
Revisiting Covert Multiparty Computation

Geoffroy Couteau

ENS, Paris, France ?

geoffroy.couteau@ens.fr

Abstract. Is it feasible for parties to securely evaluate a function on their joint inputs, while hiding not
only their private input, but even the very fact that they are taking part to the protocol? This intriguing
question was given a positive answer in the two-party case at STOC’05, and in the general case at FOCS’07,
under the name of covert multiparty computation (CMPC). A CMPC protocol allows n players with inputs
(x1 · · ·xn) to compute a function f with the following guarantees:
– If every party is taking part to the protocol, and if the result of the computation is favorable to all

the parties, then all parties learn f(x1, · · · , xn) (and nothing more)
– Else, when the result is not favorable to all the parties, or if some player does not participate to the

computation, no one gets to learn anything (and in particular, no player can learn whether any of the
other parties was indeed participating to the protocol)

While previous works proved the existence of CMPC under standard assumptions, their candidate CMPC
protocols were exclusively of theoretical interest, and several questions were left open – in particular, can
CMPC protocols be constructed with a complexity comparable to that of standard MPC protocols?
In this work, we revisit the design of CMPC protocols. We construct a variant of the UC framework tailored
to CMPC that allows for modular security proofs and enhances it with partial composability properties.
Then, we show how to build a CMPC protocol out of a standard, state-of-the-art MPC protocol, where
both the communication and the computation are the same than the original protocol up to an additive
factor independent of the size of the circuit. Our construction relies on homomorphic smooth projective
hash functions, which were previously used in the context of key-dependent message security.

Keywords. Covert multiparty computation, Multiparty computation, Universal composability.

1 Introduction

Consider the following scenario: your company has recently suffered from the attack of a group of
hackers who have been very careful in the attack, and it seems difficult to trace them on your own.
However, you suspect that a set of other companies might have been attacked too. A joint computational
effort between the companies might allow to trace the hackers, but you are not willing to reveal to
concurrent companies that your company was hacked, unless they have been attacked too and can
indeed help you tracing the hackers.

The above example is a situation where standard secure computation fails to provide a satisfying
answer. Indeed, while secure multiparty computation allows players to evaluate any function while
hiding their private inputs, it still leaks the information that the players have decided to participate to
this secure computation protocol – and in some cases, revealing this information can be undesirable.
It might seem infeasible to overcome this issue at first sight: after all, how could players be possibly
performing a secure protocol if they did not even agree to execute it? Nevertheless, an elegant solution
was suggested at STOC’05 by Ahn et al. [vAHL05], who introduced the fascinating notion of covert
two-party computation (C2PC), later extended to covert multiparty computation (CMPC) by Chandran
et al at FOCS’07 [CGOS07].1 The idea is to hide the execution of a multiparty computation protocol
inside innocent-looking conversations, so that no one (not even the players themselves) can determine
whether the other players are indeed executing the protocol, or just carrying normal conversations.
When to start the protocol is made part of its specifications. At the end of the protocol, if all the
players participated to the computation and if the result is favorable to all the players (in our above
example, this would correspond to a result that indeed allows to trace the hackers),2 they get the
? CNRS – UMR 8548 and INRIA – EPI Cascade
1 To avoid confusion, we emphasize that this notion is not related to the notion of covert adversaries, a relaxation of
the malicious security model which was introduced in 2007. The similarity of the names is an unfortunate coincidence.

2 The term favorable might be a bit misleading, but is the one used in previous works; it will be defined formally later
on.

2

output (hence discovering that everyone took part to the computation). In our above example, the
companies can try to identify the hackers using a CMPC protocol: if it does not succeed in tracing the
hackers, or if some companies have not suffered from an attack (and are therefore not taking part to
the protocol), then no one will know that your company was hacked. Other applications were suggested
in [vAHL05,CGOS07]. We point out that in addition to having some applications, covert multiparty
computation offers a very interesting theoretical challenge – this statement will be made more precise
afterward.

Model for Covert Multiparty Computation. The first requirement to execute a CMPC protocol
is to hide the communication between the parties inside ordinary-looking conversations. Think for
example of images posted on some social network, out of which anyone can extract what appears to be
random bit-strings: for images posted by innocent users, this random bit-string would be nothing more
than that, but it could also be that some secret data has been encoded in this string. This is exactly
the purpose of steganography, which was formally defined in [HLv02]: steganography allows players
to communicate while hiding their secret communication to external observers inside innocent-looking
communications. However, it is important to note that steganography together with standard MPC
are not sufficient to allow for CMPC. Indeed, even when all the players are interested in executing a
protocol, the CMPC model requires that their participation must be revealed to the other players only
if the result is favorable to all the parties. Therefore, steganography does not give a solution by itself.
However,it was formally proven in [vAHL05] that steganography reduces the task of building a CMPC
protocol to the task of building a secure computation protocol for a target function f on some joint
input x = (x1, · · · , xn) such that:

– Some of the parties might be non-participating, in which case they do only broadcast uniformly
random bit-string of the appropriate size at each round (which, in practice, would be a random
string extracted from some innocent message they sent).

– There is a public admissibility function g : {0, 1}∗ 7→ {0, 1} which determines whether the output
of the protocol is favorable to all the parties.

– When all the players are participating and g(x) = 1, the output of the protocol is set to f(x).
– When at least one of the parties is non-participating, or when g(x) = 0, the output of the protocol

is set to ⊥. This implies in particular that no one can distinguish between an execution of the
protocol with non-favorable inputs, and an execution of the protocol with non-participating players.

The adversarial model considered in [vAHL05,CGOS07] is that of static, malicious corruption: the
adversary corrupts a subset of the parties before the start of the protocol; the corrupted players might
deviate arbitrarily from the specifications of the protocol. As the players cannot explicitely agree on
performing the joint computation, the specifications of the protocol must include some synchronisation
data, such as, for example, “the protocol starts with the first message sent after 12pm”. The parties
interested in computing f will start hiding protocol messages in their conversations from that time,
while parties that are not interested will just keep on carrying normal conversations.

1.1 State of the Art

In STOC’05, Ahn et al. [vAHL05] defined covertness as a collection of security notions (strong internal
covertness, strong fairness and final covertness), formally proved that CMPC on steganographic chan-
nels can be reduced to CMPC over ordinary (uniform) channels with non-participating players sending
uniformly random strings on the channel, and proposed an instantiation secure in the random oracle
model under standard assumptions. In FOCS’07, Chandran et al. [CGOS07] improved upon the con-
struction of Ahn et al. on several aspects. First, they identified some flaws in the protocol of [vAHL05]
(in particular, the protocol of Ahn et al. does not guarantee the correctness of the output). Then, they
proposed a better, simulation-based, unified notion of covert multiparty computation, which in particu-
lar separates the notion of covertness from the notion of fairness. Eventually, they constructed a generic
CMPC protocol in the standard model, assuming a broadcast channel. Later, in STOC’10, Goyal et
al. [GJ10] gave a constant round CMPC protocol, relying on non-black-box simulation techniques, and
proved the impossibility of constructing such a protocol with respect to black-box simulation.

3

Unfortunately, all of the aforementioned results are purely of theoretical interest (in particular, they
heavily rely on expensive Karp reductions to NP-complete problems). While they settle the question
of the existence of CMPC, several questions regarding covert multiparty computation remain open. In
particular, can CMPC be achieved with a complexity linear in the circuit size of the function, as is the
case for standard MPC? Is CMPC restricted to the stand-alone setting, or can it satisfy some notion of
composability? Can CMPC be made efficient at all?

On the Difficulty of CMPC. The core reason why the design of CMPC protocols has proven quite
complex is that most techniques used in standard MPC break down in the covert setting. Tasks such
as opening a commitment, performing a zero-knowledge proof, or verifying whether a ciphertext is
valid, do all involve an explicit checking procedure which would immediatly reveal, when it succeeds,
that some player is taking part to the protocol. Therefore, designing an efficient CMPC protocol seems
inherently harder than building a standard MPC protocol: one must construct a protocol with strictly
stronger security properties than standard MPC without using most of the tools that allow for efficient
MPC protocols.

Another difficulty regarding covert multiparty computation is that, unlike standard MPC, there
is no framework comparable to the UC framework to prove the security of protocols in a composable
way, or to design protocols as reactive functionalities. As a consequence, CMPC protocols lack the
modularity of standard MPC protocols, both in terms of functionality (they are not stateful, reactive
functionalities that perform the desired computation in an adaptive way), and of security (it is unclear
whether one can rely on previously proven subprotocols to assess the security of some protocol, or even
whether one can import existing results from standard MPC).

1.2 Our Contributions

In this paper, we revisit the fascinating notion of covert multiparty computation and address the
previously outlined issues. More precisely, our contributions in this paper are twofold.

– We construct an analogous of the UC model tailored to covert multiparty computation, in order
to simplify the design of CMPC schemes and to extend it to reactive, stateful functionalities. We
derive two composition theorems, enhancing CMPC with partial composability properties: our
model allows to freely compose the building blocks of a CMPC protocol, while still allowing for a
single output phase, at the end of which all players learn that a computation took part.

– We propose a new generic CMPC protocol and prove its security in the model of Chandran et al.
Our CMPC protocol securely evaluates an arithmetic circuit on the private inputs of n players over
a large order field, and is based on the recent protocol of [KOS16], called MASCOT, which is to
our knowledge the most efficient protocol for standard MPC on arithmetic circuits. We show that
the complexity of our protocol is the same as that of MASCOT up to a constant additive term,
suggesting that, perhaps surprisingly, the very strong security notion of covertness can be ensured
at essentially no cost.

Let C(c, d) be the communication complexity (in bits) of the MASCOT protocol when evaluating
a circuit with c input gates and d multiplication gates. As shown in [KOS16], for a protocol between
n players with security parameter κ, C(c, d) = O(κ2(nc+n2d)). Our protocol communicates C(c, d)+
O(κn3) bits, and has a communication proportional to the depth of the circuit. The security of our
protocol can be based on various well-studied assumptions, such as the decisional Diffie-Hellman (DDH)
assumption.

Note that the impossibility result of Goyal et al. [GJ10] shows that any plain-model covert protocol
with respect to black-box simulation must have round complexity proportional to the security param-
eter; however, this impossiblity result does not apply to our setting as we assume a common reference
string (which is anyway necessary as impossibility results for UC computation in the plain model do
also apply to our variant of the UC model).

Concurrent Work. Until very recently, the question of building efficient CMPC protocols was only
answered for very specific functionalities in the two-party setting, namely string equality and set inter-
section in [CDSJ16], and a weak form of authentication in [Jar14]. In a concurrent work, Jarecki [Jar16]

4

addresses a challenge comparable to ours. Our results are complementary, and our methods, incompa-
rable: while we design a GMW-style protocol in the multiparty setting, [Jar16] constructs a garbled-
circuit-based constant-round two-party covert protocol, using entirely different techniques. We also
address complementary aspects of composability: while we derive composition theorems to allow for
full composability of the building blocks of a CMPC protocol with a single output phase, [Jar16] con-
siders the issue of concurrent self-composability of CMPC.

1.3 Our Method

Partial Composability Notions for CMPC. We start by designing a natural variant of the UC
model, called the uniform UC model. At an intuitive level, a protocol implements an ideal function-
ality in the uniform UC model if it implements this functionality in the UC model, with a simulator
indistinguishable from a random beacon. We derive two natural composition theorems regarding the
uniform UC model:

1. If a protocol ΠF implements an ideal functionality F in the uniform UC model when given access
to an ideal functionality G, and if a protocol ΠG implements G in the uniform UC model, then
the protocol obtained by running ΠF and replacing calls to G by executions of ΠG implements F
in the uniform UC model.

2. If a protocol ΠF implements an ideal functionality F in the covert model of Chandran et al. when
given access to an ideal functionality G, and if a protocol ΠG implements G in the uniform UC
model, then the protocol obtained by running ΠF and replacing calls to G by executions of ΠG

implements F in the covert model of Chandran et al..

While this enhances the covert model with partial composition properties, note that it does not allow
to compose covert protocols together. It allows, however, to compose the building blocks of a covert
protocol, and proves very convenient to write security proofs in the covert model.

CMPC with Preprocessing. We follow the standard SPDZ paradigm for constructing efficient MPC
protocols: in a preprocessing phase, some material is computed by the players, independently of their
inputs. This material will allows the parties to authenticate inputs with an information-theoretic mac,
and to perform operations on authenticated values in the online phase. We construct our protocol by
closely following the design of the MASCOT protocol of [KOS16], by carefully removing any explicit
checking procedure in the preprocessing functionality it relies on. We instead allow the adversary to
introduce errors in the functionality. Security follows by observing that no error introduced by the
adversary will actually affect the transcript of the protocol (except for the output phase, which we
treat separately).

