
FruitChains: A Fair Blockchain

Rafael Pass∗

Cornell Tech
rafael@cs.cornell.edu

Elaine Shi†

Cornell University
elaine@cs.cornell.edu

September 21, 2016

Abstract

Nakamoto’s famous blockchain protocol enables achieving consensus in a so-called permis-
sionless setting—anyone can join (or leave) the protocol execution, and the protocol instructions
do not depend on the identities of the players. His ingenious protocol prevents “sybil attacks”
(where an adversary spawns any number of new players) by relying on computational puzzles
(a.k.a. “moderately hard functions”) introduced by Dwork and Naor (Crypto’92). Recent work
by Garay et al (EuroCrypt’15) and Pass et al (manuscript, 2016) demonstrate that this protocol
provably achieves consistency and liveness assuming a) honest players control a majority of the
computational power in the network, b) the puzzle-hardness is appropriately set as a function
of the maximum network delay and the total computational power of the network, and c) the
computational puzzle is modeled as a random oracle.

Assuming honest participation, however, is a strong assumption, especially in a setting where
honest players are expected to perform a lot of work (to solve the computational puzzles). In
Nakamoto’s Bitcoin application of the blockchain protocol, players are incentivized to solve
these puzzles by receiving rewards for every “blocks” (of transactions) they contribute to the
blockchain. An elegant work by Eyal and Sirer (FinancialCrypt’14), strengthening and formal-
izing an earlier attack discussed on the Bitcoin forum, demonstrates that a coalition controlling
even a minority fraction of the computational power in the network can gain (close to) 2 times
its “fair share” of the rewards (and transation fees) by deviating from the protocol instructions.
In contrast, in a fair protocol, one would expect that players controlling a φ fraction of the
computational resources to reap a φ fraction of the rewards.

In this work, we present a new blockchain protocol—the FruitChain protocol—which satis-
fies the same consistency and liveness properties as Nakamoto’s protocol (assuming an honest
majority of the computing power), and additionally is δ-approximately fair : with overwhelming
probability, any honest set of players controlling a φ fraction of computational power is guar-
anteed to get at least a fraction (1 − δ)φ of the blocks (and thus rewards) in any Ω(κδ) length
segment of the chain (where κ is the security parameter).

As a consequence, if this blockchain protocol is used as the ledger underlying a cryptocur-
rency system, where rewards and transaction fees are evenly distributed among the miners of
blocks in a length κ segment of the chain, no coalition controlling less than a majority of the
computing power can gain more than a factor (1 + 3δ) by deviating from the protocol (i.e.,
honest participation is an n

2 -coalition-safe 3δ-Nash equilibrium).
Finally, the fruit chain protocol enables decreasing the variance of mining rewards and as

such significantly lessens (or even obliterates) the need for mining pools.

∗Supported in part by NSF Award CNS-1217821, NSF Award CNS-1561209, AFOSR Award FA9550-15-1-0262,
a Microsoft Faculty Fellowship, and a Google Faculty Research Award.
†Supported in part by NSF Award CNS-1314857, CNS-1514261, CNS-1544613, CNS-1561209, CNS-1601879, CNS-

1617676, an Office of Naval Research Young Investigator Program Award, a Packard Fellowship, a Sloan Fellowship,
Google Faculty Research Awards, and a VMWare Research Award.

1 Introduction

Distributed systems have been historically analyzed in a closed setting—a.k.a. the permissioned
setting—in which the number of participants in the system, as well as their identities, are com-
mon knowledge. In 2008, Nakamoto [Nak08] proposed his celebrated “blockchain protocol” which
attempts to achieve consensus in a permissionless setting: anyone can join (or leave) the protocol
execution (without getting permission from a centralized or distributed authority), and the protocol
instructions do not depend on the identities of the players. The core blockchain protocol (a.k.a.
“Nakamoto consensus”, or the “Bare-bones blockchain protocol”), roughly speaking, is a method
for maintaining a public, immutable and ordered ledger of records (for instance, in the Bitcoin
application, these records are simply transactions); that is, records can be added to the end of
the ledger at any time (but only to the end of it); additionally, we are guaranteed that records
previously added cannot be removed or reordered and that all honest users have a consistent view
of the ledger—we refer to this as consistency.

The problem with the permissionless setting is that an attacker can trivially mount a so-called
“sybil attack”—it simply spawns lots of players (that it controls) and can thus easily ensure that it
controls a majority of all the players. Indeed, Barak et al [BCL+05] proved that this is a fundemental
problem with the permissionless model. Nakamoto blockchain protocol overcomes this issue by
relying on “computational puzzles”—a.k.a. moderately hard functions or proofs of work—put forth
by Dwork and Naor [DN92]: rather than attempting to provide robustness whenever the majority of
the participants are honest (since participants can be easily spawned in the permissionless setting),
it attempts to provide robustness as long as a majority of the computing power is held by honest
participants.

Nakamoto’s protocol in a nutshell Roughly speaking, players “confirm” records/transactions
by “mining blocks of transactions” through solving some computational puzzle that is a function
of the transactions and the history so far. More precisely, each participant maintains its own lo-
cal “chain” of “blocks” of records/messages—called the blockchain. Each block consist of a triple
(h−1, η,m) where h−1 is a pointer to the previous block in chain, m is the record component of the
block, and η is a “proof-of-work”—a solution to a computational puzzle that is derived from the
pair (h−1,m). The proof of work can be thought of as a “key-less digital signature” on the whole
blockchain up until this point.

Concretely, Nakamoto’s protocol is parametrized by a parameter p—which we refer to as
the mining hardness parameter, and a proof-of-work is deemed valid if η is a string such that
H(h−1, η,m) < Dp, where H is a hash function (modeled as a random oracle) and Dp is set so
that the probability that an input satisfies the relation is less than p. At any point of the protocol
execution, each participant attempts to increase the length of its own chain by “mining” for a new
block: upon receiving some record m, it picks a random η and checks whether η is a valid proof of
work w.r.t. m and h−1, where h−1 is a pointer to the last block of its current chain; if so, it extends
is own local chain and broadcast it to the all the other participants. Whenever a participant receives
a chain that is longer than its own local chain, it replaces its own chain with the longer one.

Security of Nakamoto’s protocol assuming Honest Majority of Computing Power Sev-
eral recent work have analyzed the blockchain protocol under the assumption that a majority of
the computational power is held by honest players (and assuming that the computational puzzled
is modeled as a random oracle):

• Nakamoto [Nak08] proves that a certain natural attack does not work to break consistency;

• Garay, Kiayas and Leonardos [GKL15] prove that consistency holds assuming the adversary
does not delay messages (i.e., in a synchronous model);

1

• Sompolinsky and Zohar [SZ15] show that so-called “non block-witholding” attacks do not
work to break consistency, even in the presence of bounded network delays;

• Pass, Seeman and Shelat [PSS16], finally, demonstrate consistency w.r.t. all attacks, assuming
bounded (but adversarial) network delays (as long as the mining hardness is appropriately
set as a function of the maximum network delay).1

Following [GKL15, KP15], [PSS16] also defines an abstract notion of a blockchain and identifies
three desirable security properties such an abstraction should satisfy: roughly speaking, those are
consistency—that honest users agree on the chain; chain quality—that the chain contains a sufficient
fraction of blocks contributed by honest players, we return to this property shortly; and chain
growth—that the blockchain grows at some positive speed and thus we can ensure new transactions
can be added. As shown in [PSS16], these properties, in particular, imply that a blockchain can
be used to obtain an “immutable public ledger” [GKL15] (as described above) which guarantees
standard properties of “consitency” and “liveness”; further applications of those properties can be
found in [PS16].

Selfish mining and Fairness (chain quality) The above analyses, however, all assume that a
majority of the computing power is controlled by honest players, and that honest players correctly
execute the protocol. Assuming such honest participation is a strong assumption, especially in a
setting where honest players are expected to perform a lot of work (to solve the computational
puzzles)—why would we expect players to want to participate if it is costly! (This can be formal-
ized in the Game-Theory with Costly computation framework of Halpern and Pass [HP15]). In
Nakamoto’s ingenious Bitcoin application of the blockchain protocol, players are thus incentivized
to solve these puzzles by receiving, so-called, mining rewards for every “blocks” (of transactions)
they contribute to the blockchain; additionally, the miners also receive transaction fees for all the
transactions that are confirmed in the block.

