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Abstract. Subspace trail cryptanalysis is a very recent new cryptanaly-
sis technique, and includes differential, truncated differential, impossible
differential, and integral attacks as special cases.
In this paper, we consider PRINCE, a widely analyzed block cipher pro-
posed in 2012. After the identification of a 2.5 rounds subspace trail
of PRINCE, we present several (truncated differential) attacks up to 6
rounds of PRINCE. This includes a very practical attack with the low-
est data complexity of only 8 plaintexts for 4 rounds, which co-won the
final round of the PRINCE challenge in the 4-round chosen-plaintext
category. The attacks have been verified using a C implementation.
Of independent interest, we consider a variant of PRINCE in which
ShiftRows and MixLayer operations are exchanged in position. In par-
ticular, our result shows that the position of ShiftRows and MixLayer
operations influences the security of PRINCE. The same analysis applies
to follow-up designs inspired by PRINCE.

Keywords: PRINCE, Subspace Trails Cryptanalysis, Invariant Sub-
space Attack, Truncated Differential Attack, Practical Attack, MANTIS

1 Introduction

The area of lightweight cryptography involves ciphers with low implementa-
tion costs, adequate for use in smart devices that have very limited resources
(regarding memory, computing power, battery supply). Lightweight ciphers are
designed in order to ensure a high level of security, even in the presence of tight
constraints, that is they should be designed as a trade-off between security, cost
of implementation and performance.

One of the most analyzed recent lightweight block ciphers is PRINCE [7].
The structure was designed in order to have efficient instantaneously encryption
of a given plaintext, i.e. the entire encryption and decryption process should take
place within the shortest possible delay, using little chip area. Follow-up designs
(e.g. [2], [3] and [5]) were inspired by PRINCE.

This is the extended version of the article submitted by the authors to IACR and to
Springer-Verlag, which appears in the proceedings of Indocrypt 2016.



PRINCE has already gained a lot of attention from the academic commu-
nity, and some interesting cryptanalysis have been published. Most of the ear-
lier attacks came with with very high time and data complexity. In order to
encourage more practically relevant cryptanalysis, “The PRINCE Challenge”1

was organized, which started in (middle) 2014 and recently concluded with its
third round. The challenge involved two settings: a chosen-plaintext scenario
and the known-plaintext one. Since the competition aims at finding practical
attacks, submissions must respect some initial restrictions regarding data, time
and memory complexity: a particular emphasis is on restricting the amount of
data (plaintext) that is available to the attacker.

Studying practical attacks on round-reduced versions of ciphers is motivated
in many ways, see e.g. [8] for a survey of such reasons. A recent example is a
creative attack on a full version of a 2nd-round CAESAR candidate ELmD [4]
which in turn relies on an attack on AES reduced to 6 rounds. As use-cases of
PRINCE are particularly sensitive to the choice of the number of rounds (due
to latency constraints) it is very interesting to understand how much security
can be at most hoped for when rounds are reduced.

In this paper, we present truncated differential attacks on reduced PRINCE,
derived in a natural way exploiting so-called “subspace trails” of reduced-versions
of PRINCE. The subspace trail framework was recently introduced in [12] as
generalization of the invariant-subspace attack [16, 17], and found already ap-
plications in the cryptanalysis of AES [12] and Simpira [21]. While we describe
applications in various settings, we focus on 4-round reduced PRINCE. The re-
sult improves upon all earlier results and has the lowest data complexity while
still being entirely practical and practically verified. This attack also co-won the
final round of the PRINCE challenge in the 4-round chosen-plaintext category.

As a second important aspect, we study the security of PRINCE when the
rounds are slightly modified. Without going into the details here already, a round
of PRINCE is very similar to an AES one, with the main difference that the
ShiftRows operation is computed after the MixLayer one (instead of before). We
show that the order of these two operations influences the security of PRINCE,
and we show a possible way to overcome this problem. The same analysis applies
to other encryption schemes that follow the same design of PRINCE, as the low-
latency tweakable block cipher MANTIS [5] presented at CRYPTO 2016.

Review of Attacks on PRINCE. Known cryptanalysis of PRINCE includes
theoretical attacks and observations on round-reduced and full PRINCE, and
also a number of practical attacks on round-reduced versions. Here we review
those most relevant to our work.

Derbez and Perrin described in [9] attacks based on a Meet-in-the-Middle
approach, applicable (theoretically) up to 10 rounds of the algorithm. In [18],
Morawiecki introduced attack relying on Integral and Higher-Order-Differential

1 https://www.emsec.rub.de/research/research_startseite/prince-challenge/



Cryptanalysis, up to 7 rounds2. This attack is based on a 3.5 round distinguisher
on PRINCE with one active nibble. Starting from this work, Posteuca and Ne-
gara [19] found a 4.5 round integral distinguisher for PRINCE which needs three
(not arbitrary) active nibbles instead of one.

Due to the involution structure of PRINCE, a modified version of a differ-
ential attack was presented in [1]. Instead of choosing pairs of plaintexts with a
known difference and studying its propagation through the encryption process
(as in a classical differential attack), authors are able to recover the key using
the difference among the nibbles of the plaintexts and of the respective cipher-
texts (the nibbles are in the same positions). A related work about truncated
differentials [15] has been presented in [23], which showed the existence of 5- and
6-round truncated differential distinguishers.

Our Contribution. We describe practical key-recovery attacks based on sub-
space trails of PRINCE which resemble truncated differentials, and we analyze
in details the security of PRINCE-like ciphers focusing on the order of ShiftRows
and MixLayer operations.

We base our work on the Subspace Trail Cryptanalysis, a technique that
was recently introduced in [12]. Starting from [12], in Sect. 3 we investigate
the behavior of subspaces in PRINCE. At a high level, we fix a subspace of
plaintexts that maintain predictable properties after repeated applications of a
key-variant round function. In other words, we identify (constant dimensional)
subspace trails, that is a coset of a plaintext subspace that encrypts to proper
subspaces of the state space over several rounds.

In Sect. 4 we present an “equivalent” version of PRINCE (with respect to
the attacks we consider), which allows a better understanding of the design of
this encryption scheme. As we have already mentioned, a round of PRINCE
is very similar to an AES one, with the main difference that the ShiftRows
operation is computed after the MixLayer one. Our analysis shows that if these
two operations are exchanged of position (to have something similar to AES),
the attacks present in literature can usually cover more rounds with the same (or
even less) complexity. As example, for this modified version it is possible to set up
a subspace trail that covers one more round. Thus, we present how to modify the
middle-rounds of PRINCE in order to obtain a version equivalent to the original
one (also from the security point of view) and where the ShiftRows operation
is computed before the MixLayer one. Similar analysis applies also to other
encryption schemes that follows the (same) design of PRINCE. In particular, a
detailed analysis for the MANTIS encryption scheme is presented in App. D.
Finally, we highlight that this problem arises only for PRINCE-like ciphers, i.e.
the security of AES-like cipher is not influenced by the position of the ShiftRows
operation with respect to the MixLayer, while PRINCE-like ciphers are.

In the following sections, we use the found subspace trails as starting points to
set up competitive key recovery attacks to round-reduced PRINCE. In particular,

2 Table 1 of [18] contains an error about the data complexity and the time complexity
for the Integral Attack on 4 rounds. The correct values for this attack (as also
confirmed by the author of [18]) are those reported in Table 1 of this paper.



Table 1. Comparison table of attacks on 4-round PRINCE. These are the four central
rounds, that is the middle rounds, one round before and one round after. Data com-
plexity is measured in number of required chosen plaintexts (CP). Time complexity is
measured in round-reduced PRINCE encryption equivalents (E). Memory complexity
is measured in plaintexts (64 bits).

Technique Data (CP) Computation (E) Memory Reference

Trunc. Diff. Attack (EE) 8 = 23 218.25 small Sect. 5

Bit-pattern Integral 48 = 25.6 222 small [18]

(Pre-Computed) Integral 64 = 26 27.4 small [20]

Integral 160 = 27.32 29.32 small [18]

Trunc. Diff. Attack (EB) 430 = 28.75 28.15 small App. G

Diff. / Logic 210 5 sec � 227 [9]

Differential 232 256.26 248 [1]

(EE: Extension at End - EB: Extension at Beginning)

we present two different truncated differential key-recovery attacks on 3 rounds
of PRINCE. The idea - described at the beginning of Sect. 5 and in details
in App. E - is simple. Assume to fix a coset of a particular subspace C of the
plaintexts space. After 2.5 rounds, each element of a (fixed) coset of C belongs
to a coset of another particular subspace M, i.e. a coset of C is mapped into a
coset of M after 2.5 rounds. Equivalently, if two elements belong to the same
coset of C, after 2.5 rounds they belong to the same coset of M independently
of the secret key. Thus, the key of the final round must satisfy the condition
that, given two ciphertexts (whose plaintexts belong to the same coset of C),
they belong to the same coset of M half round before. As main result, we show
that a truncated differential attack that exploits relationships among the nibbles
is (much) more powerful than one that works independently on each nibble.

In Sect. 5, we show how to extend this attack to 4 rounds by adding one
round at the end. This attack needs only 8 chosen plaintexts and it is the best
one from the point of view of the data complexity (the computational cost is
also very competitive), improving previous results of a factor 6 for the data
complexity and of a factor 24 for the computational cost. All these attacks have
been verified using a C/C++ implementation. A comparison of all known state
of art of attacks on PRINCE and our attacks is given in Table 1.

It is also possible to extend the attack on 3 rounds at the beginning (see
App. G) which leads to higher data but lower time complexity. Using both the
extension at the end and at the beginning, it is possible to attack 5- and 6-
rounds of PRINCE (see App. H).

Practical Verification of 3- and 4-Rounds Attacks. We practically verified
all the 3 rounds attacks described in this paper and the 4 rounds attack described
in Sect. 5, using a C/C++ implementation3. For all the attacks, the full key
recovery takes a fraction of a second on a desktop PC. We also practical verified

3 The source code is available at https://github.com/Krypto-iaik/PRINCE_Attacks



Fig. 1. A scheme of the PRINCEcore cipher.

some of the attacks (e.g. the square one) present in literature against the modified
versions of PRINCE presented in Sect. 4.

2 Description of PRINCE

PRINCE [7] is a lightweight cipher with a state size of 64 bits - the 64-bits state
of PRINCE can be visualized as a 4 × 4-matrix, where every cell represents a
nibble - and a key length of 128 bits. It is based on the so-called FX construction
[14], where one part of the key is used for a core cipher F , which contains the
major encryption process, and the remaining parts are used for whitenings before
and after the core: FXk,k1,k2 = k2 ⊕ Fk(x⊕ k1). First, the 128-bit key k is split
into two 64-bit words (i.e. k = (k0||k1)), and then it is expanded into 192 with
a simple linear transformation: (k0||k′0||k1) := (k0||(k0 ≫ 1) ⊕ (k0 � 63)||k1).
The 64-bit subkeys k0 and k′0 are used as whitening keys to the underlying block
cipher called PRINCEcore, while the 64-bit key k1 is used for the core.

The core cipher “PRINCEcore” is a substitution-permutation network com-
posed of 12 rounds (see Fig. 1). Every round in PRINCE consists of an S-Box
layer, a Linear layer, a ShiftRows operation, a key addition and the addition of
a round constant:

– S-Box layer: Every nibble in the internal state is replaced by using a 4×4-
bit S-Box, which has algebraic degree 3 and which is differential 4-uniform.

– Linear layer M′: In the linear layer, the state is multiplied by an involutive
64× 64-matrix, a kind of equivalent of MixColumns in AES. More precisely,
two 16 × 16 submatrices M̂ (0) and M̂ (1) are arranged on the diagonal of a
bigger matrix, where every submatrix affects a 16-bit chunk xi of the 64-bit
state x = (x1||x2||x3||x4):

M ′ · x = (M̂ (0) · x1||M̂ (1) · x2||M̂ (1) · x3||M̂ (0) · x4).

– ShiftRows Operation SR: Equal to the one in the AES cipher.
– A bit-wise XOR with a round constant RCi, for i = 0, ..., 11.
– A bit-wise XOR with the secret key k1.



In the last 5 rounds (the backward rounds), the order of operations is inverse
with respect to the first 5 rounds (the forward rounds), where only the round
constants differ. The middle rounds consist of three key-less operations: an S-Box
layer, a matrix multiplication with M ′ and an inverse S-Box layer. Since the ma-
trix M ′ is self-inverting (i.e. M ′ = M ′−1), the same linear layer M ′ operation is
used in forward and backward rounds. Like AES, the combination of matrix mul-
tiplication and shifting provides full diffusion after only two rounds. Moreover,
the varying round constants RCi supplement the round transformation in order
to prevent slide attacks. The difference between RCi⊕RC11−i is always equal to
a constant value α. Since the round constants satisfy RCi⊕RC11−i = α and since
M ′ is an involution, the core cipher has the so called α-reflection property, i.e. the
core cipher is such that the inverse of PRINCEcore parametrized with k is equal
to PRINCEcore parametrized with k ⊕ α: D(k0||k′0||k1)(·) = E(k′0||k0||k1⊕α)(·).

For the following, we use the term “PRINCE-like cipher” to denote a cipher
with middle rounds, r forward rounds and r backwards rounds, and which has
the α-reflection property - examples are MANTIS [5] or QARMA [2].

Notation. In our attack, we suppose that the 64-bit state is organized as a 16×1
array of nibbles, and we use the notation [z] to denote the nibble in position z
(the z-th nibble is in row r = z mod 4 and in column c = (z−r)/4). We denote by
R one round of PRINCE, while we denote i rounds by R(i) (without distinction
between the forward and the backward direction). To simplify the notation we

denote by super-SBox the middle rounds, by k̂ the key of the final round and
by k̃ the key of the first round, that is:

super-SBox(·) = S-Box−1 ◦M ′ ◦ S-Box(·), k̂ := k1 ⊕ k′0 ⊕ α, k̃ := k1 ⊕ k0.

We attack round-reduced variants of PRINCE. In case of an even number of
rounds, we keep the symmetry of the cipher.

3 Subspace Trails

Let F denote a round function in a iterative block cipher and let V ⊕ a denote
a coset of a vector space V . Then if F (V ⊕ a) = V ⊕ a we say that V ⊕ a is
an invariant coset of the subspace V for the function F . This concept can be
generalized to trails of subspace.

Definition 1. Let (V1, V2, ..., Vr+1) a set of r + 1 subspaces with dim(Vi) ≤
dim(Vi+1). If for each i = 1, ..., r+1 and for each ai ∈ V ⊥i , there exists (unique)
ai+1 ∈ V ⊥i+1 such that F (Vi ⊕ ai) ⊆ Vi+1 ⊕ ai+1, then (V1, V2, ..., Vr+1) is a
subspace trail of length r for the function F . If the previous relation holds with
equality, then the trail is called a constant-dimensional subspace trail.

We refer to [12] for more details about the concept of subspace trails. Our
treatment here is however meant to be self-contained.

