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Abstract. When it comes to side-channel countermeasures, software encoding
schemes are becoming popular and provide a good level of security for general-
purpose microcontrollers. However, these schemes are not designed to be fault
resistant, and this property is discussed very rarely. Therefore, implementers have
to pile up two different countermeasures in order to protect the algorithm against
these two popular classes of attacks.
In our paper, we discuss the fault resistance properties of encoding schemes
in general. We define theoretical bounds that clearly show the possibilities and
limitations of encoding-based countermeasures, together with trade-offs between
side-channel and fault resistance. Moreover, we simulate several codes with re-
spect to most popular fault models, using a general-purpose microcontroller as-
sembly implementation. Our algorithm shows how to implement fault resistance
to an encoding scheme that currently has the best side-channel resistant capabil-
ities. As a result, we are able to design a code by using automated methods, that
can provide the optimal trade-off between side-channel and fault resistance.

Keywords: software encoding schemes, side-channel attacks, fault attacks, coun-
termeasures

1 Introduction

When it comes to small, constrained devices, such as the ones designed for Internet of
Things applications, they are usually easy to access and do not contain comprehensive
security measures to protect them. Therefore, even though a strong cryptography is used
to protect the communication, hardware attacks pose a serious threat. Side-channel and
fault attacks are among the most popular means to breach the device security. When
designing a cryptographic implementation, it is necessary to consider countermeasures
against these attacks.

There are two main countermeasure classes to protect implementations against side
channel attacks. Masking [8] is a software-level countermeasure which tries to “mask”
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the relationship between the intermediate values and power leakage. Hiding [18] tries
to reduce the signal and increase noise by utilizing various techniques – it “hides” the
operations performed by the device. While masking can make fault attacks more chal-
lenging, it does not help to prevent them. On the other hand, some hiding techniques,
such as dual-rail precharge logic (DPL), help in preventing fault attacks by detecting
faults [16].

In 2011, DPL was extended to software by Hoogvorst et al. [9], by using balanced
encoding schemes. Since then, there were several other proposals [13, 5, 17, 12], all of
them using various coding techniques to prevent side-channel leakage. However, it was
shown, that unlike hardware DPL representation, its software counterpart is not fault
resistant by default [2]. Therefore, to prevent both attack techniques, it is necessary to
design the coding scheme from the beginning with this goal in mind.

In this paper, we introduce a theoretical background necessary for designing soft-
ware hiding countermeasures that are resistant to both side-channel and fault attacks.
We provide an algorithm for constructing such codes and ranking them according to
required properties. We select optimal codes for various code distances and number of
codewords, and evaluate them – by using detection and correction probabilities and by
simulating them in a faulty environment. This simulation is done by using a general-
purpose microcontroller implementation and an instruction set simulator that is capable
of injecting different fault models into any instruction of the code. Our results show that
the codes generated by our algorithm provide a high security level with respect to both
side-channel and fault attacks.

The rest of the paper is organized as follows. Section 2 provides an overview of
the related work in this field, together with necessary background on coding theory.
Section 3 defines the properties of codes with respect to fault attacks. Section 4 details
our algorithm, and provides estimated and simulated results on chosen codes. These
results are further discussed in Section 5. Finally, Section 6 concludes this paper and
provides a motivation for further work.

2 General Background

In this section we provide a necessary background on software encoding-based side-
channel countermeasures and on coding theory necessary for developing a combined
countermeasure. Subsection 2.1 overviews the related work in the field. Subsection 2.2
provides basic definitions that are used later in this paper.

2.1 Related Work

After the paper by Hoogvorst et al. [9] presented a method to extend the DPL to software
implementations, several works were published in the area of software hiding schemes.

Rauzy et al. [13] developed a scheme that encodes the data by using bit-slicing,
where only one bit of information is processed at a time. They claim this kind of protec-
tion is 250 times more resistant to power analysis attacks compared to the unprotected
implementation, while being 3 times slower. For testing, they used PRESENT cipher,
running on an 8-bit microcontroller.
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Chen et al. [5] proposed an encoding scheme that adds a complementary bit to
each bit of the processed data, resulting in a constant Hamming weight code. Their
countermeasure was implemented on a Prince cipher, using an 8-bit microcontroller.

Servant et al. [17] introduced a constant weight implementation for AES, by using
a (3,6)-code. To improve the performance, they split 8-bit variables into two 4 bit words
and encode them separately. This implementation was also capable of detecting faults
with 93.75% probability. Their implementation used a 16-bit microcontroller.

Maghrebi et al. [12] proposed an encoding scheme that differs from the previous
proposals. For their case, they did not assume the Hamming weight leakage model for
register bits, therefore they concluded that balanced codes might not be the optimal
ones to use. In their method, they first obtain the profile of a device to get a vector of
register bit leakages. Then they estimate leakage values for each codeword and build a
code by using codewords with the lowest leakage. Their algorithm selects the optimal
code by ranking the codes based on the difference in power consumption between the
codewords and on the power consumption variance. Our algorithm extends this idea by
adding the variance of register bits in order to achieve better leakage characteristics and
by adding conditions for error detection and correction.