However, as pointed out already in a discussion on the Bitcoin forum [mtg10] in 2010, a coali-
tion controlling even a minority fraction ρ < 1/2 of the computational power in the network can
contribute a significantly larger fraction of blocks than its “fair share” ρ (and thus reap more than
its fair rewards) assuming the adversary controls the delivery of messages on the network: When-
ever the adversarial coalition mines a new block, it simply withholds it (not sharing it with the
honest players), and only releases it when some honest player mines a new block—if the adversary
controls the network it can ensure that all honest players receive the adversarial block before the
block mined by the honest players, and as such, it effectively “erases” the honest player’s block
replacing it with its own block. Thus, by the time T blocks have been mined, in expectation ρT of
them are adversarial, and (1−ρ)T of them are “honest”, but since the adversary is able to use each
one of its blocks to “replace” an honest block, the chain only grows by (1 − ρ)T blocks and thus
the expected fraction of adversarial blocks becomes ρ

1−ρ . Thus, if the adversary controls close to a

fraction 1
2 of the computational resources, it will get almost all of the blocks, and thus almost twice

its fair share of the rewards.2 A surprising and beautiful work by Eyal and Sirer [ES14] presents an
even stronger attack, which they also analytically study, showing that a more sophisticated selfish
mining strategy can be successful even without controlling the network traffic! An even sharper
attack is presented and analyzed by Sapirshtein, Sampolinsky, Zohar [SSZ16].

Following Garay et al [GKL15], we refer to a high-probability lowerbound on the fraction of
blocks “contributed” by honest players in any sufficiently long window chain, as the chain quality

1Additionally, the protocol is shown to be insecure if the mining hardness is too small.
2The discussion on the Bitcoin forum did not contain an an analysis of the attack, but rather just simulation

results demonstrating the power of it.

2

of the blockchain protocol.3 Ideally, one would have hoped for a chain quality of

1− ρ

but the above attacks show that the chain quality can be signifcantly worse; on the positive side,
Garay et al [GKL15] (in synchronous networks) and Pass et al [PSS16] (also in networks with
adversarial bounded delays) show that Nakamoto’s protocol achieves chain quality close to

1− ρ

1− ρ

when the mining hardness parameter is appropiately set, and thus the above-mentioned block
withholding attack is optimal.

But, as mentioned, when ρ approaches 1
2 the chain quality also approaches 0—that is, the adver-

sary gets all the blocks (and thus rewards and fees) although it only controls half the computational
resources, and consequently honest players putting in a lot of work get nothing! (And an adversary
controlling only 1

3 of the resources may get half of the rewards.)
Ideally, we would want a block chain protocol that is fair : namely, honest players contributing

a φ ≤ 1 − ρ fraction of the computational resources get a φ fraction of the blocks (and thus
rewards) in any sufficiently long window—in particular, this implies that a chain quality of 1− ρ.
The construction of such a blockchain protocol has remained open:

Does there exists a fair blockchain protocol in the permissionless setting?

1.1 Our Results

In this work we address this question. We present a blockchain protocol satisfying “close-to-optimal”
fairness: We say that a blockchain protocol is δ-approximately fair w.r.t. ρ attackers if, with over-
whelming probability, any φ ≤ 1−ρ fraction coalition of honest users is guaranteed to get at least a
(1−δ)φ fraction of the blocks in every sufficiently long window, even in the presence of an adversary
controlling up to a ρ fraction of the computing power. Note that this condition trivially implies
that the protocol satisfies (1 − δ)(1 − ρ) chain quality, by considering the full set of honest users
(i.e., φ = 1 − ρ). When ρ ≤ 1

2 , (1 − δ)(1 − ρ) ≥ 1 − (1 + δ)ρ4, and thus as a consequence we get
than the adversary coaltion cannot get more than (1 + δ) times its “fair” share.

Theorem 1.1 (Informally stated). Assume ρ < 1
2 . Then, for every δ > 0, there exists a blockchain

protocol that satisfies consistency, growth and δ-approximate fairness (and thus also chain quality
(1− δ)(1− ρ) ≥ 1− (1 + δ)ρ).

From Fairness to Incentive Compatibility We remark that any secure blockchain protocol
that satisfies δ-approximate fairness (where δ < 0.3) w.r.t T (κ) length windows can be used as the
ledger underlying a cryptocurrency system while ensuring 3δ-incentive compatibility if players (i.e.
miners) only care about how much money they receive—that is, a miner’s utility is the sum of the
rewards and transaction fees it receives (potentially times some constant).5

Consider a crypto-currency which uses a blockchain protocol as the underlying ledger; we omit
a formalization of what this means, but have in mind a system such as Bitcoin where rewards and

3The fact that we require this property to hold for any window (as opposed to just a notion of quality in expec-
tation) is important for application. We return to this point below.

4When ρ ≤ 1
2
, (1 − δ)(1 − ρ) = 1 − δ − ρ+ δρ = 1 − [δ + (1 − δ)ρ] ≥ 1 − [2δρ+ (1 − δ)ρ] = 1 − (1 + δ)ρ

5This may not always be a realistic assumption. For instance, a miner can care about what transactions get added
into the blockchain etc, but following earlier approaches to modeling incentives in blockchains (e.g., [ES14]), we focus
only on miners’ monetary rewards.

3

transaction fees are somehow distributed among the miners of blocks—for instance, recall that in
Bitcoin, the miner of a block receives a mining reward as well as all the transaction fees contained
in the block it mined.

We say that honest mining is a ρ-coalition-safe ε-Nash equilibrium if, with overwhelming prob-
ability, no ρ′ < ρ fraction coalition can gain more than a multiplicative factor (1 + ε) in utility,
no matter what transactions are being processed—formally, consider some environment providing
transactions into the system. We restrict to a setting where the total rewards and transaction fees
during the run of the system is some fixed constant V : 6

We now remark that if rewards and transaction fees are evenly distributed among the (miners
of the) blocks in the T (κ)-length segment of the chain following the block,7 then it follows that
honest mining is a ρ-coalition-safe 3δ-Nash equilibrium as long as the underlying blockchain satisfies
δ-approximate fairness w.r.t. ρ attackers: as noted above, fairness implies that no matter what
deviation the coalition performs, with overwhelming probability, the fraction of adversarial blocks
in any T (κ)-length window of the chain is upperbounded by (1 + δ)ρ and thus the total amount of
compensation received by the attacker is bounded by (1 + δ)ρ · V ; in contrast, by fairness, if the
coalition had been following the honest protocol, they are guaranteed to receive at least (1−δ)ρ ·V ;
thus, the multiplicative increase in utility is

1 + δ

1− δ
≤ 1 + 3δ

when δ < 0.3.8

To see why the “standard” bitcoin approach of giving all rewards and fees to the miner of the
block does not work, consider an freshly mined (honest) block containing a transaction with a very
high transaction fee. A coalition controlling a constant fraction of the computing power would have
a huge incentive to “drop” this block and instead try to mine a new block which contains it. Fairness
does not prevent such an attack, and indeed, even in our protocol such an attack will be successful
with constant probability. (Indeed, it has been informally conjectured in the bitcoin community
that ε-incentive compatibility is impossible to achieve in the presence of transaction fees, due to
exactly this reason. Our method of distributing the fees over a segment overcomes this “barrier”.)

Fairness v.s. “Eventual Fairness” A diffrent notion of fairness, which we here refer to as
“eventual fairness”, was informally considered in an elegant work of Lewenberg, Sampolinsky and
Zohar [LSZ15]: roughly speaking, rather than requiring fairness in any (sufficiently long) window,
their notion only requires fairness in expectation over an infinitely long run of the system. To
better understand the difference between these notions, consider the inclusive blockchain protocol
considered in [LSZ15]: Roughly speaking, it is a variant of Nakamoto’s blockchain where “forked”
blocks can be picked up and put back into the main chain (as records). The idea is that if an
attacker starts dropping honest players’ blocks (as in the selfish mining attack), they can be picked
up by subsequent honest miners and included into the chain (looking forward, we will rely on a
similar intuition). Note, however, that an attacker can now secretly mine blocks on a fork and then
at any point in the execution have those blocks included in the main chain, thereby creating an
arbitrarily long sequence of “malicious” blocks and thus “poisoning” a large segement of the chain.

6The analysis directly extends to a setting where the total rewards and fees are only guaranteed to be withing
some multiplicative factor (1 + δ′) of V at the cost of a degradation of the quality of the Nash equilibrium (i.e.,
increasing the ε).

7We could have equally picked a segment of the chain preceeding the block, but that would lead to complications
in the startup phase when the chain is too short

8Let us remark that an alternative approach would be to give the whole mining reward to the miner of a block
(as in Bitcoin) but still distribute the transaction fees among the group of miners in a T (κ)-segment of the chain.
This approach works by the same analysis as long as mining rewards are fixed throughout the experiment (which is
not the case for e.g., Bitcoin where mining rewards decrease over time).

4

Such a notion of eventual fairness can be used to guarantee that if mining rewards are kept con-
stant, in the limit, the expected amount of mining rewards received by an attacker is proportional
to its computational power. However, it is not clear how to (even in the limit) deal with mining
rewards whose amount change over time, and perhaps more importantly, how to deal with transac-
tion fees (which may differ significantly between transactions). (Finally, [LSZ15] only analyze their
protocol w.r.t. to some specific attack strategies, and thus even obtaining a blockchain protocol
which provably satisfies such an eventual notion of fairness was open.)

