
Small Field Attack, and Revisiting RLWE-Based
Authenticated Key Exchange from Eurocrypt’15?

Abstract. Authenticated key exchange (AKE) plays a fundamental role in modern cryptography. Up to now,
the HMQV protocol family is among the most efficient provably secure AKE protocols, which has been widely
standardized and in use. Given recent advances in quantum computing, it is highly desirable to develop lattice-
based analogue of HMQV protocols for the upcoming post-quantum era. Towards this goal, an important step
was recently made by Zhang et al. at Eurocrypt’15 [ZZD+15,ZZDS14]. Similar to HMQV, this ring-LWE
based analogue of HMQV proposed there consist of two variants: a two-pass protocol Π2, as well as a one-
pass protocol Π1 that implies a signcryption scheme (named as “deniable encryption” in [ZZD+15]). All these
protocols are claimed to be provably secure under the ring-LWE (RLWE) assumption.
In this work, we propose a new type of attack, referred to as small field attack (SFA), against the one-pass
protocol Π1 as well as its resultant deniable encryption scheme. With SFA, a malicious user can efficiently
recover the static private key of the honest victim user in Π1 with overwhelming probability. Moreover, the
SFA attack is realistic and powerful in practice, in the sense that it is almost impossible for the honest user to
prevent, or even detect, the attack. Besides, some new property regarding the CRT basis ofRq is also developed
in this work, which is essential for our small field attack and may be of independent interest.
The security proof of the two-pass protocol Π2 is then revisited. We are stunk at Claim 16 in [ZZDS14], with a
gap identified and discussed in the security proof. To us, we do not know how to fix the gap, which traces back
to some critical differences between the security proof of HMQV and that of its RLWE-based analogue.

1 Introduction

Authenticated key exchange (AKE) plays a fundamental role in modern cryptography. Up to now, the HMQV
protocol family [LMQ+03,Kra05] is generally considered to be the most efficient provably secure AKE protocol
family, and has been standardized and widely in use. HMQV is built upon Diffie-Hellman (DH) [DH76], and
consists of two variants: two-pass HMQV with provable security in the Canetti-Kraczye (CK) model [CK01], and
one-pass HMQV with provable security in a tailored CK model for one-pass AKE [HK11]. Although two-pass
HMQV is more frequently used in practice, one-pass HMQV itself is of great value and has many applications as
well. For example, it was shown in [HK11] that one-pass HMQV implies secure higncryption (aka the deniable
encryption in [ZZDS14,ZZD+15]), and has natural applications to key wrapping. However, HMQV will become
insecure in the upcoming post-quantum era. Consequently, it would be much desirable to develop the HMQV-
analogue based on lattice problems, since lattice-based cryptosystems are commonly believed to be resistant to
quantum attacks.

As a ring variant of the learning with errors (LWE) problem [Reg09], the ring-LWE (RLWE) problem [LPR13a]
was introduced to resolve some inefficiency issues of LWE-based cryptosystems. It is versatile, and has been well-
studied ever since its introduction. Each ring-LWE instance is parameterized by a positive integer n, a positive
rational prime q, a parameter α > 0, and a monic irreducible polynomial f(x) ∈ Q[x] of degree n. The hard-
ness of ring-LWE problem is captured by a (possibly) quantum reduction from the approximate SVP problem in
any ideal lattice of K to the decisional ring-LWE problem [LPR13a], where K ∼= Q[x]/ 〈f〉 denotes a number
field of degree n. Ever since its introduction, significant cryptographic progress based on the RLWE problem has
been made, e.g., [LPR13a,LPR13b,Pei14,LS15,SS11,Gen09,GGH13a,GGH+13b,Lyu12,DDLL13]; For an excel-
lent survey, the reader is referred to [Pei16].

In this work, the term “ring-LWE problem” refers to a special case of the original ring-LWE problem that is
widely used in practice, i.e., n ≥ 16 is a power-of-two, q is a positive rational prime such that q ≡ 1 (mod 2n),
and f(x) = Φ2n(x) ∈ Z[x] is the 2n-th cyclotomic polynomial. For this (specific) ring-LWE problem, its
search and decisional variants are proven computationally equivalent under mild constraints on the parameters
[LPR13a,DD12].
RLWE-based Diffie-Hellman and HMQV. We briefly review the abstract basic structure of key exchange over
RLWE [ZZDS14,ZZD+15,DXL12,Pei14,BCNS15,ADPS16]. Let Alice and Bob denote the two involved parties
for simplicity. To Alice (party i), the static private key is (si, ei) ∈ Rq ×Rq (both are“small”), the static public
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key is pi = asi + c · ei, where a ∈ Rq denotes the public system parameter; the ephemeral private key is
(ri,f i) ∈ Rq × Rq (both are “small”), and the ephemeral public key is xi = ari + c · f i. Similar notations
(sj , ej),pj , (rj ,f j),xj apply to Bob (party j). The value c ∈ F×q is a public constant, which is set to be 1 in
[Pei14] and to be 2 in [DXL12].

For the basic KE protocol without entity authentication (i.e., Alice and Bob do not necessarily possess the static
public/private keys), first Alice sends xi to Bob; Then Bob replies to Alice with (xj ,wj = g(xi, rj ,f j)), where
g denotes a probabilistic polynomial-time (PPT) signal-generation function; Finally, Alice (resp., Bob) applies
a key derivation function denoted Ki (resp., Kj), such that Ki(xj , ri,f i,wj) = Kj(xi, rj ,f j ,wj). Briefly
speaking, the underlying key derivation mechanism is based on the bilinear map (r1, r2) → d = r1 · a · r2 of
Rq × Rq into Rq , where d ∈ Rq denotes the dominant value from which the session-key is derived. However,
neither Alice nor Bob could directly compute the dominant value d due to the small noises f i and f j involved,
and the tricky part of the key derivation functions Ki and Kj is to reach the consensus on the shared key from
two values that are “close” to the dominant value d. This basic key exchange protocol is thus analogous to Diffie-
Hellman, which in turn is based on bilinear map over cyclic group.1 In two-pass RLWE-based HMQV analogue,
we have wj = g(pi,xi, sj , ej , rj ,f j), and Ki(pj ,xj , si, ei, ri,f i,wj) = Kj(pi,xi, sj , ej , rj ,f j ,wj). Con-
versely, in one-pass RLWE-based HMQV analogue where the values (xj ,pj) sent by Bob in the second round is
waived, Alice sends xi as well as the signal wi = g(pj , si, ei, ri,f i); In this case, Ki and Kj are defined to be:
Ki(pj , si, ei, ri,f i,wi) = Kj(pi,xi, sj , ej ,wi).

An important step towards constructing the RLWE-based analogue of HMQV was recently made at Euro-
crypt’15 [ZZD+15] and in its full version [ZZDS14], where the two-pass protocol Π2 and one-pass protocol Π1
were proposed. Both Π2 and Π1 are claimed to be provably secure under the ring-LWE assumption in the random
oracle model, relative to a variant of the Bellare-Rogaway model [BR93] where adversary is not allowed to regis-
ter public keys on behalf of dishonest users. In particular, for the one-pass variant Π1, it is claimed to be provably
secure “in a weak model similar to [Kra05] which avoids some reasonable insufficiencies for one-pass protocol”
([ZZD+15], page 744). However, the exact security model for Π1 is not made clear in [ZZD+15,ZZDS14], and the
actual proof is omitted there. Similar to that one-pass HMQV implies signcryption, the work [ZZD+15,ZZDS14]
also describes the signcryption scheme (i.e., the “deniable encryption” in [ZZD+15,ZZDS14]) resultant from the
one-pass variant Π1, where the derived session-key is used for a CPA-secure symmetric encryption and a MAC
scheme. The resultant signcryption is also claimed to be CCA-secure in [ZZD+15,ZZDS14], by following the
analogue to one-pass HMQV.

The two-pass protocol Π2 is presented in Section 7. Below, we briefly review Π1 in Figure 4.1, in accordance
with our abstract protocol structure above.

The one-pass AKE scheme Π1 The scheme Π1, proposed in [ZZDS14,ZZD+15], is built upon the ring-LWE
assumption. In Π1, a ← Rq is the global public parameter, and M > 0 is a constant that is sufficiently large.
As a two-party AKE protocol, users in Π1 are represented by party i and party j. For party i: the static private
key is (si, ei), where si, ei ← DZn,α; Its associated public key is pi , asi + 2ei ∈ Rq; And its identity
issued by the Certificate Authority (CA) is idi. Similar notations, sj , ej ← DZn,α,pj , asj + 2ej ∈ Rq and
idj , apply to party j. Let H1 : {0, 1}∗ → DZn,γ be a hash function that outputs invertible elements in Rq , and
H2 : {0, 1}∗ → {0, 1}∗ be the key derivation function. Both H1 and H2 are regarded as random oracles in Π1.

The following functions are essential for the definition of Π1. First, When the prime q is clear from the context,
define the function Parity : Fq → {0, 1}, where Parity (u) , u(mod2) ∈ {0, 1}. Moreover, we define the
function Mod : Fq × {0, 1} → {0, 1}, where Mod (u,w) , Parity ((u+ w · q0) mod q) ∈ {0, 1}. Finally,
define the function Cha : Fq → {0, 1}, such that Cha (u) = 0 if and only if u ∈

{
− q−1

4 , · · · , q−1
4
}

; Otherwise,
Cha (u) = 1. All these functions could be easily generalized to the n-dimensional case in the component-wise
manner; For instance, Cha (v) , [Cha (vj)]j∈[n] ∈ {0, 1}n for every v = [vj ]j∈[n] ∈ Fnq , and it is understood
that Cha (u) , Cha

(
[uj ]j∈[n]

)
for u =

∑
j∈[n] ujζ

j−1 ∈ Rq .

1.1 Our Contributions

In this work, we propose a new type of efficient attack, referred to as small field attack (SFA), against the
one-pass protocol Π1, as well as its resultant “deniable encryption” proposed in [ZZDS14,ZZD+15]. With SFA,
a malicious user i can efficiently recover the static private key of the honest user j in Π1 with overwhelming

1 Unlike traditional DH protocol where a key pair may be catched for a short time to improve performance, for RLWE-based
DH-analogue it is crucial that both parties use fresh ephemeral private keys in each session [Flu16,ADPS16].
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party i party j

sk:(si ← DZn,α, ei ← DZn,α)
pk: pi = asi + 2ei ∈ Rq

sk:(sj ← DZn,α, ej ← DZn,α)
pk: pj = asj + 2ej ∈ Rq

ephemeral sk: ri,f i ← DZn,β ;
ephemeral pk: xi = ari + 2f i;
c = H1(idi, idj ,xi); gi ← DZn,β ;
ki = pj(sic+ ri);
wi = g(pj , si, ei, ri,f i) = Cha (ki);
σi = Mod (ki,wi);
ski = Ki(pj , si, ei, ri,f i,wi)

= H2(idi, idj ,xi,wi, σi). (xi,wi)

c = H1(idi, idj ,xi); gj ← DZn,α;
kj = (pic+ xi)sj + 2cgj ;
σj = Mod (kj ,wi);
skj = Kj(pi,xi, sj , ej ,wi)

= H2(idi, idj ,xi,wi, σj).

Fig. 1. Description of Π1. Note that in the full description in [ZZDS14,ZZD+15], party i applies the rejection sampling
operation to generate a “good” (xi,wi) pair, which does not affect SFA and is omitted here for simplicity.

probability, after issuing a set of “random-looking” session queries with party j. The SFA attack is realistic and
powerful in practice, in the sense that it is almost impossible for the honest party j to prevent, or even detect, the
attack.2 Besides, we also develop in this work a new property, i.e., Proposition 5, regarding the CRT basis of Rq ,
which is essential for our small field attack against Π1 and may be of independent interest.

We also notice that the SFA attack may not violate the security claim for Π1 made in [ZZD+15], as with SFA
the malicious user needs to register its public key on its own (while in the omitted security model of [ZZD+15],
the adversary may not be allowed to register public keys on behalf of dishonest users). Nevertheless, in our SFA,
it is hard to distinguish the public key registered by a malicious user and the public key honestly generated.
Moreover, as the malicious user does know the private key corresponding to the registered public key, traditional
mechanisms for proof-of-knowledge (POK) or proof-of-possession (POP) of private key, e.g., via requiring the
user to sign a random message with the registered public key, does not prevent our SFA attack. From our point of
view, forbidding adversary from registering public keys on behalf of dishonest users, on the one hand, seems to
be unrealistic in practice; And, on the other hand, it may result in over weak security model as naturally insecure
protocol like Π1 could be proved “secure” within.

Then, the security analysis of the two-pass AKE scheme Π2 in [ZZDS14,ZZD+15] is revisited. Loosely speak-
ing, the security proof of Π2 considers five types of adversaries, Type-I through Type-V; Only Type-I is analyzed
in [ZZD+15], and the complete analysis is presented in the full version [ZZDS14]. We are stuck at Claim 16 in
[ZZDS14], which deals with Type-II adversary impersonating an honest user in the test-session without a matching
session. A different conclusion on Claim 16 is reached, with a gap in the security proof identified and discussed.
To us, we do not know how to fix the gap, which traces back to some critical differences between the security
proof of HMQV and that of its RLWE-based analogue. Details are referred to Section 7.

