
Collusion-Resistant Broadcast Encryption with Tight Reductions

and Beyond

Abstract

The issue of tight security in identity-based encryption scheme (IBE) has been widely investigated.
Recently, a tightly secure IBE scheme of bilinear groups in the weak multi-challenge setting has been
achieved by Chen (eprint 2016/891), and their scheme even achieves constant public parameters and is
adaptively secure. However, we note that the issue of tight security in broadcast encryption scheme (BE)
of bilinear groups has received less attention so far. Actually current broadcast encryption systems of
bilinear groups are either not tightly secure or based on non-static assumptions. In this work we mainly
focus on the issue of tight security in the standard broadcast encryption scheme.

We present the first tightly secure broadcast encryption scheme (BE) from the static assumptions
(i.e., decisional subgroup assumptions) in the selective security model. Our construction and proof rely
on the recently novel techniques from Chen (eprint 2016/891). The proof of our construction will lead to
only O(logn) or O(log λ) security loss, where n is the number of users in the system and λ is the security
parameter, rather than O(n) security loss as the construction given by Wee (TCC-A 16) and many other
previous constructions.

Following this result, we present the first tightly secure non-zero inner product encryption scheme
(NIPE) from decisional subgroup assumptions in the selective security model. This NIPE scheme has
the same parameter sizes as our BE scheme and there is only O(logn) or O(log λ) security loss as well,
where n is the dimension of inner product space and λ is the security parameter. This result improves
the most optimal NIPE scheme so far from static assumptions recently proposed by Chen et al.(SCN
16), which also suffers O(n) security loss during the reduction.

Finally, we further present the first functional commitment scheme (FC) for linear functions with tight
reductions, also from decisional subgroup assumptions. Recently Libert et al.(ICALP 16) introduced the
notion of functional commitment scheme for linear functions. However, their scheme also suffers O(n)
security loss during the reduction. In contrast, there is only O(logn) or O(log λ) security loss in our FC
scheme, which significantly improves the result of Libert et al.

1 Introduction

The notion of broadcast encryption was first introduced by Fiat and Naor[FN94]. A broadcast encryption
(BE) system consists of n users, and it allows the broadcaster sending encrypted contents to a set of qualified
users S ⊆ {1, · · · , n} dynamically such that the set of users in S can decrypt the broadcast with their own
secret key, but users outside of the set S cannot decrypt the broadcast even if they all collude and pool their
secret keys.

There are many ways to define the security of a broadcast encryption scheme. The most desirable
broadcast encryption scheme need to satisfy the notion called adaptive security, in which the adversary can
adaptively corrupt users, learning their secret keys, and then he chooses an arbitrary uncorrupted ”challenge”
set S∗ of users that he wants to attack in order to learn some information about the plaintext broadcast.
The adversary may continue corrupting users so long as he does not corrupt any of the intended recipients
of the broadcast. We also consider a weaker security notion called selective security, where the adversary

1

may still choose the challenge set S∗ arbitrarily, but must choose it before corrupting any users and before
even seeing the public parameters of the scheme.

However, in this work we mainly focus on the issue of security reduction and security loss in the
broadcast encryption system under static assumptions of bilinear groups. Consider a broadcast encryption
scheme with a security reduction showing that attacking the scheme in time T with success probability ε
implies breaking some computationally hard problem in time roughly T with success probability ε/L. We
call L as the security loss and a tight reduction is one where L is only related to the security parameter λ
and more optimal, L is a constant. Namely we are interested in constructions based on static assumptions
like the decisional subgroup assumption that do not rely on random oracles.

Tight reductions are not just theoretical issues for broadcast encryption, rather than are of importance
in practice. If the security loss L increases, we must in turn increase the size of the underlying groups in order
to compensate for it. This will significantly effect the running time and the performance of the broadcast
encryption system.

In this paper, our main goal is to design tightly secure broadcast encryption schemes from well-studied
hardness assumptions, which simultaneously provides optimal parameters (e.g., constant-size ciphertext over-
head, and constant-size private keys). Furthermore, we will design tightly secure non-zero inner product en-
cryption scheme and tightly secure functional commitment scheme for linear functions based on techniques
used in our design of broadcast encryption scheme.

2 Our Contributions

In this paper, we made the following contributions.

1. we present the first tightly secure broadcast encryption scheme, to the best of our knowledge, that
achieves constant-size ciphertext overhead, constant-size private keys and linear-size public parameters
under static assumptions in the selective security model. In our scheme the security loss is only O(log n)
or O(log λ) where n = poly(λ) is the number of users in the broadcast encryption system and λ is the
security parameter. This result is inspired by the techniques used by Chen [Che16] in building tightly
secure IBE and the techniques used by Wee [Wee16] in building the broadcast encryption under static
assumptions with same parameter sizes as the work of Boneh, Gentry and Waters (BGW) [BGW05].
This result can be regarded as a combination of these two works.

2. In addition, inspired by the observation that our BE construction is essentially obtained by tweaking
the BGW scheme and Wee’s broadcast encryption, we apply Chen’s techniques [Che16] to the NIPE
scheme proposed by Chen et al.[CLR16] and the functional commitment scheme proposed by Libert
et al.[LRY16]. Then we obtain the following two results.

• We present the first tightly secure non-zero inner product encryption scheme (NIPE) from deci-
sional subgroup assumptions in the selective security model. This NIPE scheme has the same
parameter sizes as our BE scheme and there is only O(log n) or O(log λ) security loss as well,
where n is the dimension of inner product space and λ is the security parameter. In contrast, the
NIPE scheme proposed by Chen et al. suffers O(n) security loss during the reduction.

• We further present the first functional commitment scheme (FC) for linear functions with tight
reductions from decisional subgroup assumptions. This scheme has commitments and openings
of constant size and is perfectly hiding. Furthermore, it suffers only O(log n) or O(log λ) security
loss rather than O(n) security loss in the work of Libert et al., where n is the dimension of the
domain of linear functions and λ is the security parameter. 1

1We remark that this functional commitment also implies many other kinds of commitment schemes and cryptographic
accumulators for large universes. We refer the reader to the work of Libert et al.[LRY16]

2

3 Outline of Our Constructions and Proofs

Before describing how to construct our tightly secure broadcast encryption scheme. We first briefly
review Wee’s broadcast encryption scheme and Chen’s techniques in building tightly secure IBE.

Wee’s Broadcast Encryption. Given the composite-order bilinear group G = (N = p1p2p3, G,GT , e).
Wee constructed the broadcast encryption in a similar approach as BGW while embedding the dual system
methodology[Wat09] and Déjà Q framework [CM14]. From a high level, the parameters in Wee’s broadcast
encryption can be described as follows

mpk : (g, gβ , {gj}j∈[n], u1, · · · , un, un+2, · · · , u2n, e(g, un+1),H)

ski : un−i+1R3.i i = 1, · · · , n

ct :
(
gs, g(β+

∑
k∈S α

k)s
)

key : H(e(g, un+1)s)

where (g, u)← Gp1 , α, β, s← ZN , R4.i ← Gp4 , S is the challenge set and H is a pairwise-independent hash
function. Here we consider Gp1 as normal space, Gp2 as semi-functional space and Gp3 is the space to be
used to randomize secret keys. Here we call Gp3 as the randomness space.

To establish security, Wee introduced the semi-functional space Gp2 to the 2n terms uα, uα
2

, · · · , uα2n

and use the entropy derived from uα
n+1

to hide the message m through a function F2n(k) =
∑2n
j=1 rjα

k
j

where the input k is in the interval [1, 2n] and r1, · · · , r2n, α1, · · · , α2n ← ZN . Finally, we could replace
the function F2n(·) with a truly random function RF(·). To avoid leaking α mod p2 in the ciphertext in
order to carry out the transformation to the secret keys, we need to eliminate all occurrences of α in the
polynomial β +

∑
k∈S α

k which shows up in the ciphertext. Due to this restriction, we need to generate β

by first randomly selecting another value β̃ such that β̃ = β +
∑
k∈S α

k and then rewrite the ciphertext,
symmetric key, and secret keys as

ct =
(
gs, gβ̃s

)
(1)

key = H(e(g, un+1)s) (2)

ski = uα
n−i+1β̃−

∑
k∈S α

n+1+k−i

R3.i, ∀i ∈ [n] (3)

Thus the monomials in α only show up on the same side of the pairing in both the ciphertext and the secret
keys in the exponents of u.

Remark. We remark that even though this step allows us to eliminate the occurrences of α in the ciphertext,
it also sacrifies the possibility to achieve adaptive security or semi-static security. Because the challenger
must know the challenge set S in order to generate β, such that β̃ = β+

∑
k∈S α

k. Therefore, the adversary
must commit to a challenge set at the very beginning of the selective security game. Thus, to solve this
problem we must change the structure of the scheme to avoid this restriction while preserving existing
properties. We leave it as an open problem.

Chen’s technique. In Chen’s tightly secure IBE, they noted that only one unity of entropy can be injected
into the semi-functional space each time, since only one unit of random source can be extracted from the
normal space. To achieve tight security, Chen tries to inject more entropy each time such that the reduction
could reach the function Fq(·) from F1(·) as quick as possible, where q is total number of key queries
and challenge queries. Chen’s idea is to extract entropy from F2i(i ≤ dlog qe) and then inject them back
into F2i+1 . This is achieved through a iterated approach. Roughly speaking, for each iteration i, we first
extract entropy F̂2i from each F2i and then inject the entropy F̂2i back into F2i+1 in the next iteration.
This significantly accelerates the construction of Fq because we only need dlog qe steps and this is the key

3

step leading to achieve tight reductions. To temporarily store the entropy extracted from each F2i , Chen
introduced another subgroup, which can be viewed as shadow semi-functional space, into the reduction, and
then we can flip all stored entropy in the shadow semi-functional space back to the old one. This leads to
that the reduction should be working on a bilinear group of order N = p1p2p3p4 instead of order N = p1p2p3.
Therefore, in the group G, the subgroup Gp1 works as the normal space, the subgroup Gp2 works as the
semi-functional space, the subgroup Gp3 works as the shadow semi-functional space, and the subgroup Gp4
works as the randomness space.

Our Approach. Following the construction of Wee’s broadcast encryption and Chen’s techniques used in
tight reductions, we construct our tightly secure broadcast encryption scheme. We describe our method in
a nutshell as follows.