1.2 Proof Overview

Roughly speaking, our protocol, which we refer to as the FruitChain protocol, will be running an
instance of Nakamoto’s blockchain protocol, but instead of directly storing the records m inside the
blockchain, the records are put inside “fruit” f ; these fruit themselves requires solving some proof
of work, with a differerent hardness parameter pf ; additionally, we require the fruits to “hang”
from a block in the chain which is not too “far” from the block which records the fruit—more
specifically, the fruit needs to “point” to an earlier block in the chain which is not too far from the
block containing it (and thus, the fruit could not have been mined “too” long ago)—we refer to
such a fruit as being recent. In this new protocol, the fruits play the roles of “blocks”—i.e., “orange
is the new block”9—and chain quality is thus defined in terms of fruits.

In each round, honest players simultaneously mine for a fruit and a block (for Nakamoto’s
blockchain) by making one invokation of the hashfunction—this follows the 2-for-1 trick of [GKL15]
where, say, the prefix of the output of H determines whether fruit mining is successful, and the
suffix is used to determine whether block mining is successful. Whenever a player successfully mines
a fruit it broadcasts it to all other players; fruits that have not yet been recorded in the blockchain
(and that are still recent) are stored in a buffer and all honest players next attempt to add them
to the blockchain.

Intuitively, the reason why “selfish mining” fails is that even if an adversary tries to “erase”
some block mined by an honest player (which contains some honest fruits), by the chain growth
and chain quality properties of the underlying blockchain, eventually an honest player will mine a
new block which is stable and this honest player will include the fruit in it—in fact, the time before
such an “honest block” arrives is short enough for the fruit to still be “recent” at the time of the
honest block arriving.

Intuitively, the reason why we require fruits to be recent is to prevent a different kind of attack:
without it, an attacker could withhold fruits, and suddenly release lots of them at the same time,
thereby creating an very high fraction of adversarial fruit in some segment of the (fruit) chain. By
requiring the fruits to be recent, we prevent the adversary from squirreling away (too many of)
its fruits: since the underlying blockchain has a guaranteed chain growth, we can upperbound the
extra amount of time the attacker can withold fruits and thus upperbound the number of extra
fruits it can release in any window.

Related Techniques As already mentioned, the work of [LSZ15] aimed to achieve a similar
(but weaker) fairness goal. Their idea of allowing “dropped”, or “forked”, blocks to be included
as records inside the blockchain is clearly related to our idea of allowing “dropped” fruit to be
incorporated into the chain (their protocol, however, does not have any “expiration” time for old
blocks, and this feature is cruicial for achieving our goal; additionally, as mentionned, [LSZ15] only
consider specific attacks and in particular does not formally prove that their protocol satisfies the
desired fairness and security properties w.r.t. all attacks.)

9We thank Hugo Krawczyk for this phrase!

5

We additionally mention that the work of [GKL15] uses the idea of having two separate min-
ing processes (and, in particular, this work introduces the “2-for-1” trick which we use); however,
the end goal in [GKL15] is quite different—they employ this idea to create a byzantine agreement
protocol in the permissionless setting which handles up to a fraction 1

2 malicious computing power.
A byzantine agreement protocol most importantly differs from a blockchain protocol in that agree-
ment is only required for a single record (as opposed to a continous sequence of record). As such,
a significantly simpler solution (and analysis) can be perfomed—in particular, in their approach
(similarly to [LSZ15]), the equivalent of a “fruit” never needs to expire, since we only need agree-
ment on one record. (Additionally, [GKL15] only analyze their protocol in a synchronous model of
execution.)

1.3 Applications

Hybrid Consensus and Committee Election in the Permissionless Setting In both
Nakamoto’s blockchain protocol and ours, the time needed to confirm transactions grows with
the worst-case upper-bound on the network delay. In contrast, in a responsive protocol, we require
the confirmation time to only be a function of the actual network delay, which may be a lot smaller
than the worst-case one. In a companion paper [PS16], we show how to combine any blockchain
protocol with appropriate consensus algorithms to improve the latency of the blockchain protocol
and achieve a responsive protocol. Roughly speaking, this “hybrid” approach (referred to as hybrid
consensus) uses the blockchain to elect a committee—more specifically, the miners of blocks in
a sufficiently long segment of the chain are elected as the committee—and then this committee
executes the (standard) consensus protocol. The chain quality of the blockchain determines the
fraction of honest players in the committee: if we employ Nakamoto’s blockchain, we would need to
require that 3

4 of the computing power is controlled by honest player to ensure a chain quality of 2
3

and thus a fraction 2
3 honest committee members (which is required by the consensus protocol). In

contrast, by relying on our new FruitChain protocol, it suffices to assume that 2
3 of the computing

power is controlled by honest players.
We highlight that, as shown in [PS16], achieving a reponsive protocol also requires assuming

that 2
3 of the computing is held by honest parties, and as such relying on our FruitChain protocol

enables achieving an optimal resilience for low-latency blockchains.
More generally, using the Fruitchains protocol and such a committee election procedure, en-

ables going from a permissionless setting with a ρ < 1
2 fraction adversarial computing power to a

permissioned setting with (close to) ρ fraction adversarial parties (as in standard model considered
in Cryptography). Such a transformation may be useful also in other contexts.

Preventing Mining Pools An issue with the Bitcoin protocol (which relies on Nakamoto’s
blockchain protocol) is that the mining hardness is set so that the world (combined) finds a new
block every 10 minutes—as shown in [PSS16], the mining hardness needs to be set in such a way to
ensure consistency. This not only leads to a long latency (which can be remediated by the Hybrid
Consensus approach discussed above), but also leads to the issue that it may take a very long time
for an individual miner to be successful in mining a block and consequently reap a reward for its
work. In other words, the payments received by miners has a very high variance. This has lead to
the creation of mining pools, where miners come together and pool their work and then share the
reward once someone in the pool mines a block—such pooling decreases the variance. To prevent
free-riding, miners submit “partial proofs of work” (that is, “near” solutions to the mining puzzles)
that are significantly easier to find, and rewards are distributed (according to some distribution
rule) among the contributors of the partial proofs-of-work.

6

An undesirable effect of such pools is that the pool operator effectively controls a large number
of participants and potentially could get them to deviate; in a sense, the decentralized nature of
the system gets lost.

We note that since the FruitChain protocol is parametrized by two mining hardnesses—the
block hardness p, and the fruit hardness pf—which are independent of each other, we can set p
appropriately to ensure consistency, but pf can be set to be much larger—for instance, as large as
the probability of find a partial proof-of-work in mining pools—and consequently, we would reduce
the variance of the rewards received by miners in exactly the same way as in mining pool, but now
in a fully decentralized way.

2 Preliminaries and Definitions

2.1 Blockchain Protocols and Executions

In this section, we recall the abstract model for blockchain protocols from [PSS16] and a provide
a description of Nakamoto’s original blockchain protocol which we will heavily make use of. This
section is almost verbatim from [PSS16].

2.1.1 Blockchain Protocols

A blockchain protocol is a pair of algorithms (Π, extract) where Π is a stateful algorithm that receives
a security parameter κ as inputs and maintains a local state chain. The algorithm extract(κ, chain)
outputs an ordered sequence of “records”, or “batches”, ~m (e.g., in the bitcoin protocol, each such
record is an ordered sequence of transactions). We call extract(κ, chain) the “record chain” of a
player with security parameter κ and local variable chain; to simplify notation, whenever κ is clear
from context we often write extract(chain) to denote extract(κ, chain).

(In the treatment of [PSS16], algorithm Π is also parameterized by a “validity” that encapsulates
the semantic properties (e.g., “no double spending”) that a blockchain application aims to achieve;
we disregard those issues here as appropriate “pruning” can always be done by the higher-level
application.)

A Blockchain Execution We consider the execution of a blockchain protocol (Π, extract) that
is directed by an environment Z(1κ) (where κ is a security parameter), which activates a number
of parties 1, 2, . . . , n as either “honest” or corrupted parties. Honest parties execute Π on input 1κ

with an empy local state chain; corrupt parties are controlled by an attacker A which reads all
their inputs/message and sets their outputs/messages to be sent.

• The execution proceeds in rounds that model time steps. In round r, each honest player i re-
ceives a message (a “record”) m from Z (that it attempts to “add” to its chain) and potentially
receives incoming network messages (delivered by A). It may then perform any computation,
broadcast a message to all other players (which will be delivered by the adversary; see below)
and update its local state chaini.

• A is responsible for delivering all messages sent by parties (honest or corrupted) to all other
parties. A cannot modify the content of messages broadcast by honest players, but it may delay
or reorder the delivery of a message as long as it eventually delivers all messages. (Later, we
shall consider restrictions on the delivery time.) The identity of the sender is not known to
the recipient.10

10We could also consider a seemingly weaker model where messages sent by corrupted parties need not be delivered
to all honest players. We can easily convert the weaker model to the stronger model by having honest parties “gossip”
all messages they receive.

7

• At any point, Z can communicate with adversary A or access extract(chaini) where chaini is
the local state of player i.

