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Abstract. We will present here two new and simple theorems that show
that when we compose permutation generators with independent keys,
then the “quality” of CCA security increases. These theorems (Theo-
rems 2 and 5 of this paper) are written in terms of H-coefficients (which
are nothing else, up to some normalization factors, than transition prob-
abilities). Then we will use these theorems on the classical analysis of
Random Feistel Schemes (i.e. Luby-Rackoff constructions) and we will
compare the results obtained with the bounds obtained with the cou-
pling technique. Finally, we will show an interesting difference between
5 and 6 Random Feistel Schemes. With 5 rounds on 2n bits → 2n bits,
when the number of q queries satisfies

√
2n � q � 2n, we have some

“holes” in the H-coefficient values, i.e. some H values are much smaller
than the average value of H. This property for 5 rounds does not exist
anymore on 6 rounds.

1 Introduction

Security amplification results for block ciphers typically state that cascading (i.e.
composing with independent keys) two, or more, block ciphers gives a new block
cipher that offers better security against some classes of adversaries. One of the
most important composition results is the so-called “two weak make one strong”
theorem. This theorem was first established up to logarithmic terms by Maurer
and Pietrzak [11]. It was later tightened by Maurer, Pietrzak and Renner [12].
In 2010, Cogliati, Patarin and Seurin have obtained simpler proofs of this result
by using the so-called “H-coefficient technique” (cf [2]). In this paper, we will
prove two new, and relatively simple, composition theorems: Theorems 2 and 5
of this paper.
These theorems are written directly in term of “H-coefficients”, i.e. in term of
the number of generic keys that send some plaintexts on some ciphertexts. (This
is the same, up to some normalization factors, than transition probabilities).
We will then show how there theorems can be useful in term of classical crypto-
graphic security (such as CCA: adaptive chosen plaintext and ciphertext attack).
We work here in term of information theory for security, i.e. the adversary can
ask only for a limited number q of queries, but the number of his (or her) com-
putations is not limited. Interestingly, Stefano Tessaro has obtained [20] very



similar composition results in term of improved security. However, Stefano Tes-
saro works with complexity theory (instead of information theory), so the results
and the proofs of [20] are in fact very different from the results and the proofs
of this paper. Then we will apply our new theorems on random Feistel schemes,
and show an interesting difference between 5 and 6 rounds.

2 A simple mathematical property

Theorem 1. Let x1, . . . , xn and y1, . . . , yn be real numbers and let α and β be
real numbers, α ≥ 0, β ≥ 0 such that:
•
∑n

i=0 xi = 0.
•
∑n

i=0 yi = 0.
•∀i, 1 ≤ i ≤ n, xi ≥ −α.
•∀i, 1 ≤ i ≤ n, yi ≥ −β.
Then:

∑n
i=1 xiyi ≥ −nαβ.

Proof. ∀i, 1 ≤ i ≤ n, let:

Ai = xi if xi ≥ 0
ai = −xi if xi < 0
Bi = yi if yi ≥ 0
bi = −yi if yi < 0

Then all the values Ai, ai, Bi, bi, are positive,
∑
Ai =

∑
ai,

∑
Bi =

∑
bi,

0 ≤ ai ≤ α, 0 ≤ bi ≤ β. Let P =
∑n

i=1 xiyi. In P , we have 4 types of terms:
AiBi, −Aibi, −aiBi and aibi. We can assume that we have at least one term
−Aibi or −aiBi because if this is not the case, then P ≥ 0 ≥ −nαβ. From now
on, we will assume that we have at least one term −ai0Bi0 (but not necessary
one term Aibi). Without loss of generality, we can assume that we have no term
in AiBi since decreasing Bi to 0 and increasing Bi0 of the same value (Bi0

becomes Bi0 + Bi) keeps
∑
Bi =

∑
bi but can only decrease P (because the

term in AiBi is non-negative and the term in −ai0Bi0 is non-positive), and we
look for P as small as possible. Now, since we have no term in AiBi, we can
assume that we have at least one term Aj0bj0 (if not we would have no term
Ai at all and since

∑
Ai =

∑
ai, no term ai 6= 0 also). Then without loosing

generality, we can assume that ai0 = α since increasing ai0 and increasing Aj0 of
the same value can only decrease P . Similarly, we can assume that all the terms
−aiBi are −αBi and all the terms −Aibi are −βAi.
Now, from the term in −Aj0β we see that we can assume that in all the terms
aibi, we have ai = α since by increasing ai to α and increasing Aj0 of the same
value α−ai (in order to keep

∑
Ai =

∑
ai), we will only decrease P (since P is

changed on P + (α− ai)bi − (α− ai) ≤ P ). Similarly, from the term in −αBi0 ,
we see that we can assume that in the term aibi we have bi = β. Finally, we have
found that