Roughly speaking, given a pair of views (view1, view2) of a PPT adversary A, consider the ability thatA could
successfully output a value σt, t ∈ {1, 2}, where σ2 is a random value independent of view2 but σ1 is essentially
committed to view1 and is infeasible to be efficiently computed from view1. The corresponding author of Claim
16 [ZZDS14] concludes that: if view1 and view2 are computationally indistinguishable and A could not output
σ2 from view2 with non-negligible probability, then A should also not be able to output σ1 from view1 with non-
negligible probability; In particular, whether σ1 is distinguishable from σ2 does not affect the conclusion. However,

2 SFA works, in general, against the abstract structure of one-pass AKE discussed in Introduction, where both static private
keys and ephemeral private keys get mixed in generating the key material from which the session key is derived. But it does
not work against the analogues of RLWE-based Diffie-Hellman or SIGMA/TLS [DXL12,Pei14,BCNS15,ADPS16], where
only ephemeral private keys are involved in session key generation.
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from our view, to get the conclusion, we need to prove that the joint distribution of (view1, σ1) is computationally
indistinguishable from that of (view2, σ2); At least we need to argue the indistinguishability between σ1 and σ2,
as the adversarial event is defined not only on the views (view1, view2) but also on the hidden values (σ1, σ2). We
do not know how to fix the gap. Details are referred to Section 7.

1.2 Outline of Small Field Attack

Here we present the outline of SFA, the main technical contribution of this work.

The CRT basis ofRq and its new property Before introducing small field attack, we stress that our SFA makes
full use of the notion of the CRT basis (ofRq) first proposed in [LPR13a]. Its basic properties can be summarized
as follows. First, the CRT basis of Rq is unique, and could be found efficiently [LPR13a]. Furthermore, the CRT
basis {c1, · · · , cn} is an Fq-basis of Rq , when Rq is seen as an Fq-module of rank n in the natural way; For
instance, every element u ∈ Rq could be uniquely written as u =

∑
i∈[n] uici, ui ∈ Fq; For simplicity, in this

work let ηi(u) , ui ∈ Fq denote the i-th CRT-coefficient of u ∈ Rq , and let Dim (u) , {i ∈ [n] | ηi(u) 6= 0}.
Finally, the equality uv =

∑
i∈[n] ηi(u)ηi(v) · ci holds in the ringRq for every u,v ∈ Rq .

In addition to these basic ones, some interesting property regarding {c1, · · · , cn} is further developed in this
work. To be precise, by assuming ci =

∑
j∈[n] ci,jζ

j−1 ∈ Rq, ci,j ∈ Fq for every i ∈ [n], we shall prove in
Proposition 5, Section 3.2, that for each i, the coefficients ci,1, ci,2, · · · , ci,n ∈ Fq form a geometric sequence (in
Fq). This new property is essential for our SFA against Π1, and may be of independent value.

The small field attack (SFA) The vulnerability of Π1 is demonstrated as follows. First, we abstract some of the
valid functionalities of the honest party j in Π1 as an oracleM0 with private key, where the private key ofM0
corresponds to the static private key of the honest party j. Each query made toM0 consists of the caller’s public
key, the message msg forM0 to create a new session, and the session key ski of the matching session. On each
query, M0 first creates a new session associated with msg, computes its session key skj , and finally returns 1
if ski = skj ; Otherwise, 0 is returned. Notice that such one-bit oracle is always available in practice, either by
the session-key exposure oracle in the security model for one-pass HMQV [Kra05] or by the decryption oracle
in the CCA-secure “deniable encryption” proposed in [ZZD+15,ZZDS14]. Moreover, for one-pass protocol Π1
is deployed in reality with mutual authentications by additionally exchanging MACs, the action differences of
j upon receiving a valid MAC value or an invalid one can be used as such one-bit oracle. To demonstrate the
vulnerability of Π1, it is sufficient to construct an efficient attacker A0 that can recover the private key ofM0.

The precise construction ofA0 involves too many details. Fortunately, the following simplified analysis implies
how A0 againstM0 works. For the moment, we assume that the public key of A0 is 0 ∈ Rq (this assumption
could be dropped finally). In such simplified setting, we can define an oracleM1 with secret s ← DZn,α which
could be seen as a simplified variant ofM0. Here, s corresponds to the static private key of party j in Π1, and could
be seen as an element of Rq in the natural way, provided q is sufficiently large. On input

(
x,w, z = [zj ]j∈[n]

)
∈

Rq × {0, 1}
n × {0, 1}n, the oracle M1 first generates a small error ε ← Zn1+2θ = {−θ, · · · , θ}n, and then

computes σ , Parity (xs + q0w + 2ε) = [σj ]j∈[n], and finally returns 1 if and only if [σj ]j∈[n] = [zj ]j∈[n]. In
this work, Parity (x) represents the parity of x ∈ Fq =

{
− q−1

2 , · · · , q−1
2
}

; Moreover, for u =
∑n
j=1 ujζ

j−1 ∈
Rq, uj ∈ Fq , it is understood Parity (u) = [Parity (uj)]j∈[n] ∈ {0, 1}n.

A simple efficient attacker A1 against M1 is first constructed in Section 4.3. Observe that if the x-entry of
every query is of the form k · ci, k ∈ Fq, i ∈ [n], then the product xs = kηi(s) · ci always belongs to a “small”
set 〈ci〉 = {k′ · ci | k′ ∈ Fq}, which is a subfield of the ringRq and is of size q = poly(λ)� qn =

∣∣Rq∣∣, making
it possible for us to recover ηi(s) ∈ Fq efficiently. This explains how our small field attack bears its name. Such
observation implies the general structure of the desired attacker A1: the main body of A1 is an n-round loop, and
the i-th round is devoted to the recovery of si , ηi(s) ∈ Fq , i ∈ [n]; In the i-th round, given s1, · · · , si−1 ∈ Fq
and oracle access toM1, it first picks s̃i ← Fq randomly, guesses si = s̃i ∈ Fq , and then verifies the correctness
of this guess via a set Qi(s̃i) of queries toM1; The set Qi(s̃i) is carefully chosen such that the x-entry is always
of the form kci, k ∈ F×q , and the distribution of those query replies under the condition s̃i = si is computationally
distinguishable from that under the condition s̃i 6= si; In this manner, when s̃i runs over the set Fq , the exact value
of si ∈ Fq would be recovered successfully. In the end, the whole secret s =

∑
i∈[n] si · ci is recovered.

Of every query made by A1, its w- and z-entries are “random” enough, but its x-entry is easy to recognize,
since x ∈

{
kci
∣∣ k ∈ F×q , i ∈ [n]

}
always holds; Equivalently, |Dim (x)| = 1. As a result, it is easy forM1 to

prevent A1 by requiring that |Dim (x)| ≥ 2 for each incoming query. Such restriction is reasonable in the sense
that the set

{
kci
∣∣ k ∈ F×q , i ∈ [n]

}
is of “small” size compared withRq . Now the first motivating question arises:

4



how to improveA1 so that we can still recover the secret ofM1, even if the foregoing requirement on the x-entry
is imposed?

Actually, it is not hard to construct an improved variant of A1, i.e., A′1, to resolve this problem, as we shall see
in Section 5.1. First, given that in the i-th round, the CRT-coefficients s1, · · · , si−1 has already been recovered
successfully, we can make full use of these known CRT-coefficients to re-design the x-entry. Moreover, since s←
DZn,α is “small”, it can be proven that the product se ∈ Rq is “small” as well for e ← [−α′

√
n, · · · , α′

√
n]n.

These two observations are essential for us to design the desiredA′1: its general structure is almost the same as that
of A1, except that in its i-th round, the x-entry every query in Qi(s̃i) is always of the form x = k · ci + h + 2e,
where k ∈ F×q ,h ←

{
u ∈ Rq

∣∣Dim (u) = [i− 1]
}

, and e ← [−α′
√
n, · · · , α′

√
n]n. By re-designing the w-

and z-entries appropriately, the efficient attacker A′1 can be proven to recover every CRT-coefficient si ∈ Fq with
overwhelming probability.

Clearly Dim (k · ci + h) = [i] = {1, 2, · · · , i}, and hence the more CRT-coefficients of s we get, the more
difficult for M1 to identify those queries made by A′1. However, there is still another problem with A′1: in its
first round, for every query made by A′1, h = 0 ∈ Rq and hence the x-entry is of the form x = kci + 2e. To
protect its secret,M1 may reject those queries for which the x-entries are of the form x = kci + 2e such that
k ∈ Fq, i ∈ [n] and ‖e‖∞ is “small”. Such requirement seems reasonable as well. Now the second motivating
question arises: how to improveA′1 so that we can still recover the secret ofM1, even if the foregoing requirement
on the x-entry is imposed?

It turns out this question could be resolved indirectly. As in Section 5.2, we can define an efficient solver V
to the following problem: given a nonempty index set I ⊆ [n], an |I|-dimensional vector [s̃i]i∈I ∈ F|I|q , and
oracle access to M1, decide whether [s̃i]i∈I = [si]i∈I or not. Moreover, as we shall see, to solve the instance
(I, [s̃i]i∈I), the x-entry of every query made by V to M1 is of the form x0 + 2e, where Dim (x0) = I and
e← Zn1+2α′

√
n

= {−α′
√
n, · · · , α′

√
n}n. With the aid of V , we can construct an efficient hybrid attacker against

M1 as follow:

Phase 1 First, choose a constant δ of moderately large, and an index set I ⊆ [n] of size δ randomly. Then, feed V
with qδ instances, each of the form (I, [s̃i]i∈I), s̃i ∈ Fq . In this manner, the CRT-coefficients si, i ∈ I , would
be recovered successfully when [s̃i]i∈I runs over the set Fδq .
In particular, the x-entry of every query made in this phase is always of the form x0+2e, where Dim (x0) = I ,
and e ← Zn1+2α′

√
n

. Given the randomness of I , it is almost impossible in practice forM1 to identify those
queries made by V .

Phase 2 This phase consists of n − δ rounds, each devoted to recovering one of the remaining n − δ CRT-
coefficients of s, as is done in A′1.
In particular, the x-entry of every query made in this phase is always of the form x0 +2e where Dim (x0) ⊇ I
and e← Zn1+2α′

√
n

, making it more difficult forM1 to identify them.

The notation (V/A′1)δ is applied to indicate this efficient hybrid attacker againstM1. Clearly, it is almost impos-
sible in practice forM1 to identify those malicious queries made by (V/A′1)δ . This finishes our discussion about
our small field attack againstM1, a simplified variant ofM0.

The desired efficient attacker A0 againstM0 is similar to (V/A′1)δ againstM1. Likewise, these queries made
by A0 is so “random-looking” that it is almost impossible in practice forM0 to identify them. Last but not the
least, motivated by the construction of V , we can also set the public key ofA0 in a clever way such that it is almost
impossible in practice to distinguish the public key of A0 from that of an honest user.

Our analysis can be briefly summarized as follows, as is depicted in Figure 2.

2 Preliminaries

Let λ denote the security parameters throughout this work. Let B , {0, 1}. For an odd integer p > 0, let
Zp ,

{
−p−1

2 , · · · , p−1
2
}

; For instance, Z3 = {−1, 0, 1}. For every positive integer k, let [k] denote the finite set
{1, 2, · · · , k} ⊆ Z. The logical symbols, such as “∃” and “∀”, are applied in the conventional manner.

Throughout this work, let n ≥ 16 be a power-of-two, and q = poly(λ) be a positive rational prime that is
polynomial in λ; Moreover, q ≡ 1 (mod 2n) is necessarily required. When q is clear from the context, define
q0 , q−1

2 . Let Fq , Z/qZ be the finite field of prime order q; In this work, every element in Fq is represented by
a unique element in {−q0, · · · , q0}. Define F×q , Fq \ {0}, and zone0 , {−q0/2, · · · ,+q0/2} ⊆ Fq . And, when
comparison is carried out between a, b ∈ Fq , both a, b are regarded as real numbers.
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party j in Π1 (in §4.1)
oracle M0 (in §4.2):

an abstraction of
party j in Π1

oracle M1 (in §4.3):
a simplified variant

of M0

basic attacker A1

(in §4.3) against M1

improved attacker A′

1

(in §5.1) against M1

an decider V

(in §5.2)

hybrid attacker (V/A′

1
)δ

(in §5.2) against M1

attacker A0

(in §6) against M0

attacker A (in §6)
against party j in Π1

Fig. 2. The presentation organization of the small field attack. Here, the arrows indicate the order in which our
analysis is carried out.