Assume that we have rewritten the ciphertext overhead and the symmetric key as equation (1), (2) and
(3), except that we use the subgroup Gp4 to randomize secret keys instead of using the subgroup Gp3 . More
specifically, the public parameters, secret keys, ciphertext overhead and the symmetric key are in the form
as follows:

mpk : (g, gβ , {gj}j∈[n], u1, · · · , un, un+2, · · · , u2n, e(g, un+1),H)

ski = uα
n−i+1β̃−

∑
k∈S α

n+1+k−i

R4.i, ∀i ∈ [n]

ct =
(
gs, gβ̃s

)
key : H(e(g, un+1)s)

Let us see how to apply Chen’s technique into Wee’s broadcast encryption scheme. Firstly we still need the

function F2n(k) =
∑2n
j=1 rjα

k
j ∈ Zp2 , where r1, · · · , r2n, α1, · · · , α2n

$← Zp2 . Recall that this function has
been applied in Wee’s broadcast encryption, and Wee constructed F2n(·) from the entropy in the normal
space following the roadmap

F1 → F2 → F2 → · · · → F2n

We note that there is also only one unity of entropy that can be injected into the semi-functional space each
time. Therefore, in order to achieve tight reduction, we try to inject more entropy each time following Chen’s
technique: extract entropy from F2i(i ≤ dlog n+ 1e) itself and then inject them back into F2i+1 . Therefore,
we only need dlog n+ 1e steps to construct F2n(·). To introduce the shadow semi-functional space, we need

another function F̂2i(k) =
∑2i

j=1 r̂jα̂
k
j ∈ Zp3 , where r̂1, · · · , r̂2i , α̂1, · · · , α̂2i

$← Zp3 . We could first extract
one unity entropy from u and α in the normal space and puts them into the semi-functional space. It is
used to define the function F20(·). Then we can execute the setups described above with the help of shadow
semi-functional space. More specifically, we change the distribution of the set of parameters {uk}k∈[2n] with
the help of semi-functional space Gp2 and the shadow semi-functional space Gp3 . We first introduce the

semi-functional space to transform each uk = uα
k

R4.k into the form of uα
k

g
F2i (k)
2 R4.k and then introduce

the shadow semi-functional space via transforming each uα
k

g
F2i (k)
2 R4.k into the form uα

k

g
F2i (k)
2 g

F̂2i (k)
3 R4.k.

To flip all stored entropy back to the old one, we finally transform uk = uα
k

g
F2i (k)
2 g

F̂2i (k)
3 R4.k into the form

of uk = uα
k

g
F̂2i
′
(k)

2 R4.k, where F̂2i

′
(k) =

∑2i

j=1 rjα
k
j + r̂jα̂

k
j is another new function required in the reduction

and r1, · · · , r2i , α1, · · · , α2i , r̂1, · · · , r̂2i , α̂1, · · · , α̂2i
$← Zp2 .

Our NIPE Scheme and FC Scheme. The construction of our NIPE scheme and our FC scheme are
essentially the same as the NIPE scheme proposed by Chen et al. [CLR16] and the FC scheme proposed by
Libert et al.[LRY16], except that our schemes are working on the bilinear group G of order N = p1p2p3p4

instead of N = p1p2p3. More specifically, the public parameters, master secret key, secret key, ciphertext

4

and symmetric key in our NIPE scheme are in the form as follows:

mpk : (g, gβ , {gj}j∈[n], u1, · · · , un, un+2, · · · , u2n,H)

msk : (u, α, β,R4)

sk~y :

(
n∏
i=1

uα
iyi

)β
·R′4

ct :
(
gs, g(β+

∑n
i=1 xiα

i)s
)

key : H(e(g, un+1)s)

where (g, u, α, β, s)
$← G2

p1 × Z3
N , R4, R

′
4

$← Gp4 , ~x = (x1, · · · , xn), ~y = (y1, · · · , yn) ∈ ZnN and H is a
pairwise-independent hash function.

Furthermore, in our FC scheme, the commitment key, trapdoor key, commitment and the witness for
the linear function are in the form as follows

mpk : (g, {gj}j∈[n], u1, · · · , un, un+2, · · · , u2n, R4)

tk : un+1

C : gβ+
∑n

i=1mjαj

Wy =

n∏
i=1

Wxi
i , Wi = uβn−i+1 ·

n∏
j=1,j 6=i

u
mj

n+j−i+1, ∀i ∈ [n]

where (g, u, α, β)
$← G2

p1 × Z2
N , R4

$← Gp4 , ~m = (m1, · · · ,mn) is the message vector, and y is the result of
linear function evaluating over the message vector ~m.

To establish tight reductions of our NIFE scheme and FC scheme, we essentially follow the same s-
trategy as the proof of our broadcast encryption scheme. Namely, we introduce the three kinds of function

families {F2i(·)}dlogn+1e
i=0 , {F̂2i(·)}dlogn+1e

i=0 and {F̂2i

′
(·)}dlogn+1e

i=0 defined as above to modify the distribution
of {uk}k∈[2n] with the help of the semi-functional space Gp2 and the shadow semi-functional space Gp3 . We
refer the reader to our security proofs in appendix A and appendix B for more details.

4 Related Work

Tight security in identity-based encryption system[CW13, GDCC16, Che16] and in digital signature
schemes[Hof16a, Hof16b, BL16] has been widely investigated. However, we noted that tight security in
broadcast encryption system has received less attention so far. Actually current broadcast encryption systems
from bilinear groups are either not tightly secure or based on non-static assumptions.

Boneh, Gentry, and Waters [BGW05] give the first broadcast encryption scheme from bilinear maps
under the selective security model (i.e., their construction does not capture the power of fully collusion
resistant under adaptive attacks). This scheme has constant-size ciphertexts and constant-size secret keys
(in terms of the number of users n), and a public key that is linear in n. However, their construction is based
on q-type assumption, even though their reduction is tight.

Some other schemes with constant-size ciphertexts based on bilinear maps[DPP07, GW09] have been
proven adaptively secure and/or are identity based, with the public parameters in all of these schemes
is at least linear in the maximum number of recipients. However, their constructions are also based on
q-type assumptions even though their schemes achieve tight security reductions. Recently Wee proposed
a new broadcast encryption scheme [Wee16] under static assumptions (i.e., subgroup assumptions) using

5

techniques derived from Déjà Q framework [CM14]. Furthermore, Wee’s scheme has the same parameter sizes
as BGW scheme. Nevertheless, we note that the reduction of Wee’s scheme is not tight. More specifically,
their construction suffers a O(n) security loss during the reduction, where n is the number of users in the
broadcast encryption system.

Following the framework used in Wee’s broadcast encryption scheme, Libert et al. [LRY16] applied the
same framework to construct functional commitment schemes for linear functions and Chen et al. [CLR16]
also utilized this framework to construct NIPE schemes with short ciphertexts and short private keys.
However, since they both applied Wee’s framework, their scheme both suffer a O(n) security loss as well,
where n is the dimension of inner product space and the dimension of the domain of linear functions, and
hence they are not tight.

5 Paper Organization

In section 6, we introduce preliminaries to be used in this work. In section 7, we give the description of
our BE scheme and its security analysis. We give the description of our NIPE scheme and our FC scheme
and their security analysis respectively in section 8 and section 9. Since the security analysis of our NIPE
scheme and FC scheme lies in a similar strategy as our BE scheme, we leave their formal proofs in appendix A
and appendix B respectively.

6 Preliminaries

We denote by s
$← S the fact that s is picked uniformly at random from a finite set S. By PPT, we

denote a probabilistic polynomial-time algorithm. We use 1λ as the security parameter in unary throughout
the context. We use [n] to denote the set {1, · · · , n}.

6.1 Composite-Order Bilinear Groups and Cryptographic Assumptions

We instantiate our system in composite-order bilinear groups. A generator G takes as input a security
parameter λ and outputs a description G := (N,G,GT , e), where N is product of distinct primes of Θ(λ) bits,
G and GT are cyclic groups of order N , and e : G×G→ GT is a non-degenerate bilinear map. We require
that the group operations in G and GT as well the bilinear map e are computable in deterministic polynomial
time. We consider bilinear groups whose orders N are products of four distinct primes p1, p2, p3, p4 such
that N = p1p2p3p4. We can write G = Gp1Gp2Gp3Gp4 or G = Gp1p2p3p4 where Gp1 , Gp2 , Gp3 and Gp4 are
subgroups of G of order p1, p2, p3 and p4 respectively. In addition, we use G∗pi to denote Gpi\{1}. We will
often write g1, g2, g3, g4 to denote random generators for the subgroups Gp1 , Gp2 , Gp3 , Gp4 respectively.

Cryptographic Assumptions. Our construction relies on the following four decisional subgroup assump-
tions. We define the following four advantage functions.

• Assumption 1 (DS1) For any PPT adversary A the following advantage is negligible in the security
parameter λ.

AdvDS1
A (λ) = |Pr[A(G, g1, g4, T0) = 1]− Pr[A(G, g1, g4, T1)]| (p1 → p1p2p3)

where G← G(1λ), g1 ← Gp1 , g4 ← G∗p4 ,

T0 ← Gp1 , T1 ← Gp1p2p3

6

• Assumption 2 (DS2) For any PPT adversary A the following advantage is negligible in the security
parameter λ.

AdvDS2
A (λ) = |Pr[A(G, g1, g4, X1X2X3, T0) = 1]− Pr[A(G, g1, g4, X1X2X3, T1)]| (p1 → p1p2)

where G← G(1λ), g1 ← Gp1 , g4 ← G∗p4 , X1X2X3 ← Gp1p2p3 ,

T0 ← Gp1 , T1 ← Gp1p2

• Assumption 3 (DS3) For any PPT adversary A the following advantage is negligible in the security
parameter λ.

AdvDS3
A (λ) = |Pr[A(G, g1, g4, X1X2X3, T0) = 1]− Pr[A(G, g1, g4, X1X2X3, T1)]| (p2 → p2p3)

where G← G(1λ), g1 ← Gp1 , g4 ← G∗p4 , X1X2X3 ← Gp1p2p3 ,

T0 ← Gp2 , T1 ← Gp2p3

• Assumption 4 (DS4) For any PPT adversary A the following advantage is negligible in the security
parameter λ.

AdvDS4
A (λ) = |Pr[A(G, g1, g4, X1X2X3, Y2Y4, T0) = 1]− Pr[A(G, g1, g4, X1X2X3, Y2Y4, T1)]| (p2p4 → p3p4)

where G← G(1λ), g1 ← Gp1 , g4 ← G∗p4 , X1X2X3 ← Gp1p2p3 , Y2Y4 ← Gp2p4 ,

T0 ← Gp2p4 , T1 ← Gp3p4

6.2 Broadcast Encryption

A broadcast encryption scheme consists of three algorithms (Setup,Enc,Dec):

• Setup(1λ, 1n) → (mpk, (sk1, · · · , skn)). The setup algorithm gets as input the security parameter λ in
unary and n, which is a polynomial in λ, in unary specifying the number of users and outputs the
public parameter mpk, and secret keys sk1, · · · , skn.

• Enc(mpk, S)→ (ct, key). The encryption algorithm takes as input mpk and a subset S ⊆ [n]. It outputs
a ciphertext ct (sometimes we call it ciphertext header) and a symmetric key key ∈ {0, 1}λ. Note that
given ct the set S is public.

• Dec(mpk, ski, ct) → key. The decryption algorithm gets as input mpk, a decryption key ski corre-
sponding to identity i ∈ [n] and ct. It outputs a symmetric key key if the identity i is in the set
S.

Correctness. We require that for all S ⊆ [n] and all i ∈ [n] for which i ∈ S,

Pr[(ct, key)← Enc(mpk, S);Dec(mpk, ski, ct) = key] = 1

where the probability is taken over (mpk, (sk1, · · · , skn))← Setup(1λ, 1n) and the random coins used in Enc.

7

Selective Security Definition. A broadcast encryption scheme is selectively secure if for all PPT adver-
saries A, the following advantage function is a negligible function in the security parameter λ.