Our protocol is first designed (and proven covert in the model of Chandran et al.) in an hybrid world,
in which it is given access to ideal functionalities. In this hybrid word, the protocol mainly consists of
an output phase, which is the most challenging part to construct, and relies on ideal functionalities for
all of the actual computation. These functionalities are then implemented in the uniform UC model,
using appropriate modifications of the subprotocols of the MASCOT protocol with a simulator which
does only send uniformly random values from the viewpoint of the adversary; the two composition
theorems allow to conclude that the full protocol is covert.

Implicit Checking. The core technical step is to remove any explicit checking procedure while
still preventing malicious behavior. In [CGOS07,GJ10], this was done using a primitive called zero-
knowledge proofs to garbled circuit, whose instantiation involves general NP reductions (and is therefore
inefficient). In contrast, our output protocol only relies on a constant number of calls to an implicit
checking functionality. Intuitively, this functionality allows the players to implicitly check the validity
of some statement, by returning random shares of the result of the check to the players. One of the
main technical contributions of our work is the design of an efficient output phase, which relies on an
implementation of this implicit checking functionality in the multiparty setting, by making a novel use
of homomorphic smooth projective hash functions [CS02,Wee16], which were previously used in the
context of key-dependent message security, together with plaintext-checkable commitments.

5

More specifically, in SPDZ-like protocols, values exchanged during the protocol are shares of an
entry x, for which the parties hold corresponding shares of a value∆·x, where∆ is a global information-
theoretic mac, not known to any player. Checking honest behavior during the protocol is done as
follow: each player commits to his share of ∆ and to his share of ∆ · x, for all values x revealed during
the protocol, using a homomorphic commitment.3 Given x and those homomorphic commitments, all
players can compute a commitment that can be opened to 0 if and only if the opened value x was
correct.

Using homomorphic smooth projective hash functions, we construct a protocol where the private
input of each player is a share of the opening to a public commitment, constructed so that it commits
to 0 if and only if all parties participated to the computation, all parties behaved honestly, and the
output is favorable. Each party will get as output a key such that:

– If the shares of the opening would allow to open the commitment to 0, the product of all the keys
of the parties is 1.

– Otherwise, the key of every honest party is statistically indistinguishable from random from the
point of view of all other parties.

Note that the parties never actually open the commitment. An issue with the above method is with
respect to simulation: smooth projective hash functions do not satisfy standard zero-knowledge prop-
erties, hence a simulator cannot possibly simulate them without knowing the private inputs. We get
around this issue by letting the simulator extract the inputs of the malicious parties in the prepro-
cessing phase, and check throughout the entire protocol their honest behavior; if any misbehavior is
detected, the simulator will commit to random value during the implicit checking phase on behalf of
the honest parties. A remaining issue with this approach is that the adversary might play honestly
during the entire protocol, yet cheat only at the commitment phase, and the simulator must be able
to detect this in order to simulate the protocol. This is done by using the fact that the simulator
can anticipate the value that the malicious parties should commit to if they behave honestly, using
the inputs extracted in the preprocessing phase. The use of a plaintext-checkable commitment scheme
allows the simulator to verifies whether each malicious party committed to the appropriate value, using
a trapdoor. Eventually, the players use the keys that they obtained from the implicit checking protocol
to perform a single explicit check. If everyone participated honestly to the protocol and the output was
favorable, they can reconstruct the output; if any of these conditions is not met, the explicit check fail.

1.4 Notations

For a set S, x $← S denotes the assignment to x of a variable sampled uniformly at random from S. We
say that two probability distributions D ,D ′ are computationally indistinguishable, and write D

c≡ D ′,
if no probabilistic polynomial time adversary, given a sample of one of the two distributions picked at
random, can guess the correct distribution with probability significantly greater than 1/2.

2 Universal Composability Theorems for Covert Multiparty Computation

2.1 The Covert Model

The notion of covertness was first introduced in [vAHL05] as a collection of desirable properties, such
as strong internal covertness, strong fairness and final covertness. Later in [CGOS07], Chandran et al.
proposed a more unified, simulation-based definition. We start by recalling the model of [CGOS07].

Ideal Model. We consider n parties, each party Pi holding an input xi. Let x be the vector (x1, · · · , xn).
All the participating parties send their input to the functionality, while the non-participating parties
are assumed to send ⊥. Then, if any of the parties had input a ⊥, the functionality sets ⊥ to be the
output of the protocol. Else, let g : ({0, 1}∗)n 7→ {0, 1} be the function which determines whether
on input x, the output is favorable (g(x) = 1) or non-favorable (g(x) = 0). In the latter case, the
3 The presentation is slightly simplified here as several other types of statements must be checked, such as the well-
formedness of multiplicative triples, but the procedure is similar.

6

Functionality FCMPC(f, g)

FCMPC runs with an adversary Adv and a set of n parties (Pi)i≤n, some of whome might not be actually taking
part to the protocol, and knows the description of two n-entry functions f and g (the latter is the admissibility
function). Before the protocol, Adv can corrupt a subset of the parties; the remaining parties are denoted honest
parties. Honest non-participating parties are assumed to automatically send ⊥ to the trusted party. The trusted
party ignores all messages that are not correctly formatted.

Input. The trusted party waits until it received an input xi from each party Pi.
Send output to adversary. Let x = (xi)i≤n. If any entry of x is ⊥, FCMPC sets the output y to ⊥. Else, it

checks that g(x) = 1, and sets y to ⊥ if this check fails. If the check passes, it sets y ← f(x). The trusted
party sends y to Adv.

Send output to honest parties. The trusted party waits until it receives from Adv a list of honest parties that
should get the output. It sends y to those parties, and ⊥ to the remaining honest parties.

The honest participating parties output whatever output they received from the functionality. Non-participating
and corrupted parties output ⊥ by convention. The adversary outputs its entire view.

Fig. 1: Ideal Functionality for Covert Multiparty Computation

functionality sets ⊥ to be the output of the protocol. In the former case, the functionality computes the
output f(x). The output is sent to any subset of players, chosen by the adversary. The functionality
is represented on Figure 1. For an adversary Adv, an execution of FCMPC(f, g) with participation
data p (indicating which players are taking part to the protocol) and input x (where the input of
non-participating parties is ⊥) is defined as the output of the parties together with the output of the
adversary. It is denoted IDEALf,g,Adv(p,x).

Real Model. Honest participating parties follow the specifications of the protocol. Honest non-participating
parties are assumed to send uniformly random messages. We consider static malicious corruption of
players, in which the corrupted players are chosen once-for-all by the adversary before the start of
the protocol, and are entirely controlled by the adversary. Honest participating parties compute their
output as specified, non-participating and corrupted parties output ⊥ by convention, and the adver-
sary outputs its entire view of the execution of the protocol. For an adversary Adv, an execution of a
protocol Π(f, g) in the real model with participation data p and input x is defined as the output of
the parties together with the output of the adversary. It is denoted REALΠ(f,g),Adv(p,x).

Definition 1 (Covert security [CGOS07]). A protocol Π(f, g) securely implements FCMPC(f, g)
if for every probabilistic polynomial-time adversary Adv statically corrupting up to n− 1 players in the
real model, there is an expected polynomial-time adversary S corrupting at most n − 1 players in the
ideal model, such that for any (p,x) ∈ {0, 1}n × ({0, 1}∗)n,

{IDEALf,g,S(p,x)}
c≡ {REALΠ(f,g),Adv(p,x)}

On the Security Model for CMPC. One can remark that this way of defining security is analogous
to the so-called stand-alone model for standard MPC, which allows to argue the security of a single
run of a protocol, but does not tell anything as soon as this protocol is ran in a concurrent setting
and does not allow for the design of reactive functionalities. In standard MPC, this issue was solved
by introducing a stronger model for multiparty computation: the UC model. The core feature of this
model is that if a large-scale protocol is proven secure given access to an ideal functionality F , then it
remains secure if F is replaced by a real protocol that securely implements F in the UC model. The
UC model allows to greatly simplify security proofs, by studying the security of smaller functionalities
in order to argue the security of a more complex functionality.

However, no analogeous to the UC model is known for covert computation. The UC model has
proven extremely useful and fruitful for standard MPC. In this paper, we propose a variant of the
UC framework to import the versatility of the UC model in CMPC. We will prove two composition
theorems, which will be useful for the design of a CMPC protocol. Note, however, that although we
will strongly rely on these composition theorems in the design of an efficient CMPC protocol, the

7

protocol itself will still be eventually proven secure in the model of [CGOS07] (which is a stand-alone
type of security notion). Before we describe our method, we introduce preliminaries on the universal
composability framework.

2.2 The Universal Composability Framework

The universal composability framework (UC) has been introduced by Canetti in [Can01]. It defines
protocols by the mean of systems of interactive Turing machines. The expected behavior of the protocol
is captured by an ideal functionality F . This functionality is a very simple interactive machine, which
is connected to a set of dummy parties, some of whom might be corrupted by an ideal adversary Sim,
through perfectly secure authenticated channels. In the real execution of a protocol π, probabilistic
polynomial time players, some of whom might be corrupted by a real adversary Adv, interact with
each other through some channels. The environment refers to an interactive machine Z that oversees
the execution of the protocol in one of the two worlds (the ideal world with the functionality F , or the
real world with the protocol π). We refer to [Can01], or alternatively to [CDN15], for the definitions of
the real world ensembles EXECπ,Adv,Z and the ideal world ensemble EXECF,Sim,Z . The task of securely
emulating a functionality F for a protocol π is defined as follows:

Definition 2. A protocol π securely implements an ideal functionality F in the UC model if for any
real adversary Adv, there is an ideal adversary Sim (called the simulator) such that for any environment
Z, EXECπ,Adv,Z

c≡ EXECF,Sim,Z .

One of the core features of the UC model is its composition theorem. The latters states that any pro-
tocol secure in the UC model remains secure under general composition, a setting in which an arbitrary
number of protocols (which can be other instances of the same protocol as well as other protocols) are
executed concurrently. More formally, the UC model defines the composition � of interactive machines,
to prove the following theorem:

Theorem 3 (UC Theorem - Informal). Let IF , IG be two ideal functionalities. Let πF be a protocol,
so that πF � IG securely implements IF in the UC model (that is, πF emulates IF when given access
to IG). Let πG be a protocol that securely implements IG in the UC model. Then πF � πG securely
implements IF in the UC model.

Our purpose in this section will be to define a restriction of the UC model, and to derive two
new composition theorems, tailored to our goal of covert multiparty computation (which involves the
participation data of the players, and cannot therefore be captured by the UC framework). However,
our goal is ultimately to construct an efficient CMPC protocol. The fully detailed presentation of our
framework and our composition theorems involves a quite heavy formalism. To avoid drowning the
reader into unnecessary details, we provide a more informal and more reader-friendly introduction to
our framework in this section. The interested reader will find the full construction of our framework,
and the formal proof of security of our composition theorems, in Appendix A.

2.3 The Uniform UC Framework

At an informal level, it is safe to use a cryptographic primitive inside a covert protocol if and only if
only uniformly random-looking messages (from the view of the players themselves) are exchanged in the
implementation of the primitive – otherwise, any non-random-looking message would identify its sender
as an active participant to the protocol. This intuition was implicitly acknowledged in every previous
works on CMPC. Indeed, all known constructions of CMPC protocols rely on standard cryptographic
primitives (e.g., commitment schemes, oblivious transfers, garbled circuits), that are enhanced with
this “random-lookingness” feature. In previous works, primitives with this feature were denoted covert
(e.g., covert commitment, covert oblivious transfer). However, although clearly related to the covert
security model, these “covert primitives” are not primitives secure in the covert security model. In this
section, we aim at formalizing this intuitive random-lookingness notion; to avoid any possible confusion
with the covert security model, we choose to call it uniformity.

8

Let us proceed with the definition of our uniformity notion. We say that a simulator Sim of a
protocol π is a uniform simulator if the transcript of its interaction with any adversary Adv (controlled
by the environment Z) who corrupts a strict subset of the parties contains only uniformly random
values. Intuitively, a protocol will satisfy the uniformity property if it can be simulated by a uniform
simulator. In other words,

Definition 4 (Informal). A protocol π securely implements an ideal functionality F in the uniform
UC model if for any real adversary Adv, there is a uniform simulator Sim such that for any environment
Z, EXECπ,Adv,Z

c≡ EXECF,Sim,Z .

The uniform UC model is a simple restriction of the standard UC model, and does not involve at all
the participation data of the players. A protocol secure in the uniform UC model is in particular secure
in the standard UC model. More interestingly, we prove in Appendix A that uniformity is preserved
under general composition:

Theorem 5 (Uniform UC Theorem - Informal). Let IF , IG be two ideal functionalities. Let πF
be a protocol, so that πF � IG securely implements IF in the uniform UC model. Let πG be a protocol
that securely implements IG in the uniform UC model. Then πF � πG securely implements IF in the
uniform UC model.