P ≥ −
n1∑
i=1

βAi −
n2∑

i=n1+1

αBi +

n∑
i=n2+1

αβ



with
n1∑
i=1

Ai =
∑

ai = ((n2 − n1) + (n− n2))α = (n− n1)α

n2∑
i=n1+1

Bi =
∑

bi = (n1 + (n− n2))β

P ≥ −(n− n1)αβ − (n1 + n− n2)αβ + (n− n2)αβ

Thus P ≥ −nαβ, as claimed. ut

3 A composition Theorem in CCA with H-coefficients

Definition 1. Let G be a permutation generator that generates permutations
from {0, 1}N to {0, 1}N from a large set of parameters K. The values of K will
be called “keys”, despite the fact that they are generally defined with much more
bits than usual cryptographic keys, and therefore G is considered as a “generic
generator”. Let q be an integer (called the “number of queries”). Let a = (ai),
1 ≤ i ≤ q, be q pairwise distinct elements of {0, 1}N , and similarly let b = (bi),
1 ≤ i ≤ q, be q pairwise distinct elements of {0, 1}N . Then, by definition, H(a, b)
denotes the number of keys k ∈ K such that: ∀i, 1 ≤ i ≤ q, Gk(ai) = bi. H(a, b)
is simply denoted by H when there is no risk of confusion about the values of a
and b, or when we want to speak of all these coefficients H(a, b).

Definition 2. With the same notations as above, if there exist values (ai) pair-
wise distinct, and values (bi) pairwise distinct, 1 ≤ i ≤ q, such that H(a, b) (for
these a and b) is much smaller than the average value of H, then we say that
there is a “Hole” in the H-coefficient values with q queries.

Theorem 2. Let G1 and G2 two permutation generators (with the same key
space K) such that:
(1) For all sequences of pairwise distinct elements ai, 1 ≤ i ≤ q, and for
all sequences of pairwise distinct elements bi, 1 ≤ i ≤ q, we have: H1 ≥

|K|
2N (2N−1)...(2N−q+1)

(1− α1) and similarly H2 ≥ |K|
2N (2N−1)...(2N−q+1)

(1− α2) where

H1 denotes the H coefficient for G1 and H2 the H coefficient for G2. Then:
(2) If we compose 2 such generators G1 and G2 with random independent keys,
for the composition generator G′ = G2 ◦G1, we have: for all sequences of pair-
wise distinct elements ai, 1 ≤ i ≤ q, and for all sequences of pairwise distinct

elements bi, 1 ≤ i ≤ q, H ′ ≥ |K|2
2N (2N−1)...(2N−q+1)

(1− α1α2), where H ′ denotes

the H coefficient for G′.

Proof. Let H̃1 (respectively H̃2) denotes the mean value of H1. (respectively
H2). We have:

H̃1 = H̃2 =
|K|

2N (2N − 1) . . . (2N − q + 1)



Let denote by H̃ ′ the mean value of H for G′ = G2 ◦G1. We have

H̃ ′ =
|K|2

2N (2N − 1) . . . (2N − q + 1)

Let a = (a1, . . . , aq) be q pairwise distinct plaintexts, and b = (b1, . . . , bq) be q
ciphertexts of G′. Let J be the set of all (t1, . . . , tq) pairwise distinct values of
{0, 1}N . We have |J | = 2N (2N − 1) . . . (2N − q + 1). For G′ = G2 ◦G1, we have:

H(a, b) =
∑
t∈J

H1(a, t)H2(t, b)

We also have
∑

t∈J H1(a, t) = |K| and
∑

t∈J H2(t, b) = |K| since each key sends

a value a to a specific value t. We also have |K| = H̃1 · |J | = H̃2 · |J |. By
hypothesis, we also have:

∀t ∈ J, H1(a, t) ≥ H̃1(1− α1) and H2(a, t) ≥ H̃2(1− α2)

∀t ∈ J , let xt = H1(a,t)

H̃1
− 1 and yt = H2(a,t)

H̃2
− 1. ∀t ∈ J , we have xt ≥ −α1, and

yt ≥ −α2,
∑

t∈J xt = 0 and
∑

t∈J yt = 0. Therefore, from theorem 1, we have∑
t∈J xtyt ≥ −|J |α1α2. For G′ = G2 ◦G1, we have:

H(a, b) =
∑

t∈J H1(a, t) ·H2(t, b)