Unless otherwise stated, vectors are represented in column form in this work, and the n-dimensional vector
(u1, · · · , un)t is usually abbreviated as [uj ]j∈[n]. Let 0 , (0, · · · , 0)t ∈ Fnq . When either u ∈ Fnq or u ∈ Zn, let
‖u‖2 and ‖u‖∞ denote the `2- and `∞-norms of u; For instance, ‖[uj ]j∈[n]‖2 =

√
u2

1 + · · ·+ u2
n ∈ R≥0. When

n and q are clear in the context, define the projection µj : Fnq → Fq for every j ∈ [n] such that µj
(
[uj ]j∈[n]

)
, uj .

For an event E, the notation “Pr [E] = negl (λ)” indicates the probability that E occurs is negligible in λ.
Conversely, if Pr [E] = 1 − negl (λ), we say that E occurs with overwhelming probability; For simplicity, the
phrase “with overwhelming probability” is usually abbreviated as “w.o.p.” in this work. For a deterministic al-
gorithm A that returns y on input x1, x2, · · · , xk, this process is usually written as y := A(x1, x2, · · · , xk).
Conversely, for a randomized algorithm B, which returns y on input x1, x2, · · · , xk as well as the random nonce
r, this process is usually abbreviated as y := B(x1, x2, · · · , xk; r), or simply y ← B(x1, x2, · · · , xk). The nota-
tion Pr [R1; · · · ;Rk : E] denotes the probability of the event E after the ordered execution of random processes
R1, · · · , Rk. For a finite set S, let x← S denote a sample drawn from the uniform distribution over the (finite) set
S.

3 The CRT Basis in the Ring-LWE Setting

This section reviews the ring-LWE problem and its associated notions/results. The definition of the ring-LWE
problem, as well as its hardness results, is reviewed in Section 3.1. In Section 3.2, we first recall the notion of
the CRT basis in the ring-LWE setting, and then develop an algebraic property of the CRT basis of Rq , i.e.,
Proposition 5, that are essential for our small field attack against the one-pass AKE scheme Π1 proposed in
[ZZD+15,ZZDS14].

3.1 The Ring-LWE Problem

Below are the preliminaries about ideal lattices and the ring-LWE problem. For the full detail, please refer to
[LPR13a,LPR13b,DD12].

The rings R and Rq Let ζ denote a primitive 2n-th root of unity in C, and its minimum polynomial over Q is
the 2n-th cyclotomic polynomial Φ2n(x) , xn + 1 ∈ Z[x]. Let R , Z[ζ] be the ring of integers of the number
field Q(ζ)/Q. Moreover, define the principal ideal 〈q〉 = qR and its associated quotient ringRq , R/qR. In this

work, each coset of qR inR is naturally represented by a unique element in the set
{∑

j∈[n] ujζ
j−1
∣∣∣uj ∈ Fq

}
.

Since ζ0, · · · , ζn−1 constitute an Fq-basis of the free Fq-moduleRq of rank n, every u =
∑
j∈[n] ujζ

j−1 ∈ Rq
could be identified with the (column) vector (u1, · · · , un)t = [uj ]j∈[n] ∈ Fnq , and vice versa. Such identification
is denoted as u ∼ [ui]i∈[n] in this work. Hence, every n-dimensional (column) vector in Fnq can be regarded as
an element of Rq in the natural way when necessary, and vice versa. It follows that the domain of the projection

µj(·) defined previously could be generalized to Rq in the sense that µj
(∑

j∈[n] uj · ζj−1
)

, uj ∈ Fq for
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every j ∈ [n]. Moreover, let µ(u) , [µj(u)]j∈[n], which induces an Fq-module isomorphism. It is understood
that ‖u‖2 , ‖µ(u)‖2 and ‖u‖∞ , ‖µ(u)‖∞ for every u ∈ Rq . To emphasize this Fq-module isomorphism,
elements of Rq are represented by lower-case bold letters in this work. In particular, let 0 denote both the vector
(0, · · · , 0)t ∈ Fnq and the zero element ofRq in the sequel, and it would be clear from the context.

The discrete Gaussian distribution Given the positive real α > 0, define the real Gaussian function ρα(x) ,
exp

(
−x2/2α2) /√2πα2 for x ∈ R. Let DZ,α denote the 1-dimensional discrete Gaussian distribution over Z,

determined by its density function DZ,α(x) = ρα(x)/ρα(Z), x ∈ Z. Finally, let DZn,α denote the n-dimensional
spherical discrete Gaussian distribution over Zn, where each coordinate is drawn independently from DZ,α.

When α = ω(
√

logn), almost every sample ε ← DZn,α is “short” in the sense that Pr [‖ε‖2 ≤ α
√
n] =

1−negl (λ) [Reg09,LPR13a]. For the “short” noise ε← DZn,α, it could be seen as an element ofR in the natural
way; Moreover, when q > 1 + 2α

√
n, except with negligible probability, ε could be considered to be an element

of Fnq (and hence ofRq) in the natural way as well.
The following lemma implies that for several “short” noises inR, their product is also “short”.

Lemma 1. Let n = poly(λ) ≥ 16 be a power-of-two. If αi = ω(
√

logn) and ei ← DZn,αi for every i ∈
{1, 2, 3}, then every ei could be regarded as an element of R in the natural way with overwhelming probability;
Moreover, the following inequalities hold with overwhelming probability:

‖e1e2‖∞ ≤ n · α1α2, ‖e1e2e3‖∞ ≤ n
2 · α1α2α3. ut

The ring-LWE (RLWE) problem The following defines only a special case [DD12] of the original ring-LWE
problem proposed in [LPR13a], since this special case, instead of the original one, serves as the underlying hard
problem of both Π1 and Π2 [ZZDS14,ZZD+15], and suffices for the discussions in this work.

Each ring-LWE instance is parameterized by n = n(λ), q = q(λ) and α = α(λ), where n ≥ 16 is a power-of-
two, q is a positive rational prime such that q ≡ 1 (mod 2n), and α ≥ 0. For every (fixed) s ∈ Rq , we define
the ring-LWE distribution An,q,α,s over Rq × Rq: a sample drawn from An,q,α,s is generated by first choosing
a ← Rq, ε ← DZn,α, and then outputting the ring-LWE sample (a, b , as + ε) ∈ Rq × Rq or equivalently
(a, b = as + 2ε) as in [ZZD+15].

Definition 2 ([LPR13a,LPR13b,DD12]). For the ring-LWE problem, its search variant is defined as follows:
given access to arbitrarily many independent samples drawn from An,q,α,s for some arbitrary s ∈ Rq , the
problem asks to recover s ∈ Rq; In contrast, the decisional variant asks to distinguish, with non-negligible
advantage, between arbitrarily many independent samples from An,q,α,s for a random s ← Rq , and the same
number of uniformly random and independent samples drawn from the setRq ×Rq .

It can be shown that for Definition 2, its decisional and search variants are computationally equivalent, under
mild constraints on the parameters [LPR13a,DD12]. Furthermore, the hardness of (search/decisional) ring-LWE
problem is implied by the following lemma.

Theorem 3 ([LPR13a,DD12]). For the RLWE problem defined in Definition 2, if there is an efficient algorithm
that can distinguish, with 1/poly(λ) advantage, between ` samples drawn from the uniform distribution over
Rq ×Rq and ` samples drawn from An,q,α,s, where β =

√
nαq · (n`/log (n`))1/4, then there exists an efficient

quantum algorithm that runs in time O(q · poly(m)) and solves the approximate SVP problem to within a factor
Õ(
√

2n/α) in any ideal of Z[ζ]. ut

3.2 The CRT Basis of Rq and Its Properties

The notion of the CRT basis (in the ring-LWE setting) was first proposed in [LPR13a]. Here we first review its
definition and basic properties; After that, we develop a new algebraic property, i.e., Proposition 5, regarding the
CRT basis ofRq , which would be essential for our efficient attackers to be developed later.

When n, q are clear, let {ω1, · · · , ωn} ⊆ F×q \ {±1} be the set of elements in F×q that are of multiplicative
order 2n. Since the polynomial Φ2n(x) ≡

∏
i∈[n] (x− ωi) (mod q) is separable over Fq by the assumption on

parameters, the principal ideal qR of R could be factored as qR =
∏
i∈[n] qi, where every nonzero prime ideal

qi = 〈q, ζ − ωi〉 by a suitable ordering, and the norm of every qi in R is |R/qi| = qdeg(x−ωi) = q. Hence, every
quotient ring R/qi is a finite field of prime order q, indicating that R/qi ∼= Fq . Hence, the ring Rq could be
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identified with the direct product of n small finite field, each of prime order q = poly(λ). This explains how our
notion of small field attack bears its name.

As the distinct nonzero prime ideals q1, · · · , qn are necessarily pairwise coprime, it follows from the Chinese
remainder theorem that Rq = R/qR ∼=

∏
i∈[n]R/qi under the natural ring isomorphism u + qR 7→ (u +

q1, · · · ,u + qn). Under the natural isomorphism, we can find n elements c1, · · · , cn ∈ R such that ci ≡ δi,j
(mod qj) for every i, j ∈ [n], where δ·,· denotes the Kronecker delta function. The elements c1, · · · , cn ∈ R form
an integral basis ofR relative to q1, · · · , qn, and is called a CRT basis ofR relative to q1, · · · , qn. Moreover, it is
easy to see for any two CRT bases ofR (relative to q1, · · · , qn), they are equivalent up to mod qR. In particular,
when c1, · · · , cn fall into the setRq =

{∑
j∈[n] ujζ

j−1
∣∣∣uj ∈ Fq

}
, they form an Fq-basis of the free Fq-module

Rq; By definition, this Fq-basis is unique in Rq up to ordering, which would be called the CRT basis of Rq
hereafter.

The basic properties of the CRT basis ofRq are summarized as follows.

Fact 4 ([LPR13a,LPR13b]). For the CRT basis {c1, · · · , cn} ofRq ,

(a) Given n and q (in unary form), the CRT basis ofRq could be found efficiently.
(b) Every u ∈ Rq can be written uniquely as u =

∑
i∈[n] ui · ci, ui ∈ Fq .

(c) Let u =
∑
i∈[n] ui · ci and v =

∑
i∈[n] vi · ci, ui, vi ∈ Fq . Then for every k ∈ Fq , we have:

k · u =
∑

(k · ui) · ci, u + v =
∑

(ui + vi) · ci, u · v =
∑

(ui · vi) · ci.ut

Throughout this work, when n, q are clear from the context, let {c1, · · · , cn} denote the CRT basis of Rq;
Moreover, define ci,j , µj(ci) ∈ Fq for every i, j ∈ [n]. Thus, every ci =

∑
j∈[n] ci,j · ζj−1.

With the CRT basis {c1, · · · , cn} of Rq in mind, define the map ηi : Rq → Fq for every i ∈ [n], where

ηi

(∑
i∈[n](ui · ci)

)
, ui, ui ∈ Fq . Clearly, the map ηi(·) is well-defined and efficiently computable. Every

ηi(u) is called a CRT-coefficient of u ∈ Rq . Moreover, define the map η : Rq → Fnq , where η(u) , [ηi(u)]i∈[n]
for every u ∈ Rq . Direct verification shows that η(·) is a ring isomorphism, and is an Fq-module isomorphism
when both are regarded as free Fq-modules.

For every u ∈ Rq , define Dim (u) , {i ∈ [n] | ηi(u) 6= 0 ∈ Fq} ⊆ [n], and the cardinality |Dim (u)| ∈
{0, 1, · · · , n} is called the CRT-dimension of u.

We conclude this section by developing a new property of the CRT basis {c1, · · · , cn} ofRq , which is essential
for our SFA attacks against Π1.

Proposition 5. With the notations defined previously, we have ci,j = ci,n · ωn−ji 6= 0 ∈ Fq for every i, j ∈ [n].

Proof. Fix i ∈ [n]. For the element ζ ∈ R, we have

ζ + qi = ζ + 〈q, ζ − ωi〉 = ωi + 〈q, ζ − ωi〉 ∈ R/qi.

It follows that in the ringR, ζ ≡ ωi · ci (mod qi).
On the one hand, by Fact 4, we have that inRq ,

ζ · ci = ωi · ci =
∑
j∈[n]

(ωi · ci,j)ζj−1 ∈ Rq.

On the other hand, the following equality holds inRq:

ζ · ci = ζ ·
(
ci,1 + ci,2ζ · · ·+ ci,nζ

n−1)
= ci,nζ

n +
∑

j∈[n−1]

ci,jζ
j

= −ci,n +
∑

j∈[n−1]

ci,jζ
j ,

where the equality 0 = Φ2n(ζ) = ζn + 1 ∈ Rq is implicitly applied.
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As ζ0, ζ, · · · , ζn−1 form an Fq-basis of the Fq-moduleRq , we have

ci,1 = ωici,2, · · · ci,n−1 = ωici,n, −ci,n = ωici,1;

Equivalently, ci,j = ci,n · ωn−ji ∈ Fq for every j ∈ [n].
If ci,n = 0, then ci,j = 0 for every j ∈ [n], making ci = 0, contradictory to the definition of the CRT basis

of Rq . It follows that ci,n 6= 0, and hence ci,j 6= 0 for every j ∈ [n]. And the correctness of this theorem is thus
established. ut

4 How to Attack Π1: a Warm-up

We first review the one-pass AKE scheme Π1 [ZZDS14,ZZD+15] in Section 4.1; Then in Section 4.2, the
honest party j in Π1 is abstracted as an oracle M0 with private key, such that to efficiently recover the static
private key of party j in Π1, it suffices to show how to recover the private key of M0 efficiently, provided that
adversaries are allowed to register public keys on behalf of dishonest users.

