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Abstract

Garbled RAM, introduced by Lu and Ostrovsky (Eurocrypt 2013), provides a novel method
to garble RAM (Random Access Machine) programs directly. It can be seen as a RAM analogue
of Yao’s garbled circuits such that, the size of the garbled program and the time it takes to create
and evaluate it, is proportional only to the running time of the RAM program, avoiding the
inefficient process of first converting it into a circuit. Secure RAM computation for two parties is
a key application of garbled RAM. However, this construction is secure only against semi-honest
adversaries.

In this paper we provide a cut-and-choose technique for garbled RAM. This gives the first
constant round two-party secure computation protocol for RAM programs secure against mali-
cious adversaries that makes only black-box use of the underlying cryptographic primitives. Our
protocol allows for garbling multiple RAM programs being executed on a persistent database.
Security of our construction is argued in the random oracle model.
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1 Introduction

Alice owns a large private database D and wants to store it on the cloud (Bob) in an encrypted form.
Subsequently Alice and Bob want to compute and learn the output of arbitrary dynamically chosen
programs P1, P2, · · · on their private inputs x1 = (xA1 , x

B
1 ), x2 = (xA2 , x

B
2 ), · · · and the previously

stored database, which gets updated as these programs are executed. During the computation the
two parties do not want to leak their private inputs to each other. Can we do this?

Starting with seminal works of Yao [Yao82] and Goldreich, Micali and Wigderson [GMW87],
in the past few decades, both theoretical and practical improvements have been pushing the limits
of the overall efficiency of such schemes. However most of these constructions are devised only for
circuits and securely computing a RAM program involves the inefficient process of first converting
it into a circuit. For example, Yao’s approach requires that the program be first converted to a
circuit — the size of which will need to grow at least with the size of the input. Hence, in the
example above, for each program that they want to compute, Alice will need to send a message that
grows with the size of the database. Using fully homomorphic encryption [Gen09] we can reduce
the size of Alice’s message, but the cloud still needs to compute on the entire encrypted database.
Consequently the work of the cloud still grows with the size of the database. These solutions can
be prohibitive for various applications. For example, in the case of binary search the size of the
database can be exponentially larger than execution path of the insecure solution. In other words
security comes at the cost of an exponential overhead. We note that additionally even in settings
where the size of the database is small, generic transformations from RAM programs with running
time T result in a circuit of size O

(
T 3 log T

)
[CR73,PF79], which can be prohibitively inefficient.

Secure computation for RAM programs. Motivated by the above considerations, various
secure computation techniques that work directly for RAM programs have been developed. For
instance, Ostrovsky and Shoup [OS97] show how general secure RAM computation can be done
using oblivious RAM techniques [Gol87, Ost90, GO96]. Subsequently, Gordon et al. [GKK+12]
demonstrated an efficient realization based on specialized number-theoretic protocols. In follow up
works [LO13a, WHC+14, AHMR15], significant asymptotic and practical efficiency improvements
have been obtained. However, all these works require round complexity on the order of the running
time of the program.

In a recent line of work [LO13b, GHL+14, GLOS15], positive results on round efficient secure
computation for RAM programs have been achieved, and more recently constructions that only
make black-box use of cryptographic primitive [GLO15] have been constructed. These improvements
are obtained by realizing the notion of garbled random-access machines (garbled RAMs) [LO13b]
as a method to garble RAM programs directly, a RAM analogue of Yao’s garbled circuits [Yao82].

Semi-honest vs. malicious adversaries. All two-party secure RAM computation protocols
obtained using garbled RAM are secure only against semi-honest adversaries. Hence, an important
question is how to “convert” the protocol into one that is secure in the presence of malicious
adversaries, while preserving the efficiency, round complexity, and black-box use of underlying
cryptographic primitives of the original protocol to the greatest extent possible. Of course, one
possibility is to use the compiler of Goldreich, Micali and Wigderson [GMW87]. This compiler
converts any protocol that is secure for semi-honest adversaries into one that is secure for malicious
adversaries, and as such is a powerful tool for demonstrating feasibility. However, it is based on
reducing the statement that needs to be proved (in our case, the honesty of the parties’ behavior)
to an NP-complete problem, and using generic zero-knowledge proofs to prove this statement. The
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resulting secure protocol is therefore rather inefficient. In particular, this procedure will lead to
non-black-box use of the underlying cryptographic primitives.

Persistent vs. non-persistent database. In the setting of RAM programs, the ability to
store a persistent private database that can be computed on multiple times can be very powerful.
Traditionally, secure computation on RAM programs is thus studied in two settings. In the non-
persistent database setting, one considers only a single program execution. While in the persistent
database setting, one considers execution of many programs on the same database; the database can
be modified by these programs during the execution and these changes persist for future program
executions. This feature is very important as it allows to execute a sequence of programs without
requiring to initialize the data for every execution, implying that the database can be huge and
the execution time of each program does not need to depend on the size of the database. Previous
garbled RAM schemes [GHL+14,GLOS15,GLO15] allow to garble any sequence of programs on a
persistent database. We show that our secure RAM computation protocol preserves this property
in the presence of malicious adversaries.

Black-box vs. non-black-box. Starting with Impagliazzo-Rudich [IR90, IR89], researchers have
been very interested in realizing cryptographic goals making only black-box use of underlying
primitives. It has been the topic of many important recent works in cryptography [IKLP06,
PW09, Wee10, GLOV12, GOSV14, GLO15]. On the other hand, the problem of realizing black-
box construction for various primitive is still open, e.g. multi-statement non-interactive zero-
knowledge [BFM88, FLS99, GOS06] and oblivious transfer extension [Bea96].1 From a complexity
perspective, black-box constructions are very appealing as they often lead to conceptually simpler
and qualitatively more efficient constructions.2

Motivated by stronger security guarantee and black-box constructions in the persistent database
setting, in this work, we ask the following question:

Can we securely compute RAM programs on a persistent database against malicious
adversaries making only black-box use of cryptographic primitives?

1.1 Our Results

In this paper, we provide the first constant round two-party secure RAM computation protocol
making only black-box use of underlying cryptographic primitives with security guarantee against
malicious adversaries.

Main Theorem (Informal). There exists a black-box secure RAM computation protocol with
constant round complexity which is secure against malicious adversaries, where the size of the
database stored by one of the parties is Õ (|D|), and the communication and computational com-
plexity of one protocol execution is Õ (t) where t is the running time of program P executed in one
protocol execution. Here Õ (·) ignores poly (log t, log |D|, κ, s) factors where κ, s are the security
parameters. The protocol allows for maintaining a persistent garbled database across execution of
multiple programs. Our construction is proved secure in the random oracle model.

1Interestingly for oblivious transfer extension we do know black-box construction based on stronger assump-
tions [IKNP03].

2Additionally, black-box constructions enable implementations agnostic to the implementation of the underlying
primitives. This offers greater flexibility allowing for many optimizations, scalability, and choice of implementation.
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Our result technically can be seen as an adaptation of LEGO cut-and-choose technique [NO09,
FJN+13] for the setting of garbled RAM.

1.2 Concurrent and Independent Work

Concurrently with our work, Hazay and Yanai [HY16] also consider the questions of secure 2-party
RAM computation against malicious adversaries. They present a constant-round protocol building
on the the semi-honest protocols [GHL+14, GLOS15] and cut-and-choose techniques [LP07], but
make a non-black-box use of one-way functions. Moreover, they only allow for a weaker notion
of persistent database, which we refer to as weak persistent setting in Table 1, where all the
programs as well as the inputs are known beforehand to the parties.3 Also concurrently, Garg et
al. [GGMP16] study this question in the multiparty setting. They demonstrate a constant-round
multi-party computation protocol that makes black-box use of one-way functions. Their work is
based on the black-box garbled RAM construction [GLOS15] (as we do) and the constant-round
MPC construction of [BMR90]. Their semi-honest secure protocol allows for a persistent database,
whereas their maliciously secure protocol achieves the weak persistent notion. See Table 1 for a
comparison of our work with prior and concurrent work.

parties security persistence model assumption rounds

[GHL+14] 2-party semi-honest persistent OT-hybrid IBE O (1)

[GLOS15] 2-party semi-honest persistent OT-hybrid non-black-box OWF O (1)

[GGMP16] multi-party semi-honest persistent OT-hybrid black-box OWF O (1)

[GLO15] 2-party semi-honest persistent OT-hybrid black-box OWF O (1)

[AHMR15] 2-party malicious non-persistent OT-hybrid black-box OWF O (t)

[HY16] 2-party malicious weak persistent OT-hybrid non-black-box OWF O (1)

[GGMP16] multi-party malicious weak persistent OT-hybrid black-box OWF O (1)

[this work] 2-party malicious persistent OT-hybrid, ROM black-box OWF O (1)

Table 1: Comparison of this work with prior and concurrent work

2 Our Techniques

We build our protocol based on the previous semi-honest secure black-box garbled RAM construc-
tion [GLO15]. This serves as a good starting point in explaining the technical challenges that come
up in realizing maliciously secure black-box garbled RAM.

Abstract of [GLO15]. The construction of [GLO15] is complicated in that it involves details of the
RAM computation model, structure of the tree-like garbled database consisting of garbled circuits
as well as the way to properly concatenate these circuits, statistical ORAMs [DMN11, SCSL11,
SvDS+13], etc. We first summarize this construction in an abstracted garbled RAM scheme, and
then make it maliciously secure. More generally, if there are other constructions that can also
be transformed into this abstracted form, it can be automatically made maliciously secure by our
method.

3In this paper we focus on the standard persistent notion where later programs and inputs can be chosen adaptively.
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At a high level the garbled RAM scheme can be described as follows. The garbled database and
garbled programs consist of a collection of Yao’s garbled circuits [Yao86], which are concatenated
in a certain way. In particular, one garbled circuit may hard-code inside it certain public constants
and (partial) input keys to other garbled circuits. The garbler generates all the garbled circuits
concatenated properly and sends to the evaluator the garbled circuits along with partial input
labels. The evaluator evaluates the garbled circuits one by one in a certain order, during which one
garbled circuit may output (partial) input labels for other garbled circuits, enabling the evaluation
of the next garbled circuit. This process proceeds until the evaluator obtains the output of the
program.

Technical challenges. Starting from the construction of [GLO15], one possible method to make it
maliciously secure is to compile it into a new protocol against malicious adversaries using standard
techniques [GMW87]. The main idea is that the parties commit to their inputs, randomness and
intermediate steps in the computation. Then they prove in zero-knowledge that the values inside
the commitments were computed according to the protocol. The compiler technique is of great
interest from a theoretical point of view, but unfortunately it is not really practical, because of
the generic zero-knowledge proofs involved. Moreover, it will compromise the black-box use of
cryptographic primitives.

Recall that in [GLO15], the garbler (Alice) generates the garbled database D̃ and garbled
programs P̃ consisting of a collection of correlated garbled circuits, and sends to the evaluator
(Bob). If Alice is malicious, she may generate incorrect circuits or circuits concatenated in a wrong
way. To avoid Alice cheating, one possibility is to treat the garbled database and garbled program
(D̃, P̃ ) as one large garbled circuit, and apply cut-and-choose techniques to it in a similar way
to doing cut-and-choose on a single garbled circuit [LP07]. But cut-and-choose can only be done
once for the database, meaning that we can only apply cut-and-choose for the first (D̃, P̃ ) pair,
and cannot achieve execution of multiple programs on a persistent database. Therefore we turn to
apply cut-and-choose on every single circuit, or even on every gate.

The key question that we are trying to answer is: How to enforce Alice to generate all the
garbled circuits concatenated in a correct way? In particular, how to ensure that all the hard-
coded parameters are correct? In order to check the correctness, we first pull out the hard-coded
parameters in the circuit to be part of the input, and then define a public function specifying the
correlation among all these circuits, in particular which input wires should take as input an input
key to another garbled circuit, and which should take a public value as input, etc. The barrier
becomes how to enforce the garbled circuits as well as the correlation between them to be correct.

Consistency check by commitments. A natural idea is to let Alice and Bob generate each
garbled circuit correctly by cut-and-choose techniques [LP07, NO09, FJN+13, FJNT15]. Then we
require Alice to help Bob “concatenate” these circuits satisfying the correlation requirements. Recall
that in a Yao’s garbled circuit, there are two labels per input wires, which together form the input-
garbling-keys (which we also refer to as input keys in this paper) to a garbled circuit. When Bob
evaluates the garbled circuit, he obtains one label per input wire. To ensure correct concatenation,
the major task is to guarantee the consistency between input labels of one garbled circuit and input
keys to another garbled circuit. For instance, the i-th input wire of circuit X should be taking as
input the j-th bit of circuit Y ’s input keys. Let (label0, label1) be the two labels of the i-th input
wire of X, and b be the j-th bit of Y ’s input keys. In order to concatenate the two circuits, Alice
must provide Bob with labelb without revealing b.

Our first attempt is requiring Alice to give bit-by-bit commitments of all the input keys. If Alice
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commits honestly, then Bob holds a commitment of b (denoted by [b]). In addition, we require Alice
to commit to each label together with its corresponding bit, namely

[
label0

]
|| [0] and

[
label1

]
|| [1],

in a randomly permuted order. When revealing label labelb to Bob, Alice picks
[
labelb

′
]
|| [b′], opens[

labelb
′
]
, and proves to Bob that b′ = b. An additive/XOR-homomorphic commitment scheme

suffices: Bob can compute [b′] ⊕ [b] → [b⊕ b′], and Alice opens the commitment to show that
b ⊕ b′ = 0. If every bit-by-bit commitment is correct, then the above procedure ensures that Bob
obtains labelb. Now the question boils down to: How to enforce Alice to commit to every bit of the
input keys honestly?

Cut-and-choose on circuits: Our next attempt is applying cut-and-choose on each single cir-
cuit [LP07] to ensure that every garbled circuit is generated correctly. The high level idea of [LP07]
is to generate a correct garbled circuit as follows. Alice first generates a number of garbled cir-
cuits, and then Bob does cut-and-choose over these circuits, namely Bob randomly picks half of the
circuits, asks Alice to reveal all the randomness of generating the picked ones, and checks if they
are correctly generated. If all these circuits pass Bob’s checking, then with high probability most
of the remaining unchecked circuits are also correct. Bob then evaluates all the remaining circuits
and takes a majority of the outputs.

