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Abstract

Functional encryption (FE) has emerged as an outstanding concept. By now, we know that beyond
the immediate application to computation over encrypted data, variants with succinct ciphertexts are so
powerful that they yield the full might of indistinguishability obfuscation (IO). Understanding how, and
under which assumptions, such succinct schemes be constructed has become a grand challenge of current
research in cryptography. Whereas the first schemes were based themselves on IO, recent progress has
produced constructions based on constant-degree graded encodings. Still, our comprehension of such
graded encodings remains limited, as known instantiations have exhibited different vulnerabilities.

Our main result is that, assuming LWE, black-box constructions of sufficiently succinct FE schemes
from constant-degree graded encodings can be transformed to rely on a much better-understood object
— bilinear groups. In particular, under an über assumption on bilinear groups, the construction implies
IO in the plain model. The result demonstrates that the exact level of ciphertext succinctness has a major
impact on FE schemes based on constant-degree encodings. In particular, we draw a fine line between
known FE constructions from constant-degree graded encodings, which just fall short of the required
succinctness, and the holy grail of basing IO on better-understood assumptions.

In the heart of our result, are new techniques for removing ideal graded encoding oracles from FE
constructions. Complementing the result, for weaker ideal models, namely the generic group model and
the random oracle model, we show a transformation from collusion-resistant FE in either of the two
models directly to FE (and IO) in the plain model, without assuming bilinear groups.
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1 Introduction

Functional Encryption (FE) is a fascinating object. It enables fine-grained control of encrypted data, by
allowing users to learn only specific functions of the data. This ability is captured trough the notion of
function keys. A function key SKf associated with a function f , allows to partially decrypt a ciphertext CTx
encrypting an input x in a way that reveals f(x) and nothing else.

A salient aspect of FE schemes is their ciphertext succinctness. Focusing on the setting of (indistinguishability-
based) single-key FE where only one function key SKf is supported, we say that an FE scheme is weakly
succinct if the ciphertexts size scales sub-linearly in the size of the circuit f

|CTx| ≤ |f |γ · poly(|x|), for some constant compression factor γ < 1.

While non-succinct single-key FE schemes (where we allow the size of ciphertexts to grow polynomially
with |f |) are equivalent to public-key encryption (or just one-way functions, in the secret-key setting) [SS10],
weakly succinct schemes are already known to be extremely strong. In particular, subexponentially-secure
weakly-succinct FE for functions in NC1 implies indistinguishability obfuscation (IO) [BGI+12, AJ15,
BV15], and has far reaching implications in cryptography and beyond (e.g., [GGH+13b, GGHR14, SW14,
BPR15, BGJ+16, BZ16]).1

Thus, understanding how, and under which assumptions, weakly-succinct FE can be constructed has
become a central question in the frontier of cryptographic research. While schemes for Boolean functions
in NC1, have been constructed from LWE [GKP+13], the existence of such FE scheme for non-Boolean
functions (which is required for the above strong implications) is still not well-founded, and has been the
subject of a substantial body of work. The first construction of general purpose FE [GGH+13b], which
achieves the required succinctness, relied itself on IO. Subsequent constructions were based on the algebraic
framework of multilinear graded encodings [GGH13a]. Roughly speaking, this framework extends the
traditional concept of encoding in the exponent in groups. It allows encoding given values in a field (or ring),
evaluating polynomials of a certain bounded degree d over the encoded values, and testing whether the result
is zero.

Based on graded encodings of polynomial degree Garg, Gentry, Halevi, and Zhandry [GGHZ16] con-
structed unbounded-collusion FE, which in turn is known to lead to weakly succinct FE [AJS15, BV15]. Lin
and Vaikuntanathan [Lin16, LV16] made significant progress showing that assuming also pseudorandom
generators inNC0, weakly-succinct FE can be constructed based on constant-degree graded encodings (from
a relatively simple DDH-like assumption). However, these constructions require a relatively large constant
degree d > 2. Despite extensive efforts, our understanding of graded encodings of such degree, and in fact, of
any degree larger than two is quite limited. Indeed, known instantiations are all based on little-understood lat-
tice problems, and have exhibited different vulnerabilities [GGH13a, CHL+15, CGH+15, BWZ14, MSZ16].
In contrast, bilinear group encodings [BF01, Jou02], akin to degree-2 graded encodings, have essentially
different instantiations based on elliptic curve groups, which are by now quite well understood and considered
rather standard. Bridging the gap between degree 2 and degree d > 2 is a great challenge.
Our Main Result in a Nutshell: Size Matters. We show that the exact level of succinctness in FE schemes
has a major impact on the latter challenge. Roughly speaking, we prove that black-box constructions
[RTV04] of weakly-succinct FE from degree-d graded encodings, with compression factor γ < 1/d, can be
transformed to rely only on bilinear groups. Specifically, assuming LWE and starting from any 1

d+ε -succinct
FE construction in the ideal degree-d graded encoding model, we construct a weakly-succinct scheme in

1Formally, [AJ15, BV15] require that not only the ciphertext is succinct, but also the encryption circuit itself. This difference
can be bridged assuming LWE [LPST16b], and for simplicity is ignored in this introduction. Our results will anyhow rely in LWE.
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the ideal bilinear model. The resulting construction can further be instantiated in the plain model using
existing bilinear groups, and proven secure under an über assumption on bilinear groups [BBG05, Boy08].
In particular, assuming also subexponential-security, it implies IO in the plain model. We now elaborate.

The ideal graded encoding model generalizes the classical generic-group model [Sho97]. In this model,
the construction as well as the adversary perform all graded encoding operations through an ideal oracle,
without access to an explicit representation of encoded elements. Indeed, having this ideal model as a starting
point allows capturing a large class of constructions and assumptions, as it models perfectly secure graded
encodings. Indeed, the FE schemes in [Lin16, LV16] can be constructed and proven secure in this model.
So How Close are We to IO from Bilinear Maps? The only weakly-succinct FE schemes in the constant-
degree model are those of Lin and Vaikuntanathan [Lin16, LV16] that have a compression factor γ = C/d,
for some absolute constant C > 1. Thus, our result draws a fine line that separates known FE constructions
based on constant-degree graded encodings and constructions that would already take us to the promised
land of IO based on much better-understood mathematical objects. Crossing this line is a highly-motivated
challenge.
Discussion: Black-Box vs Non-Black-Box Constructions. For IO schemes (rather than FE), a combination
of recent works [PS16, BV16] demonstrates that black-box constructions from constant-degree graded
encodings are already very powerful. They show that any IO construction relative to a constant-degree
oracle can be converted to a construction in the plain model (under standard assumptions, like DDH).
Accordingly, one may think that since weakly-succinct FE schemes imply IO, we should already get IO in
the plain model from standard assumptions. Interestingly, this is not the case.

The crucial point is that the known transformations from FE to IO [AJ15, BV15] are non-black-box, they
use the code of the underlying FE scheme, and thus do not relativize with respect to the graded encoding
oracle. That is, we do not know how to move from an FE scheme based on graded encodings to an IO scheme
that uses graded encodings in a black-box way. Indeed, if there existed such a black-box transformation
between FE and IO, then combining [PS16, MMN16, BV16, Lin16, LV16], IO in the plain model could be
constructed from DDH and pseudo-random generators in NC0.

Instead, we show how to directly remove constant-degree oracles from FE. Our transformation rely on
rather different and new techniques than those in the above works removing such oracles from IO.

1.1 Our Results in More Detail

We now describe our results in further detail. We start by describing the ideal graded encoding model and
the ideal bilinear model more precisely.
The Ideal Graded Encoding Model. A graded encoding is an encoding scheme for elements of some
field2. The encoding supports a restricted set of homomorphic operations that allow one to evaluate certain
polynomials over the encoded field elements and test whether these polynomials evaluate to zero or not.
Every field element is encoded together with a label string. For a given sequence of encodings, their labels
control which polynomials are valid and can be evaluated over the encodings. We refer to degree of the
graded encoding as the maximum degree of a polynomial that is valid with respect to any sequence of labels.

In the ideal graded encoding model, explicit encodings are replaced by access to an oracle that contains
the encoded field elements and provides an interface to perform operations over the elements. Different
formalization of such ideal graded encoding oracle in the literature (e.g. [BR14, BGK+14, AB15, PS16])

2For ease of exposition, we consider graded encodings for fields. Our results can also be obtained with any commutative ring in
which it is computationally hard to find non-unit elements.
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differ in details. In this work, we follow the model of Pass and shelat in [PS16].
The ideal graded encoding oracleM, specified by a field F and a validity predicate V operating on labels

taken from a set L. The oracleM = (F, V ) provides two functions — encoding and zero-testing.

Encoding: Given a field element ξ ∈ F and a label ` ∈ L the oracleM samples a sufficiently long random
string r and returns the encoding tuple h = (r, `) also known as a handle. Internally, it records the
association (h, ξ) between the handle and the underlying encoded value.

Zero-testing: Given a polynomial p and a sequence of handles h1, · · · , hm where hi encodes the field
elements ξi with the label `i.M first tests if the polynomial and the labels satisfy the validity predicate.
If so,M tests if p evaluates to zero on the elements.M returns true if V (p, `1, · · · `m) = true and
p(ξ1, · · · ξm) = 0. OtherwiseM returns false .

Like in [PS16], we restrict attention to well-formed validity predicates. For such predicates a polynomial
p is valid with respect to labels `1, · · · , `m, iff every monomial Φ in p is valid with respect to the labels of
the handles that Φ acts on. All formulations of graded encodings in the literature consider a restricted type
of validity predicate that are well-formed, as formalized by Pass and shelat.3
The Ideal Bilinear Encoding Model. The ideal bilinear encoding model corresponds to the ideal graded
encoding model where for every sequence of encodings, the set valid polynomials is exactly the set of all
quadratic polynomials.

In the ideal graded encoding model described above, encodings are randomized. In particular, querying
the oracleM twice with the same element and label (ξ, `) gives back two random and independent handles.
In contrast, in the instantiations of the ideal bilinear encoding model based on bilinear pairing groups (such
as elliptic curve groups) the encoding is a deterministic function. To capture also these instantiations, we can
augment the ideal bilinear encoding model to use unique handles by restricting the oracle to always return
the same handle, when the same element is coded under the same label, as done in [AB15, Zim15, LV16].
Stating the Transformation. Recall that an FE scheme consist of a setup, key generation, encryption, and
decryption algorithms. In an FE scheme based on an ideal oracleM, all algorithms as well as any potential
adversary against the scheme, have access to the oracleM.

Theorem 1.1 (Main Theorem, Informal). Assume the hardness of LWE. For every constants d ∈ N and
0 < γ ≤ 1

d there is a transformation from any γ-succinct secret-key FE scheme for P/poly in any ideal
degree-d graded encoding model to a weakly-succinct public-key FE scheme for P/poly in the ideal bilinear
encoding model.

IO with an Über Assumption. Our main transformation results in weakly-succinct public-key FE scheme
in the ideal bilinear encoding model. By instantiating the ideal bilinear map oracle with concrete bilinear
pairing groups, we get a corresponding FE scheme in the plain model. For security to hold, we assume the
bilinear groups satisfy a strong über assumption [?]. The über assumption essentially says that two encoded
sequences of elements can be distinguished only if they are also distinguishable in the ideal model. There
are no known attacks on the über security of existing instantiations of bilinear pairing groups.

Since weakly-succinct public-key FE scheme with subexponential security in the plain model implies IO
we have

3In fact, we make another structural requirement on validity predicates called decomposability. This requirement is somewhat
more technical, but is also satisfied by all known formulations of graded encodings. For the simplified technical exposition in the
introduction it can be ignored. See further details in Definition 4.3.
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Corollary 1.1 (Informal). Assume the subexponential hardness of LWE and bilinear pairing groups with
subexponential über security. If there exists γ-succinct secret-key FE scheme for P/polywith subexponential
security in any ideal degree-d graded encoding oracle model for 0 < γ < 1/d, then there exists an IO scheme
for P/poly in the plain model.

FE in Weaker Ideal Models. We also consider FE schemes in ideal models that are weaker then the ideal
bilinear encoding model. Specifically, we consider the generic-group model (that corresponds to the ideal
degree-1 graded encoding model) and the random oracle model. We give transformations from FE in these
models directly to FE in the plain model without relying on bilinear encodings.

In the transformation given by Theorem 1.1, from the ideal constant-degree graded encoding model to
the ideal bilinear encoding model, we considered the notion of single-key weakly succinct FE. In contrast,
our transformations from the generic-group model and the random oracle model to the plain model require
that we start with a stronger notion of collusion-resistant FE. In collusion-resistant we require that the FE
support generating an unbounded number of keys. Here ciphertexts are required not to grow with the number
of keys, but are allowed to grow polynomially in the size of the evaluated functions.

Collusion-resistant FE is known to imply weakly-succinct FE [AJS15, BV15] through a black-box
transformation. In the converse direction, known constructions of collusion-resistant FE from weakly-
succinct FE [GS16, LM16] use the weakly-succinct FE in a non-black-box way and therefore we cannot
apply these to ideal model constructions of FE.

Theorem1.2 (Informal). Assume the hardness of LWE. There is a transformation fromany collusion-resistant
secret-key FE scheme in the generic-group model or in the random-oracle model to a collusion-resistant
public-key FE scheme in the plain model.

These transformations are based on ideas from our main transformation as well as techniques from
[CKP15, PS16, MMN16].

1.2 Our Techniques

We next give an overview of the main ideas behind our degree-reduction transformation given by Theo-
rem 1.1.
Can We Adopt Techniques from IO? As already mentioned, since we do not know how to transform FE
schemes to IO schemes in a black-box way, we cannot rely directly on the results removing ideal oracles from
IO [PS16, BV16]. Nevertheless, we observe that there does exist [BNPW16] a black-box transformation
from FE to a weaker version of IO called XIO. XIO [LPST16a], which stands for exponentially-efficient IO,
allows the obfuscation, and evaluation algorithms to run in exponential time 2O(n) in the input size n, and
only requires that the size of an obfuscation C̃ of a circuit C is subexponenetial on n:

|C̃| ≤ 2γn · poly(|C|) for some constant compression factor γ < 1 .

Despite this inherent inefficiency, [LPST16a] show that XIO for logarithmic-size inputs implies IO assuming
subexponential hardness of LWE. A natural direction is thus to try and apply the techniques used to remove
oracles from IO to remove the same oracles also from XIO; indeed, if this can be done, such oracles can also
be removed from FE, due to the black-box transformation between the two.

This, again, does not work. The issue is that the transformations removing degree-d graded encoding
oracle from IO may blow up the size of the original obfuscation from |C̃| in the oracle model to roughly
|C̃|2d in the plain model. However, the known black-box construction of XIO from FE [BNPW16] is not
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sufficiently compressing to account for this blowup. Even starting from FE with great compression, say
γFE < d−10, the resulting XIO has a much worst compression factor γXIO > 1/2. In particular, composing
the two would result in a useless plain model obfuscation of exponential size 2n·d.

As a starting point for our solution, let us describe an over-simplified transformation reducing constant-
degree graded encoding oracles to degree-1 oracles (akin to the generic group model). This transformation
will suffer from the same size blowup of the transformations mentioned above.

For simplicity of exposition, let us for now restrict attention to XIO schemes with the following simple
structure:

• Any obfuscated circuit C̃ consists of a set of handles h1, . . . , hm corresponding to field elements
ξ1, . . . , ξm encoded during obfuscation, under certain labels `1, . . . , `m.

• Evaluation on any given input x consists of performing valid zero-tests over the above handles, which
are given by degree-d polynomials p1, . . . , pk.

A direct idea to reduce the degree-d oracle to a linear oracle is to change the obfuscation algorithm
so that it computes ahead of time the field elements ξΦ corresponding to all valid degree-d monomials
Φ(ξ1, . . . , ξm) =

∏
i∈[d] ξji . Then, rather than using the degree-d oracle, it uses the linear oracle to encode

the field elements ξΦ, and publishes the corresponding handles {hΦ}Φ. Evaluation is done in a straight
forward manner by writing any zero-test polynomial p of degree d as a linear function in the corresponding
monomials

p(ξ1, · · · , ξm) =
∑

Φ

αΦΦ(ξ1, . . . , ξm) ,

and making the corresponding zero-test Lp({hΦ}) :=
∑

Φ αΦhΦ to the linear oracle.
Indeed, the transformation blows up the size of the obfuscated circuit from roughly m, the number of

encodings in the original obfuscation, tomd, the number of all possible monomials. While such a polynomial
blowup is acceptable in the context of IO, for XIO it is devastating.
Key Idea: XIO in Decomposable Form. To overcome the above difficulty, we observe that the known
black-box construction of XIO from FE [BNPW16] has certain structural properties that we can exploit. At
a very high level, it can be decomposed into smaller pieces, so that instead of computing allmonomials over
all the encodings created during obfuscation, we only need to consider a much smaller subset of monomials,
where each monomial only depends on a few small pieces, and thus on few encodings.

To be more concrete, we next give a high-level account of this construction. To convey the idea in
a simple setting of parameters, let us assume that we have at our disposal an FE scheme that support an
unbounded number of keys, rather than a single key scheme, with the guarantee that the size of ciphertexts
does not grow with the number of keys.4 The [BNPW16] scheme roughly works as follows:

• To obfuscate a circuit C with n input bits, the scheme publishes a collection of function key {SKDτ }τ
for a circuitDτ (specified shortly) and prefix τ ∈ {0, 1}n/2, and a collection of ciphertexts

{
CTρ‖C

}
ρ
,

each encrypting C and a suffix ρ ∈ {0, 1}n/2.

• Decrypting a ciphertext CTρ‖C with key SKDτ reveals Dτ (ρ‖C) := C(τ, ρ).

The obfuscated circuit indeed has subexponential size. It contains:

4[BNPW16] also sketch a variant of their construction based on single-key weakly succinct FE. We rely on this construction in
the body.
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• 2n/2 function keys SKDτ , each of size poly(|C|),

• 2n/2 ciphertexts CTρ‖C , each of size poly(|C|).

Going back to the ideal graded-encoding model, the FE key generation and encryption algorithms use
the ideal oracle to encode elements. Therefore, generating the obfuscation involves generating a set of k
encodings hτ = {hτ,i}i∈[k] for each secret key SKDτ and a set of k encodings hρ = {hρ,i}i∈[k] for each
ciphertext CTρ‖C , where k = poly(|C|). The crucial point is that now, evaluating the obfuscation on a given
input (τ, ρ) only involves the two small sets of encodings hτ ,hρ. In particular, any zero-test made by the
decryption algorithm is a polynomial defined only over the underlying field elements ξτ = {ξτ,i}i∈[k] and
ξρ = {ξρ,i}i∈[k].

This gives rise to the following degree reduction strategy. In the obfuscation, rather then precomputing
all monomials in all encodings as before, we precompute only the monomials corresponding to the different
pieces

{
Φ(ξρ)

}
ρ,Φ

, {Φ(ξτ )}τ,Φ. Now, rather than representing zero-tests as linear polynomials in these
monomials, they can be represented as quadratic polynomials

p(ξτ , ξρ) = Qp

(
{Φ(ξτ )}Φ ,

{
Φ(ξρ)

}
Φ

)
.

To support such quadratic zero tests we resort to bilinear groups. We use the bilinear encoding oracle to
encode the values

{
Φ(ξρ)

}
ρ,Φ

, {Φ(ξτ )}τ,Φ, and publish the corresponding handles {hτ,Φ}τ,Φ , {hρ,Φ}ρ,Φ.
Evaluation is done in a straight forward manner by testing the quadratic polynomial Qp.

