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Abstract—
We introduce secure channel injection (SCI) protocols, which

allow one party to insert a private message into another
party’s encrypted communications. We construct an efficient SCI
protocol for communications delivered over TLS, and use it
to realize anonymous proofs of account ownership for SMTP
servers. This allows alice@mail.com to prove ownership of some
email address @mail.com, without revealing “alice” to the verifier.
We show experimentally that our system works with standard
email server implementations as well as Gmail. We go on to
extend our basic SCI protocol to realize a “blind” certificate
authority: the account holder can obtain a valid X.509 certificate
binding alice@mail.com to her public key, if it can prove
ownership of some email address @mail.com. The authority never
learns which email account is used.

I. INTRODUCTION

In this paper we introduce and construct secure channel
injection (SCI) protocols. These enable one party, the client,
to securely allow another party, the proxy, to inject data into an
encrypted channel between the client and a server. During the
protocol execution, the client should learn nothing about the
injected data and the proxy should learn nothing about other
content of the encrypted stream.

To motivate SCI, consider the following scenario. The
owner of an email account alice@mail.com wishes to obtain a
certificate binding her email address to a public key. In existing
systems, she must reveal her identify to a certificate authority
(CA) service in order to prove ownership of the email address.
This has privacy implications for Alice, as she may not want
to trust the CA with her identity (c.f., [35]). For example, if
certificates are to be used with end-to-end private messaging
systems, there may be no reason a priori the CA should need to
know Alice’s exact identity. We call a CA blind if it can deliver
certificates after checking ownership of an identity, while never
learning the exact identity.

Unfortunately, no existing mechanisms allow building a
blind CA. Traditional CAs use proofs of ownership of email
(or other) accounts in the following way: the user, as prover,
submits an email address and the verifier sends an email
containing a random challenge to the address. Obtaining access
to the challenge proves ownership of the account. Anonymous
credential systems (e.g., [9], [38]), allow proving one has a
credential without revealing it, but these systems nevertheless
require a traditional registration step and proof of ownership.

We show how to build anonymous proof of account
ownership (PAO) that allow proving ownership of an existing
email account without revealing which account. To do so, we
introduce the more general tool of secure channel injection

(SCI). As mentioned, an SCI protocol allows a client and proxy
to jointly generate a sequence of encrypted messages sent to
some server, with the ability of the proxy to insert a private
message at a designated point in the sequence. In our proof
of ownership context, the server would be an authenticated
email service, and the injected message will be a challenge
inserted into an email. To complete the proof, the client can
later retrieve the challenge from the service using a separate
connection.

Our SCI construction targets protocols running over TLS,
which is the most widely used secure channel protocol. Recall
that TLS consists of a handshake that establishes a shared
secret, and then encrypts application-layer messages (SMTP
in our context) using a record layer protocol that uses an
authenticated encryption scheme.

We design special-purpose secure two-party computation
protocols that allow the client and proxy to efficiently compute
a TLS session with the server. For most of the session, the
proxy acts as a simple TCP-layer proxy that forwards messages
back and forth. The client negotiates a TLS session key directly
with the destination server. At some point in the stream,
however, the proxy must inject a message, and here the client
(which has the session key) and the proxy (which has the secret
message to inject) perform an interactive protocol to compute
the record layer encryption of the message. By exploiting the
cryptographic structure of the TLS record layer encryption
scheme, we end up with a protocol whose most expensive
step is a standard Yao [49] two-party protocol on a circuit
consisting of one to two AES computations (plus exclusive-
or operations). Direct use of Yao to perform the entire record
layer construction without our tricks would be prohibitively
expensive.

Our SCI construction can be used to perform anonymous
PAO. The proxy can be directed to connect to an authenticated
SMTP service, and then run the SCI to send an email from
the client’s email account to some other (possibly the same)
account from which the client can read received email. The
SCI injects into the body of the email a challenge, and the
client proves the email gets sent by obtaining the challenge
later and sending it back to the proxy.

We go on to show how to extend our basic SCI-based
anonymous PAO protocols for TLS to additionally yield as
output a cryptographic commitment by the client to the account
identity, i.e., the sending email address. This commitment can
be used in conjunction with the challenge in a subsequent step
to obtain a certificate from the proxy that binds the account
identity to a public key of the client’s choosing. Thus we
obtain the first construction of a blind CA: it checks a user’s



ownership of an email address and, if successful, generates a
signed X.509 certificate for them, without ever learning the
identity of the user. The identity provider (the email service)
need not be modified, and never even learns that they are being
used as an identity provider.

We implement a prototype of the functionalities above
and test it with various SMTP servers, showing that it is
fast enough for deployment.1 Running the client on a laptop
connected via a public wireless network to a proxy running
on EC2, the median time to complete a SCI-based anonymous
PAO is 1.6 seconds. More performance results are given in the
body.

In summary, our contributions include the following:

• We introduce the notion of secure channel injection and
show how to realize it efficiently in the case of TLS. Our
techniques can be adapted to other secure channels such
as SSH and IPsec.

• We use secure channel injection to build anonymous proof
of account ownership protocols for SMTP-STARTTLS.

• We show how to extend our protocols to enable the
construction of a blind CA that will generate a certificate
binding a public key to an account identifier only should
ownership of the account be proven, all without having
the CA learn which account was used.

II. OVERVIEW

In this paper we introduce and construct secure channel
injection (SCI) protocols. These enable one party, the client,
to securely allow another party, the proxy, to inject data into an
encrypted channel between the client and a server. The client
should learn nothing about the injected data and the proxy
should learn nothing about other content of the encrypted
stream. We believe SCI protocols to be of potentially broad
applicability in privacy-sensitive settings. We now illustrate
one example application: anonymous proof of account owner-
ship (PAO).

Proofs of account ownership. A conventional proof of email
ownership works as follows. The alleged owner of an email
address, say alice@gmail.com, is who we will refer to
as the prover. The prover tells a verifier her email address,
and in response the verifier challenges her by sending to
alice@gmail.com an email containing a random, unpre-
dictable challenge. The prover must recover this challenge
and submit it back to the verifier. If successful, the verifier
is convinced that the prover can, indeed, access the account
and presumably owns it. (Of course it could be anyone with
access to the email account, including rogue insider admins or
those who have compromised the account credentials.) Proofs
of email ownership are a primary form of authentication on
the web today and form a backstop in case of loss of other
credentials (e.g., a forgotten password).

Email is one example of a broader class of account own-
ership challenge-response protocols. Ownership of a domain
name is often proven by having the owner set a field of
the DNS record to a challenge value supplied by a verifier.
Ownership of web sites can be proven by adding a webpage
that contains a challenge value, and similar approaches work

1 We plan to make our implementation public and open source.

with Twitter and Facebook accounts [29]. Common to all
proofs of account ownership is the fact that the verifier learns
the identity of the prover.

Public-key registration. Proofs of account ownership have
become increasingly used by certificate authorities (CAs) to
verify ownership of an identity when registering a public
key in a public-key infrastructure (PKI). One example is
the Let’s Encrypt service [27], which provides free TLS
certificates to users that can prove ownership of the domain via
a DNS proof of ownership or web page proof of ownership.
Keybase.io signs PGP keys based on proofs of ownership of
social media accounts [29]. Traditional CAs also need to do
PAOs, e.g., proof ownership of the administrative email of
the domain to validate one’s ownership of a domain, before
issuing a certificate binding a public key to the domain. In
these contexts, the user sends her identity and public key
to the CA, the latter invokes a proof of ownership protocol,
and if the proof verifies then the CA provides the user with
an appropriate certificate. Importantly, the CA in all existing
systems learns the identity of the user.