In the following, we present two subspace trails for 2.5 rounds of PRINCE.
The first one is composed of the middle rounds (without the final S-Box−1) and



1 round before it, while the second one is composed of the middle rounds and 0.5
round after it. In particular, this second one is composed of an invariant subspace
of the middle rounds. All the proofs of the theorems and of the propositions of
this section can be found in App. A.

3.1 Subspaces of PRINCE

In this section, we define the subspaces of PRINCE, analogous to those of AES
presented in [12]. For the following, let E = {e[0], ..., e[15]} denote the unit
vectors of F16

24 (e.g. ei has a single 1 in position i). Moreover, we recall that given
a generic subspace X, two different cosets X ⊕ a and X ⊕ b (i.e. a 6= b) are
equivalent if and only if a⊕ b ∈ X.

For each i = 0, ..., 3, let Ci the column subspace of dimension 16 defined as:

Ci = 〈e[4 · i], e[4 · i+ 1], e[4 · i+ 2], e[4 · i+ 3]〉. (1)

For instance, C0 correspond to matrix representation:

C0 =

{
x 0 0 0
z 0 0 0
w 0 0 0
y 0 0 0

 ∣∣∣∣∀x, y, z, w ∈ F24

}
≡


x 0 0 0
z 0 0 0
w 0 0 0
y 0 0 0

 .
For each i = 0, ..., 3, let Di the diagonal subspace and IDi the inverse-

diagonal subspace - both of dimension 16 - defined as:

Di = SR(Ci), IDi = SR−1(Ci) (2)

For instance, D0 and ID0 correspond to matrix representations:

D0 ≡


x 0 0 0
0 0 0 y
0 0 w 0
0 z 0 0

 , ID0 ≡


x 0 0 0
0 z 0 0
0 0 w 0
0 0 0 y

 .
Finally, let Mi the mixed subspace and IMi the inverse-mixed subspace -

both of dimension 16 - defined as

Mi := M ′(Di), IMi := M ′(IDi) (3)

For instance, M0 and IM0 correspond to matrix representations:

M0 ≡


α3(x) α3(z) α0(w) α2(y)
α2(x) α2(z) α3(w) α1(y)
α1(x) α1(z) α2(w) α0(y)
α0(x) α0(z) α1(w) α3(y)

 , IM0 ≡


α3(x) α1(z) α0(w) α0(y)
α2(x) α0(z) α3(w) α3(y)
α1(x) α3(z) α2(w) α2(y)
α0(x) α2(z) α1(w) α1(y)


where αi(·) are defined as

αi(x) = x ∧ (0x2i ⊕ 0xf), (4)



and where ∧ is the and (logic) operator.
Let I ⊆ {0, 1, 2, 3}. Subspaces CI , DI , IDI , MI and IMI are defined as:

CI =
⊕
i∈I
Ci, DI =

⊕
i∈I
Di, IDI =

⊕
i∈I
IDi, MI =

⊕
i∈I
Mi, IMI =

⊕
i∈I
IMi.

Note that CI is an invariant subspace for the middle-rounds of PRINCE, that
is for each a ∈ C⊥I , there exists unique b ∈ C⊥I such that

S-Box−1 ◦M ′ ◦ S-Box(CI ⊕ a) = CI ⊕ b. (5)

As noticed in [22] and in [9], the middle rounds of PRINCE have 232 fixed points
(x is a fixed point of a function f iff f(x) = x). In particular, in [9] authors
showed that if a plaintext of PRINCE “corresponds” to a fixed point of the
middle rounds, then the encryption scheme is much simplified, since the 4 center
rounds - minus the first and the last key addition - become a simple S-Box
layer. However, no key-recovery attack has been showed: due to the presence
of the secret key, it is not possible to choose a priori the plaintexts in order
to satisfy the previous requirement. In our case, we show how to exploit the
invariant subspace (that is, set of points instead of a single point) in order to
mount powerful attacks on reduced-round PRINCE.

3.2 Subspace Trails of PRINCE

In the following, we present several subspace trails for round-reduced PRINCE.

Subspace Trail for 1+1.5 rounds of PRINCE. Let R(1+1.5)(·) defined as:

R(1+1.5)(·) := M ′ ◦ S-Box ◦R ◦ARK(·), (6)

i.e. the middle rounds without the final S-Box (denoted by “1.5”) and the pre-
vious round (denoted by “1”).

Theorem 1. Let I ⊆ {0, 1, 2, 3}. For each a ∈ C⊥I , there exists unique b ∈ M⊥I
such that R(1+1.5)(CI ⊕ a) = MI ⊕ b, where b depends on a and on the secret
key. Equivalently:

Prob(R(1+1.5)(x)⊕R(1+1.5)(y) ∈MI |x⊕ y ∈ CI) = 1. (7)

This means that a coset of CI is mapped into a coset of MI after 2.5 rounds:

CI ⊕ a
R◦ARK(·)−−−−−−−→ DI ⊕ b

M ′◦S-Box(·)−−−−−−−−→MI ⊕ c.

Thus, a subspace trail for 1+1.5 rounds of PRINCE is composed by the subspaces
{CI ,DI ,MI}. Since S-Box(MI) is mapped into a subspace of dimension 64 (that
is all the space), it is not possible to extend the found subspace trail anymore.
Moreover, observe that if X is a generic subspace, X ⊕a is a coset of X and if x
and y are two elements of the (same) coset X ⊕ a, then x⊕ y ∈ X. This justifies
the probability (7).



Subspace Trail for 2+0.5 rounds of PRINCE. Let R(2+0.5)(·) defined as:

R(2+0.5)(·) := M ′ ◦ SR−1 ◦ARK ◦ super-SBox ◦ARK(·), (8)

i.e. the middle rounds (“2”) and the linear part of the next round (“0.5”).

Theorem 2. Let I ⊆ {0, 1, 2, 3}. For each a ∈ C⊥I , there exists unique b ∈
IM⊥I such that R(2+0.5)(CI ⊕ a) = IMI ⊕ b, where b depends on a and on the
secret key. Equivalently:

Prob(R(2+0.5)(x)⊕R(2+0.5)(y) ∈ IMI |x⊕ y ∈ CI) = 1. (9)

This means that a coset of CI is mapped into a coset of IMI after 2.5 rounds:

CI ⊕ a
super-SBox◦ARK(·)−−−−−−−−−−−−−→ CI ⊕ b

M ′◦SR−1◦ARK(·)−−−−−−−−−−−−→ IMI ⊕ c.

Thus, a subspace trail for 2+0.5 rounds of PRINCE is composed by the subspaces
{CI , IMI}.

Impossible Subspace Trail for PRINCE. The previous subspace trails hold
with probability 1. It’s also possible to describe a subspace trail with probability
0 (an “impossible subspace trail”) for 4.5 rounds of PRINCE, and to set up a
known-plaintext impossible differential attack on 6 rounds of PRINCE. More
details are given in App. B.

4 An “Equivalent” Representation of PRINCE

In this section, we present an “equivalent” representation of PRINCE from the
point of view of the security. The PRINCEcore round is very similar to the
AES round. The major difference between them is that in a PRINCE round the
MixLayer operation is performed before the ShiftRows operation, while in an
AES round is the opposite.

In order to better understand the PRINCE algorithm, we evaluate the se-
curity of a version of PRINCE - called in the following PRINCE′ - where these
two linear operations are exchanged in position, both in the forward and in the
backward rounds. First of all, in this case it is possible to set up a subspace trail
for 3.5 rounds of PRINCE′ (i.e. one more round than original PRINCE):

IDI ⊕a
R◦ARK(·)−−−−−−−→ CI ⊕ b

super-SBox(·)−−−−−−−−−→ CI ⊕ c
M ′◦SR−1◦ARK(·)−−−−−−−−−−−−→ IMI ⊕d, (10)

where I ⊆ {0, 1, 2, 3}, using the property that CI is an invariant subspace for the
middle rounds. The proof follows immediately by the definition of the subspaces
and by the order of the ShiftRows and of the MixLayer operations.

Also due to the following cryptanalysis of PRINCE′ against the most popular
attacks present in literature, we can conclude that this version of PRINCE is
weaker than the original one (as the designers, we don’t consider the related key
attacks for this security analysis):



– Differential/Linear Cryptanalysis: For the original PRINCE, “any differen-
tial characteristic and any linear-trail over 4 consecutive rounds of PRINCE
has at least 16 active S-Boxes” (see App. C of [7] for more details). For the
modified version PRINCE′ and using the same argumentation given in [7],
the number of active S-Boxes over 4 consecutive rounds is at least 12 instead
of 16.

– Square Attack: For the original PRINCE, the balanced property holds for 4.5
rounds (2 forward rounds + middle rounds + 1 backward rounds) starting
with three input active nibbles which lie on the same column (see [19] for
more details). For PRINCE′, the balanced property holds for 5.5 rounds (2
forward rounds + middle rounds + 2 backward rounds) starting with a single
input active nibble (result practical verified).

– Meet-in-the-Middle Attack: The Meet-in-the-Middle Attacks presented in [9]
are not influenced by the positions of the MixLayer and of the ShiftRows
operations, that is there are analogous meet-in-the-middle attacks for this
modified version similar to the ones presented for the original PRINCE.

As a consequence, the position of the ShiftRows and of the MixLayer operations
influences the security of this encryption scheme.

A version of PRINCE - called in the following PRINCE] - with the same
security of the original one and where ShiftRows and MixLayer operations are
ordered as in AES can be obtained by changing the original middle-rounds of
PRINCE with the following one:

middle-rounds(x) = S-Box−1 ◦ SR−1 ◦M ′ ◦ SR ◦ S-Box(x), (11)

and with some more slight modifications, as we show in details in the following.
By definition of PRINCE:

p
ARK(·)−−−−−→ ARK◦M ′◦SR◦ S-Box(·)−−−−−−−−−−−−−−−→ ...

ARK◦M ′◦SR◦ S-Box(·)−−−−−−−−−−−−−−−→ S-Box−1◦M ′◦ S-Box(·)−−−−−−−−−−−−−−→
middle-rounds

S-Box−1◦SR−1◦M ′◦ARK(·)−−−−−−−−−−−−−−−−−−→ ...
S-Box−1◦SR−1◦M ′◦ARK(·)−−−−−−−−−−−−−−−−−−→ ARK(·)−−−−−→ c.

Exchanging S-Box, ARK and SR operations, and applying a SR−1 operation
on the plaintext and a SR on the ciphertext, one obtains:

p′
ARK′(·)−−−−−→ ARK′◦SR◦M ′◦ S-Box(·)−−−−−−−−−−−−−−−−→ ...

ARK′◦SR◦M ′◦ S-Box(·)−−−−−−−−−−−−−−−−→ S-Box−1◦SR◦M ′◦SR−1◦ S-Box(·)−−−−−−−−−−−−−−−−−−−−−−→
middle-rounds

S-Box−1◦M ′◦SR−1◦ARK′′(·)−−−−−−−−−−−−−−−−−−−→ ...
S-Box−1◦M ′◦SR−1◦ARK′′(·)−−−−−−−−−−−−−−−−−−−→ ARK′′(·)−−−−−−→ c′,

where ARK ′(·) := · ⊕ SR−1(k), ARK ′′(·) := · ⊕ SR(k), p′ = SR−1(p) and c′ =
SR(c). PRINCE] is an equivalent representation of PRINCE, where ShiftRows
operation is performed before the MixColumns one (as in AES) and where the
super-SBox operation is a little modified, for the cost of 2 additional ShiftRows
operations. With respect to the original PRINCE, a (slight) different key sched-
ule is used and SR−1 (respectively SR) is applied on p (respectively on c).



Fig. 2. A scheme of the PRINCEcore of the cipher PRINCE?, analogous (but not
completely equivalent - see the text for details) to the original PRINCE.

In this equivalent representation, a ShiftRows operation (respectively Inverse-
SR) is applied to the key in the forward rounds (respectively backwards). Thus,
we finally define another version of PRINCE - called in the following PRINCE? -
depicted in Fig. 2, which is analogous to the original PRINCE but not completely
equivalent, since no ShiftRows operation (respectively Inverse-SR) is applied to
the key in the forward rounds (respectively backward). Thus, we claim that
PRINCE? has the same security of the original PRINCE. Note that the order of
ShiftRows and MixLayer operations of PRINCE? is the same of AES. In App. C,
we present a related key attack that exploits this equivalent version of PRINCE.

Conclusion and AES-like Ciphers. Our analysis can be applied in a natu-
ral way to other PRINCE-like ciphers, as for example the MANTIS encryption
scheme [5] - see App. D for details and [10], where a similar but independent anal-
ysis with analogous results and conclusion has been proposed - or the QARMA
block cipher family [2].

By our analysis, the order of the MixLayer and the ShiftRows operations
influences the security of PRINCE-like ciphers. Thus, it seems advisable to use
only one of the two following options for future designs of PRINCE-like schemes:

– the middle-rounds as in the original PRINCE cipher (that is, S-Box−1 ◦
M ′◦ S-Box(·)) and the MixLayer computed before (respectively after) the
ShiftRows in the forward (respectively backward) rounds;

– the middle rounds as in the PRINCE? cipher (that is, S-Box−1 ◦SR−1 ◦M ′ ◦
SR ◦ S-Box(·)) and the ShiftRows computed before (respectively after) the
MixLayer in the forward (respectively backward) rounds.

Finally, we emphasize that this analysis holds due to the particular structure
of PRINCE-like cipher. In particular, consider key-recovery attacks that are in-
dependent of the key-schedule4, excluding related-key attacks. For an AES-like
cipher (with r identical rounds and without middle rounds), the position of the

4 We observe that attacks that exploit the key-schedule can be affected by the order of
the linear operations. To better highlight this fact, we refer to the analysis done in [11]



ShiftRows operation with respect to the MixLayer one does not influence the se-
curity. Indeed, consider the AES encryption scheme (where the final MixColumns
operation can also be omitted):

p
ARK−−−→ ARK◦MC◦SR◦S-Box(·)−−−−−−−−−−−−−−−→ ...

ARK◦MC◦SR◦S-Box(·)−−−−−−−−−−−−−−−→ c.

Changing the position of SR, ARK and S-Box, and applying a ShiftRows opera-
tion to the ciphertexts (note that this is a linear operation, so it doesn’t influence
the security of the encryption scheme), one obtains:

SR(p)
ARK′′−−−−→ ARK′′◦SR◦MC◦S-Box(·)−−−−−−−−−−−−−−−−→ ...

ARK′′◦SR◦MC◦S-Box(·)−−−−−−−−−−−−−−−−→ c,

where ARK ′′(·) = ·⊕SR(k) and k is the secret key. It follows that an equivalent
version of AES - called for consistency AES? - defined as

p
ARK−−−→ ARK◦SR◦MC◦S-Box(·)−−−−−−−−−−−−−−−→ ...

ARK◦SR◦MC◦S-Box(·)−−−−−−−−−−−−−−−→ c,

where ShiftRows operation is computed after the MixColumns one, has the same
security of the original version.