2.4 A Composition Theorem for CMPC

We now explain how this restriction of the standard UC model will help us in the design of covert
multiparty computation protocols. In Appendix A, we restate the specifications of the covert model
of [CGOS07], using the formalism of [CDN15]. We extend the composition operator �, so as to be able
to compose covert protocols (which involve covert players instead of standard players) with standard
protocols and functionalities. Eventually, we will prove the following composition theorem:

Theorem 6 (Covert UC Theorem - Informal). Let I be an ideal functionality, and let (f, g) be
two functions. Let π be a protocol, so that π �I securely implements FCMPC(f, g) in the covert model of
Chandran et al. Let π′ be a protocol that securely implements I in the uniform UC model. Then π � π′
securely implements FCMPC(f, g) in the covert model of Chandran et al.

Now, to prove the security of a CMPC protocol, we can proceed as follows: we prove its security in
a hybrid world, in which it is given access to ideal functionalities for various necessary tasks. Then, we
implement these ideal functionalities assuming ideal access to standard primitives, in the uniform UC
model. We then describe implementations of the primitives in the uniform UC model. The uniform UC
theorem allows us to argue the security (in the uniform UC model) of our implementation of the ideal
functionalities. We conclude using the covert UC theorem to argue the security of our full protocol in
the covert model.

3 Standard MPC Protocols

Our purpose will be to construct an efficient CMPC protocol, out of a standard MPC protocol. Therefore,
in order to detail our construction, it is necessary to first recall some preliminaries on how MPC
protocols are built. Here, we will focus on a specific paradigm to design efficient MPC protocols,
generally called the SPDZ paradigm, which was the one used in a large number of recent papers
(see [DPSZ12, DZ13, KOS16] among many others). It allows to UC securely evaluate an arithmetic
circuit between n players, while tolerating static, malicious corruption of any strict subset of the
players. More precisely, our goal will be to construct a CMPC protocol out of the recent MASCOT
protocol [KOS16], which is currently (to our knowledge) the most efficient MPC protocol is this setting.

The SPDZ paradigm assumes the preprocessing model, where most of the burden of the computation
is confined to a preprocessing phase which is independent of the input of the parties and the function
to be computed. In this preprocessing phase, the parties interact to generate some material that will be
used during the online phase. In the online phase, the parties receive their input to the computation.This
phase computes an arithmetic circuit on the inputs of the players. It is information-theoretically secure
and relies on the material generated during the preprocessing phase.

9

Notations. Let p be a prime of the form 2a + b, where a, b are polynomial in κ. Let F be the field of
prime order p; note that the distribution of random elements x of F, represented as x =

∑
i xi2

i mod p
where the xi are bits, is statistically indistinguishable from the uniform distribution over {0, 1}a. We
use bold letters to denote vectors.

3.1 Ideal MPC Functionalities

The expected behavior of an MPC protocol is defined using an arithmetic black box (ABB), which is a
reactive functionality on which the parties can load inputs into variables, add or multiply the content
of two variables, and output the content of a variable to the players. The ideal functionality is given
Figure 2; it is taken verbatim from [KOS16].

The protocol is constructed assuming access to an ideal preprocessing functionality. For the sake
of completeness, we recall the ideal preprocessing functionality of the MASCOT protocol Figure 3.
The functionality allows to authenticate, compute linear combinations of, and open additively shared
values, as well as to compute multiplication triples.

Functionality FABB

Initialize(F): On input (init,F) from all the parties, store F.
Input: On input (input, Pi, id, x) from Pi and (input, Pi, id) from all other parties, with id a fresh identifier and

x ∈ F, store (id, x).
Add: On command (add, id1, id2, id3) from all parties (where id1, id2 are present in memory), retrieve

(id1, x), (id2, y) and store (id3, x+ y).
Mult: On command (mult, id1, id2, id3) from all parties (where id1, id2 are present in memory), retrieve

(id1, x), (id2, y) and store (id3, x · y).
Output: On input (output, id) from all honest parties (where id is present in memory), retrieve (id, y) and output

it to the adversary. Wait for an input from the adversary; if this is deliver then output y to all parties, otherwise
output ⊥.

Fig. 2: Ideal Functionality for MPC Protocols

3.2 Arithmetic on Authenticated Shares

The input function is constructed by sharing and authenticating with a MAC the inputs of the players.
The sharing scheme and the MAC are linear; as a consequence, linear combinations can be directly
and locally evaluated on authenticated shares (which correspond to loaded inputs). Unlike the linear
combination, evaluating products requires interactions. It uses some material created during the pre-
processing phase and relies again on the linear property of the authenticated sharing scheme. When
calling an input or a product command, all the messages exchanged by the players consist in partial
openings of authenticated shares. A partial opening of a share reveals the value it contains, but does
not allow to verify the authenticity of the share. After a number of values have been partially opened,
a checking procedure is executed. This procedure uses the MAC value (without revealing it) to verify
that the partially opened shares are indeed authentic. This is sufficient to ensure that all the players
behaved honestly. Once the checking protocol succeeds, the players partially open the output, and call
the checking procedure again to verify that it is valid.

We will require an all-or-nothing secret sharing scheme over a field F, whose additive law is denoted
+: for a value x ∈ F, we denote by 〈x〉 a secret sharing of x over a field F, which means that each
player Pj gets a value sj(x) ∈ F subject to

∑
j∈[n] sj(x) = x (when x must be unknown to the players,

the values sj(x) will be taken uniformly at random so that their sum is x). To authenticate shares,
the players will first generate a share of a uniformly random MAC ∆ ∈ F (each player generates its
share of ∆ at random over F). An authenticated share of x ∈ F, denoted JxK, is a pair (〈x〉 , 〈∆ · x〉).
We denote by δj(x) the share of the player Pj of ∆ · x. Note that standard arithmetic operations can
easily be performed over authenticated shares:

10

Functionality Fprep

The functionality maintains a dictionary, Val, to keep track of the authenticated values. Entries of Val lie in the
(fixed) finite field F. Fprep also maintains the sets open and Cheat to record all openings and those where the
adversary tried to cheat. The functionality is separated into two functionalities, Fauth and Ftriple, as the latter is
implemented assuming access to the ideal functionality Fauth.

Functionality Fauth:

Input: On input (input, id1, · · · , idm, x1, · · · , xm) from Pj and (input, id1, · · · , idm, Pj) from all other parties, where
(x1, · · · , xm) ∈ Fm, sets Val[idi]← xi for i = 1 to m.

Linear Combination: On command (lin-comb, īd, id1, · · · , idt, c1, · · · , ct, c) from all parties, where id1, · · · , idt) ∈
Val.keys() and (c1, · · · , ct, c) ∈ Ft+1, set Val[īd]←

∑t
i=1 ci · Val[idi] + c.

Open: On command (open, id) from all parties, where id ∈ Val.keys(), send Val[id], wait for x from the adversary,
and output x to all the parties.

Check: On command (check, x1, · · · , xt, id1, · · · , idt) from every party, wait for an input from the adversary. If
this input is deliver, and if Val[idi] = xi for i = 1 to t, output OK to all parties, otherwise output ⊥ and
terminate.

Abort: On command ⊥ from the adversary, send ⊥ to all parties and terminate.

Functionality Ftriple:

Input Tuple: On input (input-tuple, Pj , id) from all parties, sample Val[id]
$← F and output it to Pj .

Triple: On command (triple, id1, id2, id3) from all parties, sample two random values (x, y)
$← F2 and sets

(Val[id1],Val[id2],Val[id3])← (x, y, x · y).

Fig. 3: Functionality for Performing Computation on Additively Shared Values

– Given JxK = (〈x〉 , 〈∆ · x〉) and JyK = (〈y〉 , 〈∆ · y〉), Jx+ yK is computed as (〈x〉 + 〈y〉 , 〈∆ · x〉 +
〈∆ · y〉), where 〈x〉+ 〈y〉 indicates that each player locally compute the sum of his shares of x and
y.

– Given JxK and a public value λ, JλxK is computed as (λ · 〈x〉 , λ · 〈∆ · x〉), where λ · 〈x〉 indicates
that each player locally multiplies his share of x by λ.

– As the players have shares of the MAC ∆, they already have an authenticated share of 1; therefore
addition by a constant is simply multiplication of the authenticated share of 1 by this constant,
followed by an addition.

We will say that the players partially open an authenticated share JxK = (〈x〉 , 〈∆ · x〉) when they
open the first part 〈x〉 only. The second part will be used in the checking procedure to verify that the
partial openings are correct. We will call multiplication triple a triple of the form (JaK , JbK , Ja · bK).

Correlated Oblivious Product Evaluation with Errors. The design of the MASCOT protocol
crucially relies on a primitive called correlated oblivious product evaluation with errors (COPEe). This
protocol is an arithmetic generalization of oblivious transfer extensions, which were introduced by Ishai
et al. [IKNP03]. It involves two players, P1 with input (x1, · · · , xt) ∈ Ft, and P2 with input ∆ ∈ F,
called the correlation. The protocol outputs shares over F of ∆x. The correlation ∆ cannot change
during successive executions of the COPEe protocol: in the initialization phase, ∆ is stored, and in the
extend phase, only P1 provides an input. The functionality includes errors in the sense that the sender
is allowed to behave maliciously, in a way formally defined in the functionality. The COPEe protocol
is used by the players to authenticate additive shares of a value x, using a MAC ∆.

4 An Efficient Covert Multiparty Computation Protocol

Equipped with the covert UC model, we are now ready to describe our construction of an efficient
generic CMPC protocol. Our protocol assumes broadcast channels and a common reference string. The
latter is unavoidable if we want to use our model: several impossibility results strongly narrow the range
of protocols that can UC implement a functionality in the plain model (see e.g. [Can01]). As a uniform

11

UC implementation of a functionality is in particular a UC implementation of this functionality, these
impossibility results apply to our setting. Our basis will be the MASCOT protocol of [KOS16].

4.1 Covert Arithmetic Black Box

We design a generic CMPC functionality by modifying the ideal ABB functionality (Figure 2) so as to
deal with both the participation data of the players and the admissibility function. The functionality
is represented Figure 4.

Functionality FCABB

FCABB runs with an adversary Adv and a set of n parties (Pi)i≤n, some of whome might not be actually taking
part to the protocol. Before the protocol, Adv corrupt a subset of the parties. The remaining parties are denoted
honest parties. Honest non-participating parties are assumed to automatically send ⊥ to the trusted party. The
trusted party ignores all messages that are not correctly formatted (in particular, as non-participating parties send
⊥ automatically, the commands input, add,mult are never triggered if there is a non-participating party).

Initialize(F): On input (init,F) or ⊥ from all the parties, label all honest players with input ⊥ as non-participating,
and the remaining players (honest or corrupted) as participating. If there is no non-participating party, store
F.

Input: On input (input, Pi, id, x) from Pi and (input, Pi, id) from all other parties, with id a fresh identifier and
x ∈ F, store (id, x).

Add: On command (add, id1, id2, id3) from all parties (where id1, id2 are present in memory), retrieve
(id1, x), (id2, y) and store (id3, x+ y).

Mult: On command (mult, id1, id2, id3) from all parties (where id1, id2 are present in memory), retrieve
(id1, x), (id2, y) and store (id3, x · y).

Output: On input (output, idf , idg) from all participating parties (where (idf , idg) are present in memory), if there
is at least one non-participating party, output ⊥ to all the players. Else, retrieve (idg, x). If x 6= 1, output
⊥ to all the parties. If x = 1, retrieve (idf , y) and output it to the adversary. Wait for an input from the
adversary. If this is (deliver, L), where L is a subset of the honest parties, output y to all parties in L and ⊥
to the remaining parties, and terminate. Otherwise, output ⊥ and terminate.

Fig. 4: Covert Ideal Functionality for CMPC Protocols

Following the standard method for building MPC protocols, we would like to design the protocol in
an hybrid world, in which it is given access to the ideal preprocessing functionality Fprep (Figure 3).
However, in our setting, this approach is inherently flawed. Recall that our covert UC model allows us to
argue the security of our protocol in the covert model when given access to uniform UC implementations
of the ideal functionalities it relies on. The uniform UC security notion is a very strong security notion
– so strong, in fact, that many standard ideal functionalities cannot be possibly implemented in this
model. This is the case of Fprep: it involves in particular the check command, which cannot be simulated
by a simulator that sends only uniformly random messages. There are other issues: for example, the
open command cannot be simulated by a uniform simulator when called on a variable whose content
is known to a player (it would allow that player to “check” the value of this variable). We will tackle
these problems by designing a variant of the preprocessing functionality, called implicit preprocessing
functionality, that does never perform any explicit check. Instead, the adversary is allowed to introduce
errors during the computation; these errors will be detected during the output phase.

4.2 Implicit Preprocessing Functionality

The preprocessing functionality allows to authenticate and perform operations on shares. In this section,
we outline our modifications to the preprocessing functionality of [KOS16]. Our purpose is to remove
every explicit check of the functionality, which would prevent us from implementing it in the uniform
UC model. Instead of using a checking procedure as in [KOS16], the functionality allows the adversary
to introduce errors at any step of the computation. In addition, it produces some material that the
players will later use in a separate implicit checking procedure which will perform all the necessary
checks. This procedure is separated from Fi-prep as its design will strongly depend on the design of the
output protocol.