The key gain of this construction is that now the blowup is tolerable. Indeed, now each set of k encodings,
blows up to kd, which is acceptable since k = poly(|C|) is small (and not proportional to the size of the
entire obfuscation as before). In the body, we formulate a general product form property for XIO schemes,
and show that single-key FE schemes with 1

d+ε -succinctness also satisfy this property, and can be used as
the starting point of the transformation.
ACloser Look. The above exposition is oversimplified. To actually fulfill our strategy, we need to overcome
two main challenges.
Challenge 1: Explicit Handles. The core idea described above assumes that the obfuscation is simply given
as an explicit list of handles, which may not be the case in general. In particular, the obfuscator may query
the oracleM for a set of encodings, but not output them explicitly; indeed, it can output an arbitrary string.
In this case, we can no longer apply the degree reduction technique, since we do not know which encodings
are actually contained in the obfuscation. Naively, publishing monomials of all field elements encoded by
the obfuscator may be insecure, since some of these encodings perhaps are never explicitly included in the
obfuscation.

To handle general XIO schemes, we need a way to make any “implicit” handles explicit. Inspired
by [CKP15, PS16, MMN16], our idea is to learn handles that would be relevant for evaluation and publish
them explicitly. This learning process is probabilistic and incurs a constant correctness error in the resulting
scheme (the obfuscation with explicit handles errs on say 10% of the inputs). We show that even such
approximate XIO is sufficient for obtaining FE and IO in the plain model (this step is described later in this
overview).

Roughly speaking, the learning process in the above mentioned works involves evaluating the obfuscated
program on random inputs and making explicit all handles involved in these evaluations. To guarantee
sufficient currentness, the number of such test evaluations is proportional to the number of elements encoded
by the obfuscator. Therefore, when executed as is, this learning process results in a quadratic overhead in
the size of the entire obfuscation which already trivializes the XIO construction.
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To avoid the blowup, we once again exploit the structure of the [BNPW16] construction to show a more
efficient learning procedure.
Challenge 2: InvalidMonomials. It may be insecure to publish encodings of all themonomials

{
Φ(ξρ)

}
ρ,Φ

,
{Φ(ξτ )}τ,Φ. The problem is that some productsΦ(ξρ)·Φ(ξτ )may result in invalid monomials. For example,
Φ(ξρ) could correspond to a degree-(d − 2) monomial Φ. In the degree-d ideal model, it would only be
possible to multiply such a monomial by degree-2 monomials Φ(ξτ ), and zero test. In the the described new
scheme, however, it can multiply monomials of degree-3, or even d, which might compromise security.

Our solution proceeds in two steps. First, we show how to properly preserve validity by going to a
more structured model of bilinear encodings (generalizing asymmetric bilinear groups). In this model, every
encoding contains one of many labels and only pairs of encodings with valid labels can be multiplied. We
then encode the monomials

{
Φ(ξρ)

}
ρ,Φ

, {Φ(ξτ )}τ,Φ with appropriate labels that preserve the information
regarding the original set of labels. This guarantees that the set of monomials that can be zero-tested in the
this model corresponds exactly to the set of valid monomials in the constant-degree graded encoding model
we started from.

Second, we show how to transform any construction in this model to one in the the standard ideal bilinear
encoding model (corresponding to symmetric bilinear maps). At a very high-level, we develop a “secret-
key transformation” from asymmetric bilinear groups to symmetric bilinear groups. The transformation
allows anyone in the possession of a secret key (or rather, secret randomness) to translate encodings in the
asymmetric setting to new encodings in the symmetric setting in a manner that enforces the asymmetric
structure.
From Approximately-Correct XIO back to FE. After applying all the above steps, we finally obtain an
approximately-correct XIO scheme in the bilinear map oracle model. The only remaining step is going from
such an XIO scheme back to FE. The work of [LPST16b] showed how to construct FE from XIO with perfect
correctness, assuming in addition LWE. We modify their transformation to construct FE starting directly
from approximately-correct XIO, by using appropriate Error Correcting Codes (ECC) to accommodate for
the correctness errors from XIO. The transformation uses XIO as a black-box, and can thus be performed in
the ideal bilinear model.
Putting it All Together. Putting all pieces together, we finally obtain our transformation from 1

d+ε -succinct
FE in the constant-degree graded encoding model to weakly-succinct FE in the bilinear oracle model. To the
structure of the transformation recap:

1. Start with a 1
d+ε -succinct (single-key) FE in the ideal constant-degree graded encoding model.

2. Construct an XIO scheme in the ideal constant-degree graded encoding model that satisfying an
appropriate decomposition property (which we call product form).

3. Construct an approximate XIO scheme in the ideal bilinear encoding model.

4. use approximate XIO scheme and LWE to get a weakly-succinct FE (still, in the ideal bilinear encoding
model).

Instantiating the oracle with actual bilinear maps gives a corresponding construction in the plain model.

2 Reducing Constant-Degree Oracles to Bilinear Oracles

In this section, we show that any XIO scheme with a constant-degree decomposable ideal oracle can
be transformed into an approximately-correct one with an ideal symmetric bilinear oracle (analogous to
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symmetric bilinear groups), provided that the XIO scheme is in a certain product formwith some appropriate
query complexity. In Section 8.2, we show that any single-key functional encryption scheme with a constant-
degree decomposable ideal oracle, and appropriate succinctness, implies such an XIO scheme. We start
by defining the notion of XIO in product form (a definition of XIO is in Section 3) and of a symmetric
bilinear oracle, then we give a high-level description of the transformation, and move on to describe the
transformation in more detail.

3 Preliminaries

We rely on the standard notions of Turing machines and Boolean circuits.

• We say that a (uniform) Turing machine is PPT if it is probabilistic and runs in polynomial time.

• C = {Cλ}λ is said to be a class of polynomial-size circuits if each Cλ is a set of circuits of polynomial
size λO(1). We will also discuss collections of circuit classes C = {C}, such as P/poly, the collection
of all classes of polynomial-size circuits, or NC1, the collection of all classes of polynomial size
circuits and logarithmic depth. We shall sometimes abuse notation and for a circuit C may write
C ∈ C to denote the fact that C ∈ Cλ for some λ ∈ N, and some C = {Cλ} ∈ C.

• We follow the standard habit of modeling any efficient adversary strategy as a family of polynomial-
size circuits. For an adversary A corresponding to a family of polynomial-size circuits {Aλ}λ∈N, we
often omit the subscript λ, when it is clear from the context.

• We say that a function f : N→ R is negligible if for all constants c > 0, there existsN ∈ N such that
for all n > N , f(n) < n−c.

• If X (b) = {X(b)
λ }λ∈N for b ∈ {0, 1} are two ensembles of random variables indexed by λ ∈ N, we say

that X (0) and X (1) are computationally indistinguishable if for all polynomial-size distinguishers D,
there exists a negligible function ν such that for all λ,

∆ =
∣∣∣Pr[D(X

(0)
λ ) = 1]− Pr[D(X

(1)
λ ) = 1]

∣∣∣ ≤ ν(λ).

• We write X (0) ≈δ X (1) to denote that the advantage ∆ is bounded by δ.

Fact 3.1 (Geometric Probability Bound).

1. For any α < 1,K ∈ N,
(1− α)K · α ≤ 1/K .

2. If α is the probability that some event occurs for a uniformly random X from a finite set X , then

(1− α)K · α ≤ 2
− K
|X| .

Fact 3.2 (Schwartz-Zippel). Let P1, . . . , Pt, Q1, . . . , Qt ∈ F[x1, . . . , xk] be non-trivial polynomials over a
finite field F each of total degree at most d.

• Simple Version:
Pr

x1,...,xk←F
[P1(x1, . . . , xk) = 0] ≤ d

|F|
.
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• Extended Version: Assume P1
Q1
, . . . , PtQt are linearly independent, and let ρ1, . . . , ρt ∈ F \ {0}, then

Pr
x1,...,xk←F

∑
i∈[t]

ρi
Pi(x1, . . . , xk)

Qi(x1, . . . , xk)
= 0

 ≤ dt

|F|
.

3.1 XIO

Lin, Pass, Seth, and Telang [LPST16a] propose a variant of IO that has a weak (yet non-trivial) efficiency,
which they call exponentially-efficient IO (XIO). All that this notion requires in terms of efficiency is that
the size of an obfuscated circuit is sublinear in the size of the corresponding truth table. Here we also define
approximately-correct XIO, which is only required to preserve functionality on some large enough fraction
of inputs.

We next formally define the notion of XIO for any collection of circuit classes C ⊆ Plog/poly, where
Plog/poly is the collection of all classes of polynomial-size circuits with logarithmic size input.

Definition 3.1 (Plog/poly). The collection Plog/poly includes all classes C = {Cλ} ∈ p for which there
exists a constant c = c(C), such that the input of any C ∈ Cλ is bounded by c log λ.

Definition 3.2 (Exponentially-efficient indistinguishability obfuscation (XIO) [LPST16a]). A pair of algo-
rithms xiO = (xiO.Obf, xiO.Eval) is an exponentially-efficient indistinguishability obfuscator (XIO) for a
collection of circuit classes C = {C = {Cλ}} ⊆ Plog/poly if it satisfies:

• Functionality: for any C ∈ C, security parameter λ ∈ N, and C ∈ Cλ with input size n,

Pr
xiO

x←{0,1}n
[xiO.Eval(C̃, x) = C(x) : C̃ ← xiO.Obf(C, 1λ)] ≥ 1− α(λ) .

We say that xiO.Obf is correct if α(λ) ≤ negl(λ) and approximately-correct if α(λ) ≤ 1/100 .

• Non-trivial Efficiency: there exists a constant γ < 1 and a fixed polynomial poly(·), depending on C
(but not on any specific C ∈ C), such that for any C ∈ C security parameter λ ∈ N, circuitC ∈ Cλ with
input length n, and input x ∈ {0, 1}n the running time of both xiO.Obf(C, 1λ) and xiO.Eval(C̃, x) is
at most poly(2n, λ, |C|) and the size of the obfuscated circuit C̃ is at most 2nγ · poly(|C|, λ). We call
γ the compression factor, and say that the scheme is γ-compressing.

• Indistinguishability: for any C = {Cλ} ∈ C and polynomial-size distinguisher D, there exists, a
negligible function µ(·) such that the following holds: for all security parameters λ ∈ N, for any pair
of circuits C0, C1 ∈ Cλ of the same size and such that C0(x) = C1(x) for all inputs x,∣∣∣Pr

[
D(xiO.Obf(C0, 1

λ)) = 1
]
− Pr

[
D(xiO.Obf(C1, 1

λ)) = 1
]∣∣∣ ≤ µ(λ) .

We further say that xiO.Obf is δ-secure, for some concrete negligible function δ(·), if for all polynomial-
size distinguishers the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

Remark 3.1 (Logarithmic Input). Indeed, for XIO to be useful, we must restrict attention to circuit collections
C ⊆ Plog/poly. This ensures that obfuscation and evaluation are computable in time 2O(n) = poly(λ).
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Remark 3.2 (Probabilistic xiO.Eval). Above, we allow the evaluation algorithm xiO.Eval to be probabilistic.
Throughout most of the paper, and unless stated otherwise (Section 7), we restrict attention to deterministic
evaluation algorithms. This typically will simplify exposition and is without loss of generality. Indeed, we
can always let the obfuscation algorithm output, together with the obfuscation, coins r ← {0, 1}λ to be
used by the evaluation algorithm (when needed, these can be expanded to a pseudo random string of any
polynomial size poly(λ)).

XIO with an Oracle. We say that an XIO scheme xiO = (xiO.Obf, xiO.Eval) is constructed relative to an
oracleO. If the corresponding algorithms, as well as the adversary in the security game, may access the oracle
O. Namely, the obfuscation algorithm xiO.ObfO(C, 1λ) and the evaluation algorithm xiO.EvalO(C̃, x) are
given oracle access to O. In the security definition, the adversarial distinguisher DO also gets access to the
oracle.

When discussing XIO schemes relative to oracles we will address two query-complexity measures:

• The obfuscation query complexity denoted by qo = qo(C, λ) is a bound on the total size
∑

Q∈Qo
|Q|

of oracle queries Qo = {Q} made by xiO.ObfO(C, 1λ) when obfuscating a circuit C. (In particular,
it is a bound on their number |Qo|.)

• The evaluation query complexity denoted by qe = qe(C, λ) is a bound on the total size
∑

Q∈Qe
|Q|

oracle queriesQe = {Q} made by xiO.EvalO(C̃, x) when evaluating an obfuscation C̃ of a circuit C
on input x.

3.2 Puncturable Pseudorandom Functions

Puncturable PRFs, defined by Sahai and Waters [SW14], are PRFs with a key-puncturing procedure that
produces keys that allow evaluation of the PRF on all inputs, except for a designated point.

Definition 3.3 (Puncturable PseudorandomFunctions). For setsD,R, a puncturable pseudorandom function
(PPRF) consists of a tuple of algorithms PPRF = (PRF.Gen,PRF.Eval,PRF.Punc) that satisfy the
following two conditions.

Functionality preserving puncturing: For any distinct x, x∗ ∈ D, it holds that

Pr[PRF.EvalK(x) = PRF.EvalK{x∗}(x) : K ← PRF.Gen(1λ),K{x∗} ← PRF.Punc(K,x∗)] = 1.

Pseudorandomness at punctured points: For any x∗ ∈ D and any polynomial-size distinguisherA, there
exists a negligible function µ, such that:

|Pr[A(PRF.EvalK{x∗},PRF.EvalK(x∗)) = 1] − Pr[A(PRF.EvalK{x∗}, U) = 1]| ≤ µ(λ)

where K ← PRF.Gen(1λ), K{x∗} ← PRF.Punc(K,x∗) and U denotes the uniform distribution
over R. We further say that PPRF is δ-secure, for some concrete negligible function δ(·), if for all
polynomial-size distinguishers the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

The GGM tree-based construction of PRFs [GGM84] from one-way functions are easily seen to yield
puncturable PRFs where the size of the punctured key grows polynomially with the size of the set S being
punctured, as observed by [BW13, BGI14, KPTZ13].
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4 Oracles

We review the oracle models addressed in this work.

4.1 The Random Oracle Model

In the random oracle model [BR93], all algorithms get access to a random function.

Definition 4.1 (Random Oracle). A random oracle R = {Rλ}, for some polynomially-bounded function `
is an ensemble of random functionsRλ : {0, 1}λ → {0, 1}`(λ).

4.2 The Ideal Graded Encoding Model

The ideal graded-encoding model we consider is inspired by previous generic group and ideal graded-
encoding models [Sho97, Mau05, BR14, BGK+14] and is closest to the model of Pass and Shelat [PS16].
The model is given by an oracleM parameterized by a finite field F. The oracle enables to encode elements
ξ ∈ F under a label ` and obtain a representation of (ξ, `) as a handle h = (r, `) consisting of a random string
r and the corresponding label. We explicitly include the label ` in the handle to capture the fact that it may be
public. In addition, the oracle allows valid zero-tests over encoded elements. A zero-test query is given by a
list of handles h = (h1, . . . , hm) and an m-variate polynomial p(v) in formal variables v = (v1, . . . , vm).
The oracle obtains the corresponding field elements along with their labels (ξ1, `1), . . . , (ξm, `m). It first
checks whether the zero test is valid by applying a validity predicate V (p, `1, . . . , `m), and if so it tests
whether p(ξ1, . . . , ξm) = 0.

As in [PS16], we consider well-formed predicates that are determined by the validity of monomials.

Definition 4.2 (Well-Formed Validity Predicate). V is well-formed if for any d ∈ N and degree-d polynomial

p(v1, . . . , vm) =
∑

i≤d,j1,...,ji∈[m]

ξj1,...,jivj1 · · · vji ,

it holds that

V (p, `1, . . . , `m) =
∧

i≤d,j1,...,ji∈[m]
ξj1,...,ji 6=0

V ({`j1 , . . . , `ji}) ;

namely, p is valid relative to the labels `1, . . . , `m, if every monomial of p is valid relative to the corresponding
multi-set of labels {`j1 , . . . , `ji}.

In addition to well-formedness, we consider further restriction. Namely, a decomposable validity
predicate V ({`1, · · · , `k}) is defined by a simpler two-input validity predicate VΠ and a projection function
Π in the following way: For any two multi-sets of labels A,B, the validity V (A ]B) of their disjoint union
A ]B is determined by VΠ(Π(A),Π(B)).

Definition 4.3 (Decomposable Validity Predicate). V is decomposable if it is well-formed and there exists a
projection function Π and a two-input predicate VΠ satisfying the following property:

• For every two multisetsA = {`1,1, . . . , `1,k1} andB = {`2,1, . . . , `2,k2} of labels, the validity decision
on their disjoint-union is

V (A ]B) = VΠ(Π(A),Π(B))
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The arity of a decomposable predicate V is for any multi-set B under projection, the maximum number
of projection Π(A) that makes the validity predicate output true.

Arity of V = max
B

(|{Π(A) : VΠ(Π(A),Π(B)) = 1 }|)

Intuitively, a decomposable validity predicate has the property that any two different pairs of multi-sets
(A,B) 6= (A′, B′) share the same validity decision if they have the same projection (Π(A),Π(B)) =
(Π(A′),Π(B′)). In other words, information of the multi-sets beyond their projection does not matter. In
the literature, all known ideal models have decomposable validity predicate. For example, for integer-based
graded encodings, validity only depends on the sum of the integer-labels in a multi-set. For set-based graded
encodings, only the union of all set-labels matters. For graph based graded encodings, only concatnation
of all path-labels matters. Furthermore, most validity predicates in the literature have bounded arity. For
instance, for integer-based and set-based graded encodings, the validity predicate outputs 1 iff the two
projection “add up” to a fixed number or a fixed univese, and thus has arity 1. For graph-based encodings,
the arity is upper bounded by the total number of pathes in the graph, which is some fixed polynomial.

We remark that the property of decomposability with bounded arity will be instrumental in our transfor-
mation later (in Section 5.3) for simplifying the label structure.

We now formally define the model.

Definition 4.4 (Ideal Graded Encoding Oracle). The oracleMF,V is a stateful oracle, parameterized by a
field F and a well-formed validity predicate V . The oracle answers queries of two forms:

1. Encoding Queries: Given a field element ξ ∈ F and label `, the oracle samples a uniformly random
string r ← {0, 1}log |F|, returns the handle h = (r, `), and stores (h, ξ).

2. Zero-Test Queries: 2. Given a polynomial p ∈ F[v1, . . . , vm], and handles h1, . . . , hm, the oracle
does the following:

• For each i ∈ [m], obtains a tuple (hi, ξi). If no such tuple exists, stops and returns false .
• From each hi = (ri, `i), obtains `i, and checks that V (p, `1, . . . , `m) = true to verify the query
is valid and if not, returns false .

• Performs the zero test, returning true if p(ξ1, . . . , ξm) = 0 and false otherwise.

An ideal graded encoding oracleM = {MFλ,Vλ} is a collection of oraclesMFλ,Vλ , one for each λ ∈ N,
where |F| = 2Θ(λ).

We say that an oracle is decomposable if it has a decomposable validity predicate with bounded
polynomial arity poly(λ).

Definition 4.5 (Degree of Oracle). The oracleM is said to be degree-d, if for every polynomial p of degree
deg(p) > d, and any label vector `, V (p, `) = false .

