead of relaxed cost. To calculate nP , we
define m := blog2 nc + 1. The average and maximum costs
for wr-NAF technique are similar to those for double-and-add
and can be written as follows.

Avgm,wr-NAF = R× m

log2 r

+A×

(
r − 1

w(r − 1) + 1

(
m

log2 r

)

+
rw − rw−1 − 2

2

)
,

Maxm,wr-NAF = R× m

log2 r
+A×

(
1

w

(
m

log2 r

)

+
rw − rw−1 − 2

2

)
,

when R is the calculation cost for multiplying the point by r.

III. q-BASED ADDITION-SUBTRACTION k-CHAIN

We generalize the definition of k-chain to a/s k-chain and
we will extend the definition to q-based a/s k-chain.

Definition 12 (addition-subtraction k-chain). Given positive
integer k ≥ 2 and n, an addition-subtraction k-chain (a/s
k-chain) for n is defined as

v = [v(0), ..., v(s)]k

with v(0) = 1, v(s) = n, and v(i) =
∑k−1
h=0±v(ih) for all

0 < i ≤ s and −1 ≤ ih < i with v(−1) = 0.

Example 13. An a/s 3-chain for 8 is [1, 3, 9, 8]3 because 3 =
v(1)+v(1)+v(1) = 1+1+1, 9 = v(2)+v(2)+v(2) = 3+3+3
and 8 = v(3) − v(1) + v(−1) = 9 − 1 + 0. Other examples
are [1, 3, 7, 8]3 and [1, 2, 6, 10, 8]3.

Definition 14 (q-based addition-subtraction k-chain). An
addition-subtraction k-chain v is a q-based addition-
subtraction k-chain (q-based a/s k-chain), if and only if, q ≤ k
and there exists an integer j such that for all 0 < i ≤ j,
v(i) = qi. The [v(0), ..., v(j)]k part is called “power part”
and [v(j + 1), ..., v(s)]k part is called “addition part”.

Example 15. A 2-based a/s 3-chain for 10 is [1, 2, 4, 8, 10]3.
The power part is [1, 2, 4, 8]3 = [20, 21, 22, 23]3 and the
addition part is [10]3 where 10 = v(3) + v(1) + v(−1) =
8+2+0. Other examples are [1, 2, 4, 10]3, [1, 2, 3, 9, 10]3 and
[1, 2, 4, 8, 16, 10]3. You should notice that [1, 3, 9, 10]3 is an
a/s 3-chain but not a 2-based a/s 3-chain.

Next, we modify Algorithm 2 to Algorithm 3 for generating
q-based a/s k-chain. If the desired output is just a/s k-chain,
you can use q = k.

Algorithm 3 Modified algorithm for generating q-based
addition-subtraction k-chain for an integer n

Input: q, k, n =
∑`
i=0 niq

i = 〈n0, ..., n`〉q
Output: q-based addition-subtraction k-chain for n

1: v(i)← qi for 0 ≤ i ≤ `
2: j ← 0
3: for all xi 6= 0 in x = {n0, n1, ..., n`−1, n` − 1} do
4: (tj , tj+1, ..., tj+|xi|−1)← ((i+ 1) sign(xi), ...,
5: (i+ 1) sign(xi))
6: j ← j + |xi|
7: end for
8: (tj , tj+1, ..., tdj/(k−1)e(k−1)−1)← (0, 0, ..., 0)
9: for i = 0 to bj/(k − 1)c do

10: v(`+ i+ 1)← v(`+ i) + v(ti(k+1) − 1) sign(ti(k+1))
11: +v(ti(k+1)+1 − 1) sign(ti(k+1)+1)
12: + · · ·
13: +v(ti(k+1)+k−2 − 1) sign(ti(k+1)+k−2)
14: end for
15: return v

There are some differences between Algorithm 2 and Al-
gorithm 3. In Algorithm 3, the input is a base q signed digit
representation instead of traditional representation. We will
use relaxed reduced representation as an input here. In line
3-5 and 10-13, we use sign function to separate addition and
subtraction operations. We have to use +1 in line 3-5, use 0
in line 8 and use −1 on line 10-13 to make the index values
not equal to zero.

Example 16. We will follow Algorithm 3 to generate 4-based
a/s 5-chain for n = 1977. From Algorithm 1, the relaxed re-
duced representation in base 4 for 1977 is 〈1,−2, 0,−1, 0, 2〉4
and we will use it as an input. Following Algorithm 3, in line
1, we will have v = [1, 4, 16, 64, 256, 1024]5. By choosing
xi from left to right, at the end of line 7 we will have
t = (1,−2,−2,−4, 6, 0, 0, 0). In line 9 to 14, the next element
in the chain is calculated from the first 4 elements of t,
v(6) = v(5) + v(0) − v(1) − v(1) − v(3) = 953. Then,
the last element is calculated from the last 4 elements of t,
v(7) = v(6) + v(5) + v(−1) + v(−1) + v(−1) = 1977.
The algorithm returns the 4-based a/s 5-chain for 1977,
[1, 4, 16, 64, 256, 1024, 953, 1977]5. We show the flow of the
algorithm in Fig. 1.