=
∑

t∈J

(
H̃1xt − H̃1

)(
H̃2yt − H̃2

)
=
∑

t∈J H̃1H̃2xtyt − H̃1H̃2yt − H̃1H̃2xt + H̃1H̃2

≥ −H̃1H̃2|J |α1α2 + |J |H̃1H̃2

Moreover H̃ ′ = |K|2
|J| = |J |H̃1H̃2. We have proved: H(a, b) ≥ H̃ ′(1 − α1α2) as

claimed. ut

Theorem 3. (H-coefficient technique, sufficient condition for security against
CCA)

Let α and β be real numbers, α > 0 and β > 0
If: There exists a subset E of ({0, 1}qN )2 such that
(1a) For all (a, b) ∈ E, we have:

H ≥ |K|
2Nq

(1− α)
◦
1

with
◦
1
déf
=

1

(1− 1
2N )(1− 2

2N ) . . . (1− q−1
2N )

(1b) For all CCA acting on a random permutation f of PN , the probability
that (a, b) ∈ E is ≥ 1− β where (a, b) denotes here the successive bi = f(ai) or
ai = f−1(bi), 1 ≤ i ≤ q, that will appear.

Then
(2) For every CCA with q queries (i.e. q chosen plaintexts or ciphertexts) we

have: AdvPRP ≤ α + β where AdvPRP denotes the probability to distinguish
G(f1, . . . , fr) when (f1, . . . , fr) ∈R K from a permutation f ∈R PN .



Proof. This theorem is proved in [16, 17]. ut

Corollary 1. From theorem 3 (H-coefficients in CCA) with β = 0, we see that
we have: AdvPRP ≤ α1α2 where AdvPRP denotes the advantage in CCA to
distinguish G2◦G1 (when the keys are independently and randomly chosen) from
a permutation f ∈R Pn.

By induction, we see:

Theorem 4. Let q and k be two integers. Let α1, . . . , αk be k real values. Let
G1, . . . , Gk be k permutation generators such that: for all sequences of pairwise
distinct elements ai, and for all sequences of pairwise distinct elements bi, 1 ≤
i ≤ q, we have:

H ≥ |K|
2N (2N − 1) . . . (2N − q + 1)

(1− αj)

If we compose k such generators G1, . . . , Gk with random and independent keys,
for the composition generator G′ = Gk ◦ . . . ◦ G1, we have: for all sequences of
pairwise distinct elements ai, 1 ≤ i ≤ q and for all sequences of pairwise distinct

elements bi, 1 ≤ i ≤ q, H ≥ |K|
2N (2N−1)...(2N−q+1)

(1− α1 . . . αk). Therefore, from

theorem 3 with β = 0, we see that we have: AdvPRP ≤ α1 . . . αk

4 A composition theorem to eliminate a “hole”

J denotes, as above, the set of all q pairwise distinct values of {0, 1}N .

Theorem 5. Let G1 and G2 be two permutation generators with the same key
space K. Let H1 (respectively H2) denotes the H-coefficients for G1 (respectively
G2).

If:
(1) For all sequences of pairwise distinct elements ai, 1 ≤ i ≤ q, and for all

sequences of pairwise distinct bi ∈ E1, 1 ≤ i ≤ q, we have

H1 ≥
|K|

2N (2N − 1) . . . (2N − q + 1)
(1− α1)

with |E1| ≥ |J |(1− ε1).
(2) Similarly, for all sequences of pairwise distinct elements ai, 1 ≤ i ≤ q,

and for all sequences of pairwise distinct bi ∈ E2, 1 ≤ i ≤ q, we have

H2 ≥
|K|

2N (2N − 1) . . . (2N − q + 1)
(1− α2)

with |E2| ≥ |J |(1− ε2).
Then: for the composition generator G−1

2 ◦G1, for all sequences of pairwise
distinct elements ai, and for all sequences of pairwise distinct bi, we have

H ′ ≥ |K|2

2N (2N − 1) . . . (2N − q + 1)
(1− ε1 − ε2)(1− α1)(1− α2)



where H ′ denotes the H-coefficients for G−1
2 ◦G1 (wa have no hole). Moreover,

if E1 = E2, then

H ′ ≥ |K|2

2N (2N − 1) . . . (2N − q + 1)
(1− ε1)(1− α1)(1− α2)

Proof. For G′ = G−1
2 ◦ G1, we have: H ′(a, b) =

∑
t∈J H1(a, t)H2(t, b) , with∑

t∈J H1(a, t) = |K| and
∑

t∈J H2(t, b) = |K|. Let H̃1 = |K|
|J| , H̃2 = |K|

|J| , and

H̃ ′ = |K|2
|J| = H̃1H̃2|J |. We have: |J | = 2N (2N−1) . . . (2N−q+1). Let P1 = J\E1

and P2 = J \ E2. Then

H ′(a, b) ≥
∑

t∈J\P1\P2

H1(a, t)H2(t, b)

