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Abstract. Side-channel analysis (SCA) attacks pose a serious threat to embedded
systems. So far, the research on masking as a countermeasure against SCA focuses
merely on cryptographic algorithms, and has either been implemented for particu-
lar hardware or software implementations. However, the drawbacks of protecting
specific implementations are the lack of flexibility in terms of used algorithms, the
impossibility to update protected hardware implementations, and long develop-
ment cycles for protecting new algorithms. Furthermore, cryptographic algorithms
are usually just one part of an embedded system that operates on informational
assets. Protecting only this part of a system is thus not sufficient for most security
critical embedded applications.
In this work, we introduce a flexible, SCA-protected processor design based on the
open-source V-scale RISC-V processor. The introduced processor design can be
synthesized to defeat SCA attacks of arbitrary attack order. Once synthesized, the
processor protects the computation on security-sensitive data against side-channel
leakage. The benefits of our approach are (1) flexibility and updatability, (2) faster
development of SCA-protected systems, (3) transparency for software developers,
(4) arbitrary SCA protection level, (5) protection not only for cryptographic algo-
rithms, but against leakage in general caused by processing sensitive data.

Keywords: protected CPU, domain-orientend masking, masking, side-channel
protection, threshold implementations, RISC-V, V-scale.

1 Introduction

The resistance of security-critical systems against the broad field of passive physical
attacks is a fundamental requirement of todays embedded devices and smart cards. If an
attacker has direct or indirect physical access to an unprotected device, the observation
of side-channel information (like power consumption [12] or electromagnetic emana-
tion [16]) leaks information on the processed data. The security of such devices is then
no longer guaranteed even if state-of-the-art cryptography is in place, because sensitive
information like the used key material leaks through side-channel information.

The history of countermeasures against side-channel analysis attacks (SCA) is
as old as the first paper targeting differential side-channel analysis by Kocher et al.
[12]. Hereby, masking has become the first-choice measure to defeat SCA. The first
masking approach was introduced by Goubin et al. [6], but many schemes followed
like the Trichina gate [22] approach and the works of Ishai et al. [10], who introduced



the concept of private circuits. However, many masking schemes have shown to be
insecure in the presence of glitches that occur within the combinatorial logic of hardware
implementations.

To overcome the inherent issue of glitches of these masking schemes, Nikova et al.
[14] introduced the first-order secure threshold implementation (TI) masking scheme.
However, in comparison with software masking schemes, the original TI requires a higher
number of random shares to handle glitches. A higher demand for fresh random shares
goes hand in hand with increased hardware costs and higher randomness requirements,
especially for implementations secure against higher-order attacks.

Most recently many works were published on the implementation of masked hard-
ware implementations with reduced number of shares [2, 3, 8, 15, 18]. The work of
Gross et al. [8] introduced the so-called domain-oriented masking scheme that requires
only d + 1 shares, d(d + 1)/2 fresh randomness, and allows easy generalization to
arbitrary protection orders.

Even though the trend to reduce the amount of shares to d + 1 made protected
hardware implementations more efficient and resulted in generic higher-order imple-
mentations, the efficient protection against SCA is still cumbersome, requires a lot of
expertise for both implementation and evaluation, and is error-prone. Furthermore, the
reduction of shares introduces additional register stages due to the decomposition of
complex functions into a couple of algebraically simpler subfunctions [2]. This circum-
stance of additional delay cycles naturally brings implementations based on hardware
masking schemes closer to software masking schemes in terms of throughput.

The aforementioned issues when implementing efficiently masked applications
motivated our work. In particular, we investigate the interesting question: Is it possible
to construct a general-purpose processor that is inherently secure against side-channel
analysis without giving up the benefits and flexibility of software-driven design? As far
as we know, there exist only a few works that targets the protection of processors against
SCA [7, 17, 21] which, however, only focused on first-order protection.

Our Contribution In this work, we introduce a side-channel protected general-purpose
CPU based on the RISC-V open instruction-set architecture [23] using the open-source
V-scale [13] core. Therefore, we use the findings of domain-oriented masking [8] to
modify the open-source V-scale CPU to be resistant against passive physical attacks.

