
Revealing Encryption for Partial Ordering

Helene Haagh1, Yue Ji2, Chenxing Li2, Claudio Orlandi1, and Yifan Song2

1 Aarhus University
2 IIIS, Tsinghua University?

Abstract. We generalize the cryptographic notion of Order Revealing
Encryption (ORE) to arbitrary functions and we present a construction
that allows to determine the (partial) ordering of two vectors i.e., given
E(x) and E(y) it is possible to learn whether x ≥ y, y ≥ x or whether
x and y are incomparable. This is the first non-trivial example of a
Revealing Encryption (RE) scheme with output larger than one bit, and
which does not rely on cryptographic obfuscation or multilinear maps.

1 Introduction

Computing on encrypted data is a promising approach to privacy preserving
cloud computing. Using techniques such as (fully) homomorphic encryption
[RAD78, Gen09], a client can upload sensitive data on a partially untrusted
cloud which can perform computation on the data without learning anything
about the data, including the result of the computation. However in many ap-
plications it is desirable for the server to learn the result of the computation,
so that the server can make decisions based on this result without further in-
teraction with the client. Imagine as an example a server running a encrypted
spam filter: using homomorphic encryption the server can, given an encrypted
message, determine whether the message is spam or not but, since the server
does not learn this bit, the server is unable to place the encrypted message in
the user’s spam folder.

Revealing Encryption. To solve the above class of problems a different kind
of cryptographic primitive is needed, which we refer to as revealing encryption or
RE. Intuitively, an RE scheme is an encryption scheme that allows to compute
(selected) functions of the plaintexts by having access to the encrypted data only.
In other words, given a target function f we want to construct an encryption
scheme E and a public function F such that ifX1 = E(K,x1) andX2 = E(K,x2)
(for a random key K) then we have that

F (X1, X2) = f(x1, x2)

Order Preserving Encryption. The first attempt towards building RE was
taken by Agrawal et al. [AKSX04] when they introduced order preserving en-
cryption (OPE), which using our language can be phrased as the very special

? Work done while visiting Aarhus University.

case of RE where both f and F are numeric comparison. The “preserving” part
of OPE is both a strength and a weakness: since f = F it is very easy to use
OPE in practical applications (a client outsourcing an encrypted database using
OPE does not even need to inform the server that the database is encrypted,
as the database can compare encrypted data in the exact same way as it would
compare plaintext data). Unfortunately preserving numeric ordering implies that
OPE cannot achieve strong security guarantees, as shown by [BCLO09, BCO11].
To overcome this limitation order revealing encryption (ORE) was introduced
by Boneh et al. [BLR+15]. One of the conceptual contributions of this paper is
to generalize the notion of ORE to arbitrary functions (the formal definition of
RE is given in Section 3).

While the first (fully-secure) ORE schemes could only be instantiated using
extremely heavy cryptographic tools (see below) and where therefore completely
impractical, Chenette et al. [CLWW15] proposed a very elegant and simple con-
struction of ORE which is extremely efficient in practice (at the price of leaking
slightly more information than in the ideal case).

Obfuscation & Co. On the other end of the scale, it is trivial to construct
secure RE for any function using ideal circuit obfuscation. In a nutshell, one
can let F be an obfuscated circuit that takes as input two ciphertexts X1, X2,
contains a (hardwired) secret key K, and outputs

F (X1, X2) = f(D(K,X1), D(K,X2))

i.e., the obfuscated program simply outputs the output of f evaluated on the
result of the decryption of its inputs.

Unfortunately general purpose ideal obfuscation or even virtual black-box ob-
fuscation does not exist [BGI+01]. While a weaker notion of obfuscation (called
indistinguishability obfuscation), might be plausibly instantiated under crypto-
graphic assumptions (as shown by the fascinating research direction started by
Garg et al. [GGH+13]), it seems unlikely that this will turn into a practical
solution in the foreseeable future. Note that using obfuscation it is possible to
instantiate multi-input functional encryption (MIFE) [GGG+14, BLR+15]: us-
ing MIFE, one can implement RE in a similar way as we sketched above, where
the obfuscated program is replaced by a MIFE secret key skf for the function
f .