Anonymous proofs of account ownership. The conventional
protocols discussed so far reveal to the verifier the identity of
the account owner. Sometimes revealing the specific identity
is important for security, for example if one needs to log users
and detect fraudulent requests. But in some settings the account
owner / prover may be unwilling to reveal their identity.
In the end-to-end encryption setting, privacy is an often
mentioned critique of certificate transparency mechanisms like
CONIKS [35]. Existing anonymous credential systems might
seem to solve this problem, but in fact current systems rely
on a trusted third party (TTP) to perform identity checks (via
conventional PAOs) and distribute pseudonyms to users. The
pseudonym can be used to request a certificate from a CA, who
checks the legitimacy of the pseudonym with the TTP [9], [25],
[38], [39]. However, these systems are vulnerable if the TTP
misbehaves.

We introduce the idea of anonymous proofs of account
ownership. Instead of proving that the account owner owns
a particular email address such as alice@gmail.com, the
verifier will be convinced that the prover owns some valid
email addresses at Gmail. To accomplish this we will need the
following from the service (Gmail in our example):

• The service exposes an authenticated API.

• That authenticated API allows submission of content that
can be read only by the account owner.

• The API is over an encrypted channel.

The second criteria turns out to be tricky, as API implementa-
tions often have subtleties or side-effects that might undermine
a anonymous PAO scheme. For example, while in theory one
could use as target service sites like Facebook and Twitter, their
APIs are often insufficiently understood to ensure security.

Anonymous PAO needs to provide validity and anonymity.
The first asks that at the conclusion of the protocol, it should
not be possible for a prover to convince the verifier if in fact
the prover does not have the ability to log into the service
with a valid account. Anonymity requires that the verifier not
be able to identify which account was involved in the API
requests.



E(K,Mr), ..., E(K,M∗), ..., E(K,M1)
Client Server

K K
Proxy

Fig. 1: A high level view of SCI.

In some contexts we might want an additional property that
we call service obliviousness. This is achieved if the service
cannot detect that a particular API access was used to perform
a proof of ownership.

We will also show how to use anonymous PAOs to build
a blind CA service that can verify a user’s ownership of an
account, and then sign an X.509 certificate binding the user’s
public key to the account — without the CA learning the
account or public key of the user.

Secure channel injection. To build an anonymous PAO and
blind CA, we will develop an underlying primitive that we
refer to as secure channel injection. The idea is to allow
a party to inject a (relatively) small amount of information
into a secure connection between a client and server. In the
ownership proof context, the client will be the prover, the
server the authenticated service, and the verifier will be the
party injecting data. In our realizations the latter will end up
being a specialized proxy that relays traffic between the prover
and the service. While we only explore use of SCI protocols
in the context of anonymous PAOs, other applications might
surface in future work.

III. SECURE CHANNEL INJECTION

For the purposes of description it suffices to give a
simplified view of secure channel (SC) protocols. Let SC
consist of a key exchange phase followed by transmitting r
ciphertexts E(K,M1), . . . , E(K,Mr) from the client to the
server encrypted under a symmetric encryption algorithm E
and session key K, regardless of whether it is stateful or not.

A secure channel injection (SCI) protocol is parameterized
by a secure channel protocol SC, a target message index
t ∈ [1..r], and an injection template Mt. The target index
t indicates which client-to-server message will have content
injected by the proxy. The template Mt = Mp

t ‖M̃‖Ms
t , where

M̃ is a placeholder for an injected message, and Mp
t and Ms

t
are the template prefix and suffix respectively. Mt specifies
the injected message as well as what data format the injected
content should be. We refer to M∗ as the injected message.
We assume that SC is such that computing the messages
Mt+1, . . . ,Mr following the injected message can be done
without knowing M∗. A SCI protocol is then defined by by
client and proxy algorithms that we denote by Pcl and Ppr,
respectively.

An SCI protocol SCI is correct if execution of the client
and proxy with a server implementing SC results in the
transcript M1, . . . ,M

p
t ‖M∗‖Ms

t , . . . ,Mr observed by the SC
server.

To make this concrete, our implementation later targets
SC being TLS (version number 1.1 or greater), and E being
the TLS record layer MAC-Encode-Encrypt construction with
HMAC-SHA256 and AES-CBC.

Threat model. In terms of security, an SCI protocol should
achieve four basic security goals:

(1) Injection secrecy: The client cannot learn M∗ during the
protocol interactions.2

(2) Transcript privacy: The proxy does not learn anything
about messages other than M∗.

(3) Transcript integrity: The proxy should not be able to
modify parts of the message transcript besides M∗.

(4) Server obliviousness: The server cannot distinguish an
SCI execution from a standard execution of a client.

Achieving these security properties will only be possible
in the case that the service, client, and proxy do not pairwise
collude. If the service and client collude, then injection
secrecy is impossible. If the service and proxy collude, then
transcript privacy, transcript integrity, and server obliviousness
are impossible. If the client and proxy collude, the whole
setting becomes meaningless.

We will target protocols that achieve the first three security
goals even when one of the parties, either the client or
the proxy is malicious, meaning they can deviate arbitrarily
from the protocol execution. We also consider a weaker
goal in which the client or the proxy is an honest-but-
curious adversary, i.e. all parties faithfully execute the Pcl and
Ppr protocols, but then inspect the transcripts to learn extra
information about the private inputs or outputs. For example,
the client might try to violate injection secrecy by studying the
transcript of its interactions with the proxy. Likewise the proxy
might try to violate transcript privacy using the transcript of
its interactions with the client and server.

Finally, we model the server as an honest-but-curious
adversary, meaning it might try to violate server obliviousness
by inspecting the sequence of packets sent to and from it and
the sequence of plaintext messages M1, . . . ,Mr, but it won’t
maliciously deviate from its normal functionality. We assume
that the proxy IP does not, by itself, suffice to violate server
obliviousness.

We assume each party can only observe their local network
traffic, that is: the server cannot access the network transcripts
between the client and the proxy, while the client cannot access
the network transcripts between the proxy and the server.

Other types of attacks that are not directly related to the
goals of adversaries as mentioned above, such as denial-of-
service attacks, are not taken into account. We also don’t yet
consider implementation-specific attacks such as vulnerabili-
ties in the proxy software.

IV. SCI FOR TLS
As mentioned in §III, we focus on implementing SCI using

TLS as the underlying communication protocol. In this case,
E(K,M) represents a TLS record layer encryption. While
there are several options supported in the wild, we focus
on the currently commonly used one in TLS 1.1 and 1.2:
AES using CBC with HMAC SHA-256 in the MAC-Encode-
Encrypt mode of operation. As in Figure 2, we need to design
a protocol that allows two parties to jointly compute such a

2In our applications of SCI, the client will eventually learn M∗ by
retrieving it later from the server. But it should not be learned before.
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Fig. 2: Record construction procedures for a message M in
TLS (version > 1.1). HDR is a 5-byte TLS record header,
and SQN is a 8-byte sequence number. IV has a fixed size
of 16-byte. The size of the HMAC tag depends on the hash
functions being used in HMAC. Before AES encryption, the
record will be padded to a multiple of 16 bytes [15], [16].

TLS record, with one party providing the TLS session key and
part of the message, and the other one providing the rest of
the message.

One solution is to directly use secure multi-party com-
putation (SMC) to let two parties compute the TLS record.
However, using common SMC techniques, such as Yao’s
protocol [49] or fully homomorphic encryption [21], would
be prohibitively expensive due to the complexity of the TLS
record construction, which involves computations for HMAC,
AES, and record padding.

We can do better by taking advantage of the way TLS
encryption works. Our more efficient protocol, named SCI-
TLS, boils down to having to use general-purpose SMC only
on invocations of AES. In this section, we first introduce two
protocols called 2P-HMAC and 2P-CBC, and design SCI-TLS
based on the two protocols. Then, we analyze the security of
the designed protocols.

A. 2P-HMAC and 2P-CBC
Assume the client Cl holds keys Khmac and Kaes as well

as an injection template prefix Mp
t and suffix Ms

t . A proxy
holds the injected message M∗. We will show how they can
jointly compute HMAC with the first key over Mp

t ‖M∗‖Ms
t

and CBC mode with the second key over the same composed
message. We denote the HMAC chunk size by d (in bits), and
assume CBC mode uses a blockcipher whose block size in bits
we denote by n. We require that Mp

t is a multiple of d bits in
length during HMAC computation (or n bits during CBC), so
is M∗.