As we discussed earlier, we require Alice to give bit-by-bit commitments of all the input keys, but
currently we have no guarantee that Alice will do so honestly. In fact, even if she only committed
to a single bit incorrectly, it will easily violate our consistency requirement. For the above example,

Alice may commit to
[
b
]

and later open
[
labelb

]
(b denotes the negation of bit b). To resolve this

problem we might need another level of cut-and-choose.
Yet a more severe issue is that since Bob evaluates a number of replicate circuits and takes the

majority of the outputs, the input length of the resulting garbled circuit is increased by a factor
of the security parameter. This is fine for a single circuit, but if we apply [LP07] for each circuit
in D̃ and P̃ , where one circuit may take as input (partial) input keys to another circuit, the input
length may grow exponentially in the number of circuits.

Cut-and-choose on gates: Now we consider cut-and-choose at a gate level, which has been
known as LEGO [NO09]. The main idea of LEGO is as follows. Alice first produces a number
of components and sends to Bob. Bob randomly picks a subset of the components to be checked,
Alice sends the randomness used to generate them, and Bob checks the components. If Bob passes
all the checking, then with high probability most of the remaining components are also correct.
Bob then permutes the remaining components and use them to build a garbled circuit where each
gate will be computed multiple times and Bob takes a majority vote on the output. To connect
the remaining components we require Alice to open some commitments to Bob.

LEGO is a better fit for our setting than [LP07] in that the input length of a LEGO garbled
circuit is the same as the original circuit, hence it would not grow drastically throughout the
circuits. Moreover, since each wire is replicated multiple times, we are able to do more consistency
checking among the commitments of replicated wires, and if Bob accepts all the checking, then we
can achieve the guarantee that every bit-by-bit commitment is correct, as we elaborate in more
detail below.

XOR-homomorphic commitment scheme. Next we describe in more detail how to guaran-
tee the correctness of the bit-by-bit commitments. We start from the LEGO protocol of [NO09]
and tailer the construction to our needs. There are two major modifications. First, an addi-
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tive homomorphic commitment scheme is applied in LEGO, and we replace it with an XOR-
homomorphic commitment scheme. The use of an XOR-homomorphic commitment scheme was
proposed in [FJN+13,FJNT15] for improving efficiency, and we will see the advantage of this mod-
ification in our construction. Second, if Bob accepts all the checking in the LEGO protocol, by
cut-and-choose it only guarantees that most of the remaining components are correct with high
probability. We add more consistency checking among the commitments of input wires to ensure
that all the commitments of input wires are correct with high probability.

We now discuss the intuition of the additional consistency checking via an example. Assume
that an input wire w has `n+1 replicate wires, with input keys (label0w,0, label

1
w,0), (label0w,1, label

1
w,1),

· · · , (label0w,`n , label
1
w,`n). Alice has provided a bit-by-bit commitment of all the input keys. Denote

the first bit of label0w,i by bi. As a demonstration, we explain how to ensure that Alice has committed
to [bi] correctly. In the LEGO protocol, when concatenating components to build a garbled circuit,
Bob obtains the difference between certain labels, in particular δw,i = label0w,i ⊕ label0w,0. The
additional consistency checking is as follows. Note that bi ⊕ b0 should be the first bit of δw,i. Bob
can compute [bi ⊕ b0]← [bi]⊕ [b0]. We require Alice to open the resulting commitment and Bob to
check if it is equal to the first bit of δw,i. Since cut-and-choose is done at a gate level, with high
probability at least one of the replicate wires has correct bit-by-bit commitments. If Bob passes
all the additional consistency checking, the correctness of a single wire will spread out to all the
replicate wires. The above is merely one example of additional consistency checking, and in the
protocol we need more consistency checking to ensure correctness of all the commitments.

Practical efficiency. We illustrate our idea of additional consistency checking on the original
LEGO framework [NO09] and not on the more efficient LEGO protocols [FJN+13, FJNT15], be-
cause [NO09] is simpler and helps highlight our ideas better. We note that the focus of this work is
the theoretical feasibility of achieving maliciously secure RAM computation protocols making only
black-box use of cryptographic primitives, rather than practical efficiency. Nevertheless, it is worth
pointing out that the LEGO protocols of [FJN+13, FJNT15] are compatible with all known opti-
mizations for Yao’s garbled circuits, e.g., point-and-permute [BMR90,MNP+04], free-XORs [KS08],
garbled row reduction [NPS99,PSSW09,KMR14,ZRE15], etc.). We have left the goal of obtaining
concrete efficiency improvements over our construction for future work. However, we believe that
these improvements should be obtainable.

Adaptive security. Since we execute our protocol on a sequence of programs which run on a
persistent database, the inputs of the adversary could be adaptively decided after the two parties
have generated the garbled database and garbled programs which consist of garbled circuits. Thus
we need to argue adaptive security of the garbled RAM. More precisely, security should hold even
when the input on which the stored garbled RAM is computed can depend on the garbled RAM
itself. Towards this goal, we first modify the LEGO garbled circuit to be adaptively secure in the
random oracle model, the idea of which is similar as [BHR12a] on making Yao’s garbled circuit
adaptively secure in the random oracle model. Then we instantiate the garbled RAM with the
adaptive secure LEGO garbled circuits to achieve an adaptive secure garbled RAM.

Storage costs. Finally, we mention that the client (Alice) can store the whole database on the
cloud (Bob), and it is not necessary for her to store all the input keys, randomness, etc. on her
disk. She may store all these things on the cloud signed and in an encrypted form (by private key
encryption), and request for them when needed. Therefore, the client storage remains small after
the garbled database has been created.
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2.1 Roadmap

We now lay out a roadmap for the remainder of the paper. In Section 3 we give definitions for
semi-honest secure and maliciously secure garbled RAM. In Section 4 we abstract the static secure
black-box garbled RAM construction. We review the LEGO garbling scheme and describe our
modified construction which is adaptive secure in Section 5, and present our new LEGO protocol
in Section 6. Finally we give our secure RAM computation protocol in Section 7.

3 Preliminaries

In this section, we formally define the security of garbled RAM against semi-honest and malicious
adversaries. For a brief description of the RAM model, circuit garbling schemes, and some building
blocks needed in the construction, refer to Appendix A. In the following, let κ be the computational
security parameter for the commitment schemes, oblivious transfers, encryption schemes and hash
functions used, and s be the statistical security parameter.

3.1 Garbled RAM Scheme

In this section, we consider an extension of garbled circuits to the setting of RAM programs, as
defined in [LO13b, GHL+14, GLOS15, GLO15]. In this setting the database D is garbled once
and then many different garbled programs can be executed sequentially with the database changes
persisting from one execution to the next. Note that all the previous work only defines static
security for garbled RAM, and we also define adaptive security here.

Syntax. A garbled RAM scheme consists of four procedures (GData,GProg,GInput,GEval) with
the following syntax:

• Database Garbling: (D̃, s) ← GData(1κ, D) takes as input the security parameter κ and
database content D ∈ {0, 1}M , and outputs a garbled database D̃ and a key s.

• Program Garbling: (P̃ , sin)← GProg(s, P,M, t, T ) takes as input a key s and a RAM program
P with database-size M and run-time consisting of t CPU steps. We also provide T indicating
the cumulative number of CPU steps executed by all of the previous programs. It then outputs
the garbled program P̃ and input-garbling-key sin.

• Input Garbling: x̃← GInput(x, sin) takes as input x ∈ {0, 1}u and input keys sin, and outputs
the garbled input x̃.

• Garbled Evaluation: y ← GEvalD̃(P̃ , x̃) takes as input a garbled program P̃ , garbled input x̃
and garbled database D̃, and outputs a value y. We model GEval itself as a RAM program
that can read and write to arbitrary locations of its database initially containing D̃.

Efficiency. We require the run-time of GProg and GEval to be t · poly (logM, log t, κ), which also
serves as the bound on the size of the garbled program P̃ . Moreover, we require that the run-time
of GData should be M · poly (logM,κ), which also serves as an upper bound on the size of D̃.
Finally the running time of GInput is required to be u · poly (κ).

Correctness. For correctness, we require that for any sequence of programs P1, · · · , P` with run-
time t1, · · · , t`, let D ∈ {0, 1}M be any initial database, let x1, · · · , x` be the inputs of the programs
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and (y1, · · · , y`) = (P1(x1), · · · , P`(x`))D be the outputs given by the sequential execution of the
programs. We have that:

Pr

[(
GEval(P̃1, x̃1), · · · ,GEval(P̃`, x̃`)

)D̃
= (y1, · · · , y`)

]
= 1

where (D̃, s) ← GData(1κ, D), (P̃i, s
in
i ) ← GProg(s, Pi,M, ti, Ti), x̃i ← GInput(xi, s

in
i ), where Ti =∑i−1

j=1 tj denotes the run-time of all programs prior to Pi.

Static security. For static security, we require that there exists a PPT simulator StatRamSim such
that for any PPT adversary A, any initial database content D ∈ {0, 1}M , and any polynomially
bounded `, the output of the following two experiments are computational indistinguishable:

Real experiment

• (D̃, s)← GData(1κ, D)

• For i = 1, 2, · · · , `

– (Pi, xi)← A(1κ, i)

– (P̃i, s
in
i )← GProg(s, Pi,M, ti, Ti)

– x̃i ← GInput(xi, s
in
i )

• Output

(
D̃,
{(
P̃i, x̃i

)}`
i=1

)

Simulated experiment

•
(
D̃sim, state0

)
← StatRamSim

(
1κ, 1M

)
• For i = 1, 2, · · · , `

– (Pi, xi)← A(1κ, i)

– (P̃ sim
i , x̃simi , statei)← StatRamSim(statei−1, Pi, 1

ti , yi)

(where (y1, · · · , y`) = (P1(x1), · · · , P`(x`))D)

• Output

(
D̃sim,

{(
P̃ sim
i , x̃simi

)}`
i=1

)
Adaptive security. For adaptive security, we require that there exists a PPT simulator AdaptRamSim
such that for any PPT adversaryA, any initial database content D ∈ {0, 1}M , and any polynomially
bounded `, the output of the following two experiments are computational indistinguishable:

Real experiment

• (D̃, s)← GData(1κ, D)

• For i = 1, 2, · · · , `

– Pi ← A
(

1κ, D̃,
{

(P̃j , x̃j)
}i−1
j=1

)
– (P̃i, s

in
i )← GProg(s, Pi,M, ti, Ti)

– xi ← A
(

1κ, D̃,
{

(P̃j , x̃j)
}i−1
j=1

, P̃i

)
– x̃i ← GInput(xi, s

in
i )

• Output

(
D̃,
{(
P̃i, x̃i

)}`
i=1

)

Simulated experiment

•
(
D̃sim, state0

)
← AdaptRamSim

(
1κ, 1M

)
• For i = 1, 2, · · · , `

– Pi ← A
(

1κ, D̃,
{

(P̃j , x̃j)
}i−1
j=1

)
– (P̃ sim

i , state′i)← AdaptRamSim(statei−1, Pi, 1
ti , yi)

– xi ← A
(

1κ, D̃,
{

(P̃j , x̃j)
}i−1
j=1

, P̃i

)
– (x̃simi , statei)← AdaptRamSim(state′i, yi)

where (y1, · · · , y`) = (P1(x1), · · · , P`(x`))D

• Output

(
D̃sim,

{(
P̃ sim
i , x̃simi

)}`
i=1

)

3.2 Garbled RAM Against Malicious Adversaries

We define security of a secure RAM computation protocol against malicious adversaries in the
ideal/real world paradigm. The definition compares the output of a real execution to the output of
an ideal computation involving a trusted third party, which we call ideal functionality. The ideal
functionality receives the parties’ inputs, computes the functionality on these inputs and returns
their respective outputs. Loosely speaking, the protocol is secure if any real-world adversary can
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be converted into an ideal-world adversary such that the output distributions are computationally
indistinguishable.

Database: Alice inputs (InitialData, D). The ideal functionality parses it as D ∈ {0, 1}M .

Program and input: Alice inputs (NewProgram,A, PA, xA), Bob inputs (NewProgram,B, PB, xB). If PA 6=
PB, then the ideal functionality outputs disagreement! to both parties and terminates. Otherwise, let
P = PA and parse P as a program with input x = (xA, xB).

Evaluation and output: The ideal functionality computes y = PD(x), outputs y to Bob, and updates D
for the execution of the next program.

Corrupted party: The corrupted party may deviate from its input, may abort the procedure by sending
abort! to the ideal functionality, and can decide the time of message delivery. In addition, if Alice
is corrupted, she can specify to the ideal functionality a set {i, βi}i∈I where I ⊆ {1, · · · , |xB|} and
βi ∈ {0, 1}, where |xB| is the length of Bob’s input. If βi = xBi for every i ∈ I, then the ideal
functionality outputs correct! to Alice. Otherwise, it outputs wrong! to Alice and outputs Alice cheat!
to Bob.

Figure 1: The ideal functionality

Execution in the ideal world. We describe the ideal functionality F in Figure 1. Note that it is
“insecure” similarly as [NO09] in the sense that it allows Alice to guess Bob’s input bits, but if her
guess is wrong then Bob is told that Alice is cheating. This models a standard problem in Yao’s
garbled circuits known as “selective failure attack”, which can be solved by modifying the circuit
being evaluated to first compute a function of a randomized encoding of Bob’s input, where any s
bits are uniformly random and independent. This allows us to only argue that Alice can guess s or
more bits with probability at most 2−s, where s is the statistical security parameter, since guessing
fewer bits does not leak information. One method for this is given in [LP07]. The extra number
of gates used is O

(
|xB|+ s

)
. From now on we focus on implementing the slightly insecure ideal

functionality above.

