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Abstract. Supersingular isogeny Diffie-Hellman (SIDH) is an attractive candidate for post-
quantum key exchange, in large part due to its relatively small public key sizes. A recent
paper by Azarderakhsh, Jao, Kalach, Koziel and Leonardi showed that the public keys
defined in Jao and De Feo’s original SIDH scheme can be further compressed by around a
factor of two, but reported that the performance penalty in utilizing this compression blew
the overall SIDH runtime out by more than an order of magnitude. Given that the runtime
of SIDH key exchange is currently its main drawback in relation to its lattice- and code-
based post-quantum alternatives, an order of magnitude performance penalty for a factor
of two improvement in bandwidth presents a trade-off that is unlikely to favor public-key
compression in many scenarios.

In this paper, we propose a range of new algorithms and techniques that accelerate SIDH
public-key compression by more than an order of magnitude, making it roughly as fast as a
round of standalone SIDH key exchange, while further reducing the size of the compressed
public keys by approximately 12.5%. These improvements enable the practical use of com-
pression, achieving public keys of only 330 bytes for the concrete parameters used to target
128 bits of quantum security and further strengthens SIDH as a promising post-quantum
primitive.

Keywords: Post-quantum cryptography, Diffie-Hellman key exchange, supersingular ellip-
tic curves, isogenies, SIDH, public-key compression, Pohlig-Hellman algorithm.

1 Introduction

In their February 2016 report on post-quantum cryptography [6], the United States National
Institute of Standards and Technology (NIST) stated that “It seems improbable that any of the
currently known [public-key] algorithms can serve as a drop-in replacement for what is in use
today,” citing that one major challenge is that quantum resistant algorithms have larger key sizes
than the algorithms they will replace. While this statement is certainly applicable to many of the
lattice- and code-based schemes (e.g., LWE encryption [24] and the McEliece cryptosystem [19]),
Jao and De Feo’s 2011 supersingular isogeny Diffie-Hellman (SIDH) proposal [15] is one post-
quantum candidate that could serve as a drop-in replacement to existing Internet protocols. Not
only are high-security SIDH public keys smaller than their lattice- and code-based counterparts,
they are even smaller than some of the traditional (i.e., finite field) Diffie-Hellman public keys.
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SIDH public-key compression. The public keys defined in the original SIDH papers [15, 8]
take the form

PK = (E,P,Q),

where E/Fp2 : y2 = x3 + ax + b is a supersingular elliptic curve, p = nAnB ± 1 is a large prime,
the cardinality of E is #E(Fp2) = (p ∓ 1) = (nAnB)2, and depending on whether the public key
corresponds to Alice or Bob, the points P and Q either both lie in E(Fp2)[nA], or both lie in
E(Fp2)[nB ]. Since P and Q can both be transmitted via their x-coordinates (together with a sign
bit that determines the correct y-coordinate), and the curve can be transmitted by sending the
two Fp2 elements a and b, the original SIDH public keys essentially consist of four Fp2 elements,
and so are around 8 log p bits in size.

A recent paper by Azarderakhsh, Jao, Kalach, Koziel and Leonardi [2] showed that it is possible
to compress the size of SIDH public keys to around 4 log p bits as follows. Firstly, to send the
supersingular curve E, they pointed out that one can send the j-invariant j(E) ∈ Fp2 rather than
(a, b) ∈ F2

p2 , and showed how to recover a and b (uniquely, up to isomorphism) from j(E) on the

other side. Secondly, for n ∈ {nA, nB}, they showed that since E(Fp2)[n] ∼= Zn×Zn, an element in
E(Fp2)[n] can instead be transmitted by sending two scalars (α, β) ∈ Zn × Zn that determine its
representation with respect to a basis of the torsion subgroup. This requires that Alice and Bob
have a way of arriving at the same basis for E(Fp2)[n]. Following [2], we note that it is possible
to decompose points into their Zn × Zn representation since for well-chosen SIDH parameters,
n = `e is always smooth, which means that discrete logarithms in order n groups can be solved in
polynomial time using the Pohlig-Hellman algorithm [23]. Given that such SIDH parameters have
nA ≈ nB (see [15]), it follows that n ≈ √p and that sending elements of E(Fp2)[n] as two elements
of Zn (instead of an element in Fp2) cuts the bandwidth required to send torsion points in half.

Although passing back and forth between (a, b) and j(E) to (de)compress the curve is relatively
inexpensive, the compression of the points P and Q requires three computationally intensive steps:

– Step 1 – Constructing the n-torsion basis. During both compression and decompression, Alice
and Bob must, on input of the curve E, use a deterministic method to generate the same
two-dimensional basis {R1, R2} ∈ E(Fp2)[n]. The method used in [2] involves systematically
sampling candidate points R ∈ E(Fp2), performing cofactor multiplication by h to move into
E(Fp2)[n], and then testing whether or not [h]R has “full” order n (and, if not, restarting).

– Step 2 – Pairing computations. After computing a basis {R1, R2} of the group E(Fp2)[n], the
task is to decompose the point P (and identically, Q) as P = [αP ]R1 + [βP ]R2 and determine
(αP , βP ). While this could be done by solving a two-dimensional discrete logarithm problem
(DLP) directly on the curve, Azarderakhsh et al. [2] use a number of Weil pairing computations
to transform these instances into one-dimensional finite field DLPs in µn ⊂ F∗p2 .

– Step 3 – Solving discrete logarithms in µn. The last step is to repeatedly use the Pohlig-
Hellman algorithm [23] to solve DLPs in µn, and to output the four scalars αP , βP , αQ and
βQ in Zn.

Each one of these steps presents a significant performance drawback for SIDH public-key
compression. Subsequently, Azarderakhsh et al. report that, at interesting levels of security, each
party’s individual compression latency is more than a factor of ten times the latency of a full
round of uncompressed key exchange [2, §5].

Our contributions. We present a range of new algorithmic improvements that decrease the
total runtime of SIDH compression and decompression by an order of magnitude, bringing its
performance close to that of a single round of SIDH key exchange. We believe that this makes it
possible to consider public-key compression a default choice for SIDH, and it can further widen
the gap between the key sizes resulting from practical SIDH key exchange implementations and
their code- and lattice-based counterparts.

We provide a brief overview of our main improvements with respect to the three compression
steps described above. All known implementations of SIDH (e.g., [8, 1, 7]) currently choose nA =
`eAA = 2eA and nB = `eBB = 3eB for simplicity and efficiency reasons, so we focus on ` ∈ {2, 3}
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below; however, unless specified otherwise, we note that all of our improvements will readily apply
to other values of `.

– Step 1 – Constructing the n-torsion basis. We make use of some results arising from explicit
2- and 3-descent of elliptic curves to avoid the need for the expensive cofactor multiplication
that tests the order of points. These results characterize the images of the multiplication-by-2
and multiplication-by-3 maps on E, and allow us to quickly generate points that are elements
of E(Fp2) \ [2]E(Fp2) and E(Fp2) \ [3]E(Fp2). Therefore, we no longer need to check the order
of (possibly multiple!) points using a full-length scalar multiplication by nAnB , but instead
are guaranteed that one half-length cofactor multiplication produces a point of the correct
order. For our purposes, producing points in E \ [2]E is as easy as generating elliptic curve
points whose x-coordinates are non-square (this is classical, e.g., [14, Ch. 1(§4), Thm 4.1]).
On the other hand, to efficiently produce points in E \ [3]E, we make use of the analogous
characteristic described in more recent work on explicit 3-descent by Schaefer and Stoll [26].
Combined with a tailored version of the Elligator 2 encoding [5] for efficiently generating points
on E, this approach gives rise to highly efficient n-torsion basis generation. This is described
in detail in Section 3.

– Step 2 – Pairing computations. We apply a number of optimizations from the literature on
elliptic curve pairings in order to significantly speed up the runtime of all pairing computa-
tions. Rather than using the Weil pairing (as was done in [2]), we use the more efficient Tate
pairing [10, 4]. We organize the five pairing computations that are required during compres-
sion in such a way that only two Miller functions are necessary. Unlike all of the prior work
done on optimized pairing computation, the pairings used in SIDH compression cannot take
advantage of torsion subgroups that lie in subfields, which means that fast explicit formulas for
point operations and Miller line computations are crucial to achieving a fast implementation.
Subsequently, we derive new and fast inversion-free explicit formulas for computing pairings
on supersingular curves, specific to the scenario of SIDH compression. Following the Miller
loops, we compute all five final exponentiations by exploiting a fast combination of Frobenius
operations together with either fast repeated cyclotomic squarings (from [31]) or our new for-
mulas for enhanced cyclotomic cubing operations. The pairing optimizations are described in
Section 4.