2P-HMAC. Recall that HMAC is a pseudorandom function
(PRF) constructed on top of a hash function that we denote H .
We assume that H is a Merkle-Damgård based hash function,
which aligns with the hashes used in TLS.3 We take advantage
of the fact that one can outsource computation of HMAC
over portions of messages without revealing other parts of the
message or the key.

Let f : {0, 1}v × {0, 1}d → {0, 1}v be the compression
function underlying H . It accepts messages of length d bits and

3Our protocol here will not work with SHA-3 whose compression
function is not secure (e.g, Keccak, who uses sponge construction [6]).
This is related to so-called mid-game attacks [10].

Cl: Khmac,M
p
t ,M

s
t Pr: M∗

s0 = f(IV,Khmac ⊕ ipad)

s1 = f+(s0,M
p
t )

s1−−−→ s2 = f+(s1,M
∗)

s2←−−−
y = f+(s2,M

s
t ‖PadH`)

Output H
(
(Khmac⊕opad)‖y

)
Fig. 3: The 2P-HMAC protocol. The value ` is the length of
Mp
t ‖M∗‖Ms

t and we assume this is known to both parties
ahead of time.

a string called the chaining variable of length v bits and outputs
an v-bit value. For any string S ∈ {0, 1}v and string M =
M1, . . . ,Mm where each Mi is d bits long, we let f+(S,M)
be defined recursively by Si = f(Si−1,Mi) for i = 1 to m and
S0 = S. Finally f+(S,M) = Sm. For the hash functions of
interest one appends to a message M a padding string PadH|M |
so that M‖PadH|M | is a multiple of d bits. For SHA-256 for
example PadH` = 10r‖〈`〉64 where the last part is a 64-bit
encoding of ` and r is defined to produce enough zeros to
make `+r+65 a multiple of d. Finally the full hash is defined
as H(M) = f+(IV,M‖PadH|M |).

HMAC on a key K and message M is built using H as
follows:

HMAC(K,M) = H
(
(K ⊕ opad) ‖H((K ⊕ ipad)‖M)

)
where ipad and opad are the inner and outer padding constants
each of length d bits [31]. In our usage |K| < d, so one first
pads it with zero bits to get a d-bit string before applying the
pad constants.

To perform a joint computation of HMAC(Khmac,M
p
t ‖M∗‖Ms

t )
the parties follow the protocol detailed in Figure 3.
We denote an execution of this protocol by
2P-HMAC((Khmac,M

p
t ,M

s
t ),M∗). We will discuss the

security of this protocol later in this section.

2P-CBC. We now turn to how to jointly compute a CBC
encryption over Mp

t ‖M∗‖Ms
t . For an n-bit string S and a

string M consisting of m n-bit blocks M1, . . . ,Mm, we define
CBC(Kaes, S,M) to output C1, . . . , Cm where C0 = S and
Ci = AES(Kaes,Mi ⊕ Ci−1) for i = 1 to m. Then CBC
mode on message M is defined by choosing a random n-bit IV
and computing CBC(Kaes, IV,M‖PadC|M |) where PadC|M |
is a padding string defined solely by n and the length |M |. It
ensures that M‖PadC|M | is a multiple of n bits in length.

To jointly compute CBC mode, the client picks an IV
and computes CBC over the template prefix Mp

t and suffix
Ms
t , which we assume must have length a multiple of n bits.

Let the prefix of the ciphertext be C0, . . . , Cp. Then the two
parties can use a general-purpose SMC protocol to compute
CBC(Kaes, Cp,M

∗) where Kaes and Cp are the private inputs
of Cl and M∗ is the private input of Pr. Again we assume
|M∗| = j ·n for some small integer j. The output of the SMC
is Cp+1, . . . , Cp+j , Cp+j . If j > 2, the first j − 1 blocks are
given to the proxy and the last is given to the client. Having
Cp+j allows the client to compute the suffix of the encryption
locally via CBC(Kaes, Cp+j ,M

s
t ). If j = 1, the proxy cannot

send Cp+1 back to the client because the client can easily
recover M∗ based on her knowledge of Cp and Kaes. In this
case, we can simply require |Ms

t | = 0; that is, |M∗| is the last
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Fig. 4: An example of injecting a 32-byte M∗. The messages
with dots are input by the proxy, and the other message are
provided by the client. The numbers under each messages are
the message sizes (in bytes) and the number of AES blocks.

block of the plaintext. Then, the proxy doesn’t need to send
back Cp+1.

We let 2P-CBC((Kaes,M
p
t ,M

s
t ),M∗) denote the just

described protocol.

B. The SCI-TLS Protocol
We are now in position to describe our solution for SCI

with TLS where the proxy wants to inject a message at some
designated point into the stream of encrypted client-to-server
message data. Let P1, . . . , P

∗
t , . . . , Pr be that sequence of TLS

plaintext fragments sent from the client to the server in separate
record layer encryptions, with P ∗t representing the fragment
within which the proxy will inject its private message M∗.
The corresponding plaintext of P ∗t is Mp

t ‖M∗‖Ms
t , that both

|Mp
t |+13 ·8 and |M∗| are multiples of both d (512 bits) and n

(128 bits). The value 13 comes from the 13-byte header (SQN
and HDR) during HMAC.

Some applications may want to inject less than d bits of
data, and thus are not able to satisfy the requirements that Mp

t
ends on an HMAC block boundary and that |M∗| is a multiple
of d. To alleviate alignment problems and make the injection
more flexible, we let Mp

t = Mp1
t ‖M

p2
t where Mp2

t can be
shared with the proxy. Then, the |M∗| can be a multiple of
n. For example, to inject a 128-bit M∗, |Mp2

t | can be 384
bits. In fact, in several of our applications both Mp

t and Ms
t

can be made public to the proxy and only other TLS plaintext
fragments must be kept secret.

SCI-TLS proceeds by having the proxy act as a TCP-layer
proxy for the TLS handshake between the client and the server
and for the first t− 1 TLS record layer fragments. Let the
client-to-server session keys be Khmac for HMAC and Kaes

for AES. To send P ∗t the client constructs the message prefix
SQN‖HDR‖Mp

t . (Recall from Figure 2 that TLS records
include a header and sequence number.) Then Cl and Pr
execute

2P-HMAC((Khmac, SQN‖HDR‖Mp1
t ,Ms

t ),Mp2
t ‖M∗)

to compute the HMAC tag T . Next, they execute

2P-CBC((Kaes,M
p
t ,M

s
t ‖T ),M∗)

to jointly compute the record layer ciphertext if |M∗| is greater
than 128 bits. An example is shown in Figure 4. If |M∗| is
128 bits (corresponding to j = 1 in §IV-A), they execute

2P-CBC((Kaes,M
p
t ,M

s
t ),M∗‖T )

where |Ms
t | = 0 and T is shared with the proxy by the client.

We omit paddings in the above descriptions. That ciphertext

(with HDR being added) then gets sent by the proxy. Finally
the proxy can resume being a TCP-layer proxy for subsequent
record layer encryptions.

C. Security Analysis
Recall that we seek injection secrecy, transcript privacy,

transcript integrity, and server obliviousness. We discuss each
in turn, assuming 2P-CBC uses a maliciously secure SMC.
We discuss honest-but-curious SMC at the end of the section.

Injection secrecy. Can a malicious client learn anything about
the injected message M∗? During 2P-HMAC the client sends
the proxy a chaining variable s1 of its choosing and receives
back the value s2 = f+(s1,M

∗). When f is a fixed-input
length RO, results of [11] imply that f+ on a fixed number of
blocks is indifferentiable from a RO. This implies that given s1
and s2, the malicious client can determine M∗ only via queries
to a random oracle and so one gets security proportional up to
q/2µ for q queries and where µ = − log maxX Pr[M∗ = X]
is the min-entropy of the distribution from which M∗ is drawn.
Looking ahead, we will ensure in applications that µ ≥ 128.