The benefits of our approach compared to custom-made protected hardware im-
plementations are, (1) more flexibility in terms of the selection of algorithms and
updatability, (2) faster development of secure systems, (3) hardware-level protection
that is transparent for both the running software and the designer, (4) the CPU can
be synthesized for arbitrary protection orders by just changing one parameter, (5) a
CPU is part of most security-critical systems and therefore requires SCA protection
for security-sensitive data processed by the CPU anyway (which are not necessarily
cryptographic operations).

2 Efficient Masking in Hardware

Side-channel attacks such as differential power analysis or chip probing attacks typically
exploit data dependencies within the observed side-channel information. Therefore, the
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intuition behind masking is to make security-critical computations independent of the
underlying data. Many masking schemes achieve this data independence by representing
variables in a so-called shared representation which ensures independence up to a certain
protection order d. One of the most popular formal models to investigate the security
of masking schemes is the so-called d-probing model introduced by Isha et al. [10]. In
this probing model, the protection order d equals the number of needles an attacker can
utilize in parallel. A circuit that resists probing attacks with up to d needles is said to be
d-secure.

The implementation costs for masking schemes, like chip area and randomness
requirements, are strongly related to the number of used shares. In the domain-oriented
masking scheme (DOM), the primary goal is to minimize the number of required shares
to d+ 1 to reduce the implementation costs. Hereby, a variable x is represented as the
sum of d+ 1 shares in GF (2). Each of these shares is associated with a specific share
domain that we denote with capital letters (see Equation 1) with the associated variable
in the index. If the sharing itself is referenced we use a bold capital letter as abbreviation
for writing each share of x explicitly.

x = Ax +Bx + Cx + . . .︸ ︷︷ ︸
d+1

= X (1)

The intuition behind DOM is to prevent a protected circuit from combining shares
associated with different domains in the same signal path. Therefore, any function that is
intended to be performed on the unshared variable x is instead applied on the shares of x
following the same principle of domain separation. As a result, any linear function F(x)
is split up in d+ 1 domain functions as shown in Equation 2 and Figure 1, respectively.

F(x) = FA + FB + FC + . . .︸ ︷︷ ︸
d+1

(2)

The realization of any non-linear functions—G(x, y, . . . ) in Figure 1—, however,
requires the shares to cross the domain borders. A share that is used in a different domain
therefore needs to be blinded before it can be safely integrated in the target domain. The
blinding is performed by adding a randomly picked share Z to the cross-domain share.
To keep the hardware cost low, more complex functions are decomposed into a cascade
of simpler linear and non-linear functions.

In the original DOM paper [8], different designs of GF (2n) multipliers were intro-
duced which serve as the basis for realizing protected logic functions. In particular, two
different variants of DOM multipliers were introduced. The first multiplier (DOM-dep)
does not have any restrictions on the shared inputs regarding the independence of their
sharings. As a consequence, it is even allowed to use the same sharing of the same
variable x for both inputs. Because the assumption of share independence is trivially
given in some cases, a more efficient implementation of the multiplier (DOM-indep)
was introduced, which requires less randomness and standard cells than the DOM-dep
realization. The main difference between these two multipliers is that the DOM-indep
variant does not require one input to be blinded before the multiplication is performed.
Instead, only the partial products of the multiplier are remasked before the terms are
summed up (for more detailed information please see [8]).

3



F
A

F
B

F
C

A
x
, A

y
, ...

B
x
, B

y
, ...

C
x
, C

y
, ...

G
A

G
B

G
C

Domain A

Domain B

Domain C

A
q

B
q

C
q

Z
1

Z
3

Z
0

Z
2

Z
4

Z
5

Fig. 1. DOM concept for protection order d = 2 and two shared functions

Besides efficiency, one main advantage of DOM is its genericity. This allows any
hardware design being implemented according to the DOM scheme to be realized for
any protection order d without any redesigning effort. In particular, it leads to hardware
designs that use a security parameter d to automatically generate protected circuits for
arbitrary protection order without touching the design.