Remark 4.1 (Public Encoding). In some previous models (e.g., [PS16]), the ability to make encoding queries
is restricted. In the context of obfuscation, this is modeled by allowing only the obfuscator to initialize the
oracle with encodings. More generally, it can be modeled by providing only relevant parties (the obfuscator
in this case) with a secret encoding key. (For instance, one can think of secret-key functional encryption
schemes where the encryptor and key generator require the encoding key, but functional decryption does
not.)
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The above definition does not enforce this restriction. The results in the paper are presented in the model
of public encodings. The results in Section 6 extend also to the model of private encodings. The results in
Section 5 extend to the model of private encodings assuming either: (a) it is possible to publicly generate
encodings of random strings (which is indeed, the case in existing candidate graded encoding schemes), or
(b) “zero-testing in low levels is allowed”; namely, the validity predicate V is such that if V (L) = true ,
then for any L′ ⊆ L, V (L′) = true .
Remark 4.2 (Beyond Fields). The model considered here restricts attention to fields F. The results naturally
extends also to pseudo-fields such as the ring ZN for composite N , assuming factoring N is hard.

5 Reducing Constant-Degree Oracles to Bilinear Oracles

In this section, we show that any XIO scheme with a constant-degree decomposable ideal oracle can
be transformed into an approximately-correct one with an ideal symmetric bilinear oracle (analogous to
symmetric bilinear groups), provided that the XIO scheme is in a certain product formwith some appropriate
query complexity. In Section 8.2, we show that any single-key functional encryption scheme with a constant-
degree decomposable ideal oracle, and appropriate succinctness, implies such an XIO scheme. We start by
defining the notion of XIO in product form and of a symmetric bilinear oracle, then we give a high-level
description of the transformation, and move on to describe the transformation in more detail.
XIO in Product Form. Roughly speaking, an XIO scheme in product form is associated with a product
collection of sets X = {X} ,Y = {Y } that factors the inputs space

{0, 1}n ∼=
⊎
X∈X

X ×
⊎
Y ∈Y

Y

so that obfuscation and evaluation decompose accordingly into pieces:

• An obfuscation C̃ of a circuit C consists of |X |+ |Y| pieces
{
C̃X

∣∣∣ X ∈ X} and
{
C̃Y

∣∣∣ Y ∈ Y}.
• Given pieces C̃X , C̃Y , one can evaluate the obfuscation (i.e., computeC(x, y)) for all (x, y) ∈ X×Y .

The main advantage in product form is that, when the sets X,Y in the collection are small, evaluation at a
given point (x, y) may potentially be a local operation that depends only on a small part of the entire XIO
obfuscation.

We now go on to formally define the notions of a product collection and XIO in product form.

Definition 5.1. X = {Xn} ,Y = {Yn} are said to be a product collection if:

1. Equal-Size Partition: For any X,X ′ ∈ Xn and Y, Y ′ ∈ Xn:

|X| = |X ′|, X ∩X ′ = ∅ |Y | = |Y ′|, Y ∩ Y ′ = ∅ ,

2. Product Form: letXn =
⊎
X∈Xn X,Y n =

⊎
Y ∈Yn Y then the input space {0, 1}n factors:

{0, 1}n ∼= Xn × Y n .

Definition 5.2 (Product Form). We say that an XIO scheme xiO = (xiO.ObfO, xiO.EvalO), relative to oracle
O, for a collection of circuit classes C, is in (X ,Y)-product form for a product collection (X ,Y) if:
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• The obfuscation algorithm xiO.ObfO factors into two algorithms (xiO.ObfOX , xiO.Obf
O
Y ), such that

for any C ∈ C, xiO.ObfO(C, 1λ; r) outputs({
C̃X ← xiO.ObfOX (C,X, 1λ; r)

}
X∈Xn

,
{
C̃Y ← xiO.ObfOY (C, Y, 1λ; r)

}
Y ∈Yn

)
,

and all executions may use joint randomness r.

• There is an evaluation algorithm xiO.EvalOX ,Y such that for any (X,Y ) ∈ Xn × Yn

xiO.EvalOX ,Y(C̃X , C̃Y ) =
(
xiO.EvalO(C̃, (x, y))

)
(x,y)∈X×Y

.

Corresponding notation:

• We denote by qXo = qXo (C, λ) the bound on the maximal total size
∑

Q∈QX
o
|Q| of all oracle queries

QX
o = {Q} made by xiO.ObfOX (C,X, 1λ) when obfuscating an n-bit input circuit C ∈ C for any

X ∈ Xn. Symmetrically, we denote by qYo = qYo (C, λ) the bound on the total size
∑

Q∈QY
o
|Q| of

oracle queriesQY
o = {Q} made by xiO.ObfOY (C, Y, 1λ) for any Y ∈ Yn.

The Bilinear Symmetric Oracle. The symmetric bilinear oracle is a special case of a degree-2 graded
encoding oracle that is analogous to the symmetric bilinear model where there is a single base groupG with
a bilinear map e : G×G→ GT . In our terms, one can only encode field elements with respect to a single
label (representing a single base group).

Definition 5.3 (Symmetric Bilinear Oracle). The symmetric Bilinear Oracle B2 =
{
B2
Fλ,V

}
is a special

case of the ideal graded encoding oracle, where the validity predicate V is of degree two and is defined over
a single label `B. That is, V (L) = true , if and only if L ⊆ {`B, `B}.

We now state the main theorem proven in this section.

Theorem 5.1. Let xiO = (xiO.ObfM, xiO.EvalM) be an xiO.Obf scheme, relative to a degree-d decompos-
able ideal graded encoding oracleMd, for a collection of circuit classes C, that is in (X ,Y)-product form,
for some product collection (X ,Y). Further assume that for some constant γ < 1,

|Xn| ·
(
qXo ·min

(
qXo , |Yn| · log qXo

))d
+ |Yn| ·

(
qYo ·min

(
qYo , |Xn| · log qYo

))d
≤ 2γn · poly(|C|, λ) .

Then xiO can be converted to a new approximately-correct scheme xiO? relative to a symmetric bilinear
oracle B2, also with explicit handles in (X ,Y)-product form.

Remark 5.1. A slightly easier to parse version of the above condition, with some loss in parameters, is that

|Xn| ·
(
qXo
)2d

+ |Yn| ·
(
qYo
)2d ≤ 2γn · poly(|C|, λ) .

Remark 5.2. Our ideal symmetric bilinear oracle captures symmetric bilinear pairing groups, but with two
small gaps: Our oracle generates randomize encodings (following the Pass-shelat model) whereas bilinear
pairing groups have unique encodings (of form ga), and our oracle does not support homomorphic opeartions
whereas bilinear paring groups do. These differences are not consequential. In Section 5.4, we show how
to instantiate the transformed XiO schemes produed by the above theorem using concrete bilinear pairing
groups.

14



Without Loss of Generality. Throughout the rest of this section, we make the following assumptions
without loss of generality. In the model of private encodings (Remark 4.1), thre same assumptions can be
made (see for instance [PS16]).

• Obfuscator only encodes: An XIO obfuscation algorithm only performs encoding queries and does
not perform any zero tests. This is without loss of generality, as the obfuscator knows the field elements
and labels underlying any generated handle (it encoded them itself), so zero-tests can be internally
simulated.

• Evaluator and adversary only zero-test: The XIO evaluation algorithm as well as the adversary
only performs zero tests and do not encode any elements themselves. Indeed, encoding of any
(ξ, `) can be internally simulated by sampling corresponding handle h. Then whenever a zero-test
(p, h1, . . . , hm, h̃1, . . . , h̃m̃) includes such self-simulated handles h̃i, it is translated to a new zero test
that does not include such handles, by hardwiring the required field elements into the polynomial p.
In more detail, we may assume that any obfuscation always includes encodings of 1 under all labels ` ∈
L; this indeed is w.l.o.g in the public encoding model, as any adversary can generate such encodings by
itself. We generate from (p, h1, . . . , hm, h̃1, . . . , h̃m̃) a new zero-test (p?, h1, . . . , hm, h

1
i1
, . . . , h1

im̃
),

where h1
ij

is the 1-encoding under the label of handle h̃j . The polynomial p? is defined to be
p?(h1, . . . , hm, h̃1, . . . , h̃m̃) = p(h1, . . . , hm, ξ1h

1
i1
, . . . , ξm̃h

1
im̃

), where ξi are the underlying field
elements for which encodings were self-simulated.

TheHigh-Level Ideas and Structure of theTransformation. The high-level idea behind the transformation
is as follows. Starting with an XIO in product form, imagine (for the time being) that the obfuscation C̃X of
any pieceX ∈ Xn simply consists of a set of handles H̃X = {hX,1, . . . , hX,mX} representing field elements
encoded during obfuscation (Similarly for any Y ∈ Yn, we have a corresponding H̃Y ). Then, by the product
form, evaluating the obfuscation on any set of inputs (X,Y ) only involves zero-tests of the form

p(hX,1, . . . , hX,mX , hY,1, . . . , hY,mY )

for some degree-d polynomial p over the formal variables H̃X , H̃Y . We can further factor p according to
these two sets of variables and write

p(hX,1, . . . , hX,mX , hY,1, . . . , hY,mY ) =
∑
i,j

ρi,jΦi(hX,1, . . . , hX,mX )Φj(hY,1, . . . , hY,mY ) ,

for some monomials Φi,Φj of total (joint) degree at most d.
The basic observation is that, from a functionality standpoint, it is sufficient to have encodings (or rather,

handles) of all possible degree-d monomials in each set H̃X (respectively, H̃Y ) and the ability to perform
only degree-2 zero-tests over these encodings. This of course will blowup the size of any H̃X (or any H̃Y )
exponentially in the degree d, |H̃X |d (or |H̃Y |d). However, provided that these sets are small enough (e.g.,
polynomial in the security parameter), then this blowup does not foil the compression of the original XIO
construction.

To fulfil this high-level idea, we need to deal with two main issues:

• Our assumption that C̃X simply consists of a bunch of handles is not without loss of generality. Indeed,
we want to deal with arbitrary obfuscators that may potentially have an arbitrary output, where the
actual handles required for evaluation are not necessarily explicit.
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• Even given all the explicit handles required for evaluation, H̃X , H̃Y for allX,Y , encoding directly all
possible monomials may possibly allow an attacker to zero-test polynomials it should not be able to.
A simple example is that encoding two monomials Φi,Φj of degree d will allow the attacker to learn
a monomial Φi,j = Φi · Φj of degree 2d, which it should not be able to.

Our actual transformation deals with these two issues and proceeds in three steps:

1. We first show how to transform an arbitrary XIO in product form into one where all handles needed
for evaluation are explicitly given as part of the obfuscation. This step involves a certain probabilistic
learning process, and results in an XIO with approximate correctness.

2. We then apply the encode all monomials approach described above, but using amore expressive bilinear
oracle that supports a validity predicate that is engineered to match exactly the validity predicate of
the constant-degree oracle that we start with. Intuitively, this model is an extension of the standard
notion of asymmetric bilinear maps where instead of two base groups we may have a larger number
of base groups G1, . . . , Gn with a collection of valid bilinear maps {ek : Gik ×Gjk → GT }.

3. Finally, we give a way to simulate the above (extended) asymmetric bilinear model in the symmetric
bilinear model. In this step, we rely on the fact that the ideal oracle has a decomposable validity
predicate with bounded polynomial arity to simplify the lable structure and ensure that the size of the
obfucated circuits only blow up by a fixed polynomial factor.

5.1 Step 1: Explicit Handles

In this section, we show how to transform any XIO in product form relative to an ideal degree-d oracle (not
necssarily decomposable), into one where all handles required for evaluation are given explicitly (also in
product form). We start by defining the notion of explicit handles in product form and then state and prove
the existence of the transformation.

Definition 5.4 (Explicit Handles in Product Form). An XIO scheme xiO = (xiO.ObfM, xiO.EvalM), relative
to an ideal graded encoding oracle, for a collection of circuit classes C, is said to have explicit handles in
(X ,Y)-product form, for a product collection (X ,Y), if the obfuscation and evaluation algorithms satisfy
the following structural requirement:

• The obfuscation algorithm xiO.ObfM(C, 1λ) outputs:

C̃ =

(
Z̃,
{
H̃X

}
X∈Xn

,
{
H̃Y

}
Y ∈Yn

)
,

where each H̃X and H̃Y are sets of handles generated by the oracleM during obfuscation, and Z̃ is
arbitrary auxiliary information.

• All true zero-test queries (p, h1, . . . , hm) — that is, zero-test queries that evaluate to true — made
by the evaluation algorithm xiO.EvalM

(
C̃, (x, y)

)
are such that for all j ∈ [m], hj ∈ H̃X ∪ H̃Y ,

where (X,Y ) ∈ Xn × Yn are the (unique) sets such that (x, y) ∈ X × Y .

Corresponding notation:

• We denote by qXh = qXh (C, λ) the bound maxX∈Xn |H̃X | on the maximum size of the set of explicit
handles corresponding to any X ∈ Xn. We denote by qYh = qYh (C, λ) the bound on maxY ∈Yn |H̃Y |.
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We show that any xiO.Obf scheme with an ideal graded encoding oracle that is in product form can be
turned into one that has explicit handles in product form, but is approximately correct.

Lemma5.1. Let xiO = (xiO.ObfM, xiO.EvalM) be an xiO.Obf scheme, relative to an ideal graded encoding
oracleM, for a collection of circuit classes C, that is in (X ,Y)-product form, for some product collection
(X ,Y). Then xiO can be converted to a new approximately-correct scheme xiO? with explicit handles in
(X ,Y)-product form (relative to the same oracleM).

Furthermore, the size of the explicit handle sets are bounded as follows

qXh ≤ O
(
qXo
)
·min

(
qXo , |Yn| · log qXo

)
,

qYh ≤ O
(
qYo
)
·min

(
qYo , |Xn| · log qYo

)
.

To prove Lemma 5.1, below we start by describing the new obfuscator in Section 5.1.1, and then move
on to analyze its parameter blowup in Section 5.1.2, approximate correctness in Section 5.1.3, and security
in Section 5.1.4. The obfuscation algorithm assumes w.l.o.g that |Xn| ≥ |Yn|.

5.1.1 Our New XiO Scheme with Explicit Handles

The Obfuscator xiO?.Obf. Given a circuit C ∈ C with input size n, and security parameter 1λ,
xiO?.ObfM(C, 1λ) does the following:

• Obfuscate: Emulate the obfuscator

xiO.ObfM(C, 1λ) =

({
C̃X ← xiO.ObfMX (C,X, 1λ)

}
X∈Xn

,
{
C̃Y ← xiO.ObfMY (C, 1λ)

}
Y ∈Yn

)
.

For each X ∈ Xn store a list LX of all tuples (h, ξ) such that xiO.ObfMX (C,X, 1λ) requested the
oracleM to encode (ξ, `) and obtained back a handle h = (r, `). Store a similar list LY for each
execution xiO.ObfMY (C, Y, 1λ).

• Learn Heavy Handles for Xn: for each X ∈ Xn, let H̃X = ∅.
For i ∈

{
1, . . . ,KX = min

(
400qXo , |Yn| · log

(
400qXo

))}
do the following:

– Sample a random Yi ← Yn.

– Emulate xiO.Eval
(·)
X ,Y(C̃X , C̃Yi). To answer zero-test queries, emulate M using the lists

(LX , LYi) constructed during the obfuscation phase.
– In the process, for every zero-test query (p, h1, . . . , hm), ifM(p, h1, . . . , hm) = true , namely

it is a valid zero test and the answer is indeed zero, add h1, . . . , hm to H̃X .
– Store the resulting H̃X .

Learn Remaining Handles for Yn: for each Y ∈ Yn, let H̃Y = ∅.
For i ∈

{
1, . . . ,KY = min

(
200qYo , |Xn| · log

(
200qYo

))}
do the following:

– Sample a random Xi ← Xn, and let H̃Xi,Y = ∅.

– Emulate xiO.Eval
(·)
X ,Y(C̃Xi , C̃Y ). To answer zero-test queries, emulate M using the lists

(LXi , LY ) constructed during the obfuscation phase.
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– In the process, for every zero-test query (p, h1, . . . , hm), ifM(p, h1, . . . , hm) = true , namely
it is a valid zero test and the answer is indeed zero, add h1, . . . , hm to H̃Xi,Y .

– Remove from H̃Xi,Y all handles in H̃Xi .

– If |H̃Xi,Y | ≤ qYo (C, λ), add H̃Xi,Y to H̃Y . Otherwise disregard H̃Xi,Y .

• Output: C̃? =

(
Z̃,
{
H̃X

}
X∈Xn

,
{
H̃Y

}
Y ∈Yn

)
, where Z̃ =

({
C̃X

}
X∈Xn

,
{
C̃Y

}
Y ∈Yn

)
.

The Evaluator xiO?.Eval. Given an obfuscation C̃? =

(
C̃,
{
H̃X

}
X∈Xn

,
{
H̃Y

}
Y ∈Yn

)
, input (x, y) ∈

Xn × Y n, xiO?.EvalM(C̃?, (x, y)) does the following:

• Let (X,Y ) ∈ Xn × Yn be the (unique) sets such that (x, y) ∈ X × Y .

• Emulate xiO.Eval(·)X ,Y(C̃X , C̃Y ).

• Whenever xiO.Eval makes a zero-test query (p, h1, . . . , hm):

– If for some i, hi /∈ H̃X ∪ H̃Y , answer false .
– Forward any other zero-test to the oracleM and return its answer.

5.1.2 Analysis of Succinctness

Proposition 5.1. The sizes of the explicit handle sets are bounded as follows

qXh := max
X∈Xn

|H̃X | ≤ O
(
qXo
)
·min

(
qXo , |Yn| · log qXo

)
,

qYh := max
Y ∈Yn

|H̃Y | ≤ O
(
qYo
)
·min

(
qYo , |Xn| · log qYo

)
.

Proof. Assume w.l.o.g that |Xn| ≥ |Yn|. Then, for everyX ∈ Xn, H̃X is constructed inKX iterations when
learning heavy handles for X . In each such iteration all handles added are from the set of handlesHX ∪HY

generated during obfuscation. Thus,

|H̃X | ≤ (|HX |+ |HY |) ·KX ≤(
qXo + qYo

)
·min

(
400qXo , |Yn| · log

(
400qXo

))
≤

O
(
qXo
)
·min

(
qXo , |Yn| · log qXo

)
.

For every Y ∈ Yn, H̃Y is constructed in KY iterations when learning heavy handles for Y . In each such
iteration, we add a handle of size at most qYo (or nothing at all). Thus,

|H̃Y | ≤qYo ·KY ≤
qYo ·min

(
200qYo , |Xn| · log

(
200qYo

))
≤

O
(
qYo
)
·min

(
qYo , |Xn| · log qYo

)
.
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5.1.3 Analysis of Approximate Correctness

Proposition 5.2. The new scheme xiO? satisfies the strutural requirement of explicit handles in product and
is approximately correct.

Proof. Recall that satisfying the structural requirements of explicit handles in product form means that true
zero-test queries (p, h1, . . . , hm) made by the evaluation algorithm xiO?.EvalM

(
C̃, (x, y)

)
should be such

that for all j ∈ [m], hj ∈ H̃X∪H̃Y , where (X,Y ) ∈ Xn×Yn are the (unique) sets such that (x, y) ∈ X×Y .
Indeed, by definition the evaluation algorithm xiO?.EvalM emulates xiO.Eval(·)X ,Y(C̃X , C̃Y ) and forwards to
the oracleM only those queries that satisfy this condition.

We now turn to prove approximate correctness. In what follows, for any X ∈ Xn, we denote byHX the
handles generated during obfuscation when xiO?.Obf emulates xiO.ObfMX (C,X, 1λ). For Y ∈ Yn, HY is
defined similarly. Also, we call a zero test (p, h1, . . . , hm) a true zero-test ifM(p, h1, . . . , hm) = true .

