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Abstract. This work considers the problem of fast and secure scalar multiplication using curves of genus
one defined over a field of prime order. Previous work by Gaudry and Lubicz in 2009 had suggested the use
of the associated Kummer line to speed up scalar multiplication. In this work, we explore this idea in detail.
The first task is to obtain an elliptic curve in Legendre form which satisfies necessary security conditions such
that the associated Kummer line has small parameters and a base point with small coordinates. In turns out
that the ladder step on the Kummer line supports parallelism and can be implemented very efficiently in
constant time using the single-instruction multiple-data (SIMD) operations available in modern processors.
For the 128-bit security level, this work presents three Kummer lines denoted as K1 := KL2519(81, 20),
K2 := KL25519(82, 77) and K3 := KL2663(260, 139) over the three primes 2251 − 9, 2255 − 19 and 2266 − 3
respectively. Implementations of scalar multiplications for all the three Kummer lines using Intel intrinsics
have been done and the code is publicly available. Timing results on the recent Skylake and the earlier
Haswell processors of Intel indicate that both fixed base and variable base scalar multiplications for K1 and
K2 are faster than those achieved by Sandy2x which is a highly optimised SIMD implementation in assembly
of the well known Curve25519; for example, on Skylake, variable base scalar multiplication on K1 is faster
than Curve25519 by about 25%. On Skylake, both fixed base and variable base scalar multiplication for K3

are faster than Sandy2x; whereas on Haswell, fixed base scalar multiplication for K3 is faster than Sandy2x
while variable base scalar multiplication for both K3 and Sandy2x take roughly the same time. In fact, on
Skylake, K3 is both faster and also offers about 5 bits of higher security compared to Curve25519. In practical
terms, the particular Kummer lines that are introduced in this work are serious candidates for deployment
and standardisation.
Keywords: elliptic curve cryptography, Kummer line, Montgomery curve, scalar multiplication.

1 Introduction

Curve-based cryptography provides a platform for secure and efficient implementation of public key
schemes whose security rely on the hardness of discrete logarithm problem. Starting from the pioneering
work of Koblitz [33] and Miller [37] introducing elliptic curves and the work of Koblitz [34] introducing
hyperelliptic curves for cryptographic use, the last three decades have seen an extensive amount of
research in the area.

Appropriately chosen elliptic curves and genus two hyperelliptic curves are considered to be suitable
for practical implementation. Table 1 summarises features for some of the concrete curves that have
been proposed in the literature. Arguably, the two most well known curves proposed till date for the
128-bit security level are P-256 [41] and Curve25519 [2]. Also the secp256k1 curve [44] has become very
popular due to its deployment in the Bitcoin protocol. All of these curves are in the setting of genus
one over prime order fields. In particular, we note that Curve25519 has been extensively deployed for
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various applications. A listing of such applications can be found at [19]. So, from the point of view of
deployment, practitioners are very familiar with genus one curves over prime order fields. Influential
organisations, such as NIST, Brainpool, Microsoft (the NUMS curve) have concrete proposals in this
setting. See [5] for a further listing of such primes and curves. It is quite likely that any future portfolio
of proposals by standardisation bodies will include at least one curve in the setting of genus one over a
prime field.

Table 1. Features of some curves proposed in the last few years.

Reference genus form field order endomorphisms

NIST P-256 [41] 1 Weierstrass prime no

Curve25519 [2] 1 Montgomery prime no

secp256k1 [44] 1 Weierstrass prime no

Brainpool [11] 1 Weierstrass prime no

NUMS [45] 1 twisted Edwards prime no

Longa-Sica [36] 1 twisted Edwards p2 yes

Bos et al. [9] 2 Kummer prime yes

Bos et al. [10] 2 Kummer p2 yes

Hankerson et al. [31],
Oliviera et al. [42]

1 Weierstrass/Koblitz 2n yes

Longa-Sica [36],
Faz-Hernández et al. [20]

1 twisted Edwards p2 yes

Costello et al. [17] 1 Montgomery p2 yes

Gaudry-Schost [28],
Bernstein et al. [4]

2 Kummer prime no

Costello-Longa [16] 1 twisted Edwards p2 yes

Hankerson et al. [31],
Oliviera et al. [43]

1 Weierstrass/Koblitz 2n yes

This work 1 Kummer prime no

Our Contributions

The contribution of this paper is to propose new curves for the setting of genus one over a prime order
field. Actual scalar multiplication is done over the Kummer line associated with such a curve. The idea
of using Kummer line was proposed by Gaudry and Lubicz [27]. They, however, were not clear about
whether competitive speeds can be obtained using this approach. Our main contribution is to show
that this can indeed be done using the single-instruction multiple-data (SIMD) instructions available in
modern processors. We note that the use of SIMD instructions to speed up computation has been earlier
proposed for Kummer surface associated with genus two hyperelliptic curves [27]. The application of
this idea, however, to Kummer line has not been considered in the literature. Our work fills this gap
and shows that properly using SIMD instructions provides a competitive alternative to known curves
in the setting of genus one and prime order fields.

As in the case of Montgomery curve [38], scalar multiplication on the Kummer line proceeds via a
laddering algorithm. A ladder step corresponds to each bit of the scalar and each such step consists of
a doubling and a differential addition irrespective of the value of the bit. As a consequence, it becomes
easy to develop code which runs in constant time. We describe and implement a vectorised version of
the laddering algorithm which is also constant time. Our target is the 128-bit security level.
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Choice of the underlying field: Our target is the 128-bit security level. To this end, we consider
three primes, namely, 2251 − 9, 2255 − 19 and 2266 − 3. These primes are abbreviated as p2519, p25519
and p2663 respectively. The underlying field will be denoted as Fp where p is one of p2519, p25519 or
p2663.

Choice of the Kummer line: Following previous suggestions [9, 3], we work in the square-only
setting. In this case, the parameters of the Kummer line are given by two integers a2 and b2. We provide
appropriate Kummer lines for all three of the primes p2519, p25519 and p2663. These are denoted as
KL2519(81,20), KL25519(82,77) and KL2663(260,139) respectively. In each case, we identify a base point
with small coordinates. The selection of the Kummer lines is done using a search for curves achieving
certain desired security properties. Later we provide the details of these properties which indicate that
the curves provide security at the 128-bit security level.

SIMD implementation: On Intel processors, it is possible to pack 4 64-bit words into a single 256-
bit quantity and then use SIMD instructions to simultaneously work on the 4 64-bit words. We apply
this approach to carefully consider various aspects of field arithmetic over Fp. SIMD instructions allow
the simultaneous computation of 4 multiplications in Fp and also 4 squarings in Fp. The use of SIMD
instructions dovetails very nicely with the scalar multiplication algorithm over the Kummer line as we
explain below.

Scalar multiplication over the Kummer line: A uniform, ladder style algorithm is used. In terms
of operation count, each ladder step requires 2 field multiplications, 6 field squarings, 6 multiplications
by parameters and 2 multiplications by base point coordinates [27]. In contrast, the ladder step on the
Montgomery curves requires 4 field multiplications, 4 squarings, 1 multiplication by curve parameter
and 1 multiplication by a base point coordinate. This had led to Gaudry and Lubicz [27] commenting
that Kummer line can be advantageous provided that the advantage of trading off multiplications for
squarings is not offset by the extra multiplications by the parameters and the base point coordinates.

Our choices of the Kummer lines ensure that the parameters and the base point coordinates are
indeed very small. This is not to suggest that the Kummer line is only suitable for fixed based point
scalar multiplication. The main advantage arises from the structure of the ladder step on the Kummer
line versus that on the Montgomery curve.

An example of the ladder step on the Kummer line is shown in Figure 1. In the figure, the Hadamard
transform H(u, v) is defined to be (u+v, u−v). Observe that there are 4 layers of 4 simultaneous multi-
plications. The first layer consists of 2 field multiplications and 2 squarings, while the third layer consists
of 4 field squarings. Using 256-bit SIMD instructions, the 2 multiplications and the 2 squarings in the
first layer can be computed simultaneously using an implementation of vectorised field multiplication
while the third layer can be computed using an implementation of vectorised field squaring. The sec-
ond layer consists only of multiplications by parameters and is computed using an implementation of
vectorised multiplication by constants. The fourth layer consists of two multiplications by parameters
and two multiplications by base point coordinates. For fixed base point, this layer can be computed
using a single vectorised multiplication by constants while for variable base point, this layer requires a
vectorised field multiplication. A major advantage of the ladder step on the Kummer line is that the
packing and unpacking into 256-bit quantities is done once each. Packing is done at the start of the
scalar multiplication and unpacking is done at the end. The entire scalar multiplication can be computed
on the packed vectorised quantities.

In contrast, the ladder step on the Montgomery curve is shown in Figure 2 which has been re-
produced from [2]. The structure of this ladder is not as regular as the ladder step on the Kummer
line. This makes it difficult to optimally group together the multiplications for SIMD implementation.
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Fig. 1. One ladder step on the Kummer line.

H

x1 z1

H

x2 z2

x1 + z1 x1 − z1 x2 + z2 x2 − z2

∗ ∗ ∗ ∗

∗ − + −

∗ ∗ ∗(A− 2)/4

+ ∗ x

∗

x3
z3 x4 z4

Fig. 2. One ladder step on the Montgomery curve.
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Curve25519 is a Montgomery curve. SIMD implementations of Curve25519 have been reported in [18,
7, 13, 21]. The work [18] forms four groups of independent multiplications/squarings with the first and
the third group consisting of four multiplications/squarings each, the second group consisting of two
multiplications and the fourth group consists of a single multiplication. Interspersed with these multi-
plications are two groups each consisting of four independent additions/subtractions. The main problem
with this approach is that of repeated packing/unpacking of data within a ladder step. This drawback
will outweigh the benefits of four simultaneous SIMD multiplications and this approach has not been
followed in later works [7, 13, 21]. These later implementations grouped together only two independent
multiplications. In particular, we note that the well known Sandy2x implementation of Curve25519 is
an SIMD implementation which is based on [13] and groups together only two multiplications. AVX2
based implementation of Curve25519 in [21] also groups together only 2 multiplications/squarings.

At a forum (https://moderncrypto.org/mail-archive/curves/2015/000637.html) Tung Chou
comments (perhaps oblivious of [18]) that it would better to find four independent multiplications/squarings
and vectorise them. As discussed above, the previous works on SIMD implementation of Curve25519
do not seem to have been able to identify this. On the other hand, for the ladder step on the Kummer
line shown in Figure 1, performing vectorisation of 4 independent multiplications/squarings comes quite
naturally. This indicates that the ladder step on the Kummer line is more SIMD friendly than the ladder
step on the Montgomery curve.

Implementation: We report implementations of all the three Kummer lines KL2519(81,20), KL25519(82,77)
and KL2663(260,139). The implementations are in Intel intrinsics and use AVX2 instructions. On the
recent Skylake processor, both fixed and variable base scalar multiplications for all the three Kummer
lines are faster than Sandy2x which is the presently the best known SIMD implementation in assembly
of Curve25519. On the earlier Haswell processor, both fixed and variable base scalar multiplications
for KL2519(81,20), KL25519(82,77) are faster than that of Sandy2x; fixed base scalar multiplication
for KL2663(260,139) is faster than that of Sandy2x while variable base scalar multiplication for both
KL2663(260,139) and Sandy2x take roughly the same time. Detailed timing results are provided later.

At a broad level, the timing results reported in this work show that the availability of SIMD in-
structions leads to the following two practical consequences.

1. At the 128-bit security level, the choice of F2255−19 as the base field is not the fastest. If one is willing
to sacrifice about 2 bits of security, then using F2251−9 as the base field leads to about 25% speed
up on the Skylake processor.

2. More generally, the ladder step on the Kummer line is faster than the ladder step on the Monto-
gomery curve. We have demonstrated this by implementing on the Intel processors. Future work can
explore this issue on other platforms such as the ARM NEON architecture.

2 Background

In this section, we briefly describe theta functions over genus one, Kummer lines, Legendre form elliptic
curves and their relations. In our description of the background material, we provide certain details
which are not readily available in the literature. This is indicated at the relevant points.

2.1 Theta Functions

In this and the next few sections, we provide a sketch of the mathematical background on theta functions
over genus one and Kummer lines. Following previous works [40, 32, 27] we define theta functions over the
complex field. For cryptographic purposes, our goal is to work over a prime field of large characteristic.
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All the derivations that are used have a good reduction [27] and so it is possible to use the Lefschetz
principle [1, 25] to carry over the identities proved over the complex to those over a large characteristic
field.

Theta functions in genus one are called the Jacobi theta functions. For the general theory covering
higher genus we refer to [40, 32]. Cryptographic applications of theta functions were pointed out by
Gaudry [26] for genus two and Gaudry and Lubicz [27] for genus one (and also for genus two over
characteristic two fields). See also [40, 23, 22] for arithmetic on Kummer surface associated to genus two
curves.

Let τ ∈ C having a positive imaginary part and w ∈ C. Let ξ1, ξ2 ∈ Q. Theta functions with
characteristics ϑ[ξ1, ξ2](w, τ) are defined to be the following:

ϑ[ξ1, ξ2](w, τ) =
∑
n∈Z

exp
[
πi(n+ ξ1)

2τ + 2πi(n+ ξ1)(w + ξ2)
]
. (1)

The scalars obtained by evaluating ϑ[ξ1, ξ2](w, τ) at w = 0 are known as theta constants. We only
consider the characteristics ξ1 and ξ2 which are in {0, 12} giving rise to four possible characteristics. Let
ξ∗ = (−1)4ξ1ξ2 . The relation between ϑ[ξ1, ξ2](w, τ) and ϑ[ξ1, ξ2](−w, τ) is the following. A proof is given
in Appendix A.1.

ϑ[ξ1, ξ2](−w, τ) = ξ∗ · ϑ[ξ1, ξ2](w, τ). (2)

Using this relation, the four characteristics can be divided into two groups. If ξ∗ = 1, that is ϑ[ξ1, ξ2](w, τ) =
ϑ[ξ1, ξ2](−w, τ), then the corresponding characteristic is said to be even and otherwise the characteristic
is said to be odd. So, only the characteristics [12 ,

1
2 ] is odd and the other three are even.

For a fixed τ , the following theta functions are defined.

