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Abstract. Side-channel attacks (SCAs) have been a realistic serious
threat to crypto devices. Therefore, evaluating the SCAs resilience of a
crypto device is important and necessary. The SCAs-secure evaluation
criteria includes the information theoretic metric and the security metric.
The former metric, i.e. mutual information (MI), measures the leakage
amount of a crypto device. However, because the real leakage distribu-
tion of a crypto device is unknown, the leakage evaluation is difficult.
Commonly, there are two ways to estimate the leakage distribution of a
device, i.e. non-parametric ones and parametric ones. The former may
bring a big error since the leakage model is not accurate. The latter
is more precise since it can profile the leakage model, but may be in-
feasible in practice. To combine the merits of the two estimation ways,
we bypass the direct estimation of the device’s leakage distribution, and
propose a non-profiling parametric estimation method. We analyze the
side-channel as a communication channel, and use the average MI of
the communication channel to estimate the side-channel MI. Besides, we
find that the channel capacity can furnish an upper bound of the leakage
amount of the device. Interestingly, based on the communication chan-
nel characteristic, we find that if we do consistency check for the channel
parameters, a leakage detection method can be developed. Furthermore,
the proposed method is capable of finding the Point-Of-Interests (POIs)
in leakage traces and introducing few leakage points that cannot be used
to mount SCAs. Finally, the experiments show the effectiveness of the
proposed methods about leakage evaluation and detection.

Keywords: side-channel leakage evaluation and detectioninformation
theoretic metriccommunication channelaverage mutual informationchan-
nel capacity

1 Introduction

Side-channel attacks (SCAs) aim to retrieve the secret information by analyzing
the physical leakage of a crypto device [3,16,20]. SCAs have been a serious threat
to crypto devices [4]. Hence, it is quite important to assess the SCAs resilience of
crypto devices, which will be beneficial to design leakage-resilient crypto devices.

Considerable efforts have been done to propose tools for side-channel evalu-
ation [11, 15, 17, 22, 25, 34, 35, 37], and two side-channel evaluation criteria were
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proposed [34], [35], i.e. the information theoretic metric and the security metric.
The information theoretic metric measures the leakage amount of a crypto algo-
rithm implementation in a device. The existing metrics contain signal-noise ratio
(SNR) [23], correlation coefficient [3], [14], mutual information (MI) [34], condi-
tional entropy [35], etc. The last two metrics are equivalent. Since MI has clearer
information theoretic meaning, it is usually used to measure the leakage amount
of a crypto device. Unfortunately, obtaining the real MI is difficult because the
real leakage distribution of a crypto device is generally unknown [13]. Estimation
methods should be used. There are two ways to estimate the leakage distribution,
i.e. non-parametric and parametric estimations. The first way is to select an ap-
proximate leakage model and use non-parametric methods (e.g. histogram and
kernel estimations [13], [1]) to estimate the leakage distribution of a crypto de-
vice. In many cases, non-parametric ones bring assumption errors [14]. The other
way is to estimate the leakage distribution of the device by parametric estima-
tions, such as Gaussian templates, regression-based models [14], [13], etc. In this
case, the concept of MI is replaced by perceived information (PI) [14], [13], [32].
Parametric ones are more precise, but they need a mass of leakage data to profile
the model, which may be impracticable in real scenarios.

In this paper, we propose a non-profiling parametric estimation method based
on communication theory. This paper views the side-channel as a communica-
tion channel and revisits MI in the channel model. The side-channel MI can be
viewed as the average MI of the communication channel. The method investi-
gates the distribution of the noise in the measured leakage and bypass estimating
the leakage distribution of the device directly. The proposed method produces
no assumption error and is more accurate than non-parametric methods. In ad-
dition, the channel capacity furnishes an upper bound of the leakage amount of
a device and can be viewed as another information theoretic metric. It is used
to provide a rough estimation of the leakage amount of a crypto device, and it
can characterize the leakage amount in the worst scenario a device may leak.
We investigate the side-channel leakage amount and its upper bound in both
Gaussian and non-Gaussian noise scenarios, respectively. It is favorable for a
profound security evaluation.