From Algorithms 2 and 3, you can see that relaxed cost of
the representation affects the length of the chain. In the next
section, we will discuss on the relaxed cost, the bound of the
length of the chain and show proofs on this. These will lead
to the computation time of scalar multiplication using q-based
a/s k-chain technique.

IV. WORST CASE OF COMPUTATION TIME USING
q-BASED ADDITION-SUBTRACTION k-CHAIN TECHNIQUE

Before showing the computation time, we give some discus-
sions on the relaxed reduced representations and its maximum

Fig. 1. Generating 4-based a/s 5-chain of 1977 using Algorithm 3

relaxed costs. We will use these relaxed reduced representa-
tions as inputs for Algorithm 3. They also directly affect the
length of our q-based a/s k-chain and the computation time.

A. Worst Case of Relaxed Cost of Relaxed Reduced Represen-
tation

Lemmas and theorems discussed in Subsection II-A show
many properties of the relaxed reduced representations and we
will use these properties to prove our works. We then conclude
the worst case of relaxed cost of relaxed reduced representation
in Theorem 21.

Lemma 17. For all natural number m and odd base q ≥ 3,
there exists an integer 0 ≤ w ≤ qm−1 with its relaxed reduced
representation ε∗ ∈ Rq(w) such that c′(ε∗) = 1+

(
q−1
2

)
(m).

Proof. Let b := q−1
2 and w := qm+1

2 . The relaxed reduced
representation of w is ε∗ = 〈ε∗0, ..., ε∗m〉q = 〈−b, ...,−b, 1〉q ∈
Rq(w). You can see that 0 ≤ w =

∑m
i=0 ε

∗
i q
i ≤ qm − 1 and

c′(ε∗) = 1 + bm = 1 +
(
q−1
2

)
(m). �

Lemma 18. For all natural number m and odd base q ≥ 3,
c′(ε∗) is at most 1+

(
q−1
2

)
(m) for relaxed reduced represen-

tation ε∗ ∈ Rq(w), 0 ≤ w ≤ qm − 1.

Proof. Let b := q−1
2 . We assume that there exists an integer

0 ≤ w′ ≤ qm− 1 with a relaxed reduced representation ε′∗ =
〈ε′∗0 , ..., ε′∗k 〉q ∈ Rq(w′) such that c′(ε′∗) > 1 +

(
q−1
2

)
(m) =

1 + bm.
Case the length k > m, from relaxed reduced represen-

tation’s properties in [1] that |ε′∗i | ≤ b, we can derive the
inequalities as follows. From the assumption, we know that
ε′∗k > 0.

w′ =

k∑
i=0

ε′∗i q
i

= ε′∗k q
k +

k−1∑
i=0

ε′∗i q
i

≥ ε′∗k q
k +

k−1∑
i=0

(−b)qi

= ε′∗k q
k − b(qk − 1)

q − 1

= ε′∗k q
k − (qk − 1)

2

≥ qk

2
≥ qm

> qm − 1

and this contradicts the fact that w′ ≤ qm − 1.
Case the length k < m, relaxed reduced representation’s

properties in [1] show that |ε′∗i | ≤ b, so it is impossible to
have k < m with c′(ε′∗) > 1 + bm.

Case the length k = m and q = 3, the relaxed
cost of relaxed reduced representation is maximized when
w′ = qm+1

2 which has relaxed reduced representation ε′∗ =
〈ε′∗0 , ..., ε′∗k 〉q = 〈−1, ...,−1, 1〉q . We have c′(ε′∗) = 1 + bm
and this is a contradiction.

Case the length k = m and q 6= 3, if ε′∗k = 1, we have∑k−1
i=0 ε

′∗
i ≥ 1+ bm. From |ε′∗i | ≤ b, this is impossible. Thus,

the lowest ε′∗k we can have is 2 and we get lowest w′ with
relaxed cost of its relaxed reduced representation greater than
1+ bm is w′ = 3qm+1

2 with its relaxed reduced representation
〈ε′∗0 , ..., ε′∗k 〉q = 〈−b, ...,−b, 2〉q ∈ Rq(w′). You can see that
w′ > qm − 1 and this is a contradiction. �

Lemma 19. For all natural number m and even base q ≥ 2,
there exists an integer 0 ≤ w ≤ qm−1 with its relaxed reduced
representation ε∗ ∈ Rq(w) such that

c′(ε∗) =

{
1
2 +

(
q−1
2

)
(m) if m is odd

1 +
(
q−1
2

)
(m) if m is even

Proof. Let b := q
2 and a := q

2 − 1.
Case m is odd, let wodd := qm − aqm−1 − (a +

bq) q
m−1−1
q2−1 with its representation ε∗ = 〈ε∗0, ..., ε∗m〉q =

〈−a,−b, ...,−a,−b,−a, 1〉q ∈ Rq(wodd). The reduction rules
in Definition 6 can be applied to show that ε∗ is relaxed
reduced. You can see that 0 ≤ wodd =

∑m
i=0 ε

∗
i q
i ≤ qm − 1

and c′(ε∗) = 1 + a+ (a+ b)
(
m−1
2

)
= 1

2 +
(
q−1
2

)
(m).