12

Functionality Fi-prep

The functionality maintains a dictionary, Val, to keep track of the authenticated values. Entries of Val lie in the (fixed)
finite field F. Fi-prep maintains the sets Open, Cheat, and Label to record all openings and those where the adversary
tried to cheat, and to label random inputs.

Functionality Fi-auth:

Initialize: On input (init,∆i) from each party Pi, sets the MAC ∆ ←
∑
i∆i. Let ∆ ∈ {0, 1}log p be the bit decom-

position of ∆.
Input: On input (input, id1, · · · , idm, x1, · · · , xm) from Pj and (input, id1, · · · , idm, Pj) from all other parties, where

(x1, · · · , xm) ∈ Fm, sets Val[idi]← xi for i = 1 to m. Wait for m inputs from the adversary. For each index i such
that the input of the adversary is the token random, pick yi

$← F and output uniformly random shares of (xi, yi)
to all the players; for the remaining indices, output uniformly random shares of (xi,∆ · xi) to all the parties.

Random Input: On input (rand-input, id) from all parties, pick x $← F, set Val[idi]← x, and sets Label[id]← random.
Wait for an input from the adversary. If this input is the token random, pick y $← F and output uniformly random
shares of (x, y) to all the players, otherwise output uniformly random shares of (x,∆ · x) to all the players.

Linear Combination: On command (lin-comb, īd, id1, · · · , idt, c1, · · · , ct, c) from the honest parties, where
id1, · · · , idt) ∈ Val.keys() and (c1, · · · , ct, c) ∈ Ft+1, set Val[īd] ←

∑t
i=1 ci · Val[idi] + c. If there is an index i∗

such that ci∗ 6= 0 and Label[idi∗] = random, set Label(īd)← random. For all such index i∗, erase the random token
from Label[idi∗].

Random Open: On command (open, id) from all parties, where id ∈ Val.keys(), and Label[idi∗] = random, send
Val[id], wait for x from the adversary, output x to all the parties, and erase the random symbol from Label[idi∗].

Abort: On command ⊥ from the adversary, send ⊥ to all parties and terminate.

Functionality Fi-triple:

Input Tuple: On input (input-tuple, Pj , id) from all parties, sample Val[id]
$← F and output it to Pj . Wait for an

input from the adversary. If this input is the token random, pick y $← F and output uniformly random shares of
(x, y) to all the players, otherwise output uniformly random shares of (x,∆ · x) to all the players.

Implicit Triple: On command (implicit-triple, id1, id2, id3, idρ, idσ) from all parties, pick five uniformly random values
(a, b, c, â, ĉ)

$← F5. wait for an input from the adversary; if this input is the token random, send uniformy random
shares of (a, b, c, â, ĉ) to the parties. Otherwise, send uniformy random shares of (a, b, ab, â, âb) to the parties.

Fig. 5: Ideal Implicit Preprocessing Functionality

To deal with the open command, we need to distinguish between identifiers that can point to a
random value (from the view of all the players) from identifiers pointing to sensible values. Therefore,
we add a command rand-input to the functionality, that allows the players to input random values, and
we let the functionality maintain a label on identifiers that point to a random value. We then explicitly
forbid the functionality to open non-random values.

Eventually, we must deal with the generation of multiplication triples, which are necessary for the
multiplication command. The implementation of this step in [KOS16] involves an explicit checking
procedure as well as a sacrificing procedure, both of which cannot be allowed in our setting. Therefore,
we consider instead a simplified multiplication triple procedure, which generates unauthenticated shares
of a multiplication triple (a, b, ab). We will let the players implicitely authenticate these shares, and
perform an implicit sacrificing procedure.

Handling Non-Participating Players. There is one more technical requirement that we have to
handle. Suppose that some functionality sends an output to all the players when all the parties call
a specific command, and does nothing otherwise. Then this functionality would immediatly allow to
detect non-participating players: indeed, players calling the functionality would never get any output,
as soon as a non-participating player sends a random (hence not correctly formatted) input to the
functionality.

To handle this situation, we implicitely suppose the following behavior for all our functionalities
(except FCABB, which takes the participation data into account): the players append κ zeroes to any
command they call. The functionality only look at the input of players whose input ended with κ

13

zeroes. If the commands called by all these players are consistent, then the functionality plays its role
as if the remaining players had called the correct command with random inputs.

4.3 Implementing the Covert Arithmetic Black Box

We now provide a detailed implementation of the functionality FCABB, in the Fi-prep-hybrid model,
assuming broadcast channels. We start by presenting the protocol without the output command; we
will deal with this command afterward. This protocol is essentially identical to [KOS16]; the only major
difference is regarding the triple generation procedure, as the functionality Fauth produces unauthenti-
cated triples. we describe the protocol Figure 6. It remains to implement the output command. This is
the most intricate part of the construction, and requires to use methods that differ significantly from
standard MPC protocols. Before we describe it, we introduce some primitives on which it relies.

Covert Protocol Π

Each player Pi maintains the set AuthValuesi to track all the authenticated values, the set OpenValuesi to track
all the partially opened values, and the set SacrificeValuesi to track all the multiplication tuple that will require a
sacrifice procedure to ensure their correctness.

Initialize: The parties call Fi-prep with the command implicit-triple to load random (possibly erroneous) multipli-
cation tuples (〈a〉 , 〈b〉 , 〈ab〉 , 〈â〉 , 〈âb〉) for each multiplicative gate of both f and g, and with the command
input-tuple to load masks JrK for each input of the parties. Each player Pi adds his authenticated shares of
the masks to AuthValuesi.

Input: To input a value xi with identifier idi, party Pi takes a mask JriK, and broadcasts ε← xi − ri (recall that
he received ri from Fi-prep when creating the mask). The parties locally compute JxiK← JriK + ε.

Add: The parties locally compute Jx+ yK← JxK + JyK.
Multiply: On input (JxK , JyK), the parties do the following:

1. Take a multiplication tuple (〈a〉 , 〈b〉 , 〈ab〉 , 〈â〉 , 〈âb〉), and execute the following Random Input proce-
dure: the players call the Input procedure defined above on each share of (a, b, ab, â, âb) to get au-
thenticated shares of each share of the players, and use the (local) addition procedure to compute
(JaK , JbK , JabK , JâK , JâbK). Each player Pi adds his authenticated shares of (a, b, ab, â, âb) to AuthValuesi
and to SacrificeValuesi.

2. Compute JαK← JxK− JaK and JβK← JyK− JbK, and call the open command of Fi-prep to get (α, β) (which
is a valid operation as both x − a and y − b are labeled as random by Fi-prep). Each player Pi adds
(α, si(α), δi(α)) and (β, si(β), δi(β)) to OpenValuesi.

3. Set JxyK← α JbK + β JaK + αβ + JabK.

Fig. 6: Covert Protocol (without the output protocol)

4.4 Implementing the Output Phase

In addition to the Fi-prep functionality, we will assume that the players have access to an ideal implicit
checking functionality Fi-check, whose purpose is to let the player commit to values, and implicitely
check that a commitment contains a given value. We also assume an ideal secure transfer functionality
Fst. The implicit checking functionality is represented Figure 7. Fst has the following behavior: on
input (send, Pj , x) from Pi, Fst output (Pi, x) to Pj . The functionality leaks the bitsize of x. As Fi-check
relies on commitment schemes, we start by recalling their definition.

Commitment Scheme. Commitment schemes are an essential primitive in cryptography. A commit-
ment scheme allows to lock a value in a box, so that the sender cannot change the locked value when
it opens the box (the binding property) but the receiver gets no information about the locked value
from seeing the box (the hiding property).

Definition 7 (Commitment Scheme). A commitment scheme over F (with randomness space F)
is defined by two algorithms (Setup,Commit):

14

– Setup(1κ), generates the public parameters pp,
– Commit(m; r), given a message m ∈ F and some random coins r $← F, outputs a commitment c

(pp is implicitely passed as a parameter to Commit).

A commitment scheme is assumed to satisfy the following properties:

Hiding. No probabilistic polynomial-time adversary A , that is first given pp
$← Setup(1κ), can dis-

tinguish commitments on two messages (m0,m1) of its choice.
Binding. For any commitment c, no probabilistic polynomial-time adversary A can find two pairs

(m0, r0) and (m1, r1), with m0 6= m1, such that c = Commit(m0; r0) = Commit(m1; r1). The
commitment scheme is said perfectly binding if this is impossible even for unbounded adversaries.

Uniform. To allow for a uniform UC implementation of the functionality Fi-check, we need the commit-
ments to look like random bit-strings. We say that a commitment scheme is uniform if for any message
m, the distribution {c : r $← F, c ← Commit(pp,m; r)} is computationally indistinguishable from the
uniform distribution over {0, 1}t for some t. Note that the uniformity property of a commitment scheme
implies its hiding property.

Functionality Fi-check

Fi-check has the same description as Fi-prep. In addition, the functionality contains the description of a group (G, ·),
and maintains a dictionary ComDict. It also contains the description of a uniform commitment scheme c : F2 7→ G.
In addition to Fi-prep’s description, Fi-check also has the following commands:

Commit: On input (com,mi, ri, îdi, id) from each player Pi, where (mi, ri) ∈ F2 and each mi is an element of the
pair Val[îdi], store ComDict[id]← (

∑
imi,

∑
i ri).

Linear Combination of Commitments: On command (lcc, īd, id1, · · · , idt, c1, · · · , ct, c) from the honest par-
ties, where id1, · · · , idt) ∈ ComDict.keys() and (c1, · · · , ct, c) ∈ Ft+1, set ComDict[īd]←

∑t
i=1 ci ·ComDict[idi]+

c.
Implicit Check: On input (implicit-check, id,m, ri) from each party Pi, check whether ComDict[id] = (m,

∑
i ri).

Wait for an input from the adversary. If this is deliver and if the check succeeds, pick uniformly random shares
over Gn of the vector v = (1, · · · , 1) ∈ Gn, and output one share to each player. Else, send n uniformly
random elements of G to each players.

Reveal: On input (reveal, id) from all the players, where id ∈ ComDict.keys(), retrieve (m, r) ← ComDict[id],
output c(m; r) to all the players, and terminate.

Fig. 7: Ideal Functionalities for Implicit Checking

The Output Command. We are now ready to describe the implementation of the output command
of our covert protocol, in the (Fi-prep,Fi-check,Fst)-hybrid model, assuming access to a uniform com-
mitment scheme c : F2 7→ G. Recall that an authenticated value JxK is a pair (〈x〉 , 〈∆ · x〉), where∆ ∈ F
is uniformly shared between the players; the shares held by each player Pi are denoted (si(x), δi(x)),
where δi(x) is called the authentication share of Pi. The goal of the players will be to simultane-
ously verify the correctness of all the authenticated values (i.e., for each authenticated value a, that∑

i δi(a) = ∆
∑

i si(a)), the correctness of all the partial openings, the absence of errors in all the triple
generations (which will be verified using a sacrificing procedure), and the favorability of the result (z
should be equal to 1). We assume that the players have access to a stateful pseudo-random generator
prg : F 7→ F∗. The players sequentially perform the following operations:

Coin Flipping. The purpose of this phase is for the players to jointly generate a random seed m.
Each player Pi picks (mi, ri)

$← F2, calls the command (com,mi, ri, id1) of Fi-check, and broadcasts
mi. Let m←

∑
imi. Note that a corrupted player Pi could cheat by broadcasting m′i 6= mi instead

of mi, but it will later be ensured that if they did so, this will just cause the protocol to fail.
Sacrifice. Let (JujK , JvjK , JujvjK , JûjK , JûjvjK)j≤s be all the authenticated tuples stored in the sets

SacrificeValuesi during the protocol. The players stretch (rj)j≤s ← prg(m) and call s times the
open command of Fi-prep on each JρjK ← rj · JujK − JûjK to obtain ρj . Let JσjK ← rj · JujvjK −
JûjvjK−ρj · JvjK. Each player Pi adds (ρj , JρjK) and (0, JσjK) to his set OpenValuesi, for j = 1 to s.

15

Commit. Let JyK be the authenticated share of the target output of the protocol, and let JzK be the
target output of the admissibility function. Let ((o1, Jo′1K), · · · , (ot, Jo′tK)) be all the values stored
in the sets OpenValuesi during the protocol, and let (JaiK)i≤u be all the values stored in the sets
AuthValuesi during the execution of the protocol. The players perform the following operations:
– All the players stretch (λ1, · · · , λs, λ′1, · · · , λ′2t, µ)← prg(m). Let γ be the pseudorandom linear

combination with these coefficients of all the partial openings (o1, · · · , os, ρ1, · · · , ρt, 0, · · · , 0, 1).
For each i ≤ n, Pi sets

γi ← γ · si(∆)−
s∑
j=1

λjδi(o
′
j) +

t∑
j=1

λ′jδi(ρ
′
j) +

t∑
j=1

λ′t+jδi(σj) + µδi(z)

Each player Pi picks r′i
$← F and calls (com, γi, r′i, id2). Note that if all the players participated,

the result is favorable (z = 1), and no player cheated, ComDict[id2] should now contain ∆ ·γ−
∆ · γ = 0.