ϑ1(w) = ϑ[0, 0](w, τ) and ϑ2(w) = ϑ [0, 1/2] (w, τ).

Θ1(w) = ϑ[0, 0](w, 2τ) and Θ2(w) = ϑ [1/2, 0] (w, 2τ).

2.2 Theta Identities

The following identities hold for the theta functions. Proofs are given in Appendices A.2 and A.3.

2Θ1(w1 + w2)Θ1(w1 − w2) = ϑ1(w1)ϑ1(w2) + ϑ2(w1)ϑ2(w2);
2Θ2(w1 + w2)Θ2(w1 − w2) = ϑ1(w1)ϑ1(w2)− ϑ2(w1)ϑ2(w2);

(3)

ϑ1(w1 + w2)ϑ1(w1 − w2) = Θ1(2w1)Θ1(2w2) +Θ2(2w1)Θ2(2w2);
ϑ2(w1 + w2)ϑ2(w1 − w2) = Θ1(2w1)Θ1(2w2)−Θ2(2w1)Θ2(2w2).

(4)

Putting w1 = w2 = w, we obtain

2Θ1(2w)Θ1(0) = ϑ1(w)2 + ϑ2(w)2;
2Θ2(2w)Θ2(0) = ϑ1(w)2 − ϑ2(w)2;

(5)

ϑ1(2w)ϑ1(0) = Θ1(2w)2 +Θ2(2w)2;
ϑ2(2w)ϑ2(0) = Θ1(2w)2 −Θ2(2w)2.

(6)

Putting w = 0 in (5), we obtain

2Θ1(0)2 = ϑ1(0)2 + ϑ2(0)2;
2Θ2(0)2 = ϑ1(0)2 − ϑ2(0)2.

(7)
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2.3 Kummer Line

Let τ ∈ C having a positive imaginary part and denote by P1(C) the projective line over C. The Kummer
line (K) associated with τ is the image of the map ϕ from C to P1(C) defined by

ϕ : w 7−→ (ϑ1(w), ϑ2(w)). (8)

Suppose that ϕ(w) = [ϑ1(w) : ϑ2(w)] is known for some w ∈ Fq. Using (5) it is possible to compute
Θ1(2w) and Θ2(2w) and then using (6) it is possible to compute ϑ1(2w) and ϑ2(2w). So, from ϕ(w) it
is possible to compute ϕ(2w) = [ϑ1(2w) : ϑ2(2w)] without knowing the value of w.

Suppose that ϕ(w1) = [ϑ1(w1) : ϑ2(w1)] and ϕ(w2) = [ϑ1(w2) : ϑ2(w2)] are known for some w1, w2 ∈
Fq. Using (5), it is possible to obtain Θ1(2w1), Θ1(2w2), Θ2(2w1) and Θ2(2w2). Then (4) allows the
computation of ϑ1(w1 +w2)ϑ1(w1−w2) and ϑ2(w1 +w2)ϑ2(w1−w2). Further, if ϕ(w1−w2) = [ϑ1(w1−
w2) : ϑ2(w1 − w2)] is known, then it is possible to obtain ϕ(w1 + w2) = [ϑ1(w1 + w2) : ϑ2(w1 + w2)]
without knowing the values of w1 and w2.

The task of computing ϕ(2w) from ϕ(w) is called doubling and the task of computing ϕ(w1 + w2)
from ϕ(w1), ϕ(w2) and ϕ(w1 − w2) is called differential (or pseudo) addition.

2.4 Square Only Setting

Let P = ϕ(w) = [x : z] be a point on the Kummer line. As described above, doubling computes the point
2P and suppose that 2P = [x3 : z3]. Further, suppose that instead of [x : z], we have the values x2 and
z2 and after the doubling we are interested in the values x23 and z23 . Then the doubling operation only
involves the squared quantities ϑ1(0)2, ϑ2(0)2, Θ1(0)2, Θ2(0)2 and x2, z2. As a consequence, the double
of [x : z] and [x : −z] are same.

Similarly, consider that from P1 = ϕ(w1) = [x1 : z1], P2 = ϕ(w2) = [x2 : z2] and P = P1 − P2 =
ϕ(w1 − w2) = [x : z] the requirement is to compute P1 + P2 = ϕ(w1 + w2) = [x3 : z3]. If we have the
values x21, z

2
1 , x

2
2, z

2
2 and x2, z2 along with ϑ1(0)2, ϑ2(0)2, Θ1(0)2, Θ2(0)2 then we can compute the values

x23 and z23 .
This approach requires only squared values, i.e., it starts with squared values and also returns

squared values. Hence, this is called the square only setting. Note that in the square only setting,
[x2 : z2] represents two points [x : ±z] on the Kummer line. For the case of genus two, the square only
setting was advocated in [9, 3] (see also [15]). To the best of our knowledge, the details of the square
only setting in genus one do not appear earlier in the literature.

Let

a2 = ϑ1(0)2, b2 = ϑ2(0)2, A2 = a2 + b2 and B2 = a2 − b2.

Then from (7) we obtain Θ1(0)2 = A2/2 and Θ2(0)2 = B2/2. By Ka2,b2 we denote the Kummer line
having the parameters a2 and b2.

We provide the details of doubling in the square only setting. Using (5), we obtain

Θ1(2w)2 =
(x2 + z2)2

2A2
; Θ2(2w)2 =

(x2 − z2)2

2B2
.

Then from (6)

x′23 = ϑ1(2w)2 =
(Θ1(2w)2 +Θ2(2w)2)2

a2
; z′23 = ϑ2(2w)2 =

(Θ1(2w)2 −Θ2(2w)2)2

b2
.

For [x : z] ∈ P1(C), [x : z] = [λx : λz] for any non-zero λ. Suppose that we compute λx2 and λz2 for
some non-zero λ. Since C is algebraically closed, there is a ζ ∈ C such that ζ2 = λ and so we in effect
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have [ζ2x2 : ζ2z2]. By taking square roots, we obtain the point [ζx : ±ζz] = [x : ±z]. So, in the square
only setting, it is sufficient to compute [λx2 : λz2] for some non-zero λ. Using this, we have

[x′23 : z′23 ] =

[
(Θ1(2w)2 +Θ2(2w)2)2

a2
:

(Θ1(2w)2 −Θ2(2w)2)2

b2

]
=
[
b2(Θ1(2w)2 +Θ2(2w)2)2 : a2(Θ1(2w)2 −Θ2(2w)2)2

]
=

[
b2
(

(x2 + z2)2

2A2
+

(x2 − z2)2

2B2

)2

: a2
(

(x2 + z2)2

2A2
− (x2 − z2)2

2B2

)2
]

=
[
b2
(
B2(x2 + z2)2 +A2(x2 − z2)2

)2
: a2

(
B2(x2 + z2)2 −A2(x2 − z2)2

)2]
= [x23 : z23 ].

So, it is sufficient to compute [x23 : z23 ]. The computation of [x23 : z23 ] is shown as Algorithm dbl in Table 2.
Note that [x23 : z23 ] are the squared values of the double of [x : ±z] and is not the double of [x2 : z2].
Informally, however, we will say that [x23 : z23 ] is the double of [x2 : z2]. Given x21, z

2
1 , x

2
2, z

2
2 , x

2 and z2,

dbl(x2, z2)
s0 = B2(x2 + z2)2;
t0 = A2(x2 − z2)2;
x23 = b2(s0 + t0)2;
z23 = a2(s0 − t0)2;
return (x23, z

2
3).

diffAdd(x21, z
2
1 , x

2
2, z

2
2 , x

2, z2)
s0 = B2(x21 + z21)(x22 + z22);
t0 = A2(x21 − z21)(x22 − z22);
x23 = z2(s0 + t0)2;
z23 = x2(s0 − t0)2;
return (x23, z

2
3).

Table 2. Double and differential addition in the square-only setting.

the computation of x23 and z23 is shown as Algorithm diffAdd in Table 2.

In Ka2,b2 , the point [a2 : b2] (representing [a : ±b]) in the square only setting acts as the identity
element for the differential addtion. This is proved by showing that

diffAdd(x2, z2, a2, b2, x2, z2) = [x2 : z2];
diffAdd(x2, z2, x2, z2, a2, b2) = dbl(x2, z2).

}
(9)

Also, the double of [b2 : a2] (representing [b : ±a]) is [a2 : b2] so that [b2 : a2] is a point of order two.
This is proved by showing that

dbl(b2, a2) = [a2 : b2]. (10)

The relations (9) and (10) are proved by simplifying the expressions arising in the computations of dbl
and diffAdd. In Appendix B we provide a SAGE script which performs the symbolic verifications of
these calculations.

In the rest of the paper, we will work in the square only setting over a Kummer line Ka2,b2 for some
values of the parameters a2 and b2.

2.5 Scalar Multiplication

Suppose P = [x21 : z21 ] and n be a positive integer. We wish to compute nP = [x2n : z2n]. The method
for doing this is given by Algorithm scalarMult in Table 3. Let the `-bit binary expansion of n be
n = (1, n`−2, . . . , n0). Algorithm scalarMult goes through `− 1 ladder steps. Each ladder step takes the
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squared coordinates of two points as input and provides as output the squared coordinates of two other
points.

A conceptual description of a ladder step is given in Figure 1. Suppose the squared coordinates of
the two input points to a ladder step are [x21 : z21 ] and [x22 : z22 ]. Also assume that the double of the point
[x21 : z21 ], and addition of the points [x21 : z21 ] and [x22 : z22 ] are required to be performed. Then the ladder
produces [x23 : z23 ] and [x24 : z24 ], where [x23 : z23 ] = dbl(x21 : z21) and [x24 : z24 ] = diffAdd(x21, z

2
1 , x

2
2, z

2
2 , x

2, z2).

scalarMult(P, n)
input: P ∈ Ka,b;

`-bit scalar n = (1, n`−2, . . . , n0);
output: nP ;

set R = P and S = dbl(P );
for i = `− 2, `− 3, . . . , 0 do

(R,S) = ladder(R,S, ni);
return R.

ladder(R,S, b)
if (b = 0)

S = diffAdd(R,S, P );
R = dbl(R);

else
R = diffAdd(R,S, P );
S = dbl(S);

return (R,S).

Table 3. Scalar multiplication using a ladder.

The input to the first ladder step are the (squared) coordinates of (P, 2P ). Suppose, at the i-th
iteration, the input to the ladder step corresponds to (kP, (k+ 1)P ). If ni = 0, then the output consists
of the (squared) coordinates of the points (2kP, (2k + 1)P ) and if ni = 1, then the output consists of
the (squared) coordinates of ((2k + 1)P, (2k + 2)P ).

2.6 Legendre Form Elliptic Curve

Let E be an elliptic curve and σ : E → E be the automorphism which maps a point of E to its inverse,
i.e., for (a, b) ∈ E, σ(a, b) = (a,−b).

For µ ∈ Fq, let

Eµ : Y 2 = X(X − 1)(X − µ) (11)

be an elliptic curve in the Legendre form. Let Ka2,b2 be a Kummer line such that

µ =
a4

a4 − b4
. (12)

An explicit map ψ : Ka2,b2 → Eµ/σ has been given in [27]. In the square only setting, let [x2 : z2]
represent the points [x : ±z] of the Kummer line Ka2,b2 such that [x2 : z2] 6= [b2 : a2]. Recall that
[b2 : a2] has order two and [a2 : b2] acts as the identity in Ka2,b2 . Then from [27],

ψ([x2 : z2]) =

{
∞ if [x2 : z2] = [a2 : b2];(

a2x2

a2x2−b2z2 , . . .
)

otherwise .
(13)

Given X = a2x2/(a2x2 − b2z2), it is possible to find ±Y from the equation of E, though it is not
possible to uniquely determine the sign of Y . The inverse ψ−1 maps an element of Eµ/σ to the squared
coordinates of points in Ka2,b2 . Let P = (X, . . .) ∈ Eµ/σ be a point which is not of order two so that
X 6= 0, 1, µ. Then

ψ−1(P) =

{
[a2 : b2] if P =∞;[

b2X
a2(X−1) : 1

]
if P = (X, . . .).

(14)

Notation: We will use upper-case bold face letters to denote points of Eµ and upper case normal letters
to denote points of Ka2,b2 .
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2.7 Consistency

Let Ka2,b2 and Eµ be such that (12) holds. Consider the point T = (µ, 0) on Eµ. Note that T is a point
of order two. Given any point P = (X, . . .) of Eµ, let Q = P + T. Then it is easy to verify that

Q =

(
µ(X − 1)

X − µ
, . . .

)
.

Consider the map ψ̂ : Ka2,b2 → Eµ such that for points [x : ±z] represented by [x2 : z2] in the square
only setting

ψ̂([x2 : z2]) = ψ([x2 : z2]) + T. (15)

The inverse map ψ̂−1 takes a point P of Eµ to squared coordinates in Ka2,b2 and is given by

ψ̂−1(P) = ψ−1(P + T). (16)

(Since T is a point of order two, T = −T.)

For any points P1,P2 on Eµ which are not of order two and P = P1 −P2 the following properties
hold.

2 · ψ̂([x2 : z2]) = ψ̂(dbl(x2, z2));

dbl
(
ψ̂−1(P1)

)
= ψ̂−1 (2P1) ;

diffAdd
(
ψ̂−1(P1), ψ̂

−1(P2), ψ̂
−1(P)

)
= ψ̂−1 (P1 + P2) .

 (17)

Note that 2 · ψ̂([x2 : z2]) = 2 · (ψ([x2 : z2])+T) = 2 ·ψ([x2 : z2]). The proofs for (17) can be derived from
the formulas for ψ̂, ψ̂−1; the formulas for addition and doubling on Eµ; and the formulas arising from dbl
and diffAdd. This involves simplifications of the intermediate expressions arising in these formulas. Such
expressions become quite large. Instead of providing the calculations for simplifying these expressions, in
Appendix B we provide a SAGE script which does the symbolic verification of the required calculations.
To the best of our knowledge, the details regarding the verification of consistency do not appear earlier.

For the relation verifying the consistency of addition, the following point is to be noted. Suppose
P1 = (X1, Y1) and P2 = (X2, Y2). Then Y 2

1 = f(X1) and Y 2
2 = f(X2) where f(X) = X(X − 1)(X −µ).