3 Targeted Processor Platform

This work builds upon the V-scale processor that implements the RISC-V instruction-
set architecture (ISA), which was originally developed at the University of California,
Berkely. RISC-V is a customizable, modular, free and open RISC ISA which suits
research perfectly. The architecture is highly flexible, meaning that the register size (32,
64, or 128 bit), their number (16 or 32), the number of privilege levels (1 to 4), and the
supported instructions can be chosen according to the desired use case.

The ISA defines the mandatory base integer instruction set (I or E) which contains
the most basic memory, arithmetic, logic, and control-flow instructions. Optionally,
more complex instructions can be implemented and are defined via various standard
extensions. These extensions include, for example, instructions for integer multiplica-
tion/division (M), atomic (A) operations, as well as single- (F) and double-precision (D)
floating-point computations. The instructions in the base instruction set and the men-
tioned extensions are all encoded in 32 bits. However, both shorter and longer instructions
are supported too. The extension for compressed instructions (C), for example, defines
16-bit instructions, which map to the base instruction set, to increase code density. Fur-
thermore, RISC-V also supports the addition of fully-custom instructions as so called
non-standard extensions (X).

The fact that RISC-V, unlike for example the AVR, x86, and the ARM ISA, has
no status flags (carry, overflow, zero, ...) is noteworthy too, given that it simplifies the
masking efforts. Carry propagation as well as comparisons are performed with dedicated
instructions instead.

Like the ISA, also the V-scale processor core has been developed in Berkely. V-scale
is a Verilog implementation of the RV32IM instruction set, i.e., it is a RISC-V processor
with 32 registers with 32 bit width featuring the base integer instruction set and the
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Fig. 2. Overview of the V-scale core. Grey blocks are registers or use a register stage internal.
Shared data connections are illustrated in red, unshared in black and the randomness in blue.

integer multiplication extension. The core itself relies on a single-issue in-order 3-
stage pipeline comprising a fetch, a combined decode+execute, and a write back stage.
Additionally, the data dependencies between consecutive instructions can be resolved
using a bypass of the write back stage which permits to maximize the utilization of the
core. Communication with memory relies on separated AHB-Lite memory interfaces for
instructions and data, permitting to build Harvard and von Neumann architectures.

4 Protected Implementation of V-scale

Our protected implementation of V-scale addresses the problem that data processed
by the processor is subject to side-channel attacks. In this work we solely protect the
instructions of the base RV32I instruction set as it is the most versatile. Nevertheless, the
multiplication/division (M) extension of the original V-scale processor has been kept to
maintain compatibility but is still unprotected.

Therefore, the register file, the majority of the ALU and the data memory interface
of the V-scale processor have been protected using the DOM scheme. Other parts, like
the instruction memory interface and the decoder have been left unprotected. The reason
for this split is that in any case the implemented code must be written such that it does
not leak information about the processed data over the instruction sequence because
different instructions show different power signatures in leakage traces as also mentioned
in [7]. Otherwise, even on a fully shared processor, timing attacks would for example be
possible.

5



The resulting processor’s architecture is depicted in Fig. 2. One major difference
to the original V-scale processor is that the protected core now has four pipeline stages.
The additional pipeline stage (see (1) in Fig. 2) splits the previously combined de-
code+execute stage and is necessary to prevent leakage due to glitches when data shares
are merged. This aspect is described in more detail in Section 4.1.

From another perspective, the processor is split into a part that operates on DOM-
shared data and a part operating with merged data shares. Accordingly, the ALU itself
has been split into a protected and an unprotected part. The unprotected ALU (see (2) in
Figure 2) implements multiplication/division, address calculation, and data comparison
for conditional jumps. Performing comparisons for conditional jumps in an unprotected
way is legitimate as code is not allowed to branch on secure data anyway to avoid timing
attacks. More details on the logic to securely merge the different DOM shares and on
the unprotected ALU itself can be found in Section 4.2. All the remaining functionality
being part of the base instruction set (e.g. AND, OR, XOR, ADD, ...) is implemented
in the protected ALU in a DOM-protected way. The protected ALU is visualized in
Figure 2 at (3) and is thoroughly described in Section 4.3.