5 Truncated Differential Attack on 4 Rounds of PRINCE

Using the first 2.5 rounds subspace trail presented in previous section, it is
possible to set up an attack on 3 rounds of PRINCE:

p
R(·)−−→ q

M ′◦ S-Box(·)−−−−−−−−→ s
S-Box−1(·)−−−−−−−→ c,

where the plaintexts are chosen in the same coset of CI , and the states s belong
in the same coset of MI . Briefly, given a pair of ciphertexts (c1, c2), the idea is

to find the final key using the condition S-Box(c1 ⊕ k̂)⊕ S-Box(c2 ⊕ k̂) ∈ MI .

When the full key k̂ has been found, to find k1 the idea is to use plaintexts in the
same coset of DI , to decrypt the corresponding ciphertexts and to find the key
k1 using the condition that S-Box(q1 ⊕ k1)⊕ S-Box(q2 ⊕ k1) ∈ SR(MI), where
q := super-SBox−1(c) ⊕ R1. The attack is presented in details in App. E, and
here we focus on the attack on 4 rounds of PRINCE (giving all the details).

To attack 4 rounds, a possibility is to extend the attack on 3 rounds (the mid-
dle rounds and one round before) at the end. Consider four rounds of PRINCE:

p
R(·)−−→ p̂

M ′◦ S-Box(·)−−−−−−−−→ q
S-Box−1(·)−−−−−−−→ s

R−1(·)−−−−→ c,

about the effect of the omission of the final MixColumns operation. While in general
key-recovery attacks are not influenced by the presence of the last MixColumns
operation, some of the attacks that exploit it (e.g. Meet-in-the-Middle attacks) are
affected, since a different key schedule can affect the amount of key material that
has to be guessed in key-recovery attacks (also in the standard single-key model). In
a similar way, the same analysis holds also when the positions of the MixColumns
and ShiftRows operations are exchanged.



where p ∈ CI⊕a (for a ∈ C⊥I fixed). Given a pair of plaintexts/ciphertexts (where
the plaintexts belong to the same coset of CI), the idea is simply to guess the
key of the final round, to decrypt partially one round, and to find the key of the
third round such that the two corresponding texts belong to the same coset of
MI . That is, if k̂ is a candidate of the final key (as we show in the following,
the attacker must test all the possibilities) and if Rk̂(·) denotes the final round

with key k̂, given a pair (c1, c2) the right key k0 must satisfy the condition:

S-Box(Rk̂(c1)⊕ k1 ⊕RC1 ⊕ α)⊕ S-Box(Rk̂(c2)⊕ k1 ⊕RC1 ⊕ α) ∈MI .

Candidates k̂ and k1 of the key must be tested checking if this condition is satis-
fied for other pairs of ciphertexts. To find them, the idea is to work independently
on each column of MI . For the following, we limit to the case I = {0}.

First Step of the Attack. Let c1 and c2 two ciphertexts such that the cor-
responding plaintexts belong to the same coset of C0, that is p1 ⊕ p2 ∈ C0. As
for the attack on 3 rounds, the idea is to work independently on each column
of the key, due to the fact that the columns of M0 depend on different and
independent variables. Initially the attacker guesses 1 column (that is 4 nibbles)

of the final key, as for example k̂[0], k̂[1], k̂[2] and k̂[3], and she uses them to
partially decrypt c1 and c2, that is she computes 4 nibbles of s1 := Rk̂(c1) and
of s2 := Rk̂(c2). Note that the attacker cannot guess 4 arbitrary nibbles of the
final key but an entire column, since she has to compute the Linear Layer M ′.
Moreover, since the attacker can not impose any restriction/condition on the
final key, she has to repeat the next steps for each values of these four nibbles
of the final key, which are (24)4 = 216 possible values in total.

Due to the ShiftRows operation, after one-round of decryption these four
nibble belong to different column. To find four nibbles of k0, the attacker must
work independently on each nibble (note that since they lie on different columns,
no relationship holds among them, due to the definition of MI). For example,
using the definition of M0, the nibble k1[0] has to satisfy the condition:

(S-Box(s1[0]⊕ k1[0]⊕RC2[0])⊕ S-Box(s2[0]⊕ k1[0]⊕RC2[0]))∧ 0x8 = 0, (12)

and similar conditions hold for the nibbles k1[7], k1[10] and k1[13]. To find these
4 nibbles, the attacker needs at least four different pairs of chosen ciphertexts
(each of these conditions involves only one bit - it is satisfied with prob. 2−1).

Since these found 4 nibbles of k1 (which are k1[0], k1[7], k1[10], k1[13]) depend

on the 4 guessed nibbles of k̂ (which are k̂[0], ..., k̂[3]), for each combination of

the first column of k̂, the attacker finds on average one combination of the 4
nibbles of k1, that is 216 in total. To discover the right combination, the attacker
has to test these values using other pairs of ciphertexts, that is given other pairs
of ciphertexts (c?, c′) she has to check if the corresponding texts (q?, q′) - where
q := S-Box(s⊕k1⊕RC2) - belong to the same coset ofM0. Since each condition

involves one bit and since there are 216 combinations for the 4 nibbles of k̂ and
k1, she needs at least other four different pairs to check the found values (since



216 × (2−4)4 = 1). Thus the attacker needs at least eight different pairs for this
first step. To save memory, a good idea is to check immediately the found values
of k̂ and k1 with other pairs of ciphertexts: in this way, the attacker doesn’t need
to store anything.

Second Step of the Attack. When the attacker has found one nibble for each
column of k1, the idea is to use the relationships that hold among the nibbles
of the same column to discover the other nibbles of the key much faster than
working on each nibble independently by the others.

As before, the attacker guesses one column (e.g. the second one) of k̂, and
decrypts partially the pair of ciphertexts. In order to find other 4 nibbles of k1
(one per column), the idea is to use the relationships that hold among the nibbles
of the same column given in Theorem 7 - App. E, and not to work independently
on each nibble. For example, the attacker can find the nibble of the first column
k1[1] using the relationship:

(S-Box(s1[0]⊕ k1[0]⊕RC2[0])⊕ S-Box(s2[0]⊕ k1[0]⊕RC2[0])) ∧ 0xb =

=(S-Box(s1[1]⊕ k1[1]⊕RC2[1])⊕ S-Box(s2[1]⊕ k1[1]⊕RC2[1])) ∧ 0x7,

where the left part of the equation is known (k1[0] is already known). Analo-
gous relationships hold for the other nibbles and for the other columns. Observe
that since these relationships involve more than one bit, in this second step the
attacker needs a lower number of pairs of ciphertexts to discover the right key.

As before, the attacker has to repeat the step for each possible values of the
second column of k̂, and to test the found values against other plaintexts/ciphertexts
pairs in order to eliminate wrong candidates (remember that she finds on aver-

age one candidate of four nibbles of k1 for each of the 216 guess values of k̂).

The same procedure is used for the third and for the fourth columns of k̂. For
example, for each guess value of the third column of k̂, the relationships that the
nibble k1[2] have to satisfy are s̃[2]∧ 0xb = s̃[1]∧ 0xd and s̃[2]∧ 0x4 = s̃[0]∧ 0x4,
where s̃[i] := S-Box(s1[i]⊕ k1[i]⊕RC2[i])⊕ S-Box(s2[i]⊕ k1[i]⊕RC2[i]).

For completeness, note that also in this second step the attacker can work
independently on each nibble, but the total computational cost would be higher.

Estimation of the Data Complexity. Our implementation shows that if
only eight pairs of ciphertexts are used for the first step, then some false positive
candidates of the key pass the test. To avoid this problem, one possibility is to
use more pairs of ciphertexts, making the filter stronger5.

In the following, we first try to give a theoretical estimation of the number
of pairs necessary to eliminate almost all the false positive candidates of the key.
In the first step of the attack, the problem of the false positives arises when
Rk̂(c1)[i] = Rk̂(c2)[i] for a certain i = 0, 7, 10, 13. For example, note that if
Rk̂(c1)[0] = Rk̂(c2)[0] in eq. (12), then each possible value of k1[0] passes the

5 We emphasize that the right key is always found. We use more plaintexts only to
discard false positives that pass the test.



test. Thus, a first estimation can be done by calculating the minimum number
of pairs such that there exist at least eight pairs with 4 different nibbles.

Before to continue, an important observation has to be done. Given n texts,
it is possible to construct n · (n − 1)/2 different pairs, but actually only n − 1
pairs are useful for the attack. Consider for example three texts t1, t2, t3 and the
corresponding pairs (t1, t2), (t1, t3), (t2, t3). If k1[0] satisfies the condition (12)
for the pairs (t1[0], t2[0]) and (t1[0], t3[0]), then it automatically satisfies this
condition also for the pair (t2[0], t3[0])6. Thus, only two pairs are really useful
for the attack. More generally, given n texts, only n− 1 pairs are useful for the
attack - for the following we suppose that one text is in common for all the pairs.
As shown in details in App. F, the probability that only the right key is found
using 9 chosen plaintexts is about (0.0604)4. By calculation (we refer to App.
F for more details), the attacker needs at least 16 plaintexts in order to have a
good probability of success, which is approximately 73%.

Actually, this is only a rough approximation, since an important aspect is
not taken into account. For each guess of the first column of k̂, the attacker is
able to find 4 nibbles of k1. Then, she checks these candidates of the keys using
other texts. Note that it is sufficient that one nibble of k1 doesn’t pass this test
to conclude that the guess value of k̂ is wrong, independently by the other three
nibbles of k1. Moreover, it is also possible that wrong key candidates found at
the first step are detected and eliminated in the second step of the attack. Thus,
as our implementation shows, a lower number of texts (with respect to that
predicted by our theoretical model) turns out to be sufficient for the attack. In
particular, we found that 12 chosen plaintexts (instead of 16) - i.e. 11 pairs -
are sufficient with (very) high probability. Working in a similar way, it turns out
that only 6 chosen plaintexts - i.e. 5 pairs - are sufficient for the second step.

The number of plaintexts chosen for the first step (i.e. 12) allows to eliminate
almost all the false candidates of the key. For the second step of the attack, a
lower number of plaitexts (i.e. 6) is sufficient to recover the entire key. As a
consequence, in the second step the attacker doesn’t use and wastes a lot of
information about the (chosen) plaintexts/ciphertexts pairs.

To improve the attack, the idea is to reduce the total number of chosen
plaintexts used for the attack, and to use all the available plaintexts/ciphertexts
pairs also in the second step. That is, the idea is to reduce the number of chosen
plaintexts used for the first step and to increase this number for the second step
- we assume that these two numbers are equal. As a consequence, in the first
step of the attack more false positive candidates pass the test, but they are soon
detected in the second step, thanks to the higher number of pairs used. Moreover,
note that in the second step the false candidates are detected much faster than
in the first one, since the probability that the relationships are satisfied is much
lower (remember that they involve an higher number of bits).

Our implementation shows that 8 chosen plaintexts (i.e. 7 pairs) are suffi-
cient for this mode of the attack (note that we use 8 chosen plaintexts both in

6 Note that: [S-Box(t2[0]⊕k1[0])⊕ S-Box(t3[0]⊕k1[0])]∧0x8 = [ S-Box(t2[0]⊕k1[0])⊕⊕
S-Box(t1[0]⊕ k1[0])⊕ S-Box(t1[0]⊕ k1[0])⊕ S-Box(t3[0]⊕ k1[0])] ∧ 0x8 = 0.



Data: 7 ciphertexts pairs (c1, ci) where i = 2, ..., 8, whose corresponding
plaintexts belong in the same coset of C0

Result: Secret Key k̂ and k1.
for all 216 possible combinations of (k̂[0], k̂[1], k̂[2], k̂[3]) do

decrypt one round: si[j] = S-Box(ci ⊕ k̂[j]) ∀i = 1, ..., 8 and ∀j = 0, ..., 3;
for k1[0] from 0 to 24 − 1 do

check if for each possible pairs (s1, si) where i = 2, ..., 8:
[S-Box(s1[0]⊕ k1[0]⊕RC2[0])⊕S-Box(si[0]⊕ k1[0]⊕RC2[0])] ∧ 0x8 = 0;
If not satisfied, then next value (i.e. next k1[0] or/and (k̂[0], ..., k̂[3]));
else

identify candidates for k1[0] and (k̂[0], ..., k̂[3]);
use these candidates of the first column of k̂, to find candidates of
k1[7], k1[10], k1[13] - use the same algorithm described for k1[0] and
work independently on each nibble;

end

end

end

for all candidates of k1[0], k1[7], k1[10], k1[13] and (k̂[0], ..., k̂[3]) do

for all 216 possible combinations of (k̂[4], k̂[5], k̂[6], k̂[7]) do

decrypt one round: si[j] = S-Box(ci ⊕ k̂[j]) ∀i = 1, ..., 8 and ∀j = 4, ..., 7;
for k1[1] from 0 to 24 − 1 do

check if for each possible pairs (s1, si) where i = 2, ..., 8:
[S-Box(s1[0]⊕ k1[0]⊕RC2[0])⊕S-Box(si[0]⊕ k1[0]⊕RC2[0]))∧ 0xb =
[S-Box(s1[1]⊕ k1[1]⊕RC2[1])⊕S-Box(si[1]⊕ k1[1]⊕RC2[1])]∧ 0x7;

If not satisfied, then next value (i.e. next k1[1] or/and
(k̂[4], ..., k̂[7]) or/and k1[0] or/and (k̂[0], ..., k̂[3]));

else

identify candidates for k1[1] and (k̂[4], ..., k̂[7]);
use these candidates of the second column of k̂, to find
candidates of k1[4], k1[11], k1[14] - use the same algorithm
described for k1[1] and exploit the relationships among the
nibbles;

end

end

end

end

Repeat this second step for the third and for the fourth column of k̂;
return Secret Key k̂ and k1.

Algorithm 1: Truncated differential attack on 4 rounds of PRINCE - exten-
sion at the end. For simplicity, this pseudo-code is not completely optimized
as described in the text.

the first step and in the second one), and that the total computational cost is
approximately unchanged (with respect to the previous mode).

Estimation of the Computational Cost. The computational cost of the first
step can be estimated as follows. Given 5 chosen ciphertexts, the computational



cost to calculate 4 nibbles of R−1(c) is 8× 4 = 25 S-Box look-ups. As shown in
detail in App. E.1, the cost to find one nibble of k1 working independently on each
nibble is 25.46 S-Box look-ups (thus for 4 nibbles, the cost is 4×25.46 = 27.46). The

cost to check candidates of k̂ and of k1 against other pairs of ciphertexts can be
estimated by 4× 2× 8 = 26 S-Box look-ups. Thus, to find the right combination
and to do the requested check, the total computational cost for the first step is
well approximated by 216 (possible values) ×(4 ·25.46 + 8×4 + 26) ' 224.1 S-Box
looks ups.