• At any point, Z can corrupt an honest party j which means that A gets access to its local
state and subsequently, A controls party j. (In particular, this means we consider a model
with “erasures”; random coin tosses that are no longer stored in the local state of j are not
visible to A.)11

• At any point, Z can uncorrupt a corrupted player j, which means that A no longer controls
j and instead player j starts executing Π(1κ) with a fresh state chainj . (This is also how we
model Z spawning a “new” honest player.) A gets informed of all such uncorrupt messages
and is required to deliver all messages previously sent by (currently alive) honest players.12

Let EXEC(Π,extract)(A,Z, κ) be a random variable denoting the joint view of all parties (i.e., all their
inputs, random coins and messages received, including those from the random oracle) in the above
execution; note that this joint view fully determines the execution.

Admissible Environments We will be considering executions with restricted adversaries and
environments; these restrictions will be specified by a predicate Γ(·, ·, ·, ·).

Definition 2.1 (Admissible Environments). We say that the tuple (n(·), ρ,∆(·), A, Z) is Γ-
admissible w.r.t. (Π, extract) if A and Z are non-uniform probabilistic polynomial-time algorithms,

Γ(n(·), ρ,∆) = 1 and for every κ ∈ N , every view view in the support of EXEC(Π,extract)(A,Z, κ),
the following holds:

1. Z activates n = n(κ) parties in view;

2. A delays messages by at most ∆ = ∆(κ) rounds (and in the case of newly spawned players,
instantly delivers messages that were sent more than ∆ rounds ago);

3. at any round r in view, A controls at most ρ · n(κ) parties; and

Whenever the protocol (Π, extract) is clear from context, we simply call (n, ρ,∆, A, Z) Γ-admissible.

2.1.2 Blockchain protocols in the ROM

To model Nakamoto’s blockchain protocol, we need to extend the model with a random oracle. In
an execution with security parameter κ, we assume all parties have access to a random function
H : {0, 1}∗ → {0, 1}κ which they can access through two oracles: H(x) simply outputs H(x) and
H.ver(x, y) output 1 iff H(x) = y and 0 otherwise. In any round r, the players (as well as A) may
make any number of queries to H.ver. On the other hand, in each round r, honest players can make
only a single query to H, and an adversary A controlling q parties, can make q sequential queries
to H. (This modeling is meant to capture the assumption that we only “charge” for the effort of
finding a solution to a “proof of work” [DN92], but checking the validity of a solution is cheap. We
discuss this further after introducing Nakamoto’s protocol.) We emphasize that the environment Z
does not get direct access to the random oracle (but can instruct A to make queries).

11Our proof actually extends also to the model “without erasures”.
12This models the fact that a player is not considered “honest” before it has joined the network and gotten

“initialized”. In the real-life execution of bitcoin, new players joining send out a message to the network, request to
be initialized and download the longest chain known to the network. We only consider them honest once this process
is over.

8

2.1.3 Nakamoto’s Protocol

We turn to describing Nakamoto’s protocol [Nak08], which we refer to as (Πp
Nak, extract

p
Nak). The

local state chain maintained by Πp
Nak is a sequence of (mined) blocks ~b, where each mined block

is a tuple (h−1, η,m, h) that consists of a hash h−1 (a pointer to the previous record), a nonce
η, a record m, and a hash h (a pointer to the current record13) and is initialized to a special
“genesis” block: (0, 0,⊥),H(0, 0,⊥). Let extract(chain) be the sequence of records ~m contained in
the sequence of blocks chain. The protocol is parameterized by a hardness function p(·) which
defines a constant Dp = p(κ) · 2κ such that for all (h, b), Prn[H(h, η, b) < Dp] = p(κ). Whenever p
is clear for context, we simply denote the protocol (ΠNak, extractNak) (without the p superscript);
additionally, whenever κ is clear from context, we let p = p(κ).

We say a block b = (h−1, η,m, h) is valid with respect to (a predecessor block) b−1 =
(h′−1, n

′,m′, h′) if two conditions hold: h−1 = h′, h = H(h−1, η,m), and h < Dp. A sequence of
blocks chain = (b0, . . . , b`) is valid if a) b0 = (0, 0,⊥,H(0, 0,⊥)) is the genesis block, and b) for all
i ∈ [`], bi is valid with respect to bi−1.

Each round of ΠNak proceeds as follows:

• Read all incoming messages (delivered by A). If any incoming message chain′ is a valid
sequence of blocks that is longer than its local state chain, replace chain by chain′. (Note
that checking the validity of chain′ can be done using only H.ver queries)

• Read local message m (from Z). Pick a random nonce n ∈ {0, 1}κ and issue query h =
H(h−1, η,m) where h−1 is the 4’th element in the last block in chain. If h < Dp, then Π adds
the newly mined block (h−1, η, b, h) to chain and broadcasts the updated chain.

A Remark on our use of the Random Oracle Recall that in our model, we restrict players
to a single evaluation query H per round, but allow them any number of verification queries H.ver
in the same round. We do this to model the fact that checking the validity of mined blocks is
“cheap” whereas the mining process is expensive. (To enable this, we have included a pointer h to
the current record in every mined block in the description of Nakamoto; thus a player need not
spend an H query to compute the pointer to the previous record.)

In practice, the cost of evaluating a hash function (which is used to instantiate the random
oracle) is the same as verifying its outputs, but our modeling attempts to capture the phenomena
that a miner typically use various heuristics (such as black lists of IP addresses that have sent
invalid blocks) and different hardware to check the validity of a mined block versus to mine a new
block.

2.2 Security of Blockchain Protocols

In this section, we recall the security properties of blockchains from [PSS16], which in turn are based
on earlier definitions from [GKL15, KP15] For our purposes, we slightly generalize the properties
from [PSS16] (see below for a discussion of this generalization), but point out that our generalized
definitions suffice for all known applications of them; see [PSS16] for more discussion (and historical
remarks) on these definitions.

Notation For some A,Z, consider some view in the support of EXEC(Π,extract)(A,Z, κ). We use
the notation |view| to denote the number of rounds in the execution, viewr to denote the prefix

13In reality (as well as in the description in the introduction), h is not included in the block (as it can be easily
determined from the remaining elements); we include it to ensure that we can verify validity of a block using only
H.ver.

9

of view up until round r, chaini(view) denotes the local state of player i in view, extracti(view) =
extract(chaini(view)) and extractri (view) = extracti(view

r).

Negligible Functions A function ε(·) is said to be negligible if for every polynomial p(·), there
exists some κ0 such that ε(κ) ≤ 1

p(κ) for all κ ≥ κ0.

2.3 Chain Growth

The first desiderata is that the chain grows proportionally with the number of rounds of the protocol.
Let,

min-chain-increaser,t(view) = min
i,j
|extractr+tj (view)| − |extractri (view)|

max-chain-increaser,t(view) = max
i,j
|extractr+tj (view)| − |extractri (view)|

where we quantify over players i, j such that i is honest at viewr and j is honest at viewr+t.
Let growtht0,t1(view,∆, T) = 1 iff the following two properties hold:

• (consistent length) for all rounds r ≤ |view| −∆, r+ ∆ ≥ r′ ≤ |view|, for every two players
i, j such that in view i is honest at r and j is honest at r′, we have that |extractr′j (view)| ≥
|extractri (view)|

• (chain growth lower bound) for every round r ≤ |view| − t, we have

min-chain-increaser,t0(view) ≥ T.

• (chain growth upper bound) for every round r ≤ |view| − t, we have

max-chain-increaser,t1(view) ≤ T.

In other words, growtht0,t1 is a predicate which tests that a) honest parties have chains of roughly
the same length, and b) during any t0 rounds in the execution, all honest parties’ chains increase
by at least T , and c) during any t1 rounds in the execution, honest parties’ chains increase by at
most T .

Definition 2.2. A blockchain protocol (Π, extract) has chain growth rate T0(·), g0(·, ·, ·, ·), g1(·, ·, ·, ·)
in Γ-environments if for all Γ-admissible (n(·), ρ,∆(·), A, Z), there exists some negligible function
ε such that for every κ ∈ N, T ≥ T0(κ), t0 ≥ T

g0(κ,n(κ),ρ,∆(κ)) and t1 = T
g1(κ,n(κ),ρ,∆(κ)) the following

holds:
Pr
[
view← EXEC(Π,extract)(A,Z, κ) : growtht0,t1(view,∆(κ), κ) = 1

]
≥ 1− ε(κ)

2.4 Chain Quality

Our second desideratum is that the number of records contributed by the adversary is proportional
to its relative power.

We say that a record m is non-adversarial (or honest) w.r.t. view and prefix ~m if there exists a

player j and some round r′ such that in viewr
′
, j is honest, the environment provided m as input

to j, and ~m is a prefix of extracti(view
r′). (That is, there exists some honest player that received m

as an input when their chain contained ~m).
Let qualityT (view, µ) = 1 iff for every round r and every player i such that i is honest in viewr,

among any consecutive sequence of T records M in extractri (view), the fraction of records m that
are honest w.r.t. viewr and ~m, where ~m is the prefix of extractri (view) preceeding M , is at least µ.

