Constant-deposit multiparty lotteries on Bitcoin

Massimo Bartoletti ${ }^{1}$ and Roberto Zunino ${ }^{2}$
${ }^{1}$ Università degli Studi di Cagliari, Cagliari, Italy
${ }^{2}$ Università degli Studi di Trento, Trento, Italy

Abstract

An active research trend is to exploit the consensus mechanism of cryptocurrencies to secure the execution of distributed applications. In particular, some recent works have proposed fair lotteries which work on Bitcoin. These protocols, however, require a deposit from each player which grows quadratically with the number of players. We propose a fair lottery on Bitcoin which only requires a constant deposit.

1 Introduction

Recent research on blockchain technologies studies how to extend the applications of cryptocurrencies from simple transfers of money to complex financial transactions. The goal is to make financial agreements or "smart contracts" [20] between mutually distrusting participants, and automatically enforce them via the consensus mechanism of the cryptocurrency, without relying on a trusted third party. In particular, some works propose to run smart contracts on top of existing cryptocurrencies (mostly, on Bitcoin). Many of these approaches, e.g. $[1,6,7,13,14,15]$, implement fair computations, where a set of players contribute to compute a function without revealing their inputs; fairness, studied in various forms, guarantees e.g. that any player that aborts after learning the output pays a penalty to all players that did not learn the output. Other works implement decentralised authorization systems [10], and contracts which allow users to make statements, penalising those which make conflicting ones [19].

A particular kind of smart contract is the one which implements a lottery among a set a players. Intuitively, this is an application where each one of N players puts their bets in a pot, and a winner - uniformly chosen among the players - gets the whole pot. Secure protocols for multiparty lotteries on Bitcoin have been recently proposed by [2,4,5,7]. These protocols enjoy a fairness property, which roughly guarantees that:

- each honest player will have (on average) a non-negative payoff, even in the presence of adversaries who play against;
- when all the players are honest, the protocol behaves as an ideal lottery: one player wins the whole pot, while all the others lose their bets.

To obtain the result, these protocols require that, to bet e.g. 1 coin, each one of the N players must block a deposit of $O\left(N^{2}\right)$ coins throughout the whole protocol. Since the deposit grows quadratically with N, these protocols are only practical for a small number of players. In this paper we address this issue.

Contributions. We propose a fair protocol for multiparty lotteries, whose deposit does not depend on the number N of players. More specifically, our protocol is fair for any choice of the deposit value, including zero (Theorem 5). Furthermore, if the deposit value is positive, an adversary who tries to attack the protocol, with the goal of altering the payoff of honest players, can only lose money on average (Theorem 4). Our protocol is based on a single-elimination tournament, i.e. a tree of $N-1$ two-player matches where the loser of each match is eliminated. Overall, a complete run of the protocol requires $O(N)$ transactions and $O(\log N)$ time (assuming that the time to put transactions on the Bitcoin ledger dominates the time required for communications and local computations).

2 Background on Bitcoin

Bitcoin [18] is a decentralized infrastructure to exchange virtual currency - the bitcoins. All the transfers of currency are recorded on a public, append-only data structure, called blockchain or ledger. Transactions are the basic elements of the ledger, and they denote atomic transfers of bitcoins. To illustrate how Bitcoin works, we consider two transactions T_{0} and T_{1} of the following form:

T_{0}
in: \cdot
in-script: \cdots
out-script $(\mathrm{T}, \sigma): \operatorname{ver}_{k}(\mathrm{~T}, \sigma)$ value: v_{0}

T_{1}
$\left.$in: T_{0} in-script: $\operatorname{sig}_{k}(\bullet)$ out-script $(\cdots): \cdots$ value: $v_{1}$${ }^{-\cdots} \right\rvert\,$

The transaction T_{0} contains a value $v_{0} \mathrm{~B}$. This amount of bitcoins can be redeemed by anyone who can meet the criterion specified in T_{0} 's out-script, a programmable boolean function. Anyone can redeem T_{0} by putting on the ledger a transaction (e.g., T_{1}), whose in field is the hash of the whole T_{0} (for simplicity, displayed as T_{0} in the figure), and whose in-script contains values making the out-script of T_{0} evaluate to true. When this happens, the value of T_{0} is transferred to the new transaction T_{1}, and T_{0} becomes unredeemable. A subsequent transaction can then redeem T_{1} by satisfying its out-script.

The transaction T_{0} above is said standard, because its out-script just requires a digital signature σ on the redeeming transaction T , with a given key pair k. We denote with $\operatorname{ver}_{k}(\mathrm{~T}, \sigma)$ the signature verification, and with $\operatorname{sig}_{k}(\bullet)$ the signature of the enclosing transaction (T_{1} in our example), including all the parts of the transaction but its in-script (obviously, because it contains the signature itself) ${ }^{3}$.

Now, assume that T_{0} is redeemable on the ledger when someone tries to append T_{1}. To validate this operation, the Bitcoin infrastructure checks that $v_{1} \leq v_{0}$, and then executes the out-script of T_{0}, instantiating its parameters T and σ, respectively, to T_{1} and to the signature $\operatorname{sig}_{k}(\bullet)$. The function ver $_{k}$ verifies that the signature is correct: hence, the out-script succeeds, and T_{1} redeems T_{0}.

[^0]| T | |
| :---: | :---: |
| $\begin{aligned} & \text { in }[0]: \mathrm{T}_{0}\left[n_{0}\right] \\ & \text { in-script }[0]: \mathbf{W}_{0} \end{aligned}$ | |
| | : |
| out-script $[0]\left(\mathrm{T}_{0}^{\prime}, \mathbf{w}_{0}\right): \mathrm{OS}_{0}$ value [0]: v_{0} | |
| | |
| lockTime: s | |

Fig. 1. General form of transactions (left) and of transaction templates (right).

Bitcoin transactions may be more general than the ones in the previous example: their general form is displayed in Figure 1 (left). First, there can be multiple inputs and outputs (denoted with array notation in the figure). A transaction with multiple outputs associates an out-script and a value to each of them, which can be redeemed independently. Consequently, in fields must specify which output they are redeeming ($\mathrm{T}_{0}\left[n_{0}\right]$ in the figure). A transaction with multiple inputs redeems all the (outputs of) transactions in its in fields, providing a suitable inscript for each of them. To be valid, the sum of the values of all the inputs must be greater or equal to the sum of the values of all outputs. In its general form, the out-script is a program in a scripting language featuring a limited set of logic, arithmetic, and cryptographic operators. Such scripting language is not Turingcomplete, e.g., it does not allow loops. Finally, the lockTime field specifies the earliest moment in time when the transaction can appear on the ledger.

