Two Simple Composition Theorems with H-coefficients

Jacques Patarin
Laboratoire de Mathématiques de Versailles, UVSQ,
CNRS, Université Paris-Saclay, 78035 Versailles, France
jpatarin@club-internet.fr

Abstract

We will present here two simple theorems that show that when we compose permutation generators with independent keys, then the "quality" of CCA security increases. These theorems are written in terms of H-coefficients.

1 A simple mathematical property

Theorem 1. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be real numbers and let α and β be real numbers, $\alpha \geq 0, \beta \geq 0$ such that:

- $\sum_{i=0}^{n} x_{i}=0$.
- $\sum_{i=0}^{n} y_{i}=0$.
$\bullet \forall i, 1 \leq i \leq n, x_{i} \geq-\alpha$.
$\bullet \forall i, 1 \leq i \leq n, y_{i} \geq-\beta$.
Then: $\sum_{i=1}^{n} x_{i} y_{i} \geq-n \alpha \beta$.
Proof. $\forall i, 1 \leq i \leq n$, let:

$$
\begin{array}{ll}
A_{i}=x_{i} & \text { if } x_{i} \geq 0 \\
a_{i}=-x_{i} & \text { if } x_{i}<0 \\
B_{i}=y_{i} & \text { if } y_{i} \geq 0 \\
b_{i}=-y_{i} & \text { if } y_{i}<0
\end{array}
$$

Then all the values $A_{i}, a_{i}, B_{i}, b_{i}$, are positive, $\sum A_{i}=\sum a_{i}, \sum B_{i}=\sum b_{i}$, $0 \leq a_{i} \leq \alpha, 0 \leq b_{i} \leq \beta$. Let $P=\sum_{i=1}^{n} x_{i} y_{i}$. In P, we have 4 types of terms: $A_{i} B_{i},-A_{i} b_{i},-a_{i} B_{i}$ and $a_{i} b_{i}$. We can assume that we have at least one term $-A_{i} b_{i}$ or $-a_{i} B_{i}$ because if this is not the case, then $P \geq 0 \geq-n \alpha \beta$. From now on, we will assume that we have at least one term $-a_{i_{0}} B_{i_{0}}$ (but not necessary one term $A_{i} b_{i}$). Without loss of generality, we can assume that we have no term in $A_{i} B_{i}$ since decreasing B_{i} to 0 and increasing $B_{i_{0}}$ of the same value ($B_{i_{0}}$ becomes $B_{i_{0}}+B_{i}$) keeps $\sum B_{i}=\sum b_{i}$ but can only decrease P (because the term in $A_{i} B_{i}$ is nonnegative and the term in $-a_{i_{0}} B_{i_{0}}$ is nonpositive), and we look for P as small as possible. Now, since we have no term in $A_{i} B_{i}$, we can assume that we have at least one term $A_{j_{0}} b_{j_{0}}$ (if not we would have no term A_{i} at all and since $\sum A_{i}=\sum a_{i}$, no term $a_{i} \neq 0$ also $)$. Then without loosing generality, we can assume that $a_{i_{0}}=\alpha$ since increasing $a_{i_{0}}$ and increasing $A_{j_{0}}$ of the same value can only decrease P. Similarly, we can assume that all the terms
$-a_{i} B_{i}$ are $-\alpha B_{i}$ and all the terms $-A_{i} b_{i}$ are $-\beta A_{i}$.
Now, from the term in $-A_{j_{0}} \beta$ we see that we can assume that in all the terms $a_{i} b_{i}$, we have $a_{i}=\alpha$ since by increasing a_{i} to α and increasing $A_{j_{0}}$ of the same value $\alpha-a_{i}$ (in order to keep $\sum A_{i}=\sum a_{i}$), we will only decrease P (since P is changed on $\left.P+\left(\alpha-a_{i}\right) b_{i}-\left(\alpha-a_{i}\right) \leq P\right)$. Similarly, from the term in $-\alpha B_{i_{0}}$, we see that we can assume that in the term $a_{i} b_{i}$ we have $b_{i}=\beta$. Finally, we have found that

$$
P \geq-\sum_{i=1}^{n_{1}} \beta A_{i}-\sum_{i=n_{1}+1}^{n_{2}} \alpha B_{i}+\sum_{i=n_{2}+1}^{n} \alpha \beta
$$