10

Definition 2.3. A blockchain protocol (Π, extract) has chain quality T0(·), µ(·, ·, ·, ·) in Γ environ-
ments, if for all Γ-admissible (n(·), ρ,∆(·), A, Z), there exists some negligible function ε such that
for every κ ∈ N and every T ≥ T0(κ) the following holds:

Pr
[
view← EXEC(Π,extract)(A,Z, κ) : qualityT (view, µ(κ, n(κ), ρ,∆(κ))) = 1

]
≥ 1− ε(κ)

2.5 Consistency

Let consistentT (view) = 1 iff for all rounds r ≤ r′, and all players i, j (potentially the same) such

that i is honest at viewr and j is honest at viewr
′
, we have that the prefixes of extractri (view) and

extractr
′
j (view) consisting of the first ` = |extractri (view)| − T records are identical.14

Definition 2.4. A blockchain protocol (Π, extract) satisfies T0(·)-consistency in Γ environments, if
for all Γ-admissible (n(·), ρ,∆(·), A, Z), there exists some negligible function ε such that for every
κ ∈ N and every T ≥ T0(κ) the following holds:

Pr
[
view← EXEC(Π,extract)(A,Z, κ) : consistentT (view) = 1

]
≥ 1− ε(κ)

Note that a direct consequence of consistency is that the chain length of any two honest players
can differ by at most T (except with negligible probability).

2.6 Preliminaries from [PSS16]: Security of Nakamoto’s Blockchain

The results from [PSS16] (and as we shall shortly see, also ours) are parameterized by the following
quantities (which are defined for some fixed mining hardness function p(·); recall that Nakamoto’s
protocol is parametrized a single hardness parameter p):

• let α(κ, n, ρ,∆) = 1− (1− p(κ))(1−ρ)n. That is, α is the probability that some honest player
succeeds in mining a block in a round;

• let β(κ, n, ρ,∆) = ρnp(κ). That is β is the expected number blocks that an attacker can mine
in a round.

• let γ(κ, n, ρ,∆) = α
1+∆α . γ is a “discounted” version of α which takes into account the fact

that messages sent by honest parties can be delayed by ∆ rounds and this may lead to honest
players “redoing work”; γ corresponds to their “effective” mining power.

Whenever κ, n, ρ,∆ are clear from the context, we simply write p, α, β, γ. In essence, the quantities
capture the per round expected “chain length increase” by the honest parties and the adversary;
the reason that α, β are defined differently is that we assume that the adversary can sequentialize
its queries in a round, whereas honest players make a single parallel query (they each act inde-
pendently), and thus even if they manage to mine several blocks, the longest chain held by honest
players can increase by at most 1. Note, however, that when p is small (in comparison to 1/n),
which is case for the Bitcoin protocol, α is well approximated by (1 − ρ)np and thus α

β ≈
1−ρ
ρ , so

this difference is minor; additionally, when p is small, γ ≈ α and thus γ
β ≈

1−ρ
ρ .

Let Γpλ(n(·), ρ,∆(·)) = 1 iff n(·),∆(·) are polynomially-bounded functions N → N+, 0 ≤ ρ ≤ 1
and for all κ, n = n(κ),∆ = ∆(k),

α(1− 2(∆ + 1)α) ≥ λβ

As in show in [PSS16], this condition implies the following condition.

14Pedantically, the “first ` records of extractr
′
j (view) is not defined if extractr

′
j (view) < `; to formalize it, we may

represent the chains as infinite sequences of records, where all records after the end of the chain is a special “nil”

symbol. In particular, this ensures that consistentT (view) = 0 if extractr
′
j (view) < `.

11

Fact 2.5. If Γpλ(n(·), ρ,∆(·)) = 1 then np∆ < 1.

We directly get the following corollary that will be useful to us.

Fact 2.6. If Γpλ(n(·), ρ,∆(·)) = 1 then γ ≥ np
8 and

Proof. Recall that γ = α
1+∆α . Since α ≤ np, by Fact 2.5, we directly get that

γ ≥ α

2
β

Recall that, α = 1− (1− p)(1−ρ)n. Since by Fact 2.5, n < 1/p, by the binomial expansion we have
that

(1− p)(1−ρ)n < 1− (1− ρ)np

2

Thus, γ > (1−ρ)np
4 ≥ np

8 since under the Γ restriction ρ < 1
2 .

The following theorem was proven in [PSS16].

Theorem 2.7 (Security of Nakamoto [PSS16]). For any δ > 0, any λ > 1, any p(·), any superlog-
arithmic function T0(·), (Πp

Nak, extract
p
nak) satisfies:

• T0-consistency;

• chain growth rate (T0, g
p,δ
0 , gp,δ1) where

gp,δ0 (κ, n, ρ,∆) = (1− δ)γ

gp,δ1 (κ, n, ρ,∆) = (1 + δ)np

• chain quality T0, µ
p
δ(κ, n, ρ,∆) where

µpδ(κ, n, ρ,∆) = 1− (1 + δ)
β

γ
;

in Γpλ environments.

Remark 2.8 (Blockchain quality and consistency). The consistency property proven in [PSS16] is
actually a bit stronger than stated. Not only it shows that players agree on the records contained in
their blockchains, but also that the actual blockchains agree except for potentially the last κ blocks.
We refer to this property as blockchain consistency, and will rely on it in the sequel.

Additionally, the chain quality property is also stronger in that not only the records of honest
block are contributed by honest players, but also the actual block are mined by honest players. We
refer to this property as blockchain quality, and will rely on it in the sequel.

2.7 Liveness

The liveness property from [PSS16] (which generalized the one from [GKL15]), stipulates that from
any given round r, if a sufficiently long period of time t elapses—we refer to this time as the wait-
time of the blockchain—every honest player will have a message m sufficiently “deep” in their chain
(technically, κ blocks from the end of the chain), where m was provided as an input to some honest
player between rounds r and r + t15 More precisely, let live(view, t) = 1 iff for any t consecutive
rounds r, . . . , r + t in view there exists some round r′ s.t. r ≤ r′ ≤ r + t and player i such that in
view, 1) i is honest at r′, 2) i received a message m as input at round r′, and 3) for every player j
that is honest at r + t in view, m ∈ extractr+tj (view)[: −κ].

15The weaker liveness property from [GKL15] only requires this is all honest players have m as their input; this
weaker property is not enough for our purposes.

12

Definition 2.9. We say that blockchain (Π, extract) satisfies liveness with wait-time w(·, ·, ·, ·) in
Γ environments if for all Γ-admissible (n(·), ρ,∆(·), A, Z), there exists a negligible function ε in the
security parameter κ ∈ N, such that

Pr
[
view← EXEC(Π,extract)(A,Z, κ) : live(view, w(κ, n(κ), ρ,∆(κ)) = 1

]
≥ 1− ε(κ)

The following theorem was shown in [PSS16].

Theorem 2.10 ([PSS16]). Let (Π, extract) be a blockchain protocol satisfying chain growth
T0, g0, g1, chain quality T0, µ and T0-chain consistency in Γ-environments, where µ and g0 are
strictly positive, and T0 is sublinear.16 Then, (Π, extract) satisfies liveness with wait-time

w(κ, n, ρ,∆) = (1 + δ)
κ

g0(κ, n, ρ,∆)

in Γ-environments.

As a direct corollary of 2.10 and 2.7, we get:

Corollary 2.11 ([PSS16]). For any λ > 1, δ > 0, and any p(·), (Πp
Nak, extract

p
Nak) satisfies liveness

with wait-time
w(n, κ, ρ,∆) = (1 + δ)

κ

γ

in Γpλ environments.

3 Defining Fairness

We turn to defining our notion of fairness. Roughly speaking, a blockchain protocol is δ-
approximately fair w.r.t. ρ attackers if, with overwhelming probability, any φ ≤ 1 − ρ fraction
coalition of honest users is guaranteed to get at least a

(1− δ)φ

fraction of the blocks in every sufficiently long window, even in the presense of an adversary control-
ling a ρ fraction of the computation power. Note that this condition trivially implies (1− δ)(1− ρ)
chain quality (by considering φ = 1 − ρ, that is, the full set of honest players). Consequently, to
formally define this notion, we first generalize the definition of quality (used in the definition of
chain quality, see Definition 2.3) to consider “quality” w.r.t to any subset S of the honest players;
for generality, we allow the subset to change over time.

• Let a player subset selection, S, be a function that given a view view outputs a subset of the
players that are honest at view.

• We say that S is a φ-fraction player subset selection if S(view) always outputs a set of size
φn (rounded upwards) where n is the number of players in view.

• Given an player subset selection S, we say that a record m is S-compatible w.r.t. view and
prefix ~m if there exists a player j and some round r′ such that j is in S(viewr

′
), the environment

provided m as an input to j at viewr
′
, and ~m is a prefix of extractr

′
i (view).

16 [PSS16] only explictly considered the case when T0 is some slightly super-logarthmic function, but their proof
actually only assumes that T0 is sublinear. We also remark that any blockchain protocol which satisfies the security
properties w.r.t. to a polynomial T0 which potentially is super-linear can always be modified to satisfy security w.r.t.
a sublinear T0 by redefining the security parameter.