– Step 3 – Solving discrete logarithms in µn. All computations during the Pohlig-Hellman phase
take place in the subgroup µn of the multiplicative group Gp+1 ⊂ F∗p2 of order p + 1, where
we take advantage of the fast cyclotomic squarings and cubings mentioned above, as well as
the fact that Fp2 inversions are simply conjugations, so come almost for free (see §5.1). On
top of this fast arithmetic, we build an improved version of the Pohlig-Hellman algorithm that
exploits windowing methods to solve the discrete logarithm instances with lower asymptotic
complexity than the original algorithm. For the concrete parameters, the new algorithm is
approximately 14× (resp. 10×) faster in µ2372 (resp. µ3239), while having very low memory
requirements (see Table 1 and 2). This is all described in more detail in Section 5.

– Improved compression. By normalizing the representation of P and Q in Z4
n, we are able to

further compress this part of the public key representation into Z3
n. Subsequently, our public

keys are around 7
2 log p bits, rather than the 4 log p bits achieved in [2]. To the best of our

knowledge, this is as far as SIDH public keys can be compressed in practice. This is explained
in §6.1.

– Decompression. The decompression algorithm – which involves only the first of the three steps
above and a double-scalar multiplication – is also accelerated in this work. In particular, on
top of the faster torsion basis generation, we show that the double-scalar multiplications can
be absorbed into the shared secret computation. This makes them essentially free of cost. This
is described in §6.2.

The combination of the three main improvements mentioned above, along with a number of
further optimizations described in the rest of this paper, yields enhanced compression software
that is an order of magnitude faster than the initial software benchmarked in [2].
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The compression software. We wrote the new suite of algorithms in plain C and incorporated
the compression software into the SIDH library recently made available by Costello, Longa and
Naehrig [7]; their software uses a curve with log p = 751 that currently offers around 192 bits
of classical security and 128 bits of quantum security. The public keys in their uncompressed
software were 6 log p = 564 bytes, while the compressed public keys resulting from our software
are 7

2 log p = 330 bytes. The software described in this paper can be found in the latest release of
the SIDH library (version 2.0) at

https://www.microsoft.com/en-us/research/project/sidh-library/.

Although our software is significantly faster than the previous compression benchmarks given
by Azarderakhsh et al. [2], we believe that the most meaningful benchmarks we can present are
those that compare the latency of our optimized SIDH compression to the latency of the state-
of-the-art key generation and shared secret computations in [7]. This gives the reader (and the
PQ audience at large) an idea of the cost of public-key compression when both the raw SIDH
key exchange and the optional compression are optimized to a similar level. We emphasize that
although the SIDH key exchange software from [7] targeted one isogeny class at one particular
security level, and therefore so does our compression software, all of our improvements apply
identically to curves used for SIDH at other security levels, especially if the chosen isogeny degrees
remain (powers of) 2 and 3. Moreover, we expect that the relative cost of compressed SIDH
to uncompressed SIDH will stay roughly consistent across different security levels, and that our
targeted benchmarks therefore give a good gauge on the current state-of-the-art.

It is important to note that, unlike the SIDH software from [7] that uses private keys and
computes shared secrets, by definition our public-key compression software only operates on public
data5. Thus, while we call several of their constant-time functions when appropriate, none of our
functions need to run in constant-time.

Remark 1 (Ephemeral SIDH). A recent paper by Galbraith, Petit, Shani and Ti [11] gives, among
other results, a realistic and serious attack on instantiations of SIDH that reuse static private/public
key pairs. Although direct public-key validation in the context of isogeny-based cryptography is
currently non-trivial, there are methods of indirect public-key validation (see, e.g, [17, 11]) that
mirror the same technique proposed by Peikert [22, §5-6] in the context of lattice-based cryp-
tography, which is itself a slight modification of the well-known Fujisaki-Okamoto transform [9].
At present, the software from [7] only supports secure ephemeral SIDH key exchange, and does
not yet include sufficient (direct or indirect) validation that allows the secure use of static keys.
Thus, since our software was written around that of [7], we note that it too is only written for the
target application of ephemeral SIDH key exchange. In this case attackers are not incentivized to
tamper with public keys, so we can safely assume throughout this paper that all public keys are
well-formed. Nevertheless, we note that the updated key exchange protocols in [9, 22, 17, 11] still
send values that can be compressed using our algorithms. On a related note, we also point out
that our algorithms readily apply to the other isogeny-based cryptosystems described in [8] for
which the compression techniques were detailed in [2]. In all of these other scenarios, however, the
overall performance ratios and relative bandwidth savings offered by our compression algorithms
are likely to differ from those we report for ephemeral SIDH.

Remark 2 (Trading speed for simplicity and space). Since the compression code in our software
library only runs on public data, and therefore need not run in constant-time, we use a variable-
time algorithm for field inversions (a variant of the extended binary GCD algorithm [16]) that runs
faster than the typical exponentiation method (via Fermat’s little theorem). Although inversions
are used sparingly in our code and are not the bottleneck of the overall compression runtime,
we opted to add a single variable-time algorithm in this case. However, during the design of our
software library, we made several decisions in the name of simplicity that inevitably hampered the
performance of the compression algorithms.

5 There is a minor caveat here in that we absorb part of the decompression into the shared secret
computation, which uses the constant-time software from [7] – see Section 6.
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One such performance sacrifice is made during the computation of the torsion basis points in
Section 3, where tests of quadratic and cubic residuosity are performed using field exponentiations.
Here we could use significantly faster, but more complicated algorithms that take advantage of
the classic quadratic and cubic reciprocity identities. Such algorithms require intermediate reduc-
tions modulo many variable integers, and a reasonably optimized generic reduction routine would
increase the code complexity significantly. These tests are also used sparingly and are not the
bottleneck of public-key compression, and in this case, we deemed the benefits of optimizing them
to be outweighed by their complexity. A second and perhaps the most significant performance
sacrifice made in our software is during the Pohlig-Hellman computations, where our windowed
version of the algorithm currently fixes small window sizes in the name of choosing moderate space
requirements. If larger storage is permitted, then Sutherland’s analysis of an optimized version of
the Pohlig-Hellman algorithm [32] shows that this phase could be sped up significantly (see Sec-
tion 5). But again, the motivation to push the limits of the Pohlig-Hellman phase is stunted by the
prior (pairing computation) phase being the bottleneck of the overall compression routine. Finally,
we note that the probabilistic components of the torsion basis generation phase (see Section 3)
lend themselves to an amended definition of the compressed public keys, where the compressor
can send a few extra bits or bytes in their public key to make for a faster and deterministic de-
compression. For simplicity (and again due to this phase not being the bottleneck of compression),
we leave this more complicated adaptation to future consideration.

2 Preliminaries

Here we restrict only to the background that is necessary to understand this paper, i.e., only
what is needed to define SIDH public keys. We refer to the extended paper by De Feo, Jao and
Plût [8] for a background on the SIDH key exchange computations, and for the rationale behind
the parameters given below.

SIDH public keys. Let p = nAnB ± 1 be a large prime and E/Fp2 be a supersingular curve
of cardinality #E(Fp2) = (p ∓ 1)2 = (nAnB)2. Let nA = `eAA and nB = `eBB . Henceforth we shall
assume that `A = 2 and `B = 3, which is the well-justified choice made in all known implementa-
tions to date [8, 1, 7]; however, unless specified otherwise, we note that the optimizations in this
paper will readily apply to other reasonable choices of `A and `B . When the discussion is identical
irrespective of `A or `B , we will often just use `; similarly, we will often just use n when the
discussion applies to both nA and nB . In general, E/Fp2 is specified using the short Weierstrass
model E/Fp2 : y2 = x3 + ax+ b, so is defined by the two Fp2 elements a and b.