≥
∑

t∈J\P1\P2

H̃1(1− α1)H̃2(1− α2)

≥ |J \ P1 \ P2|H̃1(1− α1)H̃2(1− α2)

≥ |J |(1− ε1 − ε2)H̃1(1− α1)H̃2(1− α2)

≥ |K|
2

|J |
(1− ε1 − ε2)(1− α1)(1− α2)

as claimed. ut

5 Comments about the composition theorems

These very simple theorems of composition are not very well known because
the classical theorems of composition (with more difficult proofs) usually do not
consider hypothesis in term of the values on the H coefficients. (Sometimes, as
in [2], H-coefficients are used for the proofs of the Theorems, but not in the terms
of the Theorems). For example, the famous “two weak make one strong” theorem
of Maurer and Pietrzak [9, 12] says that if F and G are NCPA secure, then the
composition G−1 ◦ F is CCA secure. This result only holds in the information-
theoretic setting, not in the computational setting (cf [15, 19]). Another example
is this theorem of [2]:

Theorem 6. (i.e. [2] Theorem 5 p.17)
Let E,F and G be 3 block ciphers with the same message space M . Denote
εE = AdvNCPA

E (q), εF = AdvNCPA
F (q), εF−1 = AdvNCPA

F−1 (q) and εG−1 =
AdvNCPA

G−1 (q), where q is the number of queries. We have:

AdvCCA
G◦F◦E(q) ≤ εEεF + εEεG−1 + εF−1εG−1 + min {εEεF , εEεG−1 , εF−1εG−1}

Why do we have 3 rounds in this theorem and only 2 rounds in theorem 2 for the
product of the advantages? (Moreover theorem 6 was also proved by using the
H-coefficient technique [2]). This is because in theorem 2, we used the additional



property that there are no “holes” in the hypothesis that H is greater than or
equal to the mean value H(1 − ε), i.e. that this property was true for any q
pairwise distinct inputs and q pairwise distinct outputs.
It is also interesting to compare our new Theorem 4 ( AdvPRP ≤ α1 . . . αk )
with these theorems of [2]:

Theorem 7. (i.e. [2] Theorem 2 p.10)
Let E1, . . . , En be n block ciphers with the same message space M. For any
integer q, one has

Advcca
En◦···◦E1

(q) ≤ 2n−1 max
1≤i≤n

 ∏
1≤j≤i−1

Advncpa
Ej

(q)×
∏

i+1≤j≤n

Advncpa

E−1
j

(q)

 .

Corollary 2. (i.e. [2] Corollary 1 p.11)
Let E1, . . . , En be n block ciphers with the same message space M. Fix q ≥ 1.
For i = 1, . . . , n, let εi = max{Advncpa

Ei
(q),Advncpa

E−1
i

(q)}. Then one has

Advcca
En◦···◦E1

(q) ≤ 2n−1 max
1≤i≤n

∏
1≤j≤n
j 6=i

εj .

We see that with our new Theorem 4, we do not have the coefficient 2n−1, and
also we do not lost one of the n products. Therefore, if all the εi = ε for example,
we will get AdvCCA ≤ εn instead of AdvCCA ≤ 2n−1εn−1. However, in order
to use our new Theorem 4, we need two conditions that were not in Theorem 7:
the fact that we have “no hole” and an expression of ε directly in terms of the
H-coefficients instead of AdvCCA. Therefore our Theorems and the theorems
of [2] are both useful.

6 Application to Feistel Ciphers

We denote by Ψk a generic balanced Feistel Cipher with k rounds, i.e. a bal-
anced Feistel cipher from {0, 1}2n to {0, 1}2n with k rounds, where the round
functions are k random functions from {0, 1}n to {0, 1}n. Ψk is also called a
Luby-Rackoff construction. We will show here how our new theorems can be
useful for cryptographic security results on Ψk. (However, our new theorems are
also interesting independently of these problems). The generic security prob-
lem has been intensively studied by many authors (for example [3, 10, 18]) since
Luby and Rackoff major paper [8]. In [10], it was proved that when k → +∞,
we have CCA security on Ψk when the number of queries q satisfies q � 2n, and
some explicit bounds for the Advantage in CCA are given. These bounds were
later improved and at present, the best security bounds are obtained via the
“H-coefficient technique”, or via the coupling technique. These two techniques
are very different and, interestingly, they give slightly different results.