Some optimizations allow to improve the computational cost of the attack.
For example, for each guessed value of k̂, the attacker should focus on a single
nibble of k1, e.g. k1[0]. In this way, it is possible to eliminate wrong candidates

simply checking the found candidates of k1[0] and of the column of k̂ against all
the available pairs of texts before to work on the other three nibbles of k1. It
follows that it is sufficient to consider only these survived combinations of the
first column of k̂ (instead of all the 216 possible values) in order to find the other
3 nibbles of k1. The computational cost to find the remaining 3 nibbles of k1 be-
comes negligible compared to the cost to find k1[0], and the total computational
cost can be approximated by 216 × (25.46 + 25 + 26) ' 223.1 S-Box look ups.

The computational cost for the second step can be computed in a similar
way. As shown in an analogous case in App. E.2, the cost to find one nibble
of k1 is of 24.6 S-Box look-ups (given another nibble of the same column and
exploiting the relationship among the nibbles). Thus, the total cost for this step
can be approximated by 3 (columns) ×216 × (24.6 (cost of the subspace attack
- single equivalence) + 4 × 8 (check) + 25 (partial decryption) ) ' 223.9 S-Box
look-ups, using the same optimizations as before.

The total computational cost can be approximated by 223.9 + 223.1 ' 224.25

S-Box look-ups, that is 218.25 four-rounds encryption, and the attacker needs
only 8 different chosen plaintexts (that belong to the same coset of C0).
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A Proofs of Sect. 3

Proposition 1. Let I ⊆ {0, 1, 2, 3}.
1. For each a ∈ C⊥I , there exists unique b ∈ D⊥I such that

R(CI ⊕ a) = DI ⊕ b.

2. For each a ∈ C⊥I , there exists unique b ∈ C⊥I such that

S-Box−1 ◦M ′ ◦ S-Box(CI ⊕ a) = CI ⊕ b.

3. For each a ∈ D⊥I , there exists unique b ∈M⊥I such that

M ′ ◦ S-Box(DI ⊕ a) =MI ⊕ b.

4. For each a ∈ C⊥I , there exists unique b ∈ IM⊥I such that

M ′ ◦ SR−1(CI ⊕ a) = IMI ⊕ b, b = M ′ ◦ SR−1(a).

Proof. 1. In order to prove the statement, we simply compute R(CI ⊕ a).
First of all, it is easy to observe that the S-Box Layer and that the Linear
Layer M ′ map column space CI to column space CI (more precisely, the S-
Box Layer maps coset CI into other coset of CI , since S-Box(0) 6= 0). Indeed,
since SubBytes is bijective and operates on each nibble individually, and
since the nibbles of the space CI are independent, its only effect is to change
the coset. Thus, for each a ∈ C⊥I , there exists unique a′ ∈ C⊥I such that
S-Box(CI ⊕ a) = CI ⊕ a′. Moreover, by definition SR(CI) = DI .
Then we prove that b exists and it is unique. For each a ∈ C⊥I , there exists
c ∈ C⊥I such that:

S-Box(CI ⊕ a) = CI ⊕ c
where ci = S-Box(ai). Since Linear Layer SR ◦M ′(·) is a linear operation,
then there exists b ∈ D⊥I such that:

SR ◦M ′(CI ⊕ c) = SR ◦M ′(CI)⊕ SR ◦M ′(c) = DI ⊕ b,

where b = SR ◦M ′(c).



2. In order to prove the statement, we simply compute super-SBox(CI ⊕ a).
First of all, it is easy to observe that the S-Box Layer and that the Linear
Layer M ′ map column space CI to column space CI .
Then we prove that b exists and it is unique. For each a ∈ C⊥I , there exists
c ∈ C⊥I such that:

S-Box(CI ⊕ a) = CI ⊕ c

where ci = S-Box(ai). Since Linear Layer M ′ is a linear operation, then there
exists d ∈ C⊥I

M ′(CI ⊕ c) = CI ⊕ d

where d = M ′(c). Finally, using the previous observation, there exists b ∈ C⊥I
such that:

S-Box−1(CI ⊕ d) = CI ⊕ b

where bi = S-Box−1(di).
3. In order to prove the statement, we simply compute M ′ ◦ S-Box(DI ⊕ a).

First of all, it is easy to observe that the S-Box Layer maps a diagonal space
DI to diagonal space DI Moreover, by definition MI = M ′DI .
Then we prove that b exists and it is unique. For each a ∈ D⊥I , there exists
c ∈ D⊥I such that:

S-Box(DI ⊕ a) = DI ⊕ c

where ci = S-Box(ai). Working exactly as before, since M ′ is a linear oper-
ation, it follows that b = M ′(c).

4. Since M ′ ◦ SR−1 is a linear operation, it follows that:

M ′ ◦ SR−1(CI ⊕ a) = M ′ ◦ SR−1(CI)⊕M ′ ◦ SR−1(a)IMI ⊕ b,

where b = M ′ ◦ SR−1(a) is unique in the class of equivalence of IMI .
ut

Theorem 3. Let I ⊆ {0, 1, 2, 3}. For each a ∈ C⊥I , there exists unique b ∈ M⊥I
such that

R(1+1.5)(CI ⊕ a) =MI ⊕ b,

where b depends on a and on the secret key. Equivalently:

Prob(R(1+1.5)(x)⊕R(1+1.5)(y) ∈MI |x⊕ y ∈ CI) = 1.

Proof. By the previous proposition (point 1), a coset of CI is mapped into a
coset of DI after one round. That is, there for each a ∈ C⊥I , there exists unique
b′ ∈ D⊥I such that R(CI ⊕ a) = DI ⊕ b′.

By point 2 of previous proposition, for each b′ ∈ D⊥I , there exists unique
b ∈M⊥I such that M ′◦ S-Box(DI ⊕ b′) =MI ⊕ b.

Finally, note that the add round key/constant (ARK) simply changes the
coset, but not the subspace. That is, if k is a generic key/constant and X is a
generic space, then

ARK(X ⊕ a) = X ⊕ (a⊕ k).

Thus, the thesis is proved. ut



Theorem 4. Let I ⊆ {0, 1, 2, 3}. For each a ∈ C⊥I , there exists unique b ∈
IM⊥I such that

R(2+0.5)(CI ⊕ a) = IMI ⊕ b,

where b depends on a and on the secret key. Equivalently:

Prob(R(2+0.5)(x)⊕R(2+0.5)(y) ∈ IMI |x⊕ y ∈ CI) = 1.

Proof. The proof is analogous to the one of the previous theorem, and it is based
on the previous proposition. ut

B Impossible Subspace Trail for PRINCE

In Sect. 3, we have presented two subspace trails for 2.5 rounds of PRINCE
that hold with probability 1. It is also possible to describe a subspace trails with
probability 0 (i.e. an “impossible subspace trail”) for 4.5 rounds of PRINCE,
and to set up an impossible differential attack on 6 rounds of PRINCE.

Proposition 2. Let I, J ⊆ {0, 1, 2, 3} with |I| = |J | = 1. Then MJ ∩DI = {0}.

Proof. A basis for MJ is given by:

MJ = 〈M ′(e[4·J ]),M ′(e[4·(J−1)+1]),M ′(e[4·(J−2)+2]),M ′(e[4·(J−3)+3])〉,

while a basis for DI is given by DI = 〈e[4 ·I], e[4 ·(I−1)+1], e[4 ·(I−2)+2], e[4 ·
(I − 3) + 3]〉, where in both cases the indexes are taken modulo 16. Moreover,
note that in both cases the vectors e[·] lie on different columns.

Suppose by contradiction that DI andMJ have a nonzero intersection. This
implies that there exist xk and yk for k = 0, ..., 3 such that

3⊕
k=0

xk · 〈e[4 · (I − k) + k]〉 ⊕
3⊕
k=0

yk · 〈M ′(e[4 · (J − k) + k])〉 = 0,

that is

3⊕
k=0

[
xk · 〈e[4 · (I − k) + k]〉 ⊕ yk̃(k) · 〈M

′(e[4 · (I − k) + k̃(k)])〉
]
= 0

has a nontrivial solution, where k̃(k) = (k + J − I) mod 4.
The only possible solution is given by:

xk · 〈e[4 · (I − k) + k]〉 = yk̃(k) · 〈M
′(e[4 · (I − k) + k̃(k)])〉 ∀k = 0, ..., 3,

which is clearly impossible since 〈e[4 · (I−k)+k)]〉 and 〈M ′(e[4 · (I−k)+ k̃(k)])〉
are linearly independent for each k = 0, ..., 3 (note that they lie on the same
column). Thus, DI and MJ intersect only in zero.

ut



Using the previous proposition, it is possible to set up a subspace trail with
probability 0.

Theorem 5. Let I, J ⊆ {0, 1, 2, 3} with |I| = |J | = 1 and let R4(·) denote the
four middle rounds. Then, for each x 6= y:

Prob(R(4)(x)⊕R(4)(y) ∈ CI |x⊕ y ∈ CJ) =

=Prob(M ′ ◦ SR−1 ◦R(4)(x)⊕M ′ ◦ SR−1 ◦R(4)(y) ∈ IMI |x⊕ y ∈ CJ) = 0.

Proof. We have previously seen that a coset of CJ is mapped into a coset ofMJ

after 2.5 rounds, that is for each a ∈ C⊥J there exists unique b ∈M⊥J such that:

R(1+1.5)(CJ ⊕ a) =MJ ⊕ b.

By previous proposition, MJ ∩ DI = {0} for each I, J with |I| = |J | = 1.
That is, if two elements belong to the same coset of MJ , they can not belong
to the same coset of DI , that is for x 6= y:

Prob(R(1+1.5)(x)⊕R(1+1.5)(y) ∈ DI |x⊕ y ∈ CJ) = 0.

Since S-Box Layer maps diagonal space DI to column space DI :

Prob(super-SBox ◦R(x)⊕ super-SBox ◦R(y) ∈ DI |x⊕ y ∈ CJ) = 0.

Moreover, since for each a′ ∈ D⊥I there exists unique b′ ∈ C⊥I such that R−1(DI⊕
a′) = CI ⊕ b′, it follows that

Prob(R(4)(x)⊕R(4)(y) ∈ CI |x⊕ y ∈ CJ) = 0,

where R4(·) denote the four middle rounds.
Thus, if two elements belong to the same coset of CJ , they can not belong to

the same coset of CI after four rounds. The other probability follows immediately
by the definition of IMI , that is IMI = M ′ ◦ SR−1(CI). ut

This means that a coset of CJ can not be mapped into a coset of IMI for
|I| = |J | = 1 after 4.5 rounds (equivalently into a coset of CI after 4 rounds):

CJ⊕a
M ′◦S-Box◦R(·)−−−−−−−−−−→MJ⊕b 6S-Box−1(·)−−−−−−−→ DI⊕c

R−1(·)−−−−→ CI⊕d
M ′◦SR−1

−−−−−−→ IMI⊕e.

Starting from the previous theorem, it is possible to set up an impossible
differential attack for 6-rounds of PRINCE which requires only known-plaintexts.
Assume |I| = |J | = 1. Since M ′ ◦SR−1(CJ) = IMJ , it follows that if x⊕y ∈ CJ ,
then M ′◦SR−1(x)⊕M ′◦SR−1(y) ∈ IMJ . Moreover, note that also M ′◦SR−1◦
R(4)(x)⊕M ′ ◦SR−1 ◦R(4)(y) ∈ IMI . Thus, the following property for 6-rounds
reduced PRINCE holds.

Proposition 3. Let I, J ∈ {0, 1, 2, 3} with |I| = |J | = 1 and let k̃ and k̂ the
secret key of 6-rounds reduced PRINCE defined as in the introduction. Given



two pairs of plaintexts-ciphertexts (p1, c1) and (p2, c2), they satisfy the following
probability:

Prob(S-Box−1(p0 ⊕ k̃)⊕ S-Box−1(p1 ⊕ k̃) ∈ IMJ and

and S-Box(c0 ⊕ k̂)⊕ S-Box(c1 ⊕ k̂) ∈ IMI) = 0.

If I = J :

Prob(S-Box−1(p0 ⊕ k̃)⊕ S-Box−1(p1 ⊕ k̃)⊕

⊕ S-Box(c0 ⊕ k̂)⊕ S-Box(c1 ⊕ k̂) ∈ IMI) = 0.

Using the previous proposition is it possible to set up an impossible differential
attack for 6-rounds of PRINCE which requires only known-plaintexts. However,
even if this attack is better than a brute force one, it is worse than other know-
plaintexts attacks on 6-rounds PRINCE present in literature - e.g. [9].

C A Related Key Attack

In Sect. 4, we have presented an equivalent version of PRINCE, illustrated in
Fig. 2. This version - called PRINCE? - is analogous to the original PRINCE,
but it is not equivalent, since no (respectively Inverse) ShiftRows operation is
applied to the key in the forward rounds (respectively backward). This version
has the advantage that the order of ShiftRows and MixLayer operations are
the same of AES, and we claim that it has the same security of the original
version. For the following, we define the constant RC?i of this version of PRINCE
as RC?i = SR−1(RCi) for the forward rounds and RC?i = SR(RCi) for the
backward rounds, where RCi are the constants of original PRINCE.

We stress that if an InverseShiftRows operation (respectively ShiftRows) is
applied to the key in the backward rounds (respectively forward), then this
version is completely equivalent to the original one.

Obviously, if k0 = SR(k0) = SR−1(k0) and k1 = SR(k1) = SR−1(k1),
then the encryption process of this second version doesn’t change. Note that
x = SR(x) if and only if x = SR−1(x). Moreover, x = SR(x) if and only if
x[1] = x[5] = x[9] = x[13], x[2] = x[10], x[6] = x[14] and x[3] = x[7] = x[11] =
x[15], which happens with probability 2−32.

Assume that an attacker has access to the original version of PRINCE and to
this second one PRINCE? (where we suppose that an InverseShiftRows is applied
to the plaintext, and a ShiftRows is applied to the ciphertext) instantiated with
the same secret key. Given a plaintext p, assume she can obtain the corresponding
ciphertext for the original version of PRINCE (denoted by c) and for the second
version (denote by c?). If c = c?, then she can deduce that k0 = SR(k0) and
k1 = SR(k1) with probability 1 − 2−64 ≈ 1. If this happens, she has to test
232 · 232 = 264 keys instead of 2128 in order to find the right key.



D MANTIS Encryption Scheme: Subspace Trail
Cryptanalysis

MANTIS encryption scheme [5] is a low-latency tweakable block cipher proposed
at CRYPTO 2016. The starting point used by the designer for this encryption
scheme is a PRINCE-like encryption scheme, keeping the entire design symmet-
ric around the middle (to have the α-reflection property). In order to improve
the security, the PRINCE-round has been replaced by the MIDORI-round func-
tion, that is the S-Box, the MixLayer and the ShiftRows of PRINCE have been
replaced with the S-Box, the MixLayer and the PermuteCells (analogous to
ShiftRows) of MIDORI. This simple change results in a cipher with improved
latency and improved security compared to PRINCE. Note that in contrast to
PRINCE, the PermuteCells operation is performed before the MixLayer one.