– All the players stretch (αi)i≤u ← prg(m). Each player Pi sets

ζi ←
u∑
j=1

αjsi(aj), ζ ′i ←
u∑
j=1

αjδi(aj)

– Each party Pi picks (θi, θ
′
i)

$← F2 and calls (com, si(y), θi, id3) and (com, δi(y), θ′i, id4). Note
that if all the players participated honestly to the protocol, ComDict[id3] should contain y and
ComDict[id4] should contain ∆ · y.

– Each party Pi picks (τi, τ
′
i)

$← F2 and calls (com, ζi, τi, id5) and (com, ζ ′i, τ
′
i , id6). Note that if

all the players participated honestly, ∆ · ComDict[id5]− ComDict[id6] should be equal to 0.
MAC Reconstruction. Each player Pi broadcasts his share of ∆. All the players reconstruct ∆.
Implicit Checking. Each player Pi calls (lin-comb, id7, id3, id4, ∆,−1, 0) (this stores ∆ComDict[id3]−

ComDict[id4] at ComDict[id7]; if all the players participated honestly, this value should be equal to
0) and (lin-comb, id8, id5, id6, ∆,−1, 0) (this stores ∆ComDict[id5] − ComDict[id6] at ComDict[id8];
if all the players participated honestly, this value should be equal to 0). Then, each player Pi
performs the following calls to Fi-check:
– (implicit-check, id1,m, ri), to implicitely check that the coin flipping phase was performed hon-

estly,
– (implicit-check, id2, 0, r

′
i), to implicitely check that all the partial openings were correct and that

the result is favorable (note that because of the sacrificing procedure, this does also implicitely
ensures that all the multiplication tuples were correctly generated),

– (implicit-check, id7, 0, θ
′
i−∆θi), to implicitely check that ComDict[id3] does indeed contain the

correct output value y,
– (implicit-check, id8, 0, τ

′
i −∆τi), to implicitely check that all the inputs where correctly authen-

ticated.
Let (K(1)

i , · · · ,K(n)
i) denote the component-wise product over G of the four outputs of Fi-check for

each player Pi.
Explicit Checking. The purpose of this phase is to allow the players to explicitely check whether all

of the implicit checks did succeed.4 Each player Pi picks a random keyK ′i ∈ G, setsK(i)
i ← K

(i)
i ·K ′i,

and broadcasts (K(1)
i , · · · ,K(n)

i). All the players reconstruct (K1, · · · ,Kn). Each player Pi checks
that Ki = K ′i; if this is not the case, Pi sets his output to be ⊥ and stops participating from this
point (that is, Pi sends uniformly random bit-strings for the rest of the protocol).

Secure Transfer. Each player Pi calls (send, Pj , si(y)||θi) for each j 6= i. All the players reconstruct
(y, θ), where θ ←

∑
i θi.

Output. All the players call (reveal, id3), and get a commitment cy. Each player Pi checks that cy =
c(y; θ). If the check succeeds, Pi terminates with output y; else, Pi terminates with output ⊥.

Theorem 8. The protocol Π securely implements FCABB in the covert model of [CGOS07], given
access to the ideal functionalities Fi-prep, Fi-check, and Fwr.
4 We emphasize that this does not allow the players to learn separate information on which implicit check did succeed,
and which did fail.

16

4.5 Security Proof

Let C be the set of parties corrupted by the adversary. Let Sim be a simulator of the honest parties,
running local copies of Fi-prep,Fi-check, and Fwr. We start by describing the simulation of all the
commands, except the output command; we deal afterward with the simulation of the output command.
The simulator Sim maintains a flag flag to record cheating attempts from the corrupted parties; initially,
he sets flag = OK.

Simulation of the Computation. The simulation of the initialization command is straightforward,
as the commands implicit-triple and input-tuple do not involve any private information of the players,
but only value identifiers. If the adversary introduces errors in any call to one of the commands (by
sending random tokens), Sim sets flag← fail.

For the input command from Pi, two cases occur:

– If Pi is corrupted, Sim computes and stores x′i ← ri + ε′i with identifier idi, where ri is a mask
generated by Sim’s local copy of Fi-prep, and ε′i is the (possibly erroneous) value broadcasted by
Pi. Sim inputs (input, Pi, idi, x

′
i) to FCABB on behalf of the corrupted party Pi, and (input, Pi, idi)

on behalf of the other parties.
– If Pi is honest, Sim broadcasts a random value ε′i on behalf of Pi in the real world, and inputs

(input, Pi, idi) to FCABB on behalf of the corrupted parties in the ideal world. Sim computes and
stores x′i ← ri + ε′i with identifier idi.

The add command is local, and therefore requires no simulation; Sim simply sends (add, id1, id2, id3) to
FCABB (with appropriate identifiers). For the multiplication command, Sim performs the authentication
procedures honestly on behalf of the honest parties (this does not involve any of their private inputs).
Then, Sim broadcasts two random values on behalf of his local copy of Fi-prep when the players call
the open commands. Sim sends (mult, id1, id2, id3) to FCABB (with appropriate identifiers) and stores
the result of the computation. It remains to simulate the output phase.

Simulation of the Output.

Coin Flipping. Sim performs honestly the coin flipping procedure on behalf of all the honest parties.
Sacrifice. Sim performs honestly the sacrifice procedure on behalf of all the honest parties, and emu-

lates the open command honestly.
Commit. Sim calls the Output command of the ideal functionality FCABB on behalf of the corrupted

parties in the ideal world, and gets an output X. If X = ⊥, Sim sets flag = fail. Then, he plays as
follows:
– Sim locally computes all the values γi (with the values stored in his local copy of Fi-prep) of

the corrupted parties; let γ′ denote their sum. If flag = OK, Sim commits to uniformly random
shares of −γ′ on behalf of the honest players; otherwise, Sim commits to random values on
behalf of the honest players.

– Sim locally computes the sum of the values si(y) and the sum of the values δi(y) for all the
corrupted parties Pi; let (s′, δ′) denote the sums. If flag = OK, Sim commits to random shares
of X − s′ and ∆X − δ′ on behalf of the honest parties; otherwise, Sim commits to random
values on their behalf. Let (s′i(y))i denote the values Sim committed to with identifier id3 on
behalf of the honest parties, and let (θi)i be the associated random coins.

– Sim locally computes the sum of the values ζi and the sum of the values ζ ′i for all the corrupted
parties Pi; let (ζ ′, ζ ′′) denote the sums. If flag = OK, Sim picks x $← F and commits to random
shares of x−ζ ′ and ∆x−ζ ′′ on behalf of the honest parties; otherwise, Sim commits to random
values on their behalf.

MAC Reconstruction. Sim honestly broadcasts the MAC share of each honest party. If the recon-
structed MAC is not equal to ∆, Sim sets flag = fail.

Implicit Checking. If flag = OK, Sim plays honestly on behalf of each honest party, and emu-
lates honestly the implicit-check command of his local copy of Fi-check. Otherwise, Sim emulates
implicit-check as if all the checks had failed.

17

Explicit Checking. Sim honestly plays the explicit checking phase on behalf of the honest parties,
and stops participating on behalf of the honest parties for which the check failed.

Secure Transfer. Sim honestly emulates the secure transfer protocol. Sim securely transfers s′i(y)||θi
to all the parties on behalf of each honest party Pi.

Output. Sim computes the appropriate random coin θ and returns c(X, θ) when the parties call the
reveal command of Fi-check.

Indistinguishability. We now argue that the view produced by Sim is computationally indistinguish-
able from an honest run of the protocol. This is straightfowrward for the implicit-triple, input-tuple, and
add commands. The simulation of the input phase is perfect, as the only leaked value is uniformly
random over F in both the honest protocol and the simulated protocol. The simulation is also perfect
for the multiplication command, as only uniformly random-looking values are returned by the open
command.

Let us look at the output phase. The emulation of the coin flipping phase, the sacrifice phase, and
the MAC reconstruction phase are perfect, as Sim plays honestly in all of them (the private inputs of the
honest parties are not required in these phases). By the uniformity property of the commitment scheme
(which implies in particular its hiding property), each commitment (whose random coins are drawn
uniformly at random) is indistinguishable from a uniformly random bit-string, no matter the value it
commits to, hence the emulation of the commit phase is indistinguishable from a honest execution of
the commit phase, under the uniformity property of the commitment scheme. In the implicit checking
phase, the view of any strict subset of the parties is indistinguishable from the random distribution
over G, as the values are uniformly random all-or-nothing shares. We now look at the explicit checking
phase. Observe that the probability that a random linear combination of committed values is equal to
zero is negligible, unless all the committed values are equal to 0. Therefore, the keys (K(1)

i , · · · ,K(n)
i)

held by each player Pi form uniformly random shares of (1, · · · , 1) over Gn if and only if the following
conditions are all satisfied:

1. The commitment with identifier id1 commits to the seed m (this ensure that the values mi sent
by the corrupted parties were not adaptively chosen using the values sent by the honest parties)

2. All the partially opened values are consistent with the corresponding authenticated shares
3. The output of the protocol is favorable (z = 1)
4. The commitment with identifier id3 contains the same value y that the authenticated share JyK of

the output of the protocol
5. All the values a authenticated during the protocol satisfy

∑
i δi(a) = ∆ ·

∑
i si(a)

6. All the players participated to the protocol (as if any player was not participating, the above
conditions would break with overwhelming probability).

Therefore, the only step in which an adversary could potentially introduce deviations while passing
the checks is the generation of multiplication triples. But this is handled by the sacrificing phase: our
sacrificing phase is perfectly identical to the sacrifice procedure in the implementation of the triple
generation functionality in [KOS16], except that the sacrifice procedure of [KOS16] involves an explicit
check that JρjK does indeed open to ρj , and that JσjK does indeed open to 0. But as (ρj , JρjK) and
(0, JσiK) are added by each player to his set OpenValuesi, this is captured by the condition 2 above.
The exact same argument as in [KOS16] therefore shows that the probability that both checks pass is
negligible, unless the corresponding triple (JujK , JvjK , JujvjK) is indeed a valid triple.

Therefore, if all of these conditions hold, then it implies that the corrupted players remained
perfectly honest up to the explicit checking phase of the protocol. In the simulated protocol, any
attempt from a corrupted player to cheat in a partial opening, in an authentication procedure, during
a triple generation, or during the MAC reconstruction phase, is detected by Sim, which sets flag = fail
when it happens. If any corrupted party attempts to cheat during the coin flipping phase or the commit
phase, this is automatically detected and handled by Sim’s local copy of Fi-check. Finally, Sim learns
whether all the players participated and the output is favorable from FCABB. Therefore, the term-by-
term products of the keys returned during the simulation of implicit-check will form random-looking
shares of (1, · · · , 1) exactly when it happens in a real execution of the protocol.

18

As each player Pi multiplies his i’th share by a random element K ′i of G, all the values with index
i 6= j are indistinguishable from random elements of G for each player Pj . Moreover, as K(i)

i remains
perfectly hidden from the view of any player Pj for j 6= i, the probability for all the other players
to pass Pi’s check is negligible, unless the keys (K

(i)
j)j≤n do indeed reconstruct to 1. Therefore, it

holds with overwhelming probility that the check performed by each player Pi passes if and only if all
the conditions listed above are verified, and the players broadcasted their correct shares of the keys –
that is, if all the players participated honestly to the protocol up to that point, and the output was
favorable. Note that a corrupted player could cause the check to fail for a subset of the parties only;
this correspond to the adversary being able to chose which honest parties will get the output of the
protocol.

The simulation of the secure transfer and the output is straightforward, as the reveal phase only
involve values stored in Sim’s local copy of Fi-prep. By the uniformity property of the commitment
scheme, it reveals nothing on the output y. The final check performed by the players will succeed if
an only if the players send correct shares of their opening, by the binding property of the commitment
scheme. Therefore, if all the players were honest up to that point, including the secure transfer phase,
they indeed obtain the correct output y of the protocol; else, either the explicit check fails, or the final
check fails (in which case each honest players know that all the players participated to the protocol
and the output was favorable, but is prevented by the adversary to get his final output).

Eventually, it is straightforward to see that Sim sends only uniformly random values during the
simulation. As the presence of non-participating players does not affect whether any of the functional-
ities Fi-prep and Fi-check returns an output (see subsection 4.2), and if any player does not participate,
the explicit check phase will already break down for all the players in the real protocol (hence before
any call to Fst) and in the simulation (as Sim receives ⊥ from FCABB), both the real protocol and
the simulation do not leak any information regarding non-participating players. Therefore, our covert
protocol Π implements FCABB in the (Fi-prep,Fi-check,Fst)-hybrid uniform UC model. �

4.6 Implementing the Ideal Preprocessing Functionality

We now turn our attention to the ideal functionality Fi-prep. We start by introducing a notion that will
be useful to describe our implementations.