As a result, the expressions arising in the relation for verification of addition have to be reduced modulo
Y 2
1 − f(X1) and Y 2

2 − f(X2) to obtain the desired equality. The SAGE script in Appendix B does this
modulo reduction as part of the verification procedure.

The relations given by (17) have an important consequence to scalar multiplication. Suppose P is
in Ka2,b2 and P = ψ̂(P ). Then ψ̂(nP ) = nP. Figure 3 depicts this in pictorial form.

P P Q

Pn Pn Qn

∗n

ψ +T

∗n

ψ +T

Q P P

Qn Pn Pn

∗n

−T ψ−1

∗n

−T ψ−1

Fig. 3. Consistency of scalar multiplications on Eµ and Ka2,b2 .
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2.8 Relation Between the Discrete Logarithm Problems

Suppose the Kummer line Ka2,b2 is chosen such that the corresponding curve Eµ has a cyclic subgroup
G = 〈P〉 of large prime order. Given Q ∈ G, the discrete logarithm problem in G is to obtain an n such
that Q = nP. This problem can be reduced to computing discrete logarithm problem in Ka2,b2 . Map

the point P (resp. Q) to P ∈ Ka,b (resp. Q ∈ Ka,b) using ψ̂−1 Find n such that Q = nP and return n.
Similarly, the discrete logarithm problem in Ka,b can be reduced to the discrete logarithm problem in
Eµ.

The above shows the equivalence of the hardness of solving the discrete logarithm problem in either
Eµ or in Ka2,b2 . So, if Eµ is a well chosen curve such that the discrete logarithm problem in Eµ is
conjectured to be hard, then the discrete logarithm problem in the associated Ka2,b2 will be equally
hard. This fact forms the basis for using Kummer line for cryptographic applications.

2.9 Recovering y-Coordinate

Suppose Q = (XQ, YQ),R = (XR, YR),S = (XS , YS) are points in Eµ such that ∞ 6= Q = R − S,
Q 6= R and Q is not a point of order 2. The last two conditions imply that XQ 6= XR and YQ 6= 0. So,
it is allowed to divide by both (XR −XQ) and YQ.

Suppose that XQ, YQ, XR and XS are known. We show that YR is uniquely determined and can be
computed from these four quantities. This is based on a similar calculation in [38, 12]. For the genus
two case, this problem has been addressed in [14].

Consider the chord-and-tangent rule for addition on Eµ. The points R and −S determine a line
Y = mX+ c. This line intersects the curve Eµ at the point −Q = (XQ,−YQ). So, m can be determined
as m = (YR + YQ)/(XR −XQ). Substituting Y = mX + c into the equation of the curve we obtain:

X3 − (µ+ 1 +m2)X2 + (µ− 2mc)X − c2 = 0.

Since XQ, XR, XS are roots of this equation, we have

XQ +XR +XS = µ+ 1 +m2.

Using the value for m = (YR + YQ)/(XR −XQ), we have

(YR + YQ)2 = (XR −XQ)2(XQ +XR +XS − µ− 1).

Write f(X) = X(X − 1)(X − µ). Then Y 2
R = f(XR) and we obtain

YR =
1

2YQ

(
(XR −XQ)2(XQ +XR +XS − µ− 1)− f(XR)− Y 2

Q

)
.

2.10 Scalar Multiplication in Eµ

Let Eµ be a Legendre form curve and Ka2,b2 be a Kummer line in the square only setting. Suppose G =
〈P = (XP , YP )〉 is a cryptographically relevant subgroup of Eµ. Further, suppose a point P = [x2 : z2]

in Ka2,b2 is known such that (XP , . . .) = ψ̂(P ) = ψ(P ) + T where as before T = (µ, 0). The point P is
the base point on Ka2,b2 which corresponds to the point P on Eµ.

Let n be a non-negative integer which is less than the order of G. We show how to compute the scalar
multiplication nP via the laddering algorithm on the Kummer line Ka2,b2 . First, the ladder algorithm is
applied to the input P and n. This results in a pair of points Q and R, where Q = nP and R = (n+1)P
so that Q−R = −P . The square only ladder algorithm will return [x2Q : z2Q] to represent Q and [x2R : z2R]
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to represent R. Let Q = ψ̂(Q) = ψ(Q) + T and R = ψ̂(R) = ψ(R) + T. By the consistency of scalar
multiplication, we have Q = nP.

Consider Q = ψ(Q)+T. Let αQ = a2x2Q and βQ = a2x2Q−b2z2Q so that ψ(Q) = (αQ/βQ, . . .). Writing
Q = (XQ, YQ) and applying the addition rule on Eµ we obtain XQ = γQ/δQ where γQ = µ(αQ − βQ)
and δQ = αQ − µβQ. Similarly, we obtain R = (XR, . . .) where XR = γR/δR and γR, δR are given by
the previous expression with Q replaced by R.

At this point, we have P = (XP , YP ), Q = (XQ, YQ) and R = (XR, . . .) where Q −R = −P. The
y-coordinate YQ of Q can be recovered as discussed in Section 2.9. This gives

YQ =
−1

2YP

(
(XQ −XP )2(XP +XQ +XR − µ− 1)− f(XQ)− Y 2

P

)
= − 1

2YP

((
γQ
δQ
−XP

)2(
XP +

γQ
δQ

+
γR
δR
− µ− 1

)
− f

(
γQ
δQ

)
− Y 2

P

)
.

This shows that given n, it is possible to compute Q = (XQ, YQ) such that Q = nP.
It is required to compute both YQ and XQ. Using Montgomery’s trick, the two inversions required for

computing YQ and XQ can be done using one inversion and 3 multiplications. So, the entire computation
of XQ and YQ from Q,R and P can be done using one inversion and a few multiplications in Fp. The
main time consuming step will be that of the inversion. If projective coordinates are used to represent
the point of Eµ, then the field inversion can be avoided.

To the best of our knowledge, the details of the scalar multiplication on the Legendre curve via the
Kummer line have not been reported earlier in the literature.

3 Kummer Line Over Prime Order Fields

Let p be a prime and Fp be the field of p elements. As mentioned earlier, using the Lefschetz principle,
the theta identities also hold over Fp. Consequently, it is possible to work over a Kummer line Ka2,b2
and associated elliptic curve Eµ defined over the algebraic closure of Fp. The only condition for this
to be meaningful is that a4 − b4 6= 0 mod p so that µ = a4/(a4 − b4) is defined over Fp. We choose a2

and b2 to be small values while p is a large prime and so the condition a4 − b4 6= 0 mod p easily holds.
Note that we will choose a2 and b2 to be in Fp without necessarily requiring a and b themselves to be
in Fp. Similarly, in the square only setting when we work with squared representation [x2 : z2] of points
[x : ±z], the values x2, z2 will be in Fp and it is not necessary for x and z themselves to be in Fp.

Our target is the 128-bit security level. To this end, we consider the three primes p2519, p25519 and
p2663. The choice of these three primes is motivated by the consideration that these are of the form
2m − δ, where m is around 256 and δ is a small positive integer. For m in the range 250 to 270 and
δ < 20, the only three primes of the form 2m − δ are p2519, p25519 and p2663. We later discuss the
comparative advantages and disadvantages of using Kummer lines based on these three primes.

3.1 Finding a Secure Kummer Line

For each prime p, the procedure for finding a suitable Kummer line is the following. The value of a2

is increased from 2 onwards and for each value of a2, the value of b2 is varied from 1 to a2 − 1; for
each pair (a2, b2), the value of µ = a4/(a4 − b4) is computed and the order of Eµ(Fp) is computed. Let
t = p + 1 −#Eµ(Fp). Let ` and `T be the largest prime factors of p + 1 − t and p + 1 + t respectively
and let h = (p+ 1− t)/` and hT = (p+ 1 + t)/`T . Here h and hT are the co-factors of the curve and its
quadratic twists respectively. If both h and hT are small, then (a2, b2) is considered. Among the possible
(a2, b2) that were obtained, we have used the one with the minimum value of a2. After fixing (a2, b2)
the following parameters for Eµ have been computed.
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1. Embedding degrees k and kT of the curve and its twist. Here k (resp. kT ) is the smallest positive
integer such that `|pk − 1 (resp. `T |pkT − 1). This is given by the order of p in F` (resp. F`T ) and is
found by checking the factors of `− 1 (resp. `T − 1).

2. The complex multiplication field discriminant D. This is defined in the following manner (https:
//safecurves.cr.yp.to/disc.html): By Hasse’s theorem, |t| ≤ 2

√
p and in the cases that we

considered |t| < 2
√
p so that t2 − 4p is a negative integer; let s2 be the largest square dividing

t2 − 4p; define D = (t2 − 4p)/s2 if t2 − 4p mod 4 = 1 and D = 4(t2 − 4p)/s2 otherwise. (Note that
D is different from the discriminant of Eµ which is equal to µ4 − 2µ3 + µ2.)

Table 4 provides the three Kummer lines and (estimates of) the sizes of the various parameters of the
associated Legendre form elliptic curves. As part of [24], we provide Magma code for computing these
parameters and also their exact values. The Kummer line Ka2,b2 over p2519 is compactly denoted as
KL2519(a2, b2) and similarly for Kummer lines over p25519 and p2663. For each Kummer line reported in
Table 4, the base point [x2 : z2] is such that its order is `. Table 4 also provides the corresponding details
for Curve25519, P-256 and secp256k1 which have been collected from [5]. This will help in comparing
the new proposals with some of the most important and widely used proposals over prime fields that
are present in the literature.

Table 4. New Kummer lines and their parameters in comparison to Curve25519, P-256 and secp256k1.

KL2519(81, 20) KL25519(82, 77) KL2663(260, 139) Curve25519 [2] P-256 [41] secp256k1 [44]

(lg `, lg `T ) (248, 248) (251.4, 252) (262.4, 263) (252, 253) (256, 240) (256, 219.3)

(h, hT ) (8, 8) (12, 8) (12, 8) (8, 4) (1, 3 · 5 · 13 · 179) (1, 32 · 132 · 3319 · 22639)

(k, kT )
(
`− 1, `T−1

7

)
(`− 1, `T − 1)

(
`−1
2
, `T − 1

) (
`−1
6
, `T − 1

) (
`−1
3
, `T−1

2

) (
`−1
6
, `T−1

6

)
lg(−D) 246.3 255 266 254.7 258 1.58

base point [64 : 1] [31 : 1] [2 : 1] (9, . . .) large large

The Four-Q proposal [16] is an elliptic curve over Fp2 where p = 2127 − 1. For this curve, the size `
of the cryptographic sub-group is 246 bits, the co-factor is 392 and the embedding degree is (`− 1)/2.
The largest prime dividing the twist order is 158 bits and [16] does not consider twist security to be an
issue. Note that the underlying field for Four-Q is composite and further endomorphisms are available
to speed up scalar multiplication. So Four-Q is not directly comparable to the setting that we consider
and hence we have not included it in Table 4.

For KL2519(81, 20), [15 : 1] is another choice of base point. Also, for p2519, KL2519(101, 61) is
another good choice for which both h and hT are 8, the other security parameters have large values and
[4 : 1] is a base point. We have implementations of both KL2519(81, 20) and KL2519(101, 61) and the
performance of both are almost the same. Hence, we report only the performance of KL2519(81, 20).

The points of order two on the Legendre form curve Y 2 = X(X − 1)(X − µ) are (0, 0), (1, 0) and
(µ, 0). The sum of two distinct points of order two is also a point of order two and hence the sum is
the third point of order two; as a result, the points of order two along with the identity form an order
4 subgroup of the group formed by the Fp rational points on the curve. Consequently, the group of Fp
rational points has an order which is necessarily a multiple of 4, i.e., p+ 1− t = 4a for some integer a.

1. If p = 4m+ 1, then p+ 1 + t = 4aT where aT = 2m− a+ 1 6≡ a mod 2. As a result, it is not possible
to have both h and hT to be equal to 4, or both of these to be equal to 8. So, the best possibilities
for h and hT are that one of them is 4 and the other is 8. The primes p25519 and p2663 are both
≡ 1 mod 4. For these two primes, searching for a2 up to 512, we were unable to find any choice for
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which one of h and hT is 4 and the other is 8. The next best possibilities for h and hT are that one
of them is 8 and the other is 12. We have indeed found such choices which are reported in Table 4.

2. If p = 4m+3, then p+1+ t = 4aT where aT = 2m−a+2 ≡ a mod 2. In this case, it is possible that
both h and hT are equal to 4. The prime p2519 is ≡ 1 mod 3. For this prime, searching for a2 up to
512, we were unable to find any choice where h = hT = 4. The next best possibility is h = hT = 8
and we have indeed found such a choice which is reported in Table 4.

Gaudry and Lubicz [27] had remarked that for Legendre form curves, if p ≡ 1 mod 4, then the orders
of the curve and its twist are divisible by 4 and 8 respectively; while if p ≡ 3 mod 4, then the orders of
the curve and its twist are divisible by 8 and 16 respectively. The Legendre form curve corresponding to
KL2519(81, 20) has h = hT = 8 and hence shows that the second statement is incorrect. The discussion
provided above clarifies the issue of divisibility by 4 of the order of the curve and its twist.

The effectiveness of small subgroup attacks [35] is determined by the size of the co-factor. Such
attacks can be prevented by checking whether the order of a given point is equal to the co-factor before
performing the actual scalar multiplication. This requires a scalar multiplication by h. In Table 4, the
co-factors of the curve are either 8 or 12. A scalar multiplication by 8 requires 3 doublings whereas a
scalar multiplication by 12 requires 3 doublings and one addition. Amortised over the cost of the actual
scalar multiplication, this cost is negligible. Even without such protection, a small subgroup attack
improves Pollard rho by a factor of

√
h and hence degrades security by lg

√
h bits. So, as in the case of

Curve25519, small subgroup attacks are not an issue for the proposed Kummer lines.
Let r be a quadratic non-residue in Fp and consider the curve rY 2 = f(X) = X(X − 1)(X − µ).