The mining process. The Bitcoin infrastructure contains a large number of nodes, called miners, which are in charge of maintaining and extending the ledger according to the following consensus protocol [8]. To append a new block B_{i} of transactions to the ledger, miners must solve a cryptographic puzzle, whose difficulty is dynamically updated to ensure that the average mining rate is of 1 block every 10 minutes. The first miner who solves the puzzle is rewarded with newly generated bitcoins, and a small fee for each transaction in B_{i} (i.e., the difference between input and output values); the other miners discard their attempts, and start mining a new block on top of B_{i}. If two or more miners solve the cryptopuzzle simultaneously, they create a fork in the ledger (i.e., two or more parallel branches). At that point miners must choose on which one of the branches to carry out the mining process; roughly, this divergence is resolved once one of the branches becomes longer than the others. When this happens, the other branches are discarded, and all the transactions therein are neglected. Therefore, there is always a small probability that a transaction in B_{i} is discarded later on, if miners choose an alternate branch. However, this probability
decreases exponentially with the number of blocks mined on top of B_{i}; conventionally, a transaction at B_{i} is considered confirmed after six blocks have been mined on top. Hereafter, we denote with $\tau_{\text {Ledger }}$ the time required to put a transaction on the ledger and confirm it (~ 60 minutes in Bitcoin).

3 Statically signing chains of transactions

The current signature mechanism of Bitcoin is known to be unsuitable for signing chains of transactions before they are put on the ledger ${ }^{4}$. However, this feature would be a fundamental building block of advanced smart contracts, like e.g. the Lightning Network [17], as well as our multiplayer lottery. We first illustrate the issue, and then we exploit an upcoming feature of Bitcoin $[17,16]$ to statically construct chains of transactions.

To keep our presentation simple, we consider a minimalistic example with two players, a and b, and three transactions, $\mathrm{T}_{0}, \mathrm{~T}_{1}$ and T_{2}, made as follows (the omitted details are immaterial).

- transaction T_{1} has T_{0} as input, while T_{2} has T_{1} as input: hence the three transactions form a chain.
- the out-scripts of T_{0} and T_{1} require signatures by both players a and b.

The players want to put the chain of transactions on the ledger, assuming that T_{0} is already there. Intuitively, the players have two possible ways of proceeding:
dynamic signing: both players sign T_{1} and put it on the ledger. After that, they both sign T_{2} and put it on the ledger.
static signing: a signs both T_{1} and T_{2} before these transactions are on the ledger, and sends her signatures to b. Then, b adds his own signatures, and puts both T_{1} and T_{2}, one after the other, on the ledger.

In the current version of Bitcoin, only dynamic signing is feasible. Of course, in static signing, the addition of b 's signature to the in-script of T_{1} alters its inscript. Note that this will not invalidate a 's signature of T_{1} (because the signature does not consider the in-script), so T_{1} can still be put on the ledger. However, altering the in-script changes the hash of T_{1}, which is used in T_{2}. in to refer to the previous transaction. Because of this, a 's signature of T_{2} is no longer valid, hence b can not put T_{2} on the ledger.

A possible solution to this problem is to allow partial signatures, which e.g. neglect the in part of transactions, as already done for the in-script part. Indeed, even if T_{2}.in (i.e., the hash of T_{1}) is modified, the (partial) signature in T_{2}.in-script is still valid, because it neglects the in part. More in general, we define below a signature scheme for Bitcoin transactions, allowing users to choose which parts M of the transaction to include in the signature. In this way, once the transaction is signed, anyone can modify the parts not in M without invalidating the signature. The ability of modifying transactions while preserving its

[^1]signatures is called transaction malleability: while in some circumstances it can cause security vulnerabilities [3], if used in a controlled manner it can extend the range of applications built upon Bitcoin [1]. Note that the unsigned parts of a transaction can be freely altered by adversaries; therefore, designing a secure protocol must take into account this possibility. E.g., in the previous static signing example, b can alter T_{2}.in so to refer to some $T \neq T_{1}$ whose out-script can be satisfied by a 's signature. In this way T becomes unredeemable. To protect against this attack, a could use a fresh key in T_{1}. out-script, so that nothing else can be redeemed by her signature.

We anticipate that the mechanism we propose below is more general than the one allowed by [17,16]; we proceed in this way because generality allows for a simpler presentation. Remarkably, our lottery protocol will only rely on the less general mechanism allowed by $[17,16]$.

Signature scheme for transaction malleability. Let

$$
M \subseteq\{\text { in }[n], \text { in-script }[n], \text { value }[n], \text { out-script }[n], \text { lockTime } \mid n \geq 0\}
$$

and denote with $M(\mathrm{~T})$ the bitstring obtained by concatenating the parts of the transaction T mentioned in M. We then define:

$$
\operatorname{sig}_{k}^{M}(\mathrm{~T})=\left(\operatorname{sig}_{k}(M(\mathrm{~T})), M\right) \quad \operatorname{ver}_{k}(\mathrm{~T},(y, M))=\operatorname{ver}_{k}(M(\mathrm{~T}), y)
$$

Hereafter, we use σ as a meta-variable for the partial signatures $\left(\operatorname{sig}_{k}(\ldots), M\right)$, and $\boldsymbol{\sigma}$ for arrays of such pairs (we will always use the same convention for arrays). When \boldsymbol{k} and $\boldsymbol{\sigma}$ have the same size n, we define:
$\operatorname{sig}_{k}^{M}(\mathrm{~T})=\left(\operatorname{sig}_{\mathbf{k}[0]}^{M}(\mathrm{~T}), \ldots, \operatorname{sig}_{\mathbf{k}[n-1]}^{M}(\mathrm{~T})\right) \quad \operatorname{ver}_{\boldsymbol{k}}(\mathrm{T}, \boldsymbol{\sigma})=\bigwedge_{i} \operatorname{ver}_{\boldsymbol{k}[i]}(\mathrm{T}, \boldsymbol{\sigma}[i])$
Transaction templates. The mechanism shown above allows to statically sign chains of transactions; further, we can also use it to statically sign chains of the form $\mathrm{T}_{0} \mathrm{~T}_{1}(y) \mathrm{T}_{2}$, where the transaction $\mathrm{T}_{1}(y)$ depends on a parameter y such that (i) y is unknown at signing time (it will only be known later on), and (ii) y only affects those parts of $\mathrm{T}_{1}(y)$ not included in the partial signatures. Under these assumptions, instantiating y in a later moment will not invalidate any signature. More importantly, while there might be a large number of values for y (and so, a large number of chains that can be put on the ledger), only one partial static signature of T_{1} is needed (as well as for T_{0} and T_{2}).

Parametric descriptions like the chain above are useful when designing complex protocols, where the actual chain (or graph) of transactions to be put on the ledger depend on events known after signatures have already been computed. We now introduce a general notation for expressing transactions with parameters and variants, which hereafter we name transaction templates. Our notation shows all the possible forms of the malleable transaction parts which are used in a protocol. Further, we will show how to statically sign such transactions (in all their forms). We anticipate that, for our lottery protocol, the number of possible transactions is large, while the number of needed static signatures is small.