AdvS−BE
A (λ) := Pr


b = b′ :

S∗ ← A(1λ);

(mpk, (sk1, · · · , skn))← Setup(1λ);

b
$← {0, 1}; key1

$← {0, 1}λ;

(ct∗, key0)← Enc(mpk, S∗);

b′ ← A(ct∗, keyb, {ski : i /∈ S∗})


− 1

2

where the probability is defined over random coins used by Setup and Enc, and the adversary A as well as
the random bit b.

6.3 Non-Zero Inner Product Encryption (NIPE)

We give the definition of non-zero inner product encryption scheme in this section. For convenience we
give the definition in the key encapsulation setting.

Let V denote an inner product space of dimension n. A non-zero inner product encryption (NIPE)
scheme for inner products over the space V is defined by four probabilistic algorithms (Setup,Enc,KeyGen,Dec).

• Setup(1λ, 1n): takes as input a security parameter λ in unary and the dimension of V in unary. It
outputs the public parameters mpk and the master secret key msk.

• KeyGen(msk, ~y): takes as input the master secret key msk and a vector ~y in the space V. It outputs a
secret key sk~y for the vector ~y.

• Enc(mpk, ~x): takes as input an attribute vector ~x ∈ V and the public parameters mpk. It outputs
a ciphertext ct and a symmetric key key ∈ {0, 1}λ. The symmetric key key is used to encrypt any
message through any symmetric key encryption scheme.

• Dec(mpk, ct, sk~y): If 〈~x, ~y〉 6= 0, this algorithm returns the symmetric key key. Otherwise it outputs ⊥.

Correctness. A NIPE scheme is correct if for all vectors ~x, ~y ∈ V satisfying 〈~x, ~y〉 6= 0, any key pair
(mpk,msk) ← Setup(1λ, 1n), sk~y ← KeyGen(msk, ~y) and any (ct, key) ← Enc(mpk, ~x), we have Pr[key =
Dec(mpk, ct, sk~y)] = 1.

Selective Security of NIPE. A non-zero inner product encryption scheme is selectively secure if for all
PPT adversaries A, the following advantage function is a negligible function in the security parameter λ.

AdvS−NIPE
A (λ) := Pr

b = b′ :

~x∗ ← A(1λ, 1n);

(mpk,msk)← Setup(1λ);

b′ ← AKeyGen(·),Enc(mpk,b,·)(1λ, 1n,mpk)

− 1

2

where the oracles KeyGen(·) and Enc(mpk, b, ·) are defined as follows.

1. KeyGen(·): On input a vector ~y ∈ V, the oracle returns KeyGen(msk, ~y).

2. Enc(mpk, b, ·): On input the committed vector ~x∗, it computes (ct∗, key∗0) ← Enc(mpk, ~x∗) and then

samples a symmetric key key∗1
$← {0, 1}λ uniformly at random. It returns (ct∗, key∗b). If the input

vector is not the committed vector, it aborts and output ⊥.

8

the probability of the security game is defined over random coins used by Setup and oracles KeyGen and Enc,
and the adversary A as well as the random bit b.

6.4 Functional Commitments for Linear Functions

Definition 6.1 (Functional Commitments). A functional commitments scheme (FC) for the linear function
(D, n, 〈·, ·〉), whereD is the domain for the linear functions 〈·, ·〉 : Dn×Dn → D defined by 〈~x, ~m〉 =

∑n
i=1 ximi

for ~x, ~m ∈ Dn with ~x = (x1, · · · , xn), ~m = (m1, · · · ,mn), is a tuple of four polynomial time algorithms
(Setup,Commit,Open,Vrf).

• Setup(1λ, 1n)→ (ck, tk): takes as input a security parameter λ ∈ N in unary, a desired message length
n = poly(λ). It outputs a commitment key ck and a trapdoor key tk.

• Commit(ct, ~m) → (C, aux): takes as input the commitment key ck, a message vector ~m ∈ Dn and
outputs a commitment C for the message ~m and aux, which is the auxiliary information.

• Open(ck,C, aux, ~m) → Wy: takes as input the commitment key ck, a commitment C corresponding to
the message ~m, auxiliary information aux and a vector ~x ∈ Dn. It outputs a witness Wy for y = 〈~x, ~m〉.
Namely, Wy is a witness for the fact that the linear function defined by ~x when evaluated on ~m gives
y.

• Vrf(ck,C,Wy, ~x, y) → 0/1: takes as input the commitment key ck, a commitment C, a witness Wy, a
vector ~x ∈ Dn and y ∈ D. It outputs 1 if Wy is a witness for C being a commitment for some ~m ∈ Dn
such that 〈~x, ~m〉 = y and outputs 0 otherwise.

Correctness. We require that for every (ck, tk) ← Setup(1λ, 1n), for all ~m, ~x ∈ Dn, if (C, aux) ←
Commit(ck, ~m) and Wy ← Open(ck,C, aux, ~x), then Vrf(ck,C,Wy, ~x, y) = 1 with probability 1.

Security. The security requirements of functional commitments are formalized as follows.

Definition 6.2 (Perfectly Hiding). A commitment scheme is perfectly hiding if for a commitment key ck
generated by an honest setup, for all ~m0, ~m1 ∈ Dn with ~m0 6= ~m1, the two distributions {ck,Commit(ck, ~m0)}
and {ck,Commit(ck, ~m1)} are identical given that the random coins of Commit are chosen according to the
uniform distribution from the respective domain.

The binding property captures the requirement that the adversary, without the knowledge of the trap-
door key tk, cannot generate a commitment C and accept the witnesses for two distinct values y, y′.

Definition 6.3 (Function Binding). A functional commitment scheme FC = (Setup,Commit,Open,Vrf) for
(D, n, 〈·, ·〉) is computationally binding if for any PPT adversary A winning the following experiment with
negligible advantage.

1. The challenger generates (ck, tk)← Setup(1λ, 1n) and gives ck to the adversary A.

2. The adversary A outputs a commitment C, a vector ~x ∈ Dn, two values y, y′ ∈ D and two witnesses
Wy,Wy′ . We say that the adversary A wins the game if the following conditions hold

• y 6= y′.

• Vrf(ck,C,Wy, ~x, y) = Vrf(ck,C,Wy′ , ~x, y
′) = 1.

9

6.5 Core Lemma

We review the core lemma used by Chen and Wee as follows in a slightly different form in order to adapt
to our construction of broadcast encryption.

Lemma 6.1 ([CM14, Wee16]). Fix a prime p. For any (possibly unbounded) adversary A making at most
q queries, we have ∣∣∣Pr[AFq(·)(1q) = 1]− Pr[ARF(·)(1q) = 1]

∣∣∣ ≤ q2

p

where we define oracles as follows

- Fq: The oracle behaves as a function mapping from Zp to Zp. It is initialized by picking the parameters
r1, · · · , rq, α1, · · · , αq ← Zp. On input x ∈ Zp, it outputs

q∑
i=1

riα
x
i ∈ Zp

Every query is answered using the same parameters r1, · · · , rq, α1, · · · , αq we picked at the very begin-
ning.

- RF(·): This oracle behaves as a truly random function RF : Zp → Zp. On input x ∈ Zp, it returns
RF(x) if it has been defined, otherwise it returns y ← Zp and defines RF(x) = y.

7 Our Broadcast Encryption Scheme

In this section we give our construction of tightly secure broadcast encryption and its security analysis.

7.1 Construction

Our broadcast encryption scheme (Setup,Enc,Dec) is described as follows.

• Setup(1λ, 1n): Compute G = (N,G,GT , e)← G(1λ). Sample

(α, β, g, u)
$← Z2

N ×G2
p1 and R4,k

$← Gp4 , k = 1, · · · , 2n

and then compute

uk = uα
k

R4,k, k = 1, · · · , 2n

Pick a pairwise hash function H : GT → {0, 1}λ. It outputs the public parameters

mpk = ((g, gβ , e(g, un+1),H), gα1 , · · · , gα
n

1 , u1, u2, · · · , un, un+2, · · · , u2n)

and secret keys ski = uα
n−i+1

R4.i for i ∈ [n], where R4.i
$← Gp4 for each i ∈ [n].

• Enc(mpk, S ⊆ [n]): Sample s
$← ZN . It computes

ct = (ct0, ct1) = (gs, g(β+
∑

k∈S α
k)s)

and
key = H(e(g, uα

n+1

)s)

10

where ct1 is computed as
(
gβ ·

∏
k∈S gk

)s
and the symmetric key key is computed as H(e(g1, un)s).

The algorithm finally outputs (ct, key).

• Dec(mpk, ski, ct = (ct0, ct1)): It outputs

key =
e(ct1, un−i+1)

e(ct0, ski
∏
k∈S,k 6=i un+1+k−i)

.

Correctness. It is easy to show the correctness of our scheme through the following equations.

e(ct1, un−i+1)

e(ct0, ski
∏
k∈S,k 6=i un+1+k−i)

=
e(g(β+

∑
k∈S α

k)s, un−i+1)

e(gs, uαn−i+1 ·
∏
k∈S,k 6=i un+1+k−i)

=
e(g(β+

∑
k∈S α

k)s, uα
n−i+1

)

e(gs, uα
n−i+1+

∑
k∈S,k 6=i α

n+1+k−i

)

= e(g, uα
n+1

)s

= key

7.2 Security Analysis

Theorem 7.1. For any PPT adversary A, there exists an algorithm B = {B1,B2,B3,B4} whose running
times are essentially the same as that of A, such that

AdvS−BEA (λ) ≤ AdvDS1
B1

+ AdvDS2
B2

(λ) +O(log λ) · (AdvDS3
B3

(λ) + AdvDS4
B4

(λ)) + 2−Ω(λ)

Proof. Firstly we define the advantage function of any PPT adversary A in hybrid Hybx,y,z as

Adv
Hybx,y,z

A (λ) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣
We prove the theorem using the following hybrid arguments.

Hyb0: is the real experiment as defined in the selective security model.

Hyb1: This is the same as Hyb0, except that the system generates the random parameter β̃ such that β = β̃−∑
k∈S∗ α

k. More concretely, in this hybrid u1, · · · , u2n and mpk are computed as in the honest setup, but the

challenge ciphertext ct∗ is computed as (gs, (gs)β̃) and the symmetric key key0 is computed as H(e(gs, un+1)).

To simulate the secret keys {ski : i /∈ S∗}, we compute each ski = uβ̃n−i+1 · (
∏
k∈S∗,k 6=i un+1+k−i)

−1 · R4.i

using the parameter β̃ and (u1, · · · , un, un+2, · · · , u2n). Since Hyb0 and Hyb1 are identically distributed, we

have Adv
Hyb0
A = Adv

Hyb1
A .

Hyb2: This is the same as Hyb1, except that we change the distribution of (ct∗, key∗0). Namely

(ct∗, key∗0) =
(

(T s, (T s)β̃),H(e(T s, un+1))
)

where T is sampled from Gp1p2p3 .

Lemma 7.1. Under the decisional subgroup assumption DS1, we have∣∣∣Adv
Hyb1
A (λ)−Adv

Hyb2
A (λ)

∣∣∣ ≤ AdvDS1
B1

(λ)

11

Proof. Given (G, g ∈ Gp1 , g4 ∈ Gp4 , T) where either T ← Gp1 or T ← Gp1p2p3 , the algorithm B1 works as
follows.

• Commitment Phase: The adversary A commits to a challenge set S∗ ⊆ [n].