Note that despite the fact that MIFE implies RE, RE does not imply MIFE.
The fact that RE is less powerful than MIFE might seem like an unwanted
limitation and an argument against this new notion. However, this also means
that it might be possible to instantiate RE more efficiently and under weaker
assumptions than MIFE. The main reason for this seems to be that a MIFE
scheme must not reveal any information (e.g., satisfy IND-CPA security) until
a secret key for a function f is released, while in an RE scheme anyone can
compute the authorized function on the encrypted data.

In this paper we show that this is indeed the case and it is therefore concep-
tually interesting to study the feasibility and efficiency of this weaker primitive.

Our Contributions. Given the state of affairs, it is natural to ask:

2

For which functions can we construct practically
efficient revealing encryption (RE) schemes?

In this paper we begin answering the question by showing a construction of
revealing encryption for partial order of vectors. This is a naturally interesting
function motivated by concrete applications such as privacy-preserving skyline
queries [BKS01, PTFS03]: given a dataset of d-dimensional vectors, the goal of
a skyline query is to determine the set of dominating vectors. As an example
assume that a client wants to find a hotel in Paris which is a cheap and close
to the city center. The service provider then provides the client with a skyline
containing all hotels in Paris that are either better or equally good in both price
and distance compared to all other hotels. Depending on the application it might
be desirable to be able to protect the confidentiality of the data but at the same
time being able to answer skyline queries.

Technical Overview. The starting point of our solution is the recent ORE
scheme of Chenette et al. [CLWW15]. In this scheme, a value x ∈ {0, 1}n is
encrypted using n PRF evaluations i.e., for each index i = 1, . . . , n the encryption
algorithm outputs a value

ci = FK,i(prefix(x, i− 1)) + xi

where prefix(x, i) is the function that outputs the i most significant bits of x and
where + is integer addition.

Now, take two values x and y and let i∗ be the largest i such that

prefix(x, i− 1) = prefix(y, i− 1)

i.e., i∗ is the smallest index such that xi∗ 6= yi∗ . Then the first i∗− 1 ciphertexts
will be identical for both x, y (since the PRF is evaluated on exactly the same
value, and the added bit is the same), while the i∗-th ciphertext will be “in the
right order” (since the PRF is evaluated on exactly the same value but in only
one of the two cases 1 will be added) and therefore one can compare x and y
by finding the first ciphertext component in which the encryptions differ and
perform a simple numerical comparison of this value. For security, note that the
bottom n − i − 1 ciphertexts will be independently random since the PRF is
evaluated on different values. Therefore, the scheme reveals the order as well as
the first position in which the value differs. A very recent work shows that it
is possible to limit this leakage [CLOZ16], but unfortunately their construction
requires heavy public key operations (we believe that similar techniques could
be applied to our scheme as well).

In a nutshell, we generalize the construction of Chenette et al. [CLWW15] in
the following way: consider for simplicity the 2-dimensional case x = (x1, x2).
Then for each pair of indices i, j we compute

ci,j = FK,i,j
(
prefix(x1, i− 1), prefix(x2, j − 1)

)
+ α(x1, x2)

where α is a carefully chosen function that allows to perform the comparison
between two vectors in such a way that no information is leaked when the vectors

3

are incomparable. The main challenge in coming up with the right function α,
is that we are trying to encode a non-binary output (i.e., x ≥ y, y ≥ x, or
incomparable) into a binary relation (i.e., the numerical comparison between
the scalars α(x) and α(y)). Details of the constructions are given in Section 4
and in Section 5 we give a performance analysis of our scheme.

Revealing Encryption Beyond Partial Ordering. We think that discov-
ering which functions admit revealing encryption schemes is an exciting and
important future research direction. In Section 6 we discuss simple (uncondi-
tionally secure) examples of revealing encryptions for absolute distance and for
hamming distance (which unfortunately is only secure for a limited number of
queries).