With respect to 2P-CBC, the SMC protocol, if it is secure
against malicious clients, leaks no information about M∗ other
than what is implied by the output. But the client’s output does
not include the ciphertext blocks associated with M∗, meaning
the output of the SMC leaks nothing about M∗ (see §IV-A
and §IV-B). A malicious client can submit Cp ⊕∆ for some
fixed offset ∆, thereby changing the value M∗ received by
the server. This opens up the possibility that the client could
attempt to learn something about M∗ by observing how the
remote server reacts to received messages. In applications M∗
will be a data value, but we will anyway take care to ensure
such malicious modifications do not give rise to side-channels.

Transcript privacy. All plaintext fragments beyond P ∗r in
SCI-TLS are protected by the TLS record layer and so the
proxy cannot learn anything about them assuming secure TLS
implementations are being used on the client and server.
That leaves the client’s portions Mp

t and Ms
t of P ∗r . The

2P-HMAC protocol sends the proxy s1 = f+(f(IV,Khmac⊕
ipad),Mp

t ) but Khmac is a uniform secret unknown to the
proxy. Assuming f is a random oracle, s1 leaks nothing
about Mp

t with probability about q/2|Khmac| for q queries.
The 2P-CBC, if using a maliciously secure SMC, does not
leak anything about the n bits of Ms

t — the output Cp+j+1

eventually seen by the proxy is ciphertext.

Transcript integrity. At first glance, 2P-HMAC is susceptible
to a kind of length extension attack [2], since we allow the
proxy to append an arbitrary message. However, the client has
indirect control over the length of M∗, because it computes
the final value over PadH which contains the length of the
total message. For 2P-CBC, the length of blocks is fixed and
the client can abort if the proxy attempts to deviate from
this. If the proxy inserts different data into 2P-HMAC than
2P-CBC (e.g., the proxy inputs an arbitrary T in 2P-HMAC
when |M∗| is 16 bytes), the server will reject because the
HMAC will not verify properly.

Server obliviousness. We do not always need server oblivi-
ousness, but some applications may require it and so we strive
to achieve it. The SCI-TLS protocol effectively implements a
TLS client (jointly computed by the client and proxy). A server



could, however, attempt to fingerprint this implementation,
for example if we used esoteric ciphersuites that lead to
fingerprintable handshake messages. This is a challenge for
our implementation, and we took care to mimic a popular TLS
implementations (Firefox [46]).

Traffic analysis (e.g., timing of messages) could be used by
the server to try to detect SCI-TLS, and this particularly seems
dangerous given the more complex interactive computation of
records. We provide a preliminary investigation into this issue
using our prototype implementation, see §VII.

The IP address of the proxy may cast suspicion on the
connection, either because it is known to be associated with a
SCI-TLS service or because the client has not logged in from
this location previously. Deployment would need to obtain new
IPs for proxies and prevent enumeration (e.g., by spawning
new proxies on demand). To deal with the second issue, one
would have to ensure at least that the IPs are plausible (e.g.,
not from a strange country).

Honest-but-curious SMC. Rather than a maliciously secure
SMC, one might want to use an honest-but-curious SMC
protocol within 2P-CBC. This means it is only secure against
attackers that follow the protocol. Accordingly, a malicious
client could violate injection secrecy or a malicious server
could violate transcript privacy (though just for Mp

t and Ms
t ).

The other security properties seem to hold regardless in the
presence of malicious attackers despite using an honest-but-
curious SMC.

D. Other Secure Channels
We focused above on TLS using a common record layer

encryption scheme. Our techniques can be adapted to some
other cipher suites and protocols, but not others.

In the first category, a popular approach to building
authenticated encryption is to first encrypt the plaintext and
then authenticate it using a MAC. If one uses CTR mode
encryption (or any other stream cipher or stream-cipher like
mode) followed by HMAC, one can build a very efficient SCI
protocol. The client can just send the proxy the key stream
needed to encrypt the injected message. Then, the parties can
use 2P-HMAC to jointly compute the tag value. This would
be very efficient. Unfortunately TLS does not have a cipher
suite standardized using CTR mode plus HMAC. IPsec does
support it.

If one uses CBC mode instead of CTR mode (as done
in SSH [50]), then one could use 2P-CBC followed by
2P-HMAC to perform the injection.

There are a number of in-use authenticated encryption
schemes such as GCM [34], ChaCha20/Poly1305 [37], and
CCM [33] for which we do not yet know how to perform
efficient SCI. Common to them is the use of encrypt-then-
MAC type modes with a “weaker” MAC such as CBC-
MAC or universal-hashing. These unfortunately do not seem
secure should one try to split computation of the MAC as
in 2P-HMAC, in particular the client might be able to violate
injection secrecy. The reason is that their compression function
analogue does not have any cryptographic strength to a party
that knows the secret key. We leave finding efficient SCI
protocols for such schemes as an open problem.

V. ANONYMOUS PAOS AND BLIND

CERTIFICATE AUTHORITIES

We introduce anonymous proofs of account
ownership (PAOs) in this section. Unlike conventional
PAOs in which a verifier sends a challenge in a message to a
prover’s account, our anonymous PAO realizations will instead
require the prover to send an SCI-injected challenge message
using her account. The challenge message can be sent to any
location only accessible to the prover who can then retrieve
the challenge and send it to the verifier. Assuming the server
authenticates message requests, this will prove ownership of
an account.

We then show how to extend our SMTP anonymous PAO
to build a blind certificate authority (CA) service. A blind
CA can verify a person’s ownership of an email account
and then sign an X.509 certificate for the user’s public
key. The certificate will bind the public key to the email
account. Unlike conventional CAs, ours will be blind: the
CA doesn’t learn the identity or public key of the user.
The certificate can be later used for, e.g., secure end-to-end
encryption for email or messaging. Or it can be used within
an anonymous credential system [9], [25], [38]. We emphasize
that in existing anonymous credential systems, users always
must reveal themselves during registration.

We focus on one application layer protocol, SMTP, and
briefly discuss challenges to working with other target proto-
cols towards the end of the section.

A. SMTP with STARTTLS
Our protocol is intimately tied to the workings of SMTP

implementations, so we first discuss the workflow of sending
an email in SMTP-STARTTLS. We here focus on PLAIN as
the target authentication mechanism, which is the most widely
used authentication mechanism as reported by [26]. To start
a TLS-protected SMTP session, a client first issues a EHLO
command in cleartext to check if the target SMTP server
supports STARTTLS, and sends a STARTTLS command to
start a TLS connection if the server does. Then, the client will
send an AUTH PLAIN user password command to the
server, and the username and password are BASE64-encoded.
If the authentication is successful, the client further sends
MAIL and RCPT commands to set the email addresses of
the sender and the recipient respectively, followed by a DATA
command to notify the server the start of email transactions.
Finally this is followed by the email content. After building the
TLS connection, the four commands (AUTH, MAIL, RCPT, and
DATA) are mandatory, and must be sent in order to successfully
send an email, according to RFC 5321 [30]. Other commands
in SMTP are optional during the SMTP session. Finally, the
client can send the QUIT command to finish the session.

The SMTP server might support the PIPELINING exten-
sion. If the PIPELINING extension is enabled, a user can send
a group of commands in a single message without waiting for
the responses from the server.

B. Requirements for SMTP Servers
We assume the target SMTP server is correctly configured

as a closed relay to avoid being abused for spamming (e.g., it
rejects emails from local users with incorrect or spoofed sender
addresses). Thus only authenticated users can send email using
the SMTP server. Also we assume the server follows RFC
standards and best practices [18], [32], [48].



In order to run blind CA successfully, it’s important for
the CA to determine if: (1) the server echos back received
commands to the client — this would immediately break
injection secrecy; (2) if the server supports the PIPELINING
extension; and (3) if the server is RFC-compliant in terms of
how it respond to pipelined commands.