Interestingly, we also develop a leakage detection method based on the pa-
rameter estimations of the above communication channel. Leakage detection is
closely related to side-channel security assessment, and also draws great atten-
tion recent years. The target of leakage detection is to find leakage points in
side-channel leakage traces [12]. If leakage points contain secret information and
can be exploited to mount a side-channel attack, they are named as Point-Of-
Interests (POIs) [12]. A good leakage detection method should be able to find
POIs and produce few useless leakage points for attacking [12]. Current studies
on leakage detection are mostly based on T-test. These methods detect leakage
by checking if there exist significant differences between two measurement sets
through T-test [6, 10, 12, 18, 26, 33]. These two measurement sets corresponding
to two different inputs, one fixed input and the other random input. T-test is
suitable for the normal population and it at most considers the mean and vari-
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ance. Hence many useless leakage points for attacking are often obtained by the
T-test based detection methods. Besides, a leakage detection method based on
correlation coefficient is also proposed [12], which can find POIs, but it requires
the input to traverse all possible values. And a MI based method takes account of
sub key is also proposed [26]. In addition, some other researches develop leakage
detection methods without special requirements. For instance, a valid method
based on variance test in [31] detects the leakage by comparing the variance
of the mean of the measurements corresponding to different input. It can find
the POIs, but also produces a few non-POIs since it only employs the variance
information.

In this paper, we develop a leakage detection method based on communica-
tion channel characteristic. Since there is no useful signal at a non-leakage point,
the signal can be viewed as noise signal. Intuitively, the communication channel
established by the non-leakage signal should be variable-parameter channel. On
the contrary, the communication channel established by a leakage signal should
be constant parameter channel. Therefore, if we do consistency check for the
parameters, some estimated parameters of the communication channel by using
the data at a leakage point should be consistent estimators, while the parame-
ters estimated by the non-leakage points are not. In other words, a parameter
estimated by the leakage data should have a stronger consistency than the same
estimated parameter computed by the non-leakage data. The leakage detection
method needs no special requirements about the leakage acquisition and can find
the POIs. It only produces few leakage points that cannot be directly accessed
to mount an attack. Since the method employs the distribution of the leakage, it
outperforms the leakage detection method proposed in [31], which only employs
the variance information.

This paper is organized as follows: Section 2 is the preliminaries, Section 3
describes the proposed methods for leakage characterization, Section 4 shows
the proposed method for leakage detection, Section 5 shows some extended dis-
cussion, and finally the conclusion is given in Section 6.

2 Preliminaries

2.1 Notations

This paper uses capital letters to denote random variables, and their correspond-
ing observations are written as the lowercase letters. For a discrete random vari-
able, e.g. X, its K corresponding observations can be written as x = {xk} with
corresponding probabilities {pk = Pr(xk)}, where k = 1, . . . ,K, Pr(·) denotes
the probability of the discrete random variable. Similarly, this paper denotes p(·)
as the probability density function of a continuous random variable.

2.2 Finite Mixture Model, Gaussian Mixture Model and
Expectation-Maximization Algorithm

Let y be an observation of a L-dimensional continuous random variable Y . The
mixture-density function of a K-component finite mixture model (FMM) can be
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expressed as follows [7]:

p(y|Θ) =

K∑
k=1

αkpk(x|θk),

s.t. 0 ≤ αk ≤ 1,
K∑

k=1

αk = 1,

(1)

where Θ = (α1, α2, . . . , αK ; θ1, θ2, . . . , θK) is the parameter set, and pk(x|θk) is
the probability density function (pdf) of the k-th component.

It can be seen that a FMM is a convex combination of some pdfs. When K
components all follow the Gaussian distribution, this FMM is named as Gaussian
mixture model (GMM). GMM is the most commonly used FMM [5]. FMM,
including GMM, is a powerful and flexible statistical modeling tool which can be
used to process complex data. FMM is capable of approximating any distribution
with high accuracy [5], [29]. One of the most common related issue of FMMs is
the parameter estimation problem, i.e. the estimation of component parameters
[29]. A widely used solution is the expectation-maximization (EM) algorithm [9].

The EM algorithm is widely used to find maximum likelihood or posterior
estimates of parameters in a model which misses values or contains unobserved
latent variables [9]. The EM algorithm is an iterative method and each iteration
involves two steps, i.e. the expectation step (E-step) and the maximization step
(M-step). In the E-step, the algorithm evaluates the conditional expectation of
the log-likelihood function of complete data contains latent variables by using the
observed data and current estimates for the model parameters. In the M-step,
the maximization of the conditional expectation of the log-likelihood function
obtained in E-step is performed. The estimated parameters are then used in the
next E-step. The EM algorithm ensures the convergency after finite iterations
since the likelihood increases at each iteration. The computational complexity
of the EM algorithm for estimating GMM is O(Ln+Kn2), where n denotes the
number of samples.