Hereafter, we fix $M=\{$ value[n], out-script $[n]$, lockTime $\mid n \geq 0\}$ in our signature scheme, so making the in and in-script fields malleable. The general form of transaction templates t, t^{\prime}, \ldots is shown in Figure 1 (right). The template $t(x)$ is parametrized over an array of values \mathbf{x}, in a given domain. Further, for its in and in-script fields, the template describes a few variants, each of which may take some additional parameters \mathbf{y}. Note that out-scripts may only refer to the template parameters \mathbf{x}, while in and in-scripts may also refer to their own variant parameters \mathbf{y}. Further, the in field refers to another template. A template $\mathrm{t}(\mathbf{x})$ can be instantiated to a transaction $\mathrm{T}=\mathrm{t}(\mathbf{x})$. Variant ${ }^{i}\left\langle\mathbf{y}^{i}\right\rangle$, by choosing the variant i and the parameters. Here, T.in is set to any redeemable transaction on the ledger which is an instantiation of the template in the in field of t.

Transaction templates signatures. We define below the signature of a transaction template $\mathrm{t}(\mathbf{x})$: intuitively, this is a set S of transaction signatures which cover all the possible actual values for the parameters \mathbf{x} and for the variant parameters \mathbf{y}, in their respective domains. Once the signatures in S have been generated and sent to a player, she can effectively compute any instance $t(\mathbf{v})$. Variant $\langle\mathbf{w}\rangle$.

Formally, let $\mathrm{t}(\mathbf{x})$ be a transaction template, with variant i taking parameters \mathbf{y}. In our notation, we allow the input scripts of the variant i to include signatures of the form $\operatorname{sig}_{K(\mathbf{z})}(\bullet)$, denoting the partial signature (w.r.t. M) of the transaction $\mathrm{t}(\mathbf{x})$. Variant ${ }^{i}\langle\mathbf{y}\rangle$, using a key $K(\mathbf{z})$ which depends on a subset \mathbf{z} of the parameters \mathbf{x} and \mathbf{y}.

Now, assume that the parameters \mathbf{x} range over a finite domain, and that for all (finitely many) variants Variant ${ }^{i}\langle\mathbf{y}\rangle$, for all (finitely many) input scripts in-script $[n]=\mathbf{W}$ in i, and for all (finitely many) partial signatures $\mathbf{W}_{j}=$ $\operatorname{sig}_{K(\mathbf{z})}(\bullet)$ in \mathbf{W}, the set of keys $\kappa(\mathbf{x}, i, n, j)=\{K(\mathbf{z}) \mid \mathbf{y}$ in its domain $\}$ is finite.

Under these assumptions, we build the finite set S of template signatures as follows. For all values \mathbf{v} in the domain of \mathbf{x}, we denote with $T_{\mathbf{v}}$ the instance $t(\mathbf{v})$ without any inputs and input scripts (hence, the variant is immaterial). Then, we define $S=\bigcup_{\mathbf{v}, i, n, j}\left\{\operatorname{sig}_{k}\left(\mathrm{~T}_{\mathbf{v}}\right) \mid k \in \kappa(\mathbf{v}, i, n, j)\right\}$.

We anticipate that in our lottery protocol the assumptions above are satisfied, hence the players can effectively compute and share S in the initialization phase, allowing everyone to generate the needed instances in the execution phase.

4 The tournament protocol

We introduce our lottery protocol for $N=2^{L}$ players; each player is represented by a bit-string in $\mathcal{P}=\{0,1\}^{L}$, ranged over by a, b, \ldots We assume that each player bets 1 B in the lottery, and blocks a deposit of $d \stackrel{\mathrm{~B}}{\mathrm{~B}}$, for an arbitrary $d \geq 0$. Our protocol is based on a single-elimination tournament, where matches are organised as a complete binary tree of L levels. The tournament involves $N-1$ two-player matches: the winners of the matches at level $\ell \in 1 . . L$ play at the next level $\ell-1$; the winner of the match at level 0 wins the whole $N \mathrm{~B}$ stake.

Let $\Pi=\left\{\{0,1\}^{n} \mid n \leq L\right\}$ (i.e., sequences of n bits) be the set of tree paths. Intuitively, for every path in $\Pi \backslash \mathcal{P}$ we have a two-player match. For any two paths $\pi, \pi^{\prime} \in \Pi$, we write $\pi \sqsubseteq \pi^{\prime}$ when π is a prefix of π^{\prime} (\sqsubset for proper prefixes).

Key pairs and secrets. Our protocol requires players to exchange a certain number of Bitcoin transactions, together with their signatures. To this purpose, each player p generates all the following key pairs for every $a, b \in \mathcal{P}$ and for every π :

$$
\begin{array}{ll}
K_{p}\left(\text { Bet }_{p}\right), K_{p}\left({\text { Collect }), K_{p}(\text { Init }, a)}\right. & \\
K_{p}\left(\text { Win }^{2}, \pi, a\right), K_{p}(\operatorname{WinTO}, \pi, a) & \epsilon \neq a \sqsubseteq a \\
K_{p}(\text { Turn1 }, \pi, a, b), K_{p}(\text { Turn1TO }, \pi, a, b), K_{p}(\text { Turn2TO }, \pi, a, b) & \pi \sqsubset a, b \\
K_{p}(\text { Turn2 }, \pi, a) & \pi \sqsubset a \\
K_{p}(\text { Timeout1, } \pi, a, b), K_{p}(\text { Timeout2 }, \pi, a, b) & \pi \sqsubset a, b
\end{array}
$$

The first component in each key pair above (e.g., Collect) is a distinct label. Note that each player generates $O\left(N^{2} L\right)$ key pairs. We assume that the private part of a key pair $K_{p}(\cdots)$ is kept secret by p, while the public part is communicated to the other players. For each set of key pairs $K_{p}(X, \cdots)$, we denote with $\mathbf{K}(X, \cdots)$ the set of key pairs $\left\{K_{p}(X, \cdots) \mid p \in \mathcal{P}\right\}$. We denote with ϵ the empty sequence.

The outcome of a match is randomly determined with a "coin toss" protocol, as in [2]. Intuitively, the players generate two random secrets, and exchange their hashes; then, they reveal the secrets: the winner is determined by a function of the two secrets (i.e., the parity of the sum of the lengths of the two secrets). Since a player may be involved in L distinct matches, we assume that each p generates L secrets (i.e., long random sequences of bits), one for each $\pi \sqsubset p$. The secret of p at level π is denoted by s_{p}^{π}; its public hash $H\left(s_{p}^{\pi}\right)$ is denoted by h_{p}^{π}.