One can check if (1) holds by sending an invalid command
(such as “AAA”) to the target server and seeing if the
response contains the invalid command. For (2), one can
simply send a EHLO command to check the server’s supported
extensions. For (3), the CA can send a sequence of EHLO
commands in one message and count the number of responses.
According to RFC, the server should send responses for each
command separately. In some cases, one can also obtain further
information about the service by issuing a HELP command to
determine the SMTP software version, but this is not always
available due to security concerns by administrators.

To understand how stringent these requirements are, we in-
vestigated the behavior of 150 popular SMTP servers (support-
ing STARTTLS) from public lists available on the Internet [1],
[19]. They appear in a wide variety of ISPs and email services.
Using a lightweight SMTP client, we probed each server to
determine if they satisfy the three requirements above.

We find only 11 of 150 SMTP servers echo back com-
mands, making the rest potentially suitable for use with
our protocol. We also discovered that all 150 servers use
sendmail [42]. We find 61 (41%) of 150 SMTP servers do not
support pipelining, which suggests that disabling pipelining is
a common configuration in the real world. Though pipelining
can reduce SMTP transaction time, spammers can leverage it to
send bulk messages without respecting the response codes, and
thus overwhelm the SMTP server [47]. That is one possible
reason for disabling pipelining. In those SMTP servers that
support pipelining, 51 of them are RFC-compliant.

Overall, we find 112 SMTP servers (75% of those exam-
ined) meet our requirements, including popular services that
have a large user base: Gmail, Outlook, Hotmail, Mail.com,
etc. In deployments of our protocol one would need to perform
similar scans before use to ensure our assumptions hold. We
will release a tool with our prototype to help to determine if
a SMTP server can be used with anonymous PAOs or blind
CAs.

C. Anonymous PAO for SMTP
We now describe how to use our SCI-TLS protocol to

perform an anonymous PAO for SMTP-based services. One
can prove to the verifier that she owns an email account from a
certain service, without disclosing the exact email address. The
three parties in this case are: (1) a prover who owns an email
account user@domain.com; (2) the service domain.com
that administers user@domain.com; and (3) a verifier that
will check the prover’s ownership of the email address. We
assume for simplicity that the verifier is synonymous with
the proxy we will use for SCI. The SCI client is the prover,
and the server is the service. We also assume that the client
might communicate with the proxy through an anonymous
or pseudonymous channel, such as Tor and public wireless
networks, to achieve IP anonymity.

SCI-based anonymous PAO. The setup is shown in Figure 5:
the prover runs a modified SMTP client, and uses SMTP over

Prover Verifier Service
(SMTP client) (Proxy) (SMTP server)

TLS handshakes

EHLO, AUTH, MAIL, RCPT, DATA

Email

SCI-TLS Email + challenge

Fig. 5: Basic setup for SMTP-based PAO

Fig. 6: A screenshot of the message template for SMTP PAOs
and the challenge (red rectangle). We only show a partial
message template to save space.

TLS to interact with the private SMTP server of domain.com
via a proxy managed by the verifier. The proxy is responsible
for determining the address of smtp.domain.com, e.g.,
via DNS, and by our assumptions above this is sufficient to
uniquely identify the server as only accepting authenticated
clients for domain.com. The goal will be to send an email
from user@domain.com to an email account accessible
to the prover4, with a body that contains a secret challenge
injected by the proxy.

The prover uses the modified SMTP client to start
a SMTP (over TLS) session to the SMTP server of
domain.com. Most of the SMTP messages are sent in
separate TLS fragments because of the interactive nature of
SMTP, including the sender and recipient. So the client signs
into the server with the user’s account, and sets the necessary
information (recipient address, subject, etc.). Immediately
following the DATA flow, the body of the message must be
sent. For this the client and proxy use a shared template that
specifies the location of the challenge in the body and its
format (e.g., the challenge should be a certain-length string
of random ASCII characters).

The TLS fragment containing the content is handled via
our SCI-TLS injection protocol; this is the P ∗t message using
the notation from §IV. The resulting TLS record will be sent
to the server by the verifier’s proxy, and after this the client
can send the QUIT command to end the session. Later, the
prover checks the recipient’s email to find the challenge, and
reveals it to the verifier to complete the proof.

To use the target SMTP server to send emails, the prover
must have a registered email account and be authenticated.
The fact that she is able to send the email and obtain the
challenge later proves ownership of some email account from
domain.com. SCI-TLS injection secrecy plus requirements
on the SMTP server ensures the prover can’t cheat by learning
the challenge via the protocol execution. Transcript privacy

4One could have the email sent to user@domain.com, in fact.



ensures that the sender and recipient of the email are hidden
from the proxy.

Challenge steganography. Recall that one of our security
goals is service obliviousness. This isn’t always important, but
could be in some settings (see our example below). Assuming
that SCI-TLS is server oblivious, meaning it isn’t uniquely
identifiable as such, what remains is to ensure that injected
messages are not detectable as PAOs. This is fundamentally a
task of steganography, but we are aided here by the fact that
challenges can be relatively short and the rest of the message
can even be hand-crafted.

We designed various example message templates that can
be used for hiding a challenge. For example, in SMTP-based
PAO, the message template can be an email that contains a
public key or encrypted files (PDF, zip file, etc.); It is easy
to embed a short random-string challenge in the template, by
simply replacing a portion of the random string with the chal-
lenge. In our PAO prototypes, we build a rudimentary template
generator that can be easily used to generate new templates,
based on given parameters. One example of generated message
template is shown in Figure 6. That said, good steganography
is tricky and future work could help build better message
template generation tools.

Example use case: whistleblowing. This work was originally
motivated by the problem of verifying a whistleblower’s access
to an organization while communicating electronically with a
journalist. This is a situation in which service obliviousness
is paramount: after a leak there may be an investigation in
order to identify the whistleblower. While listening to the story
from a whistleblower, a journalist may want to have additional
information that can be used to verify the identity of the
whistleblower. As for the whistleblower, she may also want
to provide the necessary information that helps to convince
the journalist of her story; but no information should be
linked to, or can be used to discover, her identity. Usually,
an employee from a certain organization will have either an
working email address. In this case, the whistleblower can use
SMTP-based PAOs to provide some evidence of insider access
to the organization.

D. Blind Certificate Authorities
The basic idea is to use our SMTP anonymous PAO

protocol, but additionally output from it a cryptographic
commitment to the user’s email account user. If we can
obtain a secure commitment from the SCI-TLS protocol to the
user’s email account, then it can be used in a second phase
to run a specially constructed protocol with the CA that: (1)
verifies that the commitment can be opened by the client to the
same email account as that in the certificate and (2) produces a
hash of the certificate without revealing to the CA its contents.
The CA can sign the hash using a standard digital signature
scheme in order to finalize the certificate.

Anonymous SMTP-PAO with commitment. As described in
§V, in a SMTP-STARTTLS session four commands (AUTH,
MAIL, RCPT, and DATA) are mandatory. Our SMTP client
for the user is written as only using the minimum number of
commands to send an email.

Excepting AUTH PLAIN, each command and the email
contents will be sent in one TLS fragment. The AUTH
PLAIN command needs to be split into two fragments,

User
(client) 

CA
(proxy)

Server 
(smtp.gmail.com)

TLS handshakes, …

SCI-TLS

(start authentication) 

AUTH PLAIN "alice"

"test" (password)

email

email +challenge

(end authentication) 

(end session)

challenge, H(cert)

Input:
H(cert),
commitment

AUTH PLAIN "alice"

EHLO

MAIL, RCPT, DATA 

1

2

3

Input:
"alice",

TLS keys,
cert info

Sign(H(cert))

Fig. 7: Blind CA workflows. The communications in the
dash rectangle happen in the same TLS session. 1© The CA
saves the first message as the commitment; 2© The CA uses
anonymous PAO to send a challenge; 3© The CA and the user
run a zero-knowledge protocol to generate a legitimate X.509
certificate.

one for AUTH PLAIN [sep]user[sep] and one for
password ([sep] is a separator defined in [30] to separate
command and parameters). Thus the first message from the
client will contain the client’s email account, and the fifth
message will be the email contents into which a challenge will
be injected. We can split commands into multiple messages
because a command in SMTP is terminated by the line
terminator CRLF and SMTP servers will buffer messages
until it sees the line terminator, combine the buffered message
as a command, and clear the buffer.