with

$$
\begin{gathered}
\sum_{i=1}^{n_{1}} A_{i}=\sum a_{i}=\left(\left(n_{2}-n_{1}\right)+\left(n-n_{2}\right)\right) \alpha=\left(n-n_{1}\right) \alpha \\
\sum_{i=n_{1}+1}^{n_{2}} B_{i}=\sum b_{i}=\left(n_{1}+\left(n-n_{2}\right)\right) \beta \\
P \geq-\left(n-n_{1}\right) \alpha \beta-\left(n_{1}+n-n_{2}\right) \alpha \beta+\left(n-n_{2}\right) \alpha \beta
\end{gathered}
$$

Thus $P \geq-n \alpha \beta$, as claimed.

2 A composition Theorem in CCA with H-coefficients

Theorem 2. Let G_{1} and G_{2} two permutation generators (with the same key space K) such that:
(1) For all sequences of pairwise distinct elements $a_{i}, 1 \leq i \leq q$, and for all sequences of pairwise distinct elements $b_{i}, 1 \leq i \leq q$, we have: $H_{1} \geq$ $\frac{|K|}{\frac{2^{N}\left(2^{N}-1\right) \ldots\left(2^{N}-q+1\right)}{}}\left(1-\alpha_{1}\right)$ and similarly $H_{2} \geq \frac{|\bar{K}|}{2^{N}\left(2^{N}-1\right) \ldots\left(2^{N}-q+1\right)}\left(1-\alpha_{2}\right)$ where H_{1} denotes the H coefficient for G_{1} and H_{2} the H coefficient for G_{2}. Then:
(2) If we compose 2 such generators G_{1} and G_{2} with random independent keys, for the composition generator $G^{\prime}=G_{2} \circ G_{1}$, we have: for all sequences of pairwise distinct elements $a_{i}, 1 \leq i \leq q$, and for all sequences of pairwise distinct elements $b_{i}, 1 \leq i \leq q, H^{\prime} \geq \frac{|K|^{2}}{2^{N}\left(2^{N}-1\right) \ldots\left(2^{N}-q+1\right)}\left(1-\alpha_{1} \alpha_{2}\right)$, where H^{\prime} denotes the H coefficient for G^{\prime}.

Proof. Let \tilde{H}_{1} (respectively \tilde{H}_{2}) denotes the mean value of H_{1}. (respectively H_{2}). We have:

$$
\tilde{H}_{1}=\tilde{H}_{2}=\frac{|K|}{2^{N}\left(2^{N}-1\right) \ldots\left(2^{N}-q+1\right)}
$$

Let denote by \tilde{H}^{\prime} the mean value of H for $G^{\prime}=G_{2} \circ G_{1}$. We have

$$
\tilde{H}^{\prime}=\frac{|K|^{2}}{2^{N}\left(2^{N}-1\right) \ldots\left(2^{N}-q+1\right)}
$$

Let $a=\left(a_{1}, \ldots, a_{q}\right)$ be q pairwise distinct plaintexts, and $b=\left(b_{1}, \ldots, b_{q}\right)$ be q ciphertexts of G^{\prime}. Let J be the set of all $\left(t_{1}, \ldots, t_{q}\right)$ pairwise distinct values of $\{0,1\}^{N}$. We have $|J|=2^{N}\left(2^{N}-1\right) \ldots\left(2^{N}-q+1\right)$. For $G^{\prime}=G_{2} \circ G_{1}$, we have:

$$
H(a, b)=\sum_{t \in J} H_{1}(a, t) H_{2}(t, b)
$$

We also have $\sum_{t \in J} H_{1}(a, t)=|K|$ and $\sum_{t \in J} H_{2}(t, b)=|\underset{\tilde{H}}{\mid}|$ since each key sends a value a to a specific value t. We also have $|K|=\tilde{H}_{1} \cdot|J|=\tilde{H}_{2} \cdot|J|$. By hypothesis, we also have:

$$
\forall t \in J, H_{1}(a, t) \geq \tilde{H}_{1}\left(1-\alpha_{1}\right) \text { and } H_{2}(a, t) \geq \tilde{H}_{2}\left(1-\alpha_{2}\right)
$$