This is a quadratic twist of the original curve. For any X ∈ Fp, either f(X) is a quadratic residue or
a quadratic non-residue. If f(X) is a quadratic residue, then (X,±

√
f(X)) are points on the original

curve; otherwise, (X,±
√

r−1f(X)) are points on the quadratic twist. So, for each point X, there is
a pair of points on the curve or on the quadratic twist. An x-coordinate only scalar multiplication
algorithm does not distinguish between these two cases. One way to handle the problem is to check
whether f(X) is a quadratic residue before performing the scalar multiplication. This, however, has a
significant cost. On the other hand, if this is not done, then an attacker may gain knowledge about the
secret scalar modulo the co-factor of the twist. The twist co-factors of the new curves in Table 4 are all
8 which is only a little larger than the twist co-factor of 4 for Curve25519. Consequently, as in the case
of Curve25519, attacks based on the co-factors of the twist are ineffective.

Note that the use of the square only setting for the Kummer line computation is not related to the
twist security of the Legendre form elliptic curve. In particular, for the elliptic curve, computations are
not in the square only setting.

To summarise, the three new curves listed in Table 4 provide security at approximately the 128-bit
security level.

4 Field Arithmetic

As mentioned earlier, we consider three primes p2519 = 2251−9, p25519 = 2255−19 and p2663 = 2266−3.
The general form of these primes is p = 2m−δ. Let η and ν be such that m = η(κ−1)+ν with 0 ≤ ν < η.
The values of m, δ, κ, η and ν for p2519, p25519 and p2663 are given in Table 5. The value of κ indicates
the number of limbs used to represent elements of Fp; the value of η represents the number of bits in
the first κ− 1 limbs; and the value of ν is the number of bits in the last limb. For each prime, two sets
of values of κ, η and ν are provided. This indicates that two different representations of each prime will
be used.

1. For the representations with κ = 5, each limb will fit into a 64-bit word and a field multiplication can
be computed using several 64× 64→ 128 multiplications without any SIMD operations. The κ = 5
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representations are used for computing the inversion which is required at the end for converting
from projective to affine.

2. A Kummer line allows the execution of four simultaneous multiplications (and four simultaneous
squarings). This can be computed using SIMD instructions (specifically, the AVX2 instructions on
modern Intel processors). To avail such instructions, the limbs of four field elements are stored in one
256-bit word. A single SIMD multiplication performs four simultaneous 32×32→ 64 multiplications.
In this case, the representations of field elements with κ = 9 or κ = 10 are used.

The scalar multiplication on the Kummer line will be computed entirely using SIMD instructions. At
the end, the result in projective coordinates is converted to affine coordinates using an inversion followed
by a multiplication. The entire scalar multiplication is done using the longer representation (i.e., with
κ = 9 or κ = 10); next the two components of the result are converted to the shorter representation (i.e.,
with κ = 5); and then the inversion and the single field multiplication are done using the representation
with κ = 5.

Table 5. The different values of κ, η and ν corresponding to the primes p2519, p25519 and p2663.

prime m δ κ η ν

p2519 251 9
9 28 27
5 51 47

p25519 255 19
10 26 21
5 51 51

p2663 266 3
10 27 23
5 54 50

In the following sections, we describe methods to perform arithmetic over Fp. Most of the description
is in general terms of κ, η and ν. The specific values of κ, η and ν are required only to determine that
no overflow occurs.

4.1 Representation of Field Elements

Let θ = 2η and consider the polynomial A(θ) defined in the following manner:

A(θ) = a0 + a1θ + · · ·+ aκ−1θ
κ−1 (18)

where 0 ≤ a0, . . . , aκ−1 < 2η and 0 ≤ aκ−1 < 2ν . Such a polynomial will be called a proper polynomial.

Note that proper polynomials are in 1-1 correspondence with the integers 0, . . . , 2m − 1. This leads
to non-unique representation of some elements of Fp: specifically, the elements 0, . . . , δ − 1 are also
represented as 2m − δ, . . . , 2m − 1. This, however, does not cause any of the computations to become
incorrect. Conversion to unique representation using a simple constant time code is done once at the
end of the computation. Suppose A(θ) =

∑κ−1
i=0 aiθ

i with 0 ≤ ai < 2η is to be converted to a unique
representation. The idea is the following.

– Initialise two arrays t0 and t1 of length κ as follows: t0[i] = ai for i = 0, . . . , κ− 1; and t1[i] = 0, for
i = 1, . . . , κ− 1; t1[0] = a0 − (2η − δ).

– Let b = (bκ−1, . . . , b0) where each bi is a bit; bκ−1 = 0 if and only if aκ−1 = 2ν−1 for i = 1, . . . , κ−2,
bi = 0 if and only if ai = 2η − 1; and b0 = 0 if and only if a0 > 2η − δ − 1.

– If b = 0κ then set ai = t1[i] for i = 0, . . . , κ− 1; else set ai = t0[i] for i = 0, . . . , κ− 1.
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The procedure to reduce to the unique representation is made after the final inversion. As mentioned
above, for computing the inversion, the representation with κ = 5 is used. So the bit array b in the
above description can be conveniently represented using a byte (an unsigned char) and the bits of b are
set to 0 as described. The check b = 0κ is simply a check whether the value of b is 0 or not. Since the
procedure to create a unique representation is done once in the entire computation, its effect on the
overall efficiency of scalar multiplication is insignificant.

We note that the issue of non-unique representation was already mentioned in [2] where the following
was noted: ‘Note that integers are not converted to a unique “smallest” representation until the end of the
Curve25519 computation. Producing reduced representations is generally much faster than producing
“smallest” representations.’

4.2 Representation of the Prime p

The representation of the prime p will be denoted by P(θ) where

P(θ) =
∑κ−1

i=0 piθ
i with

p0 = 2η − δ;
pi = 2η − 1; i = 1, . . . , κ− 2; and

pκ−1 = 2ν − 1.

(19)

This representation will only be required for the larger value of κ.

4.3 Reduction

This operation will be required for both values of κ.
Using p = 2m− δ, for i ≥ 0, we have 2m+i = 2i×2m = 2i(2m− δ) + 2iδ ≡ 2iδ mod p. So, multiplying

by 2m+i modulo p is the same as multiplying by 2iδ modulo p. Recall that we have set θ = 2η and so
θκ = 2ηκ = 2m+η−ν which implies that

θκ mod p = 2η−νδ. (20)

Suppose C(θ) =
∑κ−1

i=0 ciθ
i is a polynomial such that for some m ≤ 64, ci < 2m for all i = 0, . . . , 7. If

for some i ∈ {0, . . . , κ − 2}, ci ≥ 2η, or cκ−1 ≥ 2ν , then C(θ) is not a proper polynomial. Following
the idea in [2, 7, 13], Table 6 describes a method to obtain a polynomial D(θ) =

∑κ−1
i=0 diθ

i such that
D(θ) ≡ C(θ) mod p. For i = 0, . . . , κ−2, Step 3 ensures ci+si = di+2ηsi+1 and di < 2η; Step 5 ensures

reduce(C(θ))
input: C(θ) = c0 + c1θ + · · ·+ cκ−1θ

κ−1, ci < 2m, i = 0, . . . , κ− 1;
output: polynomial D(θ) such that D(θ) ≡ C(θ) mod p;
1. s0 ← 0;
2. for i = 0, . . . , κ− 2 do
3. di ← lsbη(ci + si); si+1 ← (ci + si)/2

η;
4. end for;
5. dκ−1 ← lsbν(cκ−1 + sκ−1); t0 = (cκ−1 + sκ−1)/2ν ;
6. e0 ← lsbη(d0 + 2η−νδt0); t1 ← (d0 + 2η−νδt0)/2η; [t2 ← b(d1 + t1)/2ηc]
7. d0 ← e0; d1 ← d1 + t1;
8. return D(θ).

Table 6. The reduction algorithm.

cκ−1 + sκ−1 = dκ−1 + 2νt0 and dκ−1 < 2ν . In Step 6, t2 is actually not computed, it is provided for the
ease of analysis.
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Using θ = 2η, the computation can be written out more explicitly in the following manner.

C(θ) = c0 + c1θ + · · ·+ cκ−1θ
κ−1

= (d0 + s1θ) + c1θ + · · ·+ cκ−1θ
κ−1

= d0 + (s1 + c1)θ + · · ·+ cκ−1θ
κ−1

= d0 + ((d1 + s2θ))θ + · · ·+ cκ−1θ
κ−1

= d0 + d1θ + (s2 + c2)θ
2 + · · ·+ cκ−1θ

κ−1

· · · ·
= d0 + d1θ + d2θ

2 + · · ·+ (sκ−1 + cκ−1)θ
κ−1

= d0 + d1θ + d2θ
2 + · · ·+ (dκ−1 + t0θ)θ

κ−1

= d0 + d1θ + d2θ
2 + · · ·+ dκ−1θ

κ−1 + t0θ
κ

≡ (d0 + 2η−νδt0) + d1θ + d2θ
2 + · · ·+ dκ−1θ

κ−1 (mod p)

= (e0 + t1θ) + d1θ + d2θ
2 + · · ·+ dκ−1θ

κ−1

= e0 + (d1 + t1)θ + d2θ
2 + · · ·+ dκ−1θ

κ−1

= D(θ).

We have used the fact that θκ ≡ 2η−νδ mod p. This computation shows that D(θ) ≡ C(θ) mod p.

For i = 1, . . . , κ− 1, let bi be the maximum value that si can take; let d0 and d1 respectively be the
maximum values that t0 and t1 can take. Then

• b1 = 2m−η;
• bi = b(2m + bi−1)/2

ηc, for i = 2, . . . , κ− 1;
• d0 = b(2m + bκ−1)/2

νc;
• d1 = b(2η − 1 + 2η−νδd0)/2

ηc.

The values of bi, d0 and d1 are determined entirely by m, η, ν and δ. The maximum possible value of
m is 64 and the values of η and ν are determined by the choice of the prime p. For each of the primes
p2519, p25519 and p2663, it turns out that d1 < 2η − 1. Since d1 ≤ 2η − 1, t2 ≤ 1 and so the updated
value of d1 at Step 7 is less than 2η+1− 2. So, if t2 = 1, then lsbη(d1) is less than 2η − 1. So, D(θ) is not
necessarily a proper polynomial as the bound on d1 can possibly be violated, though the bounds on all
the other di’s hold.

We first argue that reduce(D(θ)) is indeed a proper polynomial. Suppose reduce(D(θ)) returns
D′(θ) =

∑κ−1
i=0 d

′
iθ
i. The values of d′0, . . . , d

′
κ−1 are computed by the reduce algorithm with d′0 and

d′1 being first computed in Step 3 and then updated in Step 7. Let s′1, . . . , s
′
κ−1, t

′
0, t
′
1 be the values of

the s and t variables when reduce is applied to D(θ). Since d0 < 2η, s′1 = 0 and we have s′2 = t2. It
is now easy to argue that the corresponding s′3, . . . , s

′
κ−1, t

′
0, t
′
1 are all at most 1. We have d′0 = d0 and

d′1 = lsbη(d1) at Step 3. If t2 = 1, then d′1 < 2η−1 and so d′1 + t′1 ≤ 2η−1. So, for D′(θ) that is returned,
we have d′0, . . . , d

′
κ−2 < 2η and dκ−1 < 2ν . This shows that D′(θ) is indeed a proper polynomial.

So, two successive invocations of reduce on C(θ) reduces it to a proper polynomial. In practice,
however, this is not done at each step. Only one invocation is made. As observed above, reduce(C(θ))
returns D(θ) for which all coefficients d0, d2, . . . , dκ−1 satisfy the appropriate bounds and only d1 can
possibly require η+ 1 bits to represent instead of the required η-bit representation. This does not cause
any overflow in the intermediate computation and so we do not reduce D(θ) further. It is only at the
end, that an additional invocation of reduce is made to ensure that a proper polynomial is obtained on
which we apply the makeUnique procdure to ensure unique representation of elements of Fp.
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4.4 Field Addition

This operation will only be required for the representation using the longer value of κ.
Let A(θ) =

∑κ−1
i=0 aiθ

i and B(θ) =
∑κ−1

i=0 biθ
i be two polynomials. Let C(θ) =

∑κ−1
i=0 ciθ

i where
ci = ai + bi for i = 0, . . . , κ− 1. From the bounds on ai and bi, we have ci < 2η+1− 1 for i = 0, . . . , κ− 2
and cκ−1 < 2ν+1− 1. The operation sum(A(θ), B(θ)) is defined to be D(θ) which is obtained as D(θ) =
reduce(C(θ)).

4.5 Field Negation

This operation will only be required for the representation using the longer value of κ.
Let A(θ) =

∑κ−1
i=0 aiθ

i be a polynomial. We wish to compute −A(θ) mod p. Let n be the least
integer such that all the coefficients of 2nP(θ) − A(θ) are non-negative. By negate(A(θ)) we denote
T (θ) = 2nP(θ)−A(θ). Reducing T (θ) modulo p gives the desired answer. Let T (θ) =

∑κ−1
i=0 tiθ

i so that
ti = 2npi − ai ≥ 0.

The condition of non-negativity on the coefficients of T (θ) eliminates the situation in two’s com-
plement subtraction where the result can be negative. Considering all values to be 64-bit quantities,
the computation of ti is done in the following manner: ti = ((264 − 1) − ai) + (1 + 2npi) mod 264. The
operation (264 − 1) − ai is equivalent to taking the bitwise complement of ai which is equivalent to
164 ⊕ ai.

From (19), p0 = 2η − δ, pi = 2η − 1 for i = 1, . . . , κ− 2 and pκ−1 = 2ν − 1.

1. If A(θ) is a proper polynomial, then n = 1 is sufficient to ensure the non-negativity constraint on
the coefficients of T (θ). Using n = 1, ensures that t0, . . . , tκ−2 ≤ 2pi = 2η+1 − 2 and tκ−1 ≤ 2pκ−1 =
2ν+2−2. So, t0, . . . , tκ−2 can be represented using η+ 1 bits and tκ−1 can be represented using ν+ 1
bits.

2. More generally, suppose that A(θ) is equal to 2r times a proper polynomial. Then choosing n =
r− ν + 1 is sufficient to ensure the non-negativity condition on the coefficients of T (θ).

Later we explain how the above two situations arise.
Given the operation of negation, subtraction can be done by first negating the subtrahend and then

adding to the minuend followed by a reduction.