4.1 The One-Pass AKE Scheme Π1

The one-pass AKE scheme Π1 [ZZDS14,ZZD+15] is built upon the RLWE problem in Definition 2, where
every RLWE sample is of the form (a,as + 2ε).

In Π1, a ← Rq is a global public parameter, and M > 0 is a sufficiently large constant. As a two-party AKE
scheme, users in Π1 are represented by party i (i.e., the initiator) and party j (i.e., the responder), respectively. For
party i: the static private key is (si, ei), where si, ei ← DZn,α; Its associated static public key is pi , asi+2ei ∈
Rq; And its identity issued by the Certificate Authority (CA) is idi. Similar notations, sj , ej ← DZn,α,pj ,
asj + 2ej ∈ Rq , and idj , apply to party j. Let H1 : {0, 1}∗ → DZn,γ be a hash function that outputs invertible
elements in Rq , and H2 : {0, 1}∗ → {0, 1}∗ be the key derivation function. Both H1 and H2 are regarded as
random oracles in Π1.

The following functions are essential for the definition of Π1. First, When the prime q is clear from the context,
define the function Parity : Fq → {0, 1}, where Parity (u) , u(mod2) ∈ {0, 1}. Moreover, we define the
function Mod : Fq × {0, 1} → {0, 1}, where Mod (u,w) , Parity ((u+ w · q0) mod q) ∈ {0, 1}. Finally,
define the function Cha : Fq → {0, 1}, such that Cha (u) = 0 if and only if u ∈

{
− q−1

4 , · · · , q−1
4
}

; Otherwise,
Cha (u) = 1. All these functions could be easily generalized to the n-dimensional case in the component-wise
manner.

The following fact is essential both for Π1 and for our small field attack.

Fact 6. For every u ∈ Fq ,

(a) We always have v , u+ Cha (u) · q0 ∈ {−q0/2, · · · ,+q0/2} ⊆ Fq .
(b) The value Parity (v) = Mod (u,Cha (u)) ∈ B is immune to a short even noise in the sense that

Parity (v) = Parity (v + 2e)

for every −q0/4 < e < q0/4.
(c) The value Parity (v) = Mod (u,Cha (u)) ∈ B is sensitive to a short odd noise in the sense that

Parity (v + 2e− 1) 6= Parity (v) 6= Parity (v + 2e+ 1)

for every −q0/4 < e < q0/4. ut

The one-pass scheme Π1 can be roughly described in Figure 4.1 [ZZDS14,ZZD+15].
Correctness analysis of Π1 Roughly speaking, the correctness of this scheme states that ski = skj holds w.o.p.
On the one hand, since H2(·) is modeled as a random oracle and idi, idj ,xi,wi are known to both parties, it
suffices to show the equality σi = σj holds w.o.p. On the other hand, it is routine to verify

ki − kj = 2 ·
(
csiej + riej + gi − ceisj − f isj − cgj

)
.

By Lemma 1, ‖ki − kj‖∞ ≤ 2
(
nαγ + β

√
n+ 2nαβ + 2n2α2γ

)
holds w.o.p. Thus, when q is sufficiently large,

‖ki − kj‖∞ < q0/2 holds w.o.p. It follows from Fact 6(b) that σi = Mod (ki,Cha (ki)) = Mod (kj ,Cha (ki)) =
σj holds w.o.p. This finishes the correctness analysis of Π1.
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party i party j

sk:(si ← DZn,α, ei ← DZn,α)
pk: pi = asi + 2ei ∈ Rq

sk:(sj ← DZn,α, ej ← DZn,α)
pk: pj = asj + 2ej ∈ Rq

ephemeral sk: ri,f i ← DZn,β ;
ephemeral pk: xi = ari + 2f i;
c = H1(idi, idj ,xi); gi ← DZn,β ;
ki = pj(sic+ ri) + 2gi; wi = Cha (ki)
σi = Mod (ki,wi);
ski = H2(idi, idj ,xi,wi, σi)

(xi,wi)

c = H1(idi, idj ,xi); gj ← DZn,α;
kj = (pic+ xi)sj + 2cgj ;
σj = Mod (kj ,wi);
skj = H2(idi, idj ,xi,wi, σj)

Fig. 3. General description of Π1. Note that in the full description of Π1 in [ZZDS14,ZZD+15], party i applies the rejection
sampling to generate a “good” (xi,wi) pair. Since the efficient attacker always generates his queries dishonestly, this technical
detail does not affect our analysis and hence is omitted here for simplicity.

Clearly Lemma 1 is essential for the correctness of Π1. However, when n is not a power-of-two, or q 6≡ 1
(mod 2n), inequalities in Lemma 1 may no longer hold, which implies the underlying hard problem of Π1 must
be Definition 2, a special case of the original ring-LWE problem defined in [LPR13a,LPR13b].

Security analysis of Π1 It is claimed in [ZZDS14,ZZD+15] that when n is a power-of-two, 0.97n ≥ 2λ,
β = ω(αγn

√
n logn), the prime q > 203 satisfies q ≡ 1 (mod 2n), if the associated ring-LWE problem is

“hard”, then Π1 is secure. In addition, four groups of parameters are suggested in [ZZD+15,ZZDS14] to instantiate
Π1. For instance, in one typical group of suggested parameters, n = 1024, q ≈ 230, α = 3.397, β ≈ 216.1, γ = α.

4.2 Definition of the Oracle M0

First, notice that in Π1, the session key derivation function H2(·) is modeled as an random oracle. Moreover,
notice that every time party j generates its session key by invoking skj , H2(idi, idj ,xi,wi, σj), all the input
values except σj are known to party i. It follows that except with negligible probability, if party i is able to figure
out the session key skj of party j correctly before it issues the associated session-key query to party j, then party
i must be able to figure out the associated σj beforehand, and vice versa.

Now we can define an oracleM0 with private key, which aims to simulate some valid functionalities of party
j in Π1. The private key of M0 is (s, e) and the associated public key is p, where s, e ← DZn,α and p ,
a · s + 2e ∈ Rq (recall that a ← Rq is a global parameter in Π1). Moreover, as a simulator of party j, the
identifier ofM0 is denoted by id. On input (id∗,p∗,x,w, z), where x ∈ Rq, z,w ∈ Bn, and id∗ denotes the
identifier of the initiator with public key p∗ ∈ Rq , M0 does the following: it first samples g ← DZn,α, then
computes c ← H1(id∗, id,x), k := (p∗c + x)s + q0w + 2cg, and σ := Parity (k) ∈ Bn; Finally,M0 returns
1 if and only if z = σ. Equivalently, in every session interaction party i could get from party j only one bit of
information, i.e., whether the session-key returned by party j is equal to the expected one or not. As clarified in
Section 1.2, such one-bit oracle is always available in practice.

We shall construct, in Section 6, an efficient attackerA0 that can recover the private key (s, e) ofM0, provided
that A0 can register its public/private key pair on its own; Moreover, the desired A0 is carefully designed such
that both its public key and those queries it makes are as “random-looking” as possible. Clearly the existence of
A0 implies the vulnerability of Π1. Nevertheless, given the “complexity” of A0, we shall define, in Section 4.3, a
simplified variant ofM0, i.e.,M1, and see how to construct an efficient attacker againstM1.
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4.3 Oracle M1 and Its Associated Efficient Attacker A1

For the moment, we assume that there exists an efficient attacker againstM0 with public key p∗ = 0 ∈ Rq .
By definition, for the input (id∗,p∗ = 0,x,w, z) made by this attacker, M0 first samples g ← DZn,α, then
computes c← H1(id∗, id,x), k := (p∗c + x)s + q0w + 2cg = xs + q0w + 2cg, and σ := Parity (k) ∈ Bn;
Finally,M0 returns 1 if and only if z = σ. Notice that ‖cg‖∞ ≤ n · αγ by Lemma 1.

This simplified analysis motivates us to define the oracleM1 with secret s← DZn,α: on input
(
x, w, z = [zj ]j∈[n]

)
∈

Rq × Bn × Bn, the oracle M1 first generates a small error ε ← Zn1+2θ = {−θ, · · · , θ}n, and then computes
σ , Parity (xs + q0w + 2ε) = [σj ]j∈[n], and finally returns 1 if and only if [σj ]j∈[n] = [zj ]j∈[n]; Otherwise, 0 is
returned. Here, θ > 0 is a constant parameter.

Clearly,M1 could be seen as a simplified variant ofM0 when θ = nαγ. Next, we are devoted to the construc-
tion of an efficient attacker A1 that, given oracle access toM1, can recover the secret ofM1 w.o.p.
The CRT basis w.r.t. A1 The construction of A1 could be seen as a simple application of the CRT basis
{c1, · · · , cn} of Rq . Recall that with {c1, · · · , cn} that is efficiently computable, every element u ∈ Rq can be
uniquely written as u =

∑
i∈[n] ηi(u) · ci; Moreover, we have uv =

∑
i∈[n] ηi(u)ηi(v) · ci for every u,v ∈ Rq .

Thus, to recover s ∈ Rq , it suffices to recover all of its CRT-coefficients si , ηi(s) ∈ Fq, i ∈ [n]. Further-
more, notice that for every query (x,w, z) made toM1, if x = k · ci for some k ∈ Fq, i ∈ [n], then we have
xs = ksi · ci; In such setting, the product xs always falls into a subfield {kci | k ∈ Fq} ofRq , which is of “small
” size q = poly(λ), making it possible for us to recover every si ∈ Fq separately.
General structure of A1 The previous analysis implies the general structure of our desired A1 is as follows:
the main body of A1 consist of an n-round loop, and the i-th round is devoted to the recovery of si = ηi(s) ∈
Fq , i ∈ [n]; In the i-th round, given s1, · · · , si−1 and oracle access to M1, it first picks s̃i ← Fq randomly,
guesses si = s̃i ∈ Fq , and then verifies the correctness of this guess via a set Qi(s̃i) of queries toM1; The set
Qi(s̃i) should be carefully chosen such that the distribution of these query replies under the condition si = s̃i is
computationally distinguishable from that under the condition si 6= s̃i; Thus, the exact value of si ∈ Fq would be
recovered w.o.p. after s̃i runs over the set Fq .
Design of Qi(s̃i) For the moment, assume s1, · · · , si−1 have been recovered successfully and s̃i ∈ Fq is fixed,
and we are devoted to verifying the correctness of the guess si = s̃i by designing the desired query set Qi(s̃i).
Jumping ahead,

Qi(s̃i) =
{
Qk ,

(
xk = kci, wk = [wk,j ]j∈[n], zk = [zk,j ]j∈[n]

) ∣∣∣ k ∈ S ⊆ F×q
}
,

where S is a nonempty proper subset of F×q to be defined later. It remains to specify the w- and z-entries of every
query in Qi(s̃i).

For the moment, we assume si = s̃i. In such case, for the query Qk = (kci,wk, zk) ∈ Qi(s̃i), if wk,j =
Cha (µj(ks̃ici)) for every j ∈ [n], then every µj(kcis + q0wk) into the “secure zone” zone0 by Fact 6(a);
Moreover, when every µj(kcis + q0wk) ∈ zone0, Fact 6(b) guarantees that the small and even noise 2ε does
not affect the parity values, provided that θ is “small” relative to q; Therefore, M1 would return 1 on Qk if
zk = Mod (kci,wk) = Parity (kcis + q0wk). Conversely, if si 6= s̃i, then some of the associated equalities may
not hold intuitively. The following lemma justifies the correctness of this intuition.

Lemma 7. Let g ∈ F×q denote a primitive element of Fq , and let Sg , {gr | r ∈ [d]} and d , q−1
2n . Define

Qi(s̃i) =
{
Qk =

(
kci, [wk,j ]j∈[n], [zk,j ]j∈[n]

) ∣∣∣∣ k ∈ Sg, j ∈ [n], uk,j = s̃i · kci,j ,
wk,j = Cha (uk,j) , zk,j = Mod (uk,j , wk,j)

}
.

If q > 1 + max {8θ, 2α
√
n}, then except with negligible probability, si = s̃i if and only if M1 returns 1 on

every query in Qi(s̃i).

Proof. Throughout the proof, we assume that s ∈ Rq , which occurs w.o.p. by the assumption q > 1 + 2α
√
n.

Also, we only consider the case when the primitive element g ∈ F×q satisfies gd = ωi, and the other cases are
similar. Finally, let ∆si , si − s̃i ∈ Fq , and hence si = s̃i if and only if ∆si = 0.