3 Evaluating Side-Channel leakage based on
Communication Theory

3.1 Analyse Side-Channel as a Communication Channel

Let s∗ be a sub key used in a crypto device and T be a part of the plaintext
or ciphertext. Denote a sensitive variable as f(T, s∗), and the corresponding
measured leakage as Y . Then we have

Y = X + E = ψ(f(T, s∗)) + E, (2)

where X is the real leakage of a sensitive variable, ψ is a device-specific deter-
ministic leakage function and E is a zero mean additive noise independent of X.
Generally, X is a discrete random variable, and Y is continuous random variable
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Fig. 1: The communication channel model of side channel.

because E is a continuous random variable. If X is viewed as the input and Y is
viewed as the output, the side-channel can be viewed as a communication chan-
nel (Fig. 1). Then the side-channel leakage amount I(X,Y ) 1 can be seen as the
average MI of the communication channel. Furthermore, an upper bound of the
leakage amount of the crypto device can be estimated by calculating the commu-
nication channel capacity, since the communication channel theory reveals that
the capacity is thought as the maximum of the average MI of the channel [2].

Provided that the image set of the sensitive variable has K elements in total,
that is x = {xk}, {pk = Pr(xk)}, k = 1, . . . ,K, where x is the observation
set of X. The k-th input xk is passed through the channel and the output is
y = {xk}+ e, where y, e are the observations of Y and E, respectively. Then we
have

p(y) =

K∑
k=1

p(y|xk)pk, (3)

p(y, xk) = p(y|xk)pk . (4)

Furthermore, p(y|x) is the channel transition probability and characterizes the
channel. It can be seen that, in the communication channel, the MI does not
refer to the computation of the sensitive variable and the leakage model.

3.2 Analysis on the Gaussian Channel

Average MI of the Channel The pdf p(y) will be a 1-Dimensional Gaussian
mixture model (GMM) if E in Fig. 1 follows the Gaussian distribution. Assume
the noise variance is σ2, then we have

p(y|xk) = p(n)|n=y−xk
=

1√
2πσ

exp(− (y − xk)
2

2σ2
), (5)

and

p(y) =
K∑

k=1

p(y|xk)pk =
K∑

k=1

pk
1√
2πσ

exp(− (y − xk)
2

2σ2
) . (6)

1 In this paper, unless otherwise stated, the leakage amount of a device means the
leakage amount of a leakage point corresponding to a sensitive variable in an imple-
mentation of a crypto algorithm on the device.
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Given a set of observations {y1, . . . , yN}, and assume the noise variance is σ2,
then the estimated parameter set

{x1, . . . , xk, p1, . . . , pk;σ}

can be solved by the EM algorithm [9] through maximizing the likelihood func-

tion
∏N

n=1 p(yn), which is equivalent to maximize the log-likelihood function∑N
n=1 log(p(yn)). Expanding the log-likelihood function of the GMM as follows:

N∑
n=1

log(p(yn)) =
N∑

n=1

log

{
K∑

k=1

pk
exp(− (yn−xk)

2

2σ2 )
√
2πσ

}
. (7)

The estimated parameters of the log-likelihood function can be iteratively solved
by exploiting the EM algorithm. By setting the derivative of the likelihood w.r.t.
each parameter to zero, respectively, the E-step can be expressed as

γ̂
(t)
nk =

p(yn|xk)pk∑K
k=1 p(yn|xk)pk

, (8)

and the M-step can be expressed as

x̂
(t+1)
k =

∑N
n=1 γ̂

(t)
nkyn∑N

n=1 γ̂
(t)
nk

,

p̂
(t+1)
k =

1

N

N∑
n=1

γ̂
(t)
nk ,

σ̂(t+1) =

{
1

N

N∑
n=1

K∑
k=1

γ̂
(t)
nk(yn − xk)

2

}1/2

.

(9)

where n = 1, . . . , N , k = 1, . . . ,K, ·̂ denotes the estimation of a parameter, t
means the t-th iteration, and γnk means the probability that the k-th component
produces the observation yn. The iterations will be stopped when the evaluated
log-likelihood is converged.

When the parameters are estimated, the average MI I(X,Y ) can be easily
calculated. Then we have

I(X,Y ) = H(Y )−H(Y |X) = H(Y )−H(N), (10)

whereH(·) denotes the information entropy of a random variable. Unfortunately,
H(Y ) generally has no known closed-form solution because H(Y ) contains the
logarithm of the exponential functions sum [19]. However, the approximation
of H(Y ) can be obtained by some feasible measures like, using the observa-
tions y1, . . . , yN to estimate H(Y ), or acquiring the approximate value of H(Y )
through amount of samples generated by the known distribution of Y (e.g. Monte
Carlo sampling), and so on. In order to ensure the accuracy and computability,
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Fig. 2: The estimated and theoretical MI with Gaussian noise in a simulated
scenario.