Case m is even, let weven := qm − q(qm−1)
2(q+1) with its rep-

resentation ε∗ = 〈ε∗0, ..., ε∗m〉q = 〈−b,−a, ...,−b,−a, 1〉q ∈
Rq(weven). The reduction rules in Definition 6 can be applied
to show that ε∗ is relaxed reduced. You can see that 0 ≤
weven =

∑m
i=0 ε

∗
i q
i ≤ qm−1 and c′(ε∗) = 1+(a+b)

(
m
2

)
=

1 +
(
q−1
2

)
(m). �

Lemma 20. For all natural number m and even base q ≥ 2,
c′(ε∗) is at most

c′(ε∗) ≤

{
1
2 +

(
q−1
2

)
(m) if m is odd

1 +
(
q−1
2

)
(m) if m is even

for relaxed reduced representation ε∗ ∈ Rq(w), 0 ≤ w ≤
qm − 1.

Proof. Let b := q
2 and a := q

2 − 1.

Case m is odd, we assume that there exists an integer 0 ≤
w′ ≤ qm − 1 with its relaxed reduced representation ε′∗ =
〈ε′∗0 , ..., ε′∗k 〉q ∈ Rq(w′) such that c′(ε′∗) > 1

2 +
(
q−1
2

)
(m)

• Case the length k > m, using the argument similar to
Lemma 18 for the case when the length k > m and
some relaxed reduced representation’s properties, we have∑k
i=0 ε

′∗
i q

i > qm − 1. We have a contradiction.
• Case the length k < m, relaxed reduced representation’s

properties in [1] show that |ε′∗i | ≤ b and there should be
no two adjacent digits equal to b or −b, so it is impossible
to have k < m with c′(ε′∗) > 1

2 +
(
q−1
2

)
(m).

• Case the length k = m and q = 2, using the properties
on adjacent digits and the argument similar to Lemma 18
for the case when the length k = m and q = 3, we will
have a contradiction.

• Case the length k = m and q 6= 2, using the
argument similar to Lemma 18 for the case when
the length k = m and q 6= 3, the lowest w′

we can have with relaxed cost of its relaxed
reduced representation greater than 1

2 +
(
q−1
2

)
(m)

is w′ = 1
2

(
3qm + 2qm−1 − (q + 2)

(
qm−1−1
q+1

))
with relaxed reduced representation 〈ε′∗0 , ..., ε′∗k 〉 =
〈−a,−b, ...,−a,−b,−a, 2〉q ∈ Rq(w′). You can see that
w′ > qm − 1 and this is a contradiction.

Case m is even, the proof can be completed using the similar
argument. �

Finally, we conclude all lemmas in this theorem.

Theorem 21 (maximum relaxed cost of relaxed reduced
representation). Given a natural number m and base q ≥ 2,
the maximum relaxed cost of relaxed reduced representation
ε∗ ∈ Rq(w) for 0 ≤ w ≤ qm− 1, c′(ε∗), can be described as
follows.

c′(ε∗) ≤

1 +

(
q−1
2

)
(m) if q is odd

1
2 +

(
q−1
2

)
(m) if q is even and m is odd

1 +
(
q−1
2

)
(m) if q is even and m is even

B. Worst Case of Computation Time Using q-Based Addition-
Subtraction k-Chain Technique

From Theorems 10, 21 and Algorithm 3, we can propose a
bound of the length of q-based a/s k-chain as follows.

Theorem 22 (bound of the length of q-based addition-subtrac-
tion k-chain). Given positive integer q ≥ 2, k ≥ 2 and n, the
bound of the optimal length s of q-based addition-subtraction
k-chain for an integer n can be described as follows.

dlogq ne ≤ s ≤ dlogq ne+
⌈

1

k − 1

(
q − 1

2
(logq n)

)⌉
Note that dlogq ne is the length of the power part and⌈
1

k−1
(
q−1
2 (logq n)

)⌉
is the length of the addition part. This

can be calculated straightforward from Theorem 10 and The-
orem 21.