• Setup Phase: Pick parameters (α, β̃, u)
$← Z2

N ×Gp1 , β = β̃−
∑
k∈S∗ α

k. Select the hash function H,

all randomness R4.k
$← Gp4 for k = 1, · · · , 2n and R4.i

$← Gp4 for i = 1, · · · , n. It outputs the public
parameters

mpk = ((g, gβ , e(g, un+1),H), gα1 , · · · , gα
n

1 , u1, · · · , un, un+2, · · · , u2n)

and outputs secret keys (sk1, · · · , skn). Note that we compute the set of secret keys {ski : i /∈ S∗},
in which ski is computed as uβ̃n−i+1 · (

∏
k∈S∗,k 6=i un+1+k−i)

−1 · R4.i. Otherwise the secret key ski is

computed normally as uα
n−i+1

R4.i.

• Challenge Phase: Sample the random value s′
$← ZN , and compute the ciphertext header ct∗ =

(ct∗0 = T s
′
, ct∗1 = (T s

′
)β̃) and the symmetric key key∗0 = H(e(T s

′
, un+1)). The reduction B1 picks

random key∗1
$← {0, 1}λ and return (ct∗, key∗b), where b is a random coin.

• Guess: The reduction B1 returns 1 if b = b′. Otherwise it returns 0.

Observe that when T ← Gp1 , the simulation is identical to Hyb1; when T ← Gp1p2p3 , the simulation is
identical to Hyb2. This proves the lemma.

Hyb3.i: for 0 ≤ i ≤ dlog n+1e, we change the distribution of u1, · · · , u2n from uα
k

R4.k to uα
k

g
∑2i

j=1 rjα
k
j

2 R4.k,

where rj , αj
$← ZN , j ∈ [2i] and g2

$← Gp2 .

Lemma 7.2. Under the decisional subgroup assumption DS2, we have∣∣∣Adv
Hyb3.0
A (λ)−Adv

Hyb2
A (λ)

∣∣∣ ≤ AdvDS2
B2

(λ)

Proof. Given (G, g ∈ Gp1 , g4 ∈ Gp4 , X1X2X3 ∈ Gp1p2p3 , T), where either T = u← Gp1 or T = ugr2 ← Gp1p2 .
The algorithm B2 works as follows.

• Commitment Phase: The adversary A commits to a challenge set S∗ ⊆ [n].

• Setup Phase: Sample parameters (α, β̃, u)
$← Z2

N×Gp1 and β = β̃−
∑
k∈S∗ α

k. Select a hash function

H and sample randomness from the group Gp4 . That is R4.k
$← Gp4 for k = 1, · · · , 2n and R4.i

$← Gp4
for i = 1, · · · , n. Compute each uk as Tα

k

R4.k for each k ∈ [2n]. Proceed as Hyb2 to compute the
public parameters mpk and {ski : i /∈ S∗}.

• Challenge Phase: Sample a random value s′
$← ZN , it uses X1X2X3 as provided and un+1 as

computed above to compute

ct∗ = ((X1X2X3)s
′
, ((X1X2X3)s

′
)β̃), key∗0 = H(e((X1X2X3)s

′
, un+1))

• Guess: The reduction B2 returns 1 if b = b′. Otherwise it returns 0.

Observe that if T = u, the simulation is identical to Hyb2; when T = ugr2, the simulation is identical to
Hyb3.0. This proves the lemma.

12

In order to prove Hyb3.i is computationally indistinguishable from Hyb3.i+1 for all i ∈ [1, · · · , dlog n+1e],
we construct the following two sub-hybrid arguments.

• Hyb3.i.1: is equivalent to Hyb3.i, except that we change the distribution of u1, · · · , u2n as

uk = uα
k

g
∑2i

j=1 rjα
k
j

2 · g
∑2i

j=1 r̂j α̂
k
j

3 R4.k, k = 1, · · · , 2n

• Hyb3.i.2: is equivalent to Hyb3.i.1, except that we change the distribution of u1, · · · , u2n as

uk = uα
k

g
∑2i

j=1 rjα
k
j +

∑2i

j=1 r̂j α̂
k
j

2 R4.k, k = 1, · · · , 2n

Lemma 7.3. Under the decisional subgroup assumption DS3, for each i ∈ [1, · · · , dlog n+ 1e], we have∣∣∣Adv
Hyb3.i
A (λ)−Adv

Hyb3.i.1
A (λ)

∣∣∣ ≤ AdvDS3
B3

(λ)

Proof. Given parameters (G, g ∈ Gp1 , g4 ∈ Gp4 , X1X2X3 ∈ Gp1p2p3 , T) where either T = g2 ← Gp2 or
T = g2g3 ← Gp2p3 . The algorithm B3 works as follows.

• Commitment Phase: The adversary A commits to a challenge set S∗ ⊆ [n].

• Setup Phase: Pick parameters (α, β̃, u)
$← Z2

N ×Gp2 , β = β̃ −
∑
k∈S∗ α

k. Select the hash function H

and all randomness to be used R4.k
$← Gp4 for k = 1, · · · , 2n and R4.i

$← Gp4 for i = 1, · · · , n. Sample

α′1, · · · , α′2i , r′1, · · · , r′2i

$← ZN . Compute each uk as uα
k · T

∑2i

j=1 r
′
jα
′k
j R4.k. Finally it proceeds as Hyb2

using α, u1, · · · , u2n as computed above to compute the public parameters mpk and {ski : i /∈ S∗}.

• Challenge Phase: Sample the random value s′
$← ZN and compute ct∗0 = (X1X2X3)s

′
, ct∗1 =

(X1X2X3)s
′·β̃ and the symmetric key key∗0 = H(e((X1X2X3)s

′
, un+1)). The reduction B3 then picks

key∗1
$← {0, 1}λ and returns (ct∗ = (ct∗0, ct

∗
1), key∗b) where b is the random coin flipped by the challenger.

• Guess: The reduction B3 outputs 1 if b = b′. Otherwise it returns 0.

When T = g2, the simulation is identical to Hyb3.i; when T = g2g3, the simulation is identical to Hyb3.i.1,
where for all j ∈ [2i] we have αj = α′j mod p2, rj = r′j mod p2, α̂j = α′j mod p3 and r̂j = r′j mod p3.
This proves the lemma.

Lemma 7.4. Under the decisional subgroup assumption DS4, for each i ∈ [1, · · · , dlog n+ 1e], we have∣∣∣Adv
Hyb3.i.1
A (λ)−Adv

Hyb3.i.2
A (λ)

∣∣∣ ≤ AdvDS4
B4

(λ)

Proof. Given the instance (G, g ∈ Gp1 , g4 ∈ Gp4 , X1X2X3 ∈ Gp1p2p3 , Y2Y4 ∈ Gp2p4 , T) where either T =

g2R4
$← Gp2p4 or T = g3R4

$← Gp3p4 , the algorithm B4 works as follows.

• Commitment Phase: The adversary A commits to the challenge set S∗ ⊆ [n].

• Setup Phase: Sample parameters (α, β̃, u)
$← Z2

N ×Gp1 , β = β̃−
∑
k∈S∗ α

k. Select the hash function

H and sample all randomness to be used, R4.k
$← Gp4 for k = 1, · · · , 2n and R4.i

$← Gp4 for i = 1, · · · , n.

Sample α′1, · · · , α′2i , r′1, · · · , r′2i , α̂1, · · · , α̂2i , α̂1, · · · , α̂2i , r̂1, · · · , r̂2i
$← ZN . Compute each uk as

uα
k

· (Y2Y4)
∑2i

j=1 r
′
jα
′k
j · T

∑2i

j=1 r̂
′
j α̂
′k
j ·R4.k

13

It proceeds to compute the public parameters mpk and the set of secret keys {ski : i /∈ S∗} as in Hyb2.

• Challenge Phase: Sample a random value s′
$← ZN and compute ct∗0 = (X1X2X3)s

′
, ct∗1 =

(X1X2X3)s
′·β̃ and key∗0 = H(e(X1X2X3)s

′
, un+1), where un+1 is computed as above. The reduc-

tion B4 picks key∗1
$← {0, 1}λ and returns (ct∗ = (ct∗0, ct

∗
1), key∗b), where b is a random bit flipped by the

challenger.

• Guess: The reduction B4 returns 1 if b = b′ and returns 0 in the other case.

Observe that if T = g3R4, the simulation is identical to Hyb3.i.1 and if T = g2R4, then the simulation is
identical to Hyb3.i.2.

Moreover, it is easy to notice that Adv
Hyb3.i.2
A (λ) = Adv

Hyb3.i.2
A (λ) since all rj and all r′j are i.i.d variables

in Hyb3.i.2, by setting α2i+j = α̂j , r2i+j = r̂j , for all j ∈ [2i].

Hyb4: is equivalent to Hyb3.dlogn+1e, except that for each k ∈ [2n], each uk is in the form

uα
k

g
RF(k)
2 R4.k

where g2 ← Gp2 and RF is a truly random function. In this hybrid argument, the challenger computes the

challenge ciphertext ct∗ =
(

(X1X2X3)s, (X1X2X3)sβ̃
)

and the symmetric key

key∗0 = e((X1X2X3)s, un+1)

= e((X1X2X3)s, uα
n+1

g
RF(n+1)
2 R4.n+1)

= e((X1X2X3)s, uα
n+1

) · e((X1X2X3)s, g
RF(n+1)
2)

has log p2 = Θ(λ) bits of min-entropy coming from RF(n + 1); this holds as long as the Gp2-component of
(X1X2X3)s is not 1, which happens with probability 1 − 1/p2. Therefore, by the core lemma described as
lemma 6.1, we have ∣∣∣Adv

Hyb3.dlog n+1e
A (λ)−Adv

Hyb4
A (λ)

∣∣∣ ≤ 2−Ω(λ)

This proves the main theorem.

8 Our Tightly Secure Non-Zero Inner Product Encryption Scheme

In this section we give the description of our tightly secure NIPE scheme (Setup,Enc,KeyGen,Dec).
Recall that our NIPE construction is in the key encapsulation setting as we defined.

8.1 Construction

Our NIPE scheme (Setup,Enc,KeyGen,Dec) is described as follows.

• Setup(1λ, 1n): takes as input the security parameter λ and n as the dimension of the inner product
space. Compute G(1λ) to obtain parameters of bilinear groups (N = p1p2p3p4, G,GT , e), where pi >
2`(λ) for each i ∈ {1, 2, 3, 4} for a suitable polynomial ` : N → N. We consider inner products defined

over ZnN . Choose (α, β, g, u)
$← G2

p1 × Z2
N and R4

$← Gp4 . Define gj := gα
j

for each j ∈ [n] and

14

uk := uα
k

R4.k, where R4.k
$← Gp4 , for each k ∈ [2n]\{n + 1}. It selects a pairwise-independent hash

function H : GT → {0, 1}λ. Finally it outputs the public parameters

mpk :=
(
(G,GT , e), g, g

β , {gj}nj=1, {uk}k∈[2n]\{n+1},H
)

and the master secret key as msk = (u, α, β,R4).