We first note that, since the original scheme xiO.Obf is correct, for any (x, y) ∈ X × Y , except
with negligible probability, the evaluation algorithm xiO?.EvalM(C̃?, (x, y)) only errs when the emulated
xiO.Eval

(·)
X ,Y(C̃X , C̃Y ) makes a true zero test that includes some handle hj /∈ H̃X ∪ H̃Y . In this case, unlike

M, xiO?.Eval answers false . Whenever such an error occurs, one of the following two must occur:

• The handle hj was generated during obfuscation when generating C̃X , C̃Y , but was not added to
H̃X ∪ H̃Y during the learning of heavy handles:

hj ∈ (HX ∪HY ) \
(
H̃X ∪ H̃Y

)
.

• The handle hj was generated during obfuscation of some other components C̃X′ , C̃Y ′ (and was not
added to H̃X ∪ H̃Y ):

hj ∈ (HX′ ∪HY ′) \
(
H̃X ∪ H̃Y ∪HX ∪HY

)
,

for some X ′ ∈ X \ {X} , Y ′ ∈ Y \ {Y }.

We argue that the second case above occurs only with negligible probability. Indeed, for any components
X ′, Y ′ as above, any handle h ∈ hX′ , hY ′ created when generating the obfuscations C̃X′ , C̃Y ′ is such that
h = (r, `), where r ∈ {0, 1}log |F| is a random string sampled independently of C̃X , C̃Y and thus also
independently of hj . The probability that hj = h is thus at most 1/|F|. Overall, the probability that his
occurs for some X ′, Y ′, h as above can be union bounded by

|Xn| · qXo + |Yn| · qYo
|F|

= negl(λ) .

From hereon, we focus on bounding the probability of the first event, which we shall denote by Bad(X,Y ).
That is Bad(X,Y ) is the event that xiO.EvalX ,Y(C̃X , C̃Y ) makes a true zero-test query (p, h1, . . . , hm)

where some hj ∈ (HX ∪HY ) \
(
H̃X ∪ H̃Y

)
. (We sometimes say that such a handle hj was not covered

when learning heavy handles.) We note that since all sets Xn,Yn consist of equal-size, disjoint sets that
partitionXn,Y n, it holds that

Pr
xiO?.Obf

(X,Y )←Xn×Yn

[Bad(X,Y )] = Pr
xiO?.Obf

(x,y)←Xn×Y n

[Bad(X,Y ) | (x, y) ∈ X × Y ] .
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So to deduce approximate correctness it suffices to bound the first probability above. We will show that

Pr
xiO?.Obf

(X,Y )←Xn×Yn

[Bad(X,Y )] ≤ 1/100 .

We further define BadX (X,Y ) to be the event that some hj ∈ HX \ H̃X (namely, hj was not covered when
learning heavy handles for X ). We similarly define BadY(X,Y ) to be the event that some hj ∈ HY \ H̃Y .
It suffices to bound the probability of each of the two since

Bad(X,Y ) ⊆ BadX (X,Y ) ∨ BadY(X,Y ) .

Bounding BadX (X,Y ). We start by bounding the probability that BadX (X,Y ) occurs. We, in fact, bound
it for any fixed X , which directly implies the same bound for a random X .

Fix any X ∈ X and fix all sets {HX}X∈Xn , {HY }Y ∈Yn of handles and
{
C̃X

}
X∈Xn

,
{
C̃Y

}
Y ∈Yn

,

generated in the obfuscation phase, when emulating xiO.ObfM(C,X, 1λ), xiO.ObfM(C, Y, 1λ). Also, fix
any handle hj ∈ HX and consider the event BadX (X,Y, hj) that BadX (X,Y ) occurs with respect to the
handle hj ; namely, xiO.EvalX ,Y(C̃X , C̃Y ) makes a true zero-test query including a handle hj ∈ HX \ H̃X .

Note that the event BadX (X,Y, hj) occurs only if during the learning of heavy handles for X , in all
iterations i ∈ [KX ], when sampling Yi ← Yn, and emulating xiO.EvalX ,Y(C̃X , C̃Yi), there is no true zero-
test that includes the handle hj , whereas in the actual (post obfuscation) evaluation hj is included in some
true zero-test. Thus, denoting by α the probability, over Yi ← Yn, that hj is included in any particular
execution, we have that

Pr [BadX (X,Y, hj)] ≤ (1− α)KX · α ≤ min

(
1

KX
, 2
− KX
|Yn|

)
≤ 1

400qXo
,

where we use Fact 3.1 and our choice ofKX .
Overall, by a union bound over all hj ∈ HX ,

Pr [BadX (X,Y )] ≤ |HX | ·
1

400qXo
≤ 1

400
.

Bounding BadY(X,Y ). To bound the probability that BadY(X,Y ) occurs, we will bound the event

∆(X,Y ) := BadY(X,Y ) ∧ BadX (X,Y )

that, during evaluation, xiO.EvalX ,Y(C̃X , C̃Y ) performs a true zero-test query that includes hj ∈ HY \ H̃Y ,
and in addition all handles h ∈ HX included in any true zero-test, it is the case that h ∈ H̃X , namely they
were covered during the learning of heavy handles for X . Then, we will use the fact that

Pr [BadY(X,Y )] ≤ ∆(X,Y ) + Pr [BadX (X,Y )] ,

and our already established bound on BadX (X,Y ).
We, in fact, bound ∆(X,Y ) for any fixed Y , which directly implies the same bound for a random Y . Fix

any Y ∈ Y and fix all sets {HX}X∈Xn , {HY }Y ∈Yn of handles and
{
C̃X

}
X∈Xn

,
{
C̃Y

}
Y ∈Yn

, generated

in the obfuscation phase, when emulating xiO.ObfM(C,X, 1λ), xiO.ObfM(C, Y, 1λ). Fix also all the sets
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{
H̃X

}
X∈Xn

of handles created during obfuscation, when learning the heavy handles for X . Finally, fix any
handle hj ∈ HY and consider the event ∆(X,Y, hj) that ∆(X,Y ) occurs with respect to the handle hj ;
namely, xiO.EvalX ,Y(C̃X , C̃Y ) makes a true zero-test query including a handle hj ∈ HY \ H̃Y .

Note that the event ∆(X,Y, hj) occurs only if during the learning of heavy handles for Y , in all iterations
i ∈ [KY ], when sampling Xi ← Xn, and emulating xiO.EvalX ,Y(C̃Xi , C̃Y ), it is the case that either:

• no true zero-test includes the handle hj , or

• some true zero-test includes a handle h ∈ HX \ H̃X .

whereas in the actual (post obfuscation) evaluation the exact opposite occurs: hj is included in some true
zero test and there is no handle h ∈ HX \ H̃X included in any true zero-test. Indeed, note that if in some
execution i ∈ [KY ], hj and no true zero-test includes h ∈ HXi \ H̃Xi , then in this iteration,

|H̃Xi,Y | ≤ |HY | ≤ qYo ,

and the learning procedure would have added hj to H̃Y .
Thus, denoting by β the probability, over Xi ← Xn, that hj is included in any particular execution, we

have that
Pr [∆(X,Y, hj)] ≤ (1− β)KY · β ≤ min

(
1

KY
, 2
− KY
|Xn|

)
≤ 1

200qYo
,

where we use Fact 3.1 and our choice ofKY .
Overall, by a union bound over all hj ∈ HY ,

Pr [∆(X,Y )] ≤ |HY | ·
1

200qYo
≤ 1

200
.

Overall, we have

Pr [Bad(X,Y )] ≤Pr [BadX (X,Y )] + Pr [BadY(X,Y )] ≤
Pr [BadX (X,Y )] + ∆(X,Y ) + Pr [BadX (X,Y )] ≤
1/100 .

5.1.4 Analysis of Security

Proposition 5.3. The new scheme xiO? is as secure as the original scheme xiO.

Proof sketch. The new obfuscation C̃? consists exactly of an obfuscation C̃ under the original scheme, plus
the handles

{
H̃X

}
X∈Xn

,
{
H̃Y

}
Y ∈Yn

, which were generated in the learning phase. However, the leraning
phase, simply consists of running the evaluation algorithm of the original scheme repeatedly for a polynomial
number of times. Thus, any attacker against the new scheme can be perfectly simulated by an attacker for
the original scheme that simulates the above handles by performing the learning process by itself.

Finally, with the above construction ofXiOwith explicit handles and its analysis, we conclude Lemma 5.1.
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5.2 Step 2: From Constant-Degree to Degree Two

In this section, we show how that any XIO scheme with explicit handles in product form, relative to a degree-
d decomposable ideal oracle (for arbitrary d = O(1)), can be transformed into one relative to a degree-2
decomposable ideal oracle. The resulting degree-2 oracle is defined with respect to a validity predicate V 2

related to the validity predicate V d of the degree-d oracle we start with.
Intuitively, this model can be seen as an extension of the standard notion of asymmetric bilinear maps

where instead of two base groups we may have more. That is, instead of two asymmetric base-groupsG1, G2

where (ga1 , g
b
2) ∈ G1 × G2 can be mapped to e(g1, g2)ab in the target group GT , we possibly have a larger

number of groupsG1, . . . , Gn and a collection of valid mappings {ek : Gik ×Gjk → GT }, which may be a
strict subset of all possible bilinear maps.

In the next section, we show another transformation that further reduces the oracle to one with no labels
at all, analogous to the symmetric bilinear case where there is a single base group G and a single map
e : G×G→ GT .

Lemma 5.2. let xiO = (xiO.Obf(·), xiO.Eval(·)) be an XIO scheme, for a collection of circuit classes
C, defined relative to a degree-d decomposable ideal oracleMd =

{
Md

Fλ,Vλ

}
, with explicit handles in

(X ,Y)-product form, for some product collection (X ,Y). Assume further that for some constant γ < 1,

|Xn| ·
(
qXh
)d

+ |Yn| ·
(
qYh
)d ≤ 2γn · poly(|C|, λ) .

Then xiO can be converted to a new scheme xiO?, also with explicit handles in (X ,Y)-product form,
relative to a degree-2 decomposable oracleM2.

To prove the above lemma, we first present our new XiO scheme relative to a degree-2 decomposable
oracle in Section 5.2.1; we analyze the succinctness of the new scheme in Section 5.2.2, and show that the
new XiO scheme is as (approximately) correct and secure as the original XiO scheme relative to a degree-d
decomposable oracle in Section 5.2.3.

5.2.1 Our New XiO Scheme Relative to a Degree-2 OracleM2

In what follows, let xiO = (xiO.Obf(·), xiO.Eval(·)) be an XIO scheme with explicit handles in product form,
defined relative to a degree-d decomposable ideal oracleMd =

{
Md

Fλ,Vλ

}
. We describe a new scheme

xiO? = (xiO?.Obf(·), xiO?.Eval(·)) (also, with explicit handles in product form) defined relative to a degree-2
decomposable ideal oracleM2 =

{
M2

Fλ,V ?λ

}
.

The Obfuscator xiO?.Obf. Given a circuit C ∈ C with input size n, and security parameter 1λ, and oracle
access toM2, xiO?.ObfM

2
(C, 1λ) does the following:

• Emulate Obfuscation:

– Emulate xiO.ObfMd
(C, 1λ).

– Throughout the emulation, emulate the oracle Md, storing a list L = {(h, ξ)} of encoded
element-label pairs (ξ, `) and corresponding handles h = (r, `).

– Obtain the obfuscation
(
Z̃,
{
H̃X

}
X∈Xn

,
{
H̃X

}
Y ∈Yn

)
.
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• Encode Monomials:

– For each X ∈ Xn:
1. Retrieve H̃X = (h1, . . . , hm) and the correspondingfield elements and labels (ξ1, `1), . . . , (ξm, `m)

from the stored list L.
2. For every formal monomial Φ(v1, . . . , vm) = vi1 . . . vij , where j ≤ d and i1, . . . , ij ∈ [m],

∗ Compute

Φ(ξ) := ξi1 · · · ξij , Φ(`) :=
{
`i1 , . . . , `ij

}
, Φ(h) :=

{
hi1 , . . . , hij

}
.

(For simplicity of notations, we overload Φ to describe different functions when acting
on field elements, labels and handles.)

∗ RequestM2 to encode the field element and label (ξ?X,Φ, `
?
X,Φ) := (Φ(ξ),Φ(`)), and

obtain a handle h?X,Φ.

3. Store H̃?
X =

{
(h?X,Φ,Φ(h))

}
Φ

– For each Y ∈ Yn:
1. Symmetrically perform the above two steps with respect to H̃Y (instead of H̃X ).
2. Store H̃?

Y =
{

(h?Y,Φ,Φ(h))
}

Φ
.

• Output:

– C̃? =

(
C̃,
{
H̃?
X

}
X∈Xn

,
{
H̃?
Y

}
Y ∈Yn

)
, where C̃ :=

(
Z̃,
{
H̃X

}
X∈Xn

,
{
H̃Y

}
Y ∈Yn

)
.

The Evaluator xiO?.Eval. Given an obfuscation C̃? =

(
C̃,
{
H̃?
X

}
X∈Xn

,
{
H̃?
Y

}
Y ∈Yn

)
, input (x, y) ∈

Xn × Y n, and oracle access toM2, xiO?.EvalM
2
(C̃?, (x, y)) does the following:

• Emulate xiO.EvalMd
(C̃, (x, y)).

• Emulate any zero-test query (p, h1, . . . , hm) it makes toMd as follows:

1. Parse C̃ =

(
Z̃,
{
H̃X

}
X∈Xn

,
{
H̃Y

}
Y ∈Yn

)
.

2. Let (X,Y ) ∈ Xn × Yn be the (unique) sets such that (x, y) ∈ X × Y . Retrieve H̃X , H̃Y .
3. Splith = (h1, . . . , hm) into two verctors of handleshX ⊆ H̃X andhY ⊆ H̃Y . (Such a partition

always exists, by the guarantee of explicit handles in product form.)
4. Viewing p(h) as a formal polynomial in variables h, factor it as

p(h) =
∑
i

γiΦi(h) =
∑
i

γiΦX,i(hX)ΦY,i(hY ) ,

where γi 6= 0 are the coefficients, and eachmonomialΦi(h) is factored intoΦX,i(hX)·ΦY,i(hY ).

5. Translate {ΦX,i(hX),ΦY,i(hY )}i into handles
{
h?X,i, h

?
Y,i

}
i
by locating (h?X,i,ΦX,i(hX)) ∈

H̃?
X and (h?Y,i,ΦY,i(hY )) ∈ H̃?

Y .
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6. Consider the degree-2 formal polynomial:

p?(h?) =
∑
i

γih
?
X,ih

?
Y,i .

7. Make the zero-test (p?,h?) to the oracleM2 and return the result.

Labels and Validity Predicate V 2 of OracleM2. Note that labels ofM2 are subsets of the label set of
M. Let V d be the well-formed validity predicate associated withMd. We define a well-formed validity
predicate of degree 2. For this purpose, we need to define V 2 for labels corresponding to bilinear monomials
given by a multi-set {`?1, `?2}. For all other multi-sets L (with cardinality large than 2), V 2(L) = false ,
capturing that this is a degree 2-predicate.
The validity predicate V 2({`?1, `?2}) is computed as follows:

• Parse `?1 and `?2 as as two multi-sets {`1,1, . . . , `1,k1} , {`2,1, . . . , `2,k2}.

• Apply the original predicate to the disjoint union multi-set:

V 2({`?1, `?2}) := V d(`?1 ] `?2) = V d({`1,1, . . . , `1,k1} ] {`2,1, . . . , `2,k2}) .

Furthermore, V d is decomposable, in the sense that there exists projection function Πd and predicate
V d

Π , such that, for every two multi-sets `?1, `?2, it satisfies that,

V d(`?1 ] `?2) = V d
Π(Πd(`?1),Πd(`?2))

We show that V 2 is also decomposable, by defining its corresponding projection function Π2 and predicate
V 2

Π, and show that on input two multisets A = {`?i }i and B =
{
`?j

}
j
,

V 2(A ]B) = V 2
Π(Π2(A),Π2(B))

The projection function Π2 on input a multiset A computes:

Π2(A) =
(
|A|,Πd(]`?∈A`?)

)
The predicate V 2

Π on input two multisets A,B outputs false if |A|+ |B| 6= 2. Otherwise, if A,B contain
exactly two labels `?1, `?2, the predicate computes:

V 2
Π(Π2(A),Π2(B)) = V d(Πd(]`?∈A`?),Πd(]`?∈B`?))

= V ((]`?∈A`?) ] (]`?∈B`?))
= V (`?1 ] `?2)

= V 2(A ]B)

Therefore V 2 is decomposable. Moreover, it is easy to see that the arity of V 2 is bounded by that of V d,
which is boundec by a fixed polynomial.
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5.2.2 Analysis of Succinctness

Proposition 5.4. The size of the new obfuscation |C̃?| is bounded by that of the original obfuscation |C̃|

plus
(
|Xn| ·

(
qXh
)d

+ |Yn| ·
(
qYh
)d) ·O(λ) .

Proof. Recall that

C̃? =

(
C̃,
{
H̃?
X

}
X∈Xn

,
{
H̃?
Y

}
Y ∈Yn

)
where for any X ∈ Xn, Y ∈ Yn

H̃?
X =

{
(hX,Φ,Φ(h))

∣∣∣ Φ(h) is a degree-d monomial in h = H̃X

}
,

H̃?
Y =

{
(hY,Φ,Φ(h))

∣∣∣ Φ(h) is a degree-d monomial in h = H̃Y

}
.

The bound follows from the fact that the number of degree-dmonomials in H̃X (respectively, H̃Y ) is at most
(|H̃X |+ 1)d ≤ (qXo + 1)d (respectively, (qYo + 1)d) and the fact that each handle is a string of sizeO(λ).

5.2.3 Analysis of Correctness and Security

Proposition 5.5. The new scheme xiO? is as correct and as secure as the original scheme xiO. In particular,
if xiO is an approximately-correct XIO so is xiO?.

Proof. To prove this, we show a PPT simulator S that given access to a degree-d oracle Md and an
obfuscation C̃ ← xiO.ObfM

d
(C, 1λ), for an arbitrary circuit C ∈ C, can perfectly simulate the view of

any polynomial-size adversary A that gets oracle access to the degree-2 oracle M2 and an obfuscation
C̃? ← xiO?.ObfM

2
(C, 1λ):

C,SMd,A(·)
(C̃) ≡ C,AM2

(C̃?) .

The existence of S indeed implies xiO? is as secure as the original scheme xiO. To show correctness, we
will consider an adversary that simply performs evaluation in the new scheme xiO?, and argue that the
corresponding simulator emulates evaluation in the original scheme xiO. (See details below.)

The simulator S given C̃ :=

(
Z̃,
{
H̃X

}
X∈Xn

,
{
H̃Y

}
Y ∈Yn

)
, performs the following:

1. Emulates the encoding step of the obfuscator xiO?.ObfM
2
:

• For eachX ∈ Xn, retrieves H̃X = (h1, . . . , hm) and for every formalmonomialΦ(v1, . . . , vm) =
vi1 . . . vij of degree at most d, computes Φ(h) :=

{
hi1 , . . . , hij

}
and Φ(`) :=

{
`i1 , . . . , `ij

}
,

where `i is the label associated with hi = (ri, `i).
• Emulates the handle h?X,Φ = (r?X,Φ,Φ(`)), where r?X,Φ is sampled at random.

• Stores H̃?
X =

{
(h?X,Φ,Φ(h))

}
Φ
.

• Does the same for each Y ∈ Yn and stores H̃?
Y .

2. Lets C̃? :=

(
C̃,
{
H̃?
X

}
X∈Xn

,
{
H̃?
Y

}
Y ∈Yn

)
and starts emulating A(C̃?).

3. Whenever A makes a zero-test query (p?,h?) meant forM2, the simulator S
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• Writes p? as a formal polynomial in h?:

p?(h?) =
∑
i,j

γi,jh
?
ih
?
j .