Other related work. During recent years, OPE and ORE has been active
research areas: Bun and Zhandry [BZ15] has studied the connection between
ORE and differentially private learning [DMNS06, KLN+11]. Concurrent with
this work, Lewi and Wu [LW16] presented a new and efficient ORE construction
based on the work of Chenette et al. [CLWW15]. This construction splits the
message in blocks (i.e. a sequence of bits) and the scheme leaks the position of
the first block in which the messages differ. Roche et al. [RACY15] proposed a
new primitive called partial order preserving encoding, which achieves ideal OPE
security (IND-OCPA [BCLO09]) while providing fast insertion and search in an
encrypted database. Furthermore, interactive OPE [PLZ13, KS14, Ker15] was
introduced to achieve stronger security guarantees (like ideal security) for OPE
schemes. In these schemes, ciphertexts are mutable, meaning that whenever a
new value is encrypted the existing ciphertexts can be updated.

During the last couple of decades there has been a long line of work con-
cerning encryptions schemes, where either the ciphertexts preserve some infor-
mation about the underlying messages or it is possible to perform a public
test that reveals some information about the encrypted data: searchable en-
cryption [SWP00, GSW04, BBO07, BHJP14] allows users to outsource their
data in a private manner, while maintaining the possibility to do efficient search
over it. Variants of searchable encryption are public-key encryption with keyword
search [BCOP03, CGKO06], secure indexes [Goh03], and (privacy-preserving)
attribute-based searchable encryption [WLLX13, KHY13, ZXA14, CD15]. Other
related encryption schemes are prefix preservering encryption [XFAM02, XY12]
and format preserving encryption [BRRS09, WRB15], which are concerned with
preserving some specific information about the encrypted data. Pandey and
Rouselakis [PR12] introduced the notion of property preserving symmetric en-
cryption, which is a generalization of OPE to arbitrary predicates and they give
a construction for inner product.

The applications of RE is closely related to the applications of encryption
schemes, like attribute-based encryption [GPSW06, GVW13], functional encryp-
tion [BSW11], (anonymous) identity-based encryption [Sha84, KSW08], pred-
icate encryption [KSW08], and access control encryption [DHO16]. All these
encryption schemes deal with payload privacy, user privacy, computation on
outsourced encrypted data, fine-grained access control on data, etc.

4

In a recent independent work, Joye and Passelgue [JP16] presented several
practical realizations of MIFE for specific functions and with a relaxed security
notion. Among these is an efficient construction of ORE with limited leakage
under standard assumptions.

Finally, in Appendix A, we review the (in)security of some existing systems
which offer alternative solutions to privacy-preserving skyline queries.

2 Preliminaries

For n, n1, n2 ∈ N, let [n1 : n2] be the set {n1, n1 + 1, . . . , n2 − 1, n2} and [n] be
the set [1 : n]. For x ∈ Z, let |x| denote the absolute value of x. Let x ←$ S
denote that x is sampled uniform random from the set S.

Definition 1 (Pseudorandom Function). We say F : {0, 1}κ × {0, 1}∗ →
{0, 1}κ is a pseudorandom function (PRF) if for all PPT adversaries A

advA = 2 · |Pr[AOb(·)(1κ) = b]− 1/2| < negl(κ)

with O0 a uniform random function and O1 = FK for some key K ∈ {0, 1}κ.

We interpret x ∈ {0, 1}n both as a string of bits i.e. x = (x1, . . . , xn) and

as an integer x =
∑n−1
i=0 2ixn−i i.e., x1 is the most significant bit of x. Given

such an x and an index i ∈ [n] it is convenient to define the function prefix :
{0, 1}n × [n]→ {0, 1}n × [n]

prefix(x, i) = (x1, . . . , xi, 0
n−i, i)

so that prefix(x, 1) = (x1, 0
n−1, 1), prefix(x, 2) = (x1, x2, 0

n−2, 2) and so on.
Note that prefix has the useful property that for all x ∈ {0, 1}n prefix(x, i) 6=
prefix(x, j) if i 6= j. Given a d-dimensional vector x ∈ ({0, 1}n)d we define
prefix(x, (i1, . . . , id)) to output the vector (prefix(x1, i1), . . . , prefix(xd, id)).