• Enc(mpk, ~x): To generate an encryption under the vector ~x ∈ ZnN . It samples s
$← ZN and define the

ciphertext ct = (ct0, ct1) and a symmetric key key as follows.

ct0 = gs, ct1 = gs·(β+
∑n

i=1 xiα
i), key = H(e(g, un+1)s)

where ct1 is computed as
(
gβ ·

∏n
i=1 g

xi
i

)s
and the symmetric key key is computed as H(e(g1, un)s).

The algorithm finally outputs (ct, key).

• KeyGen(msk, ~y): The secret key for the vector ~y = (y1, · · · , yn) ∈ ZnN is given by

sk~y =

(
n∏
i=1

uα
i·yi

)β
·R′4

where R′4
$← Gp4 is sampled using R4.

• Dec(ct, ~x, ~y, sk~y): Let ω = 〈~x, ~y〉 mod N . If ω 6= 0 the algorithm computes

Ai =

n∏
j=1,j 6=i

u
xj

n+1+j−i, ∀i ∈ [n]

and recover the symmetric key key as

H

((
e(ct1,

∏n
i=1 u

yi
n−i+1)

e(ct0, sk~y ·
∏n
i=1A

yi
i)

)1/ω
)

15

Correctness. The correctness of our construction can be verified as follows

e(ct1,
n∏
i=1

uyin−i+1) =

n∏
i=1

e(gs(β+
∑n

i=1 α
ixi), uα

n−i+1·yi)

=

n∏
i=1

e(gβ ·
n∏
i=1

gxi
i , u

αn−i+1yi)s

=

n∏
i=1

e(gβ ,

n∏
i=1

gα
ixi , uα

n−i+1yi)s

=

n∏
i=1

e(g, u)α
n+1·s·xi·yi ·

n∏
i=1

e

g, uβn−i+1 ·
n∏

j=1,j 6=i

uα
n+1+j−ixj

s·yi

=

n∏
i=1

e(g, u)α
n+1·s·xi·yi ·

n∏
i=1

e(g, uα
n−i+1β ·Ai)s·yi

= e(g, u)α
n+1·s·〈~x,~y〉 · e

(
gs,

n∏
i=1

uα
n−i+1·β·yi , Ayii

)

= e(g, u)α
n+1·s·ω · e

(
ct0, sk~y ·

n∏
i=1

Ayii

)

From the sequence of equations we have that(
e(ct1,

∏n
i=1 u

yi
n−i+1)

e(ct0, sk~y ·
∏n
i=1A

yi
i)

)1/ω

= e(g, un+1)s

8.2 Security Analysis

Theorem 8.1. For any PPT adversary A, there exists an algorithm B = {B1,B2,B3,B4} whose running
times are essentially the same as that of A, such that

AdvS−NIPEA (λ) ≤ AdvDS1
B1

+ AdvDS2
B2

(λ) +O(log λ) · (AdvDS3
B3

(λ) + AdvDS4
B4

(λ)) + 2−Ω(λ)

The security analysis of our NIPE scheme is essentially similar to the security analysis of our broadcast
encryption scheme. Thus we leave its security analysis in the appendix A.

9 Our Functional Commitment Scheme for Linear Functions

In this section we give the description of our tightly secure functional commitment scheme for linear
functions.

9.1 Construction

Our functional commitment scheme for linear functions (Setup,Commit,Open,Vrf) is described as fol-
lows.

• Setup(1λ, 1n): It generates the parameters of bilinear group G = (N,G,GT , e) by executing the algo-

16

rithm G(1λ). The algorithm then samples (g, u, α)
$← G2

p1 × ZN and the randomness R4
$← Gp4 . The

it computes uk = uα
k

R4.k for all k ∈ [2n], where R4.k
$← Gp4 . It outputs the commitment key as

ck = (g, gα, · · · , gα
n

, u1, · · · , un, un+2, · · · , u2n, R4)

and the trapdoor key as tk = un+1.

• Commit(ck, ~m): On input a message vector ~m = (m1, · · · ,mn) ∈ ZnN , it chooses a random value β
$←

ZN and computes the commitment C = gβ+
∑n

j=1mjαj . The commitment C is computed as gβ ·
∏n
j=1 g

mj

j .
Finally it outputs the commitment C and the auxiliary information aux = (m1, · · · ,mn, β).

• Open(ck,C,Wy, ~x, y): Given ~x = (x1, · · · , xn) ∈ Zn, the auxiliary information aux = (m1, · · · ,mn, β)
allows generating a witness for the function 〈~m · ~x〉 =

∑n
i=1mi · xi by computing

Wi = uβn−i+1 ·
n∏

j=1,j 6=i

u
mj

n+1+j−i, ∀i ∈ {1, · · · , n}

and outputting Wy =
∏n
i=1 W

xi
i .

• Vrf(ck,C,Wy, ~x, y): Given the commitment C ∈ G and ~x = (x1, · · · , xn) ∈ ZnN . It accepts the witness
Wy ∈ G as evidence that C is a commitment to the message ~m ∈ ZnN such that y = 〈~m, ~x〉 if and only
if it holds that

e(C,
n∏
i=1

uxi
n−i+1) = e(g, un+1)y · e(g,Wy)

If so, it outputs 1. Otherwise output 0.

Correctness. The correctness of our functional commitment scheme can be verified as follows

e(C,
n∏
i=1

uxi
n−i+1) =

n∏
i=1

e (g, u)
αn+1mixi ·

n∏
i=1

e

g, uβn−i+1 ·
n∏

j=1,j 6=i

u
mj

n+j−i+1

xi

=

n∏
i=1

e (g, un+1)
mi·xi ·

n∏
i=1

e (g,Wi)
xi

= e (g, un+1)
〈~m,~x〉 · e (g,Wy)

9.2 Security Analysis

It is clear that the commitment is perfectly hiding. Since the commitment C is in the cyclic subgroup
Gp1 , and for all message vector ~m = (m1, · · · ,mn) ∈ ZnN has a corresponding opening β ∈ ZN . This even
holds for the openings for the subgroup Gp2p3p4 since only the randomness β and p1 are fixed by ~m. Here
we prove the binding property of our functional commitments.

Theorem 9.1. The functional commitment scheme described in section 9.1 is function binding under the
decisional subgroup assumptions DS1,DS2,DS3,DS4.

The security analysis of our functional commitment scheme is essentially similar to the security analysis
of our broadcast encryption scheme and our NIPE scheme. Thus we leave its security analysis in the
appendix B.

17

Open Problem. Our constructions (both BE scheme and NIPE scheme) achieves tight security but it
is only achieved in the selective security model. It would be interesting to strengthen it to semi-static or
adaptive security. Furthermore, how to shrink the size of the public parameters and how to find a prime-order
BE or NIPE with tight reduction and same parameter sizes are also interesting problems.

Acknowledgement. The author wants to thank Jie Chen for insightful discussions.

References

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with
short ciphertexts and private keys. In Advances in Cryptology–CRYPTO 2005, pages 258–275.
Springer, 2005.

[BL16] Xavier Boyen and Qinyi Li. Towards tightly secure short signature and ibe. Cryptology ePrint
Archive, Report 2016/498, 2016. http://eprint.iacr.org/2016/498.

[Che16] Jie Chen. Tightly secure ibe under constant-size master public key. Cryptology ePrint Archive,
Report 2016/891, 2016. http://eprint.iacr.org/2016/891.

[CLR16] Jie Chen, Benôıt Libert, and Somindu Ramanna. Non-zero inner product encryption with short
ciphertexts and private keys. 2016.

[CM14] Melissa Chase and Sarah Meiklejohn. Déja q: Using dual systems to revisit q-type assumptions.
In Advances in Cryptology–EUROCRYPT 2014, pages 622–639. Springer, 2014.

[CW13] Jie Chen and Hoeteck Wee. Fully,(almost) tightly secure ibe and dual system groups. In Advances
in Cryptology–CRYPTO 2013, pages 435–460. Springer, 2013.

[DPP07] Cécile Delerablée, Pascal Paillier, and David Pointcheval. Fully collusion secure dynam-
ic broadcast encryption with constant-size ciphertexts or decryption keys. In Pairing-Based
Cryptography–Pairing 2007, pages 39–59. Springer, 2007.

[FN94] Amos Fiat and Moni Naor. Broadcast encryption. In Advances in Cryptology—CRYPTO’93,
pages 480–491. Springer, 1994.

[GDCC16] Junqing Gong, Xiaolei Dong, Jie Chen, and Zhenfu Cao. Efficient ibe with tight reduction to
standard assumption in the multi-challenge setting. Cryptology ePrint Archive, Report 2016/860,
2016. http://eprint.iacr.org/2016/860.

[GW09] Craig Gentry and Brent Waters. Adaptive security in broadcast encryption systems (with short
ciphertexts). In Advances in Cryptology-EUROCRYPT 2009, pages 171–188. Springer, 2009.

[Hof16a] Dennis Hofheinz. Adaptive partitioning. 2016.

[Hof16b] Dennis Hofheinz. Algebraic partitioning: Fully compact and (almost) tightly secure cryptography.
In Theory of Cryptography Conference, pages 251–281. Springer, 2016.

[LRY16] Benôıt Libert, Somindu Ramanna, and Moti Yung. Functional commitment schemes: From
polynomial commitments to pairing-based accumulators from simple assumptions. In 43rd In-
ternational Colloquium on Automata, Languages and Programming (ICALP 2016), 2016.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple assump-
tions. In Advances in Cryptology-CRYPTO 2009, pages 619–636. Springer, 2009.

[Wee16] Hoeteck Wee. Déjà q: Encore! un petit ibe. In Theory of Cryptography, pages 237–258. Springer,
2016.

18

http://eprint.iacr.org/2016/498
http://eprint.iacr.org/2016/891
http://eprint.iacr.org/2016/860

Appendices

Appendix A Proof of Our NIPE Scheme

Here we prove the selective security with tight reductions of our NIPE scheme. First we recall the
theorem 8.1. We want to prove that for any PPT adversary A, there exists an algorithm B = {B1,B2,B3,B4}
whose running times are essentially the same as that of A, such that

AdvS−NIPE
A (λ) ≤ AdvDS1

B1
+ AdvDS2

B2
(λ) +O(log λ) · (AdvDS3

B3
(λ) + AdvDS4

B4
(λ)) + 2−Ω(λ)

We prove it formally as follows.

Proof. To prove the security of our NIPE, we need to define the following three kinds of family of functions
to modify the distribution of public parameters.

1. The family of functions {F2i : [2n]→ Zp2}
dlogn+1e
i=0 such that for all k ∈ [2n],

F2i(k) =

2i∑
j=1

rj · αkj mod p2 for all i ∈ [1, · · · , dlog n+ 1e], F0(k) = 0

where r1, · · · , r2i , α1, · · · , α2i
$← Zp2 .

2. The family of functions {F̂2i : [2n]→ Zp3}
dlogn+1e
i=0 such that for all k ∈ [2n],

F̂2i(k) =

2i∑
j=1

r̂j · α̂kj mod p3 for all i ∈ [1, · · · , dlog n+ 1e], F0(k) = 0

where r̂1, · · · , r̂2i , α̂1, · · · , α̂2i
$← Zp3 .