If p? is of degree higer than 2 (and thus cannot be written as above), returns false .
• Verifies that for any coordinate h?i of h

?, there is some monomial Φi, such that

(h?i ,Φi) ∈
{
H̃?
X

}
X∈Xn

⋃{
H̃?
Y

}
Y ∈Yn

,

and otherwise returns false .
• Constructs a corresponding polynomial p in h ⊆

{
H̃X

}
X∈Xn

⋃{
H̃Y

}
Y ∈Yn

:

p(h) =
∑
i,j

γi,jΦi(h)Φj(h) .

• Makes the zero-test (p,h) toMd and returns the result.

Wefirst note that the obfuscation C̃? generated byS perfectly emulates an obfuscation by xiO?.ObfM
2
(C, 1λ).

Next, we observe that any zero-test (p?,h?) is answered exactly as it would have been answered byM2.
In the scheme xiO?, every zero-test query (p?,h?) toM2 (over valid handles) can be translated to a

zero-test (p,h) forMd, such that if h? corresponds to (ξ?, `?) in xiO?, then h corresponds to (ξ, `) in xiO
where

V 2(p?, `?) = V d(p, `) ,

p?(ξ?) =
∑
i,j

γi,jξ
?
i ξ
?
j =

∑
i,j

γi,jΦi(ξ)Φj(ξ) = p(ξ) ; .

namely, the first is valid if and only if the latter is, and they evaluate to the same result (in the field F).
The constructed simulator S translates every (p?,h?) to (p,h) in exactly the same way, and thus perfect
emulation follows.

The above simulator directly implies that if the original scheme guarantees indistinguishability so does
the new scheme. We show that it implies that the new scheme is as correct as the original one. Consider,
the adversary AM2

(C̃?) that simply samples a random input u ← {0, 1}n, runs the evaluation algorithm
xiO?.EvalM

2
(C̃?, u), obtains the result v?, and outputs (u, v?). Observe that for this adverasry the simulator

SMd,A(C̃), exactly emulates xiO.EvalMd
(C̃, z), obtains the result v, and outputs (u, v). By the simulation

guarantee (u, v) and (u, v?) are identically distributed, and thus the new scheme has the same (approximate)
correctness as the original scheme.

5.3 Step 3: Asymmetric Oracles to Symmetric Oracles

We first show in Section 5.3.1 a transformation that reduces the oracleM2 (with complex label structure) to
a symmetric bilinear oracle B2 (Definition 5.3). This model is analogous to the symmetric bilinear pairing
groups where there is a single base group G with a bilinear map e : G × G → GT . The transformation
will incur a certain blowup depending on the arity of the oracleM2, which is a bounded polynomial. We
then use this transformation to convert any XiO scheme relative toM2 to an XiO scheme relative to B2 in
Section 5.3.2.
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5.3.1 Reducing OracleM2 to Oracle B2

The transformation consists of a recoding process E that takes a secret key K, and an arbitrary encoding
query of the form (ξ, `) toM2, and transforms it into a set of new encoding queries (ξ?1 , `B), . . . , (ξ?k, `B)
which it gives B2 (all with respect unique label `B). E then outputs a handle h representing (ξ, `) consisting
of a list of handles h = (h?1, . . . , h

?
k) generated by B2 for ξ?1 , . . . , ξ?k .

The encoder E is associated with a (public) decoderD. The decoderD is given as input a zero test query
(p,h1, . . . ,hm) forM2 to be evaluated over underlying field elements ξ = (ξ1, . . . , ξm), and now repre-
sented by ξ? = (ξ?1,1, . . . , ξ

?
1,k, . . . , ξ

?
m,1, . . . , ξ

?
m,k) encoded in B with handles h? = (h?1,1, . . . , h

?
1,k, . . . ,

h?m,1, . . . , h
?
m,k). The decoder then translates it to a new zero test query (p?,h?) and submits it to B2, with

the correctness guarantee that if the zero test is valid with respect to the validity predicate V associated with
Md, then p(ξ) = p?(ξ?), and otherwise, p?(ξ?) evaluates to non-zero with overwhelming probability.

We next turn to a more formal description of the transformation. In what follows, let V be an arbitrary
degree-2 decomposable validity predicate, defined over pairs of labels (`, `′) ∈ L × L from a label set L,
and associated with projection function Π and predicate VΠ, and VΠ has bounded poly(λ) arity.
Secret Encoding Key. The secret key K consists of random invertible field elements η`, ϕ` ← F \ {0} for
each label ` ∈ L, and random invertible field elements απ, βπ, γπ, δπ ← F \ {0} for every π in the set of
projection of all labels Γ = {Π({`}) : ` ∈ L}.
Remark 5.3. Note that the total number of labels and their projection could be superpolynomial, making the
secret key superpolynomial in length. In this case, the recoder can use lazy sampling to sample the above
random invertible elements only when needed and keep a record of all sampled elements. As we argue
below, the total number of random invertible elements to be sampled is polynomial in the number of tuples
(ξ, `) to be recoded. For simplicity of exposition, we describe the procedure w.r.t. a key consisting of all
possible random invertible elements.

Recoding. Given the secret keyK and (ξ, `) ∈ F× L, the encoder EB2((ξ, `),K) does the following:

• Samples two secret shares ξL, ξR at random from F subject to ξL + ξR = ξ.

• Let π = Π({`}) be the projection of {`}. Generates the field elements:

ξ?◦ :=
(
ξ?◦,α,L = απ · ξL, ξ?◦,β,R = βπ · ξR, ξ?◦,γ,L = γπ · ξL, ξ?◦,δ,R = δπ · ξR

)
.

• Let match(π) = {π′ : VΠ(π, π′) = true } be the set of projection that evaluates to true with π.
(For every π′ ∈ match(π), and every `′, such that, π′ = Π({`′}), it holdes that V ({`, `′}) = true .)
For each π′ ∈ match(π), generates the field elements:

ξ?π′ :=

(
ξ?
π′, 1

α
,L

=
1

απ′
· ξL, ξ?

π′, 1
β
,L

=
1

βπ′
· ξL, ξ?

π′, 1
γ
,R

=
1

γπ′
· ξR, ξ?

π′, 1
δ
,R

=
1

δπ′
· ξR
)

.

• If V ({`}) = true , generates field elements

ξ?M :=

(
ξ?M,η,L = η` · ξL, ξ?M, 1

η

=
1

η`
, ξ?M,ϕ,R = ϕ` · ξR, ξ?M, 1

ϕ

=
1

ϕ`

)
,
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• Asks B2 to encode (with respect to the unique label `B) the those field elements:

ξ?◦, (ξ
?
π′)π′∈match(π) , ξ

?
M

that were generated above, and obtains corressponding handles

h? =
(
h?◦, (h

?
π′)π′∈match(π) ,h

?
M

)
.

• Outputs handles h?.

We argue that when V has bounded poly(λ) arity, the size of the new encoding h? is bounded by poly(λ).
This is because,h?◦ andh?M each consists of 4 encodings, while (h?π′)π′∈match(π) consists ofO(|match(π)|) =

O(a) encodings, where a is the arity of VΠ whichi s bounded by a fixed polynomial, and thus the size of h?
is also bounded by a fixed polynomial.
Decoding. Given a degree-2 polynomialp and handles (h?1, . . . ,h

?
m), such thath?i = h?i,◦,

(
h?i,π′

)
π′∈match(π)

,h?i,M

the decoder DB2(p,h?1, . . . ,h
?
m) does the following:

• Writes p as a formal polynomial

p(h?1, . . . ,h
?
m) = σ +

∑
k

ρkh
?
k +

∑
i≤j

ρi,jh
?
ih

?
j .

• If for any monomial h?k in p, V ({`k}) = false , or for any monomial h?ih?j , V ({`i, `j}) = false ,
return false . Otherwise, continue.

• Generates a new degree-2 formal polynomial

p?(h?) = σ+
∑
k

ρk

(
h?k,M,η,Lh

?
k,M, 1

η

+ h?k,M,ϕ,Rh
?
k,M, 1

ϕ

)
+

∑
i≤j

ρi,j

(
h?i,◦,α,Lh

?
j,πi,

1
α
,L

+ h?i,◦,γ,Lh
?
j,πi,

1
γ
,R

+ h?i,◦,β,Rh
?
j,πi,

1
β
,L

+ h?i,◦,δ,Rh
?
j,πi,

1
δ
,R

)
.

• otherwise, it submits to B2 the zero test (p?,h?) and returns the result.

We prove the following lemma that shows that encodings of given field elements (relative to some labels)
and zero-tests with respect to the above encoder E and symmetric oracle B2, do not give more power than
directly encoding and zero-testing these elements with respect to the asymmetric oracleM2. We show this
by proving the existence of an appropriate simulator. We then use this lemma show how any XIO scheme
relative toM2 can be converted to an XIO scheme relative to B2.

Lemma 5.3. Let F(Z, 1λ) be any process (e.g., an obfuscator) that given an input Z outputs pairs
(ξ1, `1), . . . , (ξm, `m) ∈ F× L along with auxiliary input Z̃.
Consider the following two experiments:

1. Ideal: Each (ξi, `i) is encoded in the (asymmetric) oracleM, resulting in a corresponding set of
handles H̃ .
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2. Real: Each (ξi, `i) is encoded in the (symmetric) oracle B, using the encoder E , resulting in a
corresponding set of handles H̃?.

Then, there exists a PPT simulator S that given access toM2 and H̃ , can statistically simulate the view of
any polynomial-size adversary A that gets oracle access to B2 and H̃?:

Z,SM2,A(·)
(Z̃, H̃) ≈s Z,AB

2
(Z̃, H̃?) .

Proof of Lemma 5.3. We start by describing the simulator S and then analyze it.

The simulator S given Z̃ and H̃ = {h1, . . . , hm}, performs the following:

1. Translates each h ∈ H̃ into h? = h?◦, (h
?
π′)π′∈match(π) ,h

?
M as follows:

• Lets ` ∈ L be the label corresponding to h = (r, `).
• For every π′ ∈ match(π), samples random strings

r?π′ :=

(
r?
π′, 1

α
,L
, r?

π′, 1
β
,L
, r?

π′, 1
γ
,R
, r?

π′, 1
δ
,R

)
,

and uses them to construct the corresponding handles all relative to the label `

h?π′ :=

(
h?
π′, 1

α
,L
, h?

π′, 1
β
,L
, h?

π′, 1
γ
,R
, h?

π′, 1
δ
,R

)
.

• Constructs similarly the handles

h?◦ :=
(
h?◦,α,L, h?◦′,β,R, h?◦,γ,L, h?◦,δ,R

)
,

• If V ({`}) = true , constructs similarly the handles

h?M =

(
h?M,η,L, h?M, 1

η

, h?M,ϕ,R, h?M, 1
ϕ

)
.

2. Stores the mapping between each original handle h and corresponding generated handles h?.

3. For each hi = (ri, `i) ∈ H̃ , the simulator samples a random ξi,L ← F, encodes (ξi,L, `i), and obtains
a corresponding handle hi,L.

4. Starts emulating A(Z̃, H̃?), where H̃? = {h?1, . . . ,h?m} are the handles constructed above.

5. Whenever A makes a zero-test query (p?,h?) meant for B2, the simulator S:

• Writes p? as a formal polynomial:

p?(h?) = g?(h?) + f?(h?) ,

where g?(h?) gathers the following expressions (the valid part of the polynomial)

g?(h?) :=σ +
∑
k

ρLk h
?
k,M,η,Lh

?
k,M, 1η

+ ρRk h
?
k,M,ϕ,Rh

?
k,M, 1ϕ

+∑
i≤j

ρL,Li,j h
?
i,◦,α,Lh

?
j,πi,

1
α ,L

+ ρL,Ri,j h
?
i,◦,γ,Lh

?
j,πi,

1
γ ,R

+ ρR,Li,j h
?
i,◦,β,Rh

?
j,πi,

1
β ,L

+ ρR,Ri,j h?i,◦,δ,Rh
?
j,πi,

1
δ ,R

.
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• If f? 6≡ 0, returns false .

• In case f? ≡ 0, defines a new polynomial in h:

g(h) :=σ +
∑
k

ρLk hk,L + ρRk · (hk − hk,L)+∑
i≤j

ρL,Li,j hi,Lhj,L + ρL,Ri,j hi,L · (hj − hj,L) + ρR,Li,j · (hi − hi,L) · hj,L + ρR,Ri,j · (hi − hi,L) · (hj − hj,L) .

Gives zero-test query (g,h) toM2, and returns the answer.

We now prove that the statistical distance between

Z,SM2,A(·)
(Z̃, H̃) and Z,AB2(Z̃, H̃?) .

is at most poly(λ)/|F| = negl(λ).
We first note that the handles H̃? simulated by S are distributed identically to those given toA in the real

experiment. Thus, it suffices to show that for every fixed zero test p?(h?) = g?(h?) + f?(h?), the answers
simulated by S are statistically close to how real answers would be generated. For the rest of the argument,
fix the underlying encoded pairs (ξ1, `1), . . . , (ξm, `m), and fix any polynomial p? in h?1, . . . ,h?m.
Case 1: f? ≡ 0. We consider first the case that f? ≡ 0, namely p? ≡ g?. We note that every monomial in
g? necessarily corresponds to “a valid product”. Concretely, monomials h?i,◦,·h?j,πi,· correspod to labels `i, `j
with projection πi, πj such that V ({`i, `j}) = VΠ(πi, πj) = true , and monomials h?k,M,·h?k,M,· correspond
to a label `k such that V ({`k}) = true . In this case, in the real experiment the oracle returns true if and
only if

0 = g?(ξ) =

σ +
∑
k

ρLk ξk,L + ρRk · ξk,R+∑
i≤j

ρL,Li,j ξi,Lξj,L + ρL,Ri,j ξi,L · ξj,R + ρR,Li,j · ξi,R · ξj,L + ρR,Ri,j · ξi,R · ξj,R =

σ +
∑
k

ρLk ξk,L + ρRk · (ξk − ξk,L)+∑
i≤j

ρL,Li,j ξi,Lξj,L + ρL,Ri,j ξi,L · (ξj − ξj,L) + ρR,Li,j · (ξi − ξi,L) · ξj,L + ρR,Ri,j · (ξi − ξi,L) · (ξj − ξj,L) ,

where for each ξi, ξi,L, ξi,R are its random secret shares.
Indeed, the output of g?(ξ) in the ideal experiment is distributed identically to that of g(ξ) in the ideal

experiment.
Case 2: f? 6≡ 0. In this case, the ideal experiment always returns false . We will show that except with
probability poly(λ)/|F| over the choice of secret encoding key K and randomness used for secret sharing,
the real experiment also returns false . That is, mapping the handles h? to the corresponding field elements
ξ?, it is the cae that p?(ξ?) 6= 0.

To see this, consider the following sets of formal variables:

Λ :=

{
απ,

1

απ
, βπ,

1

βπ
, γπ,

1

γπ
, δπ,

1

δπ

}
π∈Γ

∪
{
η`,

1

η`
, ϕ`,

1

ϕ`

}
`∈L

, Ψ := {ξi,L, ξi,R}i∈[m] .
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Then mapping h? to the corresponding variables in Λ and Ψ, we can write p?(ξ?), f?(ξ?), g?(ξ?) as
polynomials P ?(Λ,Ψ), F ?(Λ,Ψ), G?(Λ,Ψ) in the variables of Λ and Ψ. To prove that p(ξ?) 6= 0 with
overwhelming probability, we will prove that P ?(Λ,Ψ) = F ?(Λ,Ψ) + G?(Λ,Ψ) 6= 0, with overwhelming
probability. For this, we stratify:

F ?(Λ,Ψ) =
∑
x∈Λ

y∈Λ∪{1}\{ 1
x}

Qx,y(Ψ) · x · y ,

where every Qx,y(Ψ) is a polynomial of degree at most 2.
Since f? 6≡ 0, there is some Qx,y that is not identically zero. We will first show that except with

probability 2/|F|, over the choice of Ψ, all non-trivial polynomials Qx,y do not vanish. Then, fixing any Ψ
such that these do not vanish, we show that P (Λ,Ψ) does not vanish except with probability poly(λ)/|F|
over the choice of Λ.

Indeed, fix any Qx,y(Ψ) 6≡ 0. If Qx,y(Ψ) ≡ c, for some constant c ∈ F \ {0}, (which can occur for
instant when x, y ∈

{
1
η`
, 1
ϕ`

}
), we are done. Thus, from hereon, we assume the existence of non-trivial

monomials in Ψ.
Examining the monomials ofQx,y, let us focus on the shares ξi,L, ξi,R of ξi for some specific i ∈ [m] such

that Qx,y has non-trivial monomials in the variables ξi,L, ξi,R. We argue that for any wL, wR ∈ Ψ ∪ {1}, if
the polynomialQx,y includes both monomials wL · ξi,L and wR · ξi,R, it must be that wL 6= wR. Throughout
with use the fact that all encodings are structured so that for any k, j ∈ [m] the corresponding shares ξk,L
ξj,R are never multiplied by the same scalar in Λ. In particular, we can assume from hereon that x 6= y, and
that the monomials wL · ξi,L and wR · ξi,R originated from encodings

x · ξi,L, y · ξi,R, y · wL, x · wR .

To rule out that wL = wR, we rule out the following possible cases:

• wL = wR ∈ Ψ. Assume w.l.o.g that wL = wR = ξk,L for some k (the proof for ξk,R is symmetric).
In this case, the above yields encodings of x · ξi,L and x ·ξk,R, which is a contradiction (since ξi,L, ξk,R
are never multiplied by the same scalar in Λ).

• wL = wR = 1. In this case, it must be that {x, y} ⊆
{

1
η`
, 1
ϕ`

}
`∈L

, since these are the only scalars
encoded. This is again a contradiction since then there do not exist encodings of x · ξi,L, y · ξi,R.

Replacing all ξj,R with ξj − ξj,L, and relying on the above established fact, we have that Qx,y(Ψ) is a
non-zero polynomial in some monomial that includes ξi,L. It follows, by Schwartz-Zippel (Fact 3.2, the
simple version) that Qx,y(Ψ) vanishes with probability at most 2/|F| over the choice of Ψ.

Fixing any such Ψ, and using the fact that G?(Λ,Ψ) has no monomials xy such that x ∈ Λ, y ∈
Λ ∪ {1} \

{
1
x

}
, we now know that P ?(Λ,Ψ) is a non-zero polynomial in the variables Λ. By Schwartz-

Zippel (Fact 3.2, the extended version), P ? vanishes with probability at most poly(λ)/|F| over the choice of
variables in Λ. Overall, F ? vanishes with probability at most poly(λ)/|F|.

This concludes the proof of the Lemma 5.3.

5.3.2 From XiO with OracleM2 to XiO with Oracle B2

We now deduce that any XIO scheme with explicit handles relative toM2 can be converted to a scheme
relative to B2 (also with explicit handles).
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Lemma 5.4. let xiO = (xiO.Obf(·), xiO.Eval(·)) be an XIO scheme, for a collection of circuit classes C,
defined relative to the (asymmetric) decomposable oracle M2, with explicit handles in (X ,Y)-product
form, for some product collection (X ,Y). Then xiO can be converted to a new scheme xiO? relative to the
(symmetric) oracle B2, also with explicit handles in (X ,Y)-product for.

Proof. We describe the new scheme.
The Obfuscator xiO?.Obf. Given a circuit C ∈ C with input size n, and security parameter 1λ, and oracle
access to B2, xiO?.ObfB

2
(C, 1λ) does the following:

• Emulate Obfuscation:

– Emulate xiO.ObfM2
(C, 1λ).