Execution in the real world. We next consider the real world where the protocol Π is executed.
Π consists of four protocols (ΠGData,ΠGProg,ΠGInput,ΠGEval) with the following functionality:

• Database Garbling ΠGData. With Alice’s input D, the protocol outputs a key s to Alice and
the garbled database D̃ to Bob.

• Program Garbling ΠGProg. The program P is known to both parties. With Alice’s input s,
the protocol outputs an input-garbling-key sin to Alice and the garbled program P̃ to Bob.

• Input Garbling ΠGInput. With Alice’s input (sin, xA) and Bob’s input xB, the protocol outputs
the garbled input x̃ to Bob, where the input to the program is x = (xA, xB).

• Garbled Evaluation ΠGEval. It is a procedure executed by Bob himself to compute y = PD(x)
from D̃, P̃ , x̃. The garbled database is updated during the evaluation for the execution of the
next program.

Efficiency. Considering the communication and computation complexity, we require that the
complexity of ΠGData be bounded by M · poly (logM,κ, s), and that of ΠGProg,ΠGEval be bounded
by t · poly (logM, log t, κ, s). Besides, the complexity of ΠGInput is required to be u · poly (κ, s).
Moreover, the round complexity of ΠGData,ΠGProg,ΠGInput are required to be constant.
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Security against malicious adversaries. We say that the protocol Π is secure against malicious
adversaries if for every pair of PPT adversary A in the real world, there exists a pair of PPT
adversary S in the ideal world, such that with probability greater than 1− 2−s, we have{

IdealFS

(
D, {Pi, xi}`i=1

)}
D,`,{Pi,xi}`i=1

c
≈
{
RealΠ

A

(
D, {Pi, xi}`i=1

)}
D,`,{Pi,xi}`i=1

where IdealFS

(
D, {Pi, xi}`i=1

)
denotes the output of S in the ideal world, and RealΠ

A

(
D, {Pi, xi}`i=1

)
denotes the output of A in the real world. Here ` is polynomially bounded, D is the initial database
content, and the programs are Pi with input xi = (xAi , x

B
i ).

4 Black-Box Garbled RAM

In this section we abstract the construction of the black-box garbled RAM (GRAM) scheme [GLO15].
This abstraction captures the key aspects of the GRAM construction relevant to us. Additionally
it avoids the details irrelevant for understanding our work.

At a high level the GRAM scheme can be described as follows. The garbled database and garbled
programs consist of a collection of garbled circuits (GCs) concatenated in a certain way, which we
will elaborate in more detail later. The garbler generates all the GCs concatenated properly and
sends to the evaluator the GCs with partial labels. The evaluator evaluates the GCs one by one
in a certain order, during which one GC may output (partial) labels for other GCs, enabling the
evaluation of the next GC. This process proceeds until the evaluator obtains the output of the
program.

To formalize and generalize the above scheme, we first define a uniform circuit needed in the
construction, and then describe the scheme built on the uniform circuits. To avoid ambiguity, in
the following the term input keys refers to both labels per input wire of a GC while labels refers to
one label per wire.

4.1 Uniform Circuits

In the scheme, garbled database and garbled programs consist of a collection of GCs. We con-
sider these circuits as uniform circuits, which all have the same topology. Now we give a brief
description of these uniform circuits. The input of a uniform circuit consists of several parts,
const, keys,mem, inp, dyn, as shown in Figure 2. Note that it is not necessary to delve into the func-
tionality of each circuit to understand the abstracted construction, so we omit the functionality
and only give the interface.4

4.2 Garbled RAM Scheme

In this section we describe the black-box GRAM scheme built on uniform circuits. At a high level,
garbled database and garbled programs consist of a collection of garbled uniform circuits which are
concatenated properly. We will specify in the following how the generated GCs are concatenated,
in particular what is value of every input wire of every circuit.

4For the readers who are familiar with [GLO15]: Each GC originally had two parameters const and keys hard-
coded inside it, and had mem, inp or dyn as input. Now const and keys are pulled out to be part of the input, and
every circuit takes mem, inp, dyn as part of the input, so that all the circuits have the same topology.
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Cunif(const, keys,mem, inp, dyn):

– const: A public constant, specifying the functionality of the circuit.

– keys: A collection of (partial) input keys of certain other GCs. The information of which (partial)
input keys it corresponds to is public.

– mem: Partial content of the database.

– inp: Partial content of the program input.

– dyn: Dynamic input. Its value is unknown at the time of garbling, and its label will be outputted by
other circuits at runtime.

Figure 2: The interface of a uniform circuit

category of X[i] f(X, i) value of X[i]

const b = 0/1 b
keys (Y, j) j-th bit of input keys to Y
mem j ∈ [M ] D[j]
inp j ∈ [u] x[j]
dyn null unknown

Table 2: The concatenation of the circuits

Recall that the database D has size M , program P has running time t. The input x of program
P has length u. Let M̃ be the number of GCs needed for the garbled database and t̃ be the number
of GCs needed for the garbled program.5 First we number all the GCs, including those for the
garbled database as well as the garbled programs. Denote the i-th input wire of circuit X by X[i].
Then we define a public function f specifying the value of every input wire of every circuit, as in
Table 2. Given the output of f , the scheme is described in Figure 3.

The above garbled RAM constructed in [GLO15] is a static secure garbled RAM scheme that
only makes a black-box use of one-way functions. In particular, it proves the following theorem.

Theorem 1 (Static security of the garbled RAM scheme [GLO15]). The garbled RAM scheme
(GData,GProg,GInput,GEval) achieves efficiency, correctness, and static security as defined in Sec-
tion 3.1. Moreover, the construction only makes a black-box use of one-way functions.

5 Adaptive Secure Garbling Schemes

The circuit garbling protocol of [NO09] implies a special circuit garbling scheme, which we refer to in
the following as LEGO garbling scheme, denoted by (LegoGCircuit, LegoGInput, LegoEval, LegoEvalCorrupt).
It has the same syntax as the a secure circuit garbling scheme, but with a special structure of
replicate gates. The LEGO garbling scheme satisfies correctness and static security defined in Ap-
pendix A.2. Moreover, the additional procedure LegoEvalCorrupt satisfies the robust correctness
property, which we will define below.

In this section, we start from building units of the LEGO garbling scheme in Section 5.1, and
review the garbling scheme of LEGO in Section 5.2. Then we present our modifications on the

5M̃ is proportional to M with poly-logarithmic factors, and t̃ is proportional to t with poly-logarithmic factors.
For our purpose we do not need to specify the concrete numbers, but one may refer to [GLO15] for details.
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Database Garbling: (D̃, s)← GData(1κ, D).

1. Generating input keys: Pick a PRF seed s uniformly at random and generate all the input keys needed
for the garbled circuits.

2. Generating garbled circuits: Generate all garbled uniform circuits {C̃i}M̃i=1 by a circuit garbling scheme.

3. Generating partial labels: Let L be the set of input labels consistent with f . In particular, for each
wire X[i] with category const/keys/mem, pick the correct label for X[i] according to f(X, i) and D.

4. Output: D̃ =
(
{C̃i}M̃i=1,L

)
, s.

Program Garbling/Replenishing: (P̃ , sin)← GProg(s, P,M, t, T ).

1. Generating input keys: Use s to generates all the input keys needed for the new garbled circuits.

2. Generating garbled circuits: Let N be the total number of previously generated GCs. Generate all

new garbled uniform circuits {C̃i}N+t̃
i=N+1 by a circuit garbling scheme.

3. Generating partial labels: Let L be the set of labels consistent with f for all wires X[i] with category
const/keys.

4. Generating input-garbling-key: Let sin be the set of input keys to all wires X[i] with category inp.

5. Output: P̃ =
(
{C̃i}N+t̃

i=N+1,L
)
, sin.

Input Garbling: x̃← GInput(x, sin).

1. Parsing input-garbling-key: Parse sin as partial input keys to currently generated GCs.

2. Generating garbled input: Let x̃ be the set of labels consistent with f and x. In particular, for each
wire X[i] with category inp and f(X, i) = j, pick a label from sin according to x[j].

3. Output: x̃.

Garbled Evaluation: y ← GEvalD̃(P̃ , x̃).

1. With all input labels of C̃N+1, start the evaluation from C̃N+1.

2. Evaluate the GCs one by one until no more GC can be evaluated.

– One GC will output (partial) labels for other GCs.

– Once obtaining all labels for a GC, evaluate that GC, and repeat.

3. The output of the last evaluated GC is y.

Figure 3: Garbled RAM scheme abstraction

LEGO garbling scheme to make it adaptively secure in the random oracle model in Section 5.3.
Finally, we instantiate the garbled RAM scheme in Section 4 with the adaptive LEGO garbling
scheme to obtain an adaptive secure garbled RAM scheme in Section 5.4.

5.1 LEGO Bricks

We first give a high-level overview of LEGO garbling scheme. Similar to Yao’s garbling scheme [Yao86],
every wire of the circuit is assigned with two labels, one representing the wire being 0, the other
representing the wire being 1. Distinct from Yao’s garbling scheme, each gate is repeatedly eval-
uated `n + 1 times, and then the output label is checked `k + 1 times for validity, where `n, `k are
the replication parameters. The replication is crucial for the cut-and-choose techniques. Moreover,
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all the gates were first garbled separately, and then “soldered” together. Finally, in order to solder
properly there is a global difference ∆ between the two labels per wire. In particular, label0w and
label1w for each wire w has the property that label0w ⊕ label1w = ∆. Without loss of generality we
assume that all gates are NAND gates in the following discussion.

Components. We start from two types of components needed in the garbling scheme.

𝐿𝐿0 ⊕ 𝐿𝐿1 = Δ
𝑅𝑅0 ⊕ 𝑅𝑅1 = Δ

𝑂𝑂0 ⊕ 𝑂𝑂1 = Δ
𝑐𝑐𝜋𝜋 0 = Enc𝐿𝐿0,𝑅𝑅0 𝑂𝑂1

𝑐𝑐𝜋𝜋 1 = Enc𝐿𝐿0,𝑅𝑅1 𝑂𝑂1

𝑐𝑐𝜋𝜋 2 = Enc𝐿𝐿1,𝑅𝑅0 𝑂𝑂1

𝑐𝑐𝜋𝜋 3 = Enc𝐿𝐿1,𝑅𝑅1 𝑂𝑂0

(a) A Repeated NAND (RN) Gate

0/1

𝐾𝐾0 ⊕ 𝐾𝐾1 = Δ

𝑐𝑐𝜋𝜋 0 = H 𝐾𝐾0

𝑐𝑐𝜋𝜋 1 = H 𝐾𝐾1

(b) A Key Check (KC) Gate

Figure 4: Garbling components: RN and KC gates

RN (Repeated NAND) gate: A RN gate has two input wires and one output wire. Each wire
is assigned with two labels with the global difference between them. Let π be a random
permutation of {0, 1, 2, 3}. The garbled gate table consists of four encryptions as shown in
Figure 8a, where Enc is a symmetric-key encryption procedure. Given the garbled gate table
and two input labels La, Rb (a, b ∈ {0, 1}), one can obtain the corresponding output label
Oa⊗b, where the NAND operation is denoted by ⊗.

KC (Key Check) gate: A KC gate is assigned with two labels K0,K1 with the global difference
between them. With a random permutation π over {0, 1},6 the garbled gate table is defined
as in Figure 8b, where H is a hash function. Given the garbled gate table and one label K,
the KC gate checks if K is valid (i.e., K ∈ {K0,K1}).

Garbling a single gate. We next describe how to garble a single NAND gate g. The garbled
gate g̃ consists of `n + 1 RN gates and `k + 1 KC gates. Let RNg,0, · · · ,RNg,`n be the RN gates and
KCg,0, · · · ,KCg,`k be the KC gates, assigned with labels shown in Figure 5. δ’s are define for the
purpose of “soldering” the garbled gates together. The garbled gate table of g̃ is shown in Figure 6.

Evaluating a (correct) garbled gate. Given two input labels for a correctly constructed garbled
gate, we can use the garbled gate table to evaluate it as follows.

• Input: Lag , R
b
g (a, b ∈ {0, 1} are hidden values), (correct) garbled gate table of g̃.

• Output: Oa⊗bg .

• Evaluation:

– Use Lag , R
b
g and the garbled gate table to compute Lag,i, R

b
g,i and the corresponding output

label Oa⊗bg,i for ∀0 ≤ i ≤ `n. ({Oa⊗bg,i }
`n
i=0 are consistent with {δOg,i}

`n
i=1.)