3. The family of functions {F̂2i

′
: [2n]→ Zp2}

dlogn+1e
i=0 such that for all k ∈ [2n],

F̂2i

′
(k) =

2i∑
j=1

rj · αkj + r̂j · α̂kj mod p2 for all i ∈ [1, · · · , dlog n+ 1e], F0(k) = 0

where r1, · · · , r2i , α1, · · · , α2i , r̂1, · · · , r̂2i , α̂1, · · · , α̂2i
$← Zp2 .

Respectively we need the three kinds of parameters used in the hybrid arguments in order to modify the
distribution of {uk}k∈[2n]

1. Type i parameters (0 ≤ i ≤ dlog n + 1e): are parameters where {uk}k∈[2n] have a Gp2 component
determined by the function F2i(·), such that

uk = uα
k

· gF2i (k)
2 ·R4.k, ∀k ∈ [2n]

2. Type i.1 parameters (0 ≤ i ≤ dlog n+1e): are parameters where {uk}k∈[2n] have bothGp2 component
and Gp3 component, where Gp2 component is still determined by the function F2i(·) as above, and the

19

Gp3 component is determined by another function F̂2i(·) such that

uk = uα
k

· gF2i (k)
2 · gF̂2i (k)

3 ·R4.k, ∀k ∈ [2n]

3. Type i.2 parameters (0 ≤ i ≤ dlog n+ 1e): are parameters where {uk}k∈[2n] have a Gp2 component

determined by the function F̂2i

′
(·), such that

uk = uα
k

· gF̂2i
′
(k)

2 ·R4.k, ∀k ∈ [2n]

Now we are ready to define hybrid arguments. The proof proceeds through a sequence of hybrids: Hyb0,

Hyb1, Hyb2, Hyb3.i for all i ∈ [1, · · · , dlog n + 1e], and Hyb4. We define Adv
Hybx.y.z

A (λ) as the advantage
function in hybrid Hybx.y.z.

Hyb0: is the real game as the selective security definition of NIPE scheme.

Hyb1: is equivalent to Hyb0, except that in this hybrid the challenger chooses β̃
$← ZN and sets β =

β̃ −
∑n
i=1 α

ix∗i where ~x∗ = (x∗1, · · · , x∗n). The challenger sets gβ = gβ̃
∏n
i=1 g

−x∗i
i . Thus the ciphertext

ct∗ = (ct∗0, ct
∗
1) and the symmetric key key∗0 is computed as follows

ct∗0 = gs, ct∗1 = gs·β̃ , key = H(e(gs, un+1))

It is easy to see that we have Adv
Hyb0
A (λ) = Adv

Hyb1
A (λ)

Hyb2: is equivalent to Hyb1, except that the challenger picks ct0 uniformly at random in the subgroup

Gp1p2p3 instead of from Gp1 . More specifically, the challenger samples s
$← ZN , it computes ct0 = (g1g2g3)s,

ct1 = (g1g2g3)s·β̃ , and key = H(e((g1g2g3)s, un+1)).

Lemma A.1. Under the decisional subgroup assumption DS1, we have∣∣∣Adv
Hyb1
A (λ)−Adv

Hyb2
A (λ)

∣∣∣ ≤ AdvDS1
B1

(λ)

Proof. Given (G, g1, g4, T) where either T ← Gp1 or T ← Gp1p2p3 , we build a reduction B1 working as
follows.

• Commitment Phase: The adversary A commits to a vector ~x∗ = (x∗1, · · · , x∗n).

• Setup Phase: Pick parameters (α, β̃, u)
$← Z2

N × Gp1 , β = β̃ −
∑n
i=1 α

ix∗i . Select the hash function

H, all randomness R4.k
$← Gp4 for k = 1, · · · , 2n and R4

$← Gp4 . It outputs the public parameters

mpk = (G, g, gβ , e(g, un+1),H, gα1 , · · · , gα
n

1 , u1, · · · , un, un+2, · · · , u2n)

and keeps the master secret key msk = (u, α, β,R4) privately.

• Key Extraction: Upon a key query on vector ~y ∈ ZnN , the adversary is given a secret key sk~y =∏n
i=1 u

yi
n−i+1 ·R′4 where R′4

$← Gp4 is sampled using R4.

• Challenge Phase: Sample the random value s′
$← ZN , and compute the ciphertext ct∗ = (ct∗0 =

T s
′
, ct∗1 = (T s

′
)β̃) and the symmetric key key∗0 = H(e(T s

′
, un+1)). The reduction B1 picks random

key∗1
$← {0, 1}λ and return (ct∗, key∗b), where b is a random coin.

20

• Guess: The reduction B1 returns 1 if b = b′. Otherwise it returns 0.

Observe that when T ← Gp1 , the simulation is identical to Hyb1; when T ← Gp1p2p3 , the simulation is
identical to Hyb2. This proves the lemma.

Hyb3.i(0 ≤ i ≤ dlog n+ 1e): is equivalent to Hyb2, except that in this hybrid the adversary is given Type
i parameters. In order to prove Hyb3.i is computationally indistinguishable from Hyb3.i+1, we need two
additional sub-hybrids as follows

• Hyb3.i.1(0 ≤ i ≤ dlog n+ 1e): is equivalent to Hyb3.i, except that the adversary is given Type i.1 pa-
rameters.

• Hyb3.i.2(0 ≤ i ≤ dlog n+ 1e): is equivalent to Hyb3.i.1, except that the adversary is given Type i.2
parameters.

We first prove that Hyb2 is computationally indistinguishable from Hyb3.0 under the decisional subgroup
assumption DS2.

Lemma A.2. Under the decisional subgroup assumption DS2, we have∣∣∣Adv
Hyb3.0
A (λ)−Adv

Hyb2
A (λ)

∣∣∣ ≤ AdvDS2
B2

(λ)

Proof. Given the instance (G, g ∈ Gp1 , g4 ∈ Gp4 , X1X2X3 ∈ Gp1p2p3 , T) where either T = u
$← Gp2 or

T = ugr2
$← Gp1p2 . We build a reduction B2 simulating the game as follows:

• Commitment Phase: The adversary A commits to a vector ~x∗ = (x∗1, · · · , x∗n) ∈ ZnN .

• Setup Phase: The challenger picks (α, β̃, u)
$← Z2

N×Gp1 , set β = β̃−
∑n
i=1 α

i ·x∗i . The challenger then

selects a pairwise-independent hash function H, and sample all randomness R4.k
$← Gp4 for k ∈ [2n]

and R4
$← Gp4 . Define gj = gα

j

for j ∈ [n] and compute each uk as

uk = Tα
k

R4.k

for each k ∈ [2n]. Proceed as Hyb2 to compute the public parameters

mpk = (G, g, gβ , {gj}j∈[n], {uk}k∈[2n]\{n+1},H)

the public parameters mpk is sent to the adversary A and the challenger keeps the master secret key
msk = (u,R4, α, β) privately.

• Key Extraction Phase: Upon query on the vector ~y ∈ ZnN , the adversary is given a secret key for
the vector ~y as

sk~y = (

n∏
i=1

uyin−i+1) ·R′4

where R′4
$← Gp4 is sampled using R4.

• Challenge Phase: Sample the random value s′
$← ZN , and compute the ciphertext ct∗ = (ct∗0 =

(X1X2X3)s
′
, ct∗1 = ((X1X2X3)s

′
)β̃) and the symmetric key key∗0 = H(e((X1X2X3)s

′
, un+1)). The

reduction B2 picks random key∗1
$← {0, 1}λ and return (ct∗, key∗b), where b is a random coin.

21

• Guess: The adversary returns a bit b′, the reduction B2 returns 1 if b = b′ and 0 otherwise.

Observe that if T = u, the simulation is identical to Hyb2; If T = ugr2, the simulation is identical to Hyb3.0.
This proves the lemma.

Then we are left to prove Hyb3.i is computationally indistinguishable from Hyb3.i+1 for all i ∈ [1, · · · , dlog n+
1e] through the following two lemmas.

Lemma A.3. Under the decisional subgroup assumption DS3, we have∣∣∣Adv
Hyb3.i.1
A (λ)−Adv

Hyb3.i
A (λ)

∣∣∣ ≤ AdvDS3
B3

(λ)

for all i ∈ [1, · · · , dlog n+ 1e].

Proof. Given the instance (G, g ∈ Gp1 , g4 ∈ Gp4 , X1X2X3, T) where either T = g2
$← Gp2 or T = g2g3

$←
Gp2p3 . We build a reduction B3 working as follows:

• Commitment Phase: The adversary A commits to a vector ~x∗ = (x∗1, · · · , x∗n) ∈ ZnN .

• Setup Phase: The challenger picks (α, β̃, u)
$← Z2

N×Gp1 , set β = β̃−
∑n
i=1 α

i ·x∗i . The challenger then

selects a pairwise-independent hash function H, and sample all randomness R4.k
$← Gp4 for k ∈ [2n]

and R4
$← Gp4 . Define gj = gα

j

for j ∈ [n] and compute each uk as

uk = T
∑2i

j=1 r
′
jα
′k
j R4.k

for each k ∈ [2n], where r′1, · · · , r′2i , α′1, · · · , α′2i

$← Zp2 . Proceed as Hyb2 to compute the public
parameters

mpk = (G, g, gβ , {gj}j∈[n], {uk}k∈[2n]\{n+1},H)

the public parameters mpk is sent to the adversary A and the challenger keeps the master secret key
msk = (u,R4, α, β) privately.

• Key Extraction Phase: Upon query on the vector ~y ∈ ZnN , the adversary is given a secret key for
the vector ~y as

sk~y = (

n∏
i=1

uyin−i+1) ·R′4

where R′4
$← Gp4 is sampled using R4.

• Challenge Phase: Sample the random value s′
$← ZN , and compute the ciphertext ct∗ = (ct∗0 =

(X1X2X3)s
′
, ct∗1 = ((X1X2X3)s

′
)β̃) and the symmetric key key∗0 = H(e((X1X2X3)s

′
, un+1)). The

reduction B2 picks random key∗1
$← {0, 1}λ and return (ct∗, key∗b), where b is a random coin.

• Guess: The adversary returns a bit b′, the reduction B3 returns 1 if b = b′ and 0 otherwise.

observe that when T = g2, the simulation is identical to Hyb3.i; When T = g2g3, the simulation is identical
to Hyb3.i.1, where for all j ∈ [2i] we have αj = α′j mod p2, rj = r′j mod p2, α̂j = α′j mod p3, and r̂j = r̂′j
mod p3. This proves the lemma.

22

Lemma A.4. Under the decisional subgroup assumption DS4, we have∣∣∣Adv
Hyb3.i.1
A (λ)−Adv

Hyb3.i.2
A (λ)

∣∣∣ ≤ AdvDS4
B4

(λ)

for all i ∈ [1, · · · , dlog n+ 1e].

Proof. Given the instance (G, g ∈ Gp1 , g4 ∈ Gp4 , X1X2X3 ∈ Gp1p2p3 , Y2Y4 ∈ Gp2p4 , T) where either T ∈
Gp2p4 or T = Gp3p4 . We build a reduction B4 working as follows.

• Commitment Phase: The adversary A commits to a vector ~x∗ = (x∗1, · · · , x∗n) ∈ ZnN .