In general, none of the previous schemes have been designed for fault resistance.
Schemes proposed in [13, 5] have been analyzed with respect to fault attacks by Breier
et al. [2], concluding that without additional modifications to assembly code, the prob-
ability of a successful fault attack is non-negligible. Therefore, to improve the current
state-of-the-art, we focus on designing fault tolerant and side-channel resistant coding
schemes.

When it comes to combined countermeasures, in [15], Schneider et al. proposed
a hardware countermeasure based on combining threshold implementation with linear
codes. As stated in the paper, their proposal is not considered for software targets. In
the execution process, there are multiple checking steps that protect the implementation
against faults. However, in software, it would be easy to overcome such checks by mul-
tiple fault injections [19]. Also, it would be possible to inject faults that are impossible
with hardware implementations, such as instruction skips [3].

Our contributions in this work are:

– We define theoretical bounds for encoding schemes with respect to fault attacks
that are necessary to take into account when designing a fault resistant scheme.

– We show how to design a code that is capable of protecting the implementation
against side-channel and fault attacks and we show trade-offs between these two
resistances.

– We improve the ranking algorithm proposed in [12] (current state-of-the-art) for
constructing side-channel resistant codes with better properties – by ranking the
codes according to the codeword with the highest leakage, and by calculating the
register bit variance. Furthermore, we add the conditions for selecting the codes
with the desired error detection/correction capabilities in an automated way.

– We analyze the codes constructed by our algorithm – we calculate leakages, fault
detection and correction probabilities, and we simulate the assembly code imple-
menting the codes on a general-purpose microcontroller.
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2.2 Coding Theory Background

A binary code, denoted by C, is a subset of the n−dimensional vector space over F2-Fn
2,

where n is called the length of the code C. Each element c ∈ C is called a codeword in
C and each element x ∈ Fn

2 is called a word [10, p.6]. Take two codewords c, c′ ∈ C,
the Hamming distance between c and c′, denoted by dis (c, c′), is defined to be the
number of places at which c and c′ differ [10, p.9]. More precisely, if c = c1c2 . . . cn

and c′ = c′1c′2 . . . c
′
n, then

dis
(
c, c′

)
=

n∑
i=1

dis
(
ci, c′i

)
,

where ci and c′i are treated as binary words of length 1 and hence

dis
(
ci, c′i

)
=

1 if ci , c′i
0 if ci = c′i

.

Furthermore, for a binary code C, the (minimum) distance of C, denoted by dis (C), is
[10, p.11]

dis (C) = min{dis
(
c, c′

)
: c, c′ ∈ C, c , c′}.

Definition 1. [6, p.75] For a binary code C of length n, dis (C) = d, let M = |C| denote
the number of codewords in C. Then C is called an (n,M, d)−binary code.

This minimum distance of a binary code is closely related to the error-detection and
error-correction capabilities of C.

Definition 2. [10, p.12] Let u be a positive integer. C is said to be u−error-detecting if,
whenever there is at least one but at most u errors that occur in a codeword in C, the
resulting word is not in C.

From the definition, it is easy to prove that C is u−error-detecting if and only if dis (C) ≥
u+1 [10, p.12]. A common decoding method that is used is nearest neighbor decoding,
which decodes a word x ∈ Fn

2 to the codeword cx such that

dis (x, cx) = min
c∈C

dis (x, c) . (1)

When there are more codewords cx satisfies (1), the incomplete decoding rule requires
a retransmission [10, p.10].

Definition 3. [10, p.13] Let v be a positive integer. C is v−error-correcting if minimum
distance decoding with incomplete decoding rule is applied, v or fewer errors can be
corrected.

Remark 1. C is v−error correcting if and only if dis (C) ≥ 2v + 1 [10, p.13].

Definition 4. [7] An (n,M, d)−binary code C is called an equidistant code if ∀c, c′ ∈
C, dis (c, c′) = dis (C).
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For our purpose, we will use binary code for protecting the underlying implementation.
We propose two choices of lookup tables:
1. Correction Table: This table will treat a word x ∈ Fn

2 the same as the codeword
cx ∈ C which satisfies dis (cx, x) ≤ b d−1

2 c, where d is the distance of C. Note that this
is equivalent to using bounded distance decoding [11, p.36] and taking the bounded
distance to be b d−1

2 c. To use this table we require that dis (C) ≥ 3.
2. Detection Table: This is a normal lookup table that returns a null value when

x < C is accessed.
We will give a theoretical criterion to measure the bit flip fault resistant capability of

a binary code when it is used as an encoding countermeasure against fault injection at-
tacks in Section 3. Afterwards we propose three coding schemes. The encoding scheme
will be simulated (and implemented) and evaluated in Section 4.