the Taylor-series expansion method is applied to obtain an appropriate approxi-
mation of log(p(y)) [19]. Expanding log(p(y)) around xk of each component, the
R-order Taylor-series expansion of log(p(y)) can be denoted as follows:

log(p(y)) =

R∑
r=1

{
1

r!

dr

dy
{log(p(y))}(y − xk)

r|y=xk

}
+OR, (11)

where OR is the Lagrange remainder term. Therefore, we have

H(Y ) ≈ −
∫ +∞

−∞
p(y)

{
R∑

r=1

1

r!

dr

dy
{log(p(y))} (y − xk)

r|y=xk

}
dy . (12)

For example, if the 2nd-order Taylor-series expansion of log(p(y)) is selected (i.e.
R=2), the entropy of Y is approximated to

H(Y ) ≈ −
K∑

k=1

pk{[log(p(y))−
1

2
f(y)]|y=xk

}, (13)

where

f(y) =
1

p(y)
√
2πσ

K∑
i=1

pi[
1

p(y)
(y − xi)

d

dy
p(y)+

1

σ2
(y − xi)

2 − 1]exp(− (y − xi)
2

2σ2
) .

(14)

Note that the parameter K needs to be determined before performing the
EM algorithm. The selection of the component number is another important
issue of FMM. There are some results related to the selection of the optimum
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K [5,39,40], but in this paper this optimalK is the one which leads to the largest
MI. The selection of initial values also affects the result of the EM algorithm.
Therefore, it is necessary to perform EM algorithm with different initial values
several times till the average of MI converges.

Fig. 2 depicts a simulated experiment of leakage estimation of an unprotected
AES-128 implementation. We use a stochastic leakage model as the theoretical
leakage model, and use Gaussian noise as the noise. Two different leakage models,
Hamming Weight (HW) and Identification (ID) models, are used to estimate the
information amount by using kernel density estimators [30]. It can be seen that
the average MI of the channel are in close proximity to the theoretic MI. The
accuracy of the proposed method is similar to the parametric method which uses
the Gaussian template to profile the leakage model. The two methods perform
better than the non-parametric methods.

Interestingly, an upper bound of the average MI, which is termed as the
channel capacity [2], can be used to furnish a rough estimation of the leakage
amount of the device.

Channel Capacity The channel capacity C is the extremum which the average
MI could achieve, i.e. C satieties

C = max I(X,Y ) = max[H(Y )−H(N)] . (15)

C is the convex function of the distribution of x and it is determined by {xk}
and {pk}. In practical device, the power of output signal Y is always limited.
Therefore, based on information theory, the average MI will achieve the ultimate
value when {xk} follows the Gaussian distribution [38]. The unknown parameters
can also be obtained by the EM algorithm. The whole procedure is shown in the
following.

Firstly, we classify the observations corresponding to a same plaintext or
ciphertext (i.e. T ) into the same group. Suppose there are m groups and each
group has ni elements, where i = 1, . . . ,m. Denote the j-th observation in the
i-th group as yij . Since each yij is acquired individually, they are independent of
each other and satisfy (yij |xi, σ) ∼ ϕ(xi, σ

2), where j = 1, . . . , ni, i = 1, . . . ,m,
ϕ means a Gaussian distribution with mean xi and variance σ2. Assume that
xi ∼ ϕ(µ, τ2) and denote the unknown parameters as y = {yij , j = 1, . . . , ni; i =
1, . . . ,m}, z = (x1, . . . , xm), N =

∑m
i=1 ni and θ = (µ, log σ, log τ), then from

the Bayesian rules, we have

p(z, θ|y) = p(z, θ, y)/p(y) = p(θ|y, z)p(z|y),
p(z, θ, y) = p(θ)p(z|θ)p(y|z, θ) .

(16)

p(y) and p(z|y) are independent with θ, hence,

p(θ|y, z) ∝ p(z, θ|y) ∝ p(z, θ, y), (17)

and then
log(p(θ|y, z)) ∝ log(p(z, θ|y)) ∝ log(p(z, θ, y)) . (18)
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Since the prior distribution θ can be considered proportional to τ [24], then we
have

log(p(θ|y, z)) ∝−N log σ − (m− 1) log τ−

1

2τ2

m∑
i=1

(xi − µ)2 − 1

2σ2

m∑
i=1

ni∑
j=1

(xi − yij)
2 .