6In principle π can be viewed as a random bit. We define it as a permutation only for consistency with the
definition of RN gates.
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……
𝐿𝐿𝑔𝑔,0
0 ⊕ 𝐿𝐿𝑔𝑔,0

1 = Δ
𝑅𝑅𝑔𝑔,0
0 ⊕ 𝑅𝑅𝑔𝑔,0

1 = Δ
𝐿𝐿𝑔𝑔,1
0 ⊕ 𝐿𝐿𝑔𝑔,1

1 = Δ
𝑅𝑅𝑔𝑔,1
0 ⊕ 𝑅𝑅𝑔𝑔,1

1 = Δ
𝐿𝐿𝑔𝑔,ℓn
0 ⊕ 𝐿𝐿𝑔𝑔,ℓn

1 = Δ
𝑅𝑅𝑔𝑔,ℓn
0 ⊕ 𝑅𝑅𝑔𝑔,ℓn

1 = Δ

𝑂𝑂𝑔𝑔,0
0 ⊕ 𝑂𝑂𝑔𝑔,0

1 = Δ 𝑂𝑂𝑔𝑔,1
0 ⊕ 𝑂𝑂𝑔𝑔,1

1 = Δ 𝑂𝑂𝑔𝑔,ℓ
0 ⊕ 𝑂𝑂𝑔𝑔,ℓn

1 = Δ

𝐾𝐾𝑔𝑔,0
0 ⊕ 𝐾𝐾𝑔𝑔,0

1 = Δ 𝐾𝐾𝑔𝑔,1
0 ⊕ 𝐾𝐾𝑔𝑔,1

1 = Δ 𝐾𝐾𝑔𝑔,ℓk
0 ⊕ 𝐾𝐾𝑔𝑔,ℓk

1 = Δ

𝛿𝛿𝑔𝑔
𝑂𝑂,𝐾𝐾 ≔ 𝑂𝑂𝑔𝑔0 ⊕ 𝐾𝐾𝑔𝑔0

𝐿𝐿𝑔𝑔0 = 𝐿𝐿𝑔𝑔,0
0

𝐿𝐿𝑔𝑔1 = 𝐿𝐿𝑔𝑔,0
1

𝑅𝑅𝑔𝑔0 = 𝑅𝑅𝑔𝑔,0
0

𝑅𝑅𝑔𝑔1 = 𝑅𝑅𝑔𝑔,0
1

𝑂𝑂𝑔𝑔0 = 𝑂𝑂𝑔𝑔,0
0

𝑂𝑂𝑔𝑔1 = 𝑂𝑂𝑔𝑔,0
1

𝐾𝐾𝑔𝑔0 = 𝐾𝐾𝑔𝑔,0
0

𝐾𝐾𝑔𝑔1 = 𝐾𝐾𝑔𝑔,0
1

0/1 0/1

……
0/1

𝛿𝛿𝑔𝑔,ℓk
𝐾𝐾 ≔ 𝐾𝐾𝑔𝑔,0

0 ⊕ 𝐾𝐾𝑔𝑔,ℓk
0𝛿𝛿𝑔𝑔,1

𝐾𝐾 ≔ 𝐾𝐾𝑔𝑔,0
0 ⊕ 𝐾𝐾𝑔𝑔,1

0

𝛿𝛿𝑔𝑔,ℓn
𝑂𝑂 ≔ 𝑂𝑂𝑔𝑔,0

0 ⊕ 𝑂𝑂𝑔𝑔,ℓn
0

𝛿𝛿𝑔𝑔,1
𝑂𝑂 ≔ 𝑂𝑂𝑔𝑔,0

0 ⊕ 𝑂𝑂𝑔𝑔,1
0

𝛿𝛿𝑔𝑔,ℓn
𝐿𝐿 ≔ 𝐿𝐿𝑔𝑔,0

0 ⊕ 𝐿𝐿𝑔𝑔,ℓn
0

𝛿𝛿𝑔𝑔,ℓn
𝑅𝑅 ≔ 𝑅𝑅𝑔𝑔,0

0 ⊕ 𝑅𝑅𝑔𝑔,ℓn
0

𝛿𝛿𝑔𝑔,1
𝑅𝑅 ≔ 𝑅𝑅𝑔𝑔,0

0 ⊕ 𝑅𝑅𝑔𝑔,1
0

𝛿𝛿𝑔𝑔,1
𝐿𝐿 ≔ 𝐿𝐿𝑔𝑔,0

0 ⊕ 𝐿𝐿𝑔𝑔,1
0

RN𝑔𝑔,0 RN𝑔𝑔,1 RN𝑔𝑔,ℓn

KC𝑔𝑔,0 KC𝑔𝑔,1 KC𝑔𝑔,ℓk

Figure 5: Garbling a single gate

Garbled gate table of RNg,i, ∀i ∈ {0, 1, · · · , `n};
Garbled gate table of KCg,i,∀i ∈ {0, 1, · · · , `k};
Soldering of RN gates: δLg,i, δ

R
g,i, δ

O
g,i,∀i ∈ {1, · · · , `n};

Soldering of KC gates: δKg,i, ∀i ∈ {1, · · · , `k};
Soldering of KC gates with RN gates: δO,Kg .

Figure 6: Garbled gate table of g̃

– Let Oa⊗bg := Oa⊗bg,0 and Ka⊗b
g := Oa⊗bg ⊕ δO,Kg . (Let Ka⊗b

g,0 := Ka⊗b
g and Ka⊗b

g,i := Ka⊗b
g,0 ⊕

δKg,i, then Ka⊗b
g,i can pass the checking of KCg,i for ∀0 ≤ i ≤ `k.)

– Output Oa⊗bg .

Evaluating a corrupted garbled gate. The garbled gate table can be corrupted in arbi-
trary ways, but we only consider (and later our protocol guarantees) the case where the labels
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{
Lbg, R

b
g, O

b
g

}
b=0,1

and the solders
{
δLg,i, δ

R
g,i, δ

O
g,i

}`n
i=1

,
{
δKg,i

}`k
i=1

, δO,Kg are all correct, and only the

garbled tables of RN and KC gates could be incorrectly formed.

• Input: Lag , R
b
g (a, b ∈ {0, 1} are hidden values), corrupted garbled gate table of g̃.

• Output: Oa⊗bg .

• Evaluation:

– Use Lag , R
b
g and the garbled gate table to compute Lag,i, R

b
g,i and the corresponding output

label Oa⊗bg,i for ∀0 ≤ i ≤ `n. Note that Lag,i, R
b
g,i are guaranteed to be correct, but Oa⊗bg,i

could be wrong.

– Let Õa⊗bg,i := Oa⊗bg,i ⊕ δOg,i.

– For every i ∈ {0, 1, · · · , `n}, and for every j ∈ {0, 1, · · · , `k}, let K̃g,i,j := Õa⊗bg,i ⊕ δ
O,K
g ⊕

δKg,j (take δKg,0 = 0) and use KCg,j to test K̃g,i,j .

– Let O :=
{
Õa⊗bg,i |K̃g,i,j ’s pass at least d `k2 e KC gates

}
– If O = ∅ then output ⊥; otherwise output an arbitrary element in O.

5.2 Static Secure LEGO Garbling Scheme

Now we are ready to describe the LEGO garbling scheme (LegoGCircuit, LegoGInput, LegoEval,
LegoEvalCorrupt) satisfying correctness and static security defined in Section A.2 and robust cor-
rectness defined below.

Circuit garbling.
(
C̃, sin

)
← LegoGCircuit (1κ,C).

Let C be a boolean circuit that consists of n NAND gates, takes as input x ∈ {0, 1}u, and
outputs y ∈ {0, 1}v. The circuit garbling procedure is as follows.

1. Generating a global difference: ∆
$← {0, 1}z, where z is the length of a label.

2. Generating all the labels: For each gate g ∈ C, generate the following labels:

L0
g,i, R

0
g,i, O

0
g,i

$← {0, 1}z ∀0 ≤ i ≤ `n
L1
g,i := L0

g,i ⊕∆, R1
g,i := R0

g,i ⊕∆, O1
g,i := O0

g,i ⊕∆ ∀0 ≤ i ≤ `n
K0
g,i

$← {0, 1}z ∀0 ≤ i ≤ `k
K1
g,i := K0

g,i ⊕∆ ∀0 ≤ i ≤ `k

Let Wout be the set of output wires of C. For each w ∈ Wout, suppose it is the output wire of
gate g. Let

O0
g := 0z;O1

g := 1z

be the labels for w.

3. Generating garbled gate tables: Use the above labels to generate the garbled gate table of
every g̃ as described in Section 5.1 and Figures 5, 6.
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4. Concatenating the garbled gates: According to C’s topology, solder output wires with input
wires as shown in Figure 7. In particular, generate the following solders:

If g1’s output wire is g’s left input (denoted g1 ↗ g): δLg1,g := O0
g1 ⊕ L

0
g;

If g2’s output wire is g’s right input (denoted g ↖ g2): δRg2,g := O0
g2 ⊕R

0
g.

5. Input keys: Let Win be the set of input wires of C. For each w ∈ Win, suppose it is an input
wire of gate g. If w is g’s left input wire, then let (label0w, label

1
w) := (L0

g, L
1
g); otherwise let

(label0w, label
1
w) := (R0

g, R
1
g). Let

sin := {(label0w, label1w)}w∈Win

be the input keys.

6. Garbled circuit: C̃ consists of the following:

All garbled gate tables: {garbled gate table of g̃}g∈C
Gate solders:

{
δLg1,g2

}
g1,g2∈C,g1↗g2

,
{
δRg1,g2

}
g1,g2∈C,g2↖g1

7. Output C̃, sin.

……

𝐿𝐿𝑔𝑔2
0 ⊕ 𝐿𝐿𝑔𝑔2

1 = Δ

𝑅𝑅𝑔𝑔2
0 ⊕ 𝑅𝑅𝑔𝑔2

1 = Δ

𝑂𝑂𝑔𝑔2
0 ⊕ 𝑂𝑂𝑔𝑔2

1 = Δ

RN𝑔𝑔2,0 RN𝑔𝑔2,1 RN𝑔𝑔2,ℓn……

𝐿𝐿𝑔𝑔1
0 ⊕ 𝐿𝐿𝑔𝑔1

1 = Δ

𝑅𝑅𝑔𝑔1
0 ⊕ 𝑅𝑅𝑔𝑔1

1 = Δ

𝑂𝑂𝑔𝑔1
0 ⊕ 𝑂𝑂𝑔𝑔1

1 = Δ

RN𝑔𝑔1,0 RN𝑔𝑔1,1 RN𝑔𝑔1,ℓn

……

𝐿𝐿𝑔𝑔0 ⊕ 𝐿𝐿𝑔𝑔1 = Δ

𝑅𝑅𝑔𝑔0 ⊕ 𝑅𝑅𝑔𝑔1 = Δ

RN𝑔𝑔,0 RN𝑔𝑔,1 RN𝑔𝑔,ℓn

𝛿𝛿𝑔𝑔1,𝑔𝑔
𝐿𝐿 ≔ 𝑂𝑂𝑔𝑔1

0 ⊕ 𝐿𝐿𝑔𝑔0 𝛿𝛿𝑔𝑔2,𝑔𝑔
𝑅𝑅 ≔ 𝑂𝑂𝑔𝑔2

0 ⊕ 𝑅𝑅𝑔𝑔0

Figure 7: Soldering garbled gates

Input garbling. x̃← LegoGInput(sin, x).

1. Parse sin as
{

(label0w, label
1
w)
}
w∈Win

.

2. For each w ∈ Win, let x[w] denote the input value of wire w.

3. Output x̃ =
{
label

x[w]
w

}
w∈Win

.
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Evaluating a (correct) garbled circuit. y ← LegoEval
(
C̃, x̃

)
.

Generally speaking, the evaluation is done gate by gate following the topology of the circuit.
During the evaluation one label per wire is obtained, starting from input wires and ending up with
output wires.

1. Initially every input wire has a label.

2. Evaluate the garbled circuit gate by gate until one label per output wire is obtained.

– Once obtaining two labels Lag , R
b
g (a, b ∈ {0, 1} are hidden values) of a garbled gate g̃,

use the garbled gate table to evaluate g̃ as described in Section 5.1 (evaluating a correct
garbled gate) and obtain Oa⊗bg .

– If the output wire of g is an input wire of another gate g′, use the gate solders to
transform Oa⊗bg into the label of that input wire of g′, and repeat.

3. Turn the output labels (0z or 1z) into an output y.

Evaluating a corrupted garbled circuit. y = LegoEvalCorrupt
(
C̃cor, x̃

)
.

The garbled circuit can be corrupted in arbitrary ways, but again, we only consider (and later
our protocol guarantees) the case where only the garbled gate tables of RN and KC gates could go
wrong.

The evaluation goes the same way as LegoEval except replacing the evaluation of a correct
garbled gate by evaluation of a corrupted garbled gate as describe in Section 5.1. If in any step
the evaluation of a garbled gate outputs ⊥, then output ⊥. Otherwise continue the process until
obtaining one label per output wire, and turn output labels into an output y.

Correctness and security.
We observe that the following theorem is implicitly proved in [NO09]. Intuitively, the robust

correctness property states that even if there are some, though not too many, incorrect garbled
gates in the garbled circuit, correctness still holds.

Theorem 2 (Robust correctness of LEGO garbling scheme [NO09]). For any circuit C and input
x, let C̃cor be a corrupted LEGO garbled circuit and let x̃ be the garbled input of x. If each garbled
gate g̃cor ∈ C̃cor consists of at least 1 correct garbled RN gate and at least d `k2 e correct garbled KC
gates, then

C(x) = LegoEvalCorrupt
(
C̃cor, x̃

)
.

For static security of the LEGO garbling scheme, we provide a stronger security guarantee
where the simulator can generate a garbled circuit with specified solders. We state the theorem
below and defer the security proof to Appendix C.1.

Theorem 3 (Static security of LEGO garbling scheme). There exits a PPT simulator StatLegoSim
such that for any C, x, we have that:(

C̃, x̃
)

c
≈ StatLegoSim (1κ,C,C(x))

∣∣
S

where
(
C̃, sin

)
← LegoGCircuit (1κ,C) , x̃ ← LegoGInput(sin, x), and StatLegoSim (1κ,C,C(x))

∣∣
S

denotes the output of StatLegoSim when the solders of the garbled circuit is restricted to

S :=

{{{
δLg,i, δ

R
g,i, δ

O
g,i

}`n
i=1

,
{
δKg,i
}`k
i=1

, δO,Kg

}
g∈C

,
{
δLg1,g2

}
g1,g2∈C,g1↗g2

,
{
δRg1,g2

}
g1,g2∈C,g2↖g1

}
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which is sampled uniformly at random.

5.3 Adaptive Secure LEGO Garbling Scheme

In this section we modify the static secure LEGO garbling scheme to be adaptive secure in the
random oracle model. First of all, to extend our definitions of garbling scheme privacy to adap-
tive security in the random oracle model [BR93], we follow the treatment of [BHR12b, BHR12a].
An ROM garbling scheme is a garbling scheme whose algorithms have access to an oracle Hash
called the random oracle. The model is obtained by adding the following procedure Hash to the
real/simulated experiments defined in Appendix A.2.

procedure Hash(γ,w)
if hash[γ,w] = ⊥ then

if in the real experiment then

hash[γ,w]
$← {0, 1}γ

else
hash[γ,w]← AdaptCircSim(RO, γ, w)

return hash[γ,w]

New components.