During one round of SIDH key exchange, Alice computes her public key as the image EA of her
secret degree-nA isogeny φA on a fixed public curve E0, for example E0/Fp2 : y2 = x3 + x, along
with the images of φA on the two public points PB and QB of order nB , i.e., the points φA(PB)
and φA(QB). Bob performs the analogous computation applying his secret degree-nB isogeny φB
to E0 to produce the image curve EB and to produce the images of the public points PA and QA,
both of order nA. In both cases, the public keys are of the form PK = (E,P,Q), where E/Fp2 is a
supersingular elliptic curve transmitted as two Fp2 elements, and P and Q are points on E that
are each transmitted as one Fp2 element corresponding to the x-coordinate, along with a single
bit that specifies the choice of the corresponding y-coordinate. Subsequently, typical SIDH public
keys are specified by 4 Fp2 elements (and two sign bits), and are therefore around 8 log p bits in
length.

General SIDH compression. We now recall the main ideas behind the SIDH public key com-
pression recently presented by Azarderakhsh, Jao, Kalach, Koziel and Leonardi [2]. Their first idea
involves transmitting the j-invariant j(E) ∈ Fp2 of E, rather than the two curve coefficients, and
recomputing a and b from j(E) on the other side. However, since `A = 2 and therefore 4 | #E, all
curves in the isogeny class can also be written in Montgomery form as E/Fp2 : By2 = x3+Ax2+x;
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moreover, since j(E) is independent of B, the implementation described in [7] performs all compu-
tations and transmissions ignoring the Montgomery B coefficient. Although the Weierstrass curve
compression in [2] applies in general, the presence of `A = 2 in our case allows for the much simpler
method of curve compression that simply transmits the coefficient A ∈ Fp2 of E in Montgomery
form.

The second idea from [2], which is the main focus of this paper, is to transmit each of the
two points P,Q ∈ E(Fp2)[n] as their two-dimensional scalar decomposition with respect to a fixed
basis {R1, R2} of E(Fp2)[n]. Both of these decompositions are in Z2

n, requiring 2 log n bits each.
But n ≈ √p (see [8]), so 2 log n ≈ log p is around half the size of the 2 log p bits needed to transmit
a coordinate in Fp2 . Of course, the curve in each public key is different, so there is no public
basis that can be fixed once-and-for-all, and moreover, to transmit such a basis is as expensive
as transmitting the points P and Q in the first place. The whole idea therefore firstly relies on
Alice and Bob being able to, on input of a given curve E, arrive at the same basis {R1, R2} for
E(Fp2)[n]. In [2] it is proposed to try successive points that result from the use of a deterministic
pseudo-random number generator, checking the order of the points each time until two points
of exact order n are found. In Section 3 we present alternative algorithms that deterministically
compute a basis much more efficiently.

Assuming that Alice or Bob have computed the basis {R1, R2} for E(Fp2)[n], the idea is to
now write P = [αP ]R1 + [βP ]R2 and Q = [αQ]R1 + [βQ]R2, and to solve these equations for
(αP , βP , αQ, βQ) ∈ Z4

n. To compute αP and βP , Azarderakhsh et al. [2] propose first using the
Weil pairing e : E(Fp2)[n] × E(Fp2)[n] → µn to set up the two discrete logarithm instances that

arise from the three pairings e0 = e(R1, R2), e(R1, P ) = eβP

0 , and e(R2, Q) = e−αP
0 ; computing

αQ and βQ then requires two additional pairings, since e0 can be reused. In Section 4 we exploit
the fact that these five Weil pairings can be replaced by the much more efficient Tate pairing, and
we give an optimized algorithm that computes them all simultaneously.

To finalize compression, it remains to use the Pohlig-Hellman algorithm [23] to solve the four
DLP instances in µn. In Section 5 we present an efficient version of the Pohlig-Hellman algorithm
that exploits windowing methods to solve the discrete logarithm instances with lower complexity
than the original algorithm. In Section 6 we show that one of the four scalars in Zn need not be
transmitted, since it is always possible to normalize the tuple (αP , βP , αQ, βQ) by dividing three
of the elements by a determinstically chosen invertible one. The public key is then transmitted as
3 scalars in Zn and the curve coefficient A ∈ Fp2 .

SIDH decompression. The first task of the recipient of a compressed public key is to compute
the basis {R1, R2} in the same way as was done during compression. Once the recipient has
computed the basis {R1, R2}, two double-scalar multiplications can be used to recover P and Q.
In §6.2, we show that these double-scalar multiplications can be ommitted by absorbing these
scalars into the secret SIDH scalars used for shared secret computations. This further enhances
the decompression phase.

Concrete parameters. As mentioned above, we illustrate our techniques by basing our compres-
sion software on the SIDH library recently presented in [7]. This library was built using a specific
supersingular isogeny class defined by p = nAnB − 1, with nA = `eAA = 2372 and nB = `eBB = 3239,
chosen such that all curves in this isogeny class have order (nAnB)2. In what follows we will assume
that our parameters correspond to this curve, but reiterate that these techniques will be equally
as applicable for any supersingular isogeny class with `A = 2 and `B = 3.

3 Constructing torsion bases

For a given A ∈ Fp2 corresponding to a supersingular curve E/Fp2 : y2 = x3 + Ax2 + x with
#E(Fp2) = (nAnB)2, the goal of this section is to produce a basis for E(Fp2)[n] (with n ∈
{nA, nB}) as efficiently as possible. This amounts to computing two order n points R1 and R2
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whose Weil pairing en(R1, R2) has exact order n. Checking the order of the Weil pairing either
comes for free during subsequent computations, or requires the amendments discussed in Remark 3
at the end of this section. Thus, for now our goal is simplified to efficiently computing points of
order n ∈ {nA, nB} in E(Fp2).

Let {n, n′} = {nA, nB}, write n = `e and n′ = `′e
′
, and let O be the identity in E(Fp2). The

typical process of computing a point of exact order n is to start by computing R ∈ E(Fp2) and

multiplying by the cofactor n′ to compute the candidate output R̃ = [n′]R. Note that the order
of R̃ divides n, but might not be n. Thus, we multiply R̃ by `e−1, and if [`e−1]R̃ 6= O, we output
R̃, otherwise we must pick a new R and restart.

In this section we use explicit results arising from 2- and 3-descent to show that the cofactor
multiplications by n′ and by `e−1 can be ommitted by making use of elementary functions involving
points of order 2 and 3 to check whether points are (respectively) in E \ [2]E or E \ [3]E. In both
cases this guarantees that the subsequent multiplication by n′ produces a point of exact order
n, avoiding the need to perform full cofactor multiplications to check order prior to the pairing
computation, and avoiding the need to restart the process if the full cofactor multiplication process
above fails to output a point of the correct order (which happens regularly in practice). This yields
much faster algorithms for basis generation than those that are used in [2].

We discuss the 2e-torsion basis generation in §3.2 and the 3e-torsion basis generation in §3.3.
We start in §3.1 by describing some arithmetic ingredients.

3.1 Square roots, cube roots, and Elligator 2

In this section we briefly describe the computation of square roots and that of testing cubic
residuosity in Fp2 , as well as our tailoring of the Elligator 2 method [5] for efficiently producing
points in E(Fp2).

Computing square roots and checking cubic residuosity in Fp2 . Square roots in Fp2 are
most efficiently computed via two square roots in the base field Fp. Since p ≡ 3 mod 4, write
Fp2 = Fp(i) with i2 + 1 = 0. Following [27, §3.3], we use the simple identity

√
a+ b · i = ± (α+ β · i) , (1)

where α =
√

(a±
√
a2 + b2)/2 and β = b/(2α); here a, b, α, β ∈ Fp. Both of (a+

√
a2 + b2)/2 and

(a −
√
a2 + b2)/2 will not necessarily be square, so we make the correct choice by assuming that

z = (a +
√
a2 + b2)/2 is square and setting α = z(p+1)/4; if α2 = z, we output a square root as

±(α+ βi), otherwise we can output a square root as ±(β − αi).
In §3.3 we will need to efficiently test whether elements v ∈ Fp2 are cubic residues or not.

This amounts to checking whether v(p
2−1)/3 = 1 or not, which we do by first computing v′ =

vp−1 = vp/v via one application of Frobenius (i.e., Fp2 conjugation) and one Fp2 inversion. We

then compute v′(p+1)/3 as a sequence of eA = 372 repeated squarings followed by eB − 1 = 238
repeated cubings. Both of these squaring and cubing operations are in the order p+ 1 cyclotomic
subgroup of F∗p2 , so can take advantage of the fast operations described in §5.1.