In summary, the client and proxy (run by the CA) run
SCI-TLS for SMTP where the injection will be in the fifth
message. The first ciphertext sent from client to server, which
is the TLS encryption of the client’s email account (plus a
command string, spaces, and two separators), will be taken
as the commitment C. The opening of the commitment is the
associated HMAC key Khmac and AES key Kaes, and the
client stores these for later use. The challenge to be injected
is set to be a random value M∗, and the proxy adds C to a
table under index M∗.

While running SCI-TLS, the proxy expects to see exactly
six messages (four commands plus an email) sent from the
client, and five responses from the server (not counting TLS
handshake messages and the EHLO at the very beginning). It
is important that the proxy abort after seeing 6 messages. If it
allows, more attacks arise, as we discuss later.

Some servers might require the EHLO after STARTTLS.
One can check this by sending three commands (EHLO,
STARTTLS, and AUTH PLAIN in order and see if the server
asks for an extra EHLO. In this case, the proxy simply needs
to let the client use seven messages (with six responses) to



finish the session, and grabs the second message seen as the
commitment.

Certificate generation. Assuming the SCI-TLS injection is
successful, the client can retrieve M∗. It sends this to the proxy
as well as a hash h = H(cert) of its certificate cert, with the
subject field being set to the client’s email account user.
The proxy retrieves the commitment C based on M∗. Now
the client and proxy engage in a zero-knowledge protocol in
which the client demonstrates knowledge of (a) information
necessary to form cert, including the client’s email account,
and (b) the keys Khmac,Kaes used during the PAO session in
which the email account was used to send an email.

In detail, the public statement includes h and the com-
mitment C. The client has a private witness consisting of
cert, email account, and the opening Khmac,Kaes. The zero-
knowledge proof verifies that client knows an opening of C to
retrieve a message within it, which, when incorporated into the
certificate cert, produces the hash h. In this way, the proxy
can be certain that h is computed with respect to the same
email account as was used in the anonymous PAO protocol.

In practice some fields of certificates are set or checked
by the CA (e.g., expiration duration policies). Set values can
be sent to the client before generating the cert. The certificate
can be checked during the zero-knowledge proof with suitable
extensions in the computed function.

Assuming the outcome of the zero-knowledge proof pro-
tocol is accepted by the CA, then the CA can sign the hash
value h and send the result back to the client.

The above approach ensures that the zero-knowledge proof
only operate over symmetric cryptographic operations (hash-
ing and block ciphers). We can use recent advanced tech-
niques [20], [22], [28] for constructing fast zero-knowledge
proofs over boolean circuits to make this protocol efficient.
This enables efficiency in practice. Another approach would
simply be to perform SMC to directly produce a blind signature
of the cert, but this would require performing asymmetric
operations within SMC, which is prohibitive.

E. Security Analysis

Protecting against injection attacks. The proxy might at-
tempt to violate transcript privacy and user anonymity by in-
jecting a message that contains meaningful SMTP commands.
A concrete example is that the proxy can inject a message like
“CRLF.CRLF RCPT:... DATA:...” to initiate a new message
that will be sent to a proxy-controlled email. The proxy then
can obtain the email address of the client as well as partial
email contents. But this attack doesn’t work if the target
server disable pipelining, hence our requirement to this effect
discussed in §V-B.

There are other ways one could potentially circumvent this
issue, if one wants to work with SMTP servers supporting
pipelining:

(1) In 2P-CBC, the client checks if the input M∗ from the
proxy contains certain keywords using SMC before encryption.
This requires a change to the SMC circuits that will increase
complexity, and thus reduce anonymous PAO performance.

(2) In 2P-CBC, the client applies a simple encryption
function to M∗ before AES encryption. For example, the
client can XOR M∗ with a random string or shuffle M∗. In
SMTP PAOs, to make sure the function output is still in valid

Base64 format, the client can choose the function as byte-
level shuffling. This is easy to achieve and wouldn’t cause
too much performance loss in 2P-CBC. However, we have to
change 2P-HMAC to use SMC in order to let the client apply
a function to M∗, which will reduce the PAO performance
significantly.

(3) We restrict the length of the injection message to be 16
bytes. In this case, The mandatory fixed bytes needed (such
as CRLFs, command keywords, spaces and newlines) in the
commands are already more than 16 bytes, so the attacker
will not be able to initiate a new email under this length
restriction. This may reduce flexibility on the format of injected
challenges, but 16 bytes suffices for the PAO applications.

Detecting protocol violation. If the SMTP server supports
the PIPELINING extension, the user can send multiple
commands in a single message. However, if the server is RFC-
complaint, it will send responses for each command separately,
and this will reveal the number of commands the client actually
sends. If it detects that the user deviates from the agreed
protocol (e.g., sending one message but receiving multiple
responses), the proxy will terminate the session.

A malicious user might change the client program to
attempt an identity binding attack, i.e., sending AUTH PLAIN
α in the first message to get a certificate for α, where α is not
owned by her. However, the user needs at least one extra round-
trip if any command fails, making her unable to send an email
using the required number of requests. Consequently, the user
wouldn’t be able to receive the challenge. The user might also
try to split the AUTH command incorrectly so the username
in the first message is just a prefix of her username (e.g.,
“ali” instead of “alice”). However, the message will be illegally
formatted because it will miss the separator that is supposed
to be at the end of the message (see §V-D). Such messages
will be detected and rejected by the proxy when it verifies the
zero-knowledge proofs.

TLS record as commitment. Overall, our restrictions guaran-
tee that underlying the first TLS record layer encryption is the
user’s account and that this account was indeed authenticated
by the server. It remains to show that the TLS ciphertext C
is in fact a secure commitment. Authenticated encryption
schemes are not, in general, good commitment schemes when
using their secret keys as the opening. While they achieve
hiding because of their confidentiality guarantees, most AE
schemes suffer from trivial binding attacks. It happens that
the MAC-Encode-Encrypt mechanism underlying TLS can
be proven to be a hiding and binding commitment when
modeling HMAC as a random oracle (an assumption justi-
fied in [17]). To sketch the proof we will argue that with
overwhelming probability no attacker can find two key pairs
(Khmac,Kaes) 6= (K ′hmac,K

′
aes), two plaintexts M 6= M ′,

and an IV such that the encryption of M under the first key
pair and the IV yields the same ciphertext as the encryption of
M ′ under the second key pair and the IV. This would rule out
binding attacks because no single ciphertext can be decrypted
under distinct keys to distinct messages.

Consider any fixed ciphertext associated to M . Then there
are at most 2128 keys under which the ciphertext can be
decrypted, with each giving rise to an associated message and
tag M ′i‖T ′i for 1 ≤ i ≤ 2128. Recall that the length of these
tags is 256 bits. The goal of the adversary is to find an HMAC



key K ′hmac for which HMAC(K ′hmac,M
′
i) = T ′i for some i.

Fix some i; each random oracle query made by the adversary
has a 1/2256 chance of hitting any particular T ′i . Thus, as long
as the adversary makes less than 280 queries, by a union bound
over the queries, the probability that any such query hits T ′i is
less than 280 ·2−256 = 2−176. It follows by a union bound over
all “possible” i that the probability of there existing some i
such that the adversary queries the random oracle on an HMAC
key K ′hmac such that HMAC(K ′hmac,M

′
i) = T ′i is less than

2128 · 2−176 = 2−48. This proof approach leads to a loose
bound, and we believe better bounds can be shown.