Definition 9 (Encodable Set). A set S is k-encodable if there is an efficiently computable and
efficiently invertible map map : S × R 7→ {0, 1}k, where R is the space of random coins, such that
{map(x; r) | x $← S, r

$← R} is the uniform distribution over {0, 1}k.

Note that most groups used in cryptography (e.g. elliptic curves, prime-order fields, and subgroups
of modular squares) do have such efficient mappings in the uniform distribution.

Importing the Implementation of MASCOT (sketch). In [KOS16, Section 5,6], Fprep is imple-
mented with a protocol ΠJ·K using and ideal functionality for correlated oblivious product evalution
with errors (COPEe), that we described Subsection 3.2. Our implementation of Fi-prep is exactly the
protocol Π ′J·K obtained by removing all the checking procedures from ΠJ·K (as well as the authentication
and sacrificing steps in the triple generation). We explain below why removing those explicit checks,
and modeling errors introduced by the adversary by random values in our functionalities, does not
prevent the security proof of [KOS16] to carry on.

Modeling Errors With Random Values. In the MASCOT protocol, the adversary is allowed to introduce
two kinds of errors during the computation:

– Errors that will modify the ∆ · x part of an authenticated share JxK, and
– Errors that will modify the x · y part of an authenticated triple (JxK , JyK , Jx · yK)

In our implicit functionalities, both kinds of errors are modeled in a very simple way, by letting the
functionality replace all erroneous values by uniformly random values. While this does apparently not
mimic the behavior of the adversary in the real world, observe that all values exchanged during the

19

protocol are partial opening for input commands (corresponding to the first part of an authenticated
value x), and partial openings of the x and y parts of a triple for multiply commands. Therefore, no
error introduced by the adversary will actually cause any change to the transcript of the protocol Π,
except for the output phase. But the latter is oblivious to the exact nature of the errors that were
introduced, as it errs as soon as a single check fails; replacing erroneous values by uniformly random
values is therefore sufficient to ensure that a check will fail with overwhelming probability.

Let Sim′ be the simulator constructed exactly as the simulator for ΠJ·K, except that it does not
simulate any checking procedure. We observe that all the values sent to any strict subset of the players
by the simulator of ΠJ·K are uniformly random values over F, except for the output of the checking
procedure, which we entirely remove. Therefore, Sim′ does only send uniformly random values over F,
which are statistically close to uniformly random bit-strings.

The protocol ΠJ·K implements Fprep in the (FCOPEe, ,Fcom)-hybrid model, where Fcom is an ideal
commitment functionality. However, Fcom is only invoked in the MAC checking subprotocol (that
we completely remove in our protocol). As Sim′ does only send uniformly random values over F, we
conclude that the protocol Π ′J·K implements Fi-prep in the uniform UC FCOPEe-hybrid model. By the
uniform UC theorem (theorem 15), it suffices to replace FCOPEe by an implementation of FCOPEe in
the uniform UC model to get a uniform UC implementation of Fi-prep in the real world.

Correlated Oblivious Product Evaluation with Errors. It therefore remains to discuss the
implementation of FCOPEe. We implement it exactly as in [KOS16, Section 4]: indeed, the distribution
of all the values sent to a strict subset of the players (which corresponds here to a single player) by
the simulator of this implementation is already trivially uniform.5 The protocol COPEe requires ideal
access to an oblivious transfer functionality. We note that a small modification to the DDH-based UC
oblivious transfer of [PVW08] leads to a uniform UC oblivious transfer protocol secure against malicious
adversaries: all the values exchanged in this protocol are indistinguishable (under the DDH assumption)
from uniformly random values over some group GOT where the DDH assumption is conjectured to hold.
Therefore, we modify the protocol as follow: we pick GOT as an encodable group, and let all the players
use the associated map map to encode all their inputs before sending them. As the map is efficiently
invertible, the players can decode all the flows they receive. As the distribution of messages sent in
the UC oblivious transfer of [PVW08] is indistinguishable from random over GOT under the DDH
assumption, the messages in our modified protocol are all indistinguishable from random bit-strings
under the same assumption, hence it implements the oblivious transfer functionality in the uniform
UC model.

4.7 Implementing the Implicit Checking Functionality

We now turn our attention to the implicit checking functionality. Our implementation relies on two
primitives: a homomorphic smooth projective hash function and a plaintext-checkable homomorphic
commitment scheme. We start by introducing these primitives.

Smooth Projective Hash Functions. Smooth projective hash functions (SPHF), introduced by
Cramer and Shoup in [CS02] under the name of hash proof system, were initially used to construct
IND-CCA-secure encryption schemes out of of IND-CPA-secure encryptions schemes; however, it has
since proven useful in many settings, such as commitment schemes [ACP09], or password-authenticated
key-exchanges [BBC+13]. We recall the definition from [ACP09]. Intuitively, an SPHF allows to hash a
word with some secret key, so that if the word belongs to some language L , then the hash can also be
computed using a witness for x ∈ L an some public key. If x /∈ L , then the hash value is statistically
instinguishable from random, even given the public key. More formally, an SPHF with domain Π on
a word x for a langage L is a tuple of probabilistic polynomial-time algorithms (HashKG,ProjKG,
Hash,ProjHash) such that:

– HashKG(1κ) outputs a hashing key hk.
5 The values sent by the simulator are uniformly random over F, which is statistically close to the uniform distribution
over bit-strings as the order of F is of the form 2a + b with a, b polynomials in κ.

20

– ProjKG(hk,L , x) outputs a projection key hp.
– Hash(hk,L , x) outputs a hash value H.
– ProjHash(hp,L , x, w), where w is a witness for the statement x ∈ L , outputs a projective hash

value H ′.

Definition 10. (smooth projective hash function) A smooth projective hash function is a tuple of
algorithm as defined above such that the following conditions hold:

1. Correctness. For every x ∈ L with witness w, hk ← HashKG(1κ), hp ← ProjKG(hk,L , x),
Hash(hk,L , x) = ProjHash(hp,L , x, w).

2. Smoothness. For every x /∈ L , hk ← HashKG(1κ), hp ← ProjKG(hk,L , x), the distributions
{H ∈ Π | H = Hash(hk,L , x)} and {H $← Π} are statistically indistinguishable, even given hp.

Homomorphic SPHF. An SPHF is homomorphic if the hashing space H and the witness space W are
groups (with a law denoted · for H and + for W) and for any x ∈ L with witness w, and any values
w1 · · ·wt such that

∑
iwi = w,

ProjHash(hp,L , x, w) =
t∏
i=1

ProjHash(hp,L , x, wi)

Uniform SPHF. As for the oblivious transfer protocol, we can construct uniform SPHF out of standard
SPHF, by using SPHF where the group of projection keys and the group of hash values are all encod-
able; we note that this does hold for most instantiations of the SPHF framework of [BBC+13], which
encompasses all known constructions of SPHFs.

Commitment Scheme. We let com : F2 7→ G denote a uniform commitment scheme, which satisfies
in addition the following properties:

Homomorphic. A commitment scheme is homomorphic if there is an operator � such that for any
(m0, r0,m1, r1) ∈ F4, letting c0 ← Commit(m0; r0), c1 ← Commit(m1; r1), and c ← c0 � c1, it holds
that c = Commit(m0 +m1; r0 + r1). We let • denote the external multiplication by an integer, and �
denote the substraction operator.

Plaintext-Checkable. A perfectly binding commitment is plaintext-checkable if the setup additionally
outputs a trapdoor τ , and there is an efficient algorithm Check(c,m, τ) which, given the trapdoor, the
public parameters, a commitment and a candidate plaintext, outputs 1 if c is a valid commitment of
m, and 0 else.

Implicit Checking Protocol. We now describe the protocol Πi-check, in the Fi-prep-hybrid model.
Let (com, Setup,Check) be a uniform plaintext-checkable homomorphic commitment scheme. For each
m ∈ F, let

Lm = {(c,m) | ∃r, c = Commit(m; r)}

We fix a value m. Let (HashKG,ProjKG,Hash,ProjHash) be a uniform homomorphic SPHF for the
language Lm.

Commit. To jointly commit to a value m =
∑

imi, with the mi being values stored in Fi-prep, each
player Pi picks ri

$← F and broadcasts ci ← com(mi; ri). All the players compute c← �ici.
Linear Combination. Linear combinations are locally performed using the homomorphic properties

of com.
Implicit Check. Let c be a commitment, let m be a plaintext, and let (ri)i≤n be the shares of the

random coins held by the parties. For k = 1 to n, the players repeat the following operations:
1. Each player Pi computes hki

$← HashKG(1κ), hpi ← ProjKG(hki,Lm, c), and broadcasts hpi.
2. Each player Pi computesHi ← Hash(hki,Lm, c) and for all j ≤ n;H ′ij ← ProjHash(hpj ,Lm, c, ri),

and sets K(k)
i ← H−1i ·

∏
j H
′
ij .

Reveal. The reveal command does not require any implementation, as the players already have the
corresponding output of any valid input to the command.

21

Instantiating the primitives. We identify F to Zp. Let q = kp + 1 be a prime, for some small k. We
implement com as the additive version of the famous ElGamal encryption scheme, over the multiplica-
tive subgroup G of (Z∗q , ·) of order p. The setup outputs a generator g $← G of G, and h ← gτ for a
random τ

$← Zp. It sets τ to be the trapdoor.
We now describe an efficient mapping map between G and {0, 1}log p: let Gk be the multiplicative

subgroup of Z∗q of order k; let mapcano be the canonical bijective mapping which maps elements of G×Gk

to elements of Z∗q . To encode an element x of G, one picks y $← Gk and sets map(x; y)← mapcano(x, y).
Decoding is simply done by computing map−1cano(z) and dropping the second part of the pair. Encodings
of uniformly random elements of G are uniformly random over Z∗q , hence they are statistically close to
uniformly random over {0, 1}log q.

To commit tom with random coin r ∈ F, the sender picks (r0, r1)
$← G2

k and computes (map(gr; r0),
map(hrgm; r1)). The scheme is perfectly binding; its hiding property relies on the DDH assumption
over G. The scheme is also homomorphic. The plaintext-checking algorithm works as follows: given a
commitment (c0, c1) and a candidate message m, the algorithm checks whether c1/cτ0 = gm. Moreover,
by the DDH assumption, a random encrytion c of an arbitrary message m is indistinguishable from a
random element of Z2

q , which are statistically close to uniformly random over {0, 1}2 log p.
The framework of [BBC+13] allows to instantiate SPHFs from various assumptions; a possibility is

to instantiate it over G, based again on the DDH assumption. With this instantiation, the language of
ElGamal commitments to some plaintext is naturally and efficiently handled; we note that the DDH-
based SPHFs of [BBC+13] are already homomorphic. The same mapping from G to {0, 1}log p makes
both the projection keys and the hash values indistinguishable from random bit-strings under the DDH
assumption.

Proof. We prove that this protocol securely implements Fi-check in the uniform UC model. It is straight-
forward to see that the security of the implementation of the commit command directly reduces to
the hiding and biding properties of com; furthermore, the implementation is perfect for the linear
combination and the reveal commands, at they involve no interactions. We now turn our attention to
the implicit checking command.

From the correctness of the SPHF and the homomorphic properties, we get that if c ∈ Lm, it
should hold that

∏
iH
′
ij = Hj , hence

∏
i(H

−1
i ·

∏
j H
′
ij) = 1. From the smoothness property, we get

that if c /∈ L , then each hash Hi is indistinguishable from a uniformly random element of H from the
view of all the players (Pj)j 6=i. The simulation proceeds as follows: Sim retrieves the values mi that the
corrupted player should commit to, from his local copy of Fi-prep; let m′ be the sum of these values.
Then, Sim commits to uniformly random shares ofm−m′ on behalf of the honest parties. Using the fact
that the commitment scheme is plaintext-checkable, Sim checks whether the resulting commitment c
commits tom using his trapdoor τ . If this is the case, Sim computes honestly the projective hash values
on behalf of the honest players (which he can do as he picked the plaintext and the random coins for
them). Sim also computes Hi honestly on behalf of each honest player. Else, if c does not commit to m,
Sim computes the Hi as uniformly random elements of H on behalf of the honest parties. Moreover, as
the SPHF and the commitment scheme are both uniform, the view of any strict subgroup of the players
(which consists of commitments with uniformly random coins and all the projection keys broadcasted
during the protocol together with the values Hi computed by these players) is indistinguishable from
a distribution of uniformly random bits. Therefore, the protocol Πi-check implements Fi-check in the
uniform UC model.

4.8 Implementing the Secure Transfer Functionality

The functionality Fst allows the players to communicate through perfectly secure authenticated point-
to-point channels. We must implement it in the uniform UC model – i.e., implement it with a protocol
in which only random-looking bit-strings are exchanged. This task is of interest outside of the scope
of covert multiparty computation; indeed, this problem was already considered in [HLv02, vAH04]
under the name of public-key steganography, by the same authors that introduced the concept of
covert two-party computation. In particular, [vAH04] gives a construction whose security relies on

22

the DDH assumption. The construction uses a simple variant of the ElGamal encryption scheme; it is
straightforward to show that it implements our secure transfer functionality in the uniform UC model.