Results with the H-coefficient technique
A general view of the H-coefficient technique is given in [16, 17] with the connec-
tions between these H-coefficients and various cryptographic securities (KPA,
CPA, CCA,...). In 2016, in [4], another general H-coefficient theorem for CCA
was proved. Essentially, the idea (of this results of [4]) is that, instead of in-
troducing some sets E with good or bad properties (as in [17]), a computation
of the mean value (computed with the probability on random permutations) is
introduced. This is called the “Expectation Method” in [4].
In [18], the H-coefficient technique was used to study the security of Ψk. The
main result was that we have CCA security for q � 2n not only when k → ∞,
but already after a finite number of rounds. More precisely, this property occurs
for Ψk when k ≥ 5 and an explicit bound for the Advantage in CCA is given
in [18] for Ψ6. In [1], the H-coefficient technique was used to obtain tight security
bounds on Even-Mansour Cipers. From [18], we have (cf theorem 6 p.8):

Theorem 8. For all pairwise distinct [Li, Ri], 1 ≤ i ≤ q and for all pairwise
distinct [Si, Ti], 1 ≤ i ≤ q the number H of (f1, f2, f3, f4, f5, f6) ∈ F 6

n such that
∀i, 1 ≤ i ≤ q,

Ψ6(f1, f2, f3, f4, f5, f6)[Li, Ri] = [Si, Ti]

satisfies H ≥ |Fn|6
22nq (1− α) where α can be chosen α = 8q

2n if q ≤ 2n

67n .

From this and Theorem 3, we obtain:

Theorem 9. When q ≤ 2n

67n ,

AdvCCA(Ψ6) ≤ 8q

2n
+

q2

2.22n

Proof.

2N (2N−1) . . . (2N−q+1) ≥ 2qN
(

1− 1 + 2 + . . .+ (q − 1)

2N

)
≥ 2qN

(
1− q(q − 1)

2.2N

)
Therefore, for Ψ6, when q ≤ 2n

67n

H ≥ |Fn|6

22n(22n − 1) . . . (22n − q + 1)

(
1− q2

2.22n

)(
1− 8q

2n

)
where Fn denotes the set of all functions from {0, 1}n to {0, 1}n.

H ≥ |Fn|6

22n(22n − 1) . . . (22n − q + 1)

(
1− q2

2.22n
− 8q

2n

)
Now from this and Theorem 3 (with β = 0), we obtain:

AdvCCA(Ψ6) ≤ 8q

2n
+

q2

2.22n

as claimed.



Results with the Coupling Technique.
The coupling technique is a major tool from the theory of Markov chains that
allows to conveniently upper bound the so-called mixing time of a chain, i.e. the
number of steps it takes for the chain, starting from any distribution, to be at
statistical distance at most ε from its stationary distribution. The first use of
coupling in cryptography is due to Mironov [13], who used it to analyze the RC4
stream cipher. It was first applied to (maximally unbalanced) Feistel ciphers
by Morris, Rogaway and Stegers [14]. This was generalized to other types of
Feistel ciphers (including the balanced Feistel Ψk) by Hoang and Rogaway [3].
Subsequently, the coupling technique was used to analyze the iterated Even-
Mansour Cipher [5], tweakable block ciphers constructions [6] and Feistel schemes
where the round functions are of the form: x→ F (x⊕ k) where F is a random
oracle and k the secret key [7].
From [3], we have

Theorem 10. With k′ = b (k−1)
2 c, we have:

AdvNCPA(Ψk) ≤ 2k
′

k′ + 1
· q

k′+1

2k′n

and

AdvCCA(Ψ2k−1) ≤ 2k
′

k′ + 1
· q

k′+1

2k′n

From Theorem 10, we see that with the coupling technique, we obtain:

NCPA: Ψ3 has security when qn/2

Ψ5 has security when q2n/3

Ψ7 has security when q3n/4

etc.

CCA: Ψ5 has security when qn/2

Ψ7 has security when q2n/3

Ψ9 has security when q3n/4

etc.

Therefore, in terms of queries, Theorem 2 (from H-coefficient technique) gives a
better bound than Theorem 3 (from the coupling technique), since it gives CCA
security for Ψ6 when q � 2n (and therefore for Ψk, for all k ≥ 6). However:

1. The proofs of Theorem 8 and Theorem 9 are much more complex than the
proof of Theorem 10.

2. For a fixed value q, the Adv given in Theorem 10 is bounded by term that
can be as small as wanted when k increases, unlike Theorem 2 where Adv
is fixed when q and n are fixed.