4.1 Additional Pipeline Stage

The major change to the unprotected processor are the additional source registers shown
in Figure 2 at (1). The main purpose of these buffer registers is to prevent glitches in the
merging units connected to RS1-merge and RS2-merge. These merging units recombine
the shares to the original value as shown in Equation 1.

Without the registers RS1-merge and RS2-merge, (de-)activation of the merging units
can result in data dependent glitches. This is illustrated using two basic scenarios. First,
the output of the register file switches to sensitive data. This requires the merging units to
be disabled by detaching their inputs from the source register. However, if the sensitive
data is selected faster than the merging unit is disabled, sensitive data propagates into
the merging unit and results in the leakage of sensitive data. Second, the output of the
register file switches from sensitive data to data to be merged. This enables the merging
unit by switching the multiplexer to the output of the register file. Here, if the multiplexer
switches faster than the register file output is selected, the sensitive data from before
glitches into the merging units which leaks information. Both scenarios are prevented by
the additional buffer registers RS1-merge and RS2-merge. These effectively decouple
the merging units from the register file selector by setting the input to the merging units
to zero if not required. To adapt the delay of the protected to the unprotected data path,
further buffer registers RS1 and RS2 are needed.

Another change to the processor design is the addition of fresh randomness to
the processed values before the ALU result is written back to the register file and
before the registers RS1 and RS2 are used as the operands for the protected ALU. This
allows to restore the independence of the sharings after unprotected operations and
shifts operations which generate zeros or duplicate the most significant bit, respectively.
Furthermore, the addition of fresh randomness is required right before operating on
identical operand registers for protected ALU operations.
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4.2 Unprotected Operations

Figure 2 shows at (2) the modules MUL-DIV and ALU (unpr.) providing the unprotected
operations of our core. These modules operate natively with 32-bit word size and use
the merged data as described in Section 4.1. The MUL-DIV-module is the unprotected
hardware multiplication and division unit from the original V-scale processor design and
kept to maintain compatibility.

The unprotected ALU implements different compare operations, i.a., for branch
instructions. However, the comparison results can also be written back to a register.
While all branch instructions use two source register inputs, instructions storing the
comparison result allow to alternatively use an immediate value as the second source.
Note that the compare functionality could have been implemented without merging the
data, but branching on protected data must anyway be avoided due to possible timing
attacks [11]. This design decision should be kept in mind as it makes it necessary to
avoid compare operations on protected data.

Furthermore, the unprotected ALU provides an adder to perform address calculations
within load and store operations. Note however that the required merging of source
register before the actual address computation does not reduce security. As the second
operand is constant and determined by a known software implementation, the value of
the source register can always be reconstructed, also if a masked adder was used and the
shares of the memory address were merged afterwards. Besides, the unprotected adder is
also used within two further instructions. First, the adder is used in the jump and link
instruction to increment the program counter in the computation of the address of the
following instruction. Second, in the add upper immediate to program counter instruction
both the program counter and the immediate input are publicly known making a masked
adder obsolete.
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4.3 Protected ALU

The protected ALU is shown in Figure 3 which provides the masked functionality for
bit-wise logic operations and arithmetic operations. Both input sharings X and Y are
composed of d+ 1 independent shares (see Equation 3), where d is the protection
order of the DOM implementation. For resharing purposes, the protected ALU has two
additional inputs Z(1) and Z(2) holding the required fresh random shares. The data width
of the input shares and the fresh random Z shares is 32 bits each.

X = (Ax, Bx, Cx, . . . )︸ ︷︷ ︸
d+1

Y = (Ay, By, Cy, . . . )︸ ︷︷ ︸
d+1

(3)

Z(1) = (Z
(1)
0 , Z

(1)
1 , Z

(1)
2 , . . . )︸ ︷︷ ︸

d(d+1)/2

Z(2) = (Z
(2)
0 , Z

(2)
1 , Z

(2)
2 , . . . )︸ ︷︷ ︸

d(d+1)/2

(4)

DOM-AND The basis for all implemented non-linear operations is the so-called
DOM-indep GF (2) multiplier variant (see [8]) which corresponds to a logic AND gate
with two one-bit inputs. The DOM-indep AND gate is illustrated in Figure 4. A basic
requirement of the DOM-indep multipliers is that the two inputs X (Ax, Bx, Cx, . . . )
and Y (Ay, By, Cy, . . . ) are independently shared which is ensured by design of the
protected core.