4.9 Complexity

At the exception of the output phase, our protocol has the same complexity as the MASCOT protocol,
minus the cost of the checking procedures that we do not perform. The cost of the output phase is
dominated by the implicit checking procedure: our implementation of the implicit checking procedure
communicates O(n3) group elements, which amounts to O(κn3) bits exchanged.

References

ACP09. M. Abdalla, C. Chevalier, and D. Pointcheval. Smooth projective hashing for conditionally extractable com-
mitments. In CRYPTO 2009, LNCS 5677, pages 671–689. Springer, Heidelberg, August 2009.

BBC+13. F. Benhamouda, O. Blazy, C. Chevalier, D. Pointcheval, and D. Vergnaud. New techniques for SPHFs and effi-
cient one-round PAKE protocols. In CRYPTO 2013, Part I, LNCS 8042, pages 449–475. Springer, Heidelberg,
August 2013.

Can01. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS,
pages 136–145. IEEE Computer Society Press, October 2001.

CDN15. R. Cramer, I. B. Damgård, and J. B. Nielsen. Secure Multiparty Computation and Secret Sharing. Cambridge
University Press, New York, NY, USA, 1st edition, 2015.

CDSJ16. C. Cho, D. Dachman-Soled, and S. Jarecki. Efficient concurrent covert computation of string equality and set
intersection. In CT-RSA 2016, LNCS 9610, pages 164–179. Springer, Heidelberg, February / March 2016.

CGOS07. N. Chandran, V. Goyal, R. Ostrovsky, and A. Sahai. Covert multi-party computation. In 48th FOCS, pages
238–248. IEEE Computer Society Press, October 2007.

CS02. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-
key encryption. In EUROCRYPT 2002, LNCS 2332, pages 45–64. Springer, Heidelberg, April / May 2002.

DPSZ12. I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic
encryption. In CRYPTO 2012, LNCS 7417, pages 643–662. Springer, Heidelberg, August 2012.

DZ13. I. Damgård and S. Zakarias. Constant-overhead secure computation of Boolean circuits using preprocessing.
In TCC 2013, LNCS 7785, pages 621–641. Springer, Heidelberg, March 2013.

GJ10. V. Goyal and A. Jain. On the round complexity of covert computation. In 42nd ACM STOC, pages 191–200.
ACM Press, June 2010.

HLv02. N. J. Hopper, J. Langford, and L. von Ahn. Provably secure steganography. In CRYPTO 2002, LNCS 2442,
pages 77–92. Springer, Heidelberg, August 2002.

IKNP03. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In CRYPTO 2003,
LNCS 2729, pages 145–161. Springer, Heidelberg, August 2003.

Jar14. S. Jarecki. Practical covert authentication. In PKC 2014, LNCS 8383, pages 611–629. Springer, Heidelberg,
March 2014.

Jar16. S. Jarecki. Efficient covert two-party computation. Cryptology ePrint Archive, Report 2016/1032, 2016.
http://eprint.iacr.org/2016/1032.

KOS16. M. Keller, E. Orsini, and P. Scholl. Mascot: Faster malicious arithmetic secure computation with oblivious
transfer. Cryptology ePrint Archive, Report 2016/505, 2016. http://eprint.iacr.org/2016/505.

PVW08. C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and composable oblivious transfer.
In CRYPTO 2008, LNCS 5157, pages 554–571. Springer, Heidelberg, August 2008.

vAH04. L. von Ahn and N. J. Hopper. Public-key steganography. In EUROCRYPT 2004, LNCS 3027, pages 323–341.
Springer, Heidelberg, May 2004.

vAHL05. L. von Ahn, N. J. Hopper, and J. Langford. Covert two-party computation. In 37th ACM STOC, pages
513–522. ACM Press, May 2005.

Wee16. H. Wee. KDM-security via homomorphic smooth projective hashing. In PKC 2016, Part II, LNCS 9615,
pages 159–179. Springer, Heidelberg, March 2016.

http://eprint.iacr.org/2016/1032
http://eprint.iacr.org/2016/505

Appendix

A Formal Proof of the Covert UC Theorem

A.1 Preliminaries

We will not cover the details of the original framework of [Can01]. Instead, we use an alternative defi-
nition of the UC framework which was developped in great details in Cramer, Damgård, and Nielsen’s
book on multiparty computation [CDN15]; we find this presentation of the UC model to be simpler and
more natural to work with. Some of the definitions stated in this section are taken almost verbatim
from [CDN15]. We omit some details to keep the presentation short; the interested reader should refer
to [CDN15] for fully detailed definitions.

Interactive Agents and Systems. In the UC framework, players are modeled by interactive agents.
An interactive agent is a computational device which receives and sends messages on input and output
ports, and maintain some internal state. More formally, an interactive agent is a tuple (In,Out,State,
Msg, T, σ0) where In and Out are finit sets of inports and outports, State is a set of possible states,
Msg a set of possible messages, T a transition algorithm which takes as input a message, a state, and
a security parameter κ, and σ0 is the initial state of the agent. A running agent is said to be activated;
when it outputs some result on an outport named op, the activation token and the result are sent to
the agents who have an input port named op. A responsive agent is an agent that will eventually return
a result when activated in any context; if it returns after a number of steps polynomial in κ, it is called
polytime responsive.

By connecting outports to inports with the same name, we define an interaction pattern between
the agents, which forms an interactive system. When an outport op of an agent has the same name
as the inport of another agent in the interactive system, we say that they are connected : any message
output on the outport op is input on the corresponding inport. If no two agents have inports with the
same name, or outports with the same name, we say that they are port compatible. A port compatible
interactive system is an interactive systems whose agents are all port compatible. If two interactive
systems is1 and is2 are port compatible, then we can define a new interactive system as is1∪is2: this is
the composition operation, and it will be denoted �. By definition, � is a commutative and associative
operation on interactive systems. When composing two interactive systems (π1, π2), if they have no
connected input and output ports, we write π1 � π2 = ⊥.

Environments and Indistinguishability of Interactive Systems. All the inports and outports
which are not connected to any port in the system are said to be open; an interactive system with no
open ports is said to be closed. An interactive system is executable if it is closed and contains an agent
with a special activation port and a special return port. Then, given an interactive system I, a closure
of I is an interactive system Z connected to I through its activation and return ports, such that I �Z
is executable. An environment of an interactive system I is an interactive system taking the security
paramter κ as input, which is a closure of I so that (Z �I)(κ) will eventually output a guess in {0, 1} on
the special return port of I. Two interactive systems (I1, I2) are computationally indistinguishable with
respect to some set of environments Env for both I1 and I2, if for every environment Z ∈ Env, it holds
that the distributions of outputs of (I1 �Z)(κ) and (I2 �Z)(κ) are computationally indistinguishable.6

This is denoted I1
Env≡ I2. This relation can easily be shown to be transitive.

Security and Ideal Functionalities. The purpose of the UC framework is to formalize the security
of interactive protocols: its privacy, stating that all the values leaked from the protocol belong to some
set of allowed values, and its robustness, stating that the only influence a malicious adversary can
have on the behavior of the protocol belongs to some set of allowed influence. Those two properties
are interleaved, and are defined by the mean of an ideal functionality IF . An ideal functionality is
6 Note that we can define similarly perfect and statistical indistinguishability of interactive systems.

24

an extremely simple interactive system which has some name F , takes some inputs, performs some
computation and returns the result; this functionality models the expected behavior of the protocol.
It containts n inports and outports (F.ini, F.outi)i≤n and two special ports, a leakage port F.leak and
an influence port F.inf , which are used to model the allowed leakage and the allowed influence on the
protocol.

Protocols. A simple protocol is an interactive system with n agents P1, · · · , Pn called the players. A
protocol π has a protocol name F , and a resource name R; these name will allow to link together a
protocol and an interactive system called the resource. The resource is a system connected to all the
players, which will allow us to compose protocols in a natural way. Each agent Pi has six ports: two
resource ports (R.ini, R.outi) that connect to the resource (the resource has the corresponding input
port R.outi and output port R.ini), an open inport F.ini on which it receives its input, and an open
outport F.outi on which it writes its output (the protocol ports), and two special ports (R.leaki, R.infi)
which will allow to model any influence or leakage from a protocol π: they will receive tags indicating
which corruption model is chosen by the environment (passive or active corruption of some subset of
the parties, or any other model of corruption), influence the behavior of the functionality, and specify
what the corrupted players will output on their leakage port. We denote by Pro the set of protocols.
When a protocol π1 has resource name R, and protocol π2 has protocol name F , we say that the
protocol π1 �π2 is a composed protocol which has the protocol name of π1 and the resource name of π2.
This composed protocol contains composed parties, which are natural composition of the parties of π1
and the parties of π2 (each party of π1 has its resource ports connected to the input and output ports
of a party in π2; note that in the composed protocol, each composed party might have more than two
special properties).

Simulators. Now, to argue that a protocol πF with name F securely implements some ideal func-
tionality IF with the same name F when using resource IR, we would like to say that πF � IR is
indistinguishable from IF ; however, those two interactive systems have no reason to be indistinguish-
able as, in particular, they will not have the same open ports (although they have the same set of input
and output ports as they have the same name F , the ideal functionality does only have a single open
pair of leakeage / influence ports, while the protocol contains open leakage and influence port for each
player). This is solved by introducing a simulator : a simulator S for πF related to IF is a polytime
interactive system so that the systems IF � S and πF � IR have the same set of open ports (id est S
has the leakage and influence ports of all the (possibly composed) players in πF , and S connects to
the leakage and influence port of IF). An additional technical requirement for the simulator is that
it must be corruption-preserving, which means that it does not corrupt players unless told so by the
environment. We denote by Sim the set of simulators (i.e. interactive systems that are a simulator of
some protocol πF for some functionality IF). Having defined simulators, we can now define environment
classes: an environment class Env is a set of environments so that for any Z ∈ Env, and any πF ∈ Pro
and S ∈ Sim with a port structure matching that of Z, πF � Z ∈ Env and S � Z ∈ Env.

Modeling Corruption. We have already stated that corruption is modeled using the leakage and
influence ports of the protocol. We will now make this statement more precise. In this paper, we will
consider active corruption of the players (aka malicious security). Let πF be an n-party protocol with
name F and resource name R. The standard corruption behavior for active corruption of πF is defined
in [CDN15] as follows: if a party Pi receives the special symbol “active corrupt” on R.infi, it outputs
its current state on R.leaki. Then, it follows the following rules, and only these rules:

– On input “read, p” on R.infi where p is the name of one of its inports, Pi reads the next message
m on p and returns m on R.leaki.

– On input “send, p, m” on R.infi where p is the name of one of its outports, Pi sends m on p.

We now describe how to model the active corruption of an ideal functionality IF . On input “active
corrupt, i” on F.inf , the ideal functionality IF records that the party i is corrupted and outputs the
ideal internal state of party i on F.leak. Then it starts ignoring all inputs on F.ini and stops giving
outputs on F.outi. Instead, whenever it gets an input “input, i, x” on F.inf , it behaves exactly as if x

25

had arrived on F.ini, and whenever IF is about to output some value y on F.outi, it instead outputs
“output, i, y” on F.leak.

A.2 The UC Framework.

We are now ready to define what it means for a protocol to be UC-secure.

Definition 11 (UC security [CDN15]). Let IF be an ideal functionality with name F , let πF ∈ Pro
be a protocol with protocol name F and resource name R, and let IR be an ideal functionality with name
R. Let Env be an environment class. We say that πF � IR securely implements IF in environments Env

if there exists a simulator S ∈ Sim for πF such that πF � IR
Env≡ IF � S. We can also write this as

πF � IR
Env

≥ IF .

The choice of the environment class to consider defines the model for the computation. We have
already mentionned passive and active corruption, but many other restrictions are standard: considering
only the class of environments that corrupt at most t parties defines the threshold security of the
protocol. Environments that indicate the parties they will corrupt at the start of the protocol define
static security, while environments using arbitrary corruption patters define adapative security. We can
also define computational security by considering the class of polytime environments. Now, we can
finally state the UC theorem:

Theorem 12 (UC theorem [CDN15]). Let Env be an environment class. Let πF ∈ Pro be a protocol
with protocol name F and resource name G. Let πG be a protocol with protocol name G and resource
name H and for which πF � πG 6= ⊥. Let IF , IG and IH be ideal functionalities with names F , G

respectively H. If πF � IG
Env

≥ IF and πG � IH
Env

≥ IG, then (πF � πG) � IH
Env

≥ IF .

In the following, we will denote Envstatic the set of environments who indicate the subset of parties
that they will corrupt before the start of the protocol; it was shown in [CDN15] that this is indeed an
environment class.

A.3 Uniform UC Computation

In this section, we construct a variant of the UC framework that we will use in our framework for covert
multiparty computation. We start by introducing a new security notion, which we call uniformity.