Results with our new Theorems
In a way from our new Theorem 4, we can get “the best of the two worlds”,
since from it and Theorem 8, we obtain:



Theorem 11. For all integer k ≥ 1, when q ≤ 2n

67n , we have:

AdvCCA(Ψ6k) ≤
(

8q

2n
+

q2

2.22n

)k

Proof. In the proof of Theorem 9, we have seen that for Ψ6, we have, when
q ≤ 2n

67n ,

H ≥ |Fn|6

22n(22n − 1) . . . (22n − q + 1)

(
1− 8q

2n
− q2

2.22n

)
Therefore, from our new composition Theorem 4, we obtain that for Ψ6k, when
q ≤ 2n

67n ,

H ≥ |Fn|6k

22n(22n − 1) . . . (22n − q + 1)

(
1−

(
8q

2n
+

q2

2.22n

)k
)

Theorem 11 is now obtained from this and Theorem 3 with β = 0.

This is the best bound known at present on Ψk: when q � 2n, it gives CCA

security, and when q and n are fixed such that 8q
2n + q2

2.22n < 1, the bound can be
as small as wanted by increasing k.

7 Other CCA bounds on Ψk

Worse bounds, but simpler proofs
When we look at the (difficult) proof of Theorem 8 on Ψ6, we see that security
when q � 23n/2 can easily be done. The security when q � 23n/4 is also rela-
tively easy, and q � 24n/5 is a bit more complex.
Therefore, is is possible to stop the proof at, say, q � 24n/5 and then to use
the coupling technique from Ψ6 (instead of Ψ3) or to use our new Theorem 4 in
order to obtain a security bound. This bound will not be as good as the bound of
Theorem 11, but the proof will be much simpler: we see that we have many pos-
sible tradeoffs between the quality of the bounds and the simplicity of the proofs.

Better bounds
Our Theorem 11 is the best explicit bound known at present on Ψk. However,
it is expected that this bound can still be improved (not in term of queries: the
bound q � 2n already obtained on Ψk is optimal in information complexity, but
this bound can be improved in term of smaller value for AdvCCA). One way
to obtain better bounds would be to analyze Ψ5k instead of Ψ6k. Ψ5 is CCA
secure when q � 2n (cf [18]), but in Ψ5 (unlike Ψ6), we have “holes” when√

2n � q � 2n (cf Appendix B of this paper). Therefore, we cannot use our
new composition Theorem 4 on Ψ5k (unlike what we did on Ψ6k). However,
Theorem 7 and Corollary 2 of [2] can be used on Ψ5k. Due to the coefficient
2n−1 and to the fact that we loose one term εi of the product in Theorem 7 and
Corollary 2 (see section 5) we expect our results on Ψ6k to be better than the



results on Ψ5k′ (obtained from Theorem 7) for small values of k and k′. However,
for large values of k and k′, the results on Ψ5k′ should be better. We will not do
it in this paper more precisely since we do not have an explicit bound for CCA
security on Ψ5 (but just the fuzzy bound q � 2n). Moreover, in this paper, we
study CCA security of Ψ6 mainly to illustrate our new composition results.
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A An exact formula for the H-coefficient for
Ψk, 1 ≤ k ≤ 5

The aim of this Appendix A is to prove Theorem 16, i.e. to obtain an exact
formula H for Ψ5. (A similar formula was already mentioned in [18]). We will
need this Theorem 16 in Appendix B.

Definition of Ψk

We recall the definition of the balanced Feistel Schemes, i.e. the classical Feistel
schemes. Let P2n be the set of all permutations from {0, 1}2n to {0, 1}2n. Let
Fn be the set of all functions from {0, 1}n to {0, 1}n. Let L, R, S and T be four
n-bit strings in {0, 1}n. Let Ψ(f1) denotes the permutation of P2n such that:

Ψ(f1)[L,R] = [S, T ] def⇔
{
S = R
T = L⊕ f1(R)

More generally if f1, f2, . . . , fk are k functions of Fn, let Ψk(f1, . . . , fk) denotes
the permutation of P2n such that:

Ψk(f1, . . . , fk) = Ψ(fk) ◦ · · · ◦ Ψ(f2) ◦ Ψ(f1).

The permutation Ψk(f1, . . . , fk) is called a ‘balanced Feistel scheme with k
rounds’ or shortly Ψk. When f1, . . . , fk are randomly and independently cho-
sen in Fn, then Ψk(f1, . . . , fk) is called a ‘random Feistel scheme with k rounds’
or a ‘Luby-Rackoff construction with k rounds’.



Definition 3. Definition of H for Ψk

When [Li, Ri], [Si, Ti], 1 ≤ i ≤ q, is a given sequence of 2q values of {0, 1}2n, we
will denote by Hk(L,R, S, T ) or in short by Hk, or simply by H, the number of
k-tuples of functions (f1, . . . fk) of F k

n such that:

∀i, 1 ≤ i ≤ q, Ψk(f1, . . . , fk)[Li, Ri] = [Si, Ti]

We will analyze the properties of these H values in order to obtain our security
results.