Elligator 2. The näıve approach to obtaining points in E(Fp2) is to sequentially test candidate
x-coordinates in Fp2 until f(x) = x3 + Ax2 + x is square. Each of these tests requires at least
one exponentiation in Fp, and a further one (to obtain the corresponding y) if f(x) is a square.
The Elligator 2 construction deterministically produces points in E(Fp2) using essentially the
same operations, so given that the näıve method can fail (and waste exponentiations), Elligator 2
performs significantly faster on average.

The idea behind Elligator 2 is to let u be any non-square in Fp2 , and for any r ∈ Fp2 , write

v = − A

1 + ur2
and v′ =

A

1 + ur2
−A. (2)
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Then either v is an x-coordinate of a point in E(Fp2), or else v′ is [5]; this is because f(v) and
f(v′) differ by the non-square factor ur2.

In our implementation we fix u = i+ 4 as a system parameter and precompute a public table
consisting of the values −1/(1 + ur2) ∈ Fp2 where r2 ranges from 1 to 10. This table is fixed
once-and-for-all and can be used (by any party) to efficiently generate torsion bases as A varies
over the isogeny class. Note that the size of the table here is overkill, we very rarely need to use
more than 3 or 4 table values to produce basis points of the correct exact order.

The key to optimizing the Elligator 2 construction (see [5, §5.5]) is to be able to efficiently
modify the square root computation in the case that f(v) is non-square, to produce

√
f(v′). This

update is less obvious for our field than in the case of prime fields, but nevertheless achieves the
same result. Referring back to (1), we note that whether or not a + b · i is a square in Fp2 is
determined solely by whether or not a2 + b2 is a square in Fp [27, §3.3]. Thus, if this check deems
that a+ bi is non-square, we multiply it by ur2 = (i+ 4)r2 to yield a square, and this is equivalent
to updating (a, b) = (r(4a− b), r(a+ 4b)), which is trivial in the implementation.

3.2 Generating a torsion basis for E(Fp2)[2eA ]

The above discussion showed how to efficiently generate candidate points R in E(Fp2). In this
subsection we show how to efficiently check that R is in E \ [2]E, which guarantees that [3eB ]R is
a point of exact order 2eA , and can subsequently be used as a basis element.

Since the supersingular curves E/Fp2 : y2 = x(x2 + Ax + 1) in our isogeny class have a full
rational 2-torsion, we can always write them as E/Fp2 : y2 = x(x − γ)(x − δ). A classic result
(cf. [14, Ch. 1(§4), Thm 4.1]) says that, in our case, any point R = (xR, yR) in E(Fp2) is in
[2]E(Fp2), i.e., is the result of doubling another point, if and only if xR, xR − γ and xR − δ are
all squares in Fp2 . This means that we do not need to find the roots δ and γ of x2 + Ax + 1 to
test for squareness, since we want the xR such that at least one of xR, xR − γ and xR − δ are a
non-square. We found it most efficient to simply ignore the latter two terms and reject any xR
that is square, since the first non-square xR we find corresponds to a point R such that [3eB ]R
has exact order 2eA , and further testing square values of xR is both expensive and often results in
the rejection of R anyway.

In light of the above, we note that for the 2-torsion basis generation, the Elligator approach
is not as useful as it is in the next subsection. The reason here is that we want to only try points
with a non-square x-coordinate, and there is no exploitable relationship between the squareness of
v and v′ in (2) (such a relation only exists between f(v) and f(v′)). Thus, the best approach here
is to simply proceed by trying candidate v’s as consecutive elements of a list L = [u, 2u, 3u, . . . ] of
non-squares in Fp2 until (v3 + Av2 + v) is square; recall from above that this check is performed
efficiently using one exponentiation in Fp.

To summarize the computation of a basis {R1, R2} for E(Fp2)[2eA ], we compute R1 by letting
v be the first element in L where (v3 +Av2 + v) is square. We do not compute the square root of
(v3 +Av2 + v), but rather use eB repeated x-only tripling operations starting from v to compute
xR1

. We then compute yR1
as the square root of x3R1

+Ax2R1
+xR1

. Note that either choice of square
root is fine, so long as Alice and Bob take the same one. The point R2 is found identically, i.e.,
using the second element in L that corresponds to an x-coordinate of a point on E(Fp2), followed
by eB x-only tripling operations to arrive at xR2 , and the square root computation to recover
yR2

. Note that the points R1 and R2 need not be normalized before their input into the pairing
computation; as we will see in Section 4, the doubling-only and tripling-only pairings do not ever
perform additions with the original input points, so the input points are essentially forgotten after
the first iteration.

3.3 Generating a torsion basis for E(Fp2)[3eB ]

The theorem used in the previous subsection was a special case of more general theory that
characterizes the action of multiplication-by-m on E. We refer to Silverman’s chapter [29, Ch.
X] and to [26] for the deeper discussion in the general case, but in this work we make use of the
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explicit results derived in the case of m = 3 by Schaefer and Stoll [26], stating only what is needed
for our purposes.

Let P3 = (xP3 , yP3) be any point of order 3 in E(Fp2) (recall that the entire 3-torsion is rational
here), and let gP3(x, y) = y − (λx + µ) be the usual tangent function to E at P3. For any other
point R ∈ E(Fp2), the result we use from [26] states that R ∈ [3]E if and only if gP3

(R) is in
(Fp2)3 (i.e., is a cube) for all of the 3-torsion points6 P3.

Again, since we do not want points in [3]E, but rather points in E \ [3]E, we do not need to
test that R gives a cube for all of the gP3(R), we simply want to compute an R where any one of
the gP3

(R) is not a cube. In this case the test involves both coordinates of R, so we make use of
Elligator 2 as it is described in §3.1 to produce candidate points R ∈ E(Fp2).

Unlike the previous case, where the 2-torsion point (0, 0) is common to all curves in the isogeny
class, in this case it is computing a 3-torsion point P3 that is the most difficult computation. We
attempted to derive an efficient algorithm that finds xP3 as any root of the (quartic) 3-division
polynomial Φ3(A, x), but this solution involved several exponentiations in both Fp2 and Fp, and
was also hampered by the lack of an efficient enough analogue of (1) in the case of cube roots7.
We found that a much faster solution was to compute the initial 3-torsion point via an x-only
cofactor multiplication: we use the first step of Elligator 2 to produce an x-coordinate xR, compute
xR̃ = x[2eA ]R via eA repeated doublings, and then apply k repeated triplings until the result of
a tripling is (X : Z) ∈ P1 with Z = 0, which corresponds to the point O, at which point we can
set out xP3

, the x-coordinate of a 3-torsion point P3, as the last input to the tripling function.
Moreover, if the number of triplings required to produce Z = 0 was k = eB , then it must be that
R̃ is a point of exact order 3eB . If this is the case, we can use a square root to recover yR̃ from
xR̃, and we already have one of our two basis points.

At this stage we either need to find one more point of order 3eB , or two. In either case we use
the full Elligator routine to obtain candidate points R exactly as described in §3.1, use our point P3

(together with our efficient test of cubic residuosity above) to test whether gP3
(R) = yR−(λxR+µ)

is a cube, and if it is not, we output ±[2eA ]R as a basis point; this is computed via a sequence of
x-only doublings and one square root to recover y[2eA ]R at the end. On the other hand, if gP3(R)
is a cube, then R ∈ [3]E, so we discard it and proceed to generate the next R via the tailored
version of Elligator 2 above.

We highlight the significant speed advantage that is obtained by the use of the result of Schae-
fer and Stoll [26]. Testing that points are in E \ [3]E by cofactor multiplication requires eA point
doubling operations and eB point tripling operations, while the same test using the explicit results
from 3-descent require one field exponentiation that tests cubic residuosity. Moreover, this ex-
ponentiation only involves almost-for-free Frobenius operations and fast cyclotomic squaring and
cubing operations (again, see §5.1).

Remark 3 (Checking the order of the Weil pairing). As mentioned at the beginning of this section,
until now we have simplified the discussion to focus on generating two points R1 and R2 of exact
order n. However, this does not mean that {R1, R2} is a basis for E(Fp2)[n]; this is the case if
and only if the Weil pairing en(R1, R2) has full order n. Although the Weil pairing will have order
n with high probability for random R1 and R2, the probability is not so high that we do not
encounter it in practice. Thus, baked into our software is a check that this is indeed the case, and
if not, an appropriate backtracking mechanism that generates a new R2. We note that, following
[7, Section 9] and [11, Section 2.5], checking whether or not the Weil pairing en(R1, R2) has full
order is much easier than computing it, and can be done by comparing the values [n/`]R1 and
[n/`]R2.