• Setup Phase: The challenger picks (α, β̃, u)
$← Z2

N×Gp1 , set β = β̃−
∑n
i=1 α

i ·x∗i . The challenger then

selects a pairwise-independent hash function H, and sample all randomness R4.k
$← Gp4 for k ∈ [2n]

and R4
$← Gp4 . Define gj = gα

j

for j ∈ [n] and compute each uk as

uk = uα
k

· (Y2Y4)
∑2i

j=1 r
′
jα
′k
j · T

∑2i

j=1 r̂j α̂
k
j ·R4.k

for each k ∈ [2n],

where r′1, · · · , r′2i , α′1, · · · , α′2i , r̂1, · · · , r̂2i , α̂1, · · · , α̂2i
$← Zp2 . Proceed as Hyb2 to compute the public

parameters
mpk = (G, g, gβ , {gj}j∈[n], {uk}k∈[2n]\{n+1},H)

the public parameters mpk is sent to the adversary A and the challenger keeps the master secret key
msk = (u,R4, α, β) privately.

• Key Extraction Phase: Upon query on the vector ~y ∈ ZnN , the adversary is given a secret key for
the vector ~y as

sk~y = (

n∏
i=1

uyin−i+1) ·R′4

where R′4
$← Gp4 is sampled using R4.

• Challenge Phase: Sample the random value s′
$← ZN , and compute the ciphertext ct∗ = (ct∗0 =

(X1X2X3)s
′
, ct∗1 = ((X1X2X3)s

′
)β̃) and the symmetric key key∗0 = H(e((X1X2X3)s

′
, un+1)). The

reduction B2 picks random key∗1
$← {0, 1}λ and return (ct∗, key∗b), where b is a random coin.

• Guess: The adversary returns a bit b′, the reduction B4 returns 1 if b = b′ and 0 otherwise.

Observe that if T ∈ Gp3p4 , the simulation is identical to Hyb3.i.1 and if T ∈ Gp2p4 , then the simulation is
identical to Hyb3.i.2.

It is easy to notice that Adv
Hyb3.i.2
A (λ) is identical to Adv

Hyb3.i+1

A (λ) since all rj and all r′j are i.i.d

variables in Hyb3.i.2, by setting α2i+j = α̂j , r2i+j = r̂j for all j ∈ [2i].

Hyb4: is equivalent to Hyb3.dlogn+1e, except that for each k ∈ [2n], each uk is in the form

uα
k

g
RF(k)
2 R4.k

where g2 ← Gp2 and RF(·) is a truly random function, which determines the Gp2 component of each uk.

23

We argue that any legitimate adversary’s view remains statistically close to that of Hyb3.dlogn+1e. To
see this, we first notice that the Gp2 component of the secret keys contain linear combinations of RF(k) in
the exponent excluding RF(n + 1). Recall that the adversary can only make private key queries on vectors
~y under the restriction that 〈~y, ~x〉 = 0. In order to generate a secret key for the vector ~y, the challenger set

β = β̃−
∑n
i=1 α

i ·x∗i to create a Gp1 component with the exponent (
∑n
i=1 yi ·αn−i+1) ·(β̃−

∑n
i=1 α

i ·x∗i). Note
that the coefficient of αn+1 is the inner product of ~x and ~y, which is 0 for all legal private key queries. Hence,
each sk~y can be computed without using un+1, ensuring that RF(n+ 1) remains completely independent of
any information revealed to the adversary. As a result, the distribution of

key∗0 = e ((X1X2X3)s, un+1)

= e
(

(X1X2X3)s, uα
n+1

g
RF(n+1)
2 R4.n+1

)
= e

(
(X1X2X3)s, uα

n+1
)
· e
(

(X1X2X3)s, g
RF(n+1)
2

)
is statistically close to the uniform distribution over {0, 1}λ as long as the Gp2 component of ct∗0 = (X1X2X3)s

is not 1. This follows from the fact that if e ((X1X2X3)s, g2) 6= 1GT
, theGp2 component of e

(
(X1X2X3)s, g

RF(n+1)
2

)
has log p2 = Θ(λ) bits of min-entropy. Since H is a pairwise-independent hash function, the left-over hash
lemma ensures that the distribution of key∗0 is within 2−λ from the uniform distribution over {0, 1}λ. This
implies that ∣∣∣Adv

Hyb3.dlog n+1e
A (λ)−Adv

Hyb4
A (λ)

∣∣∣ ≤ 2−Ω(λ)

Now since the random bit b ∈ {0, 1} is completely hidden, we have Adv
Hyb4
A (λ) = 0. This finishes the

proof.

Appendix B Proof of Our FC Scheme

In this section we prove the function binding property of our functional commitment scheme for linear
functions.

Proof. We first assume that y′ 6= y mod pi for each i ∈ {1, 2, 3, 4}. To see why, we recall the binding game,
in which in order to break the binding property, the adversary A must come up with a commitment C ∈ G,
a vector ~x = (x1, · · · , xn) ∈ ZnN and a pair y, y′ ∈ ZN , y 6= y′ and Wy,W

′
y ∈ G such that

e(C,
n∏
i=1

uxi
n−i+1) = e(g, un+1)y · e(g,Wy) (4)

e(C,
n∏
i=1

uxi
n−i+1) = e(g, un+1)y

′
· e(g,Wy′) (5)

By dividing both sides of the above two equations, we have e(g, un+1)y−y
′

= e(g,Wy′/Wy) ⇔ e(g, un+1) =

e(g, (Wy′/Wy))1/(y−y′) = e(g, Ŵ).

If gcd(y′ − y,N) = 1, then Ŵ = (Wy′/Wy)1/(y−y′) is of the form uα
n+1 · gr22 · g

r3
3 · g

r4
4 for some random

r2 ∈ Zp2 , r3 ∈ Zp3 and r4 ∈ Zp4 . In the following context, we denote by W̃ = uα
n+1 · gr22 · g

r4
4 that can be

seen as a semi-functional trapdoor in that it is equivalent to a product of the normal trapdoor key tk with
a Gp2 component. Ŵ can be seen as a shadow semi-functional trapdoor in that it is equivalent to a product
of the normal trapdoor key tk with a Gp2 component and a Gp3 component.

Before we introduce the hybrid arguments used in this proof, we first introduce the following kinds of

24

attacks that will be used.

• Type-I Attack: these attacks are those for which (Wy′/Wy)1/(y−y′) lives in the subgroup Gp1p4 .

• Type-II.i Attack: these attacks are those such that Ŵ = (Wy′/Wy)1/(y−y′) has a Gp2 component,
in which r2 6= 0, and is thus a semi-functional trapdoor. More concretely, r2 is determined by the

function family {F2i(·)}dlogn+1e
i=0 such that for all k ∈ [2n]

F2i(k) =

2i∑
j=1

rj · αkj mod p2, ∀i ∈ [1, dlog n+ 1e] F0(k) = 0

where r1, · · · , r2i , α1, · · ·α2i
$← Zp2 are chosen at random for each i by the challenger that generates

ck for the adversary.

• Type-II.i.1 Attack: these attacks are those such that Ŵ = (Wy′/Wy)1/(y−y′) has a Gp2 component
and an additional Gp3 component, in which r2 6= 0 and r3 6= 0, and is thus a shadow semi-functional

trapdoor. Thus Ŵ = uα
n+1 · gF2i (n+1)

2 · gF̂2i (n+1)
3 · R′′4 for some R′′4 ∈ Gp4 . More concretely, r2 is

determined by the function family {F2i(·)}dlogn+1e
i=0 defined above and r3 is determined by the function

family {F̂2i(·)}dlogn+1e
i=0 such that for all k ∈ [2n]

F̂2i(k) =

2i∑
j=1

r̂j · α̂kj mod p2, ∀i ∈ [1, dlog n+ 1e] F̂0(k) = 0

where r̂1, · · · , r̂2i , α̂1, · · · , α̂2i
$← Zp3 are chosen at random for each i by the challenger that generates

ck for the adversary.

• Type-II.i.2 Attack: these attacks are those such that Ŵ = (Wy′/Wy)1/(y−y′) has a Gp2 component,
in which r2 6= 0, and is thus a semi-functional trapdoor. More concretely, r2 is determined by a new

function family {F̂2i

′
(·)}dlogn+1e

i=0 such that for all k ∈ [2n]

F̂2i

′
(k) =

2i∑
j=1

rj · αkj + r̂j · α̂kj , ∀i ∈ [1, dlog n+ 1e] F̂0

′
(k) = 0

where r1, · · · , r2i , α1, · · ·α2i , r̂1, · · · , r̂2i , α̂1, · · · , α̂2i
$← Zp2 are chosen at random for each i by the

challenger that generates ck for the adversary.

Furthermore, we define the following types of parameters to be used in this proof.

• Type-i Parameters: are parameters where elements u1, · · · , u2n now have a Gp2 component r2

determined by {F2i(·)}dlogn+1e
i=0 . Namely uk = uα

k

gr22 R4.k for k ∈ [2n]. These elements induce a
modified joint distribution of ck, which contains the group elements {uk}k∈[2n]\{n+ 1} and tk = un+1.

• Type-i.1 Parameters: are parameters where elements u1, · · · , u2n now have an additional Gp3 com-

ponent r3 determined by the function family {F̂2i(·)}dlogn+1e
i=0 . Namely uk = uα

k · gr22 · g
r3
3 · R4.k for

k ∈ [2n]. These elements induce a modified joint distribution of ck, which contains the group elements
{uk}k∈[2n]\{n+1} and tk = un+1.

• Type-i.2 Parameters: are parameters where elements {uk}k∈[2n] now have Gp2 component r′2 de-

termined by the function family {F̂2i

′
(·)}dlogn+1e

i=0 . Namely uk = uα
k · gr

′
2

2 · R4.k for k ∈ [2n]. These

25

elements induce a modified joint distribution of ck, which contains the group elements {uk}k∈[2n]\{n+1}
and tk = un+1.

The sequence of games begins with the real attack game, where the adversary is given a normal ck. Then
we gradually modify the distribution of ck and prove that, unless either assumption DS1,DS2,DS3 or DS4
is false, the adversary A will produce a Type-II.i attack when fed with Type-i parameters. In the last game,
ck consists of Type-II.dlog n+ 1e.2 parameters and we argue that the adversary A’s advantage in producing
Type-II.dlog n+ 1e.2 attack is statistically negligible. Following the work of [LRY16], we denote by Win� as
the event that the adversary A wins in game � and E� as the even that the adversary A mounts a Type-II.i
attack (including Type-II.i.1 attack and Type-II.i.2 attack) when ck is generated using Type-i parameters
(including Type-i.1 parameters and Type-i.2 parameters), for each i ∈ [0, dlog n + 1e]. For example, we
denote by Win2.i.1 as the event that the adversary wins in game or hybrid Hyb2.i.1 and EII.i.1 as the event
that the adversary mounts a Type-II.i.1 attack when ck is generated using Type-i.1 parameters

Hyb1: In this hybrid the adversary A receives a commitment key ck which is as in the real scheme. The
following lemma B.1 shows that if DS1 holds, any PPT adversary A cannot produce anything but a Type-I
attack.