Recall that for the query Qk =
(
xk = k · ci,wk = [wk,j ]j∈[n], zk = [zk,j ]j∈[n]

)
∈ Qi(s̃i),M1 first generates

εk ← Zn1+2θ, and then computes

vk , xk · s + q0 ·wk + 2εk = ksi · ci + q0 ·wk + 2εk

11



∼

 si · k · ci,1 + q0 · wk,1
...

si · k · ci,n + q0 · wk,n

+

 2εk,1
...

2εk,n

 (εk,j , µj(εk))

=

 ∆si · kci,1 + (s̃i · k · ci,1 + q0 · wk,1)
...

∆si · kci,n + (s̃i · k · ci,n + q0 · wk,n)

+

 2εk,1
...

2εk,n


=

 ∆si · kci,1 + uk,1 + Cha (uk,1) · q0
...

∆si · kci,n + uk,n + Cha (uk,n) · q0

+

 2εk,1
...

2εk,n

 ;

Finally,M1 returns 1 if Parity (vk,j) = zk,j for every j ∈ [n], where vk,j , µj(vk); Otherwise,M1 returns 0.
Notice that we always have uk,j + Cha (uk,j) · q0 ∈ zone0 by Fact 6(a). Also, it follows from the inequality

q > 1 + 8θ that we have −q0/2 < 2εk,j < q0/2.
First consider the simple case when ∆si = 0. Since the short even noise 2εk,j satisfy −q0/2 < 2εk,j < q0/2,

according to Fact 6(b), it is routine to verify thatM1 returns 1 on every Qk by definition.
In the sequel, we assume ∆si 6= 0. Define the set

offset(∆si) , {∆si · kci,j | k ∈ Sg, j ∈ [n]} ,

and we claim that {−1, 1} ∩ offset(∆si) 6= ∅, i.e., either 1 ∈ offset(∆si) or −1 ∈ offset(∆si). Since ci,j =
ci,n · ωn−ji by Proposition 5, we have

∆si · k · ci,j = ∆sici,n · k · ωn−ji .

Let∆sici,n = ge
∗

where e∗ ∈ [q−1]. Clearly there exists a r∗ ∈ [d] such that d | (e∗+r∗), and (e∗+r∗)/d ∈ [2n].
Let k∗ , gr

∗ ∈ Sg . Then

∆sici,n · k∗ · ωn−ji = ge
∗+r∗ · ωn−ji = ω

(e∗+r∗)/d+n−j
i .

It is easy to see there exists a j∗ ∈ [n] such that either (e∗+r∗)/d+n−j∗ ≡ n (mod 2n) or (e∗+r∗)/d+n−j∗ ≡
0 (mod 2n), or equivalently, either∆si·ci,n·k∗·ωn−j

∗

i = ωni = −1 ∈ Fq or∆si·ci,n·k∗·ωn−j
∗

i = ω0
i = 1 ∈ Fq .

When ∆si · k∗ · ci,j∗ = ±1, it is easy to verify that zk∗,j∗ 6= Parity (vk∗,j∗) by Fact 6(c). Equivalently, the
associated j∗-th equality of Qk∗ does not hold, andM1 returns 0 on the query Qk∗ ∈ Qi(s̃i). ut

The following theorem follows immediately from Lemma 7.

Theorem 8. When q > 1 + max {8θ, 2α
√
n}, the efficient attacker A1 defined previously can recover the secret

s ofM1 with overwhelming probability, by making at most n · q · q−1
2n = poly(λ) queries toM1. ut

Remarks First, the proof of Lemma 7 implies that the exact distribution form of the noise term ε generated
byM1 does not affect the correctness of A1; Only its support does. This explains why the noise term inM1 is
simply defined to be drawn from the uniform distribution over its support Zn1+2θ. Moreover, it is not hard to see
that the index set Sg = {gr | r ∈ [d]} could be replaced by any complete system of representatives of cosets in the
quotient group F×q /H , where H , 〈ωi〉 is the unique subgroup of the cyclic F×q satisfying |H| = 2n. All these
observations show that our attack againstM1 is versatile.

The success of A1 relies heavily on the notion of the CRT basis c1, · · · , cn of Rq as well as the its property,
which explains why our attackers (A1 as well as its improved variants) are called small field attackers. Computer
experiments have justified the correctness of our small field attacker A1 againstM1; In particular, A1 succeeds
when the oracleM1 is instantiated with these four groups of suggested parameters in [ZZD+15,ZZDS14] (θ :=
nαγ).

The existence of A1 implies that there exists an efficient attacker with public key 0 ∈ Rq that can recover the
private key ofM0 w.o.p. Hence, A1 itself suffices to show the vulnerability of Π1.
Motivating question #1 The success of A1 relies on the assumption that M1 imposes no restrictions on the
incoming queries. Intuitively, for every query made byA1, the w- and z-entries seem “random” enough; However,
the algebraic structure of x-entry is rather simple, as the x-entry always falls into the set {kci | k ∈ Fq, i ∈ [n]}
with size nq � qn. Hence, it is easy for M1 to identify those malicious queries made by A1, and the attacker
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A1 will no longer work if the oracleM1 additionally requires that x 6∈ {kci | k ∈ Fq, i ∈ [n]}. Such additional
requirement seems reasonable, given that nq � qn.

Thus, our first motivating question arises: can we improve A1 so that it can still recover the secret ofM1, even
if the aforementioned requirement is imposed byM1? The answer is affirmative, as we shall see in Section 5.

5 Making Small Field Attack “Undetectable”

In this section, we continue our analysis on the oracleM1, and show that we can construct an efficient hybrid
attacker (V/A′1)δ againstM1, whose malicious queries are as “random-looking” as possible.

5.1 The Improved Attacker A′
1 Against M1

The construction of A′1 relies on the following two observations. First, recall that in the i-th round of A1,
s1, · · · , si−1 ∈ Fq are assumed to be known already. Thus, we can used these known CRT-coefficients of s ∈ Rq
to re-design the x-entry so that it looks much more “complex”. Moreover, by Lemma 1, the attack still succeeds
if we add a “small” even noise into the x-entry, provided that q is sufficiently large. In sum, in the i-th round, for
every query made by A′1 toM1, the x-entry is of the form

x = kci + h + 2e,

where h ←
{

u ∈ Rq
∣∣Dim (u) = [i− 1]

}
, and e ← Zn1+2α′

√
n

. Intuitively, the introduction of h- and e-parts
into the x-entry is to make the queries made byA′1 as “random-looking” as possible. Of course, this improvement
asks us to re-design the settings of w- and z-entries appropriately.

The aforementioned improvement implies the desired A′1: its general structure is similar to that of A1, and the
only difference lies in the definition of the query set in each round. The following lemma characterizes the query
set Q′i(s̃i) used by A′1 in its i-th round.

Lemma 9. Let g ∈ F×q denote a primitive element of Fq , and let Sg , {gr | r ∈ [d]} and d , q−1
2n . Define

Q′i(s̃i) =

Q′k =
(
k · ci + hk + 2ek, [wk,j ]j∈[n], [zk,j ]j∈[n]

) ∣∣∣∣∣∣∣∣
k ∈ Sg, j ∈ [n], hk,1, · · · , hk,i−1 ← F×q ,
hk =

∑
r∈[i−1] hk,rcr, ek ← Zn1+2α′

√
n,

uk,j = s̃i · kci,j +
∑

r∈[i−1] srhk,rcr,j ,

wk,j = Cha (uk,j) , zk,j = Mod (uk,j , wk,j)

 .

If q > 1 + 8(θ + nαα′), then except with negligible probability, si = s̃i if and only ifM1 returns 1 on every
query in Q′i(s̃i).

Proof. Let ∆si , si − s̃i ∈ Fq . Moreover, for s ← DZn,α and ek ← Zn1+2α′
√
n

, define ε′k , s · ek ∈ Rq; By
Lemma 1, the inequality ‖ε′k‖∞ ≤ nαα

′ holds w.o.p.
For the query Q′k =

(
xk = k · ci + hk + 2ek, wk = [wk,j ]j∈[n], zk = [zk,j ]j∈[n]

)
∈ Q′i(s̃i),M1 first gen-

erates εk ← Zn1+2θ = {−θ, · · · , θ}n, and then computes

vk , s · xk + q0wk + 2εk
= s · (kci + hk + 2ek) + q0wk + 2εk

= k∆sici +

ks̃ici +
∑

r∈[i−1]

srhk,rcr + q0wk

+ 2(sek + εk)

∼


∆sikci,1 +

(
ks̃ici,1 +

∑
r∈[i−1] srhk,rcr,1 + q0wk,1

)
...

∆sikci,n +
(
ks̃ici,n +

∑
r∈[i−1] srhk,rcr,n + q0wk,n

)
+

 2(ε′k,1 + εk,1)
...

2(ε′k,n + εk,n)



=

 ∆si · kci,1 + uk,1 + Cha (uk,1) · q0
...

∆si · kci,n + uk,n + Cha (uk,n) · q0

+

 2(ε′k,1 + εk,1)
...

2(ε′k,n + εk,n)

 ,
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where εk,j , µj(εk) and ε′k,j , µj(sek). Finally, if every Parity (vk,j) = zk,j where vk,j , µj(vk), thenM1
returns 1; Otherwise,M1 returns 0.

Since q > 1 + 8 · (θ + nαα′), we have for every j ∈ [n] that∣∣ε′k,j + εk,j
∣∣ ≤ ∣∣ε′k,j∣∣+ |εk,j | ≤ nαα′ + θ <

q − 1
8 .

In such setting, similar to the proof of Lemma 7, it is not hard to verify that except with negligible probability,

• If ∆si = 0, thenM1 returns 1 on every Q′k ∈ Q′k(s̃i) by Fact 6(b); And
• If ∆si 6= 0, thenM1 returns 0 on some Q′k∗ ∈ Q′k(s̃i) by Fact 6(c). ut

The success of A′1 is summarized in the following theorem. See Appendix B.1 for the pseudocode of A′1.

Theorem 10. When q > 1 + 8(θ + nαα′), the efficient algorithm A′1 can recover the secret of M1 w.o.p., by
making at most n · q · q−1

2n queries toM1. Furthermore, in the i-th round, for every query (x,w, z) made by A′1,
the x-entry is always of the form x0 + 2e, where Dim (x0) = [i] and e ∈ Zn1+2α′

√
n

. ut

5.2 The “Undetectable” Attacker
(
V/A′

1
)
δ

Against M1

Motivating question #2 We have defined an improved efficient attacker A′1 againstM1. To us, the most prac-
tical way for M1 to identify those malicious queries made by A′1 is to analyze the algebraic structure of the
x-entry. And the h- and e-parts were introduced to complicate the algebraic structure of x. Clearly, the more CRT
coefficients of s we get, the more difficult forM1 to distinguish those queries made by A′1 from ordinary ones.

However, there is still a problem: when A′1 seeks to recover the first CRT-coefficient of s in its first round,
h = 0 and hence the x-entry falls into{

k · ci + 2e
∣∣ k ∈ Fq, i ∈ [n], e ∈ Zn1+2α′

√
n

}
⊆ Rq,

which is of “small” size compared with Rq . It is not hard forM1 to identify, and thus reject, these first set of
queries, and it sounds “reasonable” forM1 to reject an incoming query if its x-entry falls into the foregoing set,
given this set is of “small” size relative toRq . More broadly,M1 can identify (and thus reject) an incoming query
if its x-entry can be written as x = x0 + 2e such that the CRT-dimension of x0 is very “small” and e is “short”.
If such similar restrictions are imposed by M1, A′1 would fail since it cannot recover the first, and hence the
remaining, CRT-coefficient of the secret s.

Thus, our second motivating question arises: can we improve A′1 so that it can still recover the secret ofM1,
even if the aforementioned requirement is imposed byM1? The answer is affirmative, too, and we shall construct
such a desired efficient attackers (V/A′1)δ in this subsection.
The hybrid attacker (V/A′1)δ Let P1 denote the problem of recovering the secret of M1. Similarly, we can
define a related problem P2 as follows: given a nonempty index set I ⊆ [n], [s̃i]i∈I ∈ F|I|q , and oracle access
toM1, decide whether [si]i∈I = [s̃i]i∈I or not, or more precisely, whether s̃i = si for every i ∈ I . Recall that
si = ηi(s), where s is the secret ofM1. In this subsection, we shall construct an efficient solver V against the
problemP2. Jumping ahead, to solve the instance (I, [s̃i]i∈I) ofP2, for every query made by V toM1, the x-entry
is always of the form x0 + 2e, where Dim (x0) = I and e ∈ Zn1+2α′

√
n

.
With the help of V , we can construct a hybrid efficient attacker againstM1, which consists of two consecutive

phases as follows:

Phase 1 First, choose a constant δ of moderately large, and an index set I ⊆ [n] of size δ randomly. Then, feed V
with qδ instances, each of the form (I, [s̃i]i∈I), s̃i ∈ Fq . In this manner, the CRT-coefficients si, i ∈ I , would
be recovered successfully when [s̃i]i∈I runs over the set Fδq .
In particular, the x-entry of every query made in this phase is always of the form x0+2e, where Dim (x0) = I ,
and e ← Zn1+2α′

√
n

. Given the randomness of I , it is almost impossible in practice forM1 to identify those
queries made by V .