Let m be a positive integer such that 1 ≤ m ≤ n, where n is the code length.

Definition 5. An m−bit fault is a fault injected in the codeword that flips exactly m bits.
We assume each bit has equal probability to be flipped.

Definition 6. When the fault is analyzed, we adopt the following terminologies:

– Corrected: fault is detected and corrected.
– Null: fault is detected and results into zero output.
– Invalid: fault is detected and results into an output that is not a codeword.
– Valid: fault is not detected and fault injection is successful, i.e. it results in the

output of a valid but incorrect codeword.

3 Theoretical Analysis

In this section we will first give the theoretical analysis for the fault resistant capabilities
of binary code in general. Then we propose two different coding schemes and analyze
their fault resistant probabilities.

3.1 Correction Table

Definition 7. For an (n,M, d)−binary code C such that d ≥ 3, let

Fc,m :=
{

x ∈ Fn
2 : dis (c, x) = m and ∃c′ ∈ C such that dis

(
x, c′

)
≤

⌊
d − 1

2

⌋}
.

Then

pm,(e) :=

1 m ≤ b d−1
2 c

1 − 1
M(n

m)
∑

c∈C |Fc,m| m > b d−1
2 c

(2)

is called the m−bit fault resistance probability with error correction for C.

As mentioned earlier, when a Correction Table is used, it is equivalent to using bounded
distance decoding. When m ≤ b d−1

2 c bits are flipped, by Remark 1, the error will be
corrected and hence pm,(e) = 1. When m > b d−1

2 c bits are flipped, the fault will be
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valid if the resulting word is at distance at most b d−1
2 c from any codeword. Thus by

Definition 6, 1 − pm,(e) gives the theoretical probability of a Valid fault and the bigger
pm,(e) is, the more resistant the binary code to m−bit fault. Furthermore, when m = 1,
the fault will be corrected and most of the cases are expected to return Corrected.

Another interesting fault model is random fault, i.e. assuming there is an equal prob-
ability for m−bits fault to occur ∀1 ≤ m ≤ n. Taking this into account, we define

Definition 8. For an (n,M, d)−binary code C such that d ≥ 3, let pm,(e) be its m−bit
fault resistance probability with error for 1 ≤ m ≤ n, then

prand,(e) :=
n∑

m=1

1
n

pm,(e)

is called the overall resistance index with error correction for C.

As suggested by the name, the bigger prand,(e) is, the more resistant the code C is to
random faults.

3.2 Detection Table

Now we consider Detection Table.

Definition 9. For an (n,M, d)-binary code C such that d ≥ 2, let

S m :=
∑
c∈C

|{c′ ∈ C : dis
(
c′, c

)
= m}|.

Then
pm := 1 −

S m

M
(

n
m

) (3)

is called the m−bit fault resistance probability for C.

When an m−bit fault is injected in the codeword, if the resulting word is not a
codeword then the value will be set to Null. The only case when the fault is valid is when
after m bits are flipped, the resulting word is still a codeword. Thus by Definition 6,
1 − pm gives the theoretical probability of a Valid fault. Hence the bigger pm is, the
better the binary code is m−fault resistant.

Remark 2. When m ≤ d, no codeword is at distance m from each other and hence
pm = 1.

Note that if S n = M, i.e. for each codeword c ∈ C, there exists a c′ ∈ C such that
dis (c, c′) = n, then we have

pn = 1 −
M

M
(

n
n

) = 1 − 1 = 0.

That means, for this code, n−bit fault will always be injected successfully. In view of
this, we exclude these kind of codes from our selection (see Algorithm 1). In practice, n
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and M are fixed known values, from equation (3), to get bigger pm the goal of choosing
the code C is to make S m small. There are several ways of achieving this depending on
the preference of the user:

1. For small values of m, make pm = 0 : choose code with a bigger minimum
distance d, then pm will be 1 for more values of m. Of course, there is a limit for the
minimum distance that can be achieved (see Table 1). This particular scheme will be
discussed in Section 3.3, where it is called Detection Scheme.

2. A certain m0−bit fault resistance is desired: choose code such that S m0 = 0.
3. Sacrificing one m0−bit fault resistance to achieve m−bit fault resistance for all

other values of m , m0: this is is possible by using equidistant codes. That is, take code
such that |S m0 | = M. This particular scheme will be discussed in Section 3.3, where it
is called Equidistant Detection Scheme.

4. Making all pm almost equally large: choose C such that S m are similar for all
m > d. Note that

n∑
m=d+1

S m = 2M

is always true.
Similar to last subsection, considering random fault, we define

Definition 10. For an (n,M, d)−binary code C such that d ≥ 2, let pm be its m−bit fault
resistance probability for 1 ≤ m ≤ n, then

prand :=
n∑

m=1

1
n

pm

is called the overall resistance index for C.

Note that the bigger prand is, the more resistant the code C is to random faults.