This theorem leads to the worst case of the computation
time using q-based a/s k-chain technique (with no parallel

computation). Refer to Subsection II-C, the costs from using
q-based a/s k-chain of n to calculate nP are written in the
following notation. We define m := blog2 nc + 1 as number
of bits for n.

Avgm,(q,k) = Q× m

log2 q
+A× c′avg

(
m

log2 q

)
+O(1),

Maxm,(q,k) = Q× m

log2 q
+A× c′max

(
m

log2 q

)
+O(1),

where Q is the cost of multiplying the point by q. The
constants c′avg and c′max are the average and maximum relaxed
costs for 1 bit representation in base q which are explained in
this section and Subsection II-A.

V. PARALLEL SCALAR MULTIPLICATION USING
q-BASED ADDITION-SUBTRACTION k-CHAIN

TECHNIQUE
In [11], k-chain is used to improve the inversion operation

of an element in GF (2m). In this paper, we will use the
proposed q-based a/s k-chain to improve scalar multiplication
in parallel way. We first introduce the most basic technique
with no parallel computation, namely 2-based a/s 2-chain
technique. We then propose a 2-based a/s 4-chain parallel
technique which leads to our main contribution, q-based a/s k-
chain parallel technique. We also discuss an optimization for
multiple operand point addition using hybrid-double multiplier
[19], [20].

A. 2-Based Addition-Subtraction 4-Chain Parallel Technique

We start by introducing 2-based a/s 2-chain technique
which is the most simple technique. We can calculate nP by
following the way 2-based a/s 2-chain of n is constructed. We
calculate point doubling in power part and point addition in
the addition part of the chain. From Theorem 8, Theorem 21,
Algorithms 1 and Algorithm 3, the length of the power part
is at most m := blog2 nc+ 1. The length of the addition part
is at average 1

3m+ O(1) and at most 1
2m+ O(1). Thus, the

average and maximum costs for 2-based a/s 2-chain technique
can be written with the following notations.

Avgm,(2,2) = D ×m+A× 1

3
m+O(1),

Maxm,(2,2) = D ×m+A× 1

2
m+O(1).

This is the most simple technique using q-based a/s k-chain.
You may notice that using NAF technique will have the same
cost.

Next, we will move to the parallel technique by using
parallel point addition. We start with 2-based a/s 4 chain, and
then generalize to q-based a/s k chain in the next subsection.
The idea is that, to calculate P1+P2+P3+P4, parallel point
addition will firstly do P ′ = P1 + P2 and P ′′ = P3 + P4

simultaneously with 2 computing cores. Then the final answer
is P ′+P ′′. Thus, this costs only 2A instead of 3A. We define
4-operand parallel point addition A‖ which equals to 2A.

Remark: Given elliptic points Pi and positive integer x, x-
operand point addition is the calculation of P1+P2+ · · ·+Px.

To use 2-based a/s 4-chain parallel technique to calculate
nP , we do point doubling in power part and then do 4-operand
parallel point addition in addition part. The length of the power
part is at most m := blog2 nc+1. By Theorems 8 and 22, the
length of the addition part is 1

3 (
1
3)m + O(1) at average and,

by Theorems 21 and 22, at most 1
3 (

1
2)m + O(1). Thus, the

average and maximum costs for 2-based a/s 4-chain parallel
point addition technique with 2 computing cores can be written
with the following notations.

Avgm,(2,4,2) = D ×m+A‖ ×
1

9
m+O(1)

= D ×m+A× 2

9
m+O(1),

Maxm,(2,4,2) = D ×m+A‖ ×
1

6
m+O(1)

= D ×m+A× 1

3
m+O(1).

Another easy way to calculate the cost is to multiply a factor
of 2

3 from the parallel point addition to the addition part of
2-based a/s 2-chain.

B. Generalize to q-Based Addition-Subtraction k-Chain Tech-
nique with c Computing Cores

If you have enough computing resources, this technique can
be generalized by using q-based a/s k-chain with c computing
cores (can execute c point additions at the same time). Start
with k operands (points), because it is a k-chain, we assume
that number of the operands are reduced by half each round
(with 2-operand addition), thus we have dlog2 ke rounds. The
number of point additions in each round is the number of
the operands remaining in each round divides by 2 times the
number of computing cores, rounding up. Similar to the last
subsection, the average and maximum costs for the generalized
technique can be written as follows.

Avgm,(odd q,k,c) = Q× m

log2 q
+A×

(
1− 2−dlog2 ke

)
×(

k(q − 1)(q + 1)

4cq(k − 1)

)
m

log2 q
+O(1)

Avgm,(even q,k,c) = Q× m

log2 q
+A×

(
1− 2−dlog2 ke

)
×(

k(q − 1)(q + 2)

4c(q + 1)(k − 1)

)
m

log2 q
+O(1)

Maxm,(q,k,c) = Q× m

log2 q
+A×

(
1− 2−dlog2 ke

)
×(

k(q − 1)

2c(k − 1)

)
m

log2 q
+O(1)

Another easy way to approximate the cost is to multiply a
factor of 1

c from the parallel computing cores to the addition
part.
Remark: To get the minimum cost, we found that we should
use q = 2 (2-based) and have the highest c as possible. (The

choices for k have only small effect. We will discuss on this
topic in the next section.) Moreover, using q = 2 is also
efficient in GF (2m) because the doubling operation is fast.
The value of q can be chosen depending on the finite field
used.