The construction of the DOM-AND is generic and can thus be extended to arbitrary
protection orders by adding additional shares. For the protection order d, d+ 1 shares
per variable are required giving d+1 independent share domains. Every domain consists
of d+ 1 AND gates and flip-flops which results in a quadratical growth of the chip area
accordign to the protection order. The three steps (calculation, resharing, and integration)
of the DOM implementation are applied independently for every bit position of the
32-bit shares. Therefore, a 32-bit AND gate consists of 32 DOM-AND gates.

In the calculation step the terms resulting from the calculation of X ×Y (AxAy,
AxBy , AxCy , BxAy . . . ) are calculated separately. In the next step (resharing) all terms
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that contain shares which are not associated with the respective domain are reshared by
using a fresh random Z share. The subsequent register ensure that no early propagation
effects occur which could result in glitches that would effect the SCA resistants of the
gate. To keep the timing of the masked AND synchronous the register is also inserted
in inner-domain paths of the domains (e.g., AxAy or BxBy). The last step reduces the
number of shares again to d+ 1 by integrating the freshly masked cross-domain terms
into the inner-domain terms and hence generates the output Q (Aq, Bq, Cq . . . ).

DOM-Adder The protected adder is based on a Kogge-Stone similar to the construction
of Schneider et al. [20]. The adder is a carry lookahead type adder using a tree-like
structure separating the addition into propagation and carry generation. Figure 5 shows
the secure DOM adder. It is composed of two DOM-ANDs, two bit shifts, and multiple
XORs. The XOR as well as the shift operations can be performed independently for
each share domain and each input. The nonlinear parts of the adder are formed by two
DOM-AND gates. To make the illustration of the adder in Figure 5 more concise, the
three steps for calculating the DOM-AND are only indicated by the respective function
(see Figure 4 for more details). The DOM-AND’s internal registers together with the
G are used as the working registers for the iterative calculation of the sum. The DOM-
AND’s internal registers are indicated by GP which belongs to the carry generation path
and P which belongs to the propagation path.

For the carry generation path the register G is used to store the previous value of
the generation step as it is required in the next iteration. An important requirement of
the used DOM-AND gate is an independent sharing both inputs. This independence is
ensured for both AND gates because the bit position of one operand is always shifted
by at least one position. With the same argument the random Z shares in each cycle are
applied for both AND gates without violating the independence requirement.

The subtraction operation can easily be performed by calculating the twos-complement
of the subtrahend. The subtraction is controlled by the SUB input. Therefore, the input
signal SUB is XORed with every bit of the first share of Y (Ay). Incrementing the result
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by one is done by connecting the carry-in of the adder with SUB which is active on a
subtraction. This is done in the shifter of the generation path by appending the carry bit
below the least significant bit of the first share and shifting it into the carry generation
path. The following equations uses the � operation to indicate a left shift performed
independently on every input share supporting only shifts with 2n where n ≥ 0. The
calculation of the sum is performed in three steps called preprocessing, processing, and
postprocessing.

An addition is started with the initial preprocessing step initializing the registers G,
P0 and GP according to Equation 5.

G0 = 0 P0 = X+Y GP0 = XY (5)

The processing step is performed five times in a row (n =1 . . . 5).The first and last
steps are diverging form the normal processing operation. In the first step the input
register P is replaced by P0. In the last processing step the register update of P is
omitted (see Equations 6-8).

Gn = Gn−1 +GPn−1 n = 1 . . . N (6)

Pn = Pn−1 (Pn−1 � 2n−1) n = 1 . . . N − 1 (7)

GPn = Pn−1(Gn � 2n−1) n = 2 . . . N (8)

In the final postprocessing step the resulting sum is simply computed by a single
XOR operation as shown in Equation 9.