Overview of the protocol. Our protocol uses a number of transactions, the templates of which are in Figure 2. The protocol is organised in three phases:
initialization: the players exchange the public data, e.g. the static signatures and hashed secrets. Then, they collect all the bets, and put on the ledger the transactions for the leaves of the tournament tree.
execution: this phase is organised in L rounds, one for each level of the tree. In each round ℓ, exactly 2^{ℓ} two-player matches are played, by the winners of the previous round. The possible executions of a single round are depicted in Figure 4. The winner of the last round collects the whole stake.
garbage collection: this allows players to recover from some potential interference, to be discussed in Section 5.2.

We now comment the protocol in Figure 3. We denote the duration of each round with $\tau_{\text {Round }}=6 \tau_{\text {Ledger }}$, following Figure 4. The transaction templates of Figure 2 define some timelocks, which depend on a time τ_{1} (chosen in the initialization phase), corresponding to the start of the execution phase.

Initialization phase. In step 1, all the players generate the signatures and secrets, and exchange the related public data. Step 2 is needed to prevent attacks where a player does not compute a hash from her own secret, but replays the hash of

$\operatorname{Win}(\pi, a) \quad$ with $\epsilon \neq \pi \sqsubset a$
Timeout1 $\langle b\rangle$
in: Timeout1 (π, b, a) in-script: $\mathbf{s i g}_{\mathbf{K}(\text { Timeout } 1, \pi, b, a)}(\bullet)$
Timeout2 $\langle b\rangle$
in: Timeout2 (π, a, b) in-script: $\mathbf{s i g}_{\mathbf{K}(\text { Timeout } 2, \pi, a, b)}(\bullet)$
Turn2fst $\left\langle b, \hat{s}_{a}, \hat{s}_{b}\right\rangle$
$\begin{aligned} & \text { in: Turn2 }(\pi, a, b) \\ & \text { in-script: } \hat{s}_{a}, \hat{s}_{b}, \operatorname{sig}_{\mathbf{K}(\text { Turn2 }, \pi, a)}(\bullet) \end{aligned}$
Turn2snd $\left\langle b, \hat{s}_{a}, \hat{s}_{b}\right\rangle$
$\begin{aligned} & \text { in: Turn2 }(\pi, b, a) \\ & \text { in-script: } \hat{s}_{b}, \hat{s}_{a}, \mathbf{s i g}_{\mathbf{K}(\text { Turn } 2, \pi, a)}(\bullet) \end{aligned}$
$\begin{gathered} \text { out-script }(\mathrm{T}, \boldsymbol{\sigma}): \operatorname{ver}_{\mathbf{K}(W i n, \pi, a)}(\mathrm{T}, \boldsymbol{\sigma}) \\ \vee \operatorname{ver}_{\mathbf{K}(W i n T O, \pi, a)}(\mathrm{T}, \boldsymbol{\sigma} \\ \text { value: }(1+d) 2^{L-\|\pi\|}{ }_{\mathrm{B}} \\ \hline \end{gathered}$

Init
$\forall p \in \mathcal{P}:\left\{\begin{array}{l}\text { in }[p]: \operatorname{Bet}_{p} \\ \text { in-script }[p]: \boldsymbol{s i g}_{K_{p}\left(\text { Bet }_{p}\right)}(\bullet)\end{array}\right.$
$\forall p \in \mathcal{P}:\left\{\begin{array}{l}\text { out-script }[p](\mathrm{T}, \boldsymbol{\sigma}): \operatorname{ver}_{\mathbf{K}(\text { Init }, p)}(\mathrm{T}, \boldsymbol{\sigma}) \\ \text { value }[p]: 1+d \vec{B}\end{array}\right.$

Win $(a, a) \quad$ (leaf)
in: Init $[a]$
in-script: $\operatorname{sig}_{\mathbf{K}_{(\text {Init }, a)}(\bullet)}$
out-script $(\mathrm{T}, \boldsymbol{\sigma}):$ $\operatorname{ver}_{\mathbf{K}(\text { Win }, a, a)}(\mathrm{T}, \boldsymbol{\sigma})$ value: $1+d \overrightarrow{\mathrm{~B}}$

$\operatorname{Win}(\epsilon, a) \quad$ (root)
(Variants as for $\operatorname{Win}(\pi, a))$
out-script $[a](\mathrm{T}, \sigma): \operatorname{ver}_{K_{a}(\text { Collect })}(\mathrm{T}, \sigma)$
value $[a]: N+d \mathrm{~B}$
$\cdots p \neq a:\left\{\begin{array}{l}\text { out-script }[p](\mathrm{T}, \sigma): \operatorname{ver}_{K_{p}(\text { Collect })}(\mathrm{T}, \sigma) \\ \text { value }[p]: d \mathbb{B}\end{array}\right.$

Turn1 (π, a, b)	with $\pi \sqsubset a, b$
in[0]: $\operatorname{Win}(\pi 0, a)$	
in-script $[0]: \operatorname{sig}_{\mathbf{K}(W i n, \pi 0, a)}(\bullet)$	
in[1]: $\operatorname{Win}(\pi 1, b)$	
out-script(T, $\left.\hat{s}_{a}, \boldsymbol{\sigma}\right)$:	
$\left(H\left(\hat{s}_{a}\right)=h_{a}^{\pi} \wedge \operatorname{ver}_{\mathbf{K}(\text { Turn } 1, \pi, a, b)}(\mathrm{T}, \boldsymbol{\sigma})\right)$	
$\vee \operatorname{ver}_{\mathbf{K}(\text { Turn } 1 T O, \pi, a, b)}(\mathrm{T}, \boldsymbol{\sigma})$	
value: $(1+d) 2^{L-\|\pi\|}$	

| ```Secret \(\left\langle\hat{s}_{a}\right\rangle\) in: Turn1 \((\pi, a, b)\) in-script: \(\hat{\boldsymbol{s}}_{a}, \boldsymbol{\operatorname { s i g }}_{\mathbf{K}(\text { Turn } 1, \pi, a, b)}(\bullet)\) out-script(T, \(\left.\hat{s}_{a}, \hat{s}_{b}, \boldsymbol{\sigma}\right)\) : \(\left(H\left(\hat{s}_{a}\right)=h_{a}^{\pi} \wedge H\left(\hat{s}_{b}\right)=h_{b}^{\pi}\right.\) \(\left.\wedge \operatorname{ver}_{\mathbf{K}\left(\text { Turn } 2, \pi, \text { winner }\left(a, b, \hat{s}_{a}, \hat{s}_{b}\right)\right)}(\mathrm{T}, \boldsymbol{\sigma})\right)\) \(\vee \operatorname{ver}_{\mathbf{K}(\text { Turn2TO, } \pi, a, b)}(\mathrm{T}, \boldsymbol{\sigma})\) value: \((1+d) 2^{L-\|\pi|} \ddot{\mathrm{B}}\)``` | |
| :---: | :---: |
| | |
| | |
| | |