Let [Li, Ri], [Si, Ti], 1 ≤ i ≤ q, be a given sequence of 2q values of {0, 1}2n.
Let r be the number of independent equalities Ri = Rj , i 6= j, and let s be the
number of independent equalities Si = Sj , i 6= j.

Theorem 12. The exact formula for H1 (i.e. for Ψ1) is:

H1 = 0 if (C) is not satisfied

H1 =
|Fn|
2nq
· 2nr if (C) is satisfied

where (C) is this set of conditions:

1. ∀i, 1 ≤ i ≤ q, Ri = Si

2. ∀i, j 1 ≤ i ≤ q, 1 ≤ j ≤ q, Ri = Rj ⇒ Ti ⊕ Li = Tj ⊕ Lj

Proof. For one round, we have Ψ1([Li, Ri]) = [Si, Yi] ⇔ Si = Ri and Ti =
Li ⊕ f1(Ri). Therefore, if (C) is not satisfied, H1 = 0. Now if (C) is satisfied,
then f1 is fixed on exactly q − r points by f1(Ri) = Ti ⊕ Li, and we obtain
theorem 12 as claimed. ut

Theorem 13. The exact formula for H2 (i.e. for Ψ2) is:

H2 = 0 if (C) is not satisfied

H2 =
|Fn|2

22nq
· 2n(r+s) if (C) is satisfied

where (C) is this set of conditions:

1. ∀i, j 1 ≤ i ≤ q, 1 ≤ j ≤ q, Ri = Rj ⇒ Li ⊕ Lj = Si ⊕ Sj

2. ∀i, j 1 ≤ i ≤ q, 1 ≤ j ≤ q, Si = Sj ⇒ Ri ⊕Rj = Ti ⊕ Tj

Proof. For two rounds we have ψ2([Li, Ri]) = [Si, Ti] ⇔ Si = Li ⊕ f1(Ri) and
Ti = Ri⊕f2(Si). Therefore if (C) is not satisfied, H2 = 0. Now if (C) is satisfied
then (f1, f2) is fixed on exactly 2q − r − s points, and we obtain theorem 13 as
claimed. ut



Definition 4. (Framework for Ψ3)
For 3 rounds, Ψ3, we define a “framework” as a set of equations Xi = Xj.
We will say that two frameworks are equal if they imply exactly the same set of
equations in X.

Theorem 14. The exact formula for H3 (i.e. for Ψ3) is:

H3 =
|Fn|3 · 2n(r+s)

23nq

∑
all frameworks F
that satisfy (F1)

2nx[ Number of Xi satisfying (C1)]

where:

– x is the number of independent equalities Xi = Xj for a framework F .
– (F1) : Xi = Xj is in F ⇒ Si ⊕ Sj = Ri ⊕Rj

(C1) :

Ri = Rj ⇒ Xi ⊕Xj = Li ⊕ Lj

Si = Sj ⇒ Xi ⊕Xj = Ti ⊕ Tj
The only equations Xi = Xj , i < j, are exactly those implied by F .

Proof. We write Ψ3 = Ψ ◦ Ψ2 with Ψ2([Li, Ri]) = [Xi, Si] and Ψ([Xi, Si]) =

[Si, Ti]. For Ψ2, we obtain from theorem 13, 2n(r+x) |Fn|2
22nq solutions when (C1)

is satisfied. For Ψ , we obtain from theorem 12, 2ns |Fn|
2nq solutions when (C1) is

satisfied. Thus, we obtain theorem 14 as claimed. ut

Definition 5. (Framework for Ψ4)
For 4 rounds, Ψ4, let us define a “framework” as a set of equations Xi = Xj

or Yi = Yj. We will say that two frameworks are equal if they imply exactly
the same set of equalities in X and Y . For a framework F , we denote by x the
number of independent equalitites Xi = Xj, and by y the number of independent
equalitites Yi = Yj.

Theorem 15. The exact formula for H4 (i.e. for Ψ4) is:

H4 =
|Fn|4 · 2n(r+s)

24nq

∑
all frameworks F

2n(x+y)[ Number of Xi satisfying (C1)]

·[ Number of Yi satisfying (C2)]

where

(C1) :

Ri = Rj ⇒ Xi ⊕Xj = Li ⊕ Lj

Yi = Yj is in F ⇒ Xi ⊕Xj = Si ⊕ Sj

The only equations Xi = Xj , i < j, are exactly those implied by F .

(C2) :

Si = Sj ⇒ Yi ⊕ Yj = Ti ⊕ Tj
Xi = Xj is in F ⇒ Yi ⊕ Yj = Ri ⊕Rj

The only equations Yi = Yj , i < j, are exactly those implied by F .