C. Optimizing Multiple Operand Point Addition for Twisted
Edwards Curves

In this subsection, we discuss an optimization technique for
q-based a/s k-chain. Although we can use any q for q-based a/s
k-chain technique, the last subsection, Subsection V-B, show
that q = 2 will lead to the minimum cost and we will use this
value through this subsection as an example on how to apply
the optimization. (Other values of q are also possible for this
technique.)

Firstly, we give some explanations about the finite field
elements multiplication. The 2-operand finite field elements
multiplication is an operation that can give a multiplication
result of two field elements, while the 3-operand finite field
elements multiplication is an operation that can give a mul-
tiplication result of three field elements. For example, when
λ1, λ2, λ3 are elements of a field, the 2-operand finite field
elements multiplication can give a value of λ1λ2, while 3-
operand finite field elements multiplication can give a value
of λ1λ2λ3.

In [19], [20], a circuit for the 3-operand finite field elements
multiplication called hybrid-double multiplier is given. The
calculation time of the circuit is almost equal to that of the
fastest 2-operand finite field elements multiplication.
Remark: The finite field elements multiplication is a part of
the elliptic point addition. They are not the same operations.

We will focus on twisted Edwards curves [18], ax2 + y2 =
1+ dx2y2, because they are the currently fastest curves [21].
Cost for 2-operand point addition (an operation that calculate
P1 + P2 when P1 and P2 are points on an elliptic curve)
using hybrid-double multiplier is A = 9M. We define A∗
as the cost for 3-operand point addition (an operation that
calculate P1 + P2 + P3 when P1, P2, and P3 are points on
an elliptic curve). We can rearrange some part of the point
addition equations from [18] and have 17M as the cost for
A∗. The rearranged equations for A∗ are explained as follows.

Let Xi, Yi and Zi be finite field elements. Given elliptic
points P1(X1, Y1, Z1), P2(X2, Y2, Z2) and P3(X3, Y3, Z3) in
projective coordinate where the x-y coordinate (xi, yi) =
(Xi/Zi, Yi/Zi). We use most equations from [18] because
they are the currently fastest formulas recorded in [21]. First,
we calculate X12 and Y12 from P1 and P2.

λ1 = Z1Z2

λ2 = (λ1)
2

λ3 = X1X2

λ4 = Y1Y2

λ5 = dλ3λ4

λ6 = λ2 − λ5
λ7 = λ2 + λ5

X12 = λ1λ6((X1 + Y1)(X2 + Y2)− λ3 − λ4)
Y12 = λ1λ7(λ4 − aλ3)

The calculation cost is now 8M using hybrid-double mul-
tiplier. Notice that we do not calculate Z12 here. (Calculate
Z12 = λ6λ7 will finish the 2-operand point addition with
the cost of 9M.) We continue to calculate P4(X4, Y4, Z4) =
P1 + P2 + P3 as follows and you can see that the total cost
is 17M.

λ8 = λ6λ7Z3

λ9 = (λ8)
2

λ10 = X12X3

λ11 = Y12Y3

λ12 = dλ10λ11

λ13 = λ9 − λ12
λ14 = λ9 + λ12

X4 = λ8λ13((X12 +X3)(Y12 + Y3)− λ10 − λ11)
Y4 = λ8λ14(λ11 − aλ10)
Z4 = λ13λ14

It is important to note that with the hybrid-double multiplier,
we have 17M = A∗ < 2A = 18M. The lower cost comes
from the λ8 equation. To calculate nP from 2-based a/s k-
chain, we do point doubling in the power part and then do
3-operand point addition in the addition part. In this way, the
average and maximum costs for 2-based a/s k-chain technique
with c cores are

Avgm,optimize(2,k,c) = D ×m+A×
(
1− 3−dlog3 ke

)
×
(

17k

54c(k − 1)

)
m+O(1)

Maxm,optimize(2,k,c) = D ×m+A×
(
1− 3−dlog3 ke

)
×
(

17k

36c(k − 1)

)
m+O(1)

Another easy way to calculate the cost is to multiply a factor
of 17

18 from the 3-operand point addition to the addition part.
We can generalize this optimization to x-operand point

addition for any positive integer x ≥ 3. Calculating the
summation of x elliptic points with hybrid-double multiplier
but no multiple operand point addition will cost 9(x− 1)M.
For each operand higher than 2, if we use the hybrid-
double multiplier, we can reduce the finite field multiplication
by one. This is because we do not have to calculate the
intermediate value of Zi. Refer to the rearrange equations
earlier, you can see that we can calculate λ8 = λ6λ7Z3 with
only one 3-operand field elements multiplication instead of
Z12 = λ6λ7 and λ8 = Z12Z3 separately. You can apply this
3-operand field element multiplication to every point operand
added. This means that, using x-operand point addition will
reduce (x − 2)M from the cost. This will give a factor of
9(x−1)−(x−2)

9(x−1) = 8x−7
9x−9 to the addition part.