$\forall t \in J$, let $x_{t}=\frac{H_{1}(a, t)}{\tilde{H}_{1}}-1$ and $y_{t}=\frac{H_{2}(a, t)}{\tilde{H}_{2}}-1 . \forall t \in J$, we have $x_{t} \geq-\alpha_{1}$, and $y_{t} \geq-\alpha_{2}, \sum_{t \in J} x_{t}=0$ and $\sum_{t \in J} y_{t}=0$. Therefore, from theorem 1, we have $\sum_{t \in J} x_{t} y_{t} \geq-|J| \alpha_{1} \alpha_{2}$. For $G^{\prime}=G_{2} \circ G_{1}$, we have:

$$
\begin{aligned}
H(a, b) & =\sum_{t \in J} H_{1}(a, t) \cdot H_{2}(t, b) \\
& =\sum_{t \in J}\left(\tilde{H}_{1} x_{t}-\tilde{H}_{1}\right)\left(\tilde{H}_{2} y_{t}-\tilde{H}_{2}\right) \\
& =\sum_{t \in J} \tilde{H}_{1} \tilde{H}_{2} x_{t} y_{t}-\tilde{H}_{1} \tilde{H}_{2} y_{t}-\tilde{H}_{1} \tilde{H}_{2} x_{t}+\tilde{H}_{1} \tilde{H}_{2} \\
& \geq-\tilde{H}_{1} \tilde{H}_{2}|J| \alpha_{1} \alpha_{2}+|J| \tilde{H}_{1} \tilde{H}_{2}
\end{aligned}
$$

Moreover $\tilde{H}^{\prime}=\frac{|K|^{2}}{|J|}=|J| \tilde{H}_{1} \tilde{H}_{2}$. We have proved: $H(a, b) \geq \tilde{H}^{\prime}\left(1-\alpha_{1} \alpha_{2}\right)$ as claimed.

Theorem 3. (H-coefficient technique, sufficient condition for security against $C C A$)

Let α and β be real numbers, $\alpha>0$ and $\beta>0$
If: There exists a subset E of $\left(\{0,1\}^{q N}\right)^{2}$ such that
(1a) For all $(a, b) \in E$, we have:

$$
H \geq \frac{|K|}{2^{N q}}(1-\alpha) \stackrel{\circ}{1}
$$

with

$$
\stackrel{\text { Odéf }}{=} \frac{1}{\left(1-\frac{1}{2^{N}}\right)\left(1-\frac{2}{2^{N}}\right) \ldots\left(1-\frac{q-1}{2^{N}}\right)}
$$

(1b) For all CCA acting on a random permutation f of \mathcal{P}_{N}, the probability that $(a, b) \in E$ is $\geq 1-\beta$ where (a, b) denotes here the successive $b_{i}=f\left(a_{i}\right)$ or $a_{i}=f^{-1}\left(b_{i}\right), 1 \leq i \leq q$, that will appear.

Then
(2) For every CCA with q queries (i.e. q chosen plaintexts or ciphertexts) we have: $\mathbf{A d v}{ }^{P R P} \leq \alpha+\beta$ where $\mathbf{A d v}{ }^{P R P}$ denotes the probability to distinguish $G\left(f_{1}, \ldots, f_{r}\right)$ when $\left(f_{1}, \ldots, f_{r}\right) \in_{R} K$ from a permutation $f \in_{R} \mathcal{P}_{N}$.

Proof. This theorem is proved in $[5,6]$.

Corollary 1. From theorem 3 (H-coefficients in $C C A$) with $\beta=0$, we see that we have: $\mathbf{A d v}{ }^{P R P} \leq \alpha_{1} \alpha_{2}$ where $\mathbf{A d v}{ }^{P R P}$ denotes the advantage in $C C A$ to distinguish $G_{2} \circ G_{1}$ (when the keys are independently and randomly chosen) from a permutation $f \in_{R} \mathcal{P}_{n}$.