(19)

Consequently, z can be viewed as the latent variable and the EM algorithm
can be used. In the E-step, the expectation of Eq. (19) given by θ(t) and y,
Ez{log(p(θ|y, z))|θ(t), y}, where t means the t-th iterations, should be computed
firstly. Because the conjugate prior distribution of xi still is a Gaussian distri-
bution [24], we have

(xi|θ(t), y) ∼ ϕ(υ
(t)
i , ν

(t)
i ), (20)

where

υ
(t)
i = [

µ

(τ (t))2
+

∑ni

j=1 yij

(σ(t))2
]/[

1

(τ (t))2
+

ni
(σ(t))2

],

ν
(t)
i = [

1

(τ (t))2
+

ni
(σ(t))2

]−1,

(21)

The two formulas in Eq. (21) are the iterations in the E-step.
In the M-step, setting the derivative of Ez{log(p(θ|y, z))|θt, y} with respect

to µ, σ and τ to zero, respectively, and the iterations can be obtained as

µ̂(t+1) =
1

m

m∑
i=1

υ
(t)
i ,

σ̂(t+1) =

 1

n

m∑
i=1

ni∑
j=1

[(yij − υ
(t)
i )2 + ν

(t)
i ]


1/2

,

τ̂ (t+1) =

{
1

m− 1

m∑
i=1

(υ
(t)
i − µ(t+1))2 + ν

(t)
i

}1/2

.

(22)

Due to the independence of two Gaussian variable, the channel input X and
the channel noise N , the channel output Y is also a Gaussian variable with mean

µ and variance τ2 + σ2. At this time C = I(X,Y ) = 1
2 log(1 +

τ2

σ2 ). C just de-
scribes an upper bound of the leakage amount of a device. The average MI may
achieve C, or may not. By the way, m is the component number and needs not
to be selected.

Fig. 3 shows an example about an unprotected AES-128 implementation on
an 8-bit Micro-Controller Unit (MCU). The measured power leakage corresponds
to the 9th S-box output in the 1st round encryption. From the empirical perspec-
tive, it can be approximately considered that the noise in the measured signal
is an additive Gaussian noise. In Fig. 3, it can be observed that HW model
exploits more information than ID model, which is anastomotic with the attack
results (see Fig. 10, Appendix A). The average MI of the channel is better to
characterize the real power leakage amount of the device because it only relies
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Fig. 3: The estimated MI and channel capacity with Gaussian noise in a real
scenario.

on the measured leakage. Its result is about the same as the parametric method
which uses Gaussian template to profile the leakage model. And the channel
capacity provides an upper bound of the leakage of the device. Note that the
average MI closely approaches the capacity when the trace number increases. It
is because that both the real leakage of the device and the noise follow approxi-
mately Gaussian distribution. The result confirms that the approximation of the
Gaussian noise is reasonable.

3.3 Analysis on the Non-Gaussian Channel

The above analysis is under the assumption of Gaussian noise. Nevertheless, the
practical noise may be non-Gaussian with unknown closed-form. In this case, it
is difficult to estimate parameters of the channel. Fortunately, as mentioned be-
fore, any distribution can be approximated by GMM at any accuracy, hence the
distribution of a non-Gaussian noise can be characterized by a GMM. Provided
that using a 1-Dimensional GMM withM components to approximate the noise,
then p(e) can be written as

p(e) =
M∑

m=1

αm
1√
2πδm

exp(− e2

2δ2m
), (23)

where δ2m is the variance of the m-th component. When M = 1, p(e) reduces to
Gaussian noise. Eq. (3) can be rewritten as

p(y) =
K∑

k=1

pk

M∑
m=1

αm
1√
2πδm

exp(− (y − xk)
2

2δ2m
) . (24)
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Therefore, the log-likelihood function of the GMM is

log{
K∑

k=1

pk[

M∑
m=1

αm
1√
2πδm

exp(− (y − xk)
2

2δ2m
)]} . (25)

The unknown parameter set is

{x1, . . . , xk, p1, . . . , pk;α1, . . . , αm, δ1, . . . , δm},

where
∑K

k=1 pk = 1,
∑M

m=1 αm = 1, and ∀k,m, pk ≥ 0, αm ≥ 0. Similarly, this
estimation problem can be solved by the EM algorithm straightly. The E-step is

γ̂
(t)
nk =

p(yn|xk)pk∑K
k=1 p(yn|xk)pk

,

β̂(t)
nm =

∑K
k=1 pkαm

1√
2πδm

exp(− (y−xk)
2

2δ2m
)∑K

k=1 p(yn|xk)pk
,

(26)

and the M-step is

x̂
(t+1)
k =

∑N
n=1 γ̂

(t)
nkyn∑N

n=1 γ̂
(t)
nk

,

α̂(t+1)
m =

1

N

N∑
n=1

β̂(t)
nm,

p̂
(t+1)
k =

1

N

N∑
n=1

γ̂
(t)
nk ,

δ̂(t+1)
m =

{
1∑N

n=1 β̂
(t)
nm

N∑
n=1

β̂(t)
nm(yn − xk)

2

}1/2

,

(27)

where n = 1, . . . , N , k = 1, . . . ,K, m = 1, . . . ,M .
Afterwards, H(E) can be approximated by the Taylor-series expansion and

H(Y ) can be estimated by utilizing the observations y1, . . . , yN . At last, I(X,Y )
can be obtained. The optimum K and M are selected to make the value of MI
culminate.