𝐿𝐿0 ⊕ 𝐿𝐿1 = Δ

𝑅𝑅0 ⊕ 𝑅𝑅1 = Δ

𝑂𝑂0 ⊕ 𝑂𝑂1 = Δ

ℎ𝜋𝜋 0 = 𝑐𝑐𝜋𝜋 0 ⊕ HA S H 𝑐𝑐𝜋𝜋 0 , 𝐿𝐿0||𝑅𝑅0

ℎ𝜋𝜋 1 = 𝑐𝑐𝜋𝜋 1 ⊕ HA S H 𝑐𝑐𝜋𝜋 1 , 𝐿𝐿0||𝑅𝑅1

ℎ𝜋𝜋 2 = 𝑐𝑐𝜋𝜋 2 ⊕ HA S H 𝑐𝑐𝜋𝜋 2 , 𝐿𝐿1||𝑅𝑅0

ℎ𝜋𝜋 3 = 𝑐𝑐𝜋𝜋 3 ⊕ HA S H 𝑐𝑐𝜋𝜋 3 , 𝐿𝐿1||𝑅𝑅1

(a) A Repeated NAND (RN) Gate

0/1

𝐾𝐾0 ⊕ 𝐾𝐾1 = Δ

ℎ𝜋𝜋 0 = 𝑐𝑐𝜋𝜋 0 ⊕ HA S H 𝑐𝑐𝜋𝜋 0 ,𝐾𝐾0

ℎ𝜋𝜋 1 = 𝑐𝑐𝜋𝜋 1 ⊕ HA S H 𝑐𝑐𝜋𝜋 1 ,𝐾𝐾1

(b) A Key Check (KC) Gate

Figure 8: Garbling components for adaptive LEGO garbling scheme

First we modify the garbled RN and KC gates by adding random oracles, as shown in Figure 8.
As before, given the garbled gate table of an RN gate and two input labels La, Rb (a, b ∈ {0, 1}),
one can obtain the corresponding output label Oa⊗b. Give the garbled table of a KC gate and one
label K, one can check if K is valid (i.e., K ∈ {K0,K1}).

New scheme.
Now we modify the static secure LEGO garbling scheme to be an adaptive secure one (AdaptLegoGCircuit,

AdaptLegoGInput,AdaptLegoEval,AdaptLegoEvalCorrupt) with the following syntax:(
C̃a, s

in
a

)
← AdaptLegoGCircuit (1κ,C)

x̃a ← AdaptLegoGInput(sina , x)

y ← AdaptLegoEval(C̃a, x̃a)

There are two modifications compared to (LegoGCircuit, LegoGInput, LegoEval, LegoEvalCorrupt):
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1. When generating garbled gate tables in AdaptLegoGCircuit, now generate the new garbled RN
and KC gate tables as in Figure 8.

2. When evaluating garbled gates in AdaptLegoEval and AdaptLegoEvalCorrupt, now evaluate the
new garbled RN and KC gates.

Correctness and security.
Correct garbled gates remain correct for evaluation in the adaptive LEGO garbling scheme,

hence the robust correctness still holds.

Theorem 4 (Robust correctness of adaptive LEGO garbling scheme). For any circuit C and input
x, let C̃cor

a be a corrupted LEGO garbled circuit in the adaptive LEGO garbling scheme and let x̃a
be the garbled input of x. If each garbled gate g̃cora ∈ C̃cor

a consists of at least 1 correct garbled RN
gate and at least d `k2 e correct garbled KC gates, then

C(x) = AdaptLegoEvalCorrupt
(
C̃cor
a , x̃a

)
.

We prove the adaptive security for the new scheme. At a high level, the simulator AdaptLegoSim
will first generate the garbled circuit honestly when seeing the circuit. After seeing the output of
the circuit, AdaptLegoSim generates a new simulated garbled circuit by StatLegoSim, and uses the
random oracles to transform the previously generated garbled circuit into the newly simulated one.
See Appendix C.2 for the detailed proof.

Theorem 5 (Adaptive security of adaptive LEGO garbling scheme). There exists a PPT simulator
AdaptLegoSim such that for any PPT adversary A and any circuit C, the output of the following
two experiments are computational indistinguishable:

Real experiment

•
(
C̃a, s

in
a

)
← AdaptLegoGCircuit (1κ,C)

• x← A(1κ,C, C̃a)

• x̃a ← AdaptLegoGInput(sina , x)

• Output (C̃a, x̃a)

Simulated experiment

•
(
C̃sim
a , state

)
← AdaptLegoSim (1κ,C)

• x← A(1κ,C, C̃a)

• x̃sima ← AdaptLegoSim(state,C(x))

• Output (C̃sim
a , x̃sima )

5.4 Adaptive Secure Garbled RAM

The garbled RAM scheme was instantiated with Yao’s garbling scheme in [GLO15]. In this section
we will instantiate it with the aforementioned static/adaptive secure LEGO garbling schemes.
Out key observation is that [GLO15] makes a black-box use of a secure circuit garbling scheme
(GCircuit,GInput,Eval), which can be instantiated using the LEGO schemes.

First we instantiate the garbled RAM with the static LEGO garbling scheme (LegoGCircuit,
LegoGInput, LegoEval) given in Section 5.2. Note that the static LEGO garbling scheme has the
same syntax as the circuit garbling scheme. As mentioned in Theorem 3, it is a static secure circuit
garbling scheme. Moreover, the scheme only makes black-box use of one-way functions. Therefore,
instantiating the garbled RAM with the static LEGO garbling scheme would give us a static secure
garbled RAM scheme.

Our next step is instantiating the garbled RAM with the adaptive LEGO garbling scheme
(AdaptLegoGCircuit,AdaptLegoGInput,AdaptLegoEval) in Section 5.3. It is an adaptive secure circuit
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garbling scheme as proved in Theorem 5, and it also makes black-box use of one-way functions. We
observe that in the security proof of [GLO15] if we replace the static secure circuit garbling scheme
with an adaptive secure one, the resulting garbled RAM is also adaptive secure. The following
theorem summarizes the security of the resulting garbled RAM.

Theorem 6 (Adaptive secure garbled RAM). Instantiating the garbled RAM of [GLO15] with the
adaptive LEGO garbling scheme gives a garbled RAM scheme (GDataLego,GProgLego,GInputLego,
GEvalLego) with a simulator AdaptRamSimLego that achieves efficiency, correctness, and adaptive
security as defined in Section 3.1.

6 Generating an Adaptive LEGO Garbled Circuit

In this section, we provide a protocol between two parties to generate an adaptive LEGO garbled
circuit. The protocol is based on the original LEGO protocol in [NO09], and it differs from the
LEGO protocol in that we add more commitments and consistency checking in the protocol. After
the additional consistency checking, as we will see in Theorem 8, all the commitments of input wires
are guaranteed to be correct. Looking ahead, this property is crucial for our construction of secure
RAM computation protocol to ensure that the garbler generates the garbled memory and garbled
programs concatenated properly. In the following we first present the protocol in Section 6.1, and
then give some useful analysis in Section 6.2.

6.1 The New LEGO Protocol

In this section, we present the protocol between Alice and Bob where Alice plays the role of a garbler,
and Bob obtains an adaptive LEGO garbled circuit at the end of the protocol. For notations, we
use [·] to denote a commitment, and b to denote a negation of bit b.

Global difference. Alice samples a global difference ∆ and a randomizer r∆, generates the com-
mitment [∆; r∆], sends [∆] to Bob, and gives a zero-knowledge UC-secure proof of knowledge of ∆
(see Appendix B for details).

Component production. Let C be a circuit with n NAND gates. Let Nn = (`n + 1)n,Nk =
(`k + 1)n.

Generating garbled RN gates. Alice generates φnNn garbled RN gates (as described in Section 5.3).

For each garbled RN gate, Alice sample πL, πR, πO
$← {0, 1} and sends the following to Bob. Note

that the commitments in steps 3 and 4 are additional compared to the original LEGO protocol.

1. Commitment of the zero labels and permutation:[
L0
]
,
[
R0
]
,
[
O0
]
, [π] .

(Note that Bob can compute the one labels by himself:
[
L1
]
←
[
L0
]
⊕[∆],

[
R1
]
←
[
R0
]
⊕[∆],[

O1
]
←
[
O0
]
⊕ [∆].)

2. The garbled gate table.

hπ(0) = EncL0,R0(O1)⊕Hash
(∣∣EncL0,R0(O1)

∣∣ , L0||R0
)

;

hπ(1) = EncL0,R1(O1)⊕Hash
(∣∣EncL0,R1(O1)

∣∣ , L0||R1
)

;
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hπ(2) = EncL1,R0(O1)⊕Hash
(∣∣EncL1,R0(O1)

∣∣ , L1||R0
)

;

hπ(3) = EncL1,R1(O0)⊕Hash
(∣∣EncL1,R1(O0)

∣∣ , L1||R1
)
.

3. Commitment of (L0, L1), (R0, R1), and (O0, O1) in permuted orders:

[LπL ] || [πL] ,
[
LπL
]
|| [πL] ;

[RπR ] || [πR] ,
[
RπR

]
|| [πR] ;

[OπO ] || [πO] ,
[
OπO

]
|| [πO] .

4. Write the labels bit by bit as follows (where z is the length of a label):

L0||L1 = `0,1`0,2 · · · `0,z||`1,1`1,2 · · · `1,z;
R0||R1 = r0,1r0,2 · · · r0,z||r1,1r1,2 · · · r1,z;

O0||O1 = o0,1o0,2 · · · o0,z||o1,1o1,2 · · · o1,z.

Bit-by-bit commitment of all labels:{[
`b,u
]
,
[
rb,u
]
,
[
ob,u
]}

b∈{0,1},1≤u≤z
.

Generating garbled KC gates. Alice generates φkNk KC gates (as described in Section 5.3). For
each garbled KC gate, Alice sends the following to Bob:

1. Commitment of the zero key and permutation[
K0
]
, [π] .

(Note that Bob can compute the one key by himself:
[
K1
]
←
[
K0
]
⊕ [∆].)

2. The garbled gate table.

hπ(0) = H(K0)⊕Hash
(∣∣H(K0)

∣∣ ,K0
)

;

hπ(1) = H(K1)⊕Hash
(∣∣H(K1)

∣∣ ,K1
)
.

Component checking. Bob randomly picks (φn− 1)Nn RN gates and (φk− 1)Nk KC gates to be
checked, and sends to Alice. Note that Alice cannot simply send to Bob all the randomness used
to generate the garbled gates being checked, because revealing both the zero label and one label of
a wire will leak ∆ to Bob, which compromises the security of LEGO garbled circuits completely.
Hence Bob randomly picks one label per wire to check.

Checking RN gates. For each RN gate to be checked, Bob randomly picks bL, bR
$← {0, 1}, computes

bO = bL ⊗ bR, and sends bL, bR, bO to Alice.

1. Checking the commitment of labels and permutation: Alice opens the commitment[
LbL
]
,
[
RbR
]
,
[
ObO

]
, [π] .
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2. Checking the garbled gate table: Bob computes b = 2 · bL + bR, and checks

hπ(b) = EncLbL ,RbR (ObO)⊕Hash
(∣∣∣EncLbL ,RbR (ObO)

∣∣∣ , LbL ||RbR) .
3. Checking the commitment of (L0, L1), (R0, R1), and (O0, O1) in permuted orders:

Alice opens the commitment

[πL] ,
[
LbL
]
|| [bL] ; (If πL = bL, then open [LπL ] || [πL]; otherwise

[
LπL
]
|| [πL])

[πR] ,
[
RbR
]
|| [bR] ; (If πR = bR, then open [LπR ] || [πR]; otherwise

[
LπR

]
|| [πR])

[πO] ,
[
ObO

]
|| [bO] . (If πO = bO, then open [LπO ] || [πO]; otherwise

[
LπO

]
|| [πO])

Bob checks consistency of[
LbL
]
|| [bL] with previously revealed LbL ;[

RbR
]
|| [bR] with previously revealed RbR ;[

ObO
]
|| [bO] with previously revealed ObO .

4. Checking the commitment of every bit of labels: Alice opens the following commitment{[
`bL,u

]
,
[
rbR,u

]
,
[
obO,u

]}z
u=1

.

Bob checks the consistency with previously revealed LbL , RbR , ObO .

Checking KC gates. For each KC gate to be checked, Bob randomly picks bK
$← {0, 1}, sends to

Alice.

1. Checking the commitment of labels and permutation: Alice opens the commitment[
KbK

]
, [π] .

2. Checking the garbled gate table: Bob checks

hπ(bK) = H(KbK)⊕Hash
(
|H(KbK)|,KbK

)
.

Soldering. Bob randomly permutes the remaining Nn RN gates and Nk KC gates, constructs the
garbled circuit such that each garbled gate consists of (`n + 1) RN gates and (`k + 1) KC gates.
Alice helps Bob solder the gates.

1. Soldering RN gates and KC gates of one garbled gate: For each gate g ∈ C, recall that the
solders consist of the following:

Soldering of RN gates: δLg,i, δ
R
g,i, δ

O
g,i,∀i ∈ {1, · · · , `n};

Soldering of KC gates: δKg,i,∀i ∈ {1, · · · , `k};
Soldering of KC gates with RN gates: δO,Kg .
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Bob can compute by himself the commitment of all the above solders:[
δLg,i
]
←
[
L0
g,i

]
⊕
[
R0
g,0

]
;[

δRg,i
]
←
[
R0
g,i

]
⊕
[
R0
g,0

]
;[

δOg,i
]
←
[
O0
g,i

]
⊕
[
O0
g,0

]
;[

δKg,i
]
←
[
K0
g,i

]
⊕
[
K0
g,0

]
;[

δO,Kg

]
←
[
O0
g,0

]
⊕
[
K0
g,0

]
.

Alice opens all the commitment.

2. Soldering garbled gates together: Recall that the gate solders consist of the following:{
δLg1,g2

}
g1,g2∈C,g1↗g2

,
{
δRg1,g2

}
g1,g2∈C,g2↖g1

.

Bob can compute by himself the commitment of these solders:

∀g1 ↗ g2 :
[
δLg1,g2

]
←
[
O0
g1,0

]
⊕
[
L0
g2,0

]
;

∀g2 ↖ g1 :
[
δRg1,g2

]
←
[
O0
g1,0

]
⊕
[
R0
g2,0

]
.