13

• Let qualityT,S(view, µ) = 1 iff for every round r and every player i such that i is honest in
viewr, we have that among any consecutive sequence of T records M in extractri (view), the
fraction of records m that are S-compatible w.r.t. viewr and ~m, where ~m is the prefix of
extractri (view) preceeding M , is at least µ.

We now define fairness analogously to chain quality.

Definition 3.1. A blockchain protocol (Π, extract) has (approximate) fairness T0(·), δ in Γ environ-
ments, if for all Γ-admissible (n(·), ρ,∆(·), A, Z), every φ ≤ 1− ρ, every φ-fraction subset selection
S, there exists some negligible function ε such that for every κ ∈ N and every T ≥ T0(κ) the
following holds:

Pr
[
view← EXEC(Π,extract)(A,Z, κ) : qualityT,S(view, (1− δ)φ)) = 1

]
≥ 1− ε(κ)

As a sanity check, note that the definition of qualityT,S(view, µ) collapses down to
qualityT (view, µ) if S is the full set of the honest players. As a consequence, (T0, δ)-fairness trivially
implies (T0, (1 − δ)(1 − ρ))-chain quality (by considering φ = 1 − ρ). Additionally, when ρ ≤ 1

2
(which is the case we consider in this paper,

(1− δ)(1− ρ) = 1− δ − ρ+ δρ = 1− [δ + (1− δ)ρ] ≥ 1− [2δρ+ (1− δ)ρ] = 1− (1 + δ)ρ

Thus, no ρ-size coalition can get more than a factor (1 + δ) more than its “fair” share of blocks.

Fact 3.2. If a blockchain protocol (Π, extract) satisfies (T0(·), δ)-fairness in Γ environments, then
it satisfies (T0, µ)-chain quality, where µ(κ, n, ρ,∆) = (1− δ)(1− ρ) ≥ 1− (1 + δ)ρ when ρ ≤ 1

2 .

4 The FruitChain Protocol

We now turn to formally defining our FruitChain protocol. Rougly speaking, the FruitChain pro-
tocol will be running an instance of Πp

Naka but instead of directly putting the records m inside the
blockchain, the records are put inside “fruit” f ; these fruit themselves requires solving some proof
of work—with a differerent hardness parameter pf ; additionally, we require the fruit to “hang” from
a block which isn’t too far from from the block which records the fruit—more specifically, the fruit
needs to “point” to an earlier block in the chain which is not too far from the block containing it
(and thus, the fruit could not have been mined “too” long ago); the recency parameter R will be
used to specify how far back a fruit is allowed to hang.

Towards formalizing the protocol, we start by introducing some notation:

• We assume that the random oracle H outputs strings of length at least 2κ. Let d be a
collision-resistant hash-function (technically, it is a family of functions, and the instance from
the family is selected as a public-parameter; in the sequel we ignore this selection and simply
treat it as a single function (for instance, selected using randomness H(0).)

• Our protocol is parametrized by two “hardness” parameters p = p(κ), pf = pf (κ), and a
recency parameter R. (p is the mining hardness parameter for Πp

Naka and pf is the “fruit
mining” hardness parameter, as mentionned above, the recency parameter will specify how

far back a fruit is allowed to “hang”); the quantity q = q(κ) =
pf (κ)
p(κ) will be useful in our

analysis.

• We say that a fruit, f = (h−1;h′; η, digest;m;h), is valid iff H(h−1;h′; η; digest;m) = h and
[h]−κ: < Dpf where [h]−κ: denotes the last κ bits of h; we call h′ the pointer of f . F is a valid
fruit-set if either F = ∅ or F is a set of valid fruits.

14

• We say that a block, b = ((h−1;h′; η; digest;m;h), F), is valid iff digest = d(F), F is a valid
fruit-set, H(h−1;h′; η, d(F);m) = h and [h]:κ < Dp1 where [h]:κ denotes the first κ bits of h;
we call h the reference of b.

• We say that a sequence of blocks, chain = (b0, . . . , b`), is valid where bi =
((hi−1;h′i; ηi, digesti;mi;hi), F i) iff

– b0 = genesis where genesis := ((0; 0; 0; 0;⊥;H(0; 0; 0; 0,⊥)), ∅) is the “genesis” block;
– for all i ∈ [`], hi−1 = hi−1,
– for all i ∈ [`], all f ∈ F i, there exists some j ≥ i−Rκ such that the pointer of f is hj .

• finally, we say that the fruit f is recent w.r.t. chain if the pointer of f is the reference of a
block in chain[−Rκ :] (i.e., one of the last Rκ blocks in chain).

The FruitChain protocol is described in Figure 1.
We are now ready to state our main theorem.

Theorem 4.1. For any 0 < δ < 1, any λ > 1, and any p(·), pf (·), let R = 17, κf (κ) = 2q(κ)Rκ,

and T0(κ) = 5
κf
δ . Then (Π

p,pf ,R
fruit , extract

p,pf ,R
fruit) satisfies:

• κf -consistency;

• chain growth rate (T0, g
p,δ
0 , gp,δ1) where

gp,δ0 (κ, n, ρ,∆) = (1− δ)(1− ρ)npf ,

gp,δ1 (κ, n, ρ,∆) = (1 + δ)npf

• fairness (T0, δ).

in Γpλ environments.

5 Proof of the Main Theorem

We start by introducing some additional notation and useful lemmas, and then turn to proving
each of the three security properties.

5.1 Additional Notation

Let us introduce some additional notation that will be useful in the analysis of the protocol:

• We say that a fruit f = (h−1;h′; η, digest;m;h) was mined at round r if r is the first time H
outputs h.

• We say that a block, b = ((h−1;h′; η; digest;m;h), F) was mined at round r if r is the first
time H outputs h.

• We say that a block/fruit was mined by an honest player if there it was an honest players
that first mined it.

To simplify notation, in addition to the parameters α, β, γ previously defined, we also define analogs
of α and β with respect to the “fruit mining” process: let,

• αf = (1−ρ)npf (that is, the expected number of fruit mined by honest players in one round);

• βf = ρnpf (that is, the expected number of fruit mined by honest players in one round).

15

Πfruit: FruitChain protocol

Initialize: chain := genesis, F = ∅

Upon receiving a valid fruit ,

• let F := F ∪ {fruit}

Upon receiving a valid chain ′, if |chain ′| > |chain|:

• let chain := chain ′

Every time step, upon receiving input m from the environment:

• let F ′ be all fruits f ∈ F that are recent w.r.t. chain;
• let h′ be the reference of chain[pos] where pos = max(1, |chain| − κ);
• let h−1 be the reference of chain[−1];
• Pick random η ∈ {0, 1}κ and let h := H(h−1;h′; η; d(F ′);m)
• If [h]−κ: < Dpf (i.e., we “mined a fuit”)

– let fruit := (h−1;h′; η; d(F ′);m, h),F := F ∪ {fruit}, and broadcast fruit

• If [h]:κ < Dp (i.e., we “mined a block”)

– let chain := chain||((h−1;h′; η, d(F ′);m, h), F), and broadcast chain

extractfruit:

On input a valid chain chain, output the sequence of messages m contained in the fruit contained
in blocks of chain, ordered by:

• the block (which contained the fruit, which contains the message)—that is, messages inside
fruits inside earlier blocks, come earlier;
• in the case of ties (i.e., if some block contains multiple fruits), break ties by the pointer of

the fruit (giving preference to fruit pointing to earlier blocks), and finally if have the same
pointer, just lexicographically.a

aThe method for how we break times among fruit in the same block is inconsequential for our results.

Figure 1: The FruitChain protocol. Nodes not only mine for blocks, but also fruit. Blocks confirm
“recent” fruit; whereas fruit confirm transactions.

16

5.2 The Fruit Freshness Lemma

In this section, we present a lemma demonstrating the key property of the FruitChain protocol: any
fruit mined by an honest player will be incorporated sufficiently deep in the chain (and thus never
lost). We refer to this as the Fruit Freshness Lemma—fruits stay “fresh” (i.e., recent) sufficiently
long to be incorporated.

Let fruitfreshness(view, w, κ) = 1 iff for every honest player i and every round r < |view| − w,
if i mines a fruit at round r in view, then for every honest player j, there exists some index pos
such that f is at position pos in the record chain (w.r.t. Nakamoto’s protocol) of j at every round
r′ ≥ r + w (i.e., f ∈ extractr

′
naka,j(view)[pos]) and additionally pos is at least κ positions from the

end of the chain.
Let

wait(κ, n, ρ,∆) = 2∆ +
2κ

γ

Lemma 5.1. For any λ > 1, any ρ′, any p(·), pf (·), any Γpλ-admissible (n(·), ρ,∆(·), A, Z), there
exists a negligible function ε such that

Pr
[
view← EXEC(Π

p,pf ,R,extract
p,pf ,R)(A,Z, κ) : fruitfreshness(view, wait(κ, n(κ), ρ,∆(κ)), κ) = 1

]
≥ 1−ε(κ)

when R = 17.

Proof. Disregard the blockchain consistency (see Remark 2.8), liveness and chain growth failure
events—they only happen with negligible probability. Let wait = wait(κ, n, ρ,∆).