Recall that the number of points we want to add using c
cores is k (from the property of q-based a/s k-chain). We know
that the computation time is optimized when each core has
almost the same number of points to add. Because of that,
each core has the point to calculate the summation at most⌈
k
c

⌉
. Having x >

⌈
k
c

⌉
will not give any more improvements.

Thus, the value of x that minimize our cost is
⌈
k
c

⌉
.

If we can rearrange the equations in other ways and reduce
more field element multiplications, we can similarly apply the
technique to lower the calculation cost. However, we found
during the course of this work that the further reduction is
very difficult.

D. Side Channel Attack Prevention

In previous techniques including double-and-add, NAF, w-
NAF, addition chain and addition-subtraction chain, we can
know the sequence of addition and doubling steps by monitor-
ing the power (power attack) [12] or time used (timing attack)
[13]. These kinds of attacks are called side-channel attack.
Some techniques, including Montgomery ladder [14], deploy
dummy operations or use uniform operations to encounter this,
however, the calculation costs become worse. In q-based a/s
k-chain techniques, all calculations begin with some numbers
of multiplying and then follow with some additions. The n
in nP cannot be distinguished using these kind of sequences.
Thus, we do not need any dummy operations. This is how we
resist power attack.

For timing attack in q-based a/s k-chain, one can measure
the time used in the addition part and tell how many times
the addition are executed. Some n may have short addition
part, thus, it is easy to guess this integer n. We can add
some dummy operations and make all executions equal to
the maximum computation time. Even though the calculation
cost becomes worse, we have proved that the maximum
computation time is still efficient. In this way, we can prevent
timing attack and also power attack.

VI. COMPARISONS AND PARAMETER SETTINGS

A. Comparisons with Techniques without Windows

Defining m := blog2 nc + 1, from Sections V, the costs
Avgm and Maxm of all techniques using base 2 representa-
tions are in the form

D ×m+A× coeff. m+O(1).

Table I summarizes the coefficient values of Am for average
and worst case. w-NAF and wr-NAF are not included in the
table because their calculation costs are affected from the pre-
computation costs.

Note that the multiple operand point addition optimization is
now specific to twisted Edwards curves due to the rearranged
equations. The other techniques can be generally applied to
any curves.

According to Table I, among the proposed technique, choos-
ing 2-based a/s k-chain with large number of cores, c, and a
multiple operand point addition optimization will lead to the
minimum cost.

TABLE I
COEFFICIENT VALUE OF Am FOR EACH TECHNIQUE

Technique used Average coefficient Maximum coefficient

Double-and-add 1
2
= 0.5 1

2-based a/s 2-chain / NAF [2] 1
3
≈ 0.333... 1

2
= 0.5

2-based a/s 4-chain (2 cores) 2
9
≈ 0.222... 1

3
≈ 0.333...

2-based a/s k-chain (c cores) (
1− 2−dlog2 ke

)(
k

3c(k−1)

)
≈ 1

3c
≈ 0.333...

c

(
1− 2−dlog2 ke

)(
k

2c(k−1)

)
≈ 1

2c
≈ 0.5

c

2-based a/s k-chain (c cores)

with 3-operand addition and

hybrid-double multiplier

(
1− 3−dlog3 ke

)(
17k

54c(k−1)

)
≈ 17

54c
≈ 0.315...

c

(
1− 3−dlog3 ke

)(
17k

36c(k−1)

)
≈ 17

36c
≈ 0.472...

c

2-based a/s k-chain (c cores)

with x-operand addition and

hybrid-double multiplier

(
1− x−dlogx ke

)(
k(8x−7)

3c(k−1)(9x−9)

)
≈ 8

27c
≈ 0.296...

c

(
1− x−dlogx ke

)(
k(8x−7)

2c(k−1)(9x−9)

)
≈ 4

9c
≈ 0.444...

c

B. Comparisons with w-NAF and Montgomery Ladder

We first precisely compare the maximum cost between
w-NAF representation and our 2-based a/s k-chain parallel
technique. Because of the pre-computation cost in w-NAF,
we have to specify the number of bits used to represent an
integer. We choose 128 and 256 bit integers for this purpose
[22]. The maximum cost should be considered in this case due
to the aims of side-channel attack. For w-NAF (wr-NAF with
r = 2), [4] suggests the best w to be 5 and we will use these
values in this subsection. According to Subsections II-C and
V-B, the maximum cost for 128 bits would be