Alice opens the commitment.

Output table. For each output wire w ∈ Wout, suppose it is the output wire of gate g. Bob has
the following commitment: [

L
πL,0
g,0

]
|| [πL,0] ,

[
L
πL,0
g,0

]
|| [πL,0] ;[

L
πL,1
g,1

]
|| [πL,1] ,

[
L
πL,1
g,1

]
|| [πL,1] ;

...[
L
πL,`n
g,`n

]
|| [πL,`n ] ,

[
L
πL,`n
g,`n

]
|| [πL,`n ] .

Input consistency checking. For each input wire w ∈ Win, without loss of generality assume it
is the left input wire of gate g. Bob has the following commitments, as shown in Figure 9.[

L
πL,0
g,0

]
|| [πL,0] ;

[
L
πL,0
g,0

]
|| [πL,0] ;[

L
πL,1
g,1

]
|| [πL,1] ;

[
L
πL,1
g,1

]
|| [πL,1] ;

...[
L
πL,`n
g,`n

]
|| [πL,`n ] ;

[
L
πL,`n
g,`n

]
|| [πL,`n ] .[

`0,1g,0

]
,
[
`0,2g,0

]
, · · · ,

[
`0,zg,0

]
;
[
`1,1g,0

]
,
[
`1,2g,0

]
, · · · ,

[
`1,zg,0

]
;[

`0,1g,1

]
,
[
`0,2g,1

]
, · · · ,

[
`0,zg,1

]
;
[
`1,1g,1

]
,
[
`1,2g,1

]
, · · · ,

[
`1,zg,1

]
;

...
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……
𝐿𝐿𝑔𝑔,0
𝜋𝜋L,0 || 𝜋𝜋L,0

𝐿𝐿𝑔𝑔,0
𝜋𝜋L,0 || 𝜋𝜋L,0

𝛿𝛿𝑔𝑔,ℓn
𝐿𝐿 ≔ 𝐿𝐿𝑔𝑔,0

0 ⊕ 𝐿𝐿𝑔𝑔,ℓn
0

𝛿𝛿𝑔𝑔,1
𝐿𝐿 ≔ 𝐿𝐿𝑔𝑔,0

0 ⊕ 𝐿𝐿𝑔𝑔,1
0

RN𝑔𝑔,0 RN𝑔𝑔,1 RN𝑔𝑔,ℓn

𝐿𝐿𝑔𝑔,1
𝜋𝜋L,1 || 𝜋𝜋L,1

𝐿𝐿𝑔𝑔,1
𝜋𝜋L,1 || 𝜋𝜋L,1

𝐿𝐿𝑔𝑔,ℓn
𝜋𝜋L,ℓn || 𝜋𝜋L,ℓn

𝐿𝐿𝑔𝑔,ℓn
𝜋𝜋L,ℓn || 𝜋𝜋L,ℓn

Without loss of generality assume 𝜋𝜋L,0 = 𝜋𝜋L,1 = ⋯ = 𝜋𝜋L,ℓn

𝛿𝛿𝑔𝑔,1 ≔ 𝐿𝐿𝑔𝑔,0
𝜋𝜋L,0 ⊕ 𝐿𝐿𝑔𝑔,1

𝜋𝜋L,1

𝛿𝛿𝑔𝑔,ℓn ≔ 𝐿𝐿𝑔𝑔,0
𝜋𝜋L,0 ⊕ 𝐿𝐿𝑔𝑔,ℓn

𝜋𝜋L,ℓn

ℓ𝑔𝑔,0
0,1 , ℓ𝑔𝑔,0

0,2 ,⋯ , ℓ𝑔𝑔,0
0,𝑧𝑧

ℓ𝑔𝑔,0
1,1 , ℓ𝑔𝑔,0

1,2 ,⋯ , ℓ𝑔𝑔,0
1,𝑧𝑧

ℓ𝑔𝑔,1
0,1 , ℓ𝑔𝑔,1

0,2 ,⋯ , ℓ𝑔𝑔,1
0,𝑧𝑧

ℓ𝑔𝑔,1
1,1 , ℓ𝑔𝑔,1

1,2 ,⋯ , ℓ𝑔𝑔,1
1,𝑧𝑧 ℓ𝑔𝑔,ℓn

0,1 , ℓ𝑔𝑔,ℓn
0,2 ,⋯ , ℓ𝑔𝑔,ℓn

0,𝑧𝑧

ℓ𝑔𝑔,ℓn
1,1 , ℓ𝑔𝑔,ℓn

1,2 ,⋯ , ℓ𝑔𝑔,ℓn
1,𝑧𝑧

𝛿𝛿𝑔𝑔,1
𝑢𝑢 ≔ ℓ𝑔𝑔,0

0,𝑢𝑢 ⊕ ℓ𝑔𝑔,1
0,𝑢𝑢 = ℓ𝑔𝑔,0

1,𝑢𝑢 ⊕ ℓ𝑔𝑔,1
1,𝑢𝑢

𝛿𝛿𝑔𝑔,ℓn
𝑢𝑢 ≔ ℓ𝑔𝑔,0

0,𝑢𝑢 ⊕ ℓ𝑔𝑔,ℓn
0,𝑢𝑢 = ℓ𝑔𝑔,0

1,𝑢𝑢 ⊕ ℓ𝑔𝑔,ℓn
1,𝑢𝑢

Figure 9: Consistency checking of an input wire

[
`0,1g,`n

]
,
[
`0,2g,`n

]
, · · · ,

[
`0,zg,`n

]
;
[
`1,1g,`n

]
,
[
`1,2g,`n

]
, · · · ,

[
`1,zg,`n

]
.

Alice and Bob execute the following consistency checking. This step is a crucial change compared
to the original LEGO protocol. Looking ahead, in Theorem 8 we will see that if Bob passes all
the input consistency checking, then all the commitments of input wires are correct with high
probability.

1. Revealing the relation between {πL,i}`ni=0: For every 1 ≤ i ≤ `n, Bob can compute the following

[πL,0 ⊕ πL,i]← [πL,0]⊕ [πL,i]

Alice opens the commitment. Bob checks if πL,0 ⊕ πL,i = 0 or 1, and obtains the relation

between {πL,i}`ni=0, namely πL,i = πL,0 or πL,0. Without loss of generality assume that

πL,0 = πL,1 = · · · = πL,`n .

2. Checking the difference between labels is consistent with previously revealed
{
δLg,i

}`n
i=1

: For

every 1 ≤ i ≤ `n, Bob can compute

[δg,i]←
[
L
πL,0
g,0

]
⊕
[
L
πL,i
g,i

]
.

Alice opens the commitment, and Bob checks if δg,i = δLg,i.

3. Checking each pair of labels has a difference ∆ in between: For every 0 ≤ i ≤ `n, Bob can
compute

[0] || [0]←
([
L
πL,i
g,i

]
|| [πL,i]

)
⊕
([
L
πL,i
g,i

]
|| [πL,i]

)
⊕ [∆] || [1] .

Alice opens the commitment, and Bob checks.
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4. Checking the difference between bit-by-bit commitment is consistent with previously revealed{
δLg,i

}`n
i=1

: For every 1 ≤ i ≤ `n, b ∈ {0, 1}, 1 ≤ u ≤ z, Bob can compute

[
δug,i
]
←
[
`b,ug,0

]
⊕
[
`b,ug,i

]
.

Alice opens the commitment, and Bob checks if δug,i is equal to the u-th bit of previously

revealed δLg,i.

Parameters. We pick the parameters `k, `n, φn, φk, z such that the proofs of Theorems 7, 8 go
through in Appendices C.3,C.4. One may refer to [NO09] for a detailed discussion of parameters
choice.

6.2 Analysis

The main idea in the above cut-and-choose protocol is that if Bob accepts all the checking, then
with high probability there are not too many incorrect gates in total. With these small amount of
incorrect gates, there will be at least one RN gates and d `k2 e KC gates per gate with probability
exponentially close to 1.

Theorem 7. Assume that Alice is corrupted and Bob is honest. In generating an adaptive LEGO
garbled circuit C̃, if Bob accepts all the checking with probability greater than 2−s, then with proba-
bility greater than 1− 2−s there are at least 1 correct garbled RN gate and d `k2 e correct garbled KC

gates per garbled gate in C̃.

The above theorem states that if Bob accepts all the component checking and consistency
checking, then most of the garbled gates in the garbled circuit are correct with high probability. In
the following theorem, we further show that all the commitments of input wires are correct with
high probability.

Theorem 8. Assume that Alice is corrupted and Bob is honest. In generating an adaptive LEGO
garbled circuit C̃, if Bob accepts all the checking with probability greater than 2−s, then with proba-
bility greater than 1− 2−s all the commitments of all the input wires of C̃ are correct.

7 Our Construction

In this section we give our construction of the secure RAM computation protocol. The high level
intuition of the protocol is as follows. It is built on the garbled RAM scheme we abstracted
in Section 4 and instantiated in Section 5.4. Recall that in the garbled RAM scheme, we defined
uniform circuits in Section 4.1 as building units. In the procedure of database garbling and program
garbling, the garbler generates a collection of garbled uniform circuits with partial labels consistent
with a public function f , which indicates the concatenation of the uniform circuits. The evaluator
evaluates the garbled circuits (GCs) one by one in a certain order, during which one GC may output
(partial) labels for other GCs, enabling the evaluation of the next GC. This process proceeds until
the evaluator obtains the output of the program.

In the protocol Alice will play the role of a garbler and Bob will play the role of an evaluator.
They apply the protocol in Section 6.1 to generate the garbled uniform circuits in parallel. After
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Bob obtains all the GCs, Alice provides him with partial labels consistent with the public function
f . We will elaborate in more detail how Alice gives the partial labels in Section 7.1. Given that
Alice is providing the correct labels, Bob, as an evaluator, can evaluate the garbled RAM as in the
garbled RAM scheme.

7.1 Generating Partial Labels

……

𝐿𝐿𝑔𝑔
𝜋𝜋L || 𝜋𝜋L ; 𝐿𝐿𝑔𝑔

𝜋𝜋L || 𝜋𝜋L

RN𝑔𝑔,0 RN𝑔𝑔,1 RN𝑔𝑔,ℓn

ℓ𝑔𝑔
0,1 , ℓ𝑔𝑔

0,2 ,⋯ , ℓ𝑔𝑔
0,𝑧𝑧 ; ℓ𝑔𝑔

1,1 , ℓ𝑔𝑔
1,2 ,⋯ , ℓ𝑔𝑔

1,𝑧𝑧

Circuit 𝑋𝑋 Circuit 𝑌𝑌

……

𝐿𝐿′𝑔𝑔′
𝜋𝜋L
′

|| 𝜋𝜋L
′ ; 𝐿𝐿′𝑔𝑔′

𝜋𝜋L
′

|| 𝜋𝜋L
′

RN𝑔𝑔′,0 RN𝑔𝑔′,1 RN𝑔𝑔′,ℓn

ℓ′𝑔𝑔′
0,1 , ℓ′𝑔𝑔′

0,2 ,⋯ , ℓ′𝑔𝑔′
0,𝑧𝑧 ; ℓ′𝑔𝑔′

1,1 , ℓ′𝑔𝑔′
1,2 ,⋯ , ℓ′𝑔𝑔′

1,𝑧𝑧

Without loss of generality assume 𝜋𝜋L = 𝑏𝑏.
Then 𝜋𝜋L ⊕ 𝑏𝑏 = 0 .
Opening 𝐿𝐿𝑔𝑔

𝜋𝜋L gives 𝐿𝐿𝑔𝑔𝑏𝑏 .

𝐿𝐿𝑔𝑔0 ; 𝐿𝐿𝑔𝑔1 𝐿𝐿′𝑔𝑔′
0 ; 𝐿𝐿′𝑔𝑔′

1

𝑗𝑗-th bit of input keys to 𝑌𝑌, denoted by 𝑏𝑏

Figure 10: Concatenation of two garbled circuits

Suppose that Alice and Bob runs the protocol in Section 6.1 to generate a collection of garbled
uniform circuits in parallel. In this section we describe how Alice provides Bob with partial labels
to these garbled circuits consistent with the public function f . For each input wire X[i] (the i-th
input wire of circuit X), without loss of generality assume it is the left input wire of gate of g.
Recall that Bob has the following commitment of its input keys, as shown in Figure 10.[

L0
g

]
;
[
L1
g

]
;[

LπLg
]
|| [πL] ;

[
LπLg
]
|| [πL] ;[

`0,1g
]
,
[
`0,2g
]
, · · · ,

[
`0,zg
]

;
[
`1,1g
]
,
[
`1,2g
]
, · · · ,

[
`1,zg
]
.

Recall that in Table 2 we defined five categories of inputs: const, keys,mem, inp, dyn. We explain in
the following how Bob obtains the labels for each category of inputs:

• const: Let b = f(X, i) be value of X[i]. Alice simply opens the following commitment:[
`b,1g

]
,
[
`b,2g

]
, · · · ,

[
`b,zg

]
.
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• keys: Let (Y, j) := f(X, i), then the value of X[i] is the j-th bit of input keys to circuit Y .
As illustrated in Figure 10, Bob holds a commitment of that bit, denoted by [b]. Without
loss of generality assume πL = b. Alice points out the fact that πL = b to Bob, and Bob can
compute

[πL ⊕ b]← [πL]⊕ [b] .

Alice opens the above commitment and Bob checks if πL⊕b = 0. If Bob accepts the checking,
then Alice opens

[
LπLg
]

and Bob obtains Lbg.

• mem: Let j := f(X, i) be the location of the database and let b := D[j] be the value of X[i].
Alice first gives a zero-knowledge proof of knowledge of L0

g and L1
g (see Appendix B for more

details). Then Alice sends the label Lbg to Bob.

• inp: Let j := f(X, i) and b := x[j] be the value of X[i].