• By blockchain consistency, at any point in the execution, whenever an honest player mines
a fruit f , the block pointed to by the fruit is at some fixed position pos on the blockchain
of every honest player, now and at every time in the future. (Recall that honest players try
to mine fruit that point back to a block that is κ steps back in the chain, and thus the
consistency condition kicks in.) Let ` denote the length of the chain of the player that mines
f ; by definition pos = `− κ.

• By the description of the protocol, if the fruit f is mined at a round r′, it gets seen by all
honest players by round r′ + ∆; additionally, when this happens all honest players attempt
to add f to their chain as long as it remains recent (w.r.t. all honest players).

• By liveness, it thus follows that f gets incorporated into the record chain of all honest players
at some position pos that is at least κ records from the end of their chain by round

r′ + ∆ + (1 + δ)
κ

γ
≤ r′ + wait−∆

as long as f is recent by then (w.r.t. all honest players).

• By the upperbound on chain growth, at most

(1 + δ)np

(
∆ +

2κ

γ

)
blocks are “added” in time wait−∆; more precisely, by round r′+wait−∆, no honest player
has ever had a chain of length `′ such that

`′ > `+ (1 + δ)np

(
∆ +

2κ

γ

)
17

Thus, by round r′ + wait−∆, for every such honest player’s chain length `′ we have

pos = `− κ ≥ `′ − κ− (1 + δ)np

(
∆ +

2κ

γ

)
By our assumption on Γ and by Fact 2.5 and Fact 2.6, we have that γ ≥ np

8 and np∆ < 1,
thus

pos ≥ `′ − κ− (1 + δ)− (1 + δ)16κ ≤ 17κ = `′ −Rκ

which means that f remains recent until round r′ + wait−∆ w.r.t. all honest players.

• Finally, by consistency, all honest players agree that f is found at position pos in their
blockchain at any point after r′+wait−∆; additionally, by the consistent lenght property all
honest players agree that position pos is at least κ from the end of the chain by r′ + wait−
∆ + ∆ = r′ + wait.

We also observe the following fact about wait, which says that the expected number of fruits
mined by all players during wait+ 2 steps is upper bounded by kf .

Fact 5.2. For any λ > 1, any ρ′, any p(·), pf (·), any Γpλ-admissible (n(·), ρ,∆(·), A, Z),

(wait+ 2) · npf ≤ kf

Proof. Note that by Fact 2.5 and Fact 2.6, we have that γ ≥ np
8 and np∆ < 1, thus

(wait+ 2) · npf = (2∆ + 2
κ

γ
+ 2) · qpn ≤ 2q + 2κ · 8q + 2 ≤ 2qRκ = κf

5.3 Some simplifying assumptions

Towards, proving our main theorem we state some simplyfing assumptions that can be made without
loss of generality. These assumptions (which all follow from properties of the random oracle H) will
prove helpful in our subsequent analysis.

• WLOG1: We may without loss of generality assume that honest players never query the RO
on the same input—more precisely, we analyze an experiment where if some honest player
wants to query it on an “old” input, it resamples nonce until the input is “new”; since nonce
is selected from {0, 1}κ, this “resampling” experiment is identical to the real one with except
with negligible probability, thus we can wlog analyze it.

• WLOG2: We may without loss of generality assume that any fruit that points to a block b
which was first mined at time t, has been mined after t. Additionally, any fruit that points
to a block that comes after b in a valid chain must have been mined after t. (If not, we can
predict the outcome of the random oracle H on some input before having queries H which is
a contradiction. We omit the standard details.)

• WLOG3: We may assume without loss of generality that all fruit mined by honest players
are “new” (i.e., different from all valid fruit previously seen by honest players); this follows
by WLOG1 and the fact that the probability of seeing a collision in the random oracle is
negligible (by a simple union bound over the number of random oracle queries).

18

• WLOG4: We may assume without loss of generality that any valid fruit which appears in
some honest players chain at round r was mined before r; this follows from the unpredictability
of the random oracle (and a simple union bound over the number of random oracle queries).

• WLOG5: We may assume without loss of generality that there are no “blockchain
collisions”—namely, there are no two different valid sequences of blocks which end with the
same block.

We now turn to proving the three security properties.

5.4 Proof of Fruit Consistency

Disregard the chain growth and consistency, and blockchain quality (see Remark 2.8) failure
events—they happen with negligible probability. Consider some view view in the support of
EXEC(Π,extract)(A,Z, κ), rounds r, r′ s.t. r′ ≥ r, and players i, j that are honest respectively at
r, r′ in view. By consistency, the chains of i, j at r, r′ agree except for potentially the last κ blocks
in the chain of i—let C = b0, . . . , b|C| denote those initial blocks on which they agree, and let
b|C|+1, . . . denote the (max κ) blocks in the chain of i at r which are not in the chain of j at r′; we
now bound the number of fruits that can be contained in these remaining (max κ) “inconsistent”
blocks.

• By the “recency condition” of valid fruit, any valid fruit in the chain of i at r which is after
C must point to a block bj′ such that j′ > |C| −Rκ.

• By the blockchain quality condition, there exists some j′′ s.t. |C| − Rκ − κ ≤ j′′ ≤ |C| − Rκ
and bj′′ was mined by an honest player. Let r′0 denote the round when this block was mined.

• Note that at r′0, bj′′ was mined by an honest player holding a chain of length j′′ ≥ |C|−Rκ−κ;
additionally, at r, i is honest, holding a chain of length at most |C|+κ (recall that |C| contains
the blocks on which i and j agree, and by consistency, all but the last κ blocks in the chain
of i must be in the chain of j). Thus, by the chain growth upperbound, at most

µ = (1 + δ)
2κ+Rκ

np

rounds could thus have elapsed between r′0 and r.

• By WLOG2, any fruit which gets added after C must have been mined after r′0. By WLOG4,
any such fruit that is part of the chain of i by r was mined before r.

• We thus conclude by the Chernoff bound (see Lemma A.1) that for every sufficiently small

δ′, except with probability e
−Ω(npf ·κ(R+2)

np
)

= e−Ω(q(R+2)κ), there were at most

(1 + δ′)2 · npf ·
κ(R+ 2)

np
= (1 + δ′)2q(R+ 2)κ < 2qRκ = κf

“inconsistent” fruit in the chain of i at r.

5.5 Proof of Fruit Growth

Consistent Length The consistent length property follows directly from the consistent length
property of the underlying blockchain.

19

The Lowerbound Disregard the fruit freshness failure event (Lemma 5.1)—it happens with
negligible probability. Consider any r, t and players i, j that are honest respectively at round r and
r + t. Consider the t rounds starting from round r.

• By the fruit freshness condition, every fruit that is mined by some honest party by round
r + t− wait gets incorporated into (and remains in) the chain of player j by r + t.

• By the Chernoff bound, in the t−wait rounds from r to r+ t−wait, except with probability
e−Ω((t−wait)αf), the honest parties mine at least

(1− δ′)(t− wait)αf

fruits (where δ′ is some arbitrarily small constant), which are all included in the chain of j at
r + t. Additionally, by WLOG3 they are all “new” (i.e., not included in the chains of i at r)
and different.

• Finally, by fruit consistency (proved in Section 5.4), we have that all but potentially κf of
the fruits in the chain of i at r are still in the chain of j at r + t.

• We conclude that, except with probability e−Ω((t−wait)αf), the chain of j at r + t contains at
least

(1− δ′)(t− wait)αf − κf
more fruits than the chain of j at r. By Fact 5.2, wait·αf = wait·(1−ρ)npf ≤ (1−ρ)κf ≤ κf ;
thus, have at least

(1− δ)(t− wait)αf − κf ≥ (1− δ)αf t− 2κf (1)

new fruit.

We conclude by noting that this implies that implies a fruit growth lowerbound of g0 = 1
1+δαf ≥

(1− δ)αf in the desired regime: Consider any T ≥ 5κf
δ and any

t ≥ T

g0
=

T
αf
1+δ

As shown above (see Equation 1), during this time t, except with probability, e−Ω((t−wait)αf) the
chain must grown by at least

T (1 + δ)(1− δ′)− 2κf = T (1 +
δ

2
)(1− δ′) + T

δ

2
(1− δ′)− 2κf

For a sufficiently small δ′ the first term is greater than T , and the second term greater than 2κf ,
and thus the chain must have grown by at least T . Finally note that by Equation 1

e−Ω((t−wait)αf) = e−Ω((tαf−κf) = e−Ω((T−κf) = e−Ω((5κf−κf) = e−Ω((5κf−κf) = e−Ω(κ)

Thus the chain growth is guaranteed except with negligible probability.