Phase 2 This phase consists of n − δ rounds, each devoted to recovering one of the remaining n − δ CRT-
coefficients of s, as is done in A′1.
In particular, the x-entry of every query made in this phase is always of the form x0 +2e where Dim (x0) ⊇ I
and e← Zn1+2α′

√
n

, making it more difficult forM1 to identify them.
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The notation (V/A′1)δ is applied to emphasize the structure of this attacker.
Some remarks are in order. First, we stress that due to the randomness of the index set I , this makes it almost

impossible in practice forM1 to identify (and hence reject) those queries made by (V/A′1)δ .
Moreover, notice that the algorithmsA′1 and V are firmly related to each other: whenM1 imposes no restriction

on the incoming queries, A1 could be adapted to solve the problem P2 efficiently, and V can be used to recover
the whole secret s ofM1 efficiently as well.

Finally, notice that we could have used V to recover the other CRT-coefficients of the secret in Phase 2. However,
this is less efficient: it takes more queries on average for V to recover one CRT-coefficient of s than A′1 does, as
we shall see.
General structure of V We are about to design the desired V . To simplify the following discussion, we only
consider the special case where I = [n], and it is easy to generalize to the more usual case where I is a proper
subset of [n].

First come some notations. Choose k ← [n] randomly. Let ∆si , si − s̃i for every i ∈ [n]. For every j ∈ [n],
define aj , [s̃i · ci,j ]i∈[n] ∈ Fnq , and bj , [∆si · ci,j ]i∈[n] ∈ Fnq ; Moreover, define Aj(u) , 〈u,aj〉 ∈ Fq ,
and Bj(u) , 〈u, bj〉 ∈ Fq , where u ∈ Fnq . Define the Fq-vector space Uk , {r · ak | r ∈ Fq} ⊆ Fnq .
By definition, every Uk is a 1-dimensional subspace of Fnq , and its orthogonal complement is the (n − 1)-
dimensional subspace U⊥k ,

{
v ∈ Fnq

∣∣Ak(v) = 0 ∈ Fq
}
⊆ Fnq . Choose an Fq-basis of U⊥k randomly, say

F k ,
{

fk,1, · · · ,fk,n−1
}
⊆ U⊥k such that every entry of every fk,i is non-zero. With Uk, the set Fnq is parti-

tioned into three parts: S1 , Fnq \ Uk, S2 , Uk \ {0}, and S3 , {0}. Finally, for every (t,u) ∈ Fq × Fnq , let
τ(t,u) denote

∑
i∈[n] tµi(u) · ci ∈ Rq .

Some remarks are in order. First, notice that for every i, j ∈ [n], si, ∆si and bj are unknown to us. Moreover,
although the map Aj(·) is efficiently computable, this is not true for Bj(·). Finally, recall that every ci,j 6= 0 by
Proposition 5, so the guess [si]i∈[n] = [s̃i]i∈[n] is correct if and only if bk = 0 ∈ Fnq . Since 0 ∈ S3 ⊆ Uk trivially, a
necessary yet insufficient condition for bk = 0 is: bk ∈ Uk = S2∪S3, or equivalently, 0 =

〈
fk,i, bk

〉
= Bk

(
fk,i

)
for every i ∈ [n− 1].

The general idea behind V is simple: it first makes the guess, i.e., [si]i∈[n] = [s̃i]i∈[n], and then verifies the
correctness of the guess via a set Q , Q1 ∪Q2 of queries toM1 such that except with negligible probability, the
guess is correct if and only ifM1 returns 1 on every query in Q.

In more detail, V consists of two consecutive phases: Phase 1 and Phase 2.

• By issuing a set Q1 of queries toM1, Phase 1 is devoted to deciding whether bk ∈ Uk = S2 ∪ S3 or not;
• Conditioned on bk ∈ Uk and hence bk = r0 · ak for some r0 ∈ Fq , Phase 2 is to decide whether r0 = 0 or

not, by a set Q2 of queries toM1.

It remains to design Q = Q1 ∪ Q2. Jumping ahead, for every query (x,w, z) in Q, the x-entry is always of
the form x0 + 2e, where Dim (x0) = I = [n], and e← Zn1+2α′

√
n

. Similar to that of A′1, the e-part is introduced
here to make those queries made by V as “random-looking” as possible.
Design of Phase 1 Jumping ahead, the query set Q1 = Q1(F k) is

Q1(F k) ,
{
Qt,i = (τ(t, fk,i) + 2et,i,wt,i, zt,i)

∣∣ t ∈ [q0], i ∈ [n− 1], et,i ← Zn1+2α′
√
n

}
.

It remains to set the wt,i- and zt,i-entries.
Observe that for the query Qt,i = (τ(t,fk,i) + 2et,i,wt,i = [wt,i,j ]j∈[n], zt,i = [zt,i,j ]j∈[n]) ∈ Q1(F k),M1

first generates εt,i ← Zn1+2θ, and then computes

vt,i , s · (τ(t,fk,i) + 2et,i) + q0 ·wt,i + 2εt,i
= s · τ(t,fk,i) + q0 ·wt,i + 2(εt,i + ε′t,i) (ε′t,i , s · et,i ∼ [ε′t,i,j ]j∈[n])

∼



t ·A1(fk,i) + t ·B1(fk,i) + q0 · wt,i,1
...

t ·Ak(fk,i) + t ·Bk(fk,i) + q0 · wt,i,k
...

t ·An(fk,i) + t ·Bn(fk,i) + q0 · wt,i,n

+



2(εt,i,1 + ε′t,i,1)
...

2(εt,i,k + ε′t,i,k)
...

2(εt,i,n + ε′t,i,n)

 .

Notice that when q > 1 + 8(θ + nαα′), the noise (εt,i + ε′t,i) is “short” in the sense that ‖εt,i + ε′t,i‖∞ < q−1
8

holds w.o.p.
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And this definition is justified by the following lemma.

Lemma 11. Define

Q1(F k) ,

Qt,i =
(
τ(t, fk,i) + 2et,i, [wt,i,j ]j∈[n], [zt,i,j ]j∈[n]

) ∣∣∣∣∣∣
t ∈ [q0], i ∈ [n− 1], j ∈ [n], et,i ← Zn1+2α′

√
n,

ut,i,j = tAj(fk,i), wt,i,j = Cha (ut,i,j) ,
zt,i,j = Mod (ut,i,j , wt,i,j)

 .

When q > 1 + 8(θ + nαα′), except with negligible probability, we have

(a) IfM1 returns 0 on some queries in Q1(F k), then bk 6= 0 and hence [si]i∈[n] 6= [s̃i]i∈[n];
(b) IfM1 returns 1 on every query in Q1(F k), then bk ∈ Uk = S2 ∪ S3.

Proof. First, if bk ∈ S3 = {0}, then our guess is correct, every bj = 0 and hence every Bj(·) = 0; By Fact 6(b),
M1 returns 1 w.o.p. for every query in Q1(F k).

Moreover, if bk ∈ S1 = Fnq \Uk, then there exists fk,i∗ ∈ F k such that Bk(fk,i∗) 6= 0; Moreover, there exists
a t∗ ∈ [q0] such that t∗ ·Bk(fk,i∗) = ±1. By Fact 6(c),M1 returns 0 w.o.p. for at least one query inQ1(F k). ut

It should be noted that, in Phase 1, it is difficult to analyze the distribution of query replies when bk ∈ S2, which
explains the necessity of Phase 2.

Design of Phase 2 In Phase 2, conditioned on the hypothesis bk ∈ Uk = S2∪S3, it remains to consider whether
bk ∈ S2 or bk ∈ S3 = {0}. By hypothesis, we have bk ∈ Uk = {r · ak | r ∈ Fq}; Hence, we can assume
bk = r0 · ak for some r0 ∈ Fq . Then Bk(u) = r0 · Ak(u) for every u ∈ Fnq . Moreover, our guess now could be
expressed in terms of r0, i.e., whether r0 = 0 or not.

Choose u∗ ← Rq randomly such that Ak(u∗) = 1 and every entry of u∗ is non-zero. It follows t · Ak(u∗) +
t ·Bk(u∗) = t(1 + r0) for every t ∈ Fq . Jumping ahead, the set Q2 = Q2(u∗) is

Q2(u∗) ,
{
Q′t = (τ(t,u∗) + 2et,wt, zt)

∣∣ t ∈ [q0], et ← Zn1+2α′
√
n

}
.

It remains to set the wt- and zt-entries.
Observe that for every query Q′t = (τ(t,u∗) + 2et,wt = [wt,j ]j∈[n], zt = [zt,j ]j∈[n]), M1 first generates

εt ← Zn1+2θ, and then computes

v′t , s · (τ(t,u∗) + 2et) + q0 ·wt + 2εt
= s · τ(t,u∗) + q0 ·wt + 2(εt + ε′t) (ε′t , s · et ∼ [ε′t,j ]j∈[n])

∼


t ·A1(u∗) + t ·B1(u∗) + q0wt,1

...
t+ t · r0 + q0wt,k

...
t ·An(u∗) + t ·Bn(u∗) + q0wt,n

+


2(εt,1 + ε′t,1)

...
2(εt,k + ε′t,k)

...
2(εt,n + ε′t,n)

 .

Again, when q > 1 + 8(θ + nαα′), the inequality ‖εt + ε′t‖∞ < q−1
8 holds w.o.p. With this in mind, we can

define

Q2(u∗) ,
{
Q′t = (τ(t,u∗) + 2et, [wt,j ]j∈[n], [zt,j ]j∈[n])

∣∣∣∣ t ∈ [q0], j ∈ [n], et ← Zn1+2α′
√
n, ut,j = tAj(u∗),

wt,j = Cha (ut,j) , zt,j = Mod (ut,j , wt,j)

}
.

And the definition is justified by the following lemma.

Lemma 12. With the notations defined previously, if q > 1 + 8(θ + nαα′) and bk ∈ Uk are guaranteed, then
except with negligible probability, we have [si]i∈[n] = [s̃i]i∈[n] if and only if M1 returns 1 on every query in
Q2(u∗).

Proof. First, if [si]i∈[n] = [s̃i]i∈[n], then our guess is correct, r0 = 0, and every Bj(·) = 0. By Fact 6(b),M1
returns 1 on every query in Q2(u∗).

Conversely, if r0 6= 0, then there exists a t∗ ∈ [q0] such that t∗r0 = ±1. By Fact 6(c), for the specific query
Q′t∗ = (τ(t∗,u∗)+2et∗ ,wt∗ , zt∗) ∈ Q2(u∗), its associated k-th equality does not hold w.o.p. By definition,M1
returns 0 w.o.p. on this specific query Q′t∗ ∈ Q2(u∗). ut
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This finishes the construction of V , as well as its correctness analysis, for the special case when the index set
I = [n]. Clearly it takes at most n · q0 = poly(λ) queries for V to solve this special case of P2, indicating that V
runs in polynomial time. See Appendix B.2 for the pseudocode of V .

Moreover, it is easy to generalize the foregoing construction such that V could be applied to solve the more
general case of P2, i.e., ∅ 6= I $ [n]. In general, the number of queries made by V is upper-bounded by q0 · |I| =
q0δ = poly(λ).

Theorem 13. Assume q > 1 + 8(θ+nαα′). With the notations defined previously, given ∅ 6= I ⊆ [n], [s̃i]i∈I and
oracle access toM1, it takes at most q0 · |I| = q0 · δ queries for V to decide whether [si]i∈[n] = [s̃i]i∈[n] or not:
except with negligible probability, the equality holds if and only ifM1 returns 1 on every query inQ = Q1 ∪Q2.
In particular, for every query in Q, its x-entry could be written as x = x0 + 2e satisfying Dim (x0) = I and
e ∈ Zn1+2α′

√
n

. ut

Theorem 14. When q > 1+8(θ+nαα′), there exists an efficient attacker (V/A′1)δ that can recover the secret of
M1 w.o.p., after making q0δ · qδ + (n− δ) · q · q−1

2n = poly(λ) queries toM1. In particular, for every query made
by (V/A′1)δ toM1, it x-entry is always of the form x = x0 + 2e where |Dim (x0)| ≥ δ and e ∈ Zn1+2α′

√
n

. ut

Remarks To us, the best way forM1 to decide whether an incoming query is made by our small field attacker
or not is to check the algebraic structure of its x-entry, i.e., whether x can be written in the form x0 +2e such that
Dim (x0) is “small” and e is “short”. Such check is similar to the bounded distance decoding problem, and it seems
to us that the best way to do such check is close to the brute-force. In practice, the instantiation of M1 should
decide whether an incoming query is malicious or not in a timely manner; Moreover, such restriction imposed by
M1 should be reasonable in the sense that the false negative rate (i.e., the probability that an “innocent” query
made by an “honest” caller is considered a malicious one made by our small field attackers) cannot be too high. To
identify those queries made by (V/A′1)δ , the best way is to identify those queries made by (V/A′1)δ in its Phase
1. Hence, when δ is moderately large, given the randomness of I , it takes too much time in practice to do so, and
the false negative rate is intuitively high. In sum, it is too costly to be practical forM1 to protect its secret s from
our efficient attacker (V/A′1)δ , even if the foregoing restrictions are imposed byM1 on incoming queries.