6 The astute reader can return to §3.2 and see that this is indeed a natural analogue of [14, Ch. 1(§4),
Thm 4.1].

7 A common subroutine when finding roots of quartics involve solving the so-called depressed cubic.
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4 The Tate pairing computation

Given the basis points R1 and R2 resulting from the previous section, and the two points P
and Q in the (otherwise uncompressed) public key, we now have four points of exact order n. As
outlined in Section 2, the next step is to compute the following five pairings to transfer the discrete
logarithms to the multiplicative group µn ⊂ F∗p2 :

e0 := e(R1, R2) = fn,R1
(R2)(p

2−1)/n

e1 := e(R1, P ) = fn,R1(P )(p
2−1)/n

e2 := e(R1, Q) = fn,R1(Q)(p
2−1)/n

e3 := e(R2, P ) = fn,R2
(P )(p

2−1)/n

e4 := e(R2, Q) = fn,R2
(Q)(p

2−1)/n.

As promised in Section 1, the above pairings are already defined by the order n reduced
Tate pairing e : E(Fp2)[n] × E(Fp2)/nE(Fp2) 7→ µn, rather than the Weil pairing that was used
in [2]. The rationale behind this choice is clear: the lack of special (subfield) groups inside the
n-torsion means that many of the tricks used in the pairing literature cannot be exploited in the
traditional sense. For example, there does not seem to be a straight-forward way to shorten the
Miller loop by using efficiently computable maps arising from Frobenius (see, e.g., [3], [13], [12]),
our denominators lie in Fp2 so cannot be eliminated [4], and, while distortion maps exist on all
supersingular curves [33], finding efficiently computable and therefore useful maps seems hard for
random curves in the isogeny class. The upshot is that the Miller loop is far more expensive than
the final exponentiation in our case, and organizing the Tate pairings in the above manner allows
us to get away with the computation of only two Miller functions, rather than the four that were
needed in the case of the Weil pairing [2].

In the case of ordinary pairings over curves with a larger embedding degree8, the elliptic curve
operations during the Miller loop take place in a much smaller field than the extension field; in
the Tate pairing the point operations take place in the base field, while in the loop-shortened ate
pairing [13] (and its variants) they take place in a small-degree subfield. Thus, in those cases the
elliptic curve arithmetic has only a minor influence on the overall runtime of the pairing.

In our scenario, however, we are stuck with elliptic curve points that have both coordinates in
the full extension field. This means that the Miller line function computations are the bottleneck of
the pairing computations (and, as it turns out, this is the main bottleneck of the whole compression
routine). The main point of this section is to present optimized explicit formulas in this case; this
is done in §4.1. In §4.2 we discuss how to compute the five pairings in parallel and detail how to
compute the final exponentiations efficiently.

4.1 Optimized Miller functions

We now present explicit formulas for the point operations and line computations in Miller’s al-
gorithm [20]. In the case of the order-2eA Tate pairings inside E(Fp2)[2eA ], we only need the
doubling-and-line computations, since no additions are needed. In the case of the order-3eB Tate
pairings inside E(Fp2)[3eB ], we investigated two options: the first option computes the pairing in
the usual “double-and-add” fashion, reusing the doubling-and-line formulas with addition-and-
line formulas, while the second uses a simple sequence of eB tripling-and-parabola operations.
The latter option proved to offer much better performance and is arguably more simple than the
double-and-add approach9.

8 This has long been the preferred choice of curve in the pairing-based cryptography literature.
9 An earlier version of this article claimed that the performance was favourable in the former case, but

further optimization in the tripling-and-parabola scenario since proved this option to be significantly
faster.
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We tried several coordinate systems in order to lower the overall number of field operations in
both pairings, and after a close inspection of the explicit formulas in both the doubling-and-line
and tripling-and-parabola operations, we opted to use the coordinate tuple (X2 : XZ : Z2 : Y Z)
to represent intermediate projective points P = (X : Y : Z) ∈ P2 in E(Fp2). Note that all points
in our routines for which we use this representation satisfy XY Z 6= 0, as their orders are strictly
larger than 2. This ensures that the formulas presented below do not contain exceptional cases10.

Doubling-and-line operations. The doubling step in Miller’s algorithm takes as input the
tuple (U1, U2, U3, U4) = (X2, XZ,Z2, Y Z) corresponding to the point P = (X : Y : Z) ∈ P2 in
E(Fp2), and outputs the tuple (V1, V2, V3, V4) = (X2

2 : X2Z2 : Z2
2 : Y2Z2) corresponding to the

point [2]P = (X2 : Y2 : Z2) ∈ P2, as well as the 5 coefficients in the Miller line function l/v =
(lx ·x+ ly ·y+ l0)/(vxx+ v0) with divisor 2(P )− ([2]P )− (O) in Fq[x, y](E). The explicit formulas
are given as:

lx = 4U3
4 + 2U2U4(U1 − U3),

ly = 4U2U
2
4 ,

l0 = 2U1U4(U1 − U3),

vx = 4U2U
2
4 ,

v0 = U2(U1 − U3)2,

together with

V1 = (U1 − U3)4,

V2 = 4U2
4 (U1 − U3)2,

V3 = 16U4
4 ,

V4 = 2U4(U1 − U3)((U1 − U3)2 + 2U2(4U2 +A(U1 + U3))).

The above point doubling-and-line function computation can be computed in 9M + 5S + 7a + 1s.
The subsequent evaluation of the line function at the second argument of a pairing, the squaring
that follows, and the absorption of the squared line function into the running paired value costs
5M + 2S + 1a + 2s.

Tripling-and-parabola operations. The tripling-and-parabola operation has as input the tuple
(U1, U2, U3, U4) = (X2, XZ,Z2, Y Z) corresponding to the point P = (X : Y : Z) ∈ P2 in E(Fp2),
and outputs the tuple (V1, V2, V3, V4) = (X2

3 : X3Z3 : Z2
3 : Y3Z3) corresponding to the point [3]P =

(X3 : Y3 : Z3) ∈ P2, as well as the 6 coefficients in the Miller parabola function l/v = (ly · y+ lx,2 ·
x2 + lx,1x+ lx,0)/(vxx+ v0) with divisor 3(P )− ([3]P )−2(O) in Fq[x, y](E). The explicit formulas
are given as:

ly = 8U3
4 ,

lx,2 = U3(3U2
1 + 4U1AU2 + 6U1U3 − U2

3 ),

lx,1 = 2U2(3U2
1 + 2U1U3 + 3U2

3 + 6U1AU2 + 4A2U2
2 + 6AU2U3),

lx,0 = U1(−U2
1 + 6U1U3 + 3U2

3 + 4AU2U3),

vx = 8U3U
3
4 (3U2

1 + 4U1AU2 + 6U1U3 − U2
3 )4,

v0 = −8U2U
3
4 (3U2

1 + 4U1AU2 + 6U1U3 − U2
3 )2(U2

1 − 6U1U3 − 3U2
3 − 4AU2U3)2,

10 The input into the final iteration in the doubling-only pairing is a point of order 2, but (as is well-known
in the pairing literature) this last iterate is handled differently than all of the prior ones.
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together with

V1 = 8U3
4U1(−U2

1 + 6U1U3 + 3U2
3 + 4AU2U3)4,

V2 = 8U2U
3
4 (3U2

1 + 4U1AU2 + 6U1U3 − U2
3 )2(U2

1 − 6U1U3 − 3U2
3 − 4AU2U3)2,

V3 = 8U3U
3
4 (3U2

1 + 4U1AU2 + 6U1U3 − U2
3 )4,

V4 = −8U3(3U2
1 + 4U1AU2 + 6U1U3 − U2

3 )U1(−U2
1 + 6U1U3 + 3U2

3 + 4AU2U3)

·
(
16U1U3A

2U2
2 + 28U2

1AU2U3 + 28U1U
2
3AU2 + 4U3

3AU2 + 4U3
1AU2

+ 6U2
1U

2
3 + 28U3

1U3 + U4
3 + 28U1U

3
3 + U4

1

)
(U3 + U1 +AU2)2.