Lemma 1. For an (n,M, d)−binary code C, if it is equidistant, then

pm =

1 m , d
1 − M−1

(n
d)

m = d
, and prand = 1 −

M − 1(
n
d

)
n
.

3.3 Coding Schemes

Here we propose two different coding schemes:
1. Detection Scheme: using binary code which has minimum distance at least 2.
2. Correction Scheme: using binary code which has minimum distance at least 3

with error correction enabled lookup table.
Furthermore, as will be seen from the rest of this paper, equidistant codes have

different behaviors than codes that are not equidistant. Hence when equidistant codes
are used, we emphasize the usage by referring to the schemes as “Equidistant detection
scheme” and “Equidistant correction scheme” respectively.

We will analyze the m−bit fault resistant probability (with error) as well as overall
resistance index (with error) for each of them using (n,M, d) binary codes for n =
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8, 9, 10 and M = 4, 16. We chose M = 4 because it is easy to analyze and explain, and
M = 16 because it can encode one nibble of the data, therefore it is usable in a practical
scenario. To illustrate the usage of the schemes we refer the reader to Appendix B for
calculations of the probabilities for some specific codes as examples.

Firstly, we discuss the possible values of the minimum distance d. As is well known
in coding theory, fixing the length of the code n and minimum distance d, M is upper
bounded by certain value. This upper bound is tight for small values n and d and still
open for a lot of other values [6, p.247]. In particular, for n = 8, 9, 10 and different
values of d we know the exact possible values of M. In return, the possible values of
d are known when n,M are fixed. In Table 1 we list the possible minimum distances
that can be achieved for n = 8, 9, 10 and M = 4 or 16. Note that the values are taken
from [6, p.247,248] and [4].

Table 1: Possible (n,M, d)−binary codes for n = 8, 9, 10, M = 16 and n = 8,M = 4.

n M d
8 4 2, 3, 4, 5
8 16 2, 3, 4
9 16 2, 3, 4

10 16 2, 3, 4

For equidistant binary code, we have the following constraint on d:

Lemma 2. Let C be an (n,M, d) equidistant binary code such that M ≥ 3, then d is
even.

Proof. Recall the Hamming weight of a word x ∈ Fn
2, denoted by wt(x) is defined to be

the number of nonzero coordinates in x [10, p.46]. And we have the following relation
(see [10, Corollary 4.3.4 and Lemma 4.3.5])

wt(x) + wt(y) ≡ dis (x, y) mod 2.

Take an (n,M, d) equidistant binary code C and any three distinct codewords x, y, z ∈ C,
we have

dis (x, y) + dis (y, z) + dis (z, x) ≡ 2wt(x) + 2wt(y) + 2wt(z) ≡ 0 mod 2.

Hence, d cannot be odd.

Furthermore we have M ≤ n + 1[7]. Thus we will only consider (8, 4, 2) and (8, 4, 4)
equidistant binary codes. The fact that such codes exist can be derived from [7].

4 Evaluation Methodology and Results

In this section, we will utilize the findings stated in Section 3 to build the codes with the
optimal side-channel and fault detection properties. First, we construct an algorithm that
finds the codes based on searching criteria in Section 4.1. Then we show properties of
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the codes that were produced by the algorithm in Section 4.2. To verify our theoretical
results, we simulate fault injections into these codes, by using the fault simulator which
will be explained in Section 4.3. Finally, we present and discuss the simulation results
in Section 4.4.

4.1 Code Generation and Ranking Algorithm

When it comes to device leakage, it normally depends on the processed intermediate
values. In [12], they proposed the first encoding scheme that assumed a stochastic leak-
age model over the Hamming weight model. In such model, leakage is formulated as
follows:

T (x) = L(x) + ε, (4)

where L is the leakage function mapping the deterministic intermediate value (x) pro-
cessed in the register to its side-channel leakage, and ε is the (assumed) mean-free
Gaussian noise. For 8-bit microcontroller case, we can specify this function as L(x) =

α0 + α1x1+ .... α8x8, where xi is the i-th bit of the intermediate value, and αi is the i-th
bit weight leakage for specific register [14] The αi values can be obtained by using the
following equation:

α = (AT A)−1AT T, (5)

where A is a matrix of intermediate values and T is a set of traces. After the device
profiling which obtains the α, we can use our ranking algorithm for selecting the optimal
code (Algorithm 1). Note that one can still use the Hamming weight model – for that
case, α has to be defined as unity. In the following, we will explain how the algorithm
works.

First, the inputs have to be specified – length (n), number of the codewords (M),
minimum distance (d) and leakages of the register bits (αi). Depending on these values,
the algorithm analyzes every possible set of M codewords that can be a potential code
candidate. Lines 2-3 iterate over every combination of two codewords. Lines 4-6 test if
the minimum distance condition is fulfilled. Then, lines 7-10 check, whether for each
codeword there exists another codeword which is at distance n from it – if yes, we skip
this set. This condition is necessary in order to get a code resistant against n-bit flip
(we will detail such case in Section 5). Lines 11-13 compute the 3 values that are used
in order to calculate the values for the whole code in the later phase: estimated power
consumption for the codeword, stored in table A, estimated variance for bit leakages
in the codeword, stored in table B, and the highest bit leakage value, stored in table C.
Next, the codeword value is stored in the index table I.