Given two strings x, y ∈ {0, 1}n we define pos(x, y) to return the largest i such
that prefix(x, i−1) = prefix(y, i−1) or equivalently the smallest i such that xi 6=
yi. Given two d-dimensional vectors x,y we define pos(x,y) to output the vector
(pos(x1, y1), . . . , pos(xd, yd)), where xj (resp. yj) denotes the jth coordinate in
the d-dimensional vector x (resp. y).

3 Revealing Encryption

In this section we formally define Revealing Encryption (RE).

Authorized Function. LetM be the input space and I the output space, then
a RE scheme is parametrized by `-ary authorized function

f :M` → I

Revealing Encryption. Given an authorized function f , a RE scheme for f is
a triple of algorithms Πf = (Setup,Enc,Eval) defined as follows:

5

Setup: On input the security parameter κ, the randomized algorithm Setup
outputs a secret key sk and the public parameters pp.

Encryption: On input a message m ∈M and a secret key sk, the randomized
algorithm Enc outputs a ciphertext c.

Eval: On input ` ciphertexts {ci = Enc(sk,mi)}i∈[`] and the public parameters
pp, the Eval algorithm outputs f(m1, . . . ,m`) ∈ I.

Remark 1. Note that here and in the rest of the paper we do not mention the
decryption algorithm, since any RE can be enhanced to allow for decryption by
appending an IND-CPA secure encryption to the RE ciphertext.

Definition 2 (Correctness). Let f be an authorized function and κ be the
security parameter. Let Πf = (Setup,Enc,Eval) be a RE scheme for f , then for
all messages {mi}i∈[`] ∈M` we ask that the following probability

Pr
[
Eval

(
pp, {Enc(sk,mi)}i∈[`]

)
6= f

(
{mi}i∈[`]

)]
must be negligible in κ, where (sk, pp) ← Setup(1κ) and the probabilities are
taken over the random coins of all algorithms.

Leakage Function. Following the work of Chenette et al. [CLWW15], our def-
inition also allows for a leakage function L :M∗ → {0, 1}∗ that exactly charac-
terizes the information leaked by our constructions. In the best case L({mi}i∈[q])
outputs f({mj}j∈S) for every subset S ⊂ [q] of size `, and in this case we talk
about optimal leakage. Note that the work of Chenette et al. leaks extra infor-
mation as well (the first digit at which two integers x, y are different) and our
main construction inherits this leakage.

Definition 3 (Security, [CLWW15]). Let κ be the security parameter, let
q ∈ N, and let f be an authorized function. Let Πf = (Setup,Enc,Eval) be

a RE scheme for f . Consider the experiments REALRE
A (κ) and IDEALRE

A,S,L(κ)
in Figure 1, where A = (A1, . . . ,Aq) is an adversary, S = (S0, . . . ,Sq) is a
simulator, and L(·) is a leakage function.

We say that Πf is a q-secure RE scheme wrt L(·) if for all adversaries A that
makes no more than q queries, there exists a simulator S such that the output
distributions of the two experiments are computationally indistinguishable

REALRE
A (κ) ∼c IDEALRE

A,S,L(κ)

We say a scheme is simply secure if it is q-secure for every q = poly(κ).

Definition 3 captures the requirement that given an a priori bounded num-
ber of ciphertexts, the adversary should not be able to learn more than the
allowed leakage. The security experiments formalize this requirement by creat-
ing the challenge ciphertexts either as real encryptions of the adversarial chosen
plaintexts or simulated based on the allowed leakage of the adversarial chosen
plaintexts.

Note that the output of the experiment contains an arbitrary output from the
adversary (i.e., stA), which is a very conservative way of allowing the adversary
to output any information that might be useful to distinguish between the ideal
experiment and the real experiment.