Timeout2 $(\pi, a, b) \quad$ with $\pi \sqsubset a, b$
in: Turn2 (π, a, b)
in-script: $\perp, \perp, \boldsymbol{\operatorname { s i g }}_{\mathbf{K}(\text { Turn2TO, } \pi, a, b)}(\bullet)$
out-script $(\mathrm{T}, \boldsymbol{\sigma}): \operatorname{ver}_{\mathbf{K}(\text { Timeout2, }, \pi, a, b)}(\mathrm{T}, \boldsymbol{\sigma})$
value: $(1+d) 2^{L-\|\pi\|} \mathrm{B}$
lockTime: $\tau_{1}+(L-\|\pi\|-1) \tau_{\text {Round }}+4 \tau_{\text {Ledger }}$

CollectOrphanWin $(\pi, a) \quad$ with $\epsilon \neq \pi \sqsubset a$
in: Win (π, a)
in-script: $\mathbf{s i g}_{\mathbf{K}(\text { WinTO, }, a)}(\bullet)$
out-script $[a](\mathrm{T}, \sigma): \operatorname{ver}_{K_{a}(\text { Collect })}(\mathrm{T}, \sigma)$
value $[a]: 2^{L-\|\pi\|}+d \ddot{\mathrm{~B}}$
$\forall p$ with $a \neq p \sqsubseteq \pi:\left\{\begin{array}{l}\text { out-script }[p](\mathrm{T}, \sigma): \operatorname{ver}_{K_{p}(\text { Collect })}(\mathrm{T}, \sigma) \\ \text { value }[p]: d \ddot{B}\end{array}\right.$
lockTime: $\tau_{1}+(L-\|\pi\|) \tau_{\text {Round }}+\tau_{\text {Ledger }}$

Fig. 2. Transaction templates for the lottery protocol.
another player. In step 3 we choose the time τ_{1} to be large enough so that the initialization can be completed within τ_{1}. In steps $4-5$ the players exchange all the static signatures needed in the execution phase. Each player p contributes his own part of the signature, using his own keys $K_{p}(\ldots)$. Steps $6-8$ collect the bets
from the transactions Bet_{p} in a single transaction Init. If Init is not confirmed on the ledger, e.g. because some player has already redeemed his bet, then all the other players redeem their original bets. In this way, they ensure that Init can no longer appear on the ledger, hence the protocol is aborted. Step 8 also prevents an attack where Init is maliciously delayed so to make honest players lose. Finally, step 9 sets up the first level of the tournament, by splitting the stake in the Init among all the leaves of the tree, i.e. $\operatorname{Win}(p, p)$.

Precondition: for all players p, the ledger contains a transaction Bet_{p} with value $(1+d) \mathrm{B}$, and redeemable with key $K_{p}\left(\right.$ Bet $\left._{p}\right)$.

Initialization phase:

1. each player p generates all the key pairs and the secrets s_{p}^{π} as in Section 4, and broadcasts to the other players the public keys and hashes $h_{p}^{\pi}=H\left(s_{p}^{\pi}\right)$;
2. if $h_{p}^{\pi}=h_{p^{\prime}}^{\pi^{\prime}}$ for some $(p, \pi) \neq\left(p^{\prime}, \pi^{\prime}\right)$, the players abort;
3. choose the time τ_{1} large enough to fall after the initialization phase;
4. each player signs all the transactions templates in Figure 2 except for Init (using the procedure in Section 3), and broadcasts the signatures;
5. each player verifies the signatures received by the others; if some signature is not valid or missing, the player aborts the protocol;
6. each player p signs Init, and sends the signature to the first player;
7. the first player puts the (signed) transaction Init on the ledger;
8. if Init does not appear within one $\tau_{\text {Ledger }}$, then each p redeems Bet_{p} and aborts;
9. the players put the signed transactions $\operatorname{Win}(p, p)$ on the ledger, for all $p \in \mathcal{P}$.

Execution phase:

for each level $\ell=L . .1$:
for each π such that $|\pi|=\ell-1$, in parallel, a two-player match is played:
10. let a and b be such that $\operatorname{Win}(\pi 0, a)$ and $\operatorname{Win}(\pi 1, b)$ are on the ledger;
11. the players put $\operatorname{Turn} 1(\pi, a, b)$ on the ledger;
12. player a puts $\operatorname{Turn} 2(\pi, a, b)$.Secret $\left\langle s_{a}^{\pi}\right\rangle$ on the ledger;
13. the players wait until either $\operatorname{Turn} 2(\pi, a, b)$ is confirmed, or Timeout1 (π, a, b) is enabled. In the second case, they put Timeout $1(\pi, a, b)$ on the ledger; once it is confirmed, they put $\operatorname{Win}(\pi, b)$. Timeout $1\langle a\rangle$ on the ledger, and terminate the match at π;
14. player b computes $w=$ winner $\left(a, b, s_{a}^{\pi}, s_{b}^{\pi}\right)$, the winner of the match at π; - if $w=a$, player b puts $\operatorname{Win}(\pi, a)$. Turn2fst $\left\langle b, s_{a}^{\pi}, s_{b}^{\pi}\right\rangle$ on the ledger. - if $w=b$, player b puts $\operatorname{Win}(\pi, b)$.Turn2snd $\left\langle a, s_{a}^{\pi}, s_{b}^{\pi}\right\rangle$ on the ledger.
15. the players wait until either $\operatorname{Win}(\pi, c)$ is confirmed (for some $c \in\{a, b\}$), or Timeout2 (π, a, b) is enabled. In the second case, they put Timeout2 (π, a, b) on the ledger; once confirmed, they put $\operatorname{Win}(\pi, a)$. Timeout2 $\langle b\rangle$ on the ledger.

Garbage collection phase: if there is some unredeemed $\operatorname{Win}(\pi, p)$ with $\pi \neq \epsilon$, then the players put CollectOrphanWin (π, p) on the ledger.

Fig. 3. Tournament lottery Protocol.

To choose τ_{1}, note that the initialization phase requires:

- at steps 1-6, to generate all the needed signatures and secrets, and share the related public parts. This costs $O\left(N^{3} L\right)$.
- at step 7 , to put on the ledger the transaction Init. This costs $1 \tau_{\text {Ledger }}$.
- after that, at step 9, to put all the transactions $\operatorname{Win}(p, p)$. This costs $1 \tau_{\text {Ledger }}$, because it can be done in parallel.
Therefore, we choose τ_{1} such that $\tau_{1} \geq$ currentTime $+O\left(N^{3} L\right)+2 \tau_{\text {Ledger }}$.
Execution phase. In this phase, the players play against each other. We recommend the reader to examine Figure 4 for an overview of how matches are played. Matches correspond to the nodes of the tournament tree, and so they are indexed by tree paths π. The match at π involves the winners of the two matches $\pi 0$ and $\pi 1$ of the previous round (i.e., the children of π). These winners are, respectively, the players a and b in the transactions $\operatorname{Win}(\pi 0, a)$ and $\operatorname{Win}(\pi 1, b)$ which are on the ledger at the start of the match (step 10). The goal of steps $10-15$ is to put on the ledger a transaction $\operatorname{Win}(\pi, w)$, where w is the winner at π.