6 The Small Field Attack Against Π1

In this section, we are devoted to the construction of the efficient attacker A0 which can recover the private key
ofM0 (defined in Section 4.2), after a set of queries made toM0; Moreover, both the public key of A0 and those
queries it makes toM0 are as “random-looking” as possible. The existence of A0 implies Π1 is vulnerable to our
small field attack.

Construction of A0 The oracleM1 is a simplified variant ofM0. And it is natural that the desired A0 is very
close to the hybrid attacker (V/A′1)δ againstM1. Given that the public key p = as + 2e ∈ Rq ofM0 is made
public, to recover the private key (s, e) ofM0, it suffices for A0 to recover s ∈ Rq . Moreover, it suffices for A0

to recover every CRT-coefficient si , ηi(s), 1 ≤ i ≤ n, of s.
A0 consists of three consecutive phases: Phase 0, Phase 1, and Phase 2. In Phase 0,A0 generates its public/pri-

vate key pair as follows: first, it chooses a positive integer δ that is moderately large, say δ; Then, it chooses a
proper index set I ⊆ [n] of size δ uniformly at random; After that, it samples p∗0 ←

{
u ∈ Rq

∣∣Dim (u) = I
}

and e∗0 ← Z1+2α
√
n uniformly at random; The public key of A0 is p∗ , p∗0 + 2e∗0, and the associated private key

of A0 is (s∗, e∗), where s∗ ← Rq is drawn randomly and e∗ , 2−1(p∗ − as∗). It should be stressed that the
public/private key pair of A0 is not honestly generated.

The Phase 1 and Phase 2 ofA0 are devoted to the recovery of every si = ηi(s), i ∈ [n], and their functionalities
are similar to those of (V/A′1)δ , respectively: Phase 1 is devoted to recovering δ CRT-coefficients of s, i.e.,
{si | i ∈ I} where I ⊆ [n] is of size δ, and Phase 2 is to recover the others ones.

For simplicity, only the Phase 2 of A0 is fully described here. For the moment, we assume that I ⊆ [i− 1] and
the CRT-coefficients s1, · · · , si−1 ∈ Fq have already been recovered successfully, and we are about to see how
A0 recovers a new CRT-coefficient of s, say si ∈ Fq , via a set of queries toM0. The general strategy is simple:
first, pick s̃i ← Fq randomly, and guess si = s̃i; Then, conduct a set Qi(s̃i) of queries toM0 such that except
with negligible probability, si = s̃i if and only ifM0 returns 1 on every query in Qi(s̃i); When s̃i runs over the
set Fq , the exact value of si would be recovered w.o.p.
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Jumping ahead, every query inQi(s̃i) is of the form (id∗,p∗, xk = kci + hk + 2ek,wk, zk), where k ∈ [q0],
hk ←

{
u ∈ Rq

∣∣Dim (u) = [i− 1]
}

, ek ← Z1+2α′
√
n, and wk, zk ∈ Bn are to be determined later.

Recall that, on the query (id,p, xk = kci + hk + 2ek,wk, zk) where hk =
∑
r∈[i−1] hk,rcr, hk,r ← F×q , the

oracleM0 first samples g ← DZn,α, then compute c , H1(id, id∗,xk) and

vk , (p∗c + xk)s + q0 ·wk + 2c · g
= k · s · ci + p∗0cs + s · hk + q0 ·wk + 2 · (eks + e∗0cs + cg)
= k∆sici + (ks̃ici + p∗0cs + s · hk + q0 ·wk) + 2εk (εk , eks + e∗0cs + cg ∼ [εk,j ]j∈[n])

=


∆si · kci,1 +

(
ks̃ici,1 +

∑
r∈I ηr(p∗0cs)cr,1 +

∑
r∈[i−1] srhk,rcr,1 + q0wk,1

)
...

∆si · kci,n +
(
ks̃ici,n +

∑
r∈I ηr(p∗0cs)cr,n +

∑
r∈[i−1] srhk,rcr,n + q0wk,n

)
+ 2 ·

 εk,1...
εk,n

 ,
where ∆si , si − s̃i; Finally,M0 computes σk := Parity (vk), and returns 1 if and only if σk = zk. Notice that
Dim (p∗0cs) ⊆ Dim (p∗0) = I , making it possible for A0 to pre-compute every ηr(p∗0cs), r ∈ I, before issuing
the query.

It is not hard to verify the correctness of the following lemma.

Lemma 15. Let g denote a primitive element of F×q , and define d , q−1
m , Sg , {gr | r ∈ [d]}. With the notations

defined previously, if I ⊆ [i− 1] and s1, · · · , si−1 have been given and q > 1 + 8(nαα′ + nαγ + n2α2γ), then
except with negligible probability, ∆si = 0 if and only ifM0 returns 1 on every query in

Qi(s̃i) =


(
id∗,p∗, kci + hk + 2ek, [wk,j ]j∈[n], [zk,j ]j∈[n]

) ∣∣∣∣∣∣∣∣
k ∈ Sg, j ∈ [n], hk,1, · · · , hk,i−1 ← F×q ,
hk =

∑
r∈[i−1] hk,rcr, ek ← Zn1+2α′

√
n,

uk,j = ks̃ici,j +
∑

r∈I ηr(p
∗
0cs)cr,j +

∑
r∈[i−1] srhk,rcr,j ,

wk,j = Cha (uk,j) , zk,j = Mod (uk,j , wk,j)

 .

In particular, for every query in Qi(s̃i), its x-entry is always of the form x0 + 2e, where Dim (x0) = [i] and
e ∈ Zn1+2α′

√
n

. ut

The correctness and the efficiency of A0 can be easily verified. In sum, the efficient attacker A0 implies the
existence of the desired efficient attacker against the honest party j in Π1, as the following theorem indicates.

Theorem 16. With the notations defined previously, when q > 1 + 8(nαα′ + nαγ + n2α2γ), there exists an
efficient adversary A that can recover the static private key of the honest party j in Π1 w.o.p. In particular, for
every query made by A, its x-entry is always of the form x0 + 2e, where |Dim (x0)| ≥ δ and e ∈ Zn1+2α′

√
n

. ut

Experimental results In [ZZDS14,ZZD+15], four groups of suggested parameters for Π1 are proposed; Also,
γ := α is suggested. We should stress that all of these four groups of parameters satisfy the parameter requirement
in Theorem 16. And, computer experiments have justified the correctness of our analysis.
Remarks By the ring-LWE assumption, the distribution of the static public key of an honest player is compu-
tationally indistinguishable from the uniform distribution over Rq . Therefore, from the viewpoint of the honest
party j, every element inRq is equally likely to be the static public key of an honest initiator.

Similar to (V/A′1)δ , the efficient adversary A against Π1 can make its session queries to the honest party j as
random-looking as possible by choosing an appropriate δ, making it almost impossible in practice for party j to
identify (and hence reject) those session queries made by A.

7 Analysis on the Two-pass AKE Protocol Π2

In Π2, the static private key of party i is (si ← DZn,α, ei ← DZn,α), and the associate static public key
is pi , asi + 2ei ∈ Rq , where a ∈ Rq denotes a global parameter of Π2 that is drawn from the uniform
distribution overRq . Similar notations, (sj , ej),pj , carry over to party j in Π2.

Here is a brief review of the two-pass AKE scheme Π2 proposed in [ZZDS14,ZZD+15].

Initiation First, party i acts as follows:
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1. Pick ri,f i ← DZn,β , and compute xi , ari + 2f i.
2. Compute c , H1(idi, idj ,xi), r̂i , sic + ri and f̂ i , eic + f i.
3. Let z ∈ Z2n be the coefficient vector of r̂i concatenated with that of f̂ i, and z1 be the coefficient vector

of sic concatenated with that of eic. Repeat steps 1-3 with probability 1−min
(

1, DZ2n,β(z)
M ·DZ2n,β,z1

(z)

)
.

4. Send xi to party j.
Response On message xi, party j works as follows:

1. Pick rj ,f j ← DZn,β , and compute yj , arj + 2f j .
2. Compute d , H1(idj , idi,yj ,xi), r̂j , sjd + rj and f̂ j , ejd + f j .
3. Let z ∈ Z2n be the coefficient vector of r̂j concatenated with that of f̂ j , and z1 be the coefficient vector

of sjd concatenated with that of ejd. Repeat steps 1-3 with probability 1−min
(

1, DZ2n,β(z)
M ·DZ2n,β,z1

(z)

)
.

4. Pick gj ← DZn,β , and compute kj , (pic + xi) · r̂j + 2cgj .
5. Let wj , Cha (kj) ∈ Bn, and send (yj ,wj) to party i.
6. Compute σj , Mod (kj ,wj), and derive the session key skj , H2(idi, idj ,xi,yj ,wj , σj).

Finish On message (yj ,wj), party i proceeds as follows:
1. Pick gi ← DZn,β , and compute ki , (pjd + yj) · r̂i + 2dgi.
2. Compute σi , Mod (ki,wj), and derive the session key ski , H2(idi, idj ,xi,yj ,wj , σi).

7.1 Claim 16, and the Underlying Games G2,4, G2,5

In the security proof of Π2 [ZZDS14], the set of PPT adversaries is partitioned into five types, according to the
internal structures of the test session. We are interested in the Type-II adversaries w.r.t. the test session denoted
(Π2, I, idi∗ , idj∗ ,xi∗ , (yj∗ ,wj∗)), in which the adversary A impersonates the honest user j∗ but yj∗ is not sent
by j∗ upon receiving xi∗ from i∗; In other words, the test session has no matching session in this case. Claim 16,
together with other claims, is devoted to establishing the provable security regarding Type-II adversary, and two
games are involved in Claim 16: G2,4 and G2,5. Roughly speaking, the difference between G2,4 and G2,5 lies in
the simulation of the test-session, as summarized below. Please refer to [ZZDS14] for the full detail.

Denote by sid∗ , (Π2, I, idi∗ , idj∗ ,xi∗ , (yj∗ ,wj∗)) the test session, where xi∗ is output by honest party
i∗ with intended honest party j∗. In G2,4, the simulator S maintains two tables L1, L2 for the random oracles
H1(·), H2(·), respectively. Now, S chooses u0,u1 ← Rq , and sets the global parameter a to be u0, and sets the
static public key of party j∗ to be u1, i.e., a := u0,pj∗ := u1. Moreover, S prepares the table

T ,

(r̂k, f̂k, gk, v0,k, v1,k
) ∣∣∣∣∣∣

1 ≤ k ≤ `, r̂k, f̂k, gk ← DZn,β ,

v0,k = u0r̂k + 2f̂k,
v1,k = u1r̂k + 2gk

 .

Finally, for the test session, S answers oracle queries made by the efficient adversary A as follows:

• Upon receiving Send0(Π2, I, idi∗ , idj∗) w.r.t. the test session, S proceeds as follow:
1. Sample an invertible element c∗ ← DZn,γ , and choose the first unused tuple in T , say the `∗-th tuple, and

set x̂i∗ := v0,`∗ .
2. Define xi∗ := x̂i∗ − pi∗c

∗.
3. Repeat steps 1-2 with probability 1− 1/M , where M is a sufficiently large positive integer.
4. Abort if there is a tuple ((idi∗ , idj∗ ,xi∗), ∗) ∈ L1. Else, add ((idi∗ , idj∗ ,xi∗), c∗) into L1, and return

xi∗ to the adversary A.
• Upon receiving Send2(Π2, I, idi∗ , idj∗ ,xi∗ , (yj∗ ,wj∗)) w.r.t. the test-session, S proceeds as follow:

5. Set d∗ ← H1(idj∗ , idi∗ ,yj∗ ,xi∗), and compute

ki∗ := d∗v1,`∗ + yj∗ r̂`∗ = (pj∗d
∗ + yj∗)r̂`∗ + 2d∗g`∗ .

6. Compute σi∗ := Mod (ki∗ ,wj∗), and derive the session key ski∗ ← H2(idi∗ , idj∗ ,xi∗ ,yj∗ ,wj∗ , σi∗).
• Upon the query of Test(Π2, I, idi∗ , idj∗ ,xi∗ , (yj∗ ,wj∗)), S chooses b← B, and sk′i∗ ← Bλ; If b = 0, sk′i∗

is returned, or else ski∗ is returned.