Lemma B.1. Under the decisional subgroup assumption DS1, we have

Pr[Win1 ∧ ¬EI] ≤ AdvDS1
B1

(λ)

Proof. Let A be an adversary that mounts a Type-II attack (for any k) when fed with a commitment key ck
in the normal form. We will build a reduction B1 that takes as input the tuple (g ∈ Gp1 , g4 ∈ Gp4 , T) and
finds an element γ of Gp2p4 with a non-trivial Gp2 component. In turn such an γ ∈ Gp2p4 allows deciding
whether T ∈ Gp1 or T ∈ Gp1p2 since e(γ, T) = 1GT

when T ∈ Gp1 . The reduction B1 works as follows.

The reduction B1 honestly generates the commitment key ck using its input elements g ∈ Gp1 and
g4 ∈ Gp4 . The commitment key ck is given to the adversary A and it will submits a commitment C ∈ G, a
pair of linear function results y, y′ ∈ ZN and two witnesses Wy,Wy′ ∈ G such that they satisfy the relation

(1) and (2) and the reduction computes W̃ = (Wy/Wy′)
1/(y−y′) has a non-trivial Gp2 element. Moreover the

reduction B1 could divide uα
n+1

to cancel out the Gp1 element inside of W̃ by computing γ = W̃/uα
n+1

, which
is an element of Gp2p4 with a non-trivial Gp2 component. Finally the reduction B1 outputs 1 if e(γ, T) = 1GT

and outputs 0 otherwise.

Now we are left to bound the term Pr[Win1 ∧EI] since Pr[Win1] = Pr[Win1 ∧EI] + Pr[Win1 ∧¬EI]. Now
we define the hybrid Hyb2.i.

Hyb2.i: In this game, for each 0 ≤ i ≤ dlog n+ 1e, the commitment key ck and the trapdoor key tk = un+1

now have a modified distribution obtained by having the challenger generate Type-i parameters before
giving ck to the adversary A. Thus {uk}k∈[2n] now have a Gp2 component determined by the function family

{F2i(·)}dlogn+1e
i=0 . uk = uα

k

g
F2i (k)
2 R4.k for all k ∈ [2n].

The following lemma B.2 shows that, under the decisional subgroup assumption DS2, the probability
that A’s attack reveals a semi-functional trapdoor key tk of the same type as ck is about the same in Hyb1

and Hyb2.0.

Lemma B.2. Under the decisional subgroup assumption DS2, we have

|Pr[Win1 ∧ EI]− Pr[Win2.0 ∧ EII.0]| ≤ AdvDS2
B2

(λ)

Proof. To prove this, we first assume that there exists an adversaryA such that ε = |Pr[WinI ∧ EI]− Pr[WinII.0 ∧ EII.0]|
is non-negligible. We build a reduction B2 with advantage no less than ε to break the decisional subgroup
assumption DS2 successfully.

26

Given the tuple (g ∈ Gp1 , g4 ∈ Gp4 , X1X2X3 ∈ Gp1p2p3 , T), the reduction B2 uses the adversary A to
decide T ∈ Gp1 or T ∈ Gp1p2 . The reduction B2 generates the commitment key ck and the trapdoor key tk as

follows. It picks the random parameter α
$← ZN and define gj = gα

j

for each j ∈ [n]. It chooses α1, r1
$← ZN

and computes uk = Tα
k

R4.k for each k ∈ [2n], where R4.k
$← Gp4 , and it chooses a random element

R4
$← Gp4 . Then the commitment key ck = (g, {gj}nj=1, {uk}k∈[2n]\{n+1}, R4) is given to the adversary A

while the reduction B2 keeps the trapdoor tk = un+1 · R4.n+1 privately. Then A is expected to output a
commitment C ∈ G, y, y′ ∈ ZN and two witnesses Wy,Wy′ ∈ G such that y 6= y′ that satisfy the relation (1)

and (2). Finally the reduction B2 computes Ŵ = (Wy′/Wy)1/(y−y′), which must be of the form uα
n+1

gr22 g
r4
4 ,

and checks e(X1X2X3, Ŵ/uα
n+1

) = 1GT
. If it holds, this means that Ŵ ∈ Gp1p4 and T ∈ Gp1 , it outputs 1.

Otherwise Ŵ ∈ Gp1p2p4 and it outputs 0.

Now we are left to prove that |Pr[Win2.i ∧ EII.i]− Pr[Win2.i−1 ∧ EII.i−1]| for all i ∈ [1, dlog n + 1e]
is negligible. Before we prove this, we introduce the following two sub-hybrid arguments for each i ∈
[1, dlog n+ 1e].

Hyb2.i.1: In this game the commitment key ck and the trapdoor key tk = un+1 now have a modified
distribution obtained by having the challenger generate Type-i.1 parameters before given ck to the adversary
A. Thus the elements {uk}k∈[2n] now have an additional Gp3 component determined by the function family

{F̂2i(·)}dlogn+1e
i=0 . That is uk = uα

k

g
F2i (k)
2 g

F̂2i (k)
3 R4.k for all k ∈ [2n].

Hyb2.i.2: In this game the commitment key ck and the trapdoor key tk = un+1 now have a modified
distribution obtained by having the challenger generate Type-i.2 parameters before giving ck to the adversary
A. The elements {uk}k∈[2n] now have a Gp2 component (but no Gp3 component) determined by the family

of functions {F̂2i

′
(·)}dlogn+1e

i=0 . That is uk = uα
k

g
F̂2i
′
(k)

2 R4.k for each k ∈ [2n].

In the following context, the lemma B.3 shows that for each i ∈ [1, dlog n + 1e], under the decisional
subgroup assumption DS3, the probability that A’s attack reveals a shadow semi-functional trapdoor key
tk of the same type as ck is about the same in Hyb2.i and Hyb2.i.1. The lemma B.4 shows that for each
i ∈ [1, dlog n+ 1e], under the decisional subgroup assumption DS4, the probability that A’s attack reveals a
shadow semi-functional trapdoor key tk of the same type as ck is about the same in Hyb2.i.1 and Hyb2.i.2.

Lemma B.3. Under the decisional subgroup assumption DS3, we have

|Pr[Win2.i ∧ EII.i]− Pr[Win2.i.1 ∧ EII.i.1]| ≤ AdvDS3
B3

(λ)

Proof. Assume that there exists i ∈ [1, · · · , dlog n+ 1e] and PPT adversaries A such that

ε = |Pr[Win2.i ∧ EII.i]− Pr[Win2.i.1 ∧ EII.i.1]|

is non-negligible. We build a distinguisher B3 with advantage at least ε against the decisional subgroup
assumption DS3.

Given (g1 ∈ Gp1 , g4 ∈ Gp4 , X1X2X3 ∈ Gp1p2p3 , T), the reduction B3 uses A to decide T ∈ Gp2 or

T ∈ Gp2p3 . The reduction B3 generates the commitment key ck and the trapdoor tk as follows: α
$← ZN ,

gj = gα
j

for j ∈ [1, n]. Choose α′1, · · · , α′2i , r′1, · · · , r′2i

$← ZN and computes uk = uα
k

T
∑2i

j=1 r
′
jα
′k
j R4.k for each

k ∈ [1, dlog n+1e], R4.k
$← Gp4 , R4

$← Gp4 . Then the commitment key ck = (g, {gj}nj=1, {uk}k∈[2n]\{n+1}, R4)
is given to the adversary A while B3 keeps the trapdoor key tk = un+1 · R4.n+1 privately. The adversary
A is expected to output the commitment C ∈ G, y, y′ ∈ ZN and Wy,Wy′ ∈ G such that y 6= y′ and

which satisfy the relation. At this point, B3 computes Ŵ = (Wy′/Wy)1/(y−y′), which must be of the form

Ŵ = uα
n+1

gr22 g
r3
3 g

r4
4 . The reduction check e(X1X2X3, Ŵ/un+1) = 1GT

. If so, it outputs 1, which means
T ∈ Gp2 . Otherwise it outputs 0, which means T ∈ Gp2p3 .

27

Lemma B.4. Under the decisional subgroup assumption DS4, we have

|Pr[Win2.i.1 ∧ EII.i.1]− Pr[Win2.i.2 ∧ EII.i.2]| ≤ AdvDS4
B4

(λ)

Proof. Assume that there exists i ∈ [1, dlog n+ 1e] and a PPT adversary A such that

ε = |Pr[WinII.i.1 ∧ EII.i.1]− Pr[WinII.i.2 ∧ EII.i.2]|

is non-negligible, we build a reduction B4 with advantage at least ε against the decisional subgroup assump-
tion DS4.

Given the tuple (g1 ∈ Gp1 , g4 ∈ Gp4 , X1X2X3 ∈ Gp1p2p3 , Y2Y4 ∈ Gp2p4 , T), the reduction B4 uses the
adversary A to decide if T ∈ Gp2p4 or T ∈ Gp3p4 . The reduction B4 generates the commitment key ck

and the trapdoor key tk as follows: It samples α
$← ZN , define gj = gα

j

for each j ∈ [n]. It samples

α′1, · · · , α′2i , r′1, · · · , r′2i , α̂1, · · · , α̂2i , r̂1, · · · , r̂2i
$← ZN . Compute uk = uα

k

(Y2Y4)
∑2i

j=1 r
′
jα
′k
j T

∑2i

j=1 r̂
′
j α̂
′k
j R4.k

for each k ∈ [2n]. R4.k
$← Gp4 . The commitment key ck = (g, {gj}nj=1, {uk}k∈[2n]\{n+1}, R4) is given to

the adversary A while the reduction B4 keeps the trapdoor key tk = un+1 privately. Then the adversary A
is expected to output a commitment C ∈ G, y, y′ ∈ ZN , Wy,Wy′ ∈ G such that y 6= y′ and which satisfy

relations. At this point Ŵ = (Wy′/Wy)1/(y−y′), which must be of the form Ŵ = uα
n+1

gr22 g
r3
3 g

r4
4 . Finally the

reduction check e(X1X2X3, Ŵ/un+1) = 1GT
. If so, it outputs 1, which means that T ∈ Gp2p4 . Otherwise it

outputs 0, which means that T ∈ Gp3p4 .

It is easy to see that Hyb2.i.2 is equivalent to Hyb2.i+1 by setting α2i+j = α̂j and r2i+j = r̂j for all
j ∈ [2i] because all rj and all r′j are i.i.d variables in Hyb2.i.2.

We conclude the proof by observe that Pr[Win2.dlogn+1e ∧ EII.dlogn+1e] ≤ 1/p2 which is negligible. To
see this, it suffices to observe that the function F2dlog n+1e(·) is a random function in the adversary’s view, as
shown in the core lemma 6.1. Hence the function evaluation F2dlog n+1e(n+1) is statistically indistinguishable
from the uniform distribution over Zp2 . This will lead to a 2−Ω(λ) security loss due to the left-over hash
lemma. This finishes the proof.

28

	Introduction
	Our Contributions
	Outline of Our Constructions and Proofs
	Related Work
	Paper Organization
	Preliminaries
	Composite-Order Bilinear Groups and Cryptographic Assumptions
	Broadcast Encryption
	Non-Zero Inner Product Encryption (NIPE)
	Functional Commitments for Linear Functions
	Core Lemma

	Our Broadcast Encryption Scheme
	Construction
	Security Analysis

	Our Tightly Secure Non-Zero Inner Product Encryption Scheme
	Construction
	Security Analysis

	Our Functional Commitment Scheme for Linear Functions
	Construction
	Security Analysis

	Appendix Proof of Our NIPE Scheme
	Appendix Proof of Our FC Scheme