MANTISr has a 64-bit block length and works with a 128-bit key k and 64-
bit tweak T . The parameter r specifies the number of rounds of one half of the
cipher (for example, MANTIS6 has the same number of rounds of PRINCE). As
PRINCE, MANTIS is based on the FX-construction and thus applies whiten-
ing keys before and after applying its core components (the whitening keys are
generated in the same way as for PRINCE). That is, the 128-bit key is first
split into k = k0||k1 with 64-bit subkeys k0, k1. Then, (k0||k1) is extended to the
192 bit key (k0||k′0||k1) := (k0||(k0 � 1) ⊕ (k0 ≪ 63)||k1), and k0, k

′
0 are used

as whitening keys in an FX-construction. The subkey k1 is used as the round
key for all of the 2r rounds of MANTISr. Every round in MANTIS consists of
an S-Box layer, a round constant addition, a tweak addition, a PermuteCells
operation, a Linear layer and a final key addition

Ri(·) = M ◦ P (hi(T )⊕ k1 ⊕RCi ⊕ S-Box(·)),

for i = 0, ..., r, where7:

– S-Box layer: Every byte in the internal state is replaced by using the invo-
lutory 4× 4-bit MIDORI S-Box;

– A bit-wise XOR with a round constant RCi, for i = 0, ..., r;
– A bit-wise XOR with the the (full) round tweakey state hi(T )⊕ k1,

for i = 0, ..., r, where T is the tweak and hi is the tweak permutation;
– PermuteCells Operation P: The cells of the internal state are permuted

according to the MIDORI permutation:

P = [0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2];

– MixColumns M: Each column of the cipher internal state array is multi-
plied by the MixColumns binary matrix of MIDORI M :

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 ,
7 We refer to [5] and [3] for a complete description of the S-Box, the PermuteCells and

the MixColumns operations.



where M = M−1;
– A bit-wise XOR with the key k1.

As for PRINCE, in the last r rounds the order of operations is inverse with
respect to the first r rounds, where only the round constants differ. Moreover,
the middle rounds consist of three key-less operations: an S-Box layer, a matrix
multiplication with M and an inverse S-Box layer. Finally, as PRINCE, MAN-
TIS has the α-reflection property, that is D(k0||k′0||k1)(·, T ) = E(k′0||k0||k1⊕α)(·, T ).
Thus, our results presented in Sect. 4 can be applied on MANTIS.

Subspace Trail of MANTIS. Proceeding as for PRINCE, we first identify
analogous subspace trails for MANTIS. The column, diagonal and mixed sub-
spaces are defined exactly as the ones defined for PRINCE in Sect. 3.1, but their
representations are a little different (expect for the column space).

For instance, D0 = P (C0), ID0 = P−1(C0), M0 = M(D0) and IM0 =
M(ID0) correspond to matrix representations:

D0 ≡


x 0 0 0
0 0 y 0
0 0 0 z
0 w 0 0

 ID0 ≡


x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 w

M0 ≡


0 w y z
x w 0 z
x w y 0
x 0 y z

 IM0 ≡


0 w y z
x 0 y z
x w 0 z
x w y 0

 .
Note that MANTIS as some similarities to the version of PRINCE called

PRINCE′ presented in Sect. 4, in particular for the definition of the middle-
rounds and for the ordered of the operations in each round. Thus, let I ⊆
{0, 1, 2, 3}. Since CI is an invariant subspace for the middle rounds, note that it
is possible to set up a subspace trail for 3.5 rounds of MANTIS:

IDI ⊕ a
R◦ARK(·)−−−−−−−→ CI ⊕ b

super-SBox(·)−−−−−−−−−→ CI ⊕ c
M ′◦SR−1(·)−−−−−−−−→ IMI ⊕ d.

A More Secure Version of MANTIS. As for PRINCE, we consider a ver-
sion of MANTIS where the MixColumns and the PermuteCells operations are
exchanged in positions - called for the following MANTIS?. In this version, the
rounds of MANTIS? are defined similar of the PRINCE ones, where the Mix-
Columns operation is performed before (resp. after) the PermuteCells one in the
forward (resp. backwards) rounds.

As first consequence, in this case it is only possible to set up a subspace trail
for 2.5 rounds (similar to PRINCE), that is:

CI ⊕ a
super-SBox(·)−−−−−−−−−→ CI ⊕ b

M◦SR−1(·)−−−−−−−→ IMI ⊕ c

or

CI ⊕ a
R(·)−−→ DI ⊕ b

M◦S-Box(·)−−−−−−−→MI ⊕ c.

Moreover, “as one round of MANTIS is almost identical to one round in
MIDORI, most of the security analysis can simply be copied from the latter”



(see Sect. 6.3 of [5]). By our analysis of Sect. 4 and since MIDORI [3] is an AES-
like cipher, its security is not influenced by the positions of the MixColumns
and of the PermuteCells operations. Thus, the version of MIDORI - called for
consistency MIDORI? - in which the MixColumns operation is performed before
the PermuteCells operation has the same security of the original one.

Due to previous considerations and since the analysis done for PRINCE in
Sect. 4 also applies on MANTIS as well, we can claim that MANTIS? (i.e. the
version of MANTIS in which MixColumns and PermuteCells are exchanged in
positions) is more secure than the original version proposed by [5] with respect to
the attack vectors considered in this paper. Note that this claim is also justified
by the fact that authors didn’t consider related-key attacks in order to evaluate
the security of MANTIS, and that its key schedule is linear (in particular, there
is no key-schedule since all the subkeys are equal to the whitening key).

For completeness and following our analysis of Sect. 4, we defined another
version of MANTIS - called in the following MANTIS′, such that MANTIS′ is
identical to the original MANTIS excepted for the middle rounds, defined as

middle-rounds(·) = S-Box−1 ◦ P−1 ◦M ◦ P ◦ S-Box(·).

As for MANTIS?, we can claim that MANTIS′ is more secure than the original
version proposed by [5], and that it has the same security of MANTIS?.

For completeness, a similar but independent analysis is proposed in [10],
which leads to analogous results and conclusions.

E Truncated Differential Attack on 3 Rounds of PRINCE

Using the first 2.5 rounds subspace trail presented in the previous section, we
present a truncated differential attack on 3 rounds of PRINCE. Consider 3
rounds of PRINCE:

p
R(·)−−→ q

M ′◦ S-Box(·)−−−−−−−−→ s
S-Box−1(·)−−−−−−−→ c,

where the plaintexts must be chosen in the same coset of CI , and the states s
belong in the same coset of MI .

The following attack on 3-rounds of PRINCE is based on the properties of
the subspace trail presented in Sect. 3.1. As we have seen, if p1 and p2 are a
pair of plaintexts that belongs to the same coset of CI (that is p1 ⊕ p2 ∈ CI),
then s1 ⊕ s2 := R(1+1.5)(p1) ⊕ R(1+1.5)(p2) belongs to the subspace MI with
probability 1. Thus, consider a pair of plaintexts that belong to the same coset
of CI , i.e. such that the differences of the nibbles in 4 − |I| columns are equal
to 0. After 2.5 rounds, the corresponding texts belong to the same coset ofMI ,
i.e. their sum belongs to the subspace MI .

If we denote by k̂ := k′0 ⊕ k1 ⊕ α the key of the final round, it has to satisfy

the condition that s1 = S-Box(c1 ⊕ k̂) and s2 = S-Box(c2 ⊕ k̂) belong to the
same coset of M with probability 1, that is:

R(1+1.5)(p1)⊕R(1+1.5)(p2) ∈MI , or equivalently

S-Box(c1 ⊕ k′0 ⊕ k1 ⊕ α)⊕ S-Box(c2 ⊕ k′0 ⊕ k1 ⊕ α) ∈MI .
(13)



If the previous condition is not satisfied, then the guessed key is certainly wrong.

Theorem 6. Let p1 and p2 be two plaintexts of the same coset of CI and let k̂
be the secret round-key of the final round.

Let R(1+1.5) be defined as in (6). If there exists a pair of plaintexts such that

(R(1+1.5)(p1), R(1+1.5)(p2)) don’t satisfy the conditions (13) for a certain key k̂,

then k̂ is certainly wrong.

Proof. Suppose by contradiction that k̂ is the right key.
If there exists a pair (R(1+1.5)(p1), R(1+1.5)(p2)) such that k̂ doesn’t satisfy

(13), then R(1+1.5)(p1) ⊕ R(1+1.5)(p2) /∈ MI (i.e. R(1+1.5)(p1) and R(1+1.5)(p2)
belong to two different cosets ofMI), that is Prob(R(1+1.5)(p1)⊕R(1+1.5)(p2) ∈
MI | p1 ⊕ p2 ∈ CI) 6= 1.

Since k̂ is the right key, then Prob(R(1+1.5)(p1)⊕R(1+1.5)(p2) ∈MI | p1⊕p2 ∈
CI) = 1 (see (7)), which is a contradiction. ut

When the attacker has found all the nibbles of k′0 ⊕ k1, she can compute

q1 = super-SBox(c1 ⊕ k̂) and q2 = super-SBox(c2 ⊕ k̂) (note that super-
SBox(·) ≡ super-SBox−1(·)). In order to find k1, the idea is to repeat the same
attack of before. For this second step, it is better to use (chosen) plaintexts that
belong to the same coset of DI . Indeed, for each a ∈ D⊥I there exists unique
b ∈ SR(MI)

⊥ such that:

R(DI ⊕ a) = SR(MI)⊕ b.

Thus, the attacker has to guess k1 and to check that the following condition is
satisfied:

S-Box(q1 ⊕ k1 ⊕RC1)⊕ S-Box(q2 ⊕ k1 ⊕RC1) ∈ SR(MI).

If this condition is not satisfied, then the guessed key is certainly wrong.
In order to reduce the number of plaintexts and the time complexity of the

attack, the idea is to work independently on each column of MI (equivalent of
SR(MI)), since they depend on different and independent variables. Moreover,
intuitively the attack is more competitive when the dimension of the subspace
MI is smallest as possible, that is |I| = 1. The details of the attacks are given
in the following, where we limit to consider the case I = {0}. Here, we limit to

highlight that given a key k̂ (similar for k1), there are two possibilities to check

if two texts s1 and s2 (where si := S-Box(ci ⊕ k̂) for i = 1, 2) belong or not to
the same coset of MI , that is:

1. work independently on each nibble;
2. exploit the relationships that hold among the nibbles.

To show briefly these two methods, consider the first column (analogous for the
others) and let s := s1⊕ s2. In the first case, the conditions that one can use are

s[0] ∧ 0x8 = 0, s[1] ∧ 0x4 = 0, s[2] ∧ 0x2 = 0, s[3] ∧ 0x1 = 0, (14)



where each one of these conditions involves only 1 bit. In the second case, the
relationships that one can use are

s[1] ∧ 0x4 = 0, s[0] ∧ 0xb = s[1] ∧ 0x7, s[2] ∧ 0xb = s[1] ∧ 0xd,

s[3] ∧ 0xb = s[1] ∧ 0xe, s[0] ∧ 0x4 = s[2] ∧ 0x4 = s[3] ∧ 0x4,

which involve more bits. Intuitively, an attack that exploits the relationship
among the nibbles is (much) more competitive than one which works indepen-
dently on each nibble. In particular, as shown in the following, the first attack
requires 18 chosen plaintexts and the computational cost is approximately 25

three-rounds PRINCE, while the second one requires 10 chosen plaintexts and
the computational cost is approximately 24.8 three-rounds PRINCE. Extend-
ing these attacks at the end, we set up a very competitive attacks on 4 rounds
of PRINCE - presented in Sect. 5 - which won the PRINCE challenge in the
4-round chosen-plaintext category.

For completeness, all the relationships that can be exploited to set up an
attack are given in the following theorem.

Theorem 7. Let a, b ∈ M⊥0 , and let s1 ∈ M0 ⊕ a and s2 ∈ M0 ⊕ b. Denote s
as the sum of s1 and s2, i.e. s = s1⊕ s2. If a = b (that is, if s1 and s2 belong to
the same coset of M0), then the following equivalences are satisfied:

s[1] ∧ 0x4 = 0, s[0] ∧ 0xb = s[1] ∧ 0x7, s[2] ∧ 0xb = s[1] ∧ 0xd,

s[3] ∧ 0xb = s[1] ∧ 0xe, s[0] ∧ 0x4 = s[2] ∧ 0x4 = s[3] ∧ 0x4;

s[5] ∧ 0x4 = 0, s[4] ∧ 0xb = s[5] ∧ 0x7, s[6] ∧ 0xb = s[5] ∧ 0xd,

s[7] ∧ 0xb = s[5] ∧ 0xe, s[4] ∧ 0x4 = s[6] ∧ 0x4 = s[7] ∧ 0x4;

s[10] ∧ 0x4 = 0, s[8] ∧ 0xb = s[10] ∧ 0xe, s[9] ∧ 0xb = s[10] ∧ 0x7,

s[11] ∧ 0xb = s[10] ∧ 0xd, s[8] ∧ 0x4 = s[9] ∧ 0x4 = s[11] ∧ 0x4;

s[12] ∧ 0x4 = 0, s[13] ∧ 0xb = s[12] ∧ 0xd, s[14] ∧ 0xb = s[12] ∧ 0xe,

s[15] ∧ 0xb = s[12] ∧ 0x7, s[13] ∧ 0x4 = s[14] ∧ 0x4 = s[15] ∧ 0x4.

Proof. We prove the statement only for the first column (it is analogous for the
others). Let a = b. Since s1 and s2 belong to the same cosetM, then there exist
x1 and x2 in GF (24) such that si[j] = αj(xi)⊕ aj for i = 1, 2 and j = 0, ..., 3. If
we consider the first two nibbles:

s[0] ∧ 0xb = [(x1 ⊕ x2) ∧ 0x7] ∧ 0xb = (x1 ⊕ x2) ∧ 0x3,

s[1] ∧ 0x7 = [(x1 ⊕ x2) ∧ 0xb] ∧ 0x7 = (x1 ⊕ x2) ∧ 0x3.

That is, s[0] ∧ 0xb = s[1] ∧ 0x7.

Note that the second, the third and the fourth equivalence don’t involve the
bit s[i] ∧ 0x4 for i = 0, 2, 3. This justify the last equivalence.

In the same way, it is possible to prove that the other equivalences are sat-
isfied. ut



Note that both these attacks are truncated differential attacks, where in the
second case one exploits the relationships among the nibbles in order to find the
secret key. Truncated Differential attack was introduced by Knudsen in [15] and
it is a generalization of Classical Differential Attack introduced by Shamir and
Biham in [6]. The differential attacks exploit that pairs of plaintexts with certain
differences yield other certain differences in the corresponding ciphertexts with
a non-uniform probability distribution. Statistical key information is deduced
from ciphertext blocks obtained by encrypting pairs of plaintext block with a
specific (bitwise) difference under the target key. In truncated differential, the
attacker considers only part of the difference between pairs of texts, i.e. it is a
differential attack where only a part of the difference in the ciphertexts can be
predicted. In the second case, the relationships among the nibbles can be derived
by the equivalent requirement

M ′ ◦ S-Box(c1 ⊕ k′0 ⊕ k1 ⊕ α)⊕M ′ ◦ S-Box(c2 ⊕ k′0 ⊕ k1 ⊕ α) ∈M ′ ◦MI = DI ,

that is the attacker is looking for a key k′0 ⊕ k1 for which the difference in
16− 4 · |I| nibbles is equal to 0 (by definition of DI), while no condition is
imposed on the other nibbles, which is exactly a truncated differential attack.