– Throughout the emulation, emulate the oracle M2, storing a list L = {(h, ξ)} of encoded
element-label pairs (ξ, `) and corresponding handles h = (r, `).

– Obtain the obfuscation
(
Z̃,
{
H̃X

}
X∈Xn

,
{
H̃X

}
Y ∈Yn

)
.

• Reencode Explicit Handles:

– Sample an encoding key K for E . (More precisely, K is sampled using lazy sampling; see
remark 5.3)

– For each X ∈ Xn:
1. Retrieve H̃X = (h1, . . . , hm) and the correspondingfield elements and labels (ξ1, `1), . . . , (ξm, `m)

from the stored list L.
2. For each (ξi, `i), reencode EB

2
((ξi, `i),K) and obtain a handle h?i .

3. Store H̃?
X = {(hi,h?i )}i∈[m].

– For each Y ∈ Yn, symmetrically perform the above two steps with respect to H̃Y (instead of
H̃X ) and store H̃?

Y .

• Output:

– C̃? =

(
C̃,
{
H̃?
X

}
X∈Xn

,
{
H̃?
Y

}
Y ∈Yn

)
, where C̃ :=

(
Z̃,
{
H̃X

}
X∈Xn

,
{
H̃Y

}
Y ∈Yn

)
.

The Evaluator xiO?.Eval. Given an obfuscation C̃? =

(
C̃,
{
H̃?
X

}
X∈Xn

,
{
H̃?
Y

}
Y ∈Yn

)
, input (x, y) ∈

Xn × Y n, and oracle access toM2, xiO?.EvalB
2
(C̃?, (x, y)) does the following:

• Emulate xiO.EvalM2
(C̃, (x, y)).

• Emulate any zero-test query (p, h1, . . . , hm) it makes toM2 as follows:

1. Let (X,Y ) ∈ Xn × Yn be the (unique) sets such that (x, y) ∈ X × Y . Retrieve H̃X , H̃Y .
2. Obtain the handles h?1, . . . ,h?m corresponding to h1, . . . , hm from H̃?

X ∪ H̃?
Y .

3. Run the decoder DB2(p,h?1, . . . ,h
?
m).
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Clearly the new scheme also has explicit handles in product form (with respect to the same product
collection). The size of each handles set now blows up by a factor of poly(λ), as E translates any handle hi
to a list of handles h?i including O(a) handles, where a is the arity of the validity predicate ofM2 which is
poly(λ).

The simulator guaranteed by Lemma 5.3 directly implies that if the original scheme guarantees indistin-
guishability so does the new scheme. We show that it implies that the new scheme is as correct as the original
one. Consider, the adversaryAB2(C̃?) that simply samples a random input u← {0, 1}n, runs the evaluation
algorithm xiO?.EvalB

2
(C̃?, u), obtains the result v?, and outputs (u, v?). Observe that for this adverasry the

simulator SM2,A(C̃), exactly emulates xiO.EvalM2
(C̃, z), obtains the result v, and outputs (u, v). By the

simulation guarantee (u, v) and (u, v?) are identically distributed upto a small statistical difference, and thus
the new scheme has the same (approximate) correctness as the original scheme up to a negligible difference.
Looking closer, note that for the honestly evaluating adversary above the simulator in fact perfectly emulates
evaluation without any statistcal error (corresponding to case 1, in the analysis).

5.4 Putting it All Together

In this section, we first conclude Theorem 5.1, and then discuss how to instantiate the symmetric bilinear
oracle used by the XiO scheme produced by the tranformation of Theorem 5.1 with actual bilinear pairing
groups.

5.4.1 Concluding Theorem 5.1

Recall that Theorem 5.1 starts with an γ?-compressing XiO scheme xiO in (X ,Y)-product form, relative to
a degree-d decomposable ideal oracleMd, satisfying the following w.r.t. some constant γ < 1.

|Xn| ·
(
qXo ·min

(
qXo , |Yn| · log qXo

))d
+ |Yn| ·

(
qYo ·min

(
qYo , |Xn| · log qYo

))d ≤ 2γn · poly(|C|, λ) (1)

The theorem states that xiO can be converted to an approximately-correct scheme xiO? relative to the
symmetric bilinear oracle B2, also with explicit handles in (X ,Y)-product form.

Proof of Theorem 5.1. To obtain xiO?, we apply Lemma 5.1, 5.2, 5.4 in sequence to xiO.

• Lemma 5.1 turns xiO into an approximately-correct XiO scheme xiO1 with explicit handles, relative
to the same degree-d decomposable oracleMd that xiO uses.

• Lemma 5.2 turns xiO1 into an approximately-correct XiO scheme xiO2 with explicit handles, relative
to an asymmetric bilinear oracleM2 that is also decomposable.

• Lemma 5.4 turns xiO2 into an approximately-correct XiO scheme xiO3 with explicit handles, relative
to a symmetric bilinear oracle B2.

The final XiO scheme xiO3 is exactly the new XiO scheme xiO?. By composing the three lemmas, we have
that xiO? has explicit handles, and is approximately correct and secure. The only thing to argue that xiO? is
also weakly succinct. Note that the obfuscated circuits of xiO? have form

C̃ =
(
Z̃,
{
H̃X

}
,
{
H̃Y

}
,
{
H̃?
X

}
,
{
H̃?
Y

}
,
{
H̃ ′X

}
,
{
H̃ ′Y

})
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where Z̃ is an obufscated circuit of the original scheme xiO, H̃X and H̃Y are the sets of explicit handles
ofMd added by Lemma 5.1, H̃?

X and H̃?
Y are the encodings of monomials ofM2 added by Lemma 5.2,

H̃ ′X and H̃ ′Y are the re-encodings of B2 added by Lemma 5.4. By the fact that the original scheme xiO is
γ?-compressing and satisfies Equation (1), and the three lemmas, we have

|C̃| ≤ |Z̃|+O
(∣∣∣{H̃ ′X} ,{H̃ ′Y }∣∣∣)

≤ 2γ
?npoly(λ, |C|)

+
(
|Xn| ·

(
qXo ·min

(
qXo , |Yn| · log qXo

))d
+ |Yn| ·

(
qYo ·min

(
qYo , |Xn| · log qYo

))d)
poly(λ)

≤ (2γ
?n + 2γn)poly(λ, |C|)

≤ 2γ
′npoly(λ, |C|)

This condludes that the new XiO scheme is weakly succinct.

5.4.2 Instantiation with Actual Bilinear Pairing Groups

Given the final XiO scheme xiO? relative to the ideal symmetric bilinear oracle B2, we would like to
instantiate the oracle with actual bilinear pairing groups (G,GT , g, gT , e) to obtain a scheme in the plain
model. However, there are two small gaps between the ideal oracle and actual bilinear maps. First, B2

generates randomized encodings, whereas actual bilinear pairing groups have unique encodings of form ga.
Second, B2 only supports zero-testing but not homomorphic opeartions, whereas one can homomorphically
add encodings in bilinear pairing groups G,GT and homormorphically multiply encodings in G.

To address the gap, we argue that xiO? relative to B2 can be transformed into a scheme x̃iO relative
to another ideal oracle B̃2 that gives unique encodings and supports homomorphic operations, capturing
exactly bilinear pairing groups, and x̃iO is also weakly-succinct, approximately-correct, and as secure as
xiO?. Recall that, by Theorem 5.1, xiO? has explicit handles. The new scheme x̃iO obfuscates a circuit C as
follows: 1) Generate an obfuscated circuits Ĉ = (Ẑ,h) of xiO? while emulating oracle B2 internally, 2) and
for every explicit handle hi ∈ h, publish the unique encoding h̃i for the element label pair (ξi, `) underlying
hi from its own oracle B̃2. The new obfuscated circuit has form C̃ = (Ĉ, h̃), and can be evaluated in the
same way that Ĉ is evaluated, except that every zero-test query on h is answered by zero-testing the same
polynomial on h̃ using B̃2. The correctness and succinctness of the new scheme follows immediately.

To show that x̃iO is as secure as xiO?, we show that there exists a simualtor S that with access to B2

and after receiving an obfuscated circuit Ĉ of xiO? with oracle B2, can emulate the view of any attacker A
that has access to B̃2 and receives an obfuscated circuit C̃ of x̃iO with oracle B̃2. The simulator S(Ĉ) with
access to B2 proceeds as follows:

• Parse Ĉ = (Ẑ,h), where h = h1, · · ·hm are the explicit handles of B2 under a single lable `.

• To generate C̃ for A, for every pair of handles hi, hj in h, S tests whether they encode the same
value using its oracle B2. S records all “equality relations” hi ∼ hj , and generates random handles
h̃1, · · · , h̃m under label ` subject the equality relation, that is, h̃i = h̃j if hi ∼ hj . S sends A
obfuscated circuit C̃ = (Ĉ, h̃).

• S keeps a list L, consisting of every handle h̃ it generates and a corresponding polynomial p over
formal variables h, such that, the value encoded in h̃ equals to p evaluated on the values encoded in
h. L is initialized with the set of handles generated above (h̃i, pi(h) = hi).
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• Whenever A queries B̃2 for the encoding of an element v under label ` or `T (the label for target
group), S tests whether v equals to the value encoded in any handle (h̃, p) ∈ L with the same label, by
zero-testing whether p(h)− v is zero using its own oracle B2. If such a tuple exists, S simply returns
h̃; otherwise, it returns a new random handle h̃? and add to L the tuple (h̃?, p?(h) = v).

• WheneverA queries B̃2 for homomorphically add/multiply two handles h̃′, h̃′′, S finds the correspond-
ing tuples (h̃′, p′) and (h̃′′, p′′) inL, and verifies that the homomorphic operation is allowed, producing
output lable `?. (Otherwise, return false ). S tests whether the output value equals to the value
encoded in any handle (h̃, p) ∈ L with label `? by zero-testing whether p(h)− (p′(h) + /× p′′(h))
is zero using B2. If such a tuple exists, simply return h̃; otherwise, return a new random handle h̃?
and add to L the tuple (h̃?, p?(h) = p′(h) + /× p′′(h)).

• WheneverA queries B̃2 for zero-testing (p, h̃i1 , · · · , h̃ik), S finds all corresponding tuples (h̃ij , pij ) in
L, and verifies that p is valid. (Otherwise, return false ). Then, it answers the query by zero-testing
whether p(pi1(h), · · · , pik(h)) is zero using B2.

It is easy to check that S emulates the view of A perfectly. Thus, if xiO? is secure against all attackers
(including S) relative to B2, x̃iO is secure against all attackers (including A) relative to B̃2.

Finally, since B̃2 captures exactly bilinear pairing groups, we can instantiate it using actual bilinear
pairing groups. Correctness and succinctness follows immediately. For security to hold, we assume a strong
uber assumption of [BBG05, Boy08] on symmetric bilinear pairing groups. Roughly speaking, the uber
assumptoin states that encodings of two sets of elements under the same set of labels are indistinguishable
if no efficient attackers can tell apart ideal encodings of these two sets of values under the same labels. In
essense, under uber assumption, one can translate security in ideal models to security in the plain model
when using concrete encodings. Therefore, by assuming uber assumption on symmetric bilinear pairing
groups, we conclude the security of the approximate XiO scheme x̃iO when instantiated with symmetric
bilinear pairing groups, from its security proof in oracle-B̃2 model.

6 Removing Constant-Degree Oracles from Sufficiently-Compressing XIO

In this section, we show that any XIO scheme relative to a degree-d ideal oracleMd, with obfuscation-
evaluation query complexity (qo, qe) such that qdo · qe is polynomially smaller than the input space, can be
transformed into an approximately-correct XIO scheme in the plain model (i.e., without any oracles). For
d = 1, which is analogous to the generic group model [Sho97] (for the multiplicative group of a field), we
show in Section 8.2 that any unbounded-key functional encryption scheme implies an XIO scheme as above.
For d ≥ 2, we do not know how to obtain such XIO schemes from functional encryption. (Interestingly,
a non-black-box constructions of XIO with arbitrary constant compression is known from unbounded-key
functional encryption [BNPW16].)

Theorem 6.1. Let xiO = (xiO.ObfM, xiO.EvalM) be an xiO.Obf scheme, relative to a degree-d ideal
graded encoding oracle Md, for a collection of circuit classes C such that for some constant γ < 1,
qdo · qe ≤ 2γn · poly(λ, |C|). Then xiO can be converted to a new approximately-correct scheme xiO? in the
plain model.

Putting aside the efficiency requirement of XIO, the transformation is similar to that of Pass and shelat
[PS16]. We choose our parameters somewhat more carefully to obtain the desired XIO compression (see
Remark 6.1). We also give a different, relatively simple, correctness proof.
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Proof of Theorem 6.1. In what follows, let xiO = (xiO.Obf(·), xiO.Eval(·)) be an XIO scheme relative to
a degree-d oracleMd for a collection of circuit classes C = {C = {Cλ}} with query complexity (qo, qe).
We construct a new obfuscator xiO? = (xiO?.Obf, xiO?.Eval) for C in the plain model. As in Section 5,
given an oracle Md, and a zero-test (p,h) made to the oracle, we will say that it is a true zero-test if
Md(p,h) = true ; namely, it is valid and evaluates to zero on the corresponding field elements.
Without Loss of Generality. We make the same w.l.o.g assumptions as in Section 5; namely, that the
obfuscator only encodes and does not zero-test, and that the evaluator and the adversary only zero-test and
do not encode.
The Obfuscator xiO?.Obf. Given a circuit C ∈ C with input size n, and security parameter 1λ, xiO?.Obf
does the following:

• Emulate Obfuscation:

– Emulate xiO.ObfMd
(C, 1λ).

– Throughout the emulation, emulate the oracle Md, storing a list L = {(h, ξ)} of encoded
element-label pairs (ξ, `) and corresponding handles h = (r, `).

– Obtain the obfuscation C̃.

• Learn Heavy Subspace: Let P = ∅. Repeat the following until P does not grow for 100 iterations:

– Sample a random input xi ← {0, 1}n.
– Emulate xiO.Eval(·)(C̃, xi). To answer oracle calls, emulateMd using the stored list L.
– For any true zero-test (p,h), if

p(h) /∈ span(P) :=

{∑
i

ρipi(hi)

∣∣∣∣∣ (pi,hi) ∈ P, ρi ∈ F

}
,

add (p,h) to P .

• Output: C̃? = (C̃,P).

The Evaluator xiO?.Eval. Given (C̃,P) and x ∈ {0, 1}n:

• Emulate the oracle-aided xiO.Eval(·)(C̃, x). For any zero-test (p,h), answer true if p(h) ∈ span(P),
and false otherwise.

Proposition 6.1. xiO? has non-trivial efficiency, if qdo · qe ≤ 2γn · poly(λ, |C|), for some constant γ < 1.

Proof. The size of the obfuscation C̃? is exactly the size of the oracle obfuscation |C̃| plus the size of the set
of polynomials P recording during the learning of a heavy subspace. C̃ = 2(1−Ω(1))n · poly(λ, |C|) by the
non-trivial efficiency of the original scheme xiO The size of P is bounded byK · qe, whereK is the number
of iterations the the learning step is performed. To bound the size of P . Note that span(P) is a subspace of
the linear space T of all true zero tests over the set of all handles H created during obfuscation

T :=
{

(p,h)
∣∣∣Md(p,h) = true

}
,
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where we naturally define linear operations for any h0,h1 ⊆ H, p0, p1 ∈ F[h0 ∪ h1]:

ρ0 · (p0,h0) + ρ1 · (p1,h1) = (ρ0 · p0 + ρ1 · p1,h0 ∪ h1) .

(Note that these linear operations respect validity for any well-formed validity predicate.)
The number of monomials in H is bounded by (|H| + 1)d ≤ (qo + 1)d, which is a bound on the

dimension of span(P). Thus, P grows at most (qo + 1)d times and the number of iterations K is bounded
by (qo + 1)d + 100.

Remark 6.1 (Quadratic Saving).

Proposition 6.2. xiO? is approximately-correct.

Proof. Fix any circuit C ∈ C and security parameter λ ∈ N. Recall that we would like to show that when
sampling an obfuscation (C̃,P) ← xiO?.Obf(C, 1λ), and a random input x ← {0, 1}n, it is the case that
xiO?.Eval((C̃,P), x) = C(x), except with probability 1/100. We shall denote this experiment by Exp.

To this end, we define an event Bad that captures when the result of evaluation is incorrect. The event
Bad occurs in the experiment Exp if when the evaluator xiO?.Eval((C̃,P), x) emulates the oracle-aided
evaluator xiO.Eval(·)(C̃, x), it is required to answer a zero test (p,h) ∈ T \ span(P). That is, a true zero test
(relative to the oracleMd in the emulated obfuscation) that increases the dimension of the set P generated
during the learning step.

Indeed, as long as Bad does not occur the emulated evaluation xiO.Eval(·)(C̃, x) is distributed exactly
as it would had C̃ was generated by xiO.ObfM

d
(C, 1λ) with the acutal oracleMd and xiO.EvalM

d
(C̃, x)

would be performed relative toMd. Thus, it is sufficient to show that

Pr
Exp

[Bad] ≤ 1/100 .

To show the above bound, fix the coins of the emulated obfuscation xiO.ObfR(C, 1λ) and fix the state
of the emulated oracleMd, after the emulated was performed. To bound the probability that Bad occurs,
fix any P , and let p be the probability that xiO.EvalMd

(C̃, z) makes a zero-test (p,h) ∈ T \ span(P) for
a random input z ← {0, 1}n. Then the probability that the dimension does not grow for 100 iterations and
then does grow in the 101-st iteration is, by Fact 3.1,

(1− p)100p ≤ 1/100 .

Since the occurrence implies that the above happens for some fixing of P , we deduce by averaging,

Pr [Bad] ≤ 1/100 .

Proposition 6.3. xiO? preserves the indistinguishability security guarantee of xiO.

Proof sketch. The new obfuscatoin C̃? consists exactly of an obfuscation C̃ under the original scheme, plus
the set P , which was generated in the learning phase. However, the learning phase, simply consists of
running the evaluation algorithm of the original scheme repeatedly for a polynomial number of times. Thus,
any attacker against the new scheme can be perfectly simulated by an attacker for the original scheme that
simulates the above handles by performing the learning process by itself.

This completes the proof of Theorem 6.1.
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7 Removing Random Oracles

In this section, we show that any XIO scheme in the random oracle model, with obfuscation-evaluation query
complexity (qo, qe) such that qo · qe is polynomially smaller than the input space, can be transformed into
an approximately-correct XIO scheme in the plain model. In Section 8.2, we show that any unbounded-key
functional encryption scheme in the random oracle model implies such an XIO scheme.

Theorem 7.1. Let xiO = (xiO.ObfR, xiO.EvalR) be an xiO.Obf scheme, relative to a random oracleR, for
a collection of circuit classes C such that for some constant γ < 1, qo · qe ≤ 2γn · poly(λ, |C|). Then xiO
can be converted to a new approximately-correct scheme xiO? in the plain model.

Proof of Theorem 7.1. Putting aside the efficiency requirement of XIO, the transformation is similar to that
of Canetti, Kalai, and Paneth [CKP15]. For the sake of completeness, and to address the XIO efficiency
features, we describe the transformation in full. Our transformation also has slightly better parameters and a
different correctness proof, simplifying the proof in [CKP15].