Finally, we assume that the certificate contents contain
sufficient entropy to rule out brute-force inversion of the
certificate hash (which is revealed to the proxy). Brute-forcing
would reveal the client’s identity. This requirement is easily
satisfied as long as the certificate includes the client’s public
key. Lastly, the CA can later link a certificate it sees to a
protocol execution, simply by checking a hash of the certificate
against hash values produced during the blind CA registration
process. We leave as an open question now to build efficient
blind CAs that enjoy an unlinkability property.

VI. DESIGN AND IMPLEMENTATION

PAO prototypes implementation. We use Python to imple-
ment prototypes of SMTP-based PAO. The TLS library we
used is tlslite, a pure Python-based open source library [45].
We modify tlslite to add interfaces for extracting the key
materials being used in a TLS session, as well as the internal
states used in CBC encryption and SHA-256 hashing.

For our SMTP-based PAO, we use a Python SMTP library
named smtplib to send email [40]. The client works similarly
to a regular SMTP client and follows the SMTP specification.
But we do modify the client greeting message to hide client
host information.

We use the ABY framework [13], a state-of-the-art SMC
library that provides good performance, to implement an
honest-but-curious SMC for 2P-CBC for the proof-of-concept
prototype. (The performance of our prototype might be re-
duced greatly once we replace the honest-but-curious SMC
with a malicious SMC.) We implement two command-line
programs; one program will be called by the client with input
the TLS session key, and the other program will be running
at the proxy to provide the challenge to be injected. The
computation result is configured to be only given to the proxy.

Communications between client and proxy. The proxy
listens on two ports, one for data forwarding (data port)
and one for receiving control messages (control port). A
client needs to build two connections, data connection and
control connection, to the proxy. The proxy will forward
the data that arrives at the data port to the corresponding
destinations (and backward), but may intercept the data based
on the control messages received. We define various types
of control messages, and each type of message represents a
given command, such as “register new user”, “set forwarding
address”, and “start AES SMC computation”. The client and
the proxy interact with each other by exchanging control
messages. For example, in 2P-HMAC, the client sends the
internal HMAC state in a 2P-HMAC-READY message to the
proxy. Once the proxy receives this message, it knows the
client is ready to run 2P-HMAC protocol. The proxy extracts

the state from the message, uses it to calculate the HMAC
for the challenge, and then sends the calculated result back
to the client in a 2P-HMAC-RESULT message. The control
messages are protected by TLS connections. We omit detailed
specification of the control protocol for the sake of brevity,
but will make them available when we release the prototype
source code.

Once a client connects to the data port, the proxy will send
back an 8-byte random, unique user ID as a response. The
client will carry this ID in the control messages so that the
proxy can correlate a control connection with the appropriate
client, and therefore the data connection.

An attacker might spoof the client ID in a control message
to gain control of other data connections. The proxy can per-
form extra challenge-response style checks to defeat attempts
at client ID spoofing: instead of giving the client the expected
response after receiving a control message, the proxy sends
back a nonce and asks the client to send the nonce in the data
connection, which will be dropped by the proxy silently later.
Note that we cannot correlate a control connection with a data
connection simply based on IP address. If the client is using
Tor, the two connections might use different exit nodes.

Proxy configuration. The server can perform active probes to
fingerprint the proxy and blacklist suspicious IPs. Our strategy
to defeat such attacks is to host the proxy in public clouds
such as Amazon EC2 and Microsoft Azure, and frequently
change IPs and the listened to ports. Note that there are
numerous cloud-based email clients, meaning that a SCI proxy
would not stand out due to using a cloud IP address. Putting
more efforts into implementation, we can implement SCI as a
plugin for popular SMTP or proxy softwares to better defeat
fingerprinting.

Blind CA implementation. To create a zero-knowledge pro-
tocol for certificate generation in the blind CA service, we
used the ZKBoo framework [22] to create a non-interactive
proof in the random oracle model. Although this framework
creates a relatively large proof, the operations required to
compute the proof involve only symmetric primitives (unlike
other techniques for efficient zero-knowledge which require
oblivious transfer). We use SHA-256 as the hash function to
sign the certificate.

We implemented ZKBoo versions of SHA-256/HMAC-
SHA-256 that support inputs of any length based on the
examples provided in [43], and a ZKBoo version of AES-CBC
based on the code in [14]. We used the technique in [7] to
implement the AES S-Box. We compute the XNOR(a, b) gate
as 1⊕a⊕b, and the OR(a, b) gate as ∼((∼(a&a))&(∼(b&b))).
We didn’t make any optimization to the code, and we believe
that with further optimizations the proof size can be reduced
and the performance can be improved.

VII. EVALUATION

A. Anonymous PAO
In this section we evaluate the performance of our SCI

protocols and show that they work with existing services such
as Gmail and two university email servers.

For all experiments we hosted the proxy on an m3.xlarge
instance in the US-East region of Amazon EC2. The client was
running on an Ubuntu 12.04 (64-bit) virtual machine built by
VirtualBox 4.3.26, and was configured with 8 GB RAM and



4 virtual processors. We used a tool called line profiler [41],
which can measure the execution time for each line of code,
to report on the performance of various steps in the protocols.

Latency of SCI for SMTP. We start by measuring the latency
of the SCI portion of the SMTP anonymous PAO, across
four different settings. To avoid causing burden on real SMTP
servers, we setup our own Postfix version 2.9.6 SMTP server
(with pipelining disabled) on the same EC2 instance as our
proxy. We chose in this experiment to not have network latency
between the proxy and server in order to maximize the relative
impact of performing injection. (As we will see later proxy-
to-server latency has little impact on overall performance.)

We fixed the size of the challenge and the size of the
message template as 32 bytes and 512 bytes, respectively.
We ran the SMTP anonymous PAO for 50 rounds, collecting
timing profiles generated by line profiler for the proxy and
the client. We focus on session latency, the total time between
initiating the protocol and completing it, as seen by the client.

The client was run from two public wireless networks at
different locations (labeled as Loc1 and Loc2). Then, in the
best-performing wireless network, we configured the client to
use Tor networks to communicate with the proxy and repeated
the experiment. Finally, we ran the experiment again in a
campus network (labeled as Loc3) with Tor being used. When
Tor is being used, we let the Tor client randomly select the
routers using its default algorithm, and also used the top 3
high-performance Tor routers (as reported in [44]), to build
circuits. The client was instructed to stick with one of the
circuits in each round by Tor control commands.

As shown in Table 8, using Tor incurs significantly high
protocol overheads as one would expect, due to the high laten-
cies of Tor networks. Using public wireless networks achieves
acceptable performance. As one would expect, 2P-CBC, with
its general-purpose SMC computation, accounts for the bulk
of time.

The overheads introduced by SMC operations are relatively
stable; in the best-performing setting, using SMC-based AES
to encrypt one block of message takes approximately 0.6 s (our
circuit requires AES computations for two message blocks).

As a baseline, it takes approximately 3 s and 0.3 s to send
the same email in a conventional SMTP execution from the
client in the settings using Tor and the settings without Tor
respectively. Thus the latency overhead of SCI is about an
order of magnitude in each case. Improvements to the state-
of-the-art in SMC for computing AES (an active area of
research [3], [13], [23]) will immediately translate into better
performance for our SCI protocols and help us close this gap.

Challenge size. We measure the impact of the challenge size
on protocol overhead. In the best-performing setting (Loc2, no
Tor), we ran the same experiment as above but with challenges
sizes of 2i bytes (i ∈ 5, ..., 10). The overhead of 2P-CBC
increases linearly with the challenge size. When the challenge
size is 1,024 bytes, the overhead of 2P-CBC is as high as
40 seconds, which is prohibitively time consuming; on the
contrary, the overhead of 2P-HMAC only has a negligible
increase (by about 5 ms). This suggests that SCI is probably
only feasible in practice for short challenges; our anonymous
PAOs applications only require short challenges.

Gmail Edu1 Edu2
Normal 0.54 0.92 0.87

with PAO 1.89 2.27 2.25

TABLE 9: Average duration (in seconds) of anonymous PAO
sessions and normal sessions against real SMTP services.