6

REALRE
A (κ)

1. (sk, pp)← Setup(1κ);
2. (m1, stA)← A1(1κ, pp);
3. c1 ← Enc(sk,m1);
4. for 2 ≤ i ≤ q:

a. (mi, stA)← Ai(stA, c1, . . . , ci−1);
b. ci ← Enc(sk,mi);

5. output (c1, . . . , cq) and stA;

IDEALRE
A,S,L(κ)

1. (stS , pp)← S0(1κ);
2. (m1, stA)← A1(1κ, pp);
3. (c1, stS)← S1(stS ,L(m1));
4. for 2 ≤ i ≤ q:

a. (mi, stA)← Ai(stA, c1, . . . , ci−1);
b. (ci, stS)← Si(stS ,L(m1, . . . ,mi));

5. output (c1, . . . , cq) and stA;

Fig. 1. Security Experiments for Revealing Encryption

4 Partial Order Revealing Encryption (PORE)

In this section, we present a construction of revealing encryption for partial or-
dering of vectors. For the sake of presentation, we will start by showing our con-
struction in the 2-dimensional case (which already requires a significant amount
of notation and indices). Afterwards we generalize to the multidimensional case.

The authorized function for a 2-dimensional PORE is

f :M×M→ {(0, 0), (0, 1), (1, 0), (1, 1)}

where M = {0, 1}n × {0, 1}n. For m1 = (x1, y1) ∈ M and m2 = (x2, y2) ∈ M
we define a function that determines the order

ord(m1,m2) :=

{
1 if x1 ≤ x2 ∧ y1 ≤ y2

0 otherwise

Then we can define the authorized function as

f(m1,m2) := (ord(m1,m2), ord(m2,m1))

which means that

f(m1,m2) =

(1, 1) if m1 = m2

(1, 0) if m1 < m2

(0, 1) if m1 > m2

(0, 0) if they are incomparable

7

We will prove the security of our scheme with respect to the following leakage
function (with f as defined above and pos as defined in Section 2):

L(m1, · · · ,mq) =
{
f(mi,mj), pos(mi,mj) | i, j ∈ [q]

}
Given a pseudorandom function

F : {0, 1}κ × {0, 1}∗ → {0, 1}κ

we define the following four functions:

F
(1)
K , F

(2)
K :M× [n+ 1]2 → {0, 1, 2}

F
(3)
K , F

(4)
K : {0, 1}n × [n]→ {0, 1}

where given a plaintext m = (x, y) ∈M and two indices i, j ∈ [n+ 1] we define

F
(1)
K (m, (i, j)) = FK(1, prefix(x, i− 1), prefix(y, j − 1)) mod 3

F
(2)
K (m, (i, j)) = FK(2, prefix(x, i− 1), prefix(y, j − 1)) mod 3

F
(3)
K (x, i) = FK(3, prefix(x, i− 1)) mod 2

F
(4)
K (y, j) = FK(4, prefix(y, j − 1)) mod 2

Construction 1 Fix a security parameter κ ∈ N. We define a PORE scheme
ΠPORE = (Setup,Enc,Eval) as follows

Setup: On input the security parameter κ ∈ N, sample and output a key K ←$

{0, 1}κ.
Encryption: Given a point m = (x, y) ∈ M and a secret key K compute for

all i, j ∈ [n+ 1]

αij =

0 if (xi, yj) = (0, 0)
1 if (xi, yj) = (1, 1)
xi if i 6 n, j = n+ 1
yj if i = n+ 1, j 6 n
0 if i = n+ 1, j = n+ 1
zij otherwise

where zij = F
(1)
K ((x, y), (i, j)), and then compute

cmij = F
(2)
K ((x, y), (i, j)) + αij mod 3

bxi = F
(3)
K (x, i) + xi mod 2

byj = F
(4)
K (y, j) + yj mod 2

Finally, output the ciphertext

C =
(
{cmij}i,j∈[n+1], {bxi}i∈[n], {byj}j∈[n]

)
8

Evaluation: On input two ciphertexts

C1 = (cm1, bx1, by1) = Enc(K,m1)