4.6 Multiplication by a Small Constant

This operation will only be required for the representation using the longer value of κ.
Let A(θ) =

∑κ−1
i=0 aiθ

i be a polynomial and c be a small positive integer considered to be an element
of Fp. In our applications, c will be at most 9 bits. The operation constMult(A(θ), c) will denote the
polynomial C(θ) =

∑κ−1
i=0 (cai)θ

i. We do not apply the algorithm reduce to C(θ). This is because in
our application, multiplication by a constant will be followed by a Hadamard operation and the reduce
algorithm is applied after the Hadamard operation. This improves efficiency.

4.7 Field Multiplication

This operation is required for both the larger and the smaller values of κ.
Suppose that A(θ) =

∑κ−1
i=0 aiθ

i and B(θ) =
∑κ−1

i=0 biθ
i are to be multiplied. Two algorithms for

multiplication called mult and multe are defined in Table 7. The reasons for defining two different
multiplication algorithms are discussed later.

Let C(θ) be the result of polyMult(A(θ), B(θ)). Then C(θ) can be written as

C(θ) = c0 + c1θ + · · ·+ c2κ−2θ
2κ−2 (21)
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input: mult(A(θ), B(θ))
output: C(θ)
1. C(θ)← polyMult(A(θ), B(θ));
2. C(θ)← fold(C(θ));
3. return reduce(C(θ)).

input: multe(A(θ), B(θ))
output: C(θ)
1. C(θ)← polyMult(A(θ), B(θ));
2. C(θ)← expand(C(θ));
3. C(θ)← fold(C(θ));
4. return reduce(C(θ)).

Table 7. Field multiplication algorithms.

expand(C(θ))
input: C(θ) = c0 + c1θ + · · ·+ c2κ−2θ

2κ−2

output: D(θ) = d0 + d1θ + · · ·+ d2κ−1θ
2κ−1

1. for i = 0, . . . , κ− 1, di ← ci;
2. s0 ← 0;
3. for i = 0, . . . , κ− 2, dκ+i ← lsbη(cκ+i + si); si+1 ← (cκ+i + si)/2

η;
4. d2κ−1 ← sκ−1;
5. return D(θ).

Table 8. The expand procedure.

where ct =
∑t

s=0 asbt−s with the convention that ai, bj is zero for i, j > κ− 1. For s = 0, . . . , κ− 1, the
coefficient cκ−1±s is the sum of (κ − s) products of the form aibj . Since ai, bj < 2η, it follows that for
s = 0, . . . , κ− 1,

cκ−1±s ≤ (κ− s)(2η − 1)2. (22)

Using the representation with the larger value of κ each ct fits in a 64-bit word and using the represen-
tation with the smaller value of κ, each ct fits in a 128-bit word.

The step polyMult multiplies A(θ) and B(θ) as polynomials in θ and returns the result polynomial
of degree 2κ − 2. In multe, the step expand is applied to this polynomial and returns a polynomial of
degree 2κ − 1. In mult, the step expand is not present and fold is applied to a polynomial of degree
2κ− 2. For uniformity of description, we assume that the input to fold is a polynomial of degree 2κ− 1
where for the case of mult the highest degree coefficient is 0.

The computation of fold(C(θ)) is the following.

C(θ) = c0 + c1θ + · · ·+ cκ−1θ
κ−1 + θκ

(
cκ + cκ+1θ + · · ·+ c2κ−1θ

κ−1)
≡ c0 + c1θ + · · ·+ cκ−1θ

κ−1 + 2η−νδ
(
cκ + cκ+1θ + · · ·+ c2κ−1θ

κ−1) mod p

= (c0 + hcκ) + (c1 + hcκ+1)θ + · · ·+ (cκ−1 + hc2κ−1)θ
κ−1

where h = 2η−νδ. The polynomial in the last line is the output of fold(C(θ)).
The expand routine is shown in Table 8. Note that for D(θ) that is returned by expand we have

dκ, . . . , d2κ−1 < 2η.
The situations where mult and multe are required are as follows.

1. For κ = 5, only mult is required.
2. For p25519 and κ = 10, mult will provide an incorrect result. This is because, in this case, some of the

coefficients of fold(polyMult(A(θ), B(θ))) do not fit into 64-bit words. This was already mentioned
in [2] and it is for this reason that the “base 226 representation” was discarded. So, for p25519 and
κ = 10, only multe will be used.

3. For p2519 and p2663, both mult and multe will be used at separate places in the scalar multiplication
algorithm. This may appear to be strange, since clearly mult is faster than multe. While this is indeed
true, the speed improvement is not as much as seems to be apparent from the description of the two
algorithms. We mention the following two points.
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– In both mult and multe, as part of fold, multiplication by h is required. For the case of mult, the
values to which h is multiplied are all greater than 32 bits and so the multiplications have to
be done using shifts and adds. On the other hand, in the case of multe, the values to which h is
multiplied are outputs of expand and are hence all less than 32 bits so that these multiplications
can be done directly using unsigned integer multiplications. To a certain extent this mitigates
the effect of having the expand operation in multe.

– More importantly, multe is a better choice at one point of the scalar multiplication algorithm.
There is a Hadamard operation which is followed by a multiplication. If we do not apply the reduce
operation at the end of the Hadamard operation, then the polynomials which are input to the
multiplication operation are no longer proper polynomials. Applying mult to these polynomials
leads to an overflow after the fold step. Instead, multe is applied, where the expand ensures that
there is no overflow at the fold step.

Due to the combination of the above two effects, the additional cost of the expand operation is more
than offset by the savings in eliminating a prior reduce step.

Computation of polyMult: We discuss strategies for polynomial multiplication using the representation
for the larger value of κ.

There are several strategies for multiplying two polynomials. For p2519, κ = 9, while for p25519
and p2663, κ = 10. Let C(θ) = polyMult(A(θ), B(θ)) where A(θ) and B(θ) are proper polynomials.
Computing the coefficients of C(θ) involve 32-bit multiplications and 64-bit additions. The usual measure
for assessing the efficacy of a polynomial multiplication algorithm is the number of 32-bit multiplications
that would be required. Algorithms from [39] provide the smallest counts of 32-bit multiplication. This
measure, however, does not necessarily provide the fastest implementation. Additions and dependencies
do play a part and it turns out that an algorithm using a higher number of 32-bit multiplications turn
out to be faster in practice. We discuss the cases of κ = 9 and κ = 10 separately. In the following, we
abbreviate a 32-bit multiplication as [M].

Case κ = 9: Using 3-3 Karatsuba requires 36[M]. An algorithm given in [39] requires 34[M], but, this
algorithm also requires multiplication by small constants which slows down the implementation. We
have experimented with several variants and have found the following variant to provide the fastest
speed (on the platform for implementation that we used). Consider the 9-limb multiplication to be 8-1
Karatsuba, i.e., the degree 8 polynomial is considered to be a degree 7 polynomial plus the term of
degree 8. The two degree 7 (i.e., 8-limb) polynomials are multiplied by 3-level recursive Karatsuba: the
8-limb multiplication is done using 3 4-limb multiplications; each 4-limb multiplication is done using
3 2-limb multiplications; and finally the 2-limb multiplications are done using 4[M] using schoolbook.
Using Karatsuba for the 2-limb multiplication is slower. The multiplication by the coefficients of the
two degree 8 terms are done directly.

Case κ = 10: Using binary Karatsuba, this can be broken down into 3 5-limb multiplications. Two
strategies for 5-limb multiplications in [39] require 13[M] and 14[M]. The strategy requiring 13[M] also
requires multiplications by small constants and turns out to have a slower implementation than the
strategy requiring 14[M].

Comparison to previous multiplication algorithm for p25519: In the original paper [2] which
introduced Curve25519, it was mentioned that for p25519, a 10-limb representation using base 226

cannot be used as this leads to an overflow. Instead an approach called “base 225.5” was advocated.
This approach has been followed in later implementations [7, 13] of Curve25519. In this representation,
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a 255-bit integer A is written as

A = a0 + 226a1 + 251a2 + 277a3 + 2102a4 + 2128a5 + 2153a6 + 2179a7 + 2204a8 + 2230a9

where a0, a2, a4, a6, a8 < 226 and a1, a3, a5, a7, a9 < 225. Note that this representation cannot be con-
sidered as a polynomial in some quantity and so the multiplication of two such representations cannot
benefit from the various polynomial multiplication algorithms. Instead, multiplication of two integers
A and B in this representation requires all the 100 pairwise multiplications of ai and bj along with a
few other multiplications by small constants. As mentioned in [13], a total of 109[M] are required to
compute the product.

For p25519, we have described a 10-limb representation using base as θ = 226 and have described a
multiplication algorithm, namely multe, using this representation. Given the importance of Curve25519,
this itself is of some interest. The advantage of multe is that it can benefit from the various polynomial
multiplication strategies. On the other hand, the drawback is that the reduction requires a little more
time, since the expand step has to be applied.

Following previous work [7], the Sandy2x implementation used SIMD instructions to simultaneously
compute two field multiplications. The vpmuludq instruction is used to simultaneously carry out two
32-bit multiplications. As a result, the 109 multiplications can be implemented using 54.5 vpmuludq

instructions per field multiplication.
The multiplication algorithm multe for p25519 can also be vectorised using vpmuludq to compute two

simultaneous field multiplications. We have, however, not implemented this. Since our target is Kummer
line computation, we used AVX2 instructions to simultaneously compute four field multiplications. It
would be of independent interest to explore the 2-way vectorisation of the new multiplication algorithm
for use in the Montgomery curve.

5-limb representation: For κ = 5, there is not much difference in the multiplication algorithm for
p2519, p25519 and p2663. A previous work [6] showed how to perform field arithmetic for p25519 using
the representation with κ = 5 and η = ν = 51. The Sandy2x code provides an assembly implementation
of the multiplication and squaring algorithm and a constant time implementation of the inversion
algorithm for p25519. The Sandy2x software mentions that the code is basically from [6]. We have
used this implementation to perform the inversion required after the Kummer line computation over
KL25519(82, 77). We have modified the assembly code for multiplication and squaring over p25519 to
obtain the respective routines for p2519 and p2663 which were then used to implement constant time
inversion algorithms using fixed addition chains.

4.8 Field Squaring

This operation is required for both the smaller and the larger values of κ.
Let A(θ) be a proper polynomial. We define sqr(A(θ)) (resp. sqre(A(θ))) to be the proper polynomial

C(θ) such that C(θ) ≡ A2(θ) mod p. The computation of sqr (resp. sqre) is almost the same as that
of mult (resp. sqre), except that polyMult(A(θ), B(θ)) is replaced by polySqr(A(θ)) where polySqr(A(θ))
returns A2(θ) as the square of the polynomial A(θ).

The algorithm sqre is required only for p25519 and κ = 10. In all other cases, the algorithm sqr is
required. Unlike the situation for multiplication, there is no situation for either p2519 or p2663 where
sqre is a better option compared to sqr.

4.9 Hadamard Transform

This operation is required only for the representation using the larger value of κ.
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Let A0(θ) and A1(θ) be two polynomials. By H(A0(θ), A1(θ)) we denote the pair (B0(θ), B1(θ))
where

B0(θ) = reduce(A0(θ) +A1(θ));

B1(θ) = reduce(A0(θ)−A1(θ)) = reduce(A0(θ) + negate(A1(θ))).

In our context, there is an application of the Hadamard transform to the output of multiplication by
constant. Since the output of multiplication by constant is not reduced, the coefficients of the input
polynomials to the Hadamard transform do not necessarily respect the bounds required for proper
polynomials. As explained earlier, the procedure negate works correctly even with looser bounds on the
coefficients of the input polynomial.

We define the operation unreduced-H(A0(θ), A1(θ)) which is the same as H(A0(θ), A1(θ)) except
that the reduce operations are dropped. So, the outputs of unreduced-H(A0(θ), A1(θ)) are not necessarily
proper polynomials. If the inputs are proper polynomials, then it is not difficult to see that the first
κ − 1 coefficients of the two output polynomials are at most η + 1 bits and the last coefficients are at
most ν + 1 bits. Leaving the output of the Hadamard operation unreduced saves time. In the scalar
multiplication algorithm, in one case this can be done and is followed by the multe operation which
ensures that there is no eventual overflow.

4.10 Field Inversion

This operation is required only for the representation using the smaller value of κ.

Suppose the inversion of A(θ) is required. Inversion is computed in constant time using a fixed
addition chain to compute A(θ)p−2 mod p. This computation boils down to computing a fixed number
of squarings and multiplications.

In our context, field inversion is required only for conversion from projective to affine coordinates.
The output of the scalar multiplication is in projective coordinates and if for some application the output
is required in affine coordinates, then only a field inversion is required. The timing measurements that
we report later includes the time required for inversion.

As mentioned earlier, the entire Kummer line scalar multiplication is done using the larger value of
κ. Before performing the inversion, the operands are converted to the representation using the smaller
value of κ. For p25519, the actual inversion is done using the constant time code for inversion used for
Curve25519 in the Sandy2x implementation while for p2519 and p2663, appropriate modifications of this
code are used.

5 Vector Operations

While considering vector operations, we consider the representation of field elements using the larger
value of κ.

SIMD instructions in modern processors allow parallelism where the same instruction can be applied
to multiple data. To take advantage of SIMD instructions it is convenient to organise the data as vectors.
The Intel instructions that we target apply to 256-bit registers which are considered to be 4 64-bit words
(or, as 8 32-bit words). So, we consider vectors of length 4.

Let A(θ) = (A0(θ), A1(θ), A2(θ), A3(θ)) where Ak(θ) =
∑κ−1

i=0 ak,iθ
i are proper polynomials. We will

say that such an A(θ) is a proper vector. So, A(θ) is a vector of 4 elements of Fp. Recall that each ak,i
is stored in a 64-bit word. Conceptually one may think of A(θ) to be given by a κ× 4 matrix of 64-bit
words.
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We describe a different way to consider A(θ). Let ai = (a0,i, a1,i, a2,i, a3,i) and define aiθ
i =

(a0,iθ
i, a1,iθ

i, a2,iθ
i, a3,iθ

i). Then we can write A(θ) as A(θ) =
∑κ−1

i=0 aiθ
i. Each ai is stored as a 256-bit

value. We define the following operations.

– pack(a0, a1, a2, a3): returns a 256-bit quantity a. Here each ai is a 64-bit quantity and a is obtained
by concatenating a0, a1, a2, a3.

– unpack(a): returns (a0, a1, a2, a3). Here a is a 256-bit quantity and the ai’s are 64-bit quantities such
that a is the concatenation of a0, a1, a2, a3.