Finally, we would like to highlight that the same attack on 3 rounds work in
the same way for the other 2.5 rounds subspace trails given before.

E.1 Details of the Attack - Working Independently on Each Nibble

Suppose that the attacker knows two ciphertexts c1 and c2 such that the respec-
tive plaintexts p1 and p2 belong to the same coset of C0 (that is p1⊕p2 ∈ C0). We
first consider the case in which the attacker works independently on each nibble
- that is, she doesn’t exploit the relationships among the nibbles - in order to
recover the secret key. We focus on the condition that the first nibble (i.e. the

nibble in position 0) of the key of the final round k̂ := k1⊕ k′0⊕α has to satisfy

in order to guarantee that s1 ⊕ s2 = S-Box (c1 ⊕ k̂)⊕ S-Box (c2 ⊕ k̂) ∈ M0,
working independently on each nibble of the states: the conditions for the other
ones are completely equivalent. The condition for the first nibble k̂[0] is8

(S-Box(c1[0]⊕ k̂[0])⊕ S-Box(c2[0]⊕ k̂[0])) ∧ 0x8 = 0. (15)

Indeed, if s1 and s2 belong to the same cosetM⊕a (where a ∈M⊥0 fixed), then
by definition of M0, there exists x1 and x2 such that si[0] = (xi ∧ 0x7)⊕ a for
i = 1, 2. By simple computation, s[0] = s1[0]⊕ s2[0] = (x1 ⊕ x2) ∧ 0x7, that is

s[0] ∧ 0x8 = ((x1 ⊕ x2) ∧ 0x7) ∧ 0x8 = (x1 ⊕ x2) ∧ (0x7 ∧ 0x8) = 0,

since 0x7 ∧ 0x8 = 0x0. Similar conditions can be obtained for the other nibbles.
If k̂ doesn’t satisfy the previous condition, it is certainly wrong.

8 Note that the presence of the and logic operator ∧ is very important. Indeed, suppose
to consider the following condition S-Box(x⊕ k̂)⊕ S-Box(y⊕ k̂) = 0 without ∧. Since
the S-Box is bijective, the previous equivalence is satisfied iff x = y.



Data: 8 ciphertexts pairs (c1, ci) where i = 2, ..., 9, whose corresponding
plaintexts belong in the same coset of C0

Result: k̂[0]
for k̂[0] from 0 to 24 − 1 do

flag = 0;
for i from 2 to 9 do

if ( [S-Box(c1[0]⊕ k̂[0])⊕ S-Box(ci[0]⊕ k̂[0])] ∧ 0x8 ! = 0 ) then
flag = 1;
next value (i.e. next k̂[0]);

end

end
if flag = 0 then

return k̂[0].
end

end
Algorithm 2: Truncated differential attack on 3 rounds of PRINCE - work-
ing independently on each nibble. For simplicity, we show how to recover only
one nibble of k̂, that is k̂[0]. The other nibbles can be recovered in the same

way using the same pairs. When k̂ has been discovered, the attacker takes 9
chosen plaintexts in the same coset of D0, decrypts one round the correspond-
ing ciphertexts and finds k1 using the same algorithm. For simplicity, in this
pseudo-code, we don’t use the following optimization: if k̂[0] satisfies (15) then

also k̂[0]⊕ c1[0]⊕ c2[0] satisfies it.

When the attacker finds all the nibbles of k1 ⊕ k′0, the idea is to compute

q := super-SBox(c⊕k̂) and to repeat the previous attack on 2 rounds in order to
find k1, choosing plaintexts in the same coset of D0 and working with SR(M0)
instead of M0 (as described previously).

Estimation of the Computational Cost and of the Data Complexity.
Given c1[0] 6= c2[0], a guessed value of k̂[0] satisfies (12) only with probability

2−1, that is on average only 24 × 2−1 = 8 values of k̂[0] pass the first step.
To find the right key, the attacker has to test these 8 values with other pairs of
ciphertexts (which plaintexts belong to the same coset of C0). Thus she needs (at

least) 4 steps and 4 different pairs of ciphertexts to find k̂[0]. The computational
cost in order to find the right values of a single nibble of the secret key is
2× (16× 2−1 + 8 + 4 + 2) ' 25.46 S-Box look-ups, since on average 8 values pass
the first step, 4 pass the second one and so on. Observe that at the first step, the
attacker can take advantage of the fact that if k̂[0] satisfies (or not) (12), then

also (k̂ ⊕ c1 ⊕ c2)[0] satisfies (or not) (12), that is the attacker has to test only

8 values of k̂[0] instead of 16 (this explains the term 16 × 2−1). Furthermore,

suppose that the attacker finds a value of k̂[0] that satisfies (12). A good idea is
to check immediately this value with other pairs of ciphertexts: in this way, the
attacker doesn’t need to store anything.



Observe that if c1[0] = c2[0], then the sum (12) is equal to 0 for each values

of k̂[0], and the attacker cannot recover any information. That is, a pair of
ciphertexts is useful only if c1[0] 6= c2[0]. Thus, we compute the minimum number
of plaintexts that the attacker needs in order to eliminate false candidates and
to find (only) the right key with high probability (or, at most, a low number of
candidates for the right key). First of all, suppose that 3 ciphertexts are given.
Then it is possible to build 3 different pairs, that is (c1[0], c2[0]), (c1[0], c3[0]),
and (c2[0], c3[0]). However, only 2 of these pairs are useful for the attack. Indeed,

if k̂[0] satisfies the condition (12) for the pairs (c1[0], c2[0]) and (c1[0], c3[0]), then
it automatically satisfies this condition also for the pair (c2[0], c3[0])9, so one of
these pair is useless for the attack. Thus, if the attacker needs r different pairs,
then she needs r + 1 different chosen plaintexts to construct them.

Given 5 chosen plaintexts (that is 4 different pairs), the probability that
ci[h] 6= cj [h] for each i 6= j and for each nibble h (that is the probability that
only the right key passes the test) is only (0.4999)16 = 0.0016%. By calculation,
the attacker needs at least 9 different chosen plaintexts in order to have a good
probability that almost all false positive candidates of the keys are eliminated
(which is about 92.2%). We refer to Appendix F for more details about this
computation.

For the second step (that is, to find k1), the attacker has to use other 9
chosen plaintexts that belong to the subspace D. As we have already seen, after
one round, the intermediate states belong to SR(M), and the attacker can finds
all the nibbles of k1.

This attack requires 9 × 2 = 24.17 chosen plaintexts and the computational
cost is of 24 (nibbles) ×25.46 × 2 (attacks) +9 × 16 (one rounds decryption)
' 210.6, S-Box look-ups, that is about 25 three-rounds of PRINCE.

E.2 Details of the Attack - Exploiting the Relationship among the
Nibbles

Secondly, we present the attack in the case in which the attacker exploits the rela-
tionships among the nibbles. Since the columns of M0 depend on different and
independent variables, the attacker can work independently on each columns.
For this reason, we show the attack only for the first column (it is completely
equivalent for the others).

By Theorem 6, the right key has to satisfy conditions given in Theorem 7.
Indeed, as we have seen, key candidates that don’t satisfy these conditions are
certainly wrong. Consider a pair of ciphertexts c1 and c2 whose plaintexts belong
to the same coset of C0. In order to guarantee that s1 ⊕ s2 = S-Box (c1 ⊕ k̂)⊕
S-Box (c2⊕ k̂) ∈M0, the first column of k̂ has to satisfy the following conditions
(equivalent for the others):

(S-Box(c1[0]⊕ k̂[0])⊕ S-Box(c2[0]⊕ k̂[0])) ∧ 0xb =

=(S-Box(c1[1]⊕ k̂[1])⊕ S-Box(c2[1]⊕ k̂[1])) ∧ 0x7;

9 Indeed: [S-Box(c2[0] ⊕ k̂[0])⊕ S-Box(c3[0] ⊕ k̂[0])] ∧ 0x8 = [S-Box(c1[0] ⊕ k̂[0])⊕ S-
Box(c2[0]⊕ k̂[0])] ∧ 0x8⊕ [S-Box(c1[0]⊕ k̂[0])⊕ S-Box(c3[0]⊕ k̂[0])] ∧ 0x8 = 0.



(S-Box(c1[0]⊕ k̂[0])⊕ S-Box(c2[0]⊕ k̂[0])) ∧ 0xb =

=(S-Box(c1[2]⊕ k̂[2])⊕ S-Box(c2[2]⊕ k̂[2])) ∧ 0xd;
(16)

(S-Box(c1[0]⊕ k̂[0])⊕ S-Box(c2[0]⊕ k̂[0])) ∧ 0xb =

=(S-Box(c1[3]⊕ k̂[3])⊕ S-Box(c2[3]⊕ k̂[3])) ∧ 0xe.

and

(S-Box(c1[0]⊕ k̂[0])⊕ S-Box(c2[0]⊕ k̂[0])) ∧ 0x4 =

=(S-Box(c1[2]⊕ k̂[2])⊕ S-Box(c2[2]⊕ k̂[2])) ∧ 0x4 =

=(S-Box(c1[3]⊕ k̂[2])⊕ S-Box(c2[3]⊕ k̂[2])) ∧ 0x4.

(17)

The idea of the attack is to guess the value k̂[1] and to find the values of

k̂[0], k̂[2] and k̂[3] that satisfy the previous conditions. Since the attacker can

not impose any restriction/condition on k̂[1], she has to repeat this step for

each possible values of k̂[0]. Remember that the combinations of keys that don’t
satisfy the previous conditions are certainly wrong.

Using a pair of ciphertexts c1 and c2, for each column on average 216 ·2−12 =
24 possible combinations of the key satisfy the previous conditions. Thus, the
attacker has to use a second pair of ciphertexts (c1, c3) - such that all the plain-
texts p1, p2 and p3 belong to the same coset of C0 - to test the combinations
that satisfy the conditions (16)-(17) for the first pair (c1, c2). Since conditions
(16)-(17) are satisfied with probability 2−12, she certainly finds the right com-
bination for each column of the key. In order to save memory, a good idea is
to test immediately the values that pass the first test with the second pair of
ciphertexts.

When the attacker has found k′0 ⊕ k1, she can discover k1 computing q :=

super-SBox(c⊕ k̂) and repeating the previous attack on 2 rounds. For this step,
she has to choose plaintexts in the same coset of D0 and to work with SR(M0)
instead of M0 (as described previously).

Estimation of the Computational Cost and of the Data Complexity.
About the computational cost, to improve the final computational cost of the
attack, the attacker should focus on a single equivalence of (16), e.g. the first
one. Working only on the first equivalence, the attacker uses the three texts (the

two pairs) to find the exact values of k̂[0] and k̂[1]. Indeed, observe that with
the first pair, on average only 28 · 2−4 = 24 pairs survived, and using the second
pair the attacker can find the right one. When the attacker has found k̂[1], she
knows the exact value of the right part of equations (16). Thus, using the first
pair of ciphertexts and working on the second equation (similar for the third

one), on average only 2 possible values of k̂[2] (similar for k̂[3]) survived, and
she can finally discover the right one using eq. (17).

For each column, the computational cost can be approximated by 24 (values

of k̂[1])×(2 + 24 (values of k̂[0])×2 + 2 · 2) = 29.25 S-Box look-ups for the first



Data: 4 ciphertexts pairs (c1, ci) where i = 2, ..., 5, whose corresponding
plaintexts belong in the same coset of C0

Result: First column of k̂: k̂[0], ..., [̂3]
for k̂[0] from 0 to 24 − 1 do

for k̂[1] from 0 to 24 − 1 do
flag = 0;
for i from 2 to 5 do

if ( [S-Box(c1[0]⊕ k̂[0])⊕ S-Box(ci[0]⊕ k̂[0])] ∧ 0xb ! =
[S-Box(c1[1]⊕ k̂[1])⊕ S-Box(ci[1]⊕ k̂[1])] ∧ 0x7 ) then

flag = 1;
next value (i.e. next k̂[0] or/and k̂[1]);

end

end
if flag = 0 then

identify candidates for k̂[0] and k̂[1];
end

end

end

for all candidates k̂[0] and k̂[1] do

for k̂[2] from 0 to 24 − 1 do

as before, check if k̂[2] satisfies the relationships given in 16 and in 17
for all the possible pairs of ciphertexts;

If satisfied, then identify candidate for k̂[2];
else reject k̂[2] as candidate;

end

for k̂[3] from 0 to 24 − 1 do

as before, check if k̂[3] satisfies the relationships given in 16 and in 17
for all the possible pairs of ciphertexts;

If satisfied, then identify candidate for k̂[3];
else reject k̂[3] as candidate;

end

end

return First column of k̂: k̂[0], ..., [̂3].
Algorithm 3: Truncated differential attack on 3 rounds of PRINCE - exploit-
ing relationships among nibbles. For simplicity, we show how to recover only
one column of k̂, that is k̂[0], ..., k̂[3]. The other column can be recovered in

the same way using the same pairs. When k̂ has been discovered, the attacker
takes 5 chosen plaintexts in the same coset of D0, decrypts one round the
corresponding ciphertexts and finds k1 using the same algorithm.

step (the first equality) and 2 × (24 · 2 + 2 · 2) = 26.2 for the second step (the
second and the third equalities). Since the attacker has to repeat this procedure
for each column of M0 (remember that the columns of M0 are independent),
the total computational cost is of 4 · (24.5 + 29.25 + 26.2) = 211.3 S-Box look-ups
for the four columns. Actually, note that the attacker can test only 23 values of
k̂[·] instead of 24. Indeed, given k̂[1], note that if k̂[0] satisfies (or not) condition



(16), then also k̂[0]⊕ c1[1]⊕ c2[1] satisfies (or not) it (similar for k̂[2] and k̂[3]).

Similar consideration holds also for k̂[1] and k̂[1]⊕ c1[1]⊕ c2[1]. Thus, the total
computational cost of this step is well approximated by 29.3 S-Box look-ups.

Observe that if c1[i] = c2[i] and c1[j] = c2[j] for each i, j = 0, ..., 3 and i 6= j,
then one of the equations (16) is always satisfied for each possible values of the
guess key. Thus, the attacker needs more texts to eliminate false candidates and
to discover the secret key. For this reason, we are interested to understand how
many plaintexts the attacker needs in order to recover (only) the right key with
high probability10. Using the technique described in Appendix F, it is possible
to prove that using only 3 different chosen plaintexts this probability is about
4.2%, using 4 different chosen plaintexts this probability is about 65.7%, while
using 5 chosen plaintexts, it is about 94.6%. Thus, the total number of chosen
plaintexts needed for this attack is about 2 × 5 = 10. The total computational
cost is 2 (attacks) ×29.3 + 5 × 16 (decryption) ' 210.4 S-Box look-ups, that is
about 24.8 three-round of PRINCE.