C2 = (cm2, bx2, by2) = Enc(K,m2)

Let i be the first index such that bx1
i 6= bx2

i (i = n+ 1 if bx1 = bx2), and let
j be the first index such that by1

j 6= by2
j (j = n+ 1 if by1 = by2). If i = n+ 1

and j = n + 1, the algorithm outputs (1, 1) (since m1 = m2). Otherwise,
compute

t = cm1
ij − cm2

ij mod 3

Next, the algorithm branches on the value of t:
– If t = −1, output (1, 0) (since m1 < m2);
– If t = 1, output (0, 1) (since m1 > m2);
– Otherwise output (0, 0), since the two points are incomparable.

Correctness. Let m1 = (x1, y1) and m2 = (x2, y2) be two plaintexts such that
pos(m1,m2) = (`x, `y).

We first argue that bx1
i = bx2

i for i < `x. This is easy to see:

bx1
i = F

(3)
K (x1, i) + x1

i mod 2

= FK(3, prefix(x1, i− 1)) + x1
i mod 2

= FK(3, prefix(x2, i− 1)) + x2
i mod 2

= bx2
i

Since by definition of `x we know that ∀i < `x, prefix(x1, i−1) = prefix(x2, i−1)
and x1

i = x2
i . The same can be argued about the y part. We then argue that if

`x < n+ 1, then there ∃i < n+ 1 such that bx1
i 6= bx2

i . This is easy to see since
by definition of `x the output of prefix is the same but x1

`x
6= x2

`x
.

So, we turn our attention to the comparison between cm1
`x`y

and cm2
`x`y

by
computing

t = cm1
`x`y − cm

2
`x`y mod 3

Note that by definition of `x, `y, the output of prefix is the same for both ci-

phertexts and therefore the output of F
(2)
K is the same so we can rewrite this

as
t = α1

`x`y − α
2
`x`y mod 3

We now have the following cases:

1. `x < n + 1 ∧ `y < n + 1: In this case we know that x1
`x
6= x2

`x
∧ y1

`y
6=

y2
`y

, which means that we are either in the case (comparable) {(0, 0), (1, 1)}
or (incomparable) {(0, 1), (1, 0)}. In the comparable case we have that t ∈
{+1,−1} (since one of the α is 1 and the other is 0). In the incomparable
case we have that t = 0 since the value zij is the same in both cases (since
as argued before prefix’s output is the same and so is F (1)’s output).

2. `x = n + 1 ∧ `y < n + 1: following a similar reasoning in this case x1
`x

=
x2
`x
∧ y1

`y
6= y2

`y
therefore t = y1

`y
− y2

`y
∈ {+1,−1}.

9

4.1 Security

In the proof we replace the pseudorandom function F with a truly random
function f , and we define the following four functions

f (1), f (2) :M× [n+ 1]2 → {0, 1, 2}
f (3), f (4) : {0, 1}n × [n]→ {0, 1}

where given a plaintext m = (x, y) ∈M and two indices i, j ∈ [n+ 1] we define

f (1)(m, (i, j)) = f(1, prefix(x, i− 1), prefix(y, j − 1)) mod 3

f (2)(m, (i, j)) = f(2, prefix(x, i− 1), prefix(y, j − 1)) mod 3

f (3)(x, i) = f(3, prefix(x, i− 1)) mod 2

f (4)(y, j) = f(4, prefix(y, j − 1)) mod 2

These functions fulfil the following property

Lemma 1. For all m1 = (x1, y1) and m2 = (x2, y2) in M if pos(m1,m2) =
(`x, `y), then for all i ≤ `x and all j ≤ `y it holds that

f (1)(m1, (i, j)) = f (1)(m2, (i, j))

f (2)(m1, (i, j)) = f (2)(m2, (i, j))

f (3)(x1, i) = f (3)(x2, i)

f (4)(y1, j) = f (4)(y2, j)

The lemma follows directly form the definition of the functions f (1), . . . , f (4),
prefix and pos.