By induction, we see:
Theorem 4. Let q and k be two integers. Let $\alpha_{1}, \ldots, \alpha_{k}$ be k real values. Let G_{1}, \ldots, G_{k} be k permutation generators such that: for all sequences of pairwise distinct elements a_{i}, and for all sequences of pairwise distinct elements $b_{i}, 1 \leq$ $i \leq q$, we have:

$$
H \geq \frac{|K|}{2^{N}\left(2^{N}-1\right) \ldots\left(2^{N}-q+1\right)}\left(1-\alpha_{j}\right)
$$

If we compose k such generators G_{1}, \ldots, G_{k} with random and independent keys, for the composition generator $G^{\prime}=G_{k} \circ \ldots \circ G_{1}$, we have: for all sequences of pairwise distinct elements $a_{i}, 1 \leq i \leq q$ and for all sequences of pairwise distinct elements $b_{i}, 1 \leq i \leq q, H \geq \frac{|K|}{2^{N}\left(2^{N}-1\right) \ldots\left(2^{N}-q+1\right)}\left(1-\alpha_{1} \ldots \alpha_{k}\right)$. Therefore, from theorem 3 with $\beta=0$, we see that we have: $\mathbf{A d v}{ }^{P R P} \leq \alpha_{1} \ldots \alpha_{k}$

3 A composition theorem to eliminate a "hole"

J denotes, as above, the set of all q pairwise distinct values of $\{0,1\}^{N}$.
Theorem 5. Let G_{1} and G_{2} be two permutation generators with the same key space K. Let H_{1} (respectively H_{2}) denotes the H-coefficients for G_{1} (respectively $\left.G_{2}\right)$.

If:
(1) For all sequences of pairwise distinct elements $a_{i}, 1 \leq i \leq q$, and for all sequences of pairwise distinct $b_{i} \in E_{1}, 1 \leq i \leq q$, we have

$$
H_{1} \geq \frac{|K|}{2^{N}\left(2^{N}-1\right) \ldots\left(2^{N}-q+1\right)}\left(1-\alpha_{1}\right)
$$

with $\left|E_{1}\right| \geq|J|\left(1-\epsilon_{1}\right)$.
(2) Similarly, for all sequences of pairwise distinct elements $a_{i}, 1 \leq i \leq q$, and for all sequences of pairwise distinct $b_{i} \in E_{2}, 1 \leq i \leq q$, we have

$$
H_{2} \geq \frac{|K|}{2^{N}\left(2^{N}-1\right) \ldots\left(2^{N}-q+1\right)}\left(1-\alpha_{2}\right)
$$

with $\left|E_{2}\right| \geq|J|\left(1-\epsilon_{2}\right)$.
Then: for the composition generator $G_{2}^{-1} \circ G_{1}$, for all sequences of pairwise distinct elements a_{i}, and for all sequences of pairwise distinct b_{i}, we have

$$
H^{\prime} \geq \frac{|K|^{2}}{2^{N}\left(2^{N}-1\right) \ldots\left(2^{N}-q+1\right)}\left(1-\epsilon_{1}-\epsilon_{2}\right)\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)
$$

where H^{\prime} denotes the H-coefficients for $G_{2}^{-1} \circ G_{1}$ (wa have no hole). Moreover, if $E_{1}=E_{2}$, then

$$
H^{\prime} \geq \frac{|K|^{2}}{2^{N}\left(2^{N}-1\right) \ldots\left(2^{N}-q+1\right)}\left(1-\epsilon_{1}\right)\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)
$$

Proof. For $G^{\prime}=G_{2}^{-1} \circ G_{1}$, we have: $H^{\prime}(a, b)=\sum_{t \in J} H_{1}(a, t) H_{2}(t, b)$, with $\sum_{t \in J} H_{1}(a, t)=|K|$ and $\sum_{t \in J} H_{2}(t, b)=|K|$. Let $\tilde{H}_{1}=\frac{|K|}{|J|}, \tilde{H}_{2}=\frac{|K|}{|J|}$, and $\tilde{H}^{\prime}=\frac{|K|^{2}}{|J|}=\tilde{H}_{1} \tilde{H}_{2}|J|$. We have: $|J|=2^{N}\left(2^{N}-1\right) \ldots\left(2^{N}-q+1\right)$. Let $P_{1}=J \backslash E_{1}$ and $P_{2}=J \backslash E_{2}$. Then

$$
\begin{aligned}
H^{\prime}(a, b) & \geq \sum_{t \in J \backslash P_{1} \backslash P_{2}} H_{1}(a, t) H_{2}(t, b) \\
& \geq \sum_{t \in J \backslash P_{1} \backslash P_{2}} \tilde{H}_{1}\left(1-\alpha_{1}\right) \tilde{H}_{2}\left(1-\alpha_{2}\right) \\
& \geq\left|J \backslash P_{1} \backslash P_{2}\right| \tilde{H}_{1}\left(1-\alpha_{1}\right) \tilde{H}_{2}\left(1-\alpha_{2}\right) \\
& \geq|J|\left(1-\epsilon_{1}-\epsilon_{2}\right) \tilde{H}_{1}\left(1-\alpha_{1}\right) \tilde{H}_{2}\left(1-\alpha_{2}\right) \\
& \geq \frac{|K|^{2}}{|J|}\left(1-\epsilon_{1}-\epsilon_{2}\right)\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)
\end{aligned}
$$

as claimed.