Upperbound Disregard the chain growth, consistency and blockchain quality (see Remark 2.8)
failure events—they happen with negligible probability. Consider some view view in the support of
EXEC(Π,extract)(A,Z, κ), rounds r, r′ = r+ t and players i, j that are honest respectively at r and r′

in view. By consistency, the chains of i, j at r, r′ agreee except for potentially the last κ blocks of the
chain of i—let C = b0, . . . , b|C| denote those initial blocks on which they agree, and let b|C|+1, . . .
denote the blocks in the chain of j at r′ which are not in the chain of i at r (there may be more

20

than κ such blocks since we are looking at the chain of j at a later time r′); We now upper bound
the number of fruits in the new blocks in the chain of j which come after C, similarly to the fruit
consistency proof (they main difference is that we now consider the chain of j as opposed to the
chain of i). The details follow:

• By the “recency condition” of valid fruit, any valid fruit in the chain of j at r′ which is after
C must point to a block bj′ such that j′ > |C| −Rκ,

• By the blockchain quality condition, there exists some j′′ s.t. |C| − Rκ − κ ≤ j′′ ≤ |C| − Rκ
and bj′′ was mined by an honest player. Let r′0 denote the round when this block was mined.

• Note that at r′0, bj′′ was mined by an honest player holding a chain of length j′′ ≥ |C|−Rκ−κ;
additionally, at r, i is honest, holding a chain of length at most |C|+κ (recall that |C| contains
the blocks on which i and j agree, and by consistency, all but the last κ block in the chain of
i must be in the chain of j). Thus, by the chain growth upperbound, for any arbitrarily small
δ′ at most

µ = (1 + δ′)
2κ+Rκ

np

rounds could thus have elapsed between r′0 and r.

• By WLOG2, any fruit which gets added after C must have been mined after r′0. By WLOG4,
any such fruit that is part of the chain of j by r′ was mined before r′.

• We thus conclude by the Chernoff bound that except with probability e
−Ω(npf ·κ(R+2)

np
)

=
e−Ω(q(R+2)κ), there were at most

(1 + δ′)2 · npf ·
(
κ(R+ 2)

np
+ t

)
= (1 + δ′)2 (q(R+ 2)κ+ npf t) ≤ κf + (1 + δ′)2npf t (2)

“new” fruits in the chain of j at r′.

We conclude by noting that this implies a fruit growth upperbound of g1 = (1 + δ)npf in the

desired regime: Consider any T ≥ 5κf
δ and any

t =
T

g1
=
T (1 + δ)

npf
.

As shown above (see Equation 2), during this time t, except with negligible probability, the chain
must have grown by at most

κf + (1 + δ′)2T (1− δ) ≤ Tδ/5 + (1 + δ′)2T/(1 + δ)

For any 0 < δ < 1 and δ′ = 0.1δ, the above expression is upper bounded by T .

5.6 Proof of Fruit Fairness

Disregard the chain growth, blockchain quality (see Remark 2.8), fruit freshness, and the fruit
growth failure events—they happen with negligible probability. Consider some φ-fraction player
subset selection S, some view view in the support of EXEC(Π,extract)(A,Z, κ), some round r and
player i that is honest at viewr. Let C = b0, . . . , b|C| be the blocks in the view of i at view, let
f0, . . . , f` be the fruits contained in them, and let m0, . . . ,m` be the records contained in the fruits;

let fj , . . . , fj+T be T consecutive fruits for some j, where T ≥ 5κf
δ

21

Let r0 be the round when the block in the view of i at r containing fj+κf was first added to

some honest player j0’s chain17; let r1 be the round when the block (again in the view of i at r)
containing fj+T was first added to some honest player j1’s chain, and let t = r1 − r0 − 2 be the
number of rounds from r0 + 1 to r.1 − 1. We lower bound the number of S-compatible (honest)
fruits in the sequence, following similar lines (but slightly more complicated) to the proof of fruit
growth lowerbound :

• By the fruit freshness condition, every fruit mined by some honest player between (r0 + 1)
and (r1 − 1)−wait will be in the chain of j1 at some position pos that is at least κ positions
from the end of the chain, before the beggining of round r1 and will remain so.

• By the Chernoff bound, in the t − wait rounds from r0 + 1 to (r1 − 1) − wait, except with
probability e−Ω((t−wait)φnpf), the honesst parties in S mine at least

(1− δ′)(t− wait)φnpf

fruits (where δ′ is some arbitrarily small constant), which thus are all included in the chain
of j1 by r1 − 1.

• Since fruit are ordered by the block containing them, and since in round r1 a new block
is added which contains fj+T , it follows from blockchain consistency that all these fruit are
contained in the sequence f1, . . . , fj+T (recall that all these fruit are found in blocks that are
at least κ positions from the end of the chain, so by consistency, those block cannot change
and thus were not added in round r1 and consequently must come before the block containing
fj+T).

• By WLOG3, these fruit are also all “new” (i.e., not included in the chains of j0 at r0) and
different. Since in round r0, the block containing fj was added to the chain of j0, and since
by WLOG5, the chain of j0 at r0 up until (and including) the block which contains fj is a
prefix of C, all these fruit must in fact be contained in the sequence fj+κf , . . . , fj+T .

• Finally, by fruit consistency, at r0 all honest players’ fruit chain contain f1, . . . fj (since recall
that some player added fj+κf at r0. Thus all these fruits are S-compatible w.r.t the prefix
f1, . . . fj−1 before the T segment we are considering.

We proceed to show that t is sufficiently large. Recall that j0 is honest at r0 and j1 is honest
at r1. We know that at r1, the fruit chain contains at least fj+T fruit. Additionally, at r0 the fruit
fj+κf is added for the first time, so by fruit chain consistency, at most j+2κf fruit could have been
in the chain of i at this point (since a fruit at position j is modified). Thus, the fruit chain must
have grown by at least T − 2κf from r0 to r1. By the upperbound on fruit growth (see Equation 2)
we thus have that

T − 2κf ≤ κf + (1− δ′)2npf (t+ 2)

Thus,

t ≥ 1

(1 + δ′)2npf
(T − 3κf)− 2

17Note that we cannot consider the time when it was added to i’s chain as i may potentially be corrupted up until
r.

22

We conclude that (except with negligible probability) the number of fruits in the sequence is at
least:

(1− δ′)φnpf
(

1

(1 + δ′)2npf
(T − 3κf)− 2− wait

)
=

(1− δ′)φ
(

1

(1 + δ′)2
(T − 3κf)− npf (wait+ 2)

)
≥

(1− δ′)φ
(

1

(1 + δ′)2
(T − 3κf)− κf

)
≥

(1− δ′)φ
(

1

(1 + δ′)2
(T − 4.5κf)

)
≥

φ(T − 5κf)

where the first inequality follows by Fact 5.2, and the second and third by the taking a sufficiently

small δ′. Since T ≥ 5κf
δ , we have that (1− δ)T ≥ T −5κf , thus the number of fruits in the sequence

is at least
(1− δ)φT

References

[BCL+05] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure compu-
tation without authentication. In CRYPTO’05, 2005.

[DN92] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In
CRYPTO’92, pages 139–147, 1992.

[ES14] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable.
In Financial Cryptography and Data Security, pages 436–454. Springer, 2014.

[GKL15] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Advances in Cryptology-EUROCRYPT 2015, pages 281–
310. Springer, 2015.

[HP15] Joseph Y. Halpern and Rafael Pass. Algorithmic rationality: Game theory with costly
computation. J. Economic Theory, 156:246–268, 2015.

[KP15] Aggelos Kiayias and Giorgos Panagiotakos. Speed-security tradeoffs in blockchain pro-
tocols, 2015.

[LSZ15] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain protocols.
In Financial Crypto’15, 2015.

[mtg10] mtgox. https://bitcointalk.org/index.php?topic=2227.msg29606#msg29606,
2010.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[PSS16] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in
asynchronous networks, 2016.

[PS16] Rafael Pass and Elaine Shi. Hybrid consensus, 2016.

23

https://bitcointalk.org/index.php?topic=2227.msg29606#msg29606

[SSZ16] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining
strategies in bitcoin. In Financial Crypto’16, 2016.

[SZ15] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bit-
coin. In Financial Cryptography and Data Security, pages 507–527. Springer, 2015.

A Appendix

We recall the standard Chernoff bound.

Lemma A.1 (Multiplicative Chernoff Bound). Let X1, . . . Xn be independent Boolean random
variables, such that for all i, Pr[Xi = 1] = p; let X be the sum of these variables, and µ be the
expectation of the sum. Then for any δ ∈ (0, 1], we have

Pr [X > (1 + δ)µ] < e−Ω(δ2µ)

Pr [X < (1− δ)µ] < e−Ω(δ2µ)

24

	Introduction
	Our Results
	Proof Overview
	Applications

	Preliminaries and Definitions
	Blockchain Protocols and Executions
	Blockchain Protocols
	Blockchain protocols in the ROM
	Nakamoto's Protocol

	Security of Blockchain Protocols
	Chain Growth
	Chain Quality
	Consistency
	Preliminaries from PSS16: Security of Nakamoto's Blockchain
	Liveness

	Defining Fairness
	The FruitChain Protocol
	Proof of the Main Theorem
	Additional Notation
	The Fruit Freshness Lemma
	Some simplifying assumptions
	Proof of Fruit Consistency
	Proof of Fruit Growth
	Proof of Fruit Fairness

	Appendix