In what follows, let xiO = (xiO.Obf(·), xiO.Eval(·)) be an XIO scheme in the random oracle model for a
collection of circuit classes C = {C = {Cλ}}with query complexity (qo, qe). We construct a new obfuscator
xiO? = (xiO?.Obf, xiO?.Eval) for C in the plain model.
The Obfuscator xiO?.Obf. Given a circuit C ∈ C with input size n, and security parameter 1λ, xiO?.Obf
does the following:

• Emulate Obfuscation: Emulate the oracle-aided xiO.Obf(·)(C, 1λ). To answer its oracle calls,
emulate the random oracle R (using standard lazy sampling). Store the resulting obfuscation C̃, and
the partial random oracle RQ consisting the set of at most qo = qo(C, λ) queries Q made during the
execution along with their emulated answers.

• Learn Heavy Queries: LetR0 = ∅. For i ∈ {1, . . . ,K := 100qo} do the following,

– Sample a random input xi ← {0, 1}n.
– Emulate xiO.Eval(·)(C̃, xi). To answer oracle calls, emulate the random oracleR (using standard
lazy sampling) consistently withRQ andRi−1.

– LetRi = Ri−1∪RQi be the partial random oracle consistent withRi−1 and extended to include
the set of qe queriesQi made in the current execution along with their emulated answers.

• Output: C̃? = (C̃,RK).

The Evaluator xiO?.Eval. Given (C̃,RK) and x ∈ {0, 1}n:

• Emulate the oracle-aided xiO.Eval(·)(C̃, x). To answer oracle calls, emulate the random oracle R
(using standard lazy sampling) consistently withRK .

Proposition 7.1. xiO? has non-trivial efficiency, if qo · qe ≤ 2γn · poly(λ, |C|), for some constant γ < 1.

Proof. The size of the obfuscation C̃? is exactly the size of the random-oracle obfuscation |C̃| plus the
size of queries and answers made by the evaluation algorithm during the learning of heavy queries |RK |.
C̃ = 2(1−Ω(1))n · poly(λ, |C|) by the non-trivial efficiency of the original scheme xiO, and the size of RK
is bounded byK · qe = 100qo · qe, corresponding toK executions of xiO.Eval.
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Proposition 7.2. xiO? is approximately-correct.

The argument follows similar rationale as the argument behind Proposition 7.2 in Section 6, but is slightly
more delicate. There the state of the oracleMd can be fixed after the emulated obfuscation (as evaluation
only zero-tests), whereas here the evaluator can query the random oracle on points that were previously not
queries. We proceed to the formal argument.

Proof. Fix any circuit C ∈ C and security parameter λ ∈ N. Recall that we would like to show that when
sampling an obfuscation (C̃,RK)← xiO?.Obf(C, 1λ), and a random input x← {0, 1}n, it is the case that
xiO?.Eval((C̃,RK), x) = C(x), except with probability 1/100. We shall denote this experiment by Exp.

To this end, we define an event Bad that captures when the result of evaluation is incorrect. The event
Bad occurs in the experiment Exp if when the evaluator xiO?.Eval((C̃,RK), x) emulates the oracle-aided
evaluator xiO.Eval(·)(C̃, x), it is required to answer an oracle query Q ∈ Q \ ∪Ki=1Qi. That is, a query
that was performed during the obfuscation when emulating xiO.Obf(·)(C, 1λ), but was not performed when
learning heavy queries. We argue that, unless Bad occurs, the evaluation in Expwould be correct. Indeed, as
long as Bad does not occur the emulated evaluation xiO.Eval(·)(C̃, x) is distributed exactly as it would had C̃
was generated by xiO.ObfR(C, 1λ) with a true random oracle R and xiO.EvalR(C̃, x) would be performed
relative toR. Thus, it is sufficient to show that

Pr
Exp

[Bad] ≤ 1/100 .

To bound the probability that Bad occurs, we consider an alternative (mental) experiment Exp′ where
obfuscation and a single evaluation are performed as follows:

• A full (rather than partial) random oracleR is sampled.

• The obfuscation xiO?.Obf(C, 1λ) is performed, only that instead of lazy sampling the partial oracles
(RQ,R1, . . . ,RK), all oracle queries are answered according toR. (We will still address the sets of
queriesQ,Q1, . . . ,QK , which are defined in the same way, but answered according toR.)

• Then a single evaluation query is performed for a random input x← {0, 1}n, again usingR to answer
all oracle queries.

We can accordingly define an event Bad in Exp′ analogous to Bad in Exp. Namely, when the evaluator
xiO?.Eval((C̃,RK), x) emulates the oracle-aided evaluator xiO.EvalR(C̃, x), it makes an oracle query
Q ∈ Q \ ∪Ki=1Qi. We next observe that until the point that Bad occurs in Exp or in Exp′, respectively, the
two experiments are identically distributed. Indeed, the only difference is that in Exp the random oracle is
lazy sampled as the experiment progresses, rather than being sampled ahead of time as in Exp′. In particular,
it holds that

Pr
Exp

[Bad] = Pr
Exp′

[Bad] .

We now bound the probability that Bad occurs in Exp′. For this, fix the random oracle R, fix the coins
of the emulated obfuscation xiO.ObfR(C, 1λ), and let Q be the corresponding set of queries made during
the obfuscation. For any Q ∈ Q, we let BadQ be the event that Q /∈ ∪Ki=1Qi, but xiO.EvalR(C̃, x) makes
the oracle Q. Then, by a union bound

Pr
Exp′

[Bad] ≤
∑
Q∈Q

Pr
Exp′

[BadQ] ≤ qo ·max
Q∈Q

Pr
Exp

[BadQ] .
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Fix anyQ ∈ Q. To bound the probability that BadQ occurs, let p be the probability that xiO.EvalR(C̃, z)
queriesQ for a random input z ← {0, 1}n. Then, the probability that BadQ occurs is exactly the probability
that it is not queried in K independent evaluations with random x1, . . . , xK and is queried in the last
evaluation with a random x:

Pr
Exp′

[BadQ] = (1− p)Kp ≤ 1/K .

It follows that forK = 100qo,
Pr
Exp′

[Bad] ≤ 1/100 .

Proposition 7.3. xiO? preserves the indistinguishability security guarantee of xiO.

Proof sketch. The new obfuscation C̃? consists exactly of an obfuscation C̃ under the original scheme, plus
the set RK , which was generated in the learning phase. However, the learning phase, simply consists of
running the evaluation algorithm of the original scheme repeatedly for a polynomial number of times. Thus,
any attacker against the new scheme can be perfectly simulated by an attacker for the original scheme that
simulates the above handles by performing the learning process by itself.

This completes the proof of Theorem 7.1.

8 From FE in Oracle Models to FE in the Plain Model

In this section, we show that functional encryption (FE) schemes in the oracle models considered in the
previous sections give rise to corresponding XIO schemes. We relate the succinctness required from the
FE schemes to the properties required from XIO for each of our transformations. Recall that applying our
transformations from the previous sections results in approximate XIO in the bilinear oracle model or in the
plain model. Assuming LWE, we show a (black-box) transformation from approximate XIO to an exact FE
scheme sufficient to obtain IO. We start by defining FE and then move on to the above results.

8.1 Functional Encryption

We define the notions of functional encryption (FE) considered in this work. We start by defining the general
syntax functional encryption. We give a unified definition for the symmetric-key and public-key settings,
addressing the differences where needed.
Syntax of Functional Encryption. Let X = {Xλ}λ∈N be a message domain, Y = {Yλ}λ∈N a range, and
F = {Fλ}λ∈N a class of functions f : X → Y . A functional encryption (FE) scheme for X ,Y,F is a tuple
of polynomial-time algorithms FE = (Setup,Gen,Enc,Dec) where:

• Setup(1λ) takes as input the security parameter and outputs a master secret key MSK and master
encryption keyMEK.

• Gen(MSK, f) takes as input the master secretMSK and a function f ∈ F . It outputs a secret key SKf
for f .

• Enc(MEK, x) takes as input the master encryption key MEK and a message x ∈ X , and outputs a
ciphertext CT.

40



• Dec(SKf ,CT) takes as input the secret key SKf for a function f ∈ F and a ciphertext CT, and outputs
some y ∈ Y , or ⊥.

Correctness. For any messagem ∈ X and function f ∈ F , we require that

Pr

Dec(SKf ,CT) = f(m) :
(MSK,MEK)← Setup(1λ),
SKf ← Gen(MSK, f),
CT← Enc(MEK,m)

 ≥ 1− negl(λ) .

Remark 8.1 (Secret Key and Public Key Notation).

• In the secret-key setting we will always assume, without loss of generality, thatMEK = MSK.

• In the public-key setting, we will typically denoteMEK byMPK (a master public encryption key).

Definition 8.1 (K-KeySelective Security). We say that a tuple of algorithmFE = (Setup,Gen,Enc,Dec) is a
selectively-secure,K-key, functional encryption scheme forX ,Y,F , if it satisfies the following requirement,
formalized by the experiment ExptFEA (1λ, b) between an adversary A and a challenger:

1. Fork ≤ K(λ), the adversary submits functions f1, . . . , fk ∈ F andmessage pairs (x0
1, x

1
1), . . . , (x0

m, x
1
m) ∈

X × X to the challenger.

2. The challenger runs (MSK,MEK) ← Setup(1λ) and sends the adversary the ciphertexts {CTi
← Enc(MEK, xbi)}i∈[m] and secret keys {SKfi ← Gen(MSK, fi)}i∈[k]. In a public-key scheme,MEK
is also sent to A.

3. A outputs a guess b′ for b.

4. The output of the experiment is set to be the adversary’s guess b′ if fi(x0
j ) = fi(x

1
j ) for all (i, j) ∈

[k]× [m]. Otherwise the output is ⊥.

We say that the scheme is selectively-secure if, for any polynomial-size A, there exists a negligible function
µ(λ), such that

AdvPKFEA =
∣∣∣Pr
[
ExptPKFEA (1λ, 0) = 1

]
− Pr

[
ExptPKFEA (1λ, 1) = 1

]∣∣∣ ≤ µ(λ).

We further say that FE is δ-selectively secure, for some concrete negligible function δ(·), if for all polynomial-
size distinguishers the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

Remark 8.2 (Unbounded Key). We will say that FE is unbounded-key if it isK-key forK(λ) = λω(1). That
is, the scheme is secure for adversaries requesting an arbitrary polynomial number of functional keys. This
is sometimes also referred to as unbounded collusion.

Succinctness. We now consider a property of functional encryption schemes known as weak succinctness
(or compactness). In general (non-succinct) FE for a function class F = {Fλ}, the time complexity of
encryption may depend arbitrarily on the size of the circuit representing functions in F . Roughly speaking,
in succinct functional encryption the time to encrypt should be independent of the function class, whereas
in weakly succinct functional encryption, we allow some mild dependence on the complexity of functions.

To formally capture succinctness, we consider functional encryption for collections of classes F =
{F = {Fλ}}, such as P/poly or NC1, and address how the specific complexity of each class F ∈ F , may
affect encryption complexity.
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Definition 8.2 (Functional Encryption for a Collection of Functions). In a functional encryption scheme
FE = (Setup,Gen,Enc,Dec) for a collection of functions classes F = {F = {Fλ}}, the setup algorithm
Setup(1λ, n, s, d) gets, in addition the the security parameter 1λ, two parameters (n(λ), s(λ)) representing
bounds on input length and circuit size.

For any class F = {Fλ} ∈ F with maximum input length n(λ) and maximum circuit size s(λ),
FEF = (Setup(·, n(·), s(·)),Gen,Enc,Dec) has the correctness security guarantees as defined above for
general functional encryption schemes.

Definition 8.3 (Weakly Succinct Functional Encryption). A functional encryption scheme FE = (Setup,
Gen,Enc,Dec) for a collection of functions classes F = {F = {Fλ}} is weakly succinct if there exists a
constant γ < 1, and a fixed polynomial poly(·), depending only on F (but not on any specific F ∈ F ),
such that for any class F = {Fλ} ∈ F with maximum input length n(λ) and maximum circuit size s(λ), in
FEF , the size of the encryption circuit for messages of size n is bounded by sγ · poly(n, λ). We call γ the
compression factor. We say that the scheme is fully succinct if γ = 0. We say the the scheme is only weakly
ciphertext succinct if the size limitation is only on the size of output ciphertexts, and not the encryption
circuit size.

Functional Encryption in Oracle Models. We say that a functional encryption scheme FE is constructed
relative to an oracle O. If the corresponding algorithms, as well as the adversary in the security game, may
access the oracle O.

8.2 A Black-Box Construction of XIO from FE

In this section, we recall two constructions of XIO from secret-key FE shown in [BNPW16]. A crucial
feature of these constructions is that they are fully black-box [RTV04] — they use the underlying FE scheme
as a black-box (obliviously of the implementation of its algorithms) and their security reductions use the
adversary as a black-box. In particular, these constructions relativize — starting from an FE scheme relative
to any given oracle O, we get XIO relative to the same oracle O. We observe the the construction has the
additional features required for the transformations described in the previous sections.
Construction 1: XIOFromUnbounded-KeyFE.LetFE = (SetupO,GenO,EncO,DecO) be an unbounded-
key, secret-key, functional encryption scheme for P/poly, relative to an oracle O. In what follows, given a
circuit C, we identify its input space {0, 1}n with [N ] = {1, . . . , N}, where N := 2n. Let Cy be a circuit
that given as input x, returns C(x, y). Also, let Ux be the universal circuit that given a circuit D as input,
returns D(x).

We construct an XIO scheme xiO = (xiO.ObfO, xiO.EvalO), relative to the oracle O, as follows.
The Obfuscator xiO.ObfO(C, 1λ):

• Generates:

– MSK← SetupO(1λ),
– SKUx ← GenO(MSK, Ux) for all x ∈ [N1/2],
– CTy ← EncO(MSK, Cy) for all y ∈ [N1/2].

• Outputs:

– C̃ =
(
{C̃x = SKUx}x∈[N1/2], {C̃y = CTy}y∈[N1/2]

)
.
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The Evaluator xiO.EvalO(C̃, (x, y)):

• Output DecO(SKUx ,CTy).

Construction 2: XIO From Weakly Succinct Single-Key FE. Let FE = (SetupO,GenO,EncO,DecO)
be a single-key, secret-key, functional encryption scheme for P/poly, relative to an oracle O. Assume it is
weakly succinct with compression factor γ = 1− Ω(1).

As above, we identify the input space {0, 1}n with [N ] = {1, . . . , N} and denote by Cy the circuit that
given as input x, returns C(x, y). Also, for a set X = {x}, let UX be a universal circuit that given a circuit
D as input, returns (D(x) : x ∈ X).

We construct an XIO scheme xiO = (xiO.ObfO, xiO.EvalO), relative to the oracle O, as follows. Let
α ∈ (0, 1) be a parameter (which we will later explain how to set).
The Obfuscator xiO.ObfO(C, 1λ):

• Generates:

– MSK← SetupO(1λ),
– SKUX ← GenO(MSK, UX) for X = [Nα],
– CTy ← EncO(MSK, Cy) for all y ∈ [N1−α].

• Outputs:

– C̃ =
(
C̃X = SKUX , {C̃y = CTy}y∈[N1−α]

)
.

The Evaluator xiO.EvalO(C̃, (x, y)):

• Compute DecO(SKUX ,CTy) = (z(x, y) : x ∈ X).

• Output z(x, y).

In [BNPW16], it is proven that the above two constructions satisfy the indistinguishability requirement of
XIO and are correct. To be exact, the constructions there are not formulated in an oracle model, but are fully
black-box. The constructions themselves use the FE algorithms in a black-box way (as can be seen above),
and the security reduction is black-box in the adversary and the FE scheme.

Theorem8.1 (follows from [BNPW16, Theorem3.1]). Constructions 1 and 2 satisfy XIO indistinguishability
relative to any polynomial-size adversary AO, and are perfectly correct.

Succinctness. The two constructions described above are incomparable. As we shall see. On one hand, the
first one has better succinctness properties sufficient for all of our transformations. The second construction
suffices for our first transformation from degree-d oracles to degree-2 oracles, but not for the other transfor-
mations in Sections 6,7 that completely remove the oracle. On the other hand, the first construction requires
a stronger succinctness property from the underlying FE: it should be unbounded-key, and is known to imply
single-key (fully-succinct) schemes through a fully black-box construction [AJS15, BV15].

We now analyze the succinctness properties of these constructions as well as how they satisfy the product
form requirement needed in Section 5.
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Succinctness of Construction 1. This construction is in product form with respect to the product collection

Xn =
{
{x}

∣∣∣ x ∈ [N1/2]
}
, Yn =

{
{y}

∣∣∣ y ∈ [N1/2]
}

.

The time to obfuscate each piece corresponding to x is the time to derive a key GenO(MSK, Ux). The time
to obfuscate each piece corresponding to y is the time to encrypt EncO(MSK, Cy).

Overall, for some fixed polynomial poly,

qXo (C, λ) ≤ poly(|C|, λ), qYo (C, λ) ≤ poly(|C|, λ) ,

and overall
qo(C, λ) = |Xn| · qXo (C, λ) + |Yn| · qYo (C, λ) ≤ N1/2 · poly(|C|, λ) .

Evaluation corresponds to functional decryption DecO(SKUx ,CTy), and thus for some fixed polynomial
poly,

qe(C, λ) = poly(|C|, λ) .

Corollary 8.1. For the circuit class of P/poly,

1. Unbounded-key FE relative to a degree-d oracleMd, for d ≥ 2, implies approximate XIO relative to
the symmetric bilinear oracle B2.

2. Unbounded-key FE relative to a degree-1 oracleM1, implies approximate XIO in the plain model.

3. Unbounded-key FE relative to a random oracleR, implies approximate XIO in the plain model.

Proof. For the first item, we note that

|Xn| ·
(
qXo ·min

(
qXo , |Yn| · log qXo

))d
+|Yn| ·

(
qYo ·min

(
qYo , |Xn| · log qYo

))d
=

N1/2 · poly(|C|, λ) +N1/2 · poly(|C|, λ) =2n/2 · poly(|C|, λ) ,

satisfying the conditions for the transformation from Section 5 (Theorem 5.1).
For the second and third items, we have that

qo · qe = N1/2 · poly(|C|, λ) = 2n/2 · poly(|C|, λ) ,

satisfying the conditions for the transformations from Section 6 and Section 7 (Theorem 6.1 ad Theorem 7.1).

Succinctness of Construction 2. This construction is in product form with respect to the product collection

Xn = {X = [Nα]} , Yn =
{
{y}

∣∣ y ∈ [N1−α]
}
.

The time to obfuscate the piece corresponding to X is the time to derive a key GenO(MSK, UX). Thus for
some fixed poly,

qXo (C, λ) ≤ poly(|UX |, λ) = poly(Nα, |C|, λ) = Nαc · poly(|C|, λ) ,

for some constant c that depends only on the Gen algorithm.
The time to obfuscate each piece corresponding to y is the time to encrypt EncO(MSK, Cy).

qYo (C, λ) ≤ |UX |γ · poly(|C|, λ) = Nαγ · poly(|C|, λ) ,

where γ is the compression factor of the FE scheme.

44



Corollary 8.2. For the circuit class of P/poly, single-key FE relative to a degree-d oracleMd, with weak
succinctness and compression factor γ < 1/d implies approximate XIO relative to the symmetric bilinear
oracle B2.

Proof. We note that

|Xn| ·
(
qXo ·min

(
qXo , |Yn| · log qXo

))d
+|Yn| ·

(
qYo ·min

(
qYo , |Xn| · log qYo

))d ≤
1 · (Nαc ·Nαc)d · poly(|C|, λ) +N1−α · (Nαγ · 1)d · poly(|C|, λ) =2n·(1−Ω(1)) · poly(|C|, λ) ,

for any γ < 1/d, and setting, in construction 2, α < 1/2cd.
This satisfies the conditions for the transformation from Section 5 (Theorem 5.1).