– If x[j] is an input bit from Alice, then Alice first gives a zero-knowledge proof of knowl-
edge of L0

g and L1
g, and then sends the label Lbg to Bob.

– Otherwise the two parties run an OT where Alice inputs the openings of
[
L0
g

]
and

[
L1
g

]
and Bob inputs b, allowing Bob to obtain Lbg.

• dyn: The label will be produced by another garbled circuit during runtime. There is no need
for Bob to obtain a label for it before evaluation.

7.2 Our Protocol

Our secure RAM computation protocol Π = (ΠGData,ΠGProg,ΠGInput,ΠGEval) is described in Fig-
ure 11.

7.3 Security

In this section we prove the following theorem.

Theorem 9. The protocol Π = (ΠGData,ΠGProg,ΠGInput,ΠGEval) is a secure RAM computation
protocol against malicious adversaries satisfying the security and the efficiency requirements of
Section 3.2.

Security Against Malicious Alice.
We first consider the case where Bob is honest and Alice is cheating. We construct a simulator

S (ideal-world adversary) which has access to Alice and the ideal functionality F , and can emulate
the adversary in the real world. Intuitively, the simulator S plays the role of Bob and runs the
protocol with Alice, emulating the communication between Alice and Bob in the real world.

We now describe the simulator S in detail. In the simulation, if S rejects the component
checking or consistency checking, then it inputs abort! to F . Otherwise S accepts all the checking.
In that case, if Bob accepts all the checking with probability no more than 2−s in the real world,
since it is negligible in the security parameter, S can do anything and does not affect security.

If Bob accepts all the checking with probability greater than 2−s in the real world, then by
Theorem 7, in each garbled circuit there are at least 1 RN gate and d `k2 e KC gates per garbled gate

with probability greater than 1− 2−s. By union bound, there are at least 1 RN gate and d `k2 e KC
gates per garbled gate for every garbled circuit with overwhelming probability. By Theorem 4, S
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Database Garbling ΠGData.

1. Generating input keys: Alice picks a PRF seed s uniformly at random and generates all input keys
needed for the garbled circuits.

2. Generating garbled circuits: The two parties run the protocol in Section 6.1 to generate all the garbled

uniform circuits {C̃i}M̃i=1 in parallel.

3. Generating partial labels: For each wire X[i] with category const/keys/mem, Alice provides Bob with
labels consistent with f(X, i) and her database content D as in Section 7.1.

Program Garbling ΠGProg. The new program P with running time t is known to both parties.

1. Generating input keys: Alice uses s to generates all input keys needed for the new garbled circuits.

2. Generating garbled circuits: Let N be the total number of previously generated GCs. The two parties

run the protocol in Section 6.1 to generate all new garbled uniform circuits {C̃i}N+t̃
i=N+1 in parallel.

3. Generating partial labels: For each wire X[i] with category const/keys, Alice provides Bob with labels
consistent with f(X, i) and as in Section 7.1.

4. Generating input-garbling-key: Let sin be the set of input keys to all wires X[i] with category inp, and
Alice keeps it.

Input Garbling ΠGInput. The input to the program is x = (xA, xB).

1. Parsing input-garbling-key: Alice parses sin as partial input keys to currently generated GCs.

2. Generating garbled input: For each wire X[i] with category inp, Alice provides Bob with labels con-
sistent with f(X, i) and (xA, xB) as in Section 7.1.

Garbled Evaluation ΠGEval.

• Bob uses D̃, P̃ , x̃ to compute y ← GEvalLego
D̃(P̃ , x̃).

Figure 11: Secure RAM computation protocol Π

can evaluate all the garbled circuits, and hence the garble RAM, correctly, given that the garbled
circuits are concatenated properly.

Extracting Alice’s input: For each input wire with category mem, without loss of generality
assume it is the left input wire of gate g, and its value is D[j]. Recall that Alice gives a zero-
knowledge proof of knowledge of L0

g and L1
g, and provides a label L corresponding to D[j]. S can

extract both labels to match with L and figure out the bit b of the database content. More precisely,
if Lbg = L, then set D[j] := b. If neither label matches L, then send abort! to F . In such a way S
can extract every bit of D and xA and sends to F .

Guessing Bob’s input: When S runs OT with Alice to get labels of Bob’s input, S can extract
both values that Alice feeds into OT, and determine whether they are correct openings of the
commitment. If both values are incorrect, then in the real world Bob always sees an bad opening
and terminates. In the ideal world S sends abort! to F . Otherwise, let I be the indices of OTs for
which Alice inputs exactly one bad value, and let βi be the value of xBi which would lead Bob to
not see the bad value. If Bob terminates in the real world, then Alice knows that bi 6= βi for some
i ∈ I. If Bob does not terminate, then Alice knows that xBi = β for all i ∈ I. S could accomplish
the same in the ideal world by inputting I and {βi}i∈I to F .

Evaluation: As we have already argued, S can evaluate the garble RAM correctly given the fact
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that the garbled circuits are concatenated properly, namely all the partial labels that S obtains are
correct. We only need to consider the input wires with categories const and keys. By Theorem 8,
the commitments of every input wire are correct with overwhelming probability. For every input
wire w, without loss of generality assume it is the left input wire of gate g. If w’s category is const,
assume its value is b. Recall that Alice opens the bit-by-bit commitment of Lbg, hence the label
is correct with overwhelming probability. If w’s category is keys, assume its value is the j-th bit
of input keys to circuit Y . S holds a correct commitment of that bit, denoted by [b]. Without
loss of generality assume πL = b. Alice points out the fact that πL = b, and S can compute
[πL ⊕ b] ← [πL] ⊕ [b]. Alice opens that commitment and

[
LπLg
]
. Since all the commitments are

correct, if S accepts the checking of πL ⊕ b = 0, then πL = b and S obtains Lbg with overwhelming
probability.

Output: S can evaluate the garbled RAM correctly, and obtain the output y. S then outputs y
along with the output of Alice.

Security Against Malicious Bob.
Now we consider when Alice is honest and Bob is cheating. Since we are running our protocol

on a sequence of programs which run on a persistent database, the input of Bob could be adaptively
decided after the two parties have generated the garbled database and garbled program. Thus we
need to argue adaptive security against malicious Bob.

Recall Theorem 6, there exists a simulator AdaptRamSimLego for the garbled RAM scheme
(GDataLego,GProgLego,GInputLego,GEvalLego) that achieves adaptive security as defined in Section
3.1. In particular, AdaptRamSimLego has the following procedures(

D̃sim, state0

)
← AdaptRamSimLego

(
1κ, 1M

)
;

(P̃ sim
i , state′i)← AdaptRamSimLego(statei−1, Pi, 1

ti , yi);

(x̃simi , statei)← AdaptRamSimLego(state
′
i, yi).

And the garbled RAM generated by AdaptRamSimLego is indistinguishable from an honestly gener-
ated garbled RAM.

The simulator S plays the role of Alice and runs the protocol ΠGData and ΠGProg with Bob to
generate D̃sim and P̃ sim

i , without knowing Alice’s input. After ΠGData and ΠGProg, Bob will obtain
the labels corresponding to his input xBi via OT. S can extract xBi out of it, send to the F , and
obtain the output yi. Then S provides Bob with the simulated garbled input x̃sim. By Theorem 6,
the garbled RAM generated as above is computationally indistinguishable from Bob’s view in the
real world.
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A Building Blocks

In this section we fix notations for RAM computation, provide definitions for static and adaptive
secure circuit garbling schemes, and discuss the XOR-homomorphic commitment scheme employed
in our constructions.

A.1 RAM Model

For a program P with database of size M we denote the initial contents of the database by D ∈
{0, 1}M . Additionally, the program gets a “short” input x ∈ {0, 1}u, which we alternatively think of
as the initial state of the program. We use the notation PD(x) to denote the execution of program
P with initial database contents D and input x. The program P can read from and write to various
locations in database D throughout its execution.7

We will also consider the case where several different programs are executed sequentially and the
database persists between executions. We denote this process as (y1, y2, · · · ) = (P1(x1), P2(x2), · · · )D
to indicate that first PD1 (x1) is executed, resulting in some database contents D1 and output y1,
then PD1

2 (x2) is executed resulting in some database contents D2 and output y2 etc. As an example,
imagine that D is a huge database and the programs Pi are database queries that can read and
possibly write to the database and are parameterized by some values xi.

A.2 Circuit Garbling Scheme

Garbled circuits was first constructed by Yao [Yao86] (see e.g. Lindell and Pinkas [LP09] and
Bellare et al. [BHR12b] for a detailed proof and further discussion). A circuit garbling scheme is
a tuple of PPT algorithms (GCircuit,GInput,Eval). Very roughly GCircuit is the circuit garbling
procedure, GInput is the input garbling procedure, and Eval is the evaluation procedure.

Definition 1 (Circuit garbling scheme). A circuit garbling scheme consists of three procedures
(GCircuit,GInput,Eval) with the following syntax:

•
(
C̃, sin

)
← GCircuit (1κ,C): On input a security parameter κ, a circuit C, it outputs a garbled

circuit C̃ and an input-garbling-key sin.

• x̃ ← GInput(sin, x): On input the input-garbling-key sin and x, it outputs the garbled input
x̃.

• y = Eval
(
C̃, x̃

)
: On input a garbled circuit C̃ and a garbled input x̃, it outputs y.

Correctness. For correctness, we require that for any circuit C and input x, we have that:

Pr
[
C(x) = Eval

(
C̃, x̃

)]
= 1.

where
(
C̃, sin

)
← GCircuit (1κ,C) , x̃← GInput(sin, x).

7In general, the distinction between what to include in the program P , the database D and the short input x can
be somewhat arbitrary. However as motivated by our applications we will typically be interested in a setting where
that data D is large while the size of the program |P | and input length u is small.
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Static security. For static security, we require that there exists a PPT simulator StatCircSim such
that for any C, x, we have that: (

C̃, x̃
)

c
≈ StatCircSim (1κ,C,C(x))

where
(
C̃, sin

)
← GCircuit (1κ,C) , x̃← GInput(sin, x).

Adaptive security. For adaptive security, we require that there exists a PPT simulator AdaptCircSim
such that for any PPT adversary A and any circuit C, the output of the following two experiments
are computational indistinguishable:

Real experiment

•
(
C̃, sin

)
← GCircuit (1κ,C)

• x← A(1κ,C, C̃)

• x̃← GInput(sin, x)

• Output (C̃, x̃)

Simulated experiment

•
(
C̃sim, state

)
← AdaptCircSim (1κ,C)

• x← A(1κ,C, C̃)

• x̃sim ← AdaptCircSim(state,C(x))

• Output (C̃sim, x̃sim)

A.3 Commitment Scheme

In our construction we use an XOR-homomorphic commitment scheme, which is UC secure in the
OT-hybrid model, as a building block. The ideal functionality FHCOM is defined in Figure 12.

Setup: Alice and Bob both input (init, z).

Commit: When receiving a message (commit, i,mi) from Alice where mi ∈ {0, 1}z, FHCOM stores
the pair (i,mi).

Open: When receiving a message (open, I) from Alice where I is a set of integers, if ∀i ∈ I, a pair
(i,mi) was stored previously, then FHCOM sends (Open, I,

⊕
i∈I mi) to Bob.

Figure 12: Ideal functionality FHCOM

We work in the FHCOM-hybrid model, and essentially in the OT-hybrid model. We instantiate
the additive homomorphic commitment scheme from [FJNT16] in the field F2, and commit messages
bit by bit to achieve XOR homomorphism. For simplicity of notation we write [m; r] (or [m]) for
a commitment of m with randomizer r.

B Zero-Knowledge Proof of Knowledge via OT

During the protocol Alice needs to prove in zero-knowledge that she knows an opening of a com-
mitment [∆; r∆]. In this section we present a way to reduce UC zero-knowledge proof of knowledge
to UC OT. The protocol allows the simulator to extract ∆.

The protocol is the following: Alice picks at random K0, r0. Define K1 = K0 ⊕∆, r1 = r0 ⊕∆.
Then Alice sends [K0] to Bob, and offers ((K0, r0), (K1, r1)) to the OT. Bob chooses a random
bit b ∈ {0, 1} and accepts if Kb, rb is an correct opening of [Kb] (Note that Bob can compute
[K1] ← [K0] ⊕ [∆] by himself). They repeat the protocol s times in parallel. Therefore, Alice
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cannot guess Bob’s choice with probability better than 2−s. If Alice is corrupted the simulator gets
to see both K0 and K1, and can therefore compute ∆ = K1 ⊕K0.

C Postponed Proofs

C.1 Proof of Theorem 3

Proof. We first construct the simulator StatLegoSim. Given C,C(x) and all the solders

S :=

{{{
δLg,i, δ

R
g,i, δ

O
g,i

}`n
i=1

,
{
δKg,i
}`k
i=1

, δO,Kg

}
g∈C

,
{
δLg1,g2

}
g1,g2∈C,g1↗g2

,
{
δRg1,g2

}
g1,g2∈C,g2↖g1

}
,

StatLegoSim generates the garbled circuit and garble input as follows.

1. Generating a global difference: ∆
$← {0, 1}z.

2. Generating all the labels: Generate the following labels gate by gate for each gate g ∈ C, from
input gates to output gates.

If g1 ↗ g, then L0
g,0 := O0

g1,0
⊕ δLg1,g; else L0

g,0
$← {0, 1}z

If g ↖ g1, then R0
g,0 := O0

g1,0
⊕ δRg1,g; else R0

g,0
$← {0, 1}z

O0
g,0

$← {0, 1}z
L0
g,i := L0

g,0 ⊕ δLg,i, R0
g,i := R0

g,0 ⊕ δRg,i, O1
g,i := O0

g,0 ⊕ δOg,i ∀1 ≤ i ≤ `n
L1
g,i := L0

g,i ⊕∆, R1
g,i := R0

g,i ⊕∆, O1
g,i := O0

g,i ⊕∆ ∀0 ≤ i ≤ `n
K0
g,0 := O0

g,0 ⊕ δ
O,K
g

K0
g,i := K0

g,0 ⊕ δKg,i ∀1 ≤ i ≤ `k
K1
g,i := K0

g,i ⊕∆ ∀0 ≤ i ≤ `k

LetWout be the set of output wires of C. For each w ∈ Wout, let the value of w be b. Suppose
it is the output wire of gate g. Let

O0
g := bz;O1

g := b
z

be the labels for w.