S = P0 + (GN � 1) (9)

Resharing of ALU Inputs and Outputs To reduce the required fresh randomness the
two resharing values R(1) and R(2) in Figure 2 are generated from the random Z shares.
Furthermore, the merged value of both R shares is always zero so that an addition of
the shares with a sharing of the register file input or output always result in a resharing
without changing the underlying value. For first-order protection the resharing value is
generated by duplicating a single random share as shown in Equation 10.

R(1) = (Z
(1)
0 , Z

(1)
0 ) R(2) = (Z

(2)
0 , Z

(2)
0 ) (10)

For other protection orders, the randomness is composed as shown in Equation 11-12.

R(1) = (Z
(1)
0 , Z

(1)
0 + Z

(2)
1 , Z

(1)
2 + Z

(2)
1 , Z

(1)
2 + Z

(2)
3 , Z

(1)
4 + Z

(2)
3 , . . .) (11)

R(2) = (Z
(2)
0 , Z

(1)
1 + Z

(2)
0 , Z

(1)
1 + Z

(2)
2 , Z

(1)
3 + Z

(2)
2 , Z

(1)
3 + Z

(2)
4 , . . .) (12)

To guarantee the independence of both resharing values, the first sharing R(1) uses
the shares of Z(1) with even and shares of Z(2) with odd indexes, whereas the second
sharing R(2) uses the remaining shares of Z(1) and Z(2). This combination of both Z
shares is necessary to prevent adding of two shares which are also used in the DOM-AND
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for the integration step. For example, if the second term of R(1) uses the same random
Z share (Z(1)

0 + Z
(1)
1 ) it could be used to eliminate two random values in domain A as

shown in Figure 4. This reduces the number of signals an attacker has to probe to reveal
an unshared intermediate.

Other ALU Operations The remaining operations of the protected ALU (see Figure 3)
are the shift operations, the logic operations XOR and OR, and the pass-through path.
The shift operations are represented by the blocks SLL, SRL and SRA, which perform
logical left or right shift or an arithmetic right shift. The Shift operand uses a separate
unshared input for selecting the shift width which is generated outside the module as
shown in Figure 2. This is necessary to prevent an unwanted merging of the default used
shift operand Y. The shifts are performed independently on every share of X. For the
arithmetic right shift the most significant bit of every share is duplicated. The logical
shift operations add zeros to the shares. Therefore, the shares must be refreshed which is
done before writing back the result into the register file or the buffer registers adding
fresh randomness (see Figure 2).

The XOR operation is done in a straight-forward way by adding the input shares of
X and Y share wise. This leads to a zero result using the same input values. Again the
results are reshared using fresh randomness before storing them in the buffer registers
RS1 and RS2 to guarantee independence of the shares.

The pass-through applies the second input Y unmodified to the output. To prevent
a duplication of the sharing of Y in different registers, the sharing is again refreshed
before writing it to a register.

The OR operation is combined with the AND operation formed by the DOM-AND
to reduce the logic overhead. This is done by transforming the logical OR into an AND
by inverting both inputs and the output. If the OR operation is used, the input OR is set
which inverts the first share of both input operands as well as the resulting output of the
DOM-AND by adding to all bits the OR signal.

5 Hardware Results

The hardware results are gathered for a Xilinx Kintex-7 FPGA with the Xilinx Vivado
Design Suite 2014.3. Therefore, the synthesis was done for the unprotected core as well
as for the protected V-scale core with protection orders from 1 up to 4. Figure 6 shows
the evolution of required look up tables (LUTs) (left) as well as the required registers
(right) for increasing protection order. The overall area seems to grow only linearly with
the protection order. The design of the DOM-AND gates which are part of the nonlinear
modules of the protected ALU increase quadratically which, however, contribute only
marginally to the overall size for lower protection orders. Table 1 shows the area result
in numbers. Additional the required randomness is shown which increases quadratically
with the protection order. In particular the randomness required for the protected ALU is
32× d(d+ 1) bits in each cycle. The last column shows the maximum clock frequency
which is higher for the protection orders 1 up to 3 as for the unprotected implementation.
This results from the additional pipeline stage of the protected implementation which
reduces the critical path but increases the delay on the other hand.
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Fig. 6. Required LUT (left) and registers (right) on an FPGA.