We further examined the timing profiles collected during
this experiment in detail to find the bottleneck of the protocols.
We realized that the bottleneck in 2P-HMAC is network (ac-
counts for about 30% of the protocol overhead), while in
2P-CBC, it is CPU. The CPU time in 2P-CBC accounts for
more than 80% of the protocol overhead.

Tests with real services. We tested our anonymous PAO
implementation for SMTP against real services using Loc2
without Tor. We chose Gmail and two SMTP servers at
different universities as our targets. For each service, we ran
the PAO protocol 10 times with a 32-byte challenge. We also
measure the durations of sessions without SCI, when one sends
an email directly to the service. Here the duration of a session
is the total time the client spent on issuing a connection to the
target service, sending an email, and closing the connection.

As shown in Table 9, on average anonymous PAO sessions
will be about 1.4 seconds longer than the normal sessions;
2P-CBC contributes the bulk of the overhead.

Server obliviousness and protocol duration. The fact that
a SCI SMTP session will be 1.5 – 2 seconds longer than an
SMTP session in the best-performing settings might suggest
that server oblviousness could be violated by simply looking
at how long SMTP sessions last. Longer sessions would
seemingly be indicative of SCI. But actually this alone would
not be a very good detector because of the long tail of
slow (conventional) SMTP sessions seen in practice. We
extract and analyze the durations of 8,018 SMTP-STARTTLS
sessions from a dataset of terabytes of packet-level traffic
traces collected from campus networks.5 The distribution of
the SMTP durations is long-tailed. As shown in Figure 10,
about 15% of the SMTP sessions analyzed requiring more
than 10 s to complete. So attempting to detect SCI in such
a coarse way won’t work. Of course, there could be more
refined detection strategies that take advantage of, for example,
inter-packet timing. We plan to examine other possible traffic
analysis techniques in the future.

B. Blind CA
Recall that in blind CA the prover needs to generate

a zero-knowledge proof using ZKBoo. We here evaluate
the feasibility of generating this proof by evaluating micro-
benchmarks for its core operations.

We used a 347-byte X.509 certificate template with a 32-
byte user email account in our testing. As in [22], to achieve a
soundness error of roughly 2−80 one needs to generate at least
136 proofs. We observed the proof computation time and the
proof size increase almost linearly with the number of proofs
generated.

5The traffic was collected for a previous project for which we had obtained
an IRB exemption. We only used extracted timings from that dataset for these
measurements.



2P-HMAC 2P-CBC Total
Min Max Median Min Max Median Min Max Median

Loc1 (No Tor) 0.03 0.06 0.03 1.56 1.74 1.63 1.88 2.50 1.92
Loc2 (No Tor) 0.01 0.02 0.01 1.21 1.35 1.24 1.52 1.69 1.55
Loc2 (Tor, Random) 2.52 9.75 4.12 15.61 31.17 18.01 33.95 52.10 37.53
Loc3 (Tor, Random) 1.04 6.26 2.56 12.15 32.80 15.77 16.21 42.35 29.08
Loc2 (Tor, Top3) 0.37 0.90 0.49 6.84 9.18 7.60 10.01 15.08 11.53
Loc3 (Tor, Top3) 0.33 0.68 0.38 6.47 8.51 7.14 10.41 13.19 11.02

TABLE 8: Performance of SMTP anonymous PAOs across different locations, over 50 executions in each location. Shown is the
time to complete the 2P-HMAC and 2P-CBC steps, as well as the total session duration (in seconds). “Random” and “Top3”
refers to the two settings that use random routers and the top 3 high-performance routers to build Tor circuits respectively.

Size of a single proof. In ZKBoo, the proof size for a given
computation is only decided by the number of AND/ADD
gates in the corresponding arithmetic circuit of that computa-
tion. Many operations such as XOR, NOT, bit-shifting and bit-
rotations do not contribute to the proof size. In our implemen-
tation, doing one round of a compression function (hashing 64
bytes of message) in SHA-256 requires 728 AND/ADD gates,
and encrypting 16 bytes (1 block) of message requires 10,704
AND/ADD gates. Other computations in the proof generation
do not involve AND/ADD gates. In AES, one round of the
S-Box lookup operation uses 63 AND gates, and the total
number of AND gates used by S-Box lookups is 10,080, which
accounts for 94% of the AND/ADD gates being used. The
total number of AND/ADD gates being used is 73,696. The
resulting proof size is 590,824 bytes.

Proof generation and verification time. The computation
time for generating one proof is about 17.9 ms (over 50
rounds of measurement); the computing time for encrypting
one block in AES is about 672 us, and doing one round
of compression function in SHA-256 costs about 586 us on
average. Though AES uses significantly more gates than SHA-
256, the computing time doesn’t increase greatly. We observed
that one AND/ADD computation uses about 35 ns; so, the total
time for AND/ADD computations is only about 375 us in AES
and 25.5 us in SHA-256. However, the AES implementation
we used is byte-oriented and is using an optimized algorithm;
meanwhile, the SHA-256 implementation is just based on the
naive algorithm, operated on 32-bit words, and contains several
timing-consuming copy operations. The verification time for
the proof is about 15.3 ms on average. Based on the design
of ZKBoo, the upper bound of the verification time can be
approximated by the corresponding proof generation time (in
the same setting).

It takes about 2.5 s and 2.1 s to generate and verify 136
proofs respectively. The total size of all the proofs together is
about 80.3 M. While large, we expect that generating proofs
will be an infrequent task in deployments. We also believe
that further engineering effort could significantly improve
performance.

VIII. RELATED WORK

Secure multi–party computation. Secure multi-party com-
putation (SMC) is a technique for multiple parties to jointly
compute a function over all their private inputs, while no
party can learn anything about the private inputs of the other
parties beyond what can be informed from the computation’s
output [21], [49]. SCI can be seen as a special-case of SMC,

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

Duration

C
D

F

Fig. 10: CDF of duration of normal SMTP-STARTTLS
sessions seen on a university campus.

but using general-purpose protocols would be prohibitively
expensive and we limit their use. As such we benefit from the
now long literature on making fast SMC implementations [4],
[8], [13], [24].

Anonymous credentials. Anonymous credentials systems al-
lows a user to prove to another party that she has a valid
certificate issued by a given certificate authority, without
revealing contents of the certificate [9], [12], [25], [38]. Some
systems focus on solving the privacy issues during certificate
issuing, and allow a user to obtain the signature for a certificate
from a CA without revealing privacy-related information in
the certificate or, in some cases, without revealing any part of
the certificate [5], [39]. However, all these systems rely on a
trusted third party that knows the user’s identity to perform an
initial user registration. Our PAO protocol and blind CA do
not. Our approach also requires no changes to existing SMTP
services meaning it is readily deployable.

Multi-context TLS. Multi-context TLS (mcTLS) [36] is a
modification to TLS that gives on-path middleboxes the ability
to read or write specified contexts of a TLS session. A context
is just a portion of the plaintext data within a session. It
could be an HTTP request header, a request, or multiple
requests. Each context ends up encrypted under a separate
symmetric key, and so some can be shared with the on-path
middleboxes. This allows injection of messages, but is not
backwards compatible with existing web infrastructure. It also
would not be able to achieve service obliviousness, as the
server must know which contexts were provided by the proxy.



IX. CONCLUSION

We proposed secure channel injection (SCI), which allows
a proxy to inject plaintext content into a stream of encrypted
data from a client to server. The client learns nothing about
the injected data, while the proxy learns nothing about other
messages sent in the stream. We showed how SCI can be used
to perform anonymous proofs of account ownership (PAO), in
which a user can prove ownership of some email addresses on
a service, but not reveal to the verifier which one. We further
build a blind CA protocol that checks email ownership and
signs an X.509 certificate binding the email to a user’s public
key, all without ever learning the exact email or public key.
Our performance evaluation demonstrates that SCI is efficient
enough to use in practice and we verified that it works to
perform anonymous PAOs with existing SMTP services like
Gmail.
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