– pack(A0(θ), A1(θ), A2(θ), A3(θ)): returns A(θ) represented as A(θ) =
∑κ−1

i=0 aiθ
i,

where ai = pack(ai,0, ai,1, ai,2, ai,3).
– unpack(A(θ)): returns (A0(θ), A1(θ), A2(θ), A3(θ)),

where A(θ) =
∑κ−1

i=0 aiθ
i, for j = 0, 1, 2, 3, Aj(θ) =

∑κ−1
i=0 aj,iθ

i and (a0,i, a1,i, a2,i, a3,i) = unpack(ai).

In the above, we use pack to denote both the packing of 4 64-bit words into a 256-bit quantity and also
the limb-wise packing of four field elements into a vector. Similar overloading of notation is used for
unpack.

We define the following vector operations. The operand A(θ) represents (A0(θ), A1(θ), A2(θ), A3(θ))
and similarly, B(θ) represents (B0(θ), B1(θ), B2(θ), B3(θ), ).

– reduce(A(θ)): returns (reduce(A0(θ)), reduce(A1(θ)), reduce(A2(θ)), reduce(A3(θ))).
– M4(A(θ),B(θ)): returns C(θ) =

∑κ−1
i=0 ciθ

i representing (C0(θ), C1(θ), C2(θ), C3(θ))
where Ck(θ) = mult(Ak(θ), Bk(θ)) for k = 0, . . . , 3.

– ME4(A(θ),B(θ)): returns C(θ) =
∑κ−1

i=0 ciθ
i representing (C0(θ), C1(θ), C2(θ), C3(θ))

where Ck(θ) = multe(Ak(θ), Bk(θ)) for k = 0, . . . , 3.
– S4(A(θ)): returns C(θ) =

∑κ−1
i=0 ciθ

i representing (C0(θ), C1(θ), C2(θ), C3(θ))
where Ck(θ) = sqr(Ak(θ)) for k = 0, . . . , 3.

– SE4(A(θ)): returns C(θ) =
∑κ−1

i=0 ciθ
i representing (C0(θ), C1(θ), C2(θ), C3(θ))

where Ck(θ) = sqre(Ak(θ)) for k = 0, . . . , 3.
– C4(A(θ),d): returns C(θ) =

∑κ−1
i=0 ciθ

i representing (C0(θ), C1(θ), C2(θ), C3(θ))
where d = (d0, d1, d2, d3); Ck(θ) = constMult(Ak(θ), dk) for k = 0, . . . , 3. Recall that the output of
constMult is not reduced and so neither is the output of C4.

The operationME4 differs fromM4 in the use of multe instead of mult to perform the multiplications.
Similarly, SE4 differs from S4 in the use of sqre instead of sqr to perform squarings. The key Intel
intrinsics operations that are required to implement the above vector operations are the following.

– mm256 add epi64: On inputs a = (a0, a1, a2, a3) and b = (b0, b1, b2, b3) returns (a0 + b0, a1 + b1, a2 +
b2, a3 + b3) with each component reduced modulo 264.

– mm256 sub epi64: On inputs a = (a0, a1, a2, a3) and b = (b0, b1, b2, b3) returns (a0− b0, a1− b1, a2−
b2, a3 − b3) with each component reduced modulo 264. We have used this operation only in context
of Karatsuba multiplication, i.e., for a subtraction of the type (a + b)(c + d) − (ac + bd) = ad + bc
for non-negative integers a, b, c and d. The result is guaranteed to be non-negative and so there is
no need to handle the sign.

– mm256 mul epu32: On inputs a = (a0, a1, a2, a3) and b = (b0, b1, b2, b3) returns (a0b0, a1b1, a2b2, a3b3)
with each component reduced modulo 264.

5.1 Vector Hadamard Operation

The Hadamard operation H(A(θ), B(θ)) is required to output (C(θ), D(θ)) where C(θ) ≡ A(θ) +
B(θ) mod p and D(θ) ≡ A(θ) − B(θ) mod p. We define the vector extension of the Hadamard oper-
ation, which computes two simultaneous Hadamard operations using SIMD vector instructions. For a
256-bit quantity a = (a0, a1, a2, a3) we define dup1(a) = (a0, a0, a2, a2) and dup2(a) = (a1, a1, a3, a3).
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The vector Hadamard operation H2 is shown in Table 9. The Hadamard operation involves a sub-
traction. As explained in Section 4.5 this is handled by first computing a negation followed by an
addition. Negation of a polynomial is computed as subtracting the given polynomial from 2nP(θ) where
n is chosen to ensure that all the coefficients of the result are positive.

H2(A(θ))

input: A(θ) =
∑κ−1
i=0 aiθ

i representing (A0(θ), A1(θ), A2(θ), A3(θ));

output: C(θ) =
∑κ−1
i=0 ciθ

i representing (A0(θ) +A1(θ), A0(θ)−A1(θ), A2(θ) +A3(θ), A2(θ)−A3(θ))
with each component reduced modulo p;

1. for i = 0, . . . , κ− 1 do
2. s = dup1(ai);
3. t = dup2(ai);
4. t = t⊕ (064, 164, 064, 164);
5. t = t + (064, 2npi + 1, 064, 2npi + 1);
6. ci = t + s;
7. end for;
return reduce(C(θ)).

Table 9. Vector Hadamard operation.

The operations dup1 and dup2 are implemented using mm256 permute4x64 epi64; ⊕ is implemented
using mm256 xor si256; the additions in Steps 5 and 6 are implemented using mm256 add epi32;

1. The operation C4 (which is the vector version of constMult) multiplies the input proper polynomials
with constant and the result is not reduced (since the output of constMult is not reduced). The
constant is one of the parameters A2 and B2 of the Kummer line. The output of C4 forms the input
to H2. Choosing n = dlog2 max(A2, B2)e ensures the non-negativity condition for the subtraction
operation.

2. We define a unreduced version of H2 to be unreduced-H2. This procedure is the same as H2 except
that at the end instead of returning reduce(C(θ)), C(θ) is returned. Following the discussion in
Section 4.5, to apply the procedure unreduced-H2 to a proper polynomial it is sufficient to choose
n = 1. The first κ − 2 coefficients of the output can be represented using η + 1 bits and the last
coefficient can be represented using ν + 1 bits.

5.2 Vector Duplication

Let a = (a0, a1, a2, a3) and b be a bit. We define an operation copy(a, b) as follows: if b = 0, re-
turn (a0, a1, a0, a1); and if b = 1, return (a2, a3, a2, a3). The operation copy is implemented using the
instruction mm256 permutevar8x32 epi32.

Let A(θ) =
∑κ−1

i=0 aiθ
i be a proper vector and b be a bit. We define the operation P4(A, b) to return∑κ−1

i=0 copy(ai, b)θ
i. If A(θ) represents (A0(θ), A1(θ), A2(θ), A3(θ)), then

P4(A, b) =

{
(A0(θ), A1(θ), A0(θ), A1(θ)) if b = 0;
(A2(θ), A3(θ), A2(θ), A3(θ)) if b = 1.

6 Vectorised Scalar Multiplication

Scalar multiplication on the Kummer line is computed from a base point represented as [x2 : z2] in the
square only setting and an `-bit non-negative integer n. The quantities x2 and z2 are elements of Fp and
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we write their representations as X(θ) and Z(θ). If x2 and z2 are small as in the fixed base points of
the Kummer lines, then X(θ) and Z(θ) have 1-limb representations. In general, the field elements X(θ)
and Z(θ) will be arbitrary elements of Fp and will have a 9-limb (for p2519) or a 10-limb (for p25519
and p2663) representation.

The algorithm scalarMult(P, n) in Table 10 shows the scalar multiplication algorithm for p2519 and
p2663 where the base point [X(θ) : Z(θ)] is fixed and small. Modifications required for variable base
scalar multiplications and p25519 are described later.

scalarMult(P, n)
Input: base point P = [X(θ) : Z(θ)];

`-bit scalar n given as (1, n`−2, . . . , n0);
Output: U(θ)/V (θ) where nP = [U(θ) : V (θ)];

1. a = pack(B2, A2, B2, A2);
2. c0 = pack(b2, a2, Z,X);
3. c1 = pack(Z,X, b2, a2);
4. compute 2P = (X2(θ), Z2(θ));
5. T(θ) = pack(X(θ), Z(θ), X2(θ), Z2(θ));
6. for i = `− 2 down to 0
7. T(θ) = H2(T(θ));
8. S(θ) = P4(T(θ), ni);
9. T(θ) =M4(T(θ),S(θ));
10. T(θ) = C4(T(θ), a);
11. T(θ) = H2(T(θ));
12. T(θ) = S4(T(θ));
13. T(θ) = C4(T(θ), cni);
14. end for;
15. (U(θ), V (θ), ·, ·) = unpack(reduce(T(θ)));
16. return U(θ)/V (θ).

Table 10. Vectorised scalar multiplication algorithm for p2519 and p2663 where the base point [X(θ) : Z(θ)] is fixed and
small. Recall that A2 = a2 + b2 and B2 = a2 − b2.

An inversion is required at Step 15. The representations of U(θ) and V (θ) are first converted to
the one using the smaller value of κ. Let these be denoted as u and v. The computation of u/v is as
follows: first w = v−1 is computed and then x = w · u are computed. As mentioned in Section 4.10,
the inversion is computed in constant time. The multiplications and squarings in this computation are
performed using the representation with κ = 5 so that both w and x are also represented using κ = 5.
A final reduce call is made on x followed by a makeUnique call whose output is returned.

Modification for variable base scalar multiplication: The following modifications are made for
variable base scalar multiplications.

1. In Step 13, the operation M4 is used instead of the operation C4.
2. In Step 7, H2 is replaced by unreduced-H2.

3. In Step 9, M4 is replaced by ME4.

The first change is required since for variable base, X(θ) and Z(θ) are no longer small and a general
multiplication is required in Step 13. On the other hand, the net effect of the last two changes is to
reduce the number of operations.

Modifications for p25519:
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1. For fixed base scalar multiplications, the operations M4 in Step 9 and S4 in Step 12 are replaced
by ME4 and SE4 respectively.

2. For variable base scalar multiplication, the following are modifications are done:

– The operations M4 in Step 9 and S4 in Step 12 are replaced by ME4 and SE4 respectively.

– In Step 13, the operation M4 is used instead of the operation C4.
– In Step 7, H2 is replaced by unreduced-H2.

Recall that for p25519, using mult leads to an overflow in the intermediate results and so multe has to
be used for multiplication. This is reflected in the above modifications where M4 and S4 are replaced
by ME4 and SE4 respectively. The last two changes for variable base scalar multiplication have the
same rationale as in the case of p2519 and p2663.

Correctness: Steps 7 to 13 constitute a single vectorised ladder step. At the i-th iteration, suppose
(kP, (k+1)P ), for some k, is a pair of points which forms the input to the ladder step. If ni = 0, then the
output of the ladder step is the pair of points (2kP, (2k+1)P ); and if ni = 1, then the output of the ladder
step is the pair of points ((2k+ 1)P, (2k+ 2)P ). Suppose kP = [X1(θ) : Z1(θ)] and (k+ 1)P = [X2(θ) :
Z2(θ)]. These two points are represented in packed form as (X1(θ), Z1(θ), X2(θ), Z2(θ)) which is the
vector input to the ladder step. Denoting the output of the ladder step as (X3(θ), Z3(θ), X4(θ), Z4(θ)),
the operation of the ladder step is shown in Figure 4. The correctness of the ladder step is easy to argue
from which the correctness of the vectorised scalar multiplication follows.

(X1, Z1, X2, Z2)

H2

P4

M4 C4

(B2, A2, B2, A2)

H2 S4 C4 or M4

(Z,X, b2, a2)

(X3, Z3, X4, Z4)

Fig. 4. One vectorised ladder step

7 Implementation and Timings

We have implemented the vectorised scalar multiplication algorithm in 64-bit AVX2 intrinsics instruc-
tions. The code implements the vectorised ladder algorithm which takes the same amount of time for
all scalars. Consequently, our code also runs in constant time. The code is publicly available at [24].

Timing experiments were carried out on a single core of the following two platforms.

Haswell: IntelrCoreTMi7-4790 4-core CPU @ 3.60GHz.

Skylake: IntelrCoreTMi7-6700 4-core CPU @ 3.40GHz.

In both cases, the OS was 64-bit Ubuntu-16.04 LTS and the C code was complied using GCC version
5.4.0. During timing measurements, turbo boost and hyperthreading were turned off. An initial cache
warming was done with 25000 iterations and then the median of 100000 iterations was recorded. The
Time Stamp Counter (TSC) was read from the CPU to RAX and RDX registers by RDTSC instruction.

Table 11 compares the number of cycles required by our implementation with that of a few other
concrete curve proposals. All the timings are for constant time code on the Haswell processor using
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variable base scalar multiplication. For Four-Q, K11,−22,−19,−3 and the results from [43] and [30], the
timings are obtained from the respective papers. For Curve25519, we downloaded the Sandy2x3 library
and measured the performance using the methodology from [29]. The cycle count of 140475 that we
obtain for Curve25519 on Haswell is significantly faster than the 156076 cycles reported by Tung Chou
at https://moderncrypto.org/mail-archive/curves/2015/000637.html and the count of about
156500 cycles reported in [21]. Further, EBACS (https://bench.cr.yp.to/results-dh.html) men-
tions about 156000 cycles on the machine titan0.

curve genus security field endomorphism cycles pre-comp tab

Curve25519 [13] 1 126 F2255−19 no 140475 no

NIST P-256 [30] 1 128 F2256−2224+2192+296−1 no 291000 no

Four-Q [16]
4

1 123 F(2127−1)2
yes 59000 2048 bits
no 109000 no

K11,−22,−19,−3 [4]5 2 125 F2127−1 no 60468 no

Koblitz [43] 1 128 F4149 yes 69656 4768 bits

KL2519(81, 20) 1 124 F2251−9 no 98715 no

KL25519(82, 77) 1 125.7 F2255−19 no 137916 no

KL2663(260, 139) 1 131.2 F2266−3 no 143718 no

Table 11. Timing comparison for variable base scalar multiplication on Haswell. The entries are cycle counts. The references
point to the best known implementations. Curve25519 was proposed in [2]; NIST P-256 was proposed in [41]; the curve
used in [43] was proposed in [36]; and K11,−22,−19,−3 was proposed in [28].

curve security Haswell Skylake
fixed base var base fixed base var base

Curve25519 [13] 126 129825 140475 126518 136728

KL2519(81,20) 124 80925 98715 74984 91392

KL25519(82,77) 125.7 101358 137916 92694 120446

KL2663(260,139) 131.2 98649 143178 91674 126770
Table 12. Timing comparison of Kummer lines with Curve25519 on Haswell and Skylake platforms. The entries are cycle
counts.