The above point tripling-and-parabola function computation can be computed in 19M + 6S +
15a + 6s. The subsequent evaluation of the line function at the second argument of a pairing, the
cubing that follows, and the absorption of the cubed line function into the running paired value
costs 10M + 2S + 4a.

Remark 4 (No irrelevant factors). It is common in the pairing literature to abuse notation and

define the order-n Tate pairing as en(P,Q) = fP (Q)(p
k−1)/n, where k is the embedding degree (in

our case k = 2), and fP has divisor (fP ) = n(P ) − n(O) in Fpk [x, y](E). This is due to an early
result of Barreto, Kim, Lynn and Scott [4, Theorem 1], who showed that the actual definition of

the Tate pairing, i.e., en(P,Q) = fP (DQ)(p
k−1)/n where DQ is a divisor equivalent to (Q)− (O),

could be relaxed in practical cases of interest by replacing the divisor DQ with the point Q. This
is due to the fact that the evaluation of fP at O in such scenarios typically lies in a proper subfield
of F∗pk , so becomes an irrelevant factor under the exponentiation to the power of (pk − 1)/n. In
our case, however, this is generally not the case because the coefficients in our Miller functions lie
in the full extension field F∗p2 . Subsequently, our derivation of explicit formulas replaces Q with

the divisor DQ = (Q) − (O), and if the evaluation of the Miller functions at O is ill-defined, we
instead evaluate them at the divisor (Q+T )−(T ) that is linearly equivalent to DQ, where we fixed
T = (0, 0) as the (universal) point of order 2. If Q = (xQ, yQ), then Q+ T = (1/xQ,−yQ/x2Q), so
evaluating the Miller functions at the translated point amounts to a permutation of the coefficients,
and evaluating the Miller functions at T = (0, 0) simply leaves a quotient of the constant terms.
These modifications are already reflected in the operation counts quoted above.

Remark 5. In the same vein as Remark 2, there is another possible speed improvement within
the pairing computation that is not currently exploited in our library. Recall that during the
generation of the torsion bases described in Section 3, the candidate basis point R is multiplied
by the cofactor n ∈ {nA, nB} to check whether it has the correct (full) order, and if so, R is kept
and stored as one of the two basis points. Following the idea of Scott [27, §9], the intermediate
multiples of R (and partial information about the corresponding Miller line functions) that are
computed in this cofactor multiplication could be stored in anticipation for the subsequent pairing
computation, should R indeed be one of the two basis points. Another alternative here would be
to immediately compute the pairings using the first two candidate basis points and to absorb the
point order checks inside the pairing computations, but given the overhead incurred if either or
both of these order checks fails, this could end up being too wasteful (on average).

4.2 Parallel pairing computation and the final exponentiation

In order to solve the discrete logarithms in the subgroup µn of n-th roots of unity in F∗p2 , we

compute the five pairings e0 := e(R1, R2), e1 := e(R1, P ), e2 := e(R1, Q), e3 := e(R2, P ), and
e4 := e(R2, Q). The first argument of all these pairings is either R1 or R2, i.e., all are of the form

fn,Ri(S)(p
2−1)/n for i ∈ {1, 2} and S ∈ {R2, P,Q}. This means that the only Miller functions

we need are fn,R1
and fn,R2

, and we get away with computing only those two functions for the
five pairing values. The two functions are evaluated at the points R2, P,Q during the Miller loop
to obtain the desired combinations. It therefore makes sense to accumulate all five Miller values
simultaneously.
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Computing the pairings simultaneously also becomes advantageous when it is time to perform
inversions. Since we cannot eliminate denominators due to the lack of a subfield group, we employ
the classic way of storing numerators and denominators separately to delay all inversions until
the very end of the Miller loop. At this point, we have ten values (five numerators and five
denominators), all of which we invert using Montgomery’s inversion sharing trick [21] at the total
cost of one inversion and 30 Fp2 multiplications. The five inverted denominators are then multiplied
by the corresponding numerators to give the five unreduced paired values. The reason we not only
invert the denominators, but also the numerators, is because these inverses are needed in the easy
part of the final exponentiation.

The final exponentiation is an exponentiation to the power (p2 − 1)/n = (p − 1)p+1
n . The

so-called easy part, i.e., raising to the power p − 1, is done by one application of the Frobenius
automorphism and one inversion. The Frobenius is simply a conjugation in Fp2 , and the inversion
is actually a multiplication since we had already computed all required inverses as above. The
so-called hard part of the final exponentiation has exponent (p+ 1)/n and needs to be done with
regular exponentiation techniques.

A nice advantage that makes the hard part quite a little easier is the fact that after a field
element a = a0 + a1 · i ∈ Fp2 has been raised to the power p− 1, it has order p+ 1, which means
it satisfies 1 = ap · a = a20 + a21. This equation can be used to deduce more efficient squaring
and cubing formulas that speed up this final part of the pairing computation (see §5.1 for further
details).

Finally, in the specific setting of SIDH, where p = nAnB − 1, we have that (p + 1)/nA = nB
and (p+ 1)/nB = nA. When nA and nB are powers of 2 and 3, respectively, the hard part of the
final exponentiation consists of only squarings or only cubings, respectively. These are done with
the particularly efficient formulas described in §5.1 below.

5 Efficient Pohlig-Hellman in µ`e

In this section, we describe how we optimize the Pohlig-Hellman [23] algorithm to compute discrete
logarithms in the context of public-key compression for supersingular-isogeny-based cryptosystems,
and we show that we are able to improve on the quadratic complexity described in [23]. A similar
result has already been presented in the more general context of finite abelian p-groups by Suther-
land [32]. However, our software employs a different optimization of Pohlig-Hellman, by choosing
small memory consumption over a more efficient computation, which affects parameter choices. We
emphasize that there are different time-memory trade-offs that could be chosen, possibly speeding
up the Pohlig-Hellman computation by another factor of two (see Remark 2).

Following the previous sections, the two-dimensional discrete logarithm problems have been
reduced to four discrete logarithm problems in the multiplicative group µ`e ⊂ F∗p2 of `e-th roots

of unity, where `, e ∈ Z are positive integers and ` is a (small) prime. Before elaborating on the
details of the windowed Pohlig-Hellman algorithm, we note that the condition `e | p + 1 makes
various operations in µ`e more efficient than their generic counterpart in F∗p2 .

5.1 Arithmetic in the cyclotomic subgroup

Efficient arithmetic in µ`e can make use of the fact that µ`e is a subgroup of the multiplicative
group Gp+1 ⊂ F∗p2 of order p + 1. Various subgroup cryptosystems based on the hardness of the

discrete logarithm problem have been proposed in the literature [30, 18], which can be interpreted in
the general framework of torus-based cryptography [25]. The following observations for speeding
up divisions and squarings in Gp+1 have been described by Stam and Lenstra [31, §3.23 and
Lemma 3.24].

Division in µ`e . Let p ≡ 3 (mod 4) and Fp2 = Fp(i), i2 = −1. For any a = a0 + a1 · i ∈ Gp+1,
a0, a1 ∈ Fp, we have that a · ap = ap+1 = 1, and therefore, the inverse a−1 = ap = a0 − a1 · i. This
means that inversion in µ`e can be computed almost for free by conjugation, i.e., a single negation
in Fp, and thus divisions become as efficient as multiplications in µ`e .
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Squaring in µ`e . The square of a = a0 + a1 · i can be computed as a2 = (2a20 − 1) + ((a0 +
a1)2 − 1) · i by essentially two base field squarings. In the case where such squarings are faster
than multiplications, this yields a speed-up over generic squaring in Fp2 .

Cubing in µ`e . As far as we know, a cubing formula in Gp+1 has not been considered in the
literature before. We make the simple observation that a3 can be computed as a3 = (a0 +a1 · i)3 =
a0(4a20 − 3) + a1(4a20 − 1) · i, which needs only one squaring and two multiplications in Fp, and is
significantly faster than a näıve computation via a squaring and a multiplication in µ`e .

5.2 Pohlig-Hellman

We now discuss the Pohlig-Hellman algorithm as presented in [23] for the group µ`e . Let r, g ∈ µ`e
be such that r = gα for some α ∈ Z. Given r and g, the goal is to determine the unknown scalar
α. Denote α as

α =

e−1∑
i=0

αi`
i (αi ∈ {0, . . . , `− 1}).

Now define s = g`
e−1

, which is an element of order `, and let r0 = r. Finally, define

gi = g`
i

(0 ≤ i ≤ e− 1)

and
ri =

ri−1
g
αi−1

i−1
(1 ≤ i ≤ e− 1).