Step 11 starts by redeeming both $\operatorname{Win}(\pi 0, a)$ and $\operatorname{Win}(\pi 1, b)$ through the transaction Turn1 (π, a, b). Note that any player (not only a and b) can perform this step, since everyone has the required signatures. At step 12, player a is expected to reveal her secret s_{a}^{π}; otherwise, after a certain deadline, the other players can make a lose. If a chooses to reveal her secret, she must put on the ledger the transaction $\operatorname{Turn} 2(\pi, a, b)$, which redeems $\operatorname{Turn} 1(\pi, a, b)$, through an input script containing s_{a}^{π}. Otherwise, after $1 \tau_{\text {Ledger }}$, the timelock on $\operatorname{Timeout} 1(\pi, a, b)$ expires, allowing any other player to put $\operatorname{Timeout} 1(\pi, a, b)$ on the ledger at step 13. After that, $\operatorname{Win}(\pi, b)$ can be put on the ledger by any player, so making a lose the match. At step 14, it is the turn of player b to reveal his secret s_{b}^{π}; otherwise, similarly to the previous steps, the other players can make b lose after some time. If b chooses to reveal his secret, he must first compute the winner w of the match - this is possible because b knows both secrets s_{a}^{π} and s_{b}^{π}. Then, he must put $\operatorname{Win}(\pi, w)$ on the ledger, which redeems $\operatorname{Turn} 2(\pi, a, b)$, through an input script containing s_{b}^{π}. Otherwise, after $1 \tau_{\text {Ledger }}$, the timelock on Timeout2 (π, a, b) expires, allowing any other player to put $\operatorname{Timeout} 2(\pi, a, b)$ on the ledger at step 15 . After that, $\operatorname{Win}(\pi, a)$ can be put on the ledger by any player, so making b lose the match.

After the last round of the execution phase, the tournament protocol is over. At this point, there is exactly one transaction $\operatorname{Win}(\epsilon, a)$ on the ledger, for some a. This transaction can be redeemed by a at any time, by putting on the ledger a transaction with in-script $\operatorname{sig}_{K_{a}(\text { Collect })}(\bullet)$. Note that only a has the private key needed for this signature. In this way a can obtain the whole stake of $N \ddot{B}$.

Garbage collection phase. As we will discuss in Section 5.2, a dishonest player can try to cheat by forging Win transactions. When this happens, some legit Win transactions are left orphan on the ledger: the garbage collection phase allows the players who contributed to these transactions to redeem their money back. In this way the protocol remains secure, as established later on by Theorem 5 .

Fig. 4. Graph of the transactions in a tournament round. An edge from transaction T to T^{\prime} means that T^{\prime} redeems T. Solid edges mean that any player can redeem; wavy edges mean that any player can redeem, but only after a timeout. Dashed edges mean that only the player who knows the secret on the label can redeem.

5 Security of the tournament protocol

We assume that all the algorithms used by the players run in PPTIME with respect to a security parameter η. A function $f: \mathbb{N} \rightarrow \mathbb{R}$ is said to be negligible iff, for some constant $c \in \mathbb{N}$, the inequation $|f(\eta)| \leq \eta^{-c}$ holds asymptotically. We assume that all the cryptographic primitives (e.g., digital signatures, hash functions) are secure, up-to a negligible probability of attack.

We assume that Bitcoin works as a robust public transaction ledger, where every player can append valid transactions (which are confirmed in $\tau_{\text {Ledger }}$), while invalid transactions cannot appear. Recent results [12] show that, in a backbone Bitcoin protocol, this assumption holds when the honest miners hold the majority of the hashing power (despite the negative results in [11]). For simplicity, we assume that transactions require no fees. All our results hold even when there is only one honest player.

5.1 Properties of the protocol

Consider an arbitrary lottery protocol with N players, where each player bets a certain amount bet of bitcoins to have the chance to win N. bet. A run is a pair (β, λ), where β is the state of the blockchain when the protocol starts, and λ is the timed sequence of public events occurred in a (possibly partial) protocol execution. The component λ includes, e.g., the exchanged signatures and the transactions put on the ledger after β. Each player a uses a strategy Σ_{a} to choose which events to perform at any time in a run of the protocol. Roughly, $\Sigma_{a}\left(1^{\eta}, \beta, \lambda\right)$ is a PPTIME algorithm which can observe the whole past (β, λ), and choose the next moves (not necessarily those prescribed by the protocol). We further allow Σ_{a} to access the local state of a, including her private information. A strategy Σ_{a} is honest when it follows the protocol; a player is honest when she uses an honest strategy. A run is maximal for a when she has performed all the enabled actions prescribed by Σ_{a}.

We say that a transaction is freely redeemable by a when (i) a can use her knowledge (including private information) to compute the needed witness, and (ii) a can freely choose the output script of the redeeming transaction. The wealth of a after a certain run (β, λ), denoted by wealth (a, β, λ), is the amount of bitcoins freely redeemable at that time by a, but not by any other player.

Lottery protocols usually require players to block a deposit of bitcoins throughout their execution (beyond the bet). Technically, we define the deposit of a as the minimum amount of bitcoins wealth (a, β, ϵ) - bet such that, starting from β, a can always perform a maximal run of the protocol (using an honest strategy), regardless of the behaviour of the other players. Then, we say that a lottery protocol is d-deposit if d is the maximum of the deposits of all players. Note that, by definition, it must be $d \geq 0$: otherwise, should a lose the lottery, there would not be enough bitcoins to pay the other players.

The following theorem states that the tournament protocol requires constant $d \mathbb{B}$ deposit; note instead that the protocols in $[2,4,5,7]$ require $O\left(N^{2}\right) \sharp$ B deposit.

Theorem 1. The tournament protocol is d-deposit.
Lemma 1. For each level $\ell=L . .1$ of the execution phase:

1. for every π such that $|\pi|=\ell$, the ledger contains a transaction $\operatorname{Win}(\pi, a)$ with value $(1+d) 2^{(L-\ell)} \ddot{B}$, for some a;
2. the round starts within time $\tau_{1}+(L-\ell) \cdot \tau_{\text {Round }}$.

Theorem 2 exploits Lemma 1 to establish an upper bound to the completion time of our protocol. Note that a single honest player a is enough to guarantee termination: indeed, even if the other players do not cooperate, a can always put all the required transactions on the ledger, after the respective timeouts.

Theorem 2. Assume that at least one player is honest, while the others can be adversaries with arbitrary strategies. Then:

1. after τ_{1}, either Init is on the ledger, or the protocol is aborted without any honest players losing their wealth;
2. after Init is on the ledger, a transaction $\operatorname{Win}(\epsilon, p)$ is put on the ledger within $6 L \tau_{\text {Ledger }}$, for some p (who is the winner of the lottery).