Similarly, the channel capacity C can furnish a rough estimation of the leak-
age amount of the device. However, the closed-form solution of C is hard to be
obtained. Fortunately, a bound of C is much easier to be provided. Denote σ2

as the noise variance, C satisfies [28]

1

2
log(1 +

σ2
x

σ2
) ≤ C ≤ 1

2
log(

σ2 + σ2
x

σ2
e

) (28)

if the input power E(x2) ≤ σ2
x, where σ

2
e is the entropy power of noise and it

satisfies H(E) = 1
2 log(2πeσ

2
e). Therefore, the right term of Eq. (28) can be seen

as an upper bound of the average MI of the channel.
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Fig. 4: The estimated and theoretical MI with non-Gaussian noise in a simulated
scenario.

Fig. 4 depicts a simulated experiment of leakage estimation of an unprotected
AES-128 implementation with a HW leakage model. The noise in the leakage
signal is non-Gaussian. The distribution of the noise is a 3-component GMM.
HW and ID models are used to estimate the leakage amount by using kernel
density estimators. It can be seen that the average MI of the channel is close
to the theoretic MI. Its accuracy is higher than the parametric method which
uses Gaussian template to profile the leakage model. The proposed method is
also better than non-parametric methods. Interestingly, the MI estimated by
HW model performs better than the MI estimated by Gaussian template. It is
because the noise is non-Gaussian noise and the simulated leakage model is HW
model.

Fig. 5(a) describes an example of leakage estimation of an unprotected AES-
128 implementation on an 8-bit MCU. The measured electromagnetic emanation
leakage corresponds to the 9th S-box output of 1st round encryption and the noise
is non-Gaussian according to empirical observation. HW and ID models are used
to estimate the leakage amount. It can be observed that HW model outperforms
ID model, which is anastomotic with the attack results. And the MI profiled
by Gaussian template performs better than the non-parametric methods. Since
the noise is non-Gaussian noise, the average MI of the channel is higher than
the MI estimated by Gaussian template, and it is always lower than C with the
increasing trace number.

Fig. 5(b) depicts an example of an AES-128 implementation with boolean
masking on a smart card. It has a similar result as Fig. 3. The leakage have been
preprocessed [8] to make the 1st-order leakage information exposed. Due to the
inevitable loss of preprocessing [8], the estimate values of the leakage amount of
the device are all lower the device with unprotected implementations.

In conclusion, the proposed methods combine the broad applicability of non-
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Fig. 5: The estimated MI and channel capacity with non-Gaussian noise in real
scenarios: (a) an unprotected AES-128 implementation on 8-bit MCU; (b) a
protected AES-128 implementation on smart card.

parametric and the accuracy of parametric ways. And in practice, the average MI
and capacity of the communication channel can be efficiently estimated because
our analysis is base on the EM procedure, which is efficient as mentioned before.

4 Detecting Side-Channel Leakage Based on
Communication Theory and Consistency Check

Interestingly, we also develop a leakage detection method based on the commu-
nication channel characteristic. Since there is no useful signal at a non-leakage
point, it can be viewed as noise signal. Intuitively, the communication channel
established with the non-leakage signal should be a variable-parameter channel.
On the contrary, the communication channel established with a leakage signal
should be a constant parameter channel. Therefore, if we do consistency check
for the parameters, some estimated parameters of the communication channel
by using the data at a leakage point should be consistent estimators, while the
parameters estimated by the non-leakage points are not. In other words, a pa-
rameter estimated by the leakage data should have a stronger consistency than
the same estimated by the non-leakage data.

Based on this judgement, the analysis for computing the average MI and
capacity of the channel in Section 3.2 is also suitable for leakage detection. The
estimated parameters to check consistency can be σ in Eq. (9), or σ, µ, τ in Eq.
(22). The concept of consistency [24] is reviewed in the following.