A straightforward computation then shows that for all 0 ≤ i ≤ e− 1,

r`
e−(i+1)

i = sαi . (3)

As proven in [23], this allows to inductively recover all αi, by solving the discrete logarithms of
Equation (3) in the group 〈s〉 of order `. This can be done by precomputing a table containing all
elements of 〈s〉. Alternatively, if ` is not small enough, one can improve the efficiency by applying
the Baby-Step Giant-Step algorithm [28], at the cost of some more precomputation. For small
` the computation has complexity O(e2), while precomputing and storing the gi requires O(e)
memory.

5.3 Windowed Pohlig-Hellman

The original version of the Pohlig-Hellman algorithm reduces a single discrete logarithm in the
large group µ`e to e discrete logarithms in the small group µ`. In this section we consider an
intermediate version, by reducing the discrete logarithm in µ`e to e

w discrete logarithms in µ`w .
Let r, g, α as in the previous section, and let w ∈ Z be such that w | e. Note that it is not necessary
for e to be divisible by w. If it is not, we replace e by e− (e (mod w)), and compute the discrete
logarithm for the final e (mod w) bits at the end. However the assumption w | e improves the
readability of the arguments with little impact on the results, so we focus on this case here. Write

α =

e
w−1∑
i=0

αi`
wi (αi ∈ {0, . . . , `w − 1}),

define s = g`
e−w

, which is an element of order `w, and let r0 = r. Let

gi = g`
wi

(0 ≤ i ≤ e

w
− 1)

and
ri =

ri−1
g
αi−1

i−1
(1 ≤ i ≤ e

w
− 1). (4)
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A analogous computation to the one in [23] proves that

r`
e−w(i+1)

i = sαi (0 ≤ i ≤ e

w
− 1). (5)

Hence we inductively obtain αi for all 0 ≤ i ≤ e
w−1, and thereby α. To solve the discrete logarithm

in the smaller subgroup µ`w , we consider two strategies as follows.

Baby-Step Giant-Step in 〈s〉. As before, for small ` and w we can compute a table containing
all `w elements of 〈s〉, making the discrete logarithms in (5) trivial to solve. As explained in [28], the
Baby-Step Giant-Step algorithm allows us to make a trade-off between the size of the precomputed
table and the computational cost. That is, given some v ≤ w, we can compute discrete logarithms
in 〈s〉 with computational complexity O(`v) and O(`w−v) memory. Note that the computational
complexity grows exponentially with v, whereas the memory requirement grows exponentially with
w − v. This means that if we want to make w larger, we need to grow v as well, as otherwise the
table-size will increase. Therefore in order to obtain an efficient and compact algorithm, we must
seemingly limit ourselves to small w. We overcome this limitation in the next section.

Pohlig-Hellman in 〈s〉. We observe that 〈s〉 has order `w, which is again smooth. This allows
us to solve the discrete logarithms in 〈s〉 by using the original Pohlig-Hellman algorithm of §5.2.
However, we can also choose to solve the discrete logarithm in 〈s〉 with a second windowed Pohlig-
Hellman algorithm. Note the recursion that occurs, and we can ask what the optimal depth of this
recursion is. We further investigate this question in §5.4.

5.4 The complexity of nested Pohlig-Hellman

We estimate the cost of an execution of the nested Pohlig-Hellman algorithm by looking at the
cost of doing the computations in (4) and (5). Let Fn (n ≥ 0) denote the cost of an n-times nested
Pohlig-Hellman algorithm, and set F−1 = 0. Let w0, w1, . . . , wn, wn+1 be the window sizes, and set
w0 = e, wn+1 = 1 (note that n = 0 corresponds to the original Pohlig-Hellman algorithm). Again,
assume that wn | wn−1 | · · · | w1 | e, which is merely for ease of exposition. The first iteration has
window size w1, which means that the cost of the exponentiations in (5) is e

w1
−1∑

i=0

w1i

L =
1

2
w1

(
e

w1
− 1

)
e

w1
L =

1

2
e

(
e

w1
− 1

)
L,

where L denotes the cost of an exponentiation by `. The exponentiations in (4) are performed
with a scalar of size logαi ≈ w1 log `, which on average costs 1

2w1 log `M +w1 log `S. On average,
to do all e

w1
of them then costs

1

2
e log `M + e log `S.

We emphasize that for small wi and ` this is a somewhat crude estimation, yet it is enough to
get a good feeling for how to choose our parameters (i. e. , window sizes). We choose to ignore the
divisions, since there are only a few (see Remark 6) and, as we showed in §5.1, they can essentially
be done at the small cost of a multiplication. We also ignore the cost of the precomputation for
the g`

wi

, which is small as well (see Remark 7). To complete the algorithm, we have to finish the
remaining e

w1
(n− 1)-times nested Pohlig-Hellman routines. In other words, we have shown that

Fn ≈
1

2
e

(
e

w1
− 1

)
L +

1

2
e log `M + e log `S +

e

w1
Fn−1.

Now, by using analogous arguments on Fn−1, and induction on n, we can show that

Fn ≈
1

2
e

(
e

w1
+ . . .+

wn−1
wn

+ wn − n
)

L +
n+ 1

2
e log `M + (n+ 1)e log `S. (6)
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To compute the optimal choice of (w1, . . . , wn), we compute the derivatives,

∂Fn
∂wi

=
1

2
e

(
1

wi+1
− wi−1

w2
i

)
L (1 ≤ i ≤ n)

and simultaneously equate them to zero to obtain the equations

wi =
√
wi−1wi+1 (1 ≤ i ≤ n).

From this we can straightforwardly compute that the optimal choice is

(w1, . . . , wn) =
(
e

n
n+1 , e

n−1
n+1 , . . . , e

2
n+1 , e

1
n+1

)
. (7)

Plugging this back into the Equation (6), we conclude that

Fn ≈
1

2
e (n+ 1)

(
e

1
n+1 − 1

)
L +

n+ 1

2
e log `M + (n+ 1)e log `S.

Observe that F0 ≈ 1
2e

2, agreeing with the complexity described in [23]. However, as n grows, the
complexity of the nested Pohlig-Hellman algorithm goes from quadratic to linear in e, giving a
significant improvement.

Remark 6. We observe that for every two consecutive windows wi and wi+1, we need less than
wi

wi+1
divisions for (4). Breaking the full computation down, it is easy to show that the total number

of divisions is less than

e

w1
+

e

w1

(
w1

w2
+
w1

w2

(
· · ·+ wn−2

wn−1

(
wn−1
wn

+
wn−1
wn

wn

)))
,

which can be rewritten as

e

(
1

w1
+

1

w2
+ . . .+

1

wn
+

wn
wn−1

)
.

Now we note that wi+1 | wi, while wi+1 6= wi, for all 0 ≤ i ≤ n. As wn+1 = 1, it follows that
wn+1−i ≥ 2i for all 0 ≤ i ≤ n. Therefore

e

(
1

w1
+

1

w2
+ . . .+

1

wn
+

wn
wn−1

)
≤ e

(
1

2n
+

1

2n−1
+ . . .+

1

2
+ 1

)
< 2e.

Remark 7. As every table element is of the form g`
i

, where i is an integer such that 0 ≤ i ≤ e− 1,
we conclude that we need at most (e− 1)L to pre-compute all tables.

5.5 Discrete logarithms in µ2372

For this section we fix ` = 2 and e = 372. In this case L is the cost of a squaring, i. e. , L = S. To
validate the approach, we present estimates for the costs of the discrete logarithm computations
in µ2372 through a Magma implementation. In this implementation we count every multiplication,
squaring and division operation; on the other hand, some of these were ignored for the estimation
of Fn above. The results are shown in Table 1 for 0 ≤ n ≤ 4, choosing the window sizes as
computed in (7). The improved efficiency as well as the significantly smaller table sizes are clear,
and we observe that in the group µ2372 it is optimal to choose n = 3.