We note that the transformations from Sections 6,7 cannot be applied here as qo ≥ N1−α and qe ≥ Nα,
implying that qoqe ≥ 1, which does not satisfy the basic requirements for these transformations.

8.3 From (Approximate) XIO and LWE to FE

In this section, we show how to use approximate XIO to construct 1-key weakly succinct FE for P/poly,
assuming LWE.

Theorem 8.2. Assume the hardness of LWE and the existence of an approximate XIO scheme for Plog/poly,
there exists a 1-key weakly-succinct FE scheme FE for P/poly.

We first describe our ideas at a high-level and then provide the formal transformation in Section 8.3.1.
A Failed Attempt. Lin, Pass, Seth and Telang [LPST16a] showed a transformation from correct XIO for
Plog/poly to IO for P/poly, assuming LWE.5 Previously, Bitansky and Vankuntanathan [BV16] showed how
to make any approximately correct IO correct (assuming, say, LWE). Thus, to prove the above theorem, a
natural idea is to attempt to amplifying the correctness of approximate XIO to obtain correct XIO, and then
invoke the transformation of [LPST16a]. This approach turns out to completely fail. Indeed, the [BV16]
transformation only works for classes of circuits that are expressive enough; in particular, it relies on the
ability of circuits in the class to process encrypted inputs, which must inherently be of super-logarithmic
length in the security parameter. However, XIO for such circuit classes, which lie outside of Plog/poly is
inefficient and effectively useless (see Remark 3.1).

Instead, we show how to modify the transformation of [LPST16a], based on error-correcting codes, so
that, it works directly with approximate XIO. Below, we briefly review the [LPST16a] transformation and
describe our key ideas.
Review of the [LPST16a] Transformation. Goldwassar et al. [GKP+13] constructed, from LWE, a fully
succinct FE scheme for Boolean NC1 circuits; namely, the encryption circuit of their scheme has size
poly(n, λ), where n is the message length. (They, in fact, show a result for any polynomial-size circuit class,
where the encryption circuit also grows with the depth. For our contexts, we can just focus on NC1.)

Theorem 8.3 (Fully Succinct FE scheme for BooleanNC1 [GKP+13]). Assume the hardness of LWE. There
exists a fully succinct, public-key, one-key, FE scheme for any collection C ⊆ NC1 of Boolean circuit classes.

5The LWE assumption was later weakened to the existence of public key encryption by [BNPW16], but only for sufficiently-
compressing XIO.
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Starting from such an FE scheme bFE for Boolean circuits, the first observation in [LPST16a] is as
follows: To construct an FE scheme, FE for any (possibly non-Boolean) circuitC, one can use bFE to issue a
key for the correspondingBoolean circuitB that produce one output bit at a time, that is,B(m, i) = (C(m))i.
Then to enable evaluating the circuit C, it suffices to publish a list of bFE ciphertexts encrypting all pairs
(m, i). This, however, leads to a scheme with encryption time linear in the length of the output (as it needs
to produce a ciphertext for every output bit), and is not weakly succinct. The key idea in [LPST16a] is using
XIO to generate the list of encryption of pairs (m, i). Namely, obfuscated a circuit that given as input i,
outputs the encryption of (m, i), where randomness is derived with a pseudorandom function. Since XIO
achieves “sublinear compression”, the resulting FE scheme is now weakly succinct for all of NC1, including
circuits with non-Boolean output.
Our Approach. The basic idea behind replacing XIO with approximate XIO is to use good error-correcting
codes to allow recovering the output of a given function even if some of the encryptions (m, i) are faulty.
Specifically, we make the following modification to the transformation of [LPST16a]. Instead of deriving
a key for the Boolean function B(m, i) = (C(m))i, which computes the i-th bit of the circuit’s output, we
consider the functionB?(m, i) = (ECC(C(m)))i that outputs the i-th bit of an error-corrected version of this
output. As before, we use XIO to to generate the list of encryptions (m, i), only that now, with approximate
XIO, some of these encryptions may be faulty. Nevertheless, we can still recover (ECC(C(m)))i for a large
enough fraction of indices i, and can thus correct, and obtain C(m). By using codes with constant rate, we
still get the same compression as before.
Reformulating Approximate XIO. Before formally describing our transformation, we first show the
following claim that gives a slightly amplified notion of correctness for approximate XIO, which would be
easier for us to work with. In the definition of approximate XIO (Definition 3.2), we allowed a constant
error not only over the inputs, but also over the randomness of the obfuscator, in particular, there could be a
constant fraction of coins, for which there is no correctness at all. In the amplified version considered next, it
is guaranteed that, with overwhelming probability over the coins of the obfuscator, there is a small (constant)
fraction of erroneous inputs.

Claim 8.1. Approximate-correctness of XIO can be amplified to the following correctness guarantee:

Pr
xiO.Obf

[
Pr

x←{0,1}n
[xiO.Eval(C̃, x) = C(x)] ≥ 0.9 : C̃ ← xiO.Obf(C)

]
≥ 1− negl(λ) .

Proof. In what follows, let xiO = (xiO.Obf, xiO.Eval) be an approximate XIO scheme for a collection of
circuit classes C ⊆ Plog/poly. We describe a new scheme xiO? = (xiO?.Obf, xiO?.Eval) that satisfies
the correctenss requirement given by the claim. The new obfuscator xiO?.Obf(C, 1λ) simply outputs λ
indpendnent obfuscations C̃1, . . . , C̃λ ← xiO.Obf(C, 1λ). The new evaluator xiO?.Eval, for input x, simply
evaluates each of the λ obfuscations on x, and outputs the majority result.

First, note that the new obfuscator satisfies the XIO indistinguishability requirement, by a straightforward
hybrid argument. We now show that it satisfies the correctness requirement given by the claim. Fix any
circuit C, and consider the set of inputs for which the obfuscator xiO.Obf is correct with high probability

SC =

{
x
∣∣∣ Pr

xiO.Obf
[xiO.Eval(C̃, x) = C(x) : C̃ ← xiO.Obf(C)] ≥ 0.9

}
.

Then since
Pr

x,xiO.Obf
[xiO.Eval(C̃, x) = C(x) : C̃ ← xiO.Obf(C)] ≥ 0.99 ,
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it follows by averaging that Prx [x ∈ Sc] ≥ 0.9.
To conclude the claim, we show that

Pr
xiO?.Obf

[
∀x ∈ SC : xiO?.Eval(C̃?, x) = C(x)

∣∣∣ C̃? ← xiO?.Obf(C)
]
≥ 1− negl(λ) .

Indeed, for any x ∈ SC the majority of xiO.Eval(C̃i, x) equals C(x), except with probability 2−Ω(λ), over
the coins of xiO?.Obf. The required bound follows by taking a union bound over all x ∈ SC , and the fact
that |SC | ≤ 2n ≤ 2O(log λ).

8.3.1 The Transformation

Our construction of 1-key FE scheme FE = (Setup,Gen,Enc,Dec) for P/poly relies on the following tools:

• An approximate XIO scheme xiO = (xiO.Obf, xiO.Eval) for Plog/poly (with correctness as given by
Claim 8.1).

• A fully succinct, public-key, 1-key, FE scheme bFE = (bSetup, bGen, bEnc, bDec) for Boolean NC1

(Theorem 8.3).

• An error-correcting code (ECC,Decode) with constant rate that tolerates 0.1-error rate, and has a
linear-size, low-depth, encoding algorithm ECC ∈ NC1 [Spi96].6

• A puncturable PRF scheme PPRF = (PRF.Gen,PRF.Eval,PRF.Punc) (Definition 3.3).

In what follows, n = n(λ) and s = s(λ) denote bounds on the input length and size of circuits; s is in
particular also a bound on the number of output bits. Also, given that we are dealing with public-key FE
schemes, we shall denote the encryption key byMPK.

Setup Setup(1λ, n, s): Samples (MPK,MSK)← bSetup(1λ, n′, s′). Here n′ ≤ n+ O(log s), s′ ≤ O(s);
we explain exactly how these parameters are chosen below.

Key Generation Gen(MSK, C): Construct the following Boolean circuit.

• B is a Boolean circuit that computes the ECC encoding of the outputs of C, one bit at a time.
That is, for everym ∈ {0, 1}n and index i ∈ {0, 1}log `, B(m, i) = ECC(C(m))i, where i is an
index in the ECC encoding of C’s outputs and is upper bounded by ` = |ECC(C(m))| = O(s).

Sample bSKB ← bGen(MSK, B) and output SKC = bSKB .

Encryption Enc(MPK,m):

1. Sample a PPRF keyK ← PRF.Gen(1λ).
2. Use XIO to obfuscate the circuit E = E[MPK,m,K] that receives as input an index i ∈
{0, 1}log `, and outputs the ciphertext bCT = bEnc(MPK, (m, i);PRF.EvalK(i)) (Figure 1).
Obtain obfuscated circuit Ẽ ← xiO.Obf(E, 1λ).

3. Output the ciphertext CT = Ẽ.

Decryption Dec(SKC ,CT): Parse CT as an obfuscated program Ẽ and do the following for every i ∈ [`],

6The requirement for a linear-size encoding circuit is not essential, but is achieved by [Spi96], and will simplify parameters.
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1. Compute CTi = xiO.Eval(Ẽ, i).
2. Decrypt ci = bDec(bSKB, bCTi).

Finally, decode c as an ECC encoding to obtain y = Decode(c), and output y.

Circuit E[MPK,m,K](i)

Constants: A public encryption key MPK of bFE, messagem ∈ {0, 1}n, a keyK of PPRF.

Input: An index i ∈ [`].

Procedure:

1. Evaluate PPRF on input index i, Ri = PRF.EvalK(i);
2. Encrypt pair (m, i), bCTi = bEnc(MEK, (m, i) ; Ri).

Output: Output bCTi.

Padding: The circuit E is padded to be of the same size as circuit E? in Figure 2.

Figure 1: Circuit E used in the construction of 1-key succinct FE scheme FE

Theorem 8.4. The above scheme FE is a one-key, public-key, weakly ciphertext-succinct, FE scheme for any
circuit collection C ⊆ NC1.

In [LPST16b], they show a transformation, assuming LWE, from ciphertext succinctness to weak suc-
cinctness (where the encryption circuit size is bounded, rather than only cipertext size) for NC1 (with the
same compression factor). In [ABSV15], they show a transformation from any scheme for NC1 to a scheme
for P/poly, the transformation preserves weak succinctness with the same compression factor.

Corollary 8.3 (from [ABSV15, LPST16b]). Assuming LWE, and approximate XIO for P/poly, there is a
one-key, public-key, weakly succinct, FE scheme for any circuit collection C ⊆ P/poly.

Proof of Theorem 8.4. First, we note that for any collection C in NC1, considering the circuitsB for circuits
in C results in a collection B also in NC1, as supported by the Boolean FE scheme bFE. Indeed, for any
circuit C ∈ C, B consists of executing C, error-correcting the output, and then choosing a an output bit.
Since we’re using linear log-depth error-correcting code the circuit size is O(|C|) and its depth is O(log n).

We next prove correctness, succinctness, and security.

Proposition 8.1. The scheme FE is correct.

Proof. The correctness follows directly from the approximate correctness of xiO, correctness of the Boolean
FE scheme bFE, and the correction guarantee of the error-correcting code ECC. Indeed, by the approximate
correctness of XIO, except with negligible probability, for each ciphertext CT = Ẽ generated by FE, it is
the case that xiO.Eval(Ẽ, i) outputs the correct cipertext CTi, under the Boolean bFE, for at lest 0.9 fraction
of i’s. By the correctness of bFE, decryption results in the correct value (ECC(C(m)))i, for each correct
ciphertext, and decoding will recover the correct value C(m).
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Proposition 8.2. The scheme FE is ciphertext succinct.

Proof. By construction of FE, the size of any ciphertext CT is exactly the size of the obfuscated circuit Ẽ,
which we now bound. Let γ be the compression factor of the XIO scheme. Then, by the XIO guarantee:

|Ẽ| ≤ `γ · poly(|Ẽ|, λ) ≤ sγ · poly(n, λ) .

Indeed, recall that ` is the bound on the size of codewords ECC(C(m)), where |C(m)| ≤ s, and since we
are using linear error-correcting codes, ` ≤ O(s). The size |Ẽ| is determined by computing a puncturable
PRF and an encryption of a message of size at most n+ log `, and padded by at most poly(n, λ) (Figure 2).
Thus |Ẽ| ≤ poly(n, λ). We conclude that the scheme is ciphertext succinct.

Proposition 8.3. The scheme FE is secure.

Proof. Wewant to show that for any efficient adversaryA, experiments ExptFEA (1λ, 0) and ExptFEA (1λ, 1) are
indistinguishable. Since we are in the public-key setting, it suffices to focus on the setting that the adversary
requests single ciphertext. Specifically, in ExptFEA (1λ, b), A chooses a challenge circuit C and a pair of
challenge inputs (m0,m1) such that C(m0) = C(m1), and receives a secret key SKC for C and a ciphertext
CTb encrypting mb. By construction of FE, the challenge ciphertext CTb contains an obfuscation of the
circuit Eb = E[MPK,mbK].

We show the indistinguishability of ExptFEA (1λ, 0) and ExptFEA (1λ, 1) using the following sequence of
hybrids {Hα

i∗} for α = 0, · · · , 3 and i∗ ∈ [`+ 1].

Hybrid H0
i∗ proceeds identically to ExptFEA (1λ, 0) except that the challenge ciphertext contains an obfusca-

tion of the following circuit E? as described in Figure 2:

E?i∗,0 = E?[MPK,K{i∗}, i∗,m0,m1, bCT
(m0,i∗)] ,

where bCT(m0,i∗) = bEnc(MPK, (m0, i
∗) ; PRF.EvalK(i∗)).

We claim that ExptFEA (1λ, 0) ≈c H0
1 . This is because the only difference between these two games is

that in the former circuit E0 is obfuscated during encryption, whereas in the latter E?1,0 is obfuscated.
Since E0 ≡ E?1,0 (namely, the two circuits have the same truth table and same size), by the security of
XIO, their obfuscation are indistinguishable. Thus, so are the two hybrids.
Similarly, ExptFEA (1λ, 1) ≈c H0

`+1, by the same argument and the fact that E0 ≡ E`+1,0.

Hybrid H1
i∗ proceeds identically to ExptFEA (1λ, 0) except that the challenge ciphertext contains an obfusca-

tion of the following circuit

E?i∗,1 = E[MPK,K{i∗}, i∗,m0,m1, bCT
(m0,i∗)
r ] ,

where bCT(m0,i∗)
r = bEnc(MPK, (m0, i) ; r) with random r.

We claim thatH0
i∗ ≈c H1

i∗ . This is because by the security of punctured PRF, PRF.EvalK(i∗) (inHi∗)
is pseudorandom, given the punctured PRF keyK{i∗}.
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Circuit E?[MPK,K, i∗,m<,m>, bCT
∗](i)

Constants: A public encryption keyMPK of bFE, a keyK of PPRF, a threshold i∗ ∈ {0, · · · , `+ 1},
stringsm<,m> ∈ {0, 1}n, and a ciphertext bCT∗ of bFE.

Input: An index i ∈ [`].

Procedure:

1. Evaluate PPRF on input index i, Ri = PRF.EvalK(i);
2. If i < i∗, encrypt pair (m<, i), bCTi = bEnc(MPK, (m<, i) ; Ri).
3. If i = i∗, set bCTi = bCT∗.
4. If i > i∗, encrypt pair (m>, i), bCTi = bEnc(MPK, (m>, i) ; Ri).

Output: Output the ciphertext bCTi.

Figure 2: Circuit E? used in the security analysis of the FE scheme FE

Hybrid H2
i∗ proceeds identically to ExptFEA (1λ, 0) except that the challenge ciphertext contains an obfusca-

tion of the following circuit

E?i∗,2 = E[MPK,K{i∗}, i∗,m0,m1, bCT
(m1,i∗)
r ] ,

where bCT(m1,i∗)
r = bEnc(MPK, (m1, i) ; r) with random r.

We haveH1
i∗ ≈c H2

i∗ , since by the security of scheme bFE, ciphertexts bCT(m0,i∗)
r and bCT(m1,i∗)

r are
indistinguishable, given the public encryption keyMPK.

Hybrid H3
i∗ proceeds identically to ExptFEA (1λ, 0), except that the challenge ciphertext contains an obfus-

cation of the following circuit

E?i∗,3 = E[MPK,K{i∗}, i∗,m0,m1, bCT
(m1,i∗)] ,

where bCT(m1,i∗) = bEnc(MEK, (m1, i) ; PRF.EvalK(i∗)).

We have H2
i∗ ≈c H3

i∗ , since by the security of punctured PRF, PRF.EvalK(i∗) (in H3
i∗) is pseudoran-

dom, given the punctured PRF keyK{i∗}.
Furthermore, we claim that H3

i∗ ≈ H0
i∗+1. This is because E?i∗,3 ≡ E?i∗+1,0, and by the security of

XIO, their obfuscation are indistinguishable. Thus, so are the two hybrids.

Therefore, ExptFEA (1λ, 0) and ExptFEA (1λ, 1) are indistinguishable, which concludes the proof of the propo-
sition.

This concludes the proof of Theorem 8.4.
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8.4 Putting it All Together

Wenow stitch different pieces together for removing oracles from different FE schemes. Starting with a single
key weakly-succinct FE scheme for P/poly relative to a degree-d decomposable oracle, with compression
factor γ < 1/d, by Corollary 8.2, we can convert it into an approximately correct XiO scheme relative to the
symmetric bilinear oracle B2. Theorem 8.2 states that approximate XiO for Plog/poly implies single-key
weakly-succinct FE forP/poly assumingLWE, through a fully black-box construction. Since the construction
is fully black-box, the impliciation holds even relative to oracle B2. Therefore, combining Corollary 8.2 and
Theorem 8.2 gives a single-key weakly-succinct FE scheme relative to B2.

Theorem 8.5. Assume the hardness of LWE. Single-key FE for P/poly relative to a degree-d decomposable
oracleMd with weak succinctness and compression factor γ < 1/d implies single-key FE for P/poly relative
to the symmetric bilinear oracle B2 with weak succinctness.

Furthermore, assuming additionally uber assumption on symmetric bilinear pairing groups, the former
implies single-key FE in the plain model.

The latter statement follows from the fact that the symmetric bilinear oracle B2 in our XiO scheme (given
by Corollary 8.2) can be instantiated with symmetric bilinear pairing groups assuming uber assumption; see
Section 5.4. Then by Theorem 8.5, we obtain single-key weakly-succinct FE in the plain model.

Similarly, when starting with an unbounded-key FE scheme for P/poly relative to either a degree-d
decomposable oracle or a degree-1 oracle or the random oracle, combining Corollary 8.1 and Theorem 8.2
gives the following theorem.

Theorem 8.6. Assume the hardness of LWE.

• Unbounded-key FE relative to a degree-d decomposable oracleMd, for d ≥ 2, implies single-key FE
for P/poly relative to the symmetric bilinear oracle B2 with weak succinctness. Assuming additionally
uber assumption on symmetric bilinear pairing groups, the former implies single-key weakly-succinct
FE in the plain model.

• Unbounded-key FE relative to a degree-1 oracleM1, or a random oracle R, implies single-key FE
for P/poly in the plain model.

Furthermore, by the fact that sub-exponentially secure single-key weakly-succinct FE for P/poly implies
IO for P/poly, we have that FE schemes relative to degree-d decomposable oracles as described in the
premises of above theorems impliy IO in the plain model, assuming the subexponential hardness of LWE
and subexponential semantic security of symmetric bilinear pairing groups, and unbounded-key FE schemes
relative to degree-1 oracles or random oracles imply IO in the plain model, assuming only the subexponential
hardness of LWE.
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