Assume {Z1, . . . , Zn} is a sample of the population Z, θ ∈ Θ is the param-

eter in Z, and θ̂ = θ̂(Z1, . . . , Zn) is an estimation of θ. θ̂ is called a consistent
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estimator of θ, if ∀θ ∈ Θ, when n → ∞, θ̂ converges to θ with probability one,
i.e.

lim
n→∞

Pr{|θ̂ − θ| < ε} = 1, ∀ε > 0 . (29)

It is not easy to carry out the consistency check in practice. To ensure a strong
practical maneuverability of consistency check, an alternative scheme should
replace the consistency check. The scheme computes the standard deviation of
θ̂ in all iterations of the whole EM algorithm, and it assumes that the standard
deviation of θ̂ at a leakage point should have a much less standard deviation than
non-leakage points. It can reach a similar effect as consistency check because the
fluctuation of the values of θ̂ should be small if θ̂ converge to θ with probability
one.

Furthermore, to obtain a more robust result, the mean absolute deviation [36]

of θ̂ is recommended to replace the standard deviation in this paper. The form
of the mean absolute deviation of the samples in Z is

dn =
1

n

n∑
i=1

|Zi − Z̄|, (30)

where Z̄ = 1
n

∑n
i=1 Zi is the sample mean. Certainly, an empirical threshold is

set to judge whether there exists leakage at a sample point. If dn at a point is
lower than the threshold, the point is viewed as a leakage point.

Some practical experiments verified the effectiveness of the proposed method
(Figs. 6 and 7). The compared method is the variance detection technique [31],
which also has no special requirements about the leakage acquisition.

Note that, for all figures, the horizontal axis represents the time samples,
the vertical axis means the variance of the means of the traces with the same
input or dn of the estimator of τ in Eq. (22). In all figures, the dash line shows
the threshold. The points have a value greater than the threshold of the vari-
ance, or less than the threshold of dn, will be considered as leakage points. Fig.
6 shows the power leakage points of an unprotected AES-128 implementation
on an 8-bit MCU detected by the proposed method and the variance detection
technique [31], respectively. Fig. 7 depicts the power leakage points of an un-
protected AES-128 implementation on FPGA detected by using the proposed
method and the variance detection, respectively.

In Figs. 6 and 7, leakage points found by the two methods are almost ex-
actly the same as those found by correlation power analysis (CPA) (see Fig. 11,
Appendix A). These leakage points correspond to the 1st S-box output of the
MCU implementation or the XOR between the 1st S-box input and output of the
FPGA implementation. That is, leakage points detected by these methods are
POIs, which can be used to mount an attack, while the T-test based detection
methods often detect many useless leakage points for attacking [12]. In Figs. 6
and 7, the proposed method finds all POIs of CPA, but the compared method
does not. Moreover, the discrimination between POIs and other points in Fig.
6(a) is larger than Fig. 6(b), and the discrimination in Fig. 7(a) is also larger
than Fig. 7(b). Finally, to investigate anti-noise performance of the proposed
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Fig. 6: The leakage detection results of the proposed method and the variance
based method on an 8-bit MCU implementation (classifying traces according to
1st byte of the plain texts): (a) the proposed method (1,000 traces, SNR=+∞);
(b) the variance based method (1,000 traces, SNR=+∞); (c) the proposed
method (1,000 traces, SNR=30dB); (d) the variance based method (1,000 traces,
SNR=30dB).

method, some extra experiments are performed by adding noise to the original
signals. The results are shown in Figs. 6(c)(d), 7(c) and 7(d). It can be observed
that the proposed method still finds all POIs of CPA, but the compared method
lose some POIs. However, both the two methods will perform worse if the noise
continues to increase. In this case, increasing the number of leakage can coun-
teract the negative effects of the increased noise.
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Fig. 7: The leakage detection results of the proposed method and the variance
based method on a FPGA implementation (classifying traces according to 1st

byte of the cipher texts): (a) the proposed method (30,000 traces, SNR=+∞);
(b) the variance based method (30,000 traces, SNR=+∞); (c) the proposed
method (30,000 traces, SNR=80dB); (d) the variance based method (30,000
traces, SNR=80dB).

Fig. 8 shows the leakage points of the first round of the same FPGA im-
plementation by using the two methods, respectively. The proposed method
perform much better than the variance based method. A noteworthy exception
is that sometimes the leakage points of some bytes found by the two methods
may contain few POIs. For instance, in the last round of AES-128, the operation
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Fig. 8: The leakage detection results of the proposed method and the variance
based method on a FPGA implementation (classifying traces according to 1st

byte of the plain texts): (a) the proposed method (30,000 traces); (b) the variance
based method (30,000 traces).

“ShiftRows” will make the search of POIs of some bytes infeasible (see Fig. 12,
Appendix A).

Additionally, the method works well for detecting other types of leakage, e.g.
electromagnetic emission (Fig. 9). Moreover, the method cannot detect the POIs
of a masking implementation (e.g. a masked AES-128 implementation, see Fig.
13, Appendix A) since the mask makes the leakage change randomly, unless the
leakage have been preprocessed before detection (see Fig. 14, Appendix A). Fur-
thermore, similar results can be obtained if other parameters (e.g. σ in Eq. (9))
are used and they are no longer shown here.