Game G2,5 is pretty similar to G2,4, and hence only the differences are listed below. In G2,5, S generates the
table

T ′ ,
{

(v0,k, v1,k)
∣∣ 1 ≤ k ≤ `, v0,k, v1,k ←Rq.

}
Moreover, the only difference between G2,4 and G2,5 is that, in G2,5:
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• Upon the query of Send2(Π2, I, idi∗ , idj∗ ,xi∗ , (yj∗ ,wj∗)), S proceeds as follow:
1. Randomly choose ki∗ ← Rq;
2. Compute σi∗ := Mod (ki∗ ,wj∗), and derive the session key ski∗ ← H2(idi∗ , idj∗ ,xi∗ ,yj∗ ,wj∗ , σi∗).

Note that, in G2,5, when S answers the Send0 oracle query for the test session, the value x̂i∗ := v0,`∗ follows the
uniform distribution overRq according to the table T ′ set by S.

7.2 Analysis on the Proof of Claim 16

The proof of Claim 16 (in accordance with our communications with the corresponding author) considers any
PPT adversaryA = (A1,A2), which could be divided into two consecutive stagesA1 andA2.A1 denotes the ac-
tions ofA until it just gets the RO-answer d∗ ← H1(idj∗ , idi∗ ,yj∗ ,xi∗). Let view1 , (xi∗ ,yj∗ ,d

∗,pj∗ ,pi∗ , c
∗,a, tr, st)

be the output of A1 (to A2), where tr denotes the view of A1 in other sessions other than the test session, and st
denotes some state information. On input of view1, A2 performs the remaining actions of A.

Thanks to deep discussions with the author in charge of the proof of Claim 16 [ZZDS14], we could figure out
more detailed explanations for the proof and reach some consensus as follows.

• Under the ring-LWE assumption, the output (i.e., view1) of A1 in G2,4 is computationally indistinguishable
from that of A1 in G2,5.

• In the RO model, in order for A2 to succeed, it has to make the RO-query H2(idi∗ , idj∗ ,xi∗ ,yj∗ ,wj∗ , σi∗)
with non-negligible probability. This means that except with negligible probability, a successful A2 has to
compute σi∗ := Mod (ki∗ ,wj∗).

• The actions ofA2 essentially makes no essential contribution to its ability of computing σi∗ := Mod (ki∗ ,wj∗),
even ifA2 could maliciously set wj∗ in its stage. In other words, for a successfulA2, its ability of computing
σi∗ mainly stems from the output view1 of A1.

• The probability that A2 could compute σi∗ in G2,5 is negligible, as in the RO model ki∗ is a random value
independent of the view of A in G2,5.

• In the proof of Claim 16 in [ZZDS14], it also uses the forking lemma to argue some extra properties. Ac-
cording to our discussions with the corresponding author of Claim 16, the use of forking lemma is actually
unnecessary for proving Claim 16, and thus the reasoning related to forking lemma can be removed.

Now comes the divarication. The corresponding author of Claim 16 suggests that the above facts have already
been sufficient to reach the final conclusion: the probability thatA2 outputs σi∗ := Mod (ki∗ ,wj∗) inG2,4 is also
negligible.

From our view, to reach this final conclusion, we need to additionally argue that the joint distribution of
(view1,ki∗) in G2,4 and that in G2,5 are computationally indistinguishable, because the event in question is
defined over both view1 and ki∗ . In particular, we need to at least argue the computational indistinguishability
between ki∗ defined over G2,4 and the uniform distribution over Rq(that is just the distribution of ki∗ in G2,5),
which is, however, explicitly claimed to be unnecessary by the author of Claim 16.
Key differences between G2,4 and G2,5, and subtleties buried To make the analysis clearer, we would like to
highlight some key differences between G2,4 and G2,5 explicitly.

Firstly, in game G2,5, the random variables ki∗ and xi∗ are independent. However this is not the case in game
G2,4, since xi∗ = ar̂`∗ + 2f̂ `∗ − pi∗c

∗ and ki∗ = d∗(pj∗ r̂`∗ + 2g`∗) + yj∗ r̂`∗ are related by r̂`∗ , making them
dependent. In other words, in game G2,4, when xi∗ is given to the efficient adversary A, it might be possible for
A to extract some information regarding ki∗ .

Secondly, given that in G2,4 we have xi∗ = ar̂`∗ + 2f̂ `∗ − pi∗c
∗ and ki∗ := d∗v1,`∗ + yj∗ r̂`∗ = (pj∗d

∗ +
yj∗)r̂`∗ + 2d∗g`∗ , the values (xi∗ ,yj∗ ,d

∗,pj∗ ,pi∗ , c
∗,a) essentially determine the value ki∗ −2d∗g`∗ . In view

that 2d∗g`∗ is small, the value ki∗ is essentially committed to (xi∗ ,yj∗ ,d
∗,pj∗ ,pi∗ , c

∗,a) up to a “small” and
even noise.

Finally, notice that in G2,4, for the equation ki∗ = d∗v1,`∗ + yj∗ r̂`∗ , the two terms on the right-hand side are
not independent either. Thus, it is not that easy to analyze the exact distribution of ki∗ .

These highlighted differences indicate that the above facts by consensus are insufficient to establish the indistin-
guishability between ki∗ defined over G2,4 and the uniform distribution over Rq . Actually, we even do not know
how to formally prove, with a reducibility argument, a seemingly easier goal: given xi∗ = ar̂`∗ + 2f̂ `∗ − pi∗c

∗,
it is infeasible for any efficientA2 to successfully recover hi∗ , (pj∗d

∗+yj∗)r̂`∗ by maliciously setting yj∗ and
wj∗ (recall that ki∗ = hi∗ + 2d∗g`∗ where 2d∗g`∗ is even and “small"). Notice that, conditioned on A2 recovers
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hi∗ , by setting wj∗ := Parity (hi∗) it can then determine the value of σi∗ and thus break the security, since the
following holds w.o.p.:

σi∗ = Mod (ki∗ ,wj∗) = Mod (hi∗ + 2d∗g`∗ ,Parity (hi∗)) = Mod (hi∗ ,Parity (hi∗)) .

The above clarifications also indicate a fundamental difference between the security proof of HMQV [Kra05]
and that of its RLWE-based analogue [ZZD+15]. In the security proof of HMQV [Kra05], the simulator can
directly obtain, from RO-query, the key material (corresponding to ki∗ in [ZZD+15]) in order to reach reduction
contradiction to the underlying gap Diffie-Hellman assumption. However, in the security proof of RLWE-based
HMQV-analogue [ZZD+15], the simulator gets, also from RO-query, only the value σi∗ := Mod (ki∗ ,wj∗),
where the key material ki∗ is hidden and wj∗ may be maliciously set only in the stage of A2. From our view,
these buried subtleties need to be dealt with explicitly in a formal analysis.
Justification with simplified analogous games To further justify our observations, we consider a pair of simpli-
fied analogous games (G0, G1) w.r.t. a special PPT adversaryA = (A1,A2). These simplified games are artificial
and are actually unrelated to G2,4 and G2,5, which are introduced for easier logic explanation. In both games, A
gets access to a random oracle H : {0, 1}λ → {0, 1}λ that is maintained and simulated by a PPT simulator S,
where λ is the security parameter. Denote by Com a computationally hiding commitment scheme used also in
these games.

In game G0 (resp., G1), S simulates the random oracle H with another random oracle H ′ : {0, 1}2λ → {0, 1}λ
as follows. Before the game starts, it sets pre = 0λ (resp., pre ← {0, 1}λ, i.e., pre is a value taken uniformly at
random from {0, 1}λ in G1). Whenever the adversary makes an RO-query with x ∈ {0, 1}λ, it returns the value
y = H ′(pre||x). Notice that, from the view ofA, the RO simulation of S is perfect. At the end ofA1, S computes
C = Com(0λ) (resp., C = Com(pre′), where pre′ ← {0, 1}λ is independent of pre), and gives C to A1. Define
view1 = (C, tr, st) the output of A1, on which A2 proceeds further. Finally, A2 just simply outputs 0λ.

For the above simplified analogous games, we have: (1) The output of A1 in G0 is computationally indistin-
guishable from that inG1;3 (2) The actions ofA2 make no contribution to its ability of computing pre; (3) Clearly,
in G2, the probability that A2 correctly outputs pre with probability of just 2−λ in the RO model, as pre is a ran-
dom value actually independent of A’s view in this case. However, we couldn’t reach the conclusion that A2 will
also output pre with negligible probability in G0. Actually, the success probability of A2 in G0 is 1. The reason
is just that the success event of A2 is defined not only over its view but also over the “hidden" value pre, which is
0λ in G0 clearly distinguishable from a random value in G2.
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A Communications with the Corresponding Authors of [ZZD+15,ZZDS14] about the
Security Proof of Π2

We have made deep discussions with the corresponding authors of [ZZD+15,ZZDS14] in regard to the security
proof of Π2. Here, we briefly report the results from the communications, which is only for the reference of referees.

The technical details of the small field attack against Π1 are examined by one corresponding author and his
students, and the validity is explicitly confirmed.

Unfortunately, we could not reach a final consensus from the communications with the corresponding author of
Claim 16, i.e., an intermediate claim in the security proof of Π2. To be frank, the analysis of Claim 16 in [ZZDS14]
is over sketchy, and the logic is elusive there. Moreover, according to our communications, the parts related to
forking lemma in the analysis of Claim 16 is unnecessary and can be removed there (as explicitly acknowledged
by the corresponding author), which results in a further sketched proof. Thanks to the deep discussions, we still
reach some important consensus with the corresponding author on the proof details of Claim 16, as presented in
Section 7. However, we have a fundamental diverge in reaching the final conclusion. It is unfortunate that, after we
made clear of the subtleties related to the divarication, the corresponding author refused further communications.
As a consequence, we could not explicitly state our final conclusion on the security proof of Claim 16, but present
our observations and clarifications and leave drawing the final conclusion to the reader.
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B The Algorithms A′
1 and V in Pseudocode

B.1 The Algorithm A′
1

Algorithm 1 The algorithm A′1
1: procedure (A′1)M1 (i, {s1, · · · , si−1})
2: Choose g ∈ F×q such that g is a primitive element of Fq;
3: d := q0/n;
4: for every s̃i ∈ Fq do
5: for every k ∈ {gr | r ∈ [d]} do
6: for every r ∈ [i− 1] do
7: hk,r ← F×q ; . Generate nonzero hk,r ∈ Fq randomly
8: end for
9: hk :=

∑
r∈[i−1] hk,r · cr; . Generate the random hk

10: ek ← Zn1+2α′
√
n; . Generate the small noise ek

11: for every j ∈ [n] do
12: uk,j := s̃i · kci,j +

∑
r∈[i−1] srhk,rcr,j ;

13: wk,j := Cha (uk,j); . Set the desired w-entry
14: zk,j := Mod (uk,j , wk,j); . Set the desired z-entry
15: end for
16: bk ←M1

(
k · ci + hk + 2ek, [wk,j ]j∈[n], [zk,j ]j∈[n]

)
; . InvokeM1

17: end for
18: if bk = 1 for every k ∈ {gr | r ∈ [d]} then
19: return s̃i; . This implies the guess si = s̃i is correct
20: end if
21: end for
22: return ⊥;
23: end procedure
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B.2 The Algorithm V

Algorithm 2 Verification of (s1, · · · , sn) ?= (s̃1, · · · , s̃n)
1: procedure V(s̃1, s̃2, · · · , s̃n)
2: J := ∅;
3: repeat
4: Choose k ∈ [n] such that {i ∈ [n] | ci,k 6= 0} 6⊆ J ;
5: Choose an Fq-basis of U⊥k randomly, say F k =

{
fk,1, · · · , fk,n−1

}
⊆ Fnq ;

6: for every y ∈ [q0] do
7: for every u ∈ F k do
8: for every r ∈ [n] do
9: ur := y ·Ar(u);

10: σr := Cha (ur); zr := Mod (ur, σr);
11: end for
12: b1(y,u)←M1

(
τ(y,u), [σr]r∈[n], [zr]r∈[n]

)
;

13: if b1(y,u) 6= 1 then
14: return 0; . b(k) 6∈ U (k), and hence (s1, · · · , sn) = (s̃1, · · · , s̃n)
15: end if
16: end for
17: end for
18: Choose u∗ ∈ Fnq randomly such that Ak(u∗) = 1;
19: for every y ∈ [q0] do
20: for every r ∈ [n] do
21: ur := y ·Ar(u∗);
22: σr := Cha (ur);
23: zr := Mod (ur, σr);
24: end for
25: b2(y)←M1

(
τ(y,u∗), [σr]r∈[n], [zr]r∈[n]

)
;

26: end for
27: if b2(y) = 0 for some y ∈ [q0] then
28: return 0; . (s1, · · · , sn) 6= (s̃1, · · · , s̃n)
29: end if
30: J := J ∪ {i ∈ [n] | ci,k 6= 0};
31: until J == [n]
32: return 1; . (s1, · · · , sn) = (s̃1, · · · , s̃n)
33: end procedure
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