Finally, we would like to compute the computational cost when the right part
of equation (16) is known - this value is used to compute the cost of the attack
on 4 rounds (with the extension at the end) described in Sect. 5. Assume that

the attacker already knows the value of S-Box(c1[0]⊕ k̂[0])⊕S-Box(c2[0]⊕ k̂[0]).

Thus, given k̂[0] and using a single pair of ciphertexts, on average only (24)3 ×
(2−3)3 = 23 possible combinations satisfy the condition (16) for each column
of the key. This means that the attacker needs only 2 pairs in order to recover
k̂[1], k̂[2], k̂[3]. In this case, the computational cost to find (k̂[1], k̂[2], k̂[3]) given

k̂[0] is well approximated by 3× (24 · 2−1 + 2)× 2 + 4 = 26 S-Box look-ups, that

is approximately 24.6 for each nibble k̂[i] for i = 1, 2, 3.

F How to Compute the Theoretical “Probability of
Success” of the Attacks.

As we have seen, for all the attacks presented in the paper, the attacker needs
more texts in order to eliminate false candidates (that is, to make the filter
stronger) and to discover (only) the secret key (or, at most, a low number of
candidates for the right key). In this section, we discuss how to compute the
probability that almost all the false positives candidate for the key are detected
and eliminated given n pairs of texts (that is n+ 1 plaintexts) for all the attacks
presented in the paper. In other words, we are interested to understand how many
plaintexts the attacker needs in order to recover (only) the right key with high
probability. For simplicity, we take as example the truncated differential attack
on 3 rounds that works independently on each nibble described in Appendix

10 We would like to emphasize that the right key is always found. However, for all the
attacks described in this paper, our implementations show that there are some false
positives that pass the test. Thus, it is better to use more plaintexts and to repeat
the attack, making the filters stronger.



E.1, but using analogous calculation it is possible to compute the probabilities
of success given in the other sections.

Remember that for this attack, one plaintext is in common for all the pairs,
and that the attacker needs 4 pairs with the following properties:

1. given a pair (x, y) (where x, y ∈ GF (24)), then x 6= y, that is x⊕ y 6= 0;
2. the pair (x, y) is equivalent to the pair (y, x);
3. given two pairs (x, y) and (x, z), then they have to be different, that is y 6= z.

The goal is to compute the probability that given n pairs, there are 4 pairs with
different nibbles, i.e. for each i = 0, ..., 16 there are 4 different pairs such that
cj [i] 6= ck[i] for j 6= k and 1 ≤ j, k ≤ n.

First of all, remember that ∀x, y, z ∈ N such that x 6= 0, y < x and z < x:(
x

0

)
= 1

(
x

y

)
=

(
x

x− y

)
=

x!

(x− y)! · y!

(
x

y

)
·
(
x− y
z

)
=

(
x

z

)
·
(
x− z
y

)
.

Given 4 pairs (i.e. 5 chosen plaintexts), the probability that ci[h] 6= cj [h] for
each i 6= j and for each nibble h (that is the probability that the attack works)
is:

p =

(
15

16
· 14

16
· 13

16
· 12

16

)16

= (0.4999)16 = 0.0016%.

Given 5 pairs (that is 6 chosen plaintexts), the probability of success is:

p =

[
16!

11!

1

165
+

15!

11!

(
5

2

)
1

165

]16
= (0.812302)16 = 3.594%,

since the attacker needs at least 4 pairs with the requested properties.
In particular, the first term of p is for the case in which all pairs are different

each others. Observe that in this case the attack works even in the case one pair
doesn’t satisfy property (1) (this explain the factor 16! instead of 15!).

The second term is for the case in which 2 pairs are equal (that is 2 pairs
don’t satisfy property (3)) and 4 are different. The binomial coefficient is due to
the fact that it is not important which pairs are equal. However, in this case it
is very important that all the pairs satisfy property (1).

Given 6 pairs (that is 7 chosen plaintexts), the probability of success is:

p =

[
16!

10!

1

166
+

16!

11!

(
6

2

)
1

166
+

15!

11!

((
6

3

)
+

1

2!

(
6

2

)(
4

2

))
1

166

]16
=

=(0.939224)16 = 36.670%.

The explanation for the first and for the second term is (essentially) the same
as before. About the third term, it is for the case in which 3 pairs are equal (that
is the binomial coefficient

(
6
3

)
) and for the case in which there are 2 couples of

2 equal pairs, that is 4 pairs such that 2 pairs are equal and the other 2 pairs
are equal, but these 2 couples are different each others. The number of possible



combinations for this case is given by 1
2!

(
6
2

)(
6−2
2

)
(in general, if we consider c

couples each one of p pairs, we have to divide by c! and not by 2!).
Proceeding in this way, it is possible to compute the probability for the other

cases and for the generic case. Thus, given 8 chosen plaintexts, the probability
is

p =

[
16!

9!

1

167
+

16!

10!

(
7

2

)
1

167
+

16!

11!

((
7

3

)
+

1

2

(
7

2

)(
5

2

))
1

167
+

+
15!

11!

((
7

4

)
+

1

3!

(
7

2

)(
5

2

)(
3

2

)
+

(
7

3

)(
4

2

))
1

167

]16
= (0.981933)16 = 74.698%,

while, given 9 chosen plaintexts, the probability is equal to (0.994912)16 =
92.163%.

Attack on 4 Rounds (EE) - Probability of success. In this subsection, we
give the probability of success of the attack described in Sect. 5, and which are
obtained using the same technique described above (note that in this case the
attacker works independently only on 4 nibbles and not 16):

– for 9 chosen plaintexts, the probability is (0.0604)4;
– for 10 chosen plaintexts, the probability is (0.196)4;
– for 11 chosen plaintexts, the probability is (0.373)4;
– for 12 chosen plaintexts, the probability is (0.5485)4 ' 9.05%;
– for 13 chosen plaintexts, the probability is (0.692)16 ' 22.93%;
– for 14 chosen plaintexts, the probability is (0.801)4 ' 41.18%;
– for 15 chosen plaintexts, the probability is (0.871)4 ' 57.55%;
– for 16 chosen plaintexts, the probability is (0.923758)4 ' 72.82%;
– for 17 chosen plaintexts, the probability is (0.989733)4 ' 95.96%.

G Attack on 4 Rounds - Extension at the Beginning

Another way to attack 4 rounds of PRINCE is to extend the 3-rounds (the middle
rounds and one round after) attack described in App. E at the beginning. The
idea is to find pairs of plaintexts p1 and p2 that belong to the same coset of C0
after one round, that is:

R(p1)⊕R(p2) ∈ C0, (18)

in order to repeat the attack on 3 rounds.Consider 4 rounds of PRINCE:

p
R(·)−−→ q̂

M ′◦ S-Box(·)−−−−−−−−→ q
S-Box−1(·)−−−−−−−→ s

R−1(·)−−−−→ c.

Given p1 and p2, the attacker finds the values of k0⊕ k1 for which the condition
(18) is satisfied, that is the values of k0⊕k1 such that R(p1) and R(p2) belong to
the same coset of C. Then, the idea is to repeat the combination of the truncated
differential attack and of the subspace attack on 3 rounds described in App. E.
However, in this case, when the attacker has found k′0 ⊕ k1 and k1, she has to



check these values with the values of k0 ⊕ k1 that satisfy condition (18). If one
combinations is compatible, then the attacker has found the right key, otherwise
she has to repeat this procedure.

Since she can not impose any restriction/condition on k0 ⊕ k1, she has to
repeat this procedure for each value of k0⊕k1. Thus, for a given pairs of plaintexts
p1 and p2, the idea is to look for all the keys that satisfy (18). In more details, the
idea is to look for p1 and p2 in order to minimize the number of nibbles of k0⊕k1
that the attacker has to guess in order to guarantee that R(p1)⊕R(p2) ∈ C0, and
at the same time to maximize the number of keys such that R(p1)⊕R(p2) ∈ C0
for each pair of plaintexts.

Details of the Attack - Estimation of the Data Complexity. The goal
to minimize the data complexity becomes easier if the attacker works with a
subspace of C0. In particular, the idea is to consider the subspace C0∩IDi = 〈ei〉
of dimension 4 for i = 0, 1, 2, 3, where ei denotes the unit vector of F16

28 which
has a single 1 in the i-th nibble. In the same way as before, it is not difficult to
prove that for each a ∈ (C0 ∩ IDi)⊥, there exists unique b ∈ (C0 ∩ IMi)

⊥ such
that for each i = 0, ..., 3

M ′ ◦ S-Box(C0 ∩ IDi ⊕ a) = C0 ∩ IMi ⊕ b,

and, since C0 ∩ IMi ⊆ C0, that there exists unique c ∈ C0⊥ such that

S-Box−1 ◦M ′ ◦ S-Box(C0 ∩ IDi ⊕ a) ⊆ C0 ⊕ c.

For instance, C0 ∩ ID0 and IM0 ∩ C0 are defined as:

C0 ∩ ID0 ≡


x 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 IM0 ∩ C0 ≡


α3(x) 0 0 0
α2(x) 0 0 0
α1(x) 0 0 0
α0(x) 0 0 0

 ,
for each x ∈ GF (24).

In conclusion, for each a ∈ (C0 ∩ IDi)⊥ and for each i = 0, ..., 3, there exists
unique d ∈ IM⊥0 such that

R(2+0.5)(C0 ∩ IDi ⊕ a) ⊆ IM0 ⊕ d,

where d depends on a and on the secret key. Thus, the attack on 3 rounds works
exactly as before using C0 ∩ IDi instead of C0. The idea is to choose p1 and p2

and to ask that that R(p1)⊕R(p2) ∈ C0 ∩ IDi for a certain i = 0, ..., 3.
A good choice for p1 and p2 is the following:

p1[i] = p2[i] ∀i = 3, 4, 5, ..., 15, (19)

since in this case the attacker has to guess only 3 nibbles of the key of the first
round (that is (k1 ⊕ k0)[0], (k1 ⊕ k0)[1] and (k1 ⊕ k0)[2]) in order to guarantee
that the condition R(p1)⊕R(p2) ∈ C0 ∩IDi is satisfied for a certain i = 0, ..., 3.



For example, for this choice of pair of plaintexts and for the case of C0∩ID0,
the condition R(p1)⊕R(p2) ∈ C0 ∩ ID0 is equivalent to the following ones:

A ∧ 0xb⊕B ∧ 0xd⊕ C ∧ 0xe = 0,

A ∧ 0xd⊕B ∧ 0xe⊕ C ∧ 0x7 = 0,

A ∧ 0xe⊕B ∧ 0x7⊕ C ∧ 0xb = 0,

where

A = S-Box(p1[0]⊕ k̃[0])⊕ S-Box(p2[0]⊕ k̃[0]),

B = S-Box(p1[1]⊕ k̃[1])⊕ S-Box(p2[1]⊕ k̃[1]),

C = S-Box(p1[2]⊕ k̃[2])⊕ S-Box(p2[2]⊕ k̃[2]),

and where k̃[i] is defined as k̃[i] := k1[i]⊕ k0[i].
A possible solution of the previous equivalences is A = B = C = 0x1. Observe

that for A = B = C = 0x1 the previous equivalences are completely equivalent
to S-Box (x)⊕ S-Box (x⊕α) = 0x1, where p1[·]⊕p2[·] = α and x = p1[·]⊕k̃[·]. By
computer test, we have found that if α = 0x1 or α = 0xc there exists 4 possible
solutions of x for the previous equations, which are x = 0x2, 0x3, 0x8, 0x9 for
α = 0x1, and x = 0x6, 0x7, 0xa, 0xb for α = 0xc.

Using these values to choose p1 and p2, for each combination (p1[0], p2[0], ..., p2[2])
there are 26 possible combinations of (k̃[0], k̃[1], k̃[2]) such that R(p1)⊕R(p2) ∈
C0∩ID0. Consequently, (24)3×2−6 = 26 possible combinations of (p1[0], p2[0], ..., p2[2])
are enough for this attack.

However, a lower number of combinations is sufficient. Indeed, given a pair of
plaintexts p1 and p2, the idea is to look for all the keys such that R(p1)⊕R(p2) ∈
C0∩IDi for each i = 0, ..., 3 and not only for C0∩ID0. By computer test, we have
found that that the best situation occurs when p1[j]⊕p2[j] = 0x1 for j = 0, 1, 2.
In particular, we have found that:

– R(p1) ⊕ R(p2) ∈ C0 ∩ ID1 if A = B = C = 0x8 and there exists 4 possible
solutions of x if α = 0x1;

– R(p1) ⊕ R(p2) ∈ C0 ∩ ID2 if A = B = C = 0x4 and there exists 4 possible
solutions of x if α = 0x8, 0xb, while for α = 0x1 there are only 2 solutions;

– R(p1) ⊕ R(p2) ∈ C0 ∩ ID3 if A = B = C = 0x2; in this case there isn’t a
value of α for which there are 4 solutions, and for α = 0x1 there isn’t any
solution.

Thus, given p1[j]⊕ p2[j] = 0x1 for each j = 0, 1, 2, there are 2 · 43 + 23 = 136 =
27.09 different keys such that R(p1) ⊕ R(p2) ∈ C0 ∩ IDi for i = 0, ..., 3 That is,
on average 212 · 2−7.09 = 24.91 possible combinations of (p1[0], p2[0], ..., p2[2]) are
enough for this attack. In particular, for each pair p1 and p2 there are on average
27.09 keys such that R(p1)⊕R(p2) ∈ C0 ∩ IDi for a certain i = 0, ..., 3.

For each of these combinations of p1[i] and p2[i] for i = 0, 1, 2, the attacker
chooses 7 pairs of plaintexts that satisfy (19), and the attack is equivalent to the
one on 3 rounds described in App. E.



Data: 430 chosen plaintexts - the choice of this plaintexts is described in details
in the text ciphertexts (in particular, for each pair p1 and p2 such that
p1[j]⊕ p2[j] = 0x1 for each j = 0, 1, 2, there are on average 27.09

combinations of keys (k̃[0], k̃[1], k̃[2]) such that R(p1)⊕R(p2) ∈ C0 ∩ IDi

for a certain i = 0, ..., 3.).
Result: Secret key k0 and k1.
for all 212 combinations of keys (k̃[0], k̃[1], k̃[2]) do

for the guessed key, pick up the relative different pairs of chosen plaintexts
stored in memory (and corresponding i) - as described in details in the text

3-Rounds Truncated Differential Attack that exploits relationships among
nibbles (see Algorithm 3): identify candidates for k1 ⊕ k′

0 and k0
check key schedule conditions using the three nibbles of the guessed key
k1 ⊕ k0- see details at the end of this section;

end
return Secret key k0 and k1 that satisfy key schedule.