Lines 14-16 use the values from tables A, B,C to compute the register leakage vari-
ance (µS [x] denotes the mean leakage for a word S [x]), highest variance for bit leakages
within registers, and value of the highest bit leakage within registers for the set S . These
values are stored in tables D, E, F, respectively, and are used in the final evaluation.

The final evaluation is the last phase of the algorithm. First, it takes a subset of D
with the best register leakage variance (µS denotes the mean leakage for codewords in
S ). It narrows this subset to candidate codes with the lowest value of the highest bit
leakage according to set E. From these, it chooses the code with the lowest bit leakage
variance using table F.
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Algorithm 1: Ranking algorithm that chooses the code with the optimal leakage
properties.

Input : n: the codeword bit-length, M: number of codewords, d: minimum distance of
the code, αi: the leakage bit weights of the register, where i in [[1, n]]

Output: An (n,M, d) binary code
1 for Every set S of M words do
2 for x == 0; x < |S |; x++ do
3 for y == x + 1; y < |S |; y++ do
4 Calculate the distance dis (S [x], S [y]);
5 if dis (S [x], S [y]) < d (or dis (S [x], S [y])! = d, depends on equidistance

condition) then
6 continue with a different set S ;

7 if dis (S [x], S [y]) == n then
8 ndistance++

9 if ndistance == n then
10 continue with a different set S ;

11 Compute the estimated power consumption for codeword S [x] and store the
result in table A: A[S [x]] = Σn

i=1αiS [x][i];
12 Compute the estimated variance for bit leakages in S [x] and store the result in

table B: B[S [x]] = Σn
i=1((αiS [x][i]) − µS [x])2;

13 Compute the bit with the highest bit leakage in S [x] and store the result in table
C: C[S [x]] = max(αiS [x][i]);

14 Compute the register leakage variance for codewords in S and store the result in table
D: D[S ] = Σ |S |S [x]=1(A[S [x]] − µS )2;

15 Choose the highest variance for register bit leakages for codewords in S and store the
result in table E: E[S ] = max(B);

16 Choose the value of the highest register bit leakage among the codewords in S and
store the result in table F: F[S ] = max(C);

17 Get the optimal candidate using the following criteria:
1. Choose the candidates with the lowest register variances from D[S ];
2. From this set, choose the candidates with the lowest value of the highest leakage

according to F[S ];
3. Finally, choose from the previous set, take the candidate with the lowest bit leakage

variance according to E[S ];

return M codewords in case all the conditions are met, or an empty set otherwise

4.2 Estimated Values for Chosen Codes

Codes with the best side-channel and fault resistance properties according to Algo-
rithm 1 with 4 codewords and length 8 can be found in Table 2. Their detailed proper-
ties are stated in Table 3. More codes with cardinality 16 and various distances can be
found in Appendix A.

For calculating the register variance, we follow the similar methodology as used
in [12], together with their generated α values, but we improved their ranking algorithm
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by calculating the bit variances inside registers and by selecting the code which has
the lowest leakage value for the highest leaking codeword. First part of Table 3 shows
these three values, with the order of preference according to our ranking algorithm.
Second part of the table shows bit fault resistance probabilities, denoted by pm for m-bit
flips in the codeword, as well as overall resistance index, denoted by prand for the code.
The last part of the table shows the fault resistance probabilities with error correction,
denoted by pm,(e), as well as overall resistance index with error correction, which is
denoted by prand,(e). We do not consider codes with distance 1 because such codes do
not provide protection against 1-bit flips and therefore the fault protection would be very
low. However, such codes can still be used for minimizing the side-channel leakage.

In general, if we aim for higher distance values, we get better detection and correc-
tion capabilities, but the side-channel leakage is higher as well. That is because if the
distance is higher, it is more likely that the variance of leakage among the codewords is
bigger. Also, we can see that equidistant codes have a constant detection probability of
1 except the case when number of bit flips is the same as the code distance. Moreover,
if we sum up the probabilities of all the bit flip faults for non-equidistant codes, the
overall detection probability is lower. However, the side-channel leakage of equidistant
codes is more than 10 times higher compared to non-equidistant codes.

Table 2: Codes used in evaluation.

Code Distance Denoted by
0x3D, 0x9D, 0xAD, 0xBC = 2 C8,4,eq2

0x0B, 0x19, 0x35, 0xA6 >= 2 C8,4,min2

0x19, 0x35, 0x8A, 0xA6 >= 3 C8,4,min3

0x55, 0x93, 0xA5, 0xC6 = 4 C8,4,eq4

0x19, 0x27, 0x8A, 0xB4 >= 4 C8,4,min4

0x19, 0x6A, 0x87, 0xF4 >= 5 C8,4,min5

4.3 Fault Simulation

The fault simulator we used was customized for the purpose of evaluating a microcon-
troller assembly table look-up implementation of the encoding schemes presented in
this paper. More details on this simulator are provided in [1]. This simulator helps us to
extend the theoretical results to real-world results, where one has to use capabilities of
microprocessors for computing the results.