4 Comments about the composition theorems

These very simple theorems of composition are not very well known because the classical theorems of composition (with more difficult proofs) usually do not consider hypothesis in term of the values on the H coefficients. For example, the famous "two weak make one strong" theorem of Maurer and Pietrzak [2, 3] says that if F and G are NCPA secure, then the composition $G^{-1} \circ F$ is CCA secure. This result only holds in the information-theoretic setting, not in the computational setting (cf $[4,7]$). Another example is this theorem [1]:

Theorem 6. Let E, F and G be 3 block ciphers with the same message space M. Denote $\epsilon_{E}=\mathbf{A d v}_{E}^{N C P A}(q), \epsilon_{F}=\mathbf{A d v} v_{F}^{N C P A}(q), \epsilon_{F^{-1}}=\mathbf{A d v}_{F-1}^{N C P A}(q)$ and $\epsilon_{G^{-1}}=\mathbf{A d v}_{G^{-1}}^{N C P A}(q)$, where q is the number of queries. We have:

$$
\operatorname{Adv}_{G \circ F \circ E}^{C C A}(q) \leq \epsilon_{E} \epsilon_{F}+\epsilon_{E} \epsilon_{G^{-1}}+\epsilon_{F^{-1}} \epsilon_{G^{-1}}+\min \left\{\epsilon_{E} \epsilon_{F}, \epsilon_{E} \epsilon_{G^{-1}}, \epsilon_{F^{-1}} \epsilon_{G^{-1}}\right\}
$$

Why do we have 3 rounds in this theorem and only 2 rounds in theorem 2 for the product of the advantages? (Moreover theorem 6 was also proved by using the H-coefficient technique [1]). This is because in theorem 2, we used the additional property that there are no "holes" in the hypothesis that H is greater than or equal to the mean value $H(1-\epsilon)$, i.e. that this property was true for any q pairwise distinct inputs and q pairwise distinct outputs.

References

1. Cogliati, B., Patarin, J., Seurin, Y.: Security Amplification for the Composition of Block Cipher: Simpler Proofs and New Results. Selected Areas in CryptographySAC '14, A. Joux, A. Yousssef (eds), 129-146, Springer-Verlag, Lecture Notes in Computer Science, 8781, (2014)
2. Maurer, U.: Indistinguishability of Random Systemes. Advances in Cryptology EUROCRYPT '02, L.R. Knudsen (ed), 110-132, Springer-Verlag, Lecture Notes in Computer Science, 2332, (2002)
3. Maurer, U., Pietrzak, K., Renner, R.: Indistinguishability Amplification. Advances in Cryptology - CRYPTO '07, A. Menezes (ed), 130-149, Springer-Verlag, Lecture Notes in Computer Science, 4622, (2007)
4. Myers, S.: Black-Box Composition Does Not Imply Adaptive Security. Advances in Cryptology - EUROCRYPT '04, C. Cachin, J.L. Camenisch (eds), 189-206, Springer-Verlag, Lecture Notes in Computer Science, 3027, (2004)
5. J. Patarin, Étude des Générateurs de Permutations Pseudo-aléatoires basés sur le schéma du D.E.S., PhD, November 1991.
6. Patarin, J.: The "coefficient H" technique. Selected Areas in Cryptography SAC '08, R. Avanzi, L. Keliher, F. Sica (eds), 328-345, Springer-Verlag, Lecture Notes in Computer Science, 5381, (2009)
7. Pietrzak, K.: Composition Does Not Imply Adaptive Security.. Advances in Cryptology - CRYPTO ’05, V. Shoup (ed), 55-65, Springer-Verlag, Lecture Notes in Computer Science, 3621, (2005)