Timing results on Haswell and Skylake platforms for Curve25519 and the Kummer lines for both
fixed base and variable base scalar multiplications are shown in Table 12.

Fixed base scalar multiplication can achieve efficiency improvements in two possible ways. One,
by using a base point with small coordinates and two, by using pre-computation. We have used only
the first method. Using pre-computed tables, [30] reports much faster timing for NIST P-256 and [13]
reports much faster timing for Curve25519. We have not investigated the use of pre-computed tables to
speed up fixed base scalar multiplication for Kummer lines.

Based on entries in Table 12, we conclude the following. We use the shorthandsK1 := KL2519(81, 20),
K2 := KL25519(82, 77) and K3 := KL2663(260, 139).

1. K1 and K2 are faster than Curve25519 on both Haswell and Skylake processors for both fixed base
and variable base scalar multiplications. In particular, we note that even though Curve25519 and

3 Downloaded from https://bench.cr.yp.to/supercop/supercop-20160910.tar.xz. We used
crypto scalarmult(q,n,p) to measure variable base scalar multiplication and crypto scalarmult base(q,n) to
measure fixed base scalar multiplication.

4 Improved timing results of 54000 and 104000 respectively for implementation with and without endomorphism for
Four-Q have been reported in the extended version http://eprint.iacr.org/2015/565.pdf.

5 The original speed reported in [4] was 54389. The figure 60468 is reported to be the median cycles per byte at https:

//bench.cr.yp.to/results-dh.html for the machine titan0. We refer to http://eprint.iacr.org/2015/565.pdf for
a possible explanation of the discrepancy.
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K2 use the same underlying prime p25519, K2 provides speed improvements over Curve25519. This
points to the fact that the Kummer line is more SIMD friendly than the Montgomery curve.

2. On the recent Skylake processor, K3 is faster than Curve25519 for both fixed base and variable
base scalar multiplications. On the earlier Haswell processor, K3 is faster than Curve25519 for fixed
base scalar multiplication while both K3 and Curve25519 take roughly the same time for variable
base scalar multiplication. We note that speed improvements for fixed base scalar multiplication
does not necessarily imply speed improvement for variable base scalar multiplication, since the code
optimisations in the two cases are different.

3. In terms of security, K3 offers the highest security followed by Curve25519, K2 and K1 in that order.
The security gap between K3 and Curve25519 is 5.2 bits; between Curve25519 and K2 is 0.3 bits;
and between Curve25519 and K1 is 2 bits.

Multiplication and squaring using the 5-limb representation take roughly the same time for all the three
primes p2519, p25519 and p2663. So, the comparative times for inversion modulo these three primes
is determined by the comparative sizes of the corresponding addition chains. As a result, the time for
inversion is the maximum for p2663, followed by p25519 and p2519 in that order.

Curve25519 is based upon p25519 and so the inversion step for Curve25519 is faster than that for
K3. Further, the scalars for K3 are about 10 bits longer than those for Curve25519. It is noticeable that
despite these two facts, other than variable base scalar multiplication on Haswell, a scalar multiplication
over K3 is faster than that over Curve25519. This is due to the structure of the primes p2663 = 2266− 3
and p25519 = 2255 − 19 where 3 being smaller than 19 allows significantly faster multiplication and
squaring in the 10-limb representations of these two primes.

On the Skylake processor,K3 provides both higher speed and higher security compared to Curve25519
If one is interested in obtaining the maximum security, then K3 should be used. On the other hand,
if one considers 124 bits of security to be adequate, then K1 should be used. The only reason for
considering the prime p25519 in comparison to either p2519 or p2663 is that 255 is closer to a multiple
of 32 than either of 251 or 266. If public keys are transmitted as 32-bit words, then the wastage of bits
would be minimum for p25519 compared to p2519 or p2663. Whether this is an overriding reason for
discarding the higher security and higher speed offered by p2663 or the much higher speed and small
loss in security offered by p2519 would probably depend on the application at hand. If for some reason,
p25519 is preferred to be used, then K2 offers higher speed than Curve25519 at a loss of only 0.3 bits of
security.

We have comprehensively considered the different possibilities for algorithmic improvements to the
basic idea leading to significant reductions in operations count. At this point of time, we do not see any
way of further reducing the operation counts. On the other hand, we note that our implementations of
the Kummer line scalar multiplications are based on Intel intrinsics. There is a possibility that a careful
assembly implementation will further improve the speed.

8 Conclusion

This work has shown that compared to existing proposals, Kummer line based scalar multiplication
for genus one curves over prime order fields offers competitive performance using SIMD operations.
Previous works on implementation of Kummer arithmetic had focused completely on genus two. By
showing competitive implementation also in genus one, our work fills a gap in the existing literature.
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10. Joppe W. Bos, Craig Costello, Hüseyin Hisil, and Kristin E. Lauter. High-performance scalar multiplication using
8-dimensional GLV/GLS decomposition. In Bertoni and Coron [8], pages 331–348.

11. Brainpool. ECC standard. http://www.ecc-brainpool.org/ecc-standard.htm.
12. Eric Brier and Marc Joye. Weierstraß elliptic curves and side-channel attacks. In David Naccache and Pascal Paillier,

editors, Public Key Cryptography, 5th International Workshop on Practice and Theory in Public Key Cryptosystems,
PKC 2002, Paris, France, February 12-14, 2002, Proceedings, volume 2274 of Lecture Notes in Computer Science,
pages 335–345. Springer, 2002.

13. Tung Chou. Sandy2x: New Curve25519 speed records. In Orr Dunkelman and Liam Keliher, editors, Selected Areas
in Cryptography - SAC 2015 - 22nd International Conference, Sackville, NB, Canada, August 12-14, 2015, Revised
Selected Papers, volume 9566 of Lecture Notes in Computer Science, pages 145–160. Springer, 2015.

14. Ping Ngai Chung, Craig Costello, and Benjamin Smith. Fast, uniform scalar multiplication for genus 2 Jacobians with
fast Kummers. In Selected Areas in Cryptography, 2016. to appear.

15. R. Cosset. Factorization with genus 2 curves. Mathematics of Computation, 79(270):1191–1208, 2010.
16. C. Costello and P. Longa. Four(Q): Four-dimensional decompositions on a Q-curve over the Mersenne prime. In

Advances in Cryptology - ASIACRYPT Part I, volume 9452 of Lecture Notes in Computer Science, pages 214–235.
Springer, 2015.
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A Proofs of Theta Identities

For the sake of completeness, we provide the proofs of (2), (3) and (4). These are derived from the
definition of theta functions with characteristics given by (1).

A.1 Proof of (2)

We can write ϑ[ξ1, ξ2](−w, τ) as

ϑ[ξ1, ξ2](−w, τ) =
∑
n∈Z

exp
[
πi(n+ ξ1)

2τ + 2πi(n+ ξ1)(−w + ξ2)
]

(23)

Let m = −n − 2ξ1. As n runs through all the integers and ξ1 ∈ {0, 12}, m will also run over all the
integers. Using m+ ξ1 = −n− ξ1 in (23) we have

ϑ[ξ1, ξ2](−w, τ) =
∑
m∈Z

exp
[
πi(m+ ξ1)

2τ + 2πi(−m− ξ1)(−w + ξ2)
]

=
∑
m∈Z

exp
[
πi(m+ ξ1)

2τ + 2πi(m+ ξ1)(w − ξ2)
]

=
∑
m∈Z

exp
[
πi(m+ ξ1)

2τ + 2πi(m+ ξ1)(w + ξ2)− 4πi(m+ ξ1)ξ2
]

=
∑
m∈Z

exp
[
πi(m+ ξ1)

2τ + 2πi(m+ ξ1)(w + ξ2)
]

exp(−4πimξ2) exp(−4πiξ1ξ2)

Now 4ξ2 is either zero or an even integer and m is an integer and so exp(−4πimξ2) = 1. Similarly, 4ξ1ξ2
is also zero or one. Therefore, exp(−4πiξ1ξ2) = exp(−πi)4ξ1ξ2 = (−1)4ξ1ξ2 . This shows

ϑ[ξ1, ξ2](−w, τ) = (−1)4ξ1ξ2
∑
m∈Z

exp
[
πi(m+ ξ1)

2τ + 2πi(m+ ξ1)(w + ξ2)
]

which proves (2).

A.2 Proof of (3)

We can write the ϑ1(w), ϑ2(w), Θ1(w) and Θ2(w) as given below:

ϑ1(w) = ϑ[0, 0](w, τ) =
∑
n∈Z

exp
[
πin2τ + 2πinw

]
(24)

ϑ2(w) = ϑ [0, 1/2] (w, τ) =
∑
n∈Z

exp
[
πin2τ + πin+ 2πinw

]
(25)

Θ1(w) = ϑ[0, 0](w, 2τ) =
∑
n∈Z

exp
[
2πin2τ + 2πinw

]
(26)

Θ2(w) = ϑ [1/2, 0] (w, 2τ) =
∑
n∈Z

exp
[
2πi(n+ 1/2)2τ + 2πi(n+ 1/2)w

]
. (27)
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Let w1 and w2 be in C. From (26), we can write

Θ1(w1 + w2)Θ1(w1 − w2)

=

∑
n1∈Z

exp
[
2πin21τ + 2πin1(w1 + w2)

]∑
n2∈Z

exp
[
2πin22τ + 2πin2(w1 − w2)

]
=
∑
n1∈Z

∑
n2∈Z

exp
[
2πin21τ + 2πin1(w1 + w2) + 2πin22τ + 2πin2(w1 − w2)

]
=
∑
n1∈Z

∑
n2∈Z

exp
[
2πin21τ + 2πin22τ + 2πi(n1 + n2)w1 + 2πi(n1 − n2)w2

]
=
∑
n1∈Z

∑
n2∈Z

exp

[
πin21τ + πin22τ + 2πin1n2τ + +2πi(n1 + n2)w1+
πin21τ + πin22τ − 2πin1n2τ + 2πi(n1 − n2)w2

]
=
∑
n1∈Z

∑
n2∈Z

exp
[
πi(n1 + n2)

2τ + πi(n1 − n2)2τ + 2πi(n1 + n2)w1 + 2πi(n1 − n2)w2)
]
.

Let m1 = n1 + n2 and m2 = n1 − n2 so that m1 +m2 = 2n1 is even. We obtain

Θ1(w1 + w2)Θ1(w1 − w2) =
∑
m1∈Z

∑
m2∈Z

m1+m2=even

exp
[
πim2

1τ + πim2
2τ + 2πim1w1 + 2πim2w2)

]
. (28)

From (24), we can write

ϑ1(w1)ϑ1(w2)

=

∑
n1∈Z

exp
[
πin21τ + 2πin1w1

]∑
n2∈Z

exp
[
πin22τ + 2πin2w2

]
=
∑
n1∈Z

∑
n2∈Z

exp
[
πin21τ + 2πin1w1 + πin22τ + 2πin2w2

]
. (29)

Similarly, from (25), we have

ϑ2(w1)ϑ2(w2)

=

∑
n1∈Z

exp
[
πin21τ + πin1 + 2πin1w1

]∑
n2∈Z

exp
[
πin22τ + πin2 + 2πin2w2

]
=
∑
n1∈Z

∑
n2∈Z

exp
[
πin21τ + πin1 + 2πin1w1 + πin22τ + πin2 + 2πin2w2

]
. (30)

Adding (29) and (30), we get

ϑ1(w1)ϑ1(w2) + ϑ2(w1)ϑ2(w2)

=
∑
n1∈Z

∑
n2∈Z

exp
[
πin21τ + 2πin1w1 + πin22τ + 2πin2w2

]
+
∑
n1∈Z

∑
n2∈Z

exp
[
πin21τ + πin1 + 2πin1w1 + πin22τ + πin2 + 2πin2w2

]
=
∑
n1∈Z

∑
n2∈Z

exp
[
πin21τ + 2πin1w1 + πin22τ + 2πin2w2

]
(1 + exp (πi(n1 + n2)))

=
∑
n1∈Z

∑
n2∈Z

exp
[
πin21τ + 2πin1w1 + πin22τ + 2πin2w2

] (
1 + (−1)(n1+n2)

)
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If n1 +n2 is odd, the corresponding terms in the series will vanish, whereas if n1 +n2 is even, there will
be a factor of 2. Therefore

ϑ1(w1)ϑ1(w2) + ϑ2(w1)ϑ2(w2) = 2
∑
n1∈Z

∑
n2∈Z

n1+n2=even

exp
[
πin21τ + 2πin1w1 + πin22τ + 2πin2w2

]
= 2Θ1(w1 + w2)Θ1(w1 − w2) (using (28)). (31)

From (27), we can write

Θ2(w1 + w2)Θ2(w1 − w2)

=

∑
n1∈Z

exp

[
2πi

(
n1 +

1

2

)2

τ + 2πi

(
n1 +

1

2

)
(w1 + w2)

]
×

∑
n2∈Z

exp

[
2πi

(
n2 +

1

2

)2

τ + 2πi

(
n2 +

1

2

)
(w1 − w2)

]
=
∑
n1∈Z

∑
n2∈Z

exp

[
2πi

(
n1 + 1

2

)2
τ + 2πi

(
n1 + 1

2

)
(w1 + w2)

+2πi
(
n2 + 1

2

)2
τ + 2πi

(
n2 + 1

2

)
(w1 − w2)

]

=
∑
n1∈Z

∑
n2∈Z

exp

[
2πi

(
n1 +

1

2

)2

τ + 2πi

(
n2 +

1

2

)2

τ + 2πi(n1 + n2 + 1)w1 + 2πi(n1 − n2)w2

]