5.6 Discrete logarithms in µ3239

We now fix ` = 3 and e = 239 and present estimates for the costs of the discrete logarithm
computations in µ3239 . Here L is now the cost of a cubing in µ3239 . As explained in §5.1, this is
done at the cost of one multiplication and two squarings in Fp. As shown in Table 2, the optimal
case in µ3239 is also n = 3.
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# windows Fp2 Fp table size

n w1 w2 w3 w4 M S m s Fp2

0 – – – – 372 69 378 1 116 138 756 375

1 19 – – – 375 7 445 1 125 14 891 43

2 51 7 – – 643 4 437 1 931 8 847 25

3 84 21 5 – 716 3 826 2 150 7 652 25

4 114 35 11 3 1 065 3 917 3 197 7 835 27

Table 1. Estimations of Fn in µ2372 via a Magma implementation. Here m and s are the cost of multipli-
cations and squarings in Fp, while M = 3 ·m and S = 2 · s are the cost of multiplications and squarings
in Fp2 . The costs are averaged over 100 executions of the algorithm.

# windows Fp2 Fp table size

n w1 w2 w3 w4 M S C m s Fp2

0 – – – – 239 78 28 680 58 077 28 837 242

1 15 – – – 349 341 3 646 8 340 4 328 35

2 39 6 – – 612 660 2 192 6 220 3 512 22

3 61 15 3 – 656 836 1 676 5 320 3 349 17

4 79 26 8 3 954 1 252 1 427 5 717 3 932 16

Table 2. Estimations of Fn in µ3239 via a Magma implementation. Here m and s are the cost of multipli-
cations and squarings in Fp, while M = 3 ·m, S = 2 · s and C = m + 2 · s are the cost of multiplications,
squarings and cubings in Fp2 respectively. The costs are averaged over 100 executions of the algorithm.

6 Final compression and decompression

In this section we explain how to further compress a public key PK from Fp2×Z4
n to Fp2×Z2×Z3

n.
Moreover, we also show how to merge the key decompression with one of the operations of the
SIDH scheme, making much of the decompression essentially free of cost. For ease of notation we
follow the scheme described in [7], but everything that follows in this section generalizes naturally
to the theory as originally described in [8].

6.1 Final compression

Using the techniques explained in all previous sections, we can compress a triple (EA, P,Q) ∈ F3
p2

to a tuple (A,αP , βP , αQ, βQ) ∈ Fp2 × Z4
n such that

(P,Q) = (αPR1 + βPR2, αQR1 + βQR2) ,

where {R1, R2} is a basis of EA[n]. As described in [7], the goal is to compute 〈P + `mQ〉, for
` ∈ {2, 3} and a secret key m. Again, we note that the original proposal expects to compute
〈n1P + n2Q〉, for secret key (n1, n2), but we emphasize that all that follows can be generalized to
this case.

Now, since P is an element of order n, either αP ∈ Z∗n or βP ∈ Z∗n. It immediately follows that

〈P + `mQ〉 =

{
〈α−1P P + `mα−1P Q〉 if αP ∈ Z∗n
〈β−1P P + `mβ−1P Q〉 if βP ∈ Z∗n

.

Hence, to compute 〈P + `mQ〉, we do not necessarily have to recompute (P,Q). Instead, we can
compute (

α−1P P, α−1P Q
)

=
(
R1 + α−1P βPR2, α

−1
P αQR1 + α−1P βQR2

)
or (

β−1P P, β−1P Q
)

=
(
β−1P αPR1 +R2, β

−1
P αQR1 + β−1P βQR2

)
.
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Note that in both cases we have normalized one of the scalars. We conclude that we can compress
the public key to PK ∈ Fp2 × Z2 × Z3

n, where

PK =

{(
A, 0, α−1P βP , α

−1
P αQ, α

−1
P βQ

)
if αP ∈ Z∗n(

A, 1, β−1P αP , β
−1
P αQ, β

−1
P βQ

)
if βP ∈ Z∗n

.

6.2 Decompression

Let
(
A, b, α̃P , α̃Q, β̃Q

)
∈ Fp2×Z2×Z3

n be a compressed public key. Note that, by the construction

of the compression, there exists a γ ∈ Z∗n such that

(
γ−1P, γ−1Q

)
=


(
R1 + α̃PR2, α̃QR1 + β̃QR2

)
if b = 0,(

α̃PR1 +R2, α̃QR1 + β̃QR2

)
if b = 1.

(8)

The näıve strategy, analogous to the one originally explained in [2], would be to generate the basis
{R1, R2} of EA[n], use the public key to compute

(
γ−1P, γ−1Q

)
via (8), and finally compute

〈P + `mQ〉 = 〈γ−1P + `mγ−1Q〉,

where m ∈ Zn is the secret key. The cost is approximately a 1-dimensional and a 2-dimensional
scalar multiplication on EA, while the final 1-dimensional scalar multiplication is part of the SIDH
scheme.

Instead, we use (8) to observe that

〈P + `mQ〉 = 〈γ−1P + `mγ−1Q〉

=

〈(1 + `mα̃Q)R1 +
(
α̃P + `mβ̃Q

)
R2〉 if b = 0,

〈(α̃P + `mα̃Q)R1 +
(

1 + `mβ̃Q

)
R2〉 if b = 1.

Thus, since 1 + `mα̃Q, 1 + `mβ̃Q ∈ Z∗n (recall that n = `e), we conclude that

〈P + `mQ〉 =

〈R1 + (1 + `mα̃Q)
−1
(
α̃P + `mβ̃Q

)
R2〉 if b = 0,

〈
(

1 + `mβ̃Q

)−1
(α̃P + `mα̃Q)R1 +R2〉 if b = 1.

Decompressing in this way costs only a handful of field operations in Fp2 in addition to a 1-
dimensional scalar multiplication on EA. Since the scalar multiplication is already part of the
SIDH scheme, this makes the cost of decompression essentially the cost of generating {R1, R2}.
This is done exactly as explained in Section 3.

7 Implementation details

To evaluate the performance of the new compression and decompression, we implemented the
proposed algorithms in plain C and wrapped them around the SIDH software from [7]. This
library supports a supersingular isogeny class defined over p = 2372 · 3239 − 1, which contains
curves of order (2372 · 3239)2. These parameters target 128 bits of post-quantum security.

Table 3 summarizes the results after benchmarking the software with the clang compiler v3.8.0
on a 3.4GHz Intel Core i7-4770 Haswell processor running Ubuntu 14.04 LTS with TurboBoost
turned off. The details in the table include the size of compressed and uncompressed public keys,
the performance of Alice’s and Bob’s key exchange computations using compression, the perfor-
mance of the proposed compression and decompression routines, and the total costs of SIDH key
exchange with and without the use of compression. These results are compared with those from
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Implementation This work
Prior work

([2])

public key
uncompressed 564 768

(bytes) compressed
328 (Alice)

385
330 (Bob)

cycles

Alice’s keygen + shared key 80 NA

(cc ×106)

Alice’s compression 109 6,081

Alice’s decompression 42 539

Bob’s keygen + shared key 92 NA

Bob’s compression 112 7,747

Bob’s decompression 34 493

Total (no compression) 192 535

Total (compression) 469 15,395

Table 3. Comparison of SIDH key exchange and public key compression implementations targeting the
128-bit post-quantum and 192-bit classical security level. Benchmarks for our implementation were done
on a 3.4GHz Intel Core i7-4770 Haswell processor running Ubuntu 14.04 LTS with TurboBoost disabled.
Results for [2], obtained on a 4.0GHz Intel Core i7-4790K Haswell processor, were scaled from seconds to
cycles using the CPU frequency; the use of TurboBoost is not specified in [2]. The performance results,
expressed in millions of clock cycles, were rounded to the nearest 106 cycles.

the prior work by Azarderakhsh et al. [2], which uses a supersingular isogeny class defined over
p = 2387 · 3242 − 1.

As can be seen in Table 3, the new algorithms for compression and decompression are signifi-
cantly faster than those from [2]: compression is up to 66 times faster, while decompression is up
to 15 times faster. Similarly, the full key exchange with compressed public keys can be performed
about 30 times faster. Even though part of these speedups can indeed be attributed to the effi-
ciency of the original SIDH library, this only represents a very small fraction of the performance
difference (note that the original key exchange from the SIDH library is only 2.8 times faster than
the corresponding result from [2]).

Our experimental results show that the use of compressed public keys introduces a factor-2.4
slowdown to SIDH. However, the use of compact keys (in this case, of 330 bytes) can now be
considered practical; e.g., one round of SIDH key exchange is computed in only 150 milliseconds
on the targeted platform.
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mization of the Pohlig-Hellman algorithm, and the anonymous Eurocrypt reviewers for their useful
comments.
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