A high-level overview is given in Figure 1. There are three instructions in total – the
first two LDI load the two operands into registers r0 and r1. Both of the operands are
already encoded according to one of the coding schemes. The LPM instruction loads the
data from the look-up table stored in the memory by using the values in r0 and r1, and
the result is stored to register r2. This part works as a standard instruction set simulator.
During each execution, a fault is injected into the code. For each type of fault, we test
all the possible combinations of codewords, and we disturbed all the instructions in our
code. We have tested the following fault models:

– Bit faults: in this fault model, one to n bits in the destination register change its
value to a complementary one.
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Table 3: Side-channel and fault properties of the codes.

α = [0.613331, 0.644584, 0.602531, 0.190986, 0.586268, 0.890951, 1.838814, 1.257943, 0.899922, 0.614699]

Code C8,4,eq2 C8,4,min2 C8,4,min3 C8,4,eq4 C8,4,min4 C8,4,min5

Codeword Variance 0.0158 1.150 × 10−5 9.800 × 10−6 0.0021 6.440 × 10−5 6.743 × 10−3

Highest Leakage 4.9003 3.3445 3.3413 2.9514 3.3377 3.3445
Bit Variance 0.2492 0.2748 0.2776 0.1535 0.2776 0.3702

p1 1 1 1 1 1 1
p2 0.8929 0.9821 1 1 1 1
p3 1 0.9911 0.9821 1 1 1
p4 1 0.9929 0.9857 0.9571 0.9857 1
p5 1 0.9821 1 1 0.9643 0.9643
p6 1 1 1 1 1 0.9643
p7 1 0.9375 0.8750 1 1 1
p8 1 1 1 1 1 1

prand 0.9866 0.9857 0.9804 0.9946 0.9938 0.9911

p1,(e) - - 1 1 1 1
p2,(e) - - 0.8929 1 1 1
p3,(e) - - 0.9107 0.7857 0.9286 1
p4,(e) - - 0.9143 0.9571 0.8429 0.8571
p5,(e) - - 0.9286 0.7857 0.8929 0.8571
p6,(e) - - 0.7500 1 0.7857 0.75
p7,(e) - - 0.8750 1 1 0.75
p8,(e) - - 0 1 1 1

prand,(e) - - 0.7839 0.9411 0.9313 0.9018

Instruction set simulator

Output checker

Fault simulator

LDI  r0   a
LDI  r1   b
LPM  r2   r0   r1

a b

output

-> instruction
-> fault model
-> bit position

Is output:
-> corrected 
-> valid
-> invalid
-> null

Fig. 1: Fault simulator operation overview.

– Random byte faults: The random byte fault model changes random number of bits
in the destination register.

– Instruction skip: instruction skip is a very powerful model that is capable of re-
moving some countermeasures completely. We have tested a single instruction skip
on all three instructions in the code.

– Stuck-at fault: in this fault model, the value of the destination register changes to
a certain value, usually to all zeroes. Therefore, we have tested this value in our
simulator.

After the output is produced under a faulty condition, it is analyzed by the output
checker, which decides on its classification. Outputs can be of four types (Corrected,
Valid, Invalid, Null), and these types are described in detail in Section 2.2.
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Fig. 2: Simulation results for C8,4,eq4 with equidistant detection scheme in (a) and with equidistant
correction scheme in (b); C8,4,min4 with detection scheme in (c) and with correction scheme in (d).

4.4 Simulated Results

Figure 2 shows plots for C8,4,min4 and C8,4,eq4, with and without the error correction.
Instruction skip faults and stuck-at faults show zero success when attacking any of the
generated codes. When it comes to bit flips, we can see that for better fault tolerance,
one should not use the error correction capabilities, since the properties of such codes
allow changing the faulty codeword into another codeword, depending on the number
of bit flips and minimum distance of the code. When deciding whether to choose an
equidistant code or not, situation is the same as in Table 3 – equidistant codes have
slightly better fault detection properties, but worse side-channel leakage protection.
Therefore, it depends on the implementer to choose a compromise between those two.

5 Discussion

First, we would like to explain the difference between the calculated results in Table 3
and simulated results in Figure 2 in equidistant code C8,4,min4. Table 3 shows theoretical
results assuming that error happens before using the lookup table. However, in a real-
world setting, fault can be injected at any point of the execution, including the table
look-up, or even after obtaining the result from the table. That is also why there are
Invalid faults, despite the table always outputs Null in case of being addressed by a
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word that does not correspond to any codeword. Because there are three instructions in
the assembly code, faulting the destination register of the last one after returning the
value from the table results into 1/3 of Invalid faults in all the cases except instruction
skips.