Since the method employs the distribution of the leakage, it performs slight-
ly better than the leakage detection method based on variance test, which only
employs the variance information.The proposed leakage detection method is un-
der the assumption that the measured leakage has a Gaussian noise. Gaussian
noise make a communication channel have a minimum capacity [28], that is, the
proposed method can works even the device has the minimum bound of leakage
amount.

5 Discussion

5.1 Multiple Leakage Points Analysis

If there exists multiple leakage points in the measurements, the input becomes
an extended information source, and each leakage point corresponds to one com-
munication channel. The entropy of the input and the average MI will increase,
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Fig. 9: The electromagnetic emission leakage detection results of CPA, the pro-
posed method and the variance based method on a FPGA implementation (clas-
sifying traces according to 1st byte of the plain texts): (a) CPA (30,000 traces);
(b) the proposed method (30,000 traces); (c) the variance based method (30,000
traces).

which explains why multi-points SCAs outperform the single point SCAs [27]
from the view of information theory.

5.2 Leakage Profiling

It is also possible to perform leakage profiling if the key is known. Because γnk in
Eq. (8) means the probability that the k-th component produces the observation
yn, the leakage value corresponding to each T can be determined by utilizing
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some match algorithms, e.g. Hungary algorithm [21]. When the key is known,
the intermediate value is also known, hence the leakage model can be obtained.

5.3 Collision Attack

After determining the leakage value corresponds to each T by utilizing a match
algorithm, a novel collision attack can be developed to recover the key if the key
is unknown. Take AES-128 as an example, we can divide the whole plaintext or
ciphertext into 16 bytes and each byte corresponds to a T . If the leakage value
corresponds to each T is known, then the relations of all sub key are determined.
Just enumerating all possible value of a sub key, the master key can be recovered
by verifying the cipher-plain texts.

5.4 Noise Reduction

By the way, a preprocessing method can be developed to reduce the noise of the
measured leakage. After the estimation of the noise parameters in Eq. (9), Eq.
(22) or Eq. (27), the noise can be characterized and weakened. Moreover, SNR
can be estimated, too.

6 Conclusion

In this paper, we researched side-channel leakage evaluation and detection in a
communication channel model, and proposed non-profiling parametric estima-
tions to compute the leakage amount of a crypto device under different com-
munication channel models. We used the average MI to characterize the leakage
amount of a crypto device. Besides, we also found that the channel capacity
can be viewed as a rough evaluation of the upper bound of the leakage amount
of the device according to communication theory. Furthermore, the average MI
and the capacity of the channel both can be efficiently computed. Interestingly,
we also proposed a novel leakage detection method based on the communication
channel characteristic and the consistency check of channel parameters. In the
future, we will continue the research of the four byproducts mentioned in Sec-
tion 5, and investigate the leakage detection on the measured leakage of masking
implementations without the knowledge of masks.
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Appendix: Additional Figures
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Fig. 10: The guessing entropy of CPA and CEMA under HW and ID model on
an unprotected AES-128 implemented on an 8-bit MCU (the target intermediate
value is 9th S-box output of 1st round).

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time samples

C
o

rr
e

la
ti
o

n
 c

o
e

ff
ic

ie
n

t

(a)

0 500 1000 1500 2000 2500 3000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time samples

C
o

rr
e

la
ti
o

n
 c

o
e

ff
ic

ie
n

t

(b)

Fig. 11: POIs of an unprotected AES-128 implementation on MCU (target inter-
mediate value: 1st S-box output of 1st round) and FPGA (target intermediate
value: XOR between the 1st S-box input and output of the last round) found by
CPA: (a) MCU (1,000 traces); (b) FPGA (30,000 traces).
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Fig. 12: The leakage detection results of an unprotected AES-128 implementa-
tion on FPGA found by the proposed method and the variance based method
(classifying traces according to 2st bytes of the cipher texts): (a) the proposed
method (30,000 traces); (b) the variance based method (30,000 traces).
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Fig. 13: The leakage detection results of a masked AES-128 implementation on
a smart card found by the proposed method and the variance based method
(without preprocessing, and classifying traces according to 1st bytes of the plain
texts): (a) the proposed method (5,000 traces); (b) the variance based method
(5,000 traces).
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Fig. 14: POIs of a masked AES-128 implementation on a smart card found by the
proposed method and the variance based method (preprocessing and classifying
5,000 traces according to 1st bytes of the plain texts): (a) the proposed method;
(b) the variance based method.