The following theorem quantifies the payoff of each player in a single run of the protocol where all the players are honest. The payoff of a player at a given point of an execution is the wealth difference between that point and the beginning of the protocol. Formally, given a run (β, λ) for a, this amounts to:

$$
\Phi(a, \beta, \lambda)=\text { wealth }(a, \beta, \lambda)-\text { wealth }(a, \beta, \epsilon)
$$

Then, Theorem 3 states that, once the Init transaction has been put on the ledger, there are only two possible outcomes of the protocol: either a player loses 1 B (her bet), or she wins $N-1 \stackrel{3}{\mathbf{B}}$ (the bets of all the other players).

Theorem 3. If all players are honest, then, for all players a and for all maximal runs (β, λ) of a such that Init $\in \lambda$, we have $\Phi(a, \beta, \lambda) \in\{-1 \ddot{\mathrm{~B}}, N-1 \ddot{\mathrm{~B}}\}$.

Theorem 4 below establishes the security of the tournament protocol, by describing the probability distribution of the payoff of an honest player in contexts where the other players are adversaries. In particular, we will assume that adversaries follow rational strategies which, on average, will not make them lose money (but for a negligible amount). In order to define rational strategies, we introduce an auxiliary notion. Given a set of strategies $\boldsymbol{\Sigma}$ for all players and a blockchain state β, we denote with $\mathrm{E}_{\Phi}(a, \boldsymbol{\Sigma}, \beta, \eta)$ the expected payoff of a over all the runs (β, λ) which are maximal for each player p using $\boldsymbol{\Sigma}[p]$. Then, we say that player a is rational in $\boldsymbol{\Sigma}$ iff for all β, there exists a negligible f such that, for all $\eta, \mathrm{E}_{\Phi}(a, \boldsymbol{\Sigma}, \beta, \eta) \geq f(\eta)$.

Theorem 4 states that the expected payoff of each player p in a given set of honest players \mathcal{H} is either -1 or $N-1$ with probabilities, respectively, $N-1 / N$ or $1 / N$, up-to a negligible error. This holds when either all the players are honest (and the deposit is arbitrary, potentially zero), or the adversaries are rational and the deposit is greater than zero.

Theorem 4. Let $\mathcal{H} \subseteq \mathcal{P}$ be a set of players, and let $\boldsymbol{\Sigma}$ be such that $\boldsymbol{\Sigma}[a]$ is honest for all $a \in \mathcal{H}$. If (i) $\mathcal{H}=\mathcal{P}$, or (ii) $d>0$ and $\boldsymbol{\Sigma}[b]$ is rational for all $b \in \mathcal{P} \backslash \mathcal{H}$, then the payoff of each $p \in \mathcal{H}$ is distributed as follows, for all β :

$$
\operatorname{Pr}(\Phi(p, \beta, \lambda)=v \mid \text { Init } \in \lambda \text { maximal })= \begin{cases}\frac{N-1}{N}+f_{1}(\eta) & \text { if } v=-1 \\ \frac{1}{N}+f_{2}(\eta) & \text { if } v=N-1 \\ f_{3}(\eta) & \text { otherwise }\end{cases}
$$

where f_{1}, f_{2}, f_{3} are negligible functions, and λ is a random variable, sampled so that (β, λ) is maximal with respect to $\boldsymbol{\Sigma}$. ${ }^{5}$

5.2 Security of zero-deposit lotteries

Theorem 4 requires that, when there are (rational) adversaries, the deposit is strictly greater than zero. To see why, assume $d=0$, and consider some match $\pi=010$ where the honest player a plays against an adversary b. Assume that both players have won $1 \stackrel{B}{\mathrm{~B}}$ in the previous rounds of the lottery, and that a would be the winner of the match at π, according to the committed secrets. Further, assume that b can redeem 2 B from some transaction T_{b} external to the protocol.

Since a is honest, at step 12 of the protocol she reveals her secret s_{a}^{π}, by putting Turn2 (π, a, b).Secret $\left\langle s_{a}^{\pi}\right\rangle$ on the ledger. Realizing that he has lost the match, b redeems T_{b} through a transaction $\operatorname{Win}(\pi, b)$ with malleated in and in-script fields. Note that, to do this, b invested additional $2 \mathbb{B}$ from T_{b}. Player b can now redeem both his transaction and $\operatorname{Win}\left(c, \pi^{\prime}\right)$ from the sibling match at $\pi^{\prime}=011$ by putting Turn1 $(01, b, c)$ on the ledger.

Player a can redeem the pending Turn2 (after its timeout has expired) using $\operatorname{Timeout2}(\pi, a, b)$, and then redeem it with $\operatorname{Win}(\pi, a)$. This transaction is now

[^2]orphan, i.e. it can no longer be used in the next rounds, because its sibling Win $\left(\pi^{\prime}, c\right)$ was already redeemed by b. However, the orphan transaction can be redeemed in the garbage collection phase by CollectOrphanWin (π, a). In this way a can collect her winnings till match π, including the one in the match where b interfered. The average payoff of a is still zero, even though b misbehaved.

Remarkably, the dishonest strategy used by b is rational, when the deposit is zero. Indeed, when b realizes to have lost $1 \underset{8}{B}$ at π, he can let the timeout of Turn2 expire without further loss; also, by investing additional 2 B from T_{b} he can continue the tournament, with a fair chance to win. Overall, this makes the average payoff of b equal to zero (up-to a negligible function). Therefore, the protocol does not guarantee that the probability distribution of the payoff is the one in Theorem 4, when the deposit is zero and there are rational adversaries.

Instead, when the deposit is positive, the dishonest strategy of b is no longer rational. The reason is that, to continue the tournament, b needs to pay $2 \ddot{B}$ plus the deposit for all the players $p \sqsupset \pi$, including a. In the garbage collection phase, all these players will receive back their original deposit through CollectOrphanWin, and an additional deposit from the final transaction Win (ϵ, w). The deposit in the latter transaction was provided by b to enable the interfering $\operatorname{Win}(\pi, b)$. Overall, the average payoff of a becomes positive, while that of b becomes negative: hence the dishonest strategy is irrational.

This informal argument can be extended to the case of adversaries with arbitrary strategies. In general, Theorem 5 below establishes that, even in this case, our zero-deposit lottery protocol is secure, i.e. a player which follows the protocol does not lose money, on average.

Theorem 5. Honest strategies are rational in any set of strategies $\boldsymbol{\Sigma}$.

6 Conclusions

We have presented a lottery protocol based on Bitcoin, where N players can place a bet, and one of them, uniformly chosen, wins all the bets. Our protocol is parametric w.r.t. the deposit $d \geq 0$ that the players have to block throughout the protocol. For any value of d, our protocol ensures that honest players have a negligible average payoff, even in the presence of arbitrary adversaries (Theorem 5). Further, for $d>0$, the payoff is distributed like an ideal lottery (Theorem 4): that is, the winner gets the sum of all the bets with probability close to $1 / N$, while the other players lose their bets with probability close to $N-1 / N$. This holds unless the adversaries follow strategies which (on average) make them lose money, and make honest players gain money. According to the terminology in [2], our protocol implements a fair lottery.