Simulator. Denote the adversarial chosen message as m1, · · · ,mq, where mi =
(xi, yi) ∈ M. Initially, simulator S0 is empty and S1 sets C1 = (cm1, bx1, by1),
where cm1, bx1, by1 are all drawn uniformly at random. Furthermore, it sets the
state stS = (C1). Next, define the simulator Si (for 2 ≤ i ≤ q) as in Figure 2.

Theorem 1. The RE scheme ΠPORE from Construction 1 is secure with leakage
function L.

Proof. We prove that the above defined simulator generates ciphertexts, which
are indistinguishable from the actual ciphertexts. We start by defining a series
of hybrid games:

H0: The real experiment: REALPORE
A (κ), where the ciphertexts are generated by

the encryption algorithm.

H1: Same as H0, except we replace the PRF F with a truly random function f .

H2: The ideal experiment: IDEALPORE
A,S,L(κ), where the ciphertexts are generated

by the simulator.

10

(Ci, stS)← Si(stS ,L(m1, . . . ,mi))

For each cell (s, t) in cmi:

1. If ∃j < i such that pos(mi,mj) = (`x, `y) with `x > s, `y > t, then set

cmi
s,t = cmj

s,t.

2. Else if ∃j < i such that pos(mi,mj) = (s, t), then
– if mi > mj , set cmi

s,t = cmj
s,t + 1 mod 3;

– if mi < mj , set cmi
s,t = cmj

s,t − 1 mod 3;

– if they are incomparable, set cmi
s,t = cmj

s,t.

3. Else set cmi
s,t ←$ {0, 1, 2}.

For each cell s in bxi:

4. If ∃j < i such that pos(mi,mj) = (`x, `y) with `x > s or mi = mj , then
set bxis = bxjs.

5. Else if ∃j < i such that pos(mi,mj) = (s, `y), then set bxis = bxjs + 1
mod 2.

6. Else set bxis ←$ {0, 1}.

For each cell t in byi:

7. If ∃j < i such that pos(mi,mj) = (`x, `y) with `y > t or mi = mj , then

set byit = byjt .
8. Else if ∃j < i such that pos(mi,mj) = (`x, t), then set byit = byjt + 1

mod 2.
9. Else set byit ←$ {0, 1}.

Output Ci = (cmi, bxi, byi) and stS = (C1, . . . , Ci).

Fig. 2. Simulator Si (for 2 ≤ i ≤ q) for 2-dimensional PORE.

11

From the definition of pseudo-random function it is given that H1 is indistin-
guishable from H0 (the real experiment). Next, we prove by induction that the
ciphertexts (C1, · · · , Cq) generated by the simulator have same distribution as

the ciphertexts (Ĉ1, · · · , Ĉq) generated by H1 (i.e. that H1 is indistinguishable
from H2). From the construction of hybrid H1 and the simulator, we notice that
the distribution of cm, bx and by are independent of each other. Thus, to prove
that the distributions are indistinguishable, we can look at each part separately
(i.e. we look at each of the nine cases defined in the simulator, separately).

Assume that (C1, . . . , Ci−1) is indistinguishable from (Ĉ1, . . . , Ĉi−1) for some

0 < i 6 q. Then, we prove that Ci = (cmi, bxi, byi) and Ĉi = (ĉm
i
, b̂x

i
, b̂y

i
)

are indistinguishable distributed. Denote the adversarial chosen message by
mi = (xi, yi) for i = 1, . . . , q.

For each cell (s, t) in cmi:

1. If ∃j < i such that pos(mi,mj) = (`x, `y) with `x > s, `y > t, then xis = xjs
and yit = yjs. Thus, from the definition of hybrid H1 and by Lemma 1 we get

ĉm
i
st = f (2)(mi, (s, t)) + αist

= f (2)(mj , (s, t)) + αjst

= ĉm
j
st

From the definition of the simulator (in Figure 2) it is given that cmi
st =

cmj
st, and by assumption we have Cj ∼ Ĉj , which means that cmj

st ∼ ĉm
j
st.