Leakage List. Recall that the port G.leak of a protocol πF with resource IG for an ideal functionality
IF is used to emulate the actual leakage of the real protocol. Let us formalize this a bit: the leakage
port delivers information regarding the messages exchanged between the players. Therefore, we will
consider, without loss of generality, that each message output by a functionality G on its leakage port
G.leak must be of the form “i, Y , l(m)” where i ∈ [n] indicates a player, Y ⊆ [n] \ {i} is a subset of
the other players, and l(m) is a leakage. This tuple reads as follows: player i delivered some message
m to the players in Y , on which l(m) has leaked, where l is a public leakage function. For example, a
simulator for a secure transfer functionality would use l : m 7→ |m| as leakage function.

We call the leakage list of πF � IG the list of tuples “i, Y , l(m)” sent on G.leak during an execution
of πF � IG.

Uniform Simulators. We are now ready to define uniform simulators. Intuitively, a uniform simulator
is a simulator that sends only uniformly random values: it leaks only values y = l(m) where m is a
uniformly random bit-string. More formally,

Definition 13 (Uniform Simulator). Let Env ⊆ Envstatic be an environment class. Let S ∈ Sim be
a simulator of a protocol πF with resource name G for an ideal functionality IF . Then S is a uniform
simulator of πF for IF if for any environment Z ∈ Env for IF � S corrupting a strict subset of size
n′ of the players indexed by X ([n], for any execution of Z � IF � S, given all the input messages
to the ideal functionality on the ports (F.ini)i∈X of IF � S, the leakages (y1, · · · , yn−n′) that appear

26

in a tuple “i, Y , y” on the leakage list of πF � IG, so that i ∈ [n] \ X and Y ⊆ [n] \ {i}, are of the
form (l(m1), · · · , l(mn−n′)) for uniformly random bit-strings (mj)j≤n−n′. We denote by Simuni the set
of uniform simulators.

This notion is crucial to capture the intuitive notion of uniformity, as players who take part to
protocols implementing some uniform functionality must not be distinguishable from non-participating
players, who send only uniformly random values, from the view of any adversary corrupting a strict
subset of the parties. To simplify the exposition, we will call l-uniform a distribution of n leakages the
form {l(m1), · · · , l(mn) | (m1 · · ·mn)

$← {0, 1}t1 × · · · × {0, 1}tn} for integers t1 · · · tn. Note that this
notion can be naturally extended to situations where different leakage functions l1, · · · , ln are used.

Uniform Universal Composability. We are now ready to formalize what it means to uniformly
implement an ideal functionality:

Definition 14 (Uniform UC Security). Let IF be an ideal functionality with name F and n input
and output ports, let πF ∈ Pro be a protocol with protocol name F and resource name R, and let IR be
an ideal functionality with name R. Let Env ⊆ Envstatic be an environment class. We say that πF � IR
uniformly implements IF in environments Env if there exists a simulator S ∈ Simuni for πF such that

πF � IR
Env≡ IF � S. We can also write this as πF � IR

Env

≥uni IF .

One should note that this model of security does not involve the participation data of the players
at all. It is rather a restriction of the standard notion of UC security: any uniform UC implementation
πF of a functionality IF is in particular a UC implementation of IF . The main result that will allow
us to introduce our framework is the following theorem:

Theorem 15 (Uniform UC theorem). Let Env ⊆ Envstatic be an environment class. Let πF ∈ Pro
be a protocol with protocol name F and resource name G. Let πG be a protocol with protocol name G
and resource name H and for which πF � πG 6= ⊥. Let IF , IG, and IH be ideal functionalities with

names F , G, and H. If πF � IG
Env

≥uni IF and πG � IH
Env

≥uni IG, then (πF � πG) � IH
Env

≥uni IF .

Proof. Let Z ∈ Env be an environment for which composition makes sense, and let S ∈ Simuni be
a simulator such that πF � IG � Z

Stat≡ IF � S � Z. As Env is an environment class, it holds that
Z ′ ← Z � πF ∈ Env. Therefore, let S′ ∈ Sim be a simulator such that πG � IH � Z ′

Stat≡ IG � S′ � Z ′.
Moreover, πG � IH � Z ′ = πF � πG � IH � Z and IG � S′ � Z ′ = πF � IG � S′ � Z, by definition of Z ′ and
commutativity of �. Therefore, πF � πG � IH �Z

Stat≡ πF � IG �S′ �Z. Let T ← S �S′ ∈ Sim; by plugging
in the equation πF � IG � Z

Stat≡ IF � S � Z, we get:

πF � πG � IH � Z
Stat≡ IF � T � Z

It remains to show that T ∈ Simuni. It is important to note that this does not follow immediatly from
the fact that both S and S′ output a l-uniform leakage from the viewpoint of Z: indeed, while each
leakage is independently l-uniform from the viewpoint of Z, it might be that the joint distributions of
the two leakages is not l-uniform anymore if, for example, one of the leakages depends from the other.

However, as Env is an environment class, it holds that Z � S′ is an environment. Therefore, by the
uniform UC security of πF � IG, the leakage distribution output by S′ is l-uniform from the viewpoint
of Z, and by the uniform UC security of πG � IH , the leakage distribution output by S is l-uniform
from the viewpoint of Z � S′, which already includes the leakage from S′. Moreover, simulators are by
definition corruption preserving : it holds that the subset of players corrupted by Z � S′ is exactly the
subset X of players corrupted by Z. Taken altogether, this implies that the leakage distribution output
by T = S � S′ is l-uniform from the viewpoint of any environment Z corrupting a strict subset X of
the players.

27

A.4 Covert UC Computation

We are now ready to introduce our UC-like framework for covert MPC protocols. We will demonstrate
the following result: if a protocol πF is secure in the covert model of [CGOS07] when given oracle
access to an ideal functionality IF , then it remains secure in the covert model when IF is replaced by
a protocol πF � IR which uniformly implements IF . This is in contrast with standard UC protocols in
which the same security notion is considered for the protocol and for the subprotocol it relies on. In
order to state our result formally, we first have to reformulate the covert model of [CGOS07] in the
language of interactive systems introduced in [CDN15].

Covert Player. A covert player is defined as standard players (which are interactive agents with a
particular six-port structure), except that it also maintains in its state a bit p called its participation
data. It has an additional standard behavior rule: when p = 0, each time the player should send a
message m of bitlength ` on some outport, it draws a uniformly random m′

$← {0, 1}` and sends m′ on
that outport instead. Covert protocols are defined as standard protocols, with covert players instead of
standard players. We can define composed covert protocols, and composed covert players, in the natural
way. Note that covert protocols can be connected to standard simulators or ideal functionalities, which
will behave as if connected to a standard protocol.

Covert Ideal Functionality. A covert ideal functionality is an ideal functionality parametrized by
two functions (f, g). Let f̂ be the function that maps y to f(y) if g(y) = 1, and to ⊥ else. When
receiving a participation vector p and an input vector x on its input ports (F.ini)i≤n and a list L of
honest players on its influence port F.inf , it checks whether all the entrie of p are 1. If this check
succeeds, it sends f̂(x) on (F.outi)i∈L and ⊥ on (F.outi)i∈[n]\L. Else, it sends ⊥ on all its outports
(F.outi)i≤n.

Covert Security. We denote by Env the class of environments that perform static corruption of
a strict subset of the players and follow the standard corruption behavior defined before, with the
following additional rule: when connected to a protocol with resource name R, they send on R.inf a
subset L of the honest players that should receive the output of the computation (this can easily be
shown to be an environment class). Covert simulators are defined exactly as before, but with respect
to covert protocols instead of standard protocols. We can then define covert security:

Definition 16 (Covert Security). Let IF be a covert ideal functionality with name F and n input
and output ports, let πF be a covert protocol with protocol name F and resource name R, and let IR
be an ideal functionality with name R. We say that πF � IR covertly implements IF in environments
Env if there exists a covert simulator S for πF such that πF � IR

Env≡ IF � S. We can also write this as

πF � IR
Env

≥cov IF .

Having reformulated the covert model of Chandran et al. in the framework of [CDN15], we are
almost ready to state the main result of this section, which provides sufficient conditions to use protocols
secure in the uniform UC model inside covert protocols. But protocols secure in the uniform UC model
are standard protocols, and we have not defined yet how to compose standard protocols with covert
protocols. Therefore, we need to first extend the composition operator as follows:

Definition 17 (Extended composition). Let π be a covert protocol with n covert players (Pi)i≤n,
and let π′ be a protocol with n′ < n players (P ′i)i≤n′ . Let p be the vector of participation data of (Pi)i≤n
in π. Let π′p be the covert protocol defined exactly as π′, except that the players of π′ are replaced by
covert players whose global participation data is chosen according to p. We write π � π′ to denote the
covert protocol π � π′p.

We are now ready to state our covert UC theorem.

Theorem 18 (Covert UC theorem). Let πF be a covert protocol with name F and resource name
G. Let πG be a protocol with protocol name G and resource name H and for which πF �πG 6= ⊥. Let IF
be a covert ideal functionality with name F , and let IG, IH be ideal functionalities with names G,H. If

πF � IG
Env

≥cov IF , and πG � IH
Env

≥uni IG, then (πF � πG) � IH
Env

≥cov IF .

28

Proof. Let S be a covert simulator such that for all Z ∈ Env, πF � IG �Z
c≡ IF �S �Z. Let S′ ∈ Simuni

be a simulator such that for all Z ∈ Env, πG � IH � Z
c≡ IG � S′ � Z. Let Z ∈ Env be an environment

that corrupt a subset X ([n] of the players. Let p be the participation data of the honest players (in
[n]\X). Let πG,p be the covert protocol obtained by replacing the players of πG by covert players, with
participation data p for the honest players (corrupted participating parties are not differentiated from
corrupted non-participating parties as they are both controlled by the environment, so they can be
replaced by covert players with any participation data). Note that πG,p has the same port structure as
πG, hence S′ is also a simulator for πG,p. If p = 1 = (1, · · · , 1), the behavior of πG,p is exactly the same
as the behavior of πG, hence, as πG � IH �Z

c≡ IG �S′ �Z, it also holds that πG,1 � IH �Z
c≡ IG �S′ �Z,

where S′ is now seen as a covert simulator for πG,1. Therefore, let us focus on the case p 6= 1.
If p 6= 1, the protocol πG,p contains at least one honest non-participating player. We show that S′

still simulates the protocol πG,p � IH when connected to IG, by considering successive modifications of
the protocol πG.

– We start with the protocol πG unmodified. Recall that πG � IH � Z
c≡ IG � S′ � Z.

– Now, consider the protocol π′G, in which some honest player is replaced by a non-participating
player, which means that all the messages he sends are replaced by uniformly random values. Let
(y1, · · · , yt) be the leakage of all the messages sent by the original player, and let (y′1, · · · , y′t) be
the leakage of the non-participating player that replaced him. By definition, (y′1, · · · , y′t) follows a
l-uniform distribution.

We argue that πG � IH � Z
c≡ π′G � IH � Z. This follows directly from the fact that πG � IH is a

uniform UC implementation of IG: as it is simulated by a uniform simulator, the distribution of its
leakage is computationally indistinguishable from the l-uniform distribution. Therefore, if πG�IH�Z and
π′G�IH �Z are not computationally indistinguishable, then Z is a polytime algorithm that distinguishes
(y1, · · · , yt) from the l-uniform distribution, which contradicts the existence of S′.

The above process of replacing a honest player by a non-participating player can be repeated, and
the same argument allows to argue that S′ � IG does still simulate the modified protocol. In particular,
for any Z ∈ Env it holds that πG,p � IH � Z

c≡ IG � S′ � Z, where S′ is seen as a covert simulator with
respect to the covert protocol πG,p. As Env is an environment class, as in the proof of Theorem 15, we
can use the fact that Z ′ ← Z � πF ∈ Env and plug the result in the equation πF � IG � Z

c≡ IF � S � Z
to show:

(πF � πG) � IH � Z
c≡ IF � T � Z

where T ← S � S′ is a covert simulator, and πF � πG = πF � πG,p is a composed covert protocol. This
concludes the proof.

	Revisiting Covert Multiparty Computation
	Introduction
	State of the Art
	Our Contributions
	Our Method
	Notations

	Universal Composability Theorems for Covert Multiparty Computation
	The Covert Model
	The Universal Composability Framework
	The Uniform UC Framework
	A Composition Theorem for CMPC

	Standard MPC Protocols
	Ideal MPC Functionalities
	Arithmetic on Authenticated Shares

	An Efficient Covert Multiparty Computation Protocol
	Covert Arithmetic Black Box
	Implicit Preprocessing Functionality
	Implementing the Covert Arithmetic Black Box
	Implementing the Output Phase
	Security Proof
	Implementing the Ideal Preprocessing Functionality
	Implementing the Implicit Checking Functionality
	Implementing the Secure Transfer Functionality
	Complexity

	Formal Proof of the Covert UC Theorem
	Preliminaries
	The UC Framework.
	Uniform UC Computation
	Covert UC Computation