3. Generating garbled gate tables: Use the above labels to generate the garbled gate table of
every g̃ as described in Section 5.1 and Figures 5, 6 except that the garbled table of a RN is
the following:

cπ(0) = EncL0,R0(O0);

cπ(1) = EncL0,R1(O0);

cπ(2) = EncL1,R0(O0);

cπ(3) = EncL1,R1(O0).

And the the garbled table of a KC is the following:

cπ(0) = H(K0);

cπ(1) = H(K0).
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4. Garbled circuit: C̃sim consists all the garbled tables and all solders S.

5. Garbled input: Let Win be the set of input wires of C. For each w ∈ Win, suppose it is an
input wire of gate g. If w is g’s left input wire, then let (label0w, label

1
w) := (L0

g, L
1
g); otherwise

let (label0w, label
1
w) := (R0

g, R
1
g). Let

x̃sim =
{
label0w

}
w∈Win

be the garbled input.

6. Output C̃sim, x̃sim.

To argue that the simulated (C̃sim, x̃sim) is indistinguishable from an honestly generated garbled
circuit and garbled input, the idea is similar to arguing security in Yao’s garbled circuit [Yao82].
First we replace gate by gate the unevaluated ciphertexts in the garbled gate table by random
strings. Security of the encryption schemes would guarantee that the garbled circuit remains
indistinguishable from an honestly generated one. Then we switch the zero and one labels to be
consistent with (C̃sim, x̃sim). Finally we conclude the proof by changing the unevaluated ciphertexts
to be the same as C̃sim.

C.2 Proof of Theorem 5

Proof. Given the static secure LEGO garbling scheme with simulator StatLegoSim, we first con-
struct the simulator AdaptLegoSim as follows. The main ideal is that after seeing the output
C(x), AdaptLegoSim can manipulate the output of the random oracles and enforce the previously
generated garbled circuit to be a newly simulated one.

•
(
C̃sim
a , state

)
← AdaptLegoSim (1κ,C) .

–
(
C̃a, s

in
a

)
← AdaptLegoGCircuit (1κ,C).

– state← C̃a.

– Output
(
C̃a, state

)
.

• x̃sim ← AdaptLegoSim(state,C(x)).

– Let

S :=

{{{
δLg,i, δ

R
g,i, δ

O
g,i

}`n
i=1

,
{
δKg,i
}`k
i=1

, δO,Kg

}
g∈C

,
{
δLg1,g2

}
g1,g2∈C,g1↗g2

,
{
δRg1,g2

}
g1,g2∈C,g2↖g1

}
be the set of all solders of C̃a.

–
(
C̃sim, x̃sim

)
← StatLegoSim (1κ,C,C(x))

∣∣
S

– Use x̃sim to simulate the evaluation of C̃a gate by gate as follows:

∗ Let Lag , R
b
g be the input labels of g̃a ∈ C̃a.

∗ Use δLg,i, δ
R
g,i to compute Lag,i, R

b
g,i for ∀0 ≤ i ≤ `n.

∗ For ∀0 ≤ i ≤ `n,
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· Let ct (t ∈ {0, 1, 2, 3}) be the ciphertext of RNg,i ∈ C̃sim that can be decrypted
by Lag,i, R

b
g,i, and let Oa⊗bg,i be the output label, namely ct = EncLa

g,i,R
b
g,i

(Oa⊗bg,i ).

· hash
[
|ct|, Lag,i||Rbg,i

]
← ht ⊕ ct.

∗ Note that {Oa⊗bg,i }
`n
i=0 are consistent with {δOg,i}

`n
i=1.

∗ Use δO,Kg and δKg,i to compute Ka⊗b
g,i for ∀0 ≤ i ≤ `k.

∗ For ∀0 ≤ i ≤ `k,
· Let ct (t ∈ {0, 1}) be the ciphertext of KCg,i ∈ C̃sim that can be checked by Ka⊗b

g,i .

· hash
[
|ct|,Ka⊗b

g,i

]
← ht ⊕ ct.

∗ LetOa⊗bg := Oa⊗bg,0 , and continue the evaluation using gate solders
{
δLg1,g2

}
g1,g2∈C,g1↗g2

,
{
δRg1,g2

}
g1,g2∈C,g2↖g1

.

– Output x̃sim.

• hash[γ,w]← AdaptLegoSim(RO, γ, w).

– If hash[γ,w] = ⊥ then hash[γ,w]
$← {0, 1}γ .

– Output hash[γ,w].

Note that in the procedure of AdaptLegoSim(state,C(x)), by manipulating the output of random
oracles properly S can fool the evaluator gate by gate into evaluating on the later simulated C̃sim

and x̃sim. Therefore, given an adversary that can distinguish the real and simulated experiments in

the adaptive LEGO garbling scheme, we can build an adversary that can distinguish
(
C̃sim, x̃sim

)
from honestly generated

(
C̃, x̃

)
, which breaks the static secure LEGO garbling scheme.

C.3 Proof of Theorem 7

In this section we prove the following two lemmas, and combining the two lemmas we can imme-
diately conclude Theorem 7.

Lemma 10. Assume that Alice is corrupted and Bob is honest. In generating an adaptive LEGO
garbled circuit C̃, if Bob accepts all the checking with probability greater than 2−s, then there exists
a constant c such that at most c · s RN gates and c · s KC gates have incorrect commitments or
incorrect garbled gate tables.

Lemma 11. Assume that Alice is corrupted and Bob is honest. In generating an adaptive LEGO
garbled circuit C̃, if Alice generates at most c · s RN gates and c · s KC gates with incorrect commit-
ments or incorrect garbled gate tables, then with probability higher than 1− 2−s there are at least 1
correct garbled RN gate and d `k2 e correct garbled KC gates per garbled gate in C̃.

Proof of Lemma 10. Recall that Nn = (`n + 1)n is the number of RN gates needed in C̃. Alice first
generates φnNn garbled RN gates, (φn−1)Nn among which will be checked. Assume that there are
α incorrectly formed gates in the φnNn RN gates. Bob randomly picks (φn − 1)Nn gates to check.
For each incorrect gate, if Bob picks it, then he will accept the component checking of that gate
with probability ≤ 3

4 .

Pr[Bob accepts component checking of all the RN gates]
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=

α∑
i=0

Pr[Bob picks i incorrect RN gates]× Pr[Bob accepts component checking of i incorrect gates]

≤
α∑
i=0

(
α
i

)( φnNn−α
(φn−1)Nn−i

)( φnNn

(φn−1)Nn

) ·
(

3

4

)i

=

α∑
i=0

(
α

i

)
·
(

3

4

)i
·
∏α−i−1
j=0 (Nn − j)

∏i−1
j=0 ((φn − 1)Nn − j)∏α−1

j=0 (φnNn − j)

≤
α∑
i=0

(
α

i

)
·
(

3

4

)i
·
(

Nn

φnNn − α

)α−i
·
(

(φn − 1)Nn

φnNn − α

)i
.

If α > c1φnNn for some constant 0 ≤ c1 < 1, then E [bad gates picked by Bob] = α(φn−1)
φn

>

c1(φn − 1)Nn, and each incorrect gate will fail the checking with probability ≥ 1
4 . By Chernoff

bound and appropriate value of c (depending on s and φn), Bob will accept with probability < 2−s.
So we can assume that α ≤ c1φnNn.

Pr[Bob accepts component checking of all the RN gates]

≤
α∑
i=0

(
α

i

)
·
(

3

4

)i
·
(

Nn

(1− c1)φnNn

)α−i
·
(

(φn − 1)Nn

(1− c1)φnNn

)i
≤

α∑
i=0

(
α

i

)
·
(

3

4

)i
·
(

max{φn − 1, 1}
(1− c1)φn

)α
=

(
max{φn − 1, 1}

(1− c1)φn

)α
·
(

7

4

)α
≤ cα2

where 0 < c2 < 1 for appropriate values of c1 and φn. Since Bob accepts all the component checking
with probability > 2−s, Pr[Bob accepts component checking of all the RN gates] > 2−s,

α ≥ ln 2

− ln c2
s = c · s.

By the same argument for KC gates and by choosing the value of φk properly, we know that
there are at most c · s incorrect KC gates.

Proof of Lemma 11. There are Nn = (`n + 1)n RN gates among which at most c · s are incorrect,
and Nk = (`k + 1)n KC gates among which at most c · s are incorrect. For each gate g ∈ C,

Pr[g has ≤ `n correct KC gates or has no correct RN gate]

≤Pr[g has ≥ `n + 1 incorrect KC gates] + Pr[g has `n + 1 incorrect RN gates]

≤
`k+1∑
i=`n+1

(
`k + 1

i

)(
c · s
Nk

)i
+

(
c · s
Nn

)`n+1

≤
(
c · s
Nk

)`n+1

·
`k+1∑
i=`n+1

(
`k + 1

i

)
+

(
c · s
Nn

)`n+1
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≤
(

c · s
(`k + 1)n

)`n+1

· 2`k +

(
c · s

(`n + 1)n

)`n+1

≤
(

4c · s
(`n + 1)n

)`n+1

.

Hence

Pr[∃g ∈ C with ≤ `n correct KC gates or with no correct RN gate]

≤n
(

4c · s
(`n + 1)n

)`n+1

≤ 2−s (for large enough `n).

C.4 Proof of Theorem 8

Proof. Assume that there are at least 1 correct RN gate per garbled gate in C̃. For each input wire
w ∈ Win, without loss of generality assume that it is the left input wire of gate g. Let RNg,0, · · · ,
RNg,`n be the RN gates for g̃. Recall that Bob has the following commitments:[

L
πL,0
g,0

]
|| [πL,0] ;

[
L
πL,0
g,0

]
|| [πL,0] ;[

L
πL,1
g,1

]
|| [πL,1] ;

[
L
πL,1
g,1

]
|| [πL,1] ;

...[
L
πL,`n
g,`n

]
|| [πL,`n ] ;

[
L
πL,`n
g,`n

]
|| [πL,`n ] .[

`0,1g,0

]
,
[
`0,2g,0

]
, · · · ,

[
`0,zg,0

]
;
[
`1,1g,0

]
,
[
`1,2g,0

]
, · · · ,

[
`1,zg,0

]
;[

`0,1g,1

]
,
[
`0,2g,1

]
, · · · ,

[
`0,zg,1

]
;
[
`1,1g,1

]
,
[
`1,2g,1

]
, · · · ,

[
`1,zg,1

]
;

...[
`0,1g,`n

]
,
[
`0,2g,`n

]
, · · · ,

[
`0,zg,`n

]
;
[
`1,1g,`n

]
,
[
`1,2g,`n

]
, · · · ,

[
`1,zg,`n

]
.

We claim that all the commitments are correct.
Since there is at least 1 correct RN gate for g̃, let RNg,t be the correct gate. Then all the

commitments of RNg,t are correct. Now we compare the commitments of RNg,0 with RNg,t, and we
will see that input consistency checking ensures the correctness of commitments of RNg,0.

First, when revealing the relation between {πL,i}`ni=0, Bob computes the following

[πL,0 ⊕ πL,t]← [πL,0]⊕ [πL,t] .

Alice opens the commitment. Bob checks if πL,0 ⊕ πL,t = 0 or 1, and obtains the relation between
πL,0 and πL,t, namely πL,t = πL,0 or πL,0. Since πL,t = 0/1 and [πL,t] is correct, [πL,0] is also a correct
commitment of 0/1. Without loss of generality assume that πL,0 = πL,t.

Second, when checking the difference between labels is consistent with previously revealed{
δLg,i

}`n
i=1

, Bob computes

[δg,t]←
[
L
πL,0
g,0

]
⊕
[
L
πL,t
g,t

]
.
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Alice opens the commitment, and Bob checks if δg,t = δLg,t. Hence we conclude that L
πL,0
g,0 =

L
πL,t
g,t ⊕ δg,t is the label of πL,0, and the commitment

[
L
πL,0
g,0

]
is correct.

L0
g,0 = L0

g,t ⊕ δLg,t, and the commitment
[
L0
g,0

]
is correct.

Third, when checking that each pair of labels has a difference ∆ in between, Bob computes

[0] || [0]←
([
L
πL,i
g,t

]
|| [πL,t]

)
⊕
([
L
πL,t
g,t

]
|| [πL,t]

)
⊕ [∆] || [1] .

Alice opens the commitment, and Bob checks. Since [πL,0] is also a correct commitment of 0/1,
[πL,0] is also a correct commitment of 0/1, and is the opposite of [πL,0]. Since L

πL,0
g,0 = L

πL,t
g,t ⊕ δg,t is

the label of πL,0 and the commitment
[
L
πL,0
g,0

]
is correct, we conclude that L

πL,0
g,0 = L

πL,0
g,0 ⊕∆ is the

label of πL,0, and the commitment
[
L
πL,0
g,0

]
is also correct.

Forth, when checking that the difference between bit-by-bit commitment is consistent with

previously revealed
{
δLg,i

}`n
i=1

, for every b ∈ {0, 1}, 1 ≤ u ≤ z, Bob can compute

[
δug,t
]
←
[
`b,ug,0

]
⊕
[
`b,ug,t

]
.

Alice opens the commitment, and Bob checks if δug,t is equal to the u-th bit of previously revealed

δLg,t. Since
[
`c,ug,t
]

is correct, we conclude that `c,ug,0 = δug,t ⊕ `
c,u
g,t , and

[
`c,ug,0

]
is also correct.

Since the input consistency checking is done between RNg,0 and RNg,i for every i, using the same
argument we can conclude that all the commitments should be correct if Bob passes the checking.

Finally, if Bob accepts all the checks with probability greater than 2−s, by Theorem 7 we know
that with probability greater than 1− 2−s there exist at least 1 correct RN gate per garbled gate
in C̃. Hence concludes the proof.
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