To explain the condition on lines 7-8 of the Algorithm 1, we can take the code with
n = 8, M = 16, and d = 4 as an example. The simulation result for this code is stated
in Figure 3 (a). Full results for this code are then in Table 5 in the appendix. There are
no codes with these parameters that could satisfy the abovementioned condition – all
480 codes that can be constructed, have the property that if any codeword is faulted by
n bit flip, it will change to other codeword. Therefore, such codes are not suitable for
protecting implementations against fault attacks. For this reason, it is more suitable to
use the C8,16,min3 code, stated in Figure 3 (b), that does not suffer from such property.
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Fig. 3: Simulation results for the codes: (a) C8,16,min4 and (b) C8,16,min3.

To summarize the results, we point out the following findings:

– Correction Scheme is not suitable for fault tolerant implementations – while it can
be helpful in non-adversary environments, where it can be statistically verified, how
many bits are usually faulted, and therefore, a proper error correction function can
be specified, in adversary-based settings, one cannot estimate the attacker capabil-
ities. In case of correcting 1 bit error for example, attacker who can flip multiple
bits will have a higher probability of producing Valid faults, compared to using
detection scheme with the same code.

– We can design optimal code either from the fault tolerance perspective, or from
side-channel tolerance perspective – if we consider both, a compromise has to be
made, depending on which attack is more likely to happen or how powerful an at-
tacker can be in either setting. If we sacrifice the fault tolerance, we will normally
get a code with distance 2 (e.g. side-channel resistant codes in [12] all have dis-
tance 2 and they are not equidistant codes), therefore such codes will be vulnerable
to 2-bit faults. On the other hand, by relaxing the power consumption variance con-
dition, we will be able to choose codes with bigger distance, being able to resist
higher number of bit faults.
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– Both types of resistances can be improved if we sacrifice the memory and choose
codes with greater lengths.

– Equidistant detection schemes is a good option in case the implementation can
be protected against certain number of bit flips – because all the Valid faults are
achieved only if the attacker flips the same number of bits as is the distance. How-
ever, this condition does not hold in case of equidistant correction schemes.

6 Conclusions

In this paper, we provided a necessary background for constructing side-channel and
fault attack resistant software encoding schemes. Current encoding schemes only cover
side-channel resistance, and either do not discuss fault resistance, or only state it as a
side product of the construction, such as [17]. Our work defines theoretical bounds for
fault detection and correction and provides a way to construct efficient codes that are
capable of protecting the underlying computation against both physical attack classes.

To support our result with a practical case study, we simulated the table look-up un-
der faulty conditions, by using a microcontroller assembly code. As expected, the codes
constructed by using our algorithm provide noticeably better fault resistance properties
compared to state-of-the-art, while keeping the side-channel leakage at the minimum.

For the future work, we would like to use our scheme to implement all the operations
in a symmetric cryptographic algorithm and test both the side-channel leakage and fault
tolerance in a real world setting. Also, we would like to examine the timing leakage
implications of the table look-ups with respect to processed data.

Acknowledgments. The authors would like to thank Dr. Punarbasu Purkayastha for
the useful discussions and the anonymous reviewers for their valuable suggestions. The
research of X. Hou is supported by Nanyang President Graduate Scholarship.
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A Generated Codes

In this section, we state the remaining codes generated by the Algorithm 1, for M = 16
and n = 8, 9, 10.

Table 4: Codes generated by the Algorithm 1.

Code Length Distance Denoted by
0x0E, 0x4D, 0xF1, 0xEC, 0x2D, 0x26,
0x86, 0x8D, 0xA5, 0x46, 0xD9, 0x13,
0xD2, 0x79, 0x72, 0x5A

8 >= 2 C8,16,min2

0x4D, 0x8B, 0x96, 0x43, 0xE9, 0xE2,
0xBA, 0xD5, 0x33, 0x2E, 0x3D, 0xFC,
0xA5, 0x5A, 0x76, 0xCE

8 >= 3 C8,16,min3

0xBA, 0xD9, 0xEF, 0x73, 0x1F, 0xD6,
0x83, 0xB5, 0x26, 0x4A, 0x7C, 0x45,
0x29, 0x8C, 0xE0, 0x10

8 >= 4 C8,16,min4

0x145, 0x15A, 0x1CA, 0x95, 0xCC,
0xDA, 0xC5, 0x18C, 0x0E, 0xD3,
0x19A, 0x185, 0x07, 0x193, 0x9C,
0x153

9 >= 2 C9,16,min2

0x07, 0xF3, 0x146, 0xB5, 0xEC, 0x2E,
0x1BA, 0x165, 0x13C, 0x1D, 0x1D9,
0x5B, 0x1D4, 0x18B, 0x96, 0x185