Proof. We write ψ4 = Ψ◦Ψ3 with Ψ3([Li, Ri]) = [Yi, Si] and Ψ([Yi, Si]) = [Si, Ti],
and we sum over all possible Y . Then from theorems 12 and 14, we obtain
theorem 15. ut

Definition 6. (Framework for Ψ5)
For 5 rounds, Ψ5, a “framework” is a set of equations Xi = Xj or Yi = Yj,
or Zi = Zj. We will say that two frameworks are equal if they imply exactly
the same set of equalities in X, Y and Z. For a framework F , we denote by x
the number of independent equalitites Xi = Xj, by y the number of independent
equalitites Yi = Yj, and by z the number of independent equalitites Zi = Zj.

Theorem 16. The exact formula for H5 (i.e. for Ψ5) is:

H5 =
|Fn|5 · 2n(r+s)

25nq

∑
all frameworks F

2n(x+y+z)[ Number of Xi, Zi satisfying (C1)]

·[ Number of Yi satisfying (C2)]

where

(C1) :


Ri = Rj ⇒ Xi ⊕Xj = Li ⊕ Lj

Yi = Yj is in F ⇒ Xi ⊕Xj = Zi ⊕ Zj

Si = Sj ⇒ Zi ⊕ Zj = Ti ⊕ Tj
The only equations Xi = Xj , i < j, are exactly those implied by F .
The only equations Zi = Zj , i < j, are exactly those implied by F .

(C2) :

Xi = Xj is in F ⇒ Yi ⊕ Yj = Ri ⊕Rj

Zi = Zj is in F ⇒ Yi ⊕ Yj = Si ⊕ Sj

The only equations Yi = Yj , i < j, are exactly those implied by F .

Proof. We write Ψ5 = Ψ ◦ Ψ4 with Ψ4([Li, Ri]) = [Zi, Si] and Ψ([Zi, Si]) =
[Si, Ti], and we sum over all possible Z. Then from theorems 12 and 15, we
obtain theorem 16. ut

B “Holes” on Ψ5 when
√

2n � q � 2n

We will present here a “structural” difference between Ψ5 and Ψ6: in Ψ5, we
have “holes” when

√
2n � q � 2n (but not in Ψ6: cf Theorem 8).

5 rounds.
For Ψ5, with q '

√
2n, we can choose all the Ri with the same value, all the Si

with the same value and the property: ∀i, j, 1 ≤ i ≤ q, 1 ≤ j ≤ q, Ti ⊕ Tj 6=
Li⊕Lj . For example, the first n

2 bits of the Li values are always 0 and the last n
2

bits of the Ti values are always 0. Since all the Ri values are equal, then all the
Li values are pairwise distinct (because we want pairwise distinct [Li, Ri]) and
all the Xi values are pairwise distinct (because Ri = Rj ⇒ Xi ⊕Xj = Li ⊕ Lj .



Similarly, since all the Si values are equal, then all the Ti values are distinct
(because we want pairwise distinct [Si, Ti]) and all the Zi values are pairwise
distinct (because Si = Sj ⇒ Zi ⊕ Zj = Ti ⊕ Tj). Moreover all the Yi values are
also pairwise distinct, because Yi = Yj ⇒ Xi⊕Xj = Zi⊕Zj ⇒ Li⊕Lj = Ti⊕Tj ,
but we always have: Li ⊕ Lj 6= Ti ⊕ Tj .
We know (cf Appendix A, Theorem 16) that the exact formula for H is:

H5 =
|Fn|5 · 2n(r+s)

25nq

∑
all frameworks F

2n(x+y+z)[ Number of Xi, Zi satisfying (C1)]

·[ Number of Yi satisfying (C2)]

Here we have only one framework (all the Xi are pairwise distinct, Yi pairwise
distinct, Zi pairwise distinct) with r = q− 1, s = q− 1, x = y = z = 0, [Number
of Xi satisfying (C1)] = 2n, [Number of Zi satisfying (C1)] = 2n, and [Number
of Yi satisfying (C2)] = 2n(2n − 1) . . . (2n − q + 1). we obtain:

H5 =
|Fn|5

22nq
·
(

1− 1

2n

)(
1− 2

2n

)
. . .

(
1− q − 1

2n

)
� |Fn|5

22nq

when q �
√

2n. However H̃5 = |Fn|5
(2n)(2n−1)...(2n−q+1) '

|Fn|5
22nq . Therefore here we

have H5 � H̃5, i.e. a “hole” of length
√

2n.

This result is not in contradiction with the act that Ψ5 is CCA secure when
q � 2n because it is not possible in a CCA attack with q queries to obtain
R1 = R2 = . . . = Rm and S1 = S2 = . . . = Sm with m '

√
2n.