=
∑
n1∈Z

∑
n2∈Z

exp

πi
(
n1 + 1

2

)2
τ + 2πi

(
n1 + 1

2

) (
n2 + 1

2

)
τ + πi

(
n2 + 1

2

)2
τ+

πi
(
n1 + 1

2

)2
τ − 2πi

(
n1 + 1

2

) (
n2 + 1

2

)
τ + πi

(
n2 + 1

2

)2
τ+

2πi(n1 + n2 + 1)w1 + 2πi(n1 − n2)w2


=
∑
n1∈Z

∑
n2∈Z

exp
[
πi(n1 + n2 + 1)2τ + 2πi(n1 + n2 + 1)w1 + πi(n1 − n2)2τ + 2πi(n1 − n2)w2

]

Let m1 = n1 + n2 + 1 and m2 = n1 − n2 so that m1 +m2 = 2n1 + 1. So, we have

Θ2(w1 + w2)Θ2(w1 − w2) =
∑
m1∈Z

∑
m2∈Z

m1+m2=odd

exp
[
πim2

1τ + πim2
2τ + 2πim1w1 + 2πim2w2)

]
. (32)

Subtracting (30) from (29) and simplifying gives

ϑ1(w1)ϑ1(w2)− ϑ2(w1)ϑ2(w2) = 2
∑
n1∈Z

∑
n2∈Z

n1+n2=odd

exp
[
πin21τ + 2πin1w1 + πin22τ + 2πin2w2

]
(33)

= 2Θ2(w1 + w2)Θ2(w1 − w2) (using (32)). (34)

This completes the proof of (3).
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A.3 Proof of (4)

From (24), it can be written that

ϑ1(w1 + w2)ϑ1(w1 − w2)

=

∑
n1∈Z

exp
[
πin21τ + 2πin1(w1 + w2)

]∑
n2∈Z

exp
[
πin22τ + 2πin2(w1 − w2)

]
=
∑
n1∈Z

∑
n2∈Z

exp
[
πin21τ + 2πin1(w1 + w2) + πin22τ + 2πin2(w1 − w2)

]
=
∑
n1∈Z

∑
n2∈Z

exp
[
πin21τ + 2πi(n1 + n2)w1 + πin22τ + 2πi(n1 − n2)w2

]
. (35)

In (35), note that n1 + n2 and n1 − n2 are both even or both odd. From (25), it can be written that

ϑ2(w1 + w2)ϑ2(w2 − w2)

=

∑
n1∈Z

exp
[
πin21τ + πin1 + 2πin1(w1 + w2)

]∑
n2∈Z

exp
[
πin22τ + πin2 + 2πin2(w1 − w2)

]
=
∑
n1∈Z

∑
n2∈Z

exp
[
πin21τ + πin1 + 2πin1(w1 + w2) + πin22τ + πin2 + 2πin2(w1 − w2)

]
=
∑
n1∈Z

∑
n2∈Z

exp
[
πin21τ + πin1 + 2πi(n1 + n2)w1 + πin22τ + πin2 + 2πi(n1 − n2)w2

]
=
∑
n1∈Z

∑
n2∈Z

exp
[
πin21τ + 2πi(n1 + n2)w1 + πin22τ + 2πi(n1 − n2)w2

]
exp(πi(n1 + n2))

=
∑
n1∈Z

∑
n2∈Z

exp
[
πin21τ + 2πi(n1 + n2)w1 + πin22τ + 2πi(n1 − n2)w2

]
(−1)(n1+n2).

Again n1 +n2 and n1−n2 are both even or both odd. If n1 +n2 is even, then exp(πi(n1 +n2)) = 1 and
if n1 + n2 is odd, then exp(πi(n1 + n2)) = −1.

From (26), we can write

Θ1(2w1)Θ1(2w2)

=

∑
n1∈Z

exp
[
2πin21τ + 2πin1(2w1)

]∑
n2∈Z

exp
[
2πin22τ + 2πin2(2w2)

]
=

∑
n1∈Z

exp
[
2πin21τ + 4πin1w1

]∑
n2∈Z

exp
[
2πin22τ + 4πin2w2

]
=
∑
n1∈Z

∑
n2∈Z

exp
[
2πin21τ + 4πin1w1 + 2πin22τ + 4πin2w2

]
=
∑
n1∈Z

∑
n2∈Z

exp
[
πin21τ + πin22τ + 2πin1n2τ + 4πin1w1 + πin21τ + πin22τ − 2πin1n2τ + 4πin2w2

]
=
∑
n1∈Z

∑
n2∈Z

exp
[
πi(n1 + n2)

2τ + 4πin1w1 + πi(n1 − n2)2τ + 4πin2w2

]
.
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Let m′1 = n1 + n2 and m′2 = n1 − n2, where n1, n2 ∈ Z. Therefore m′1 +m′2 = 2n1 and m′1 −m′2 = 2n2
are both even. So,

Θ1(2w1)Θ1(2w2) =
∑
m′1∈Z

∑
m′2∈Z

m′1+m
′
2=even

exp
[
πim′21 τ + 2πi(m′1 +m′2)w1 + πim′22 τ + 2πi(m′1 −m′2)w2

]
(36)

From (27), we can write

Θ2(2w1)Θ2(2w2)

=

∑
n1∈Z

exp

[
2πi

(
n1 +

1

2

)2

τ + 2πi

(
n1 +

1

2

)
(2w1)

]
×

∑
n2∈Z

exp

[
2πi

(
n2 +

1

2

)2

τ + 2πi

(
n2 +

1

2

)
(2w2)

]
=

∑
n1∈Z

exp

[
2πi

(
n1 +

1

2

)2

τ + 4πi

(
n1 +

1

2

)
w1

]
×

∑
n2∈Z

exp

[
2πi

(
n2 +

1

2

)2

τ + 4πi

(
n2 +

1

2

)
w2

]
=
∑
n1∈Z

∑
n2∈Z

exp

[
2πi

(
n1 +

1

2

)2

τ + 4πi

(
n1 +

1

2

)
w1 + 2πi

(
n2 +

1

2

)2

τ + 4πi

(
n2 +

1

2

)
w2

]

=
∑
n1∈Z

∑
n2∈Z

exp

[
πi
(
n1 + 1

2

)2
τ + πi

(
n2 + 1

2

)2
τ + 2πi

(
n1 + 1

2

) (
n2 + 1

2

)
τ + 4πi

(
n1 + 1

2

)
w1

πi
(
n1 + 1

2

)2
τ + πi

(
n2 + 1

2

)2
τ − 2πi

(
n1 + 1

2

) (
n2 + 1

2

)
τ + 4πi

(
n2 + 1

2

)
w2

]

=
∑
n1∈Z

∑
n2∈Z

exp

[
πi(n1 + n2 + 1)2τ + 4πi

(
n1 +

1

2

)
w1 + πi(n1 − n2)2τ + 4πi

(
n2 +

1

2

)
w2

]
.

Let m′1 = n1 + n2 + 1 and m′2 = n1 − n2 and so m′1 +m′2 and m′1 −m′2 are both odd. We can write

Θ2(2w1)Θ2(2w2) =
∑
m′1∈Z

∑
m′2∈Z

m′1+m
′
2=odd

exp
[
πim′21 τ + 2πi(m′1 +m′2)w1 + πim′22 τ + 2πi(m′1 −m′2)w2

]
(37)

Addition of (36) and (37) creates a series where m′1 and m′2 varies over Z and m′1 + m′2 and m′1 −m′2
are either both odd or both even. Therefore the series is exactly the same as the series defined by (35)
and we get the identity

ϑ1(w1 + w2)ϑ1(w1 − w2) = Θ1(2w1)Θ1(2w2) +Θ2(2w1)Θ2(2w2)

Similarly, if we subtract (37) from (36), we get the exact series defined by (36). This gives the identity

ϑ2(w1 + w2)ϑ2(w1 − w2) = Θ1(2w1)Θ1(2w2)−Θ2(2w1)Θ2(2w2)

which completes the proof of (4).
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B SAGE Verification Script

reset()

var(’asq,bsq,Asq,Bsq,mu’)

def SetKL(a2,b2):

global asq,bsq,Asq,Bsq,mu

asq = a2

bsq = b2

Asq = asq+bsq

Bsq = asq-bsq

mu = asq^2/(asq^2-bsq^2)

def KummerDbl(xsq,zsq):

global asq,bsq,Asq,Bsq,mu

s0 = Bsq*(xsq+zsq)^2

t0 = Asq*(xsq-zsq)^2

x3sq = bsq*(s0+t0)^2

z3sq = asq*(s0-t0)^2

return (x3sq,z3sq)

def KummerAdd(x1sq,z1sq,x2sq,z2sq,xsq,zsq):

global asq,bsq,Asq,Bsq,mu

s0 = Bsq*(x1sq+z1sq)*(x2sq+z2sq)

t0 = Asq*(x1sq-z1sq)*(x2sq-z2sq)

x3sq = zsq*(s0+t0)^2

z3sq = xsq*(s0-t0)^2

return (x3sq,z3sq)

def psi(xsq,zsq):

global asq,bsq,Asq,Bsq,mu

s0 = asq*xsq

t0 = asq*xsq - bsq*zsq

return s0/t0

def psiInv(X):

global asq,bsq,Asq,Bsq,mu

xsq = X*bsq

zsq = (X-1)*asq

return (xsq,zsq)

def addT2(alpha,X):

global asq,bsq,Asq,Bsq,mu

Ysq = X*(X-1)*(X-mu)

tmp = mu + 1 + Ysq/(X-alpha)^2 - X - alpha

return tmp

def ECdblXcoordinate(X1):

36



global asq,bsq,Asq,Bsq,mu

Y1sq = X1*(X1-1)*(X1-mu)

msq = (3*X1^2-2*(mu+1)*X1+mu)^2/(4*Y1sq)

X3 = mu+1+msq-2*X1

return X3

def ECadd(X1,Y1,X2,Y2):

global asq,bsq,Asq,Bsq,mu

m = (Y1-Y2)/(X1-X2)

X3 = mu + 1 + m^2 - X1 - X2

return X3

def ECsubtract(X1,Y1,X2,Y2):

global asq,bsq,Asq,Bsq,mu

m = (Y1+Y2)/(X1-X2)

X = mu + 1 + m^2 - X1 - X2

return X

def ECaddXcoordinate(X1,X2,X):

global asq,bsq,Asq,Bsq,mu

Y1sq = X1*(X1-1)*(X1-mu)

Y2sq = X2*(X2-1)*(X2-mu)

Y1plusY2sq = (X1+X2+X-mu-1)*(X2-X1)^2

Y2minusY1sq = 2*Y1sq + 2*Y2sq - Y1plusY2sq

msq = Y2minusY1sq/(X2-X1)^2

X3 = mu + 1 + msq - X1 - X2

return X3

def verifyDblKummerToEC(xsq,zsq):

global asq,bsq,Asq,Bsq,mu

X = psi(xsq,zsq).simplify_full()

X1 = X

X3 = ECdblXcoordinate(X1).simplify_full()

val = KummerDbl(xsq,zsq)

x3sq = val[0]

z3sq = val[1]

X3prime = psi(x3sq,z3sq)

X3prime = addT2(mu,X3prime).simplify_full()

tmp = X3 - X3prime

return tmp.simplify_full()

def verifyDblECToKummer(X1):

global asq,bsq,Asq,Bsq,mu

val = psiInv(X1)

x1sq = val[0]

z1sq = val[1]

val = KummerDbl(x1sq,z1sq)

x3sq = val[0]
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z3sq = val[1]

X3 = ECdblXcoordinate(X1)

X3 = addT2(mu,X3)

val = psiInv(X3)

x3primesq = val[0]

z3primesq = val[1]

tmp = x3sq*z3primesq - x3primesq*z3sq

return tmp.simplify_full()

def verifyAddECToKummer(X1,Y1,X2,Y2):

global asq,bsq,Asq,Bsq,mu

X3 = ECadd(X1,Y1,X2,Y2)

X = ECsubtract(X1,Y1,X2,Y2)

X1prime = addT2(mu,X1)

val = psiInv(X1prime)

x1sq = val[0]

z1sq = val[1]

X2prime = addT2(mu,X2)

val = psiInv(X2prime)

x2sq = val[0]

z2sq = val[1]

X3prime = addT2(mu,X3)

val = psiInv(X3prime)

x3sq = val[0]

z3sq = val[1]

Xprime = addT2(mu,X)

val = psiInv(Xprime)

xsq = val[0]

zsq = val[1]

val = KummerAdd(x1sq,z1sq,x2sq,z2sq,xsq,zsq)

x3primesq = val[0]

z3primesq = val[1]

tmp = x3sq*z3primesq - x3primesq*z3sq

tmp1 = tmp.numerator()

g1 = Y1^2 - X1*(X1-1)*(X1-mu)

g2 = Y2^2 - X2*(X2-1)*(X2-mu)

tmp2 = tmp1.maxima_methods().divide(g1)

tmp1 = tmp2[1]

tmp2 = tmp1.maxima_methods().divide(g2)

tmp1 = tmp2[1]

return tmp1.simplify_full()
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var(’asq,bsq’)

SetKL(asq,bsq)

val = KummerDbl(asq,bsq) # double of (a^2,b^2) is (a^2,b^2)

tmp = val[0]/val[1]

print tmp.full_simplify()

val = KummerDbl(bsq,asq) # double of (b^2,a^2) is (a^2,b^2)

tmp = val[0]/val[1]

print tmp.full_simplify()

var(’xsq,zsq’)

val = KummerAdd(xsq,zsq,asq,bsq,xsq,zsq) # addition of (x^2,z^2) and (a^2,b^2) is (x^2,z^2)

tmp = val[0]/val[1]

print tmp.full_simplify()

val = KummerAdd(xsq,zsq,xsq,zsq,asq,bsq) # addition of (x^2,z^2) and (x^2,z^2) is 2(x^2,z^2)

tmp1 = val[0]/val[1]

val = KummerDbl(xsq,zsq)

tmp2 = val[0]/val[1]

print tmp1 - tmp2

var(’xsq,zsq’)

print verifyDblKummerToEC(xsq,zsq) # consistency of doubling on Kummer Line and EC

var(’X1’)

print verifyDblECToKummer(X1) # consistency of doubling on EC and Kummer Line

var(’X1,Y1,X2,Y2’)

print verifyAddECToKummer(X1,Y1,X2,Y2) # consistency of pseudo-addition on EC and Kummer Line

39