Max128,5-NAF = D × 128 +A×
(
1

5
(128) + 7

)
= 128 D +

163

5
A,

Max128,(2,k,c) = D × 128 +A×
(
1− 2−dlog2 ke

)
×
(

k

2c(k − 1)

)
128 +O(1)

In this case, using 2-based a/s k-chain technique with only
2 computing cores will have slightly smaller cost. You can
improve the result by using more than 2 computing cores.
Next, the maximum cost for 256 bits would be

Max256,5-NAF = D × 256 +A×
(
1

5
(256) + 7

)
= 256 D +

291

5
A,

Max256,(2,k,c) = D × 256 +A×
(
1− 2−dlog2 ke

)
×
(

k

2c(k − 1)

)
256 +O(1)

In 256-bit case, using 2-based a/s k chain technique with 3
computing cores or more will have smaller cost.

Approximately, for large m, our chain technique with 3
computing cores will have up to 1/5−4/27

1/5 = 25.92% less
additions. but if using 2 computing cores, our technique can
have up to 4/18−1/5

1/5 = 11.11% more additions.
Similarly, in base 3 representation and GF (3m), [4] sug-

gests w = 3 and r = 3 for wr-NAF technique. Our 3-based a/s
k-chain technique can overcome the current cost using only
3 computing cores with 3-operand addition optimization and
hybrid-double multiplier. We show the approximated costs as
follows and use T as the cost for tripling.

Maxm,(3,3)-NAF = T × m

log2 3
+A×

(
1

3

)
m

log2 3

+O(1)

Maxm,opt(3,k,c) = T × m

log2 3
+A×

(
17

18c

)
m

log2 3

+O(1)

For Montgomery ladder [14], the technique uses 1 addition
for each digit in the binary representation. Using the number
of bits with the same notation m = blog2 nc+1, the maximum
cost for calculating nP using this technique is

Maxm,Mont = A×m

Because the cost of addition A = 11M is more than
doubling D = 7M (with no hybrid-double multiplier), our
2-based a/s k-chain techniques can perform better with 2
computing cores and above. If the power part is already pre-
computed, our chain technique can perform better in any case.

C. Choice of k in q-Based Addition-Subtraction k-Chain

Although, choices for k do not have much effects on the
cost, you can see that choosing large k for q-based a/s k-chain
can lower the calculation cost owing to the cost equation, the

rounding up and the optimization technique. However, using
smaller k also has some benefits.

In elliptic curve cryptography, we know P long before
knowing n. The power part can be calculated before n is
given. When n is given, it will go through Algorithm 1 to
generate its relaxed reduced representation. After the algorithm
produces some least significant digits, if we choose small k,
we can calculate the next element of the chain immediately,
not having to wait for the algorithm to finish. The smaller k
we choose, the earlier we can start the calculation.

Smaller k also has another benefit. Some applications need
the results of nP for the same P and some different n. Using
smaller k, some common digits between the different n can
be calculated only once. See the example below.

Example 23. To calculate 45P and 77P from 2-based a/s
k-chain, we have relaxed reduced representation for 45 =
〈1, 0,−1, 0,−1, 0, 1〉2 and 77 = 〈1, 0,−1, 0, 1, 0, 1〉2. From
Algorithm 3, we can choose xi (each digit in relaxed reduced
representation) in order to have t for 45 = (1,−3,−5, 0)
and t for 77 = (1,−3, 5, 0). If we choose k = 3 (2-
based a/s 3-chain), we have [1, 2, 4, 8, 16, 32, 64, 61, 45]2 for
45 and [1, 2, 4, 8, 16, 32, 64, 61, 77]2 for 77. Notice that we can
calculate the common 61P once. We can reduce more addition
if n is large. In this example, the technique cannot be used if
we choose k ≥ 4.

From our experiments, we random 100,000 pairs of 128-bit
integers and generate their base 2 relaxed reduced represen-
tations. At average, there are 3 common digits between each
pair. Changing to base 3 can increase this value to 17. This
means if we choose the appropriate value for k, at average, we
can reduce 3 and 17 additions, respectively. We may use this
technique and consider more than 2 integers at the same time.
A method for selecting which digit to calculate, its efficiency
and method to find the optimized k are left for further studies.