Table 1 summarises the comparison between our protocol and the ones in [2] (ADMM) and [7] (BK). We also consider a variant of ours and [2], called "2 players iterated", which implement an N-players lottery by running $N-1$ instances of a two-players protocol. Similarly to our tournament protocol, these instances are composed in a tree: only the winners of a level can play at the next one, and

	ADMM [2] N players	ADMM [2] 2 players iterated	BK [7] N players	Tournament N players	Tournament 2 players iterated
Deposit	$N(N-1)$	N	$O\left(N^{2}\right)$	$d \geq 0$	$d \geq 0$
Completion time	$4 \tau_{\text {Ledger }}$	$4 L \tau_{\text {Ledger }}$	$O(N)$	$(2+6 L) \tau_{\text {Ledger }}$	$7 L \tau_{\text {Ledger }}$
Transactions	$O\left(N^{2}\right)$	$O(N)$	$O(N)$	$O(N)$	$O(N)$
All-or-nothing	yes	no	yes	yes, if $d>0$	no
Bitcoin features	NST	NST	NST + [17]	NST + [17,16]	NST + [17,16]

Table 1. Comparison of lottery protocols.
the winner of the root collects all the bets. In the iterated versions, the initialization phase is performed for every match (using independent keys/secrets), while in the non-iterated version the initialization is done only once, at the beginning.

The first row in the table quantifies the deposit: this is constant in our protocol, while in the others it grows with the number of players. More specifically, the deposit is $O\left(N^{2}\right)$ in [7] and in the non-iterated version of [2], while in the iterated version the deposit is N : intuitively, an N-deposit at the last round is needed to guarantee that the final winner can collect the whole N stake.

The second row quantifies the completion time of the protocol, excluding the communication and computation time (which is marginal in practice, compared to the time required to put transactions on the ledger). Only the non-iterated version of [2] requires constant time; in [7] the time is linear in N, while in the other protocols the time is proportional to $L=\log N$.

The number of transactions required by each protocol is linear in N, except for [2], which requires $O\left(N^{2}\right)$ transactions (third row).

The fourth row describes whether a protocol has an ideal behaviour, where only one player wins the whole stake, while the others lose their bets. More specifically, we call a protocol "all-or-nothing" if, assuming rational adversaries, the payoff of honest players is either -1 or $N-1$. The non-iterated versions of the protocols are "all-or-nothing", while the iterated ones are not. Indeed, a rational adversary can simply stop playing after winning a match, collecting the partial winnings and making impossible for any other player to obtain the whole $N \ddot{B}$ stake (hence forcing some honest player to gain $-1<v<N-1 \ddot{B}$).

The last row describes which Bitcoin features a protocol requires to be actually implemented. All protocols make use of non-standard transactions (NST), which are admitted, but currently handled by a portion of the miners. Note that some recent works [6] address the issue of implementing complex protocols on Bitcoin by using only standard transactions. Our tournament protocol also relies on two upcoming improvements to Bitcoin [17,16] related to the segregated witnesses, as discussed in Section 3. The protocol in [7] assumes resilience to malleability attacks, which can be obtained through [17].

Although our protocol has been crafted for Bitcoin, the underlying ideas can be used to implement fair lotteries on other frameworks for smart contracts. This could allow to relax the rationality assumption of Theorem 4 when the deposit is zero. For instance, an implementation in Ethereum [9] could just follow the structure of rounds in Figure 4, neglecting the Bitcoin transactions.

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Fair two-party computations via bitcoin deposits. In: Bitcoin workshop. pp. 105-121 (2014)
2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multiparty computations on Bitcoin. In: IEEE S \& P. pp. 443-458 (2014)
3. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: On the malleability of Bitcoin transactions. In: Financial Cryptography and Data Security. pp. 1-18 (2015)
4. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multiparty computations on Bitcoin. Commun. ACM 59(4), 76-84 (2016), http: //doi.acm.org/10.1145/2896386
5. Back, A., Bentov, I.: Note on fair coin toss via Bitcoin. http://www.cs.technion. ac.il/~idddo/cointossBitcoin.pdf (2013)
6. Banasik, W., Dziembowski, S., Malinowski, D.: Efficient zero-knowledge contingent payments in cryptocurrencies without scripts. In: ESORICS. pp. 261-280 (2016)
7. Bentov, I., Kumaresan, R.: How to use Bitcoin to design fair protocols. In: CRYPTO. pp. 421-439 (2014)
8. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK: Research perspectives and challenges for Bitcoin and cryptocurrencies. In: IEEE S \& P. pp. 104-121 (2015)
9. Buterin, V.: Ethereum: a next generation smart contract and decentralized application platform. https://github.com/ethereum/wiki/wiki/White-Paper (2013)
10. Crary, K., Sullivan, M.J.: Peer-to-peer affine commitment using bitcoin. In: ACM Conf. on Programming Language Design and Implementation. pp. 479-488 (2015)
11. Eyal, I., Sirer, E.: Majority is not enough: Bitcoin mining is vulnerable. In: Financial Cryptography and Data Security. pp. 436-454 (2014)
12. Garay, J.A., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: Analysis and applications. In: EUROCRYPT. pp. 281-310 (2015)
13. Kiayias, A., Zhou, H., Zikas, V.: Fair and robust multi-party computation using a global transaction ledger. In: EUROCRYPT. pp. 705-734 (2016)
14. Kumaresan, R., Bentov, I.: How to use Bitcoin to incentivize correct computations. In: ACM CCS. pp. 30-41 (2014)
15. Kumaresan, R., Moran, T., Bentov, I.: How to use Bitcoin to play decentralized poker. In: ACM CCS. pp. 195-206 (2015)
16. Lau, J., Wuille, P.: Transaction signature verification for version 0 witness program, BIP 143, https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki
17. Lombrozo, E., Lau, J., Wuille, P.: Segregated witness (consensus layer), BIP 141, https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
18. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. https://bitcoin. org/bitcoin.pdf (2008)
19. Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire!: Penalizing equivocation by loss of Bitcoins. In: ACM CCS. pp. 219-230 (2015), http://doi.acm.org/10. 1145/2810103. 2813686
20. Szabo, N.: Formalizing and securing relationships on public networks. First Monday 2(9) (1997), http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/ fm/article/view/548

[^0]: ${ }^{3}$ Technically, ver only requires the public part of the key pair k, while sig only requires the private part. For notational convenience, we always mention the whole key pair.

[^1]: ${ }^{4}$ See https://en.bitcoin.it/wiki/Transaction_Malleability.

[^2]: ${ }^{5}$ We neglect the case where the probability of λ not containing Init is zero, because already dealt with by the first item of Theorem 2.