Algorithm 4: Truncated differential attack on 4 rounds of PRINCE - exten-
sion at the beginning.

Details of the Attack - Estimation of the Computational Cost. Using
these 7 pairs of plaintexts, the attacker finds the first and the second columns
of k1 ⊕ k′0 (cost of 2× (25.5 + 26) S-Box look-ups - see combination of truncated
differential attack and subspace one). Then, using the particular shape of C0 ∩
IMi, the attacker can also discover 2 nibbles of k1, that is k1[0] and k1[1]
(cost of 25.5 + 24.5 S-Box look-ups) using the truncated differential attack in a
similar way as before - note that C0 ∩ IMi is a subspace of IMi for i = 0, ..., 3,
i.e. the first column of C0 ∩ IMi is equal to the first column of IMi. The
computational cost of this step is of (25.5+26)×2+25.5+24.5+14×8 = 28.55 S-Box
look-ups. Remember that the attacker has to repeat this step for each possible
combinations of k̃[0], k̃[1] and k̃[2] (equivalently for each of the 24.91 possible
combinations of (p1[0], ..., p2[2])), since she cannot impose any restrictions to the
secret key.

In order to improve the total computational cost of the attack, before to
find the other columns of k1 ⊕ k′0, the idea is to check if these found values are
compatible with those of k1 ⊕ k0. For each combination of (p1[0], ..., p2[2]), the
attacker knows 8 nibbles of k1 ⊕ k′0, 27.09 possible values of 3 nibbles of k1 ⊕ k0
and 2 nibbles of k1. As we show in the following, the probability that these values
agree is 2−7 (the attacker can works with two nibbles, but she cannot use one
of the bit, so 2−7). Thus, since there are 27.09 possible values of k1⊕ k0 for each
combinations of (p1, p2), on average only 27.09×24.91×2−7 = 25 combinations of
keys survived this first check. (indeed note that if they are not compatible, then
they are certainly wrong). Observe that the cost of this last check is negligible
(since no S-Box is involved, only Shift and XoR).

For the survived combinations, the attacker finds the third column of k1⊕k′0
(cost of 25.5 + 26 S-Box look-ups) and the nibble k1[3] (cost of 24.5 S-Box look-
ups). In this way, the probability that all the values of the keys are compatible
becomes 2−11, that is on average only 2 combinations of keys survived this second



check. For this second step, the computational cost is (25.5 +26)+24.5 +14×4 =
27.5 S-Box look-ups for each combinations.

Finally, for both these two combinations, the attacker finds the last column
of k1⊕ k′0 and the nibble k1[4] with a computational cost of 27.5 S-Box look-ups
for each combinations. However, in this case, the attacker cannot discover which
of these two combinations is the correct one. Indeed, she needs to know all the
other nibbles of k1 to discover the right combination (working only 3 nibbles of
k1 ⊕ k0, the attacker can use only 11 bits to do the check).

Thus, the attacker has to find the values of the other 3 columns of k1.
Observe that she cannot use the previous plaintexts, since the corresponding
q := S-Box(R(c)) belongs to C0∩IMi. Thus the simplest idea is to choose other
8 plaintexts p that belong to the same coset of C0. Using the knowledge of the
key of the final round, the attacker can easily compute s = R(p) and then she
can easily perform the attack on 3 rounds described in App. E and discover
k1 (observe that q belongs to IM0 since p ∈ C0). In this way, she can finally
discover the right key among the two final survived combinations. The total
computational cost for this step is approximately 8 × 24 + 3 × (25 + 26) = 28.8

S-Box look-ups for each combinations.
In conclusion, for this attack, the total number of plaintexts that the attacker

needs is 14 × 24.91 + 8 = 430 = 28.75, and the total computational cost is
24.91 × 28.55 + (25 + 1) × 27.5 + 2 × 28.8 ' 214.15 S-Box look-ups, that is about
28.15 four-rounds Encryption.

How to do the check? Suppose that the attacker knows 8 nibbles of k1 ⊕ k′0
(which are (k1⊕k′0)[i] for i = 0, ..., 7), 27.09 possible values of 3 nibbles of k1⊕k0
(which are (k1 ⊕ k0)[i] for i = 0, 1, 2) and 2 nibbles of k1 (which are k1[0] and
k1[0]). How can she check that all these nibbles are compatible (that is, they
satisfy the key schedule)?

We denote the bits of the first 3 nibbles of k0 as k0 = k00, k
1
0, k

2
0, k

3
0, k

4
0, k

5
0, ..., k

11
0 ,

where ki0 is the i-th bit. By definition:

k′0 ≡ (k0 ≫ 1)⊕(k0 � 1) = k10, k
0
0⊕k20, k10⊕k30, k20⊕k40, k30⊕k50, ..., k90⊕k110 , k100 ⊕k120 ,

that is:

k0 ⊕ k′0 = k00 ⊕ k10, k00 ⊕ k10 ⊕ k20, k10 ⊕ k20 ⊕ k30, ..., k90 ⊕ k100 ⊕ k110 , k100 ⊕ k110 ⊕ k120 .

Since the attacker knows (k0⊕k′0)[i] for i = 0 and 1, she can discover k20 (the sum
of the first and of the second bit of k0⊕k′0) and she has 7 bits of k0 which depend
by k10, that is ki0 = ki0(k10), where i = 0, 2, 3, ..., 7. Using the knowledge of the
nibbles of k1, k0 ⊕ k1 and k0(k10), the attacker checks if ki1 = (ki0 ⊕ ki1)⊕ ki0(k10),
for i = 0, 2, ..., 7. The probability that this condition is verified is 2−7 (remember
that k10 is unknown).

H Attacks on 5 and 6 Rounds of PRINCE

Using both the extensions at the end and the beginning, it is possible to attack 5
rounds of PRINCE. Moreover, it is also possible to attack 6 rounds of PRINCE



using two extensions at the beginning and one extension at the end. However,
these two attacks are not better than others present in the literature.

Table 2. Comparison table of attacks on round-reduced PRINCE. Data complexity is
measured in number of required chosen plaintexts (CP). Time complexity is measured
in round-reduced PRINCE encryption equivalents (E). Memory complexity is measured
in plaintexts (64 bits). The attacks of this paper are in bold.

Technique Rounds Data (CP) Computation (E) Memory Reference

Integral 5 80 = 26.32 264 28 [13]

Integral 5 96 = 26.6 222.7 small [18]

Our attack 5 28.7 225 small App. H.1

Integral 5 213 214.7 small [19]

Integral 6 214.6 230.42 small [19]

Diff. / Logic 6 214.9 232.9 � 227 [9]

MitM 6 216 233.7 231.9 [9]

Integral 6 216 264 216 [13]

Integral 6 218.6 234.4 small [18]

Our attack 6 227.8 243.9 small App. H.2

(EE: Extension at End - EB: Extension at Beginning - MitM: Meet-in-the-Middle)

H.1 Attack on 5 Rounds

We have seen how to extend the 3-rounds attack at the beginning and at the end.
In order to attack 5 rounds, the idea is to use both the extensions. In particular,
we consider the 2+0.5 rounds subspace trails, that is we extend at the end the
attack on 4 rounds described in Sect. G. That is, this 5 rounds attack involves
2 rounds after the middle rounds and 1 before them. The attack on 6 rounds is
then obtained by extending this attack on 5 rounds at the beginning.

Consider the following situation:

p
R−→ p̃

super-SBox−−−−−−−−→ s
R−1

−−−→ c̃
R−1

−−−→ c.

As before, the idea is to consider a pair of plaintexts p1 and p2, and to find
for which key of the first round the condition R(p1) ⊕ R(p2) ∈ C0 ∩ IDi is
satisfied. The pairs of plaintexts have to be chosen as described in Sect. G in
order to minimize the number of nibbles that the attacker has to guess in order
to guarantee that R(p1) ⊕ R(p2) ∈ C0 ∩ IDi. Given these pairs of plaintexts,
the idea is to repeat the attack on 4-rounds (with the extension at the end)
described in Sect. 5.

In particular, using 7 pairs of chosen plaintexts such that R(pi) ⊕ R(pj) ∈
C0∩IDi for the same set of keys, the attacker guesses 4 nibbles (that is 1 column)
of the key of the final rounds, finds 4 nibbles of k1 and checks if they agree with



k1 ⊕ k′0. She repeats this step for all the 3 columns, that is the attacker finds all
the nibbles of k1 ⊕ k′0 and of k1.

When the attacker finds the key of the final rounds (k1⊕ k′0 and k′1), she has
to check if they are compatible with the keys of the first round k1⊕k0 that satisfy
the condition R(p1)⊕R(p2) ∈ C0∩IDi for certain i. If they are compatible, then
the attacker has found the right key, otherwise she has to repeat the previous
procedure.

Observe that the attacker certainly discovers the secret key, since the number
of possible combinations of k1 ⊕ k0 is 212, while the probability that the keys of
the final rounds and the key of the first round agree is (2−4)3 = 2−12.

For this attack, the number of plaintexts that the attacker needs is 24.91 ×
2 × 7 = 28.72, and the total computational cost is approximately 231.3 S-Box
look-ups, that is about 225 five-rounds Encryption.

H.2 Attack on 6 Rounds

In order to attack 6 rounds, the idea is to start from the previous attack on 5
rounds and to extend it again at the beginning, that is, starting from the attack
on 3 rounds (which exploits the 2+0.5 rounds subspace trails), the idea is to
extend it two times at the beginning and one at the end. For simplicity, suppose
to work only with C0 ∩ ID0.

In particular, consider the following situation:

p
R−→ p̂

R−→ p̃
super-SBox−−−−−−−−→ s

R−1

−−−→ c̃
R−1

−−−→ c,

where p̃ ∈ C0∩ID0⊕a (and where a ∈ (C0∩ID0)⊥). In order to guarantee that
R(2)(p1) ⊕ R(2)(p1) ∈ C0 ∩ ID0 (so that R(p1) and R(p2) satisfy the condition
(19)) and with the goal to minimize the number of nibbles that the attacker has
to guess, we consider pairs of plaintexts p1 and p2 such that

p1[i] = p2[i] ∀i = {3, 5, 8, 12, 13, 14, 15}.

With this choice of pairs of plaintexts, the attacker has to guess 9 nibbles of
k0 ⊕ k1 and 3 nibbles of k1.

In particular, given k0 ⊕ k1 and k1, we show how to choose the first column
(it is completely equivalent for the second and for the third one) of the pairs of
plaintexts p1 and p2, in order to minimize the total number of chosen plaintexts.
As before, remember that the attacker has to repeat this procedure for each
possible values of the 9 nibbles of k0 ⊕ k1 and of the 3 nibbles of k1, since she
can not impose any restriction on the secret key.

About the the first column (analogous for the others), the 3 nibbles of k̃ =
k0 ⊕ k1 and the pair (p1, p2) have to satisfy the same conditions given in App.
G:

A ∧ 0xb⊕B ∧ 0xd⊕ C ∧ 0xe = 0x0,

A ∧ 0xd⊕B ∧ 0xe⊕ C ∧ 0x7 = 0x0,

A ∧ 0xe⊕B ∧ 0x7⊕ C ∧ 0xb = 0x0,



where A = S-Box (p1[0]⊕ k̃[0])⊕ S-Box(p2[0]⊕ k̃[0]), B = S-Box (p1[1]⊕ k̃[1])⊕
S-Box (p2[1]⊕ k̃[1]), and C = S-Box (p1[2]⊕ k̃[2])⊕ S-Box(p2[2]⊕ k̃[2]).

As we have seen, a solution for the previous equivalences is given by A =
B = C = 0x1. For this solution, the difference in the first nibble (that is the
nibble in position 0) after one round, is 0x1:

A ∧ 0x7⊕B ∧ 0xb⊕ C ∧ 0xd = 0x1,

that is after one round:

p̂1[0]⊕ p̂2[0] = 0x1, p̂1[7] = p̂2[7], p̂1[10] = p̂2[10], p̂1[12] = p̂2[12],

where p̂h = R(ph) for h = 1, 2. Observe that the attacker doesn’t know p̂1[0] and
p̂2[0], since she doesn’t know k̃[3] (note that she hasn’t guessed it).

Then, the attacker needs that R(p̂1)⊕R(p̂2) ∈ C0 ∩ ID0 (more generally, in
C0 ∩ IDi for some i). The conditions that the 3 nibbles of k1 have to satisfy are
exactly the same of those given in Sect. G.

Note that since she doesn’t know p̂h[i] for h = 1, 2 and i = 0, 1, 2, she cannot
guess the three nibbles of k1. Anyway, since p̂1[i]⊕ p̂2[i] = 0x1 for each p̂h[i] for
h = 1, 2 and i = 0, 1, 2, we can guarantee that there are 4 solutions for each of
the previous equivalence (as we have seen in details before).

Since the attacker can not impose any restriction/condition on k1[0], k1[1], k1[2],
the idea is to take for each combination of p1[0], p2[0], ..., p2[2] at least 4 chosen
values of p1[3] = p2[3] (and analogous for the other columns). In this way, the

values of k̂ that satisfy the first equivalences don’t change, while the values
k1[0], k1[1], k1[2] that satisfy the previous equivalences are different. Thus all the
values of k1[0], k1[1], k1[2] are taken.

With these previous observations, the attack is completely equivalent to the
previous one. In particular, suppose to consider a combination of p1[0], p2[0], ..., p2[2]
and a given p1[3] = p2[3] (analogous for the other columns). In this case, there
are (24)9 = 236 possibilities for the nine nibbles of k̃ and (24)3 = 212 possi-
bilities for the three nibbles of k1 (that the attacker doesn’t know) such that
R(2)(p1)⊕R(2)(p2) ∈ C0 ∩ ID0.

As before, the attacker takes 16 pairs of chosen plaintexts for this particular
combination. Note that the attacker has to work on p1[12] = p2[12], ..., p1[15] =
p2[15] and not on p1[3] = p2[3], p1[5] = p2[5], p1[8] = p2[8]. Using these 16 pairs
of chosen plaintexts, the attacker can discover k1⊕k′0 and k1. Then she checks if
k1 satisfies the condition R(p̂1)⊕R(p̂2) ∈ C0 ∩ID0 and checks if k1 and k1⊕ k′0
are compatible with k1⊕k0. If they agree, she has found the right key, otherwise
she has to repeat this step.

It is important that the attacker repeats this step using the same combination
of p1[0], p2[0], ..., p2[2], but using the other 3 possible values of p1[3] = p2[3] (and
of p1[5] = p2[5], p1[8] = p2[8] for the other columns). In this way, all the values
of k1[1], k1[1], k1[2] are taken. As for the previous attacks, only one key satisfies
all the checks. Indeed, observe that the probability that all the conditions are
satisfied is (24)−12, while the number of possible keys of k1⊕k0 and k1 is (24)12.



For this attack, the number of plaintexts that the attacker needs is 224 ×
2 × 7 = 227.8, and the total computational cost is approximately 250.4 S-Box
look-ups, that is about 243.9 six-rounds Encryption.