VII. CONCLUSIONS AND FUTURE WORKS

Parallel techniques have been used widely for efficient
computations, but not many parallel techniques have been pro-
posed to improve scalar multiplication with side-channel attack
prevention. Our paper propose a parallel scalar multiplication
technique using q-based a/s k-chain. The proposed technique
uses the computing cores efficiently as we can see that using
c computing cores can reduce the addition costs to the factor
of 1

c . This parallel techniques can perform better than the
current w-NAF technique by using only 3 cores. We also have
some optimization of multiple operand point addition which
can reduce the addition costs up to the factor of 8

9 . At the
end, we show that our parallel q-based a/s k-chain technique
can resist side-channel attack efficiently. Some elliptic curve
multiple operand addition equations rearrangements, method
for selecting digits and the optimized value for k are left for
further studies.

ACKNOWLEDGMENT

This research was mainly done while Kittiphop Phalakarn
and Kittiphon Phalakarn did an internship at The University

of Tokyo. The authors would like to thank The University of
Tokyo, Assis. Prof. Athasit Surarerks and Prof. Hiroshi Imai
for facilitating the internship.

REFERENCES

[1] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to elliptic curve
cryptography. Springer Science & Business Media, 2006.

[2] W. Bosma, “Signed bits and fast exponentiation,” Journal de théorie des
nombres de Bordeaux, vol. 13, no. 1, pp. 27–41, 2001.

[3] K. Okeya and T. Takagi, “The width-w NAF method provides small
memory and fast elliptic scalar multiplications secure against side
channel attacks,” in Cryptographers Track at the RSA Conference,
pp. 328–343, Springer, 2003.

[4] T. Takagi, D. J. Reis, S.-M. Yen, and B.-C. Wu, “Radix-r non-adjacent
form and its application to pairing-based cryptosystem,” IEICE Transac-
tions on Fundamentals of Electronics, Communications and Computer
Sciences, vol. 89, no. 1, pp. 115–123, 2006.

[5] D. E. Knuth, The Art of Computer Programming, Volume 2: Semi-
numerical Algorithms. Addison-Wesley, 1997.

[6] H. Volger, “Some results on addition/subtraction chains,” Information
Processing Letters, vol. 20, no. 3, pp. 155–160, 1985.

[7] N. Meloni, “Fast and secure elliptic curve scalar multiplication over
prime fields using special addition chains,” IACR Cryptology ePrint
Archive, vol. 2006-216, 2006.

[8] R. R. Goundar, K. Shiota, and M. Toyonaga, “New strategy for doubling-
free short addition-subtraction chain,” International Journal of Applied
Mathematics, vol. 2, no. 3, pp. 438–445, 2007.

[9] H. M. Bahig, “On a generalization of addition chains: Addition–
multiplication chains,” Discrete Mathematics, vol. 308, no. 4, pp. 611–
616, 2008.

[10] M. Nöcker, “Some remarks on parallel exponentiation,” in International
Symposium on Symbolic and Algebraic Computation, pp. 250–257,
ACM, 2000.

[11] K. Järvinen, V. Dimitrov, and R. Azarderakhsh, “A generalization of
addition chains and fast inversions in binary fields,” IEEE Transactions
on Computers, vol. 64, no. 9, pp. 2421–2432, 2015.

[12] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Annual
International Cryptology Conference, pp. 388–397, Springer, 1999.

[13] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” in Annual International Cryptology
Conference, pp. 104–113, Springer, 1996.

[14] M. Joye and S.-M. Yen, “The Montgomery powering ladder,” in Inter-
national Workshop on Cryptographic Hardware and Embedded Systems,
pp. 291–302, Springer, 2002.

[15] N. Méloni and M. A. Hasan, “Random digit representation of integers,”
in IEEE Symposium on Computer Arithmetic (in press), 2016.

[16] B. Möller, “Securing elliptic curve point multiplication against side-
channel attacks,” in International Conference on Information Security,
pp. 324–334, Springer, 2001.

[17] C. Heuberger and H. Prodinger, “On minimal expansions in redundant
number systems: Algorithms and quantitative analysis,” Computing,
vol. 66, no. 4, pp. 377–393, 2001.

[18] D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters, “Twisted
Edwards curves,” in International Conference on Cryptology in Africa
(AfricaCrypt ’08), pp. 389–405, Springer, 2008.

[19] R. Azarderakhsh and A. Reyhani-Masoleh, “Low-complexity multiplier
architectures for single and hybrid-double multiplications in Gaussian
normal bases,” IEEE Transactions on Computers, vol. 62, no. 4, pp. 744–
757, 2013.

[20] R. Azarderakhsh and A. Reyhani-Masoleh, “Parallel and high-speed
computations of elliptic curve cryptography using hybrid-double multi-
pliers,” IEEE Transactions on Parallel and Distributed Systems, vol. 26,
no. 6, pp. 1668–1677, 2015.

[21] “Explicit-formulas database.” http://hyperelliptic.org/EFD/. Accessed
July 21, 2016.

[22] A. Jivsov, “Elliptic curve cryptography (ECC) in OpenPGP,” 2012.