Table 1. V-scale core implementation results.

Prot. Order FPGA Logic Randomness Max. Clock
d [LUTs] [regs] [Bits] [MHz]

Unpr. 2,607 996 0 45.6
1 4,143 1,842 64 61.0
2 5,626 2,551 192 59.5
3 7,259 3,484 384 58.3
4 9,244 4,561 640 41.0

6 Side-Channel Evaluation

We have discussed the security of our DOM implementation of the V-scale core in the
d-probing model in Section 4. In this section we practically evaluate the resistance of
our implementation. To show the first-order resistance of our protected V-scale design,
the Welch’s t-test is used according to the recommendations of Goodwill et al. [5]. The
idea of this test is to collect two sets of traces. One set with completely random inputs
and another set with constant inputs—the shares and random input bits for the non-linear
are of course still random. The null-hypothesis is that both sets cannot be distinguished
from each other, meaning they have identical means.

To make our leakage assessment as reproducible as possible, a SASEBO-GIII [9]
based FPGA board, the SAKURA-X is used. The board is especially designed for side-
channel evaluation and provides special measurement connectors for measuring the
power consumption. The SAKURA-X board consists of a Xilinx Spartan-6 FPGA device
working as controller connected to the measurement PC and the Xilinx Kintex-7 FPGA
implements the device under attack (DUA)—the protected V-scale core in our case. The
leakage traces are collected by a Picoscope 6404C oscilloscope at 312.5 Ms sampling
rate for a 8 MHz DUA clock. As the targeted software implementation we implemented
the round transformations of an authenticate encryption scheme (ASCON) together with
additional code that triggers particular instructions and instruction sequences that were
considered critical.
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Fig. 7. T-test value of protected ALU operations with inactive random generator with 2M traces
(left) and active random generator with 100M traces (right)

Random Number Generators Turned Off The first-order t-test is performed according
to Equation 13 for the two trace sets A and B. In particular, for the two trace sets with
random and constant inputs the difference of the mean traces XA and XB is calculated.
The result is then scaled according to the estimated standard deviations SA and SB with
respect to the size of the trace sets denoted by NA and NB , respectively.

t =
XA −XB√

S2
A

NA
+

S2
B

NB

(13)

If the t-value exceeds the confidence interval of ±4.5 the null-hypothesis is rejected
with confidence greater than 99.99% for large sizes of N .

For validating the functionality of our measurement setup, we first deactivated the
used random number generator and performed the t-test which is shown in Figure 7 (left).
As expected the t-test showed significant peaks over the ±4.5 border which indicates
first-order side-channel leakage for 2 million traces.

Random Number Generator Turned On We repeated the t-test with the random number
generators turned on and collected 100 million traces. Even with 50 times more traces
compared to the first t-test the leakage evaluation does not show any significant peaks
any more. We thus consider the side-channel countermeasures to work as expected.

7 Conclusions

In this work implemented a side-channel protected V-scale core following the DOM
scheme. The implemented core is fully scalable in terms of protection order, and allows
to protect informational assets that are processed by the protected V-scale core. As our
results show the overhead for the side-channel protection of the core is only a factor
of roughly 1.5 for the first-order implementation. We synthesized the processor up to
protection order four. Up to this point the size of the core seems to grow only linearly.
This results from the fact that the protected ALU (that contains non-linear modules
which grow quadratically) is relatively small compared to other parts of the processor.
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To show the resistance of our implementation against side-channel analysis attacks,
we performed a first-order t-test of our core on a SAKURA-X FPGA evaluation board.
The practical evaluation even with 100 million leakage traces does not show any sta-
tistical significance. However, a practical evaluation is of course never complete nor a
complete argument for the security of an implementation. The formal analysis of our
implementation is thus considered as part of future work. Furthermore, the security of
our design is in general only given for software that does not introduce any control flow
changes based on the asset one tries to protect (timing attacks). However, we do not
consider this much of a drawback since constant runtime implementations are a basic
requirement of protected software and hardware.
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