9 >= 3 C9,16,min3

0x3B, 0x75, 0x9D, 0x14B, 0x1D4,
0x1A5, 0xEC, 0x13C, 0x1F9, 0x193,
0x07, 0xDA, 0x166, 0xB6, 0x1AA, 0xE3

9 >= 4 C9,16,min4

0x5D, 0xDC, 0x34B, 0x25C, 0x1CB,
0x359, 0xCE, 0x3CA, 0x3E6, 0x1F5,
0x1E7, 0x3F4, 0x375, 0x24E, 0x4F,
0x1D9

10 >= 2 C10,16,min2

0xA7, 0x235, 0x3C8, 0x22A, 0x14C,
0x39, 0x298, 0x3C5, 0x3B1, 0x8B,
0x1B4, 0x1C, 0x326, 0x156, 0x169,
0x353

10 >= 3 C10,16,min3

0x2D, 0x16A, 0x18C, 0x97, 0x136,
0x21A, 0x347, 0x3D4, 0x3A5, 0x159,
0x275, 0x2E6, 0xCB, 0xF8, 0x1F3,
0x24C

10 >= 4 C10,16,min4
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B Fault Resistance Probabilities

In this section, we show the detailed theoretical calculations of fault resistance proba-
bilities and the overall resistance index (with error) for some specific examples.

Equidistant Detection Scheme. Using Lemma 1, we list the values of pms and prand
in Table 6 for (8, 4, 2) and (8, 4, 4) equidistant binary codes.

Table 6: Theoretical values of pm for (n,M, d)−equidistant binary code.

(n,M, d) p1 p2 p3 p4 p5 p6 p7 p8 prand

(8, 4, 2) 1 0.8929 1 1 1 1 1 1 0.9866
(8, 4, 4) 1 1 1 0.9571 1 1 1 1 0.9946

Detection Scheme. Since we require that dis (C) ≥ 2 for Detection Scheme, for 1−bit
fault, we expect the results to be Null, which means p1 = 1. Now we give a theoretical
calculation for the (8, 4, 4)−binary code C8,4,min4 = {00011001, 00100111, 10001010,
10110100}. We first list the distance between every pair of codewords in Table 7.

Table 7: Distance between each pair of codewords in the (8, 4, 4)−binary code C8,4,min4.

dis (·, ·) 00011001 00100111 10001010 10110100
00011001 0 5 4 5
00100111 5 0 5 4
10001010 4 5 0 5
10110100 5 4 5 0

By equation (3), we can then calculate the m−bit fault resistance probabilities and
the overall resistance index for C:

p2 = p3 = 1 −
1
4

(0 + 0 + 0 + 0) = 1, p4 = 1 −
1

4
(

8
4

) (2 + 0 + 1 + 1) =
69
70
≈ 0.9857,

p5 = 1 −
1

4
(

8
5

) (2 + 2 + 2 + 2) =
27
28
≈ 0.9643, p6 = p7 = p8 = 1 −

1
4

(0 + 0 + 0 + 0) = 1,

prand =

8∑
m=1

1
8

pm = 0.9938.
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Correction Scheme. We give a theoretical calculation for the m−bit fault resistance
probabilities with error correction for the same (8, 4, 4)−binary codeC8,4,min4 = {00011001,
00100111, 10001010, 10110100}. As dis (C) = 4, by Remark 1 it is an 1−error correct-
ing code. By equation (2), pm,(e) = 1 for m = 1. To calculate pm,(e) for m ≥ 2, we first
list the table of cardinalities of Fc,m for c ∈ C and m = 2, 3, . . . , 8 in Table 8.

Table 8: Cardinality of Fc,m for m = 2, 3, . . . , 8 and c ∈ C8,4,min4.

|Fc,2| |Fc,3| |Fc,4| |Fc,5| |Fc,6| |Fc,7| |Fc,8|

00011001 0 4 11 6 6 0 0
00100111 0 4 11 6 6 0 0
10001010 0 4 11 6 6 0 0
10110100 0 4 11 6 6 0 0

By equation (2), we can then calculate the m−bit fault resistance probabilities with
error correction as well as the overall resistance index with error correction for C.

p2,(e) = 1 −
1

4
(

8
2

) (0 + 0 + 0 + 0) = 1,

p3,(e) = 1 −
1

4
(

8
3

) (4 + 4 + 4 + 4) =
13
14
≈ 0.9286,

p4,(e) = 1 −
1

4
(

8
4

) (11 + 11 + 11 + 11) =
59
70
≈ 0.8429,

p5,(e) = 1 −
1

4
(

8
5

) (6 + 6 + 6 + 6) =
25
28
≈ 0.8929,

p6,(e) = 1 −
1

4
(

8
6

) (6 + 6 + 6 + 6) =
11
14
≈ 0.7857,

p7,(e) = p8,(e) = 1 −
1
4

(0 + 0 + 0 + 0) = 1,

prand,(e) =

8∑
m−1

1
8

pm,(e) = 0.9313.