Thus, we can conclude that

cmi
st = cmj

st ∼ ĉm
j
st = ĉm

i
st

2. Else if ∃i < j such that pos(mi,mj) = (s, t), then xis 6= xjs and yit 6= yjs.

The relation between ĉm
i
st and ĉm

j
st is defined from the relation between mi

and mj as follows
– If mi > mj , then (xis, y

i
t) = (0, 0) and (xjs, y

j
t) = (1, 1), which means that

αist = 0 and αjst = 1. Thus

ĉm
i
st = ĉm

j
st + 1 mod 3

– If mi < mj , then (xis, y
i
t) = (1, 1) and (xjs, y

j
t) = (0, 0), which means that

αist = 1 and αjst = 0. Thus

ĉm
i
st = ĉm

j
st − 1 mod 3

– If mi and mj are incomparable, then it must be the case that

[(xis, y
i
t), (x

j
s, y

j
t)] = [(0, 1), (1, 0)] or [(1, 0), (0, 1)]

Thus, by Lemma 1 we get

αist = f (1)(mi, (s, t)) = f (1)(mj , (s, t)) = αjst

which implies that cmi
st = cmj

st.

12

By the definition of the simulator (see Figure 2) and the assumption that

Cj ∼ Ĉj , we can conclude that ĉm
i
st and cmi

st are indistinguishable in all
three cases.

3. Else ∀j < i, pos(mi,mj) = (`x, `y), we have that `x ≤ s or `y ≤ t.
– If `x < s and `y < t, then ĉm

i
st is uniformly random, since the input to

f (2) has never been used before.
– If `x = s or `y = t, then either xis = xjs, y

i
t 6= yjt or xis 6= xjs, y

i
t = yjt .

Thus, exactly one of αist and αjst is random, and the other one is fixed.3

Thus, we can conclude that ĉm
i
st is uniformly random and independent from

ĉm
j
st. Since the simulator choose cmi

st uniformly random, we can conclude

that ĉm
i
st and cmi

st are indistinguishable.

For each cell s in bxi:

4. If ∃j < i such that pos(mi,mj) = (`x, `y) with `x > s, then xis = xjs. Thus,
from the definition of hybrid H1 and by Lemma 1 we get

b̂x
i

s = f (3)(xi, s) + xis = f (3)(xj , s) + xjs = b̂x
j

s

Thus, by the definition of the simulator and the assumption that Cj ∼ Ĉj ,

we can conclude that bxis and b̂x
i

s are indistinguishable.

5. Else if ∃j < i such that pos(mi,mj) = (s, `y), then xis 6= xjs, and by the
definition of hybrid H1 we have

b̂x
i

s = f (3)(xi, s) + xis

b̂x
j

s = f (3)(xj , s) + xjs

Thus, we can conclude that b̂x
i

s 6= b̂x
j

s, which implies that

b̂x
i

s = b̂x
j

s + 1 mod 2

By the definition of the simulator and the assumption that Cj ∼ Ĉj , we can

conclude that bxis and b̂x
i

s are indistinguishable.

6. Else ∀j < i, pos(mi,mj) = (`x, `y), we have that `x < s. In this case, the

input to f (3) has never appeared before, thus b̂x
i

s is uniform random. Since
the simulator choose bxis uniformly at random, they are indistinguishable.

3 This follows directly from the way αist and αjst is chosen in the encryption algorithm,
and the fact that the two messages differs in exactly one coordinate (e.g. (xis, y

i
t) =

(0, 0) and (xjs, y
j
t) = (0, 1)).

13

For each cell t in byi the arguments follow closely the arguments for case 4-6.
Thus, Ci and Ĉi are indistinguishable, if (C1, . . . , Ci−1) and (Ĉ1, . . . , Ĉi−1) are
indistinguishable distributed. By induction, we can conclude that the simulator
generates a distribution, which is indistinguishable from the one generated by
H1. Thus, we can conclude that

REALPORE
A (κ) ∼c IDEALPORE

A,S,L(κ)

4.2 d-dimensional

In this section we will generalize the 2-dimensional construction from the pre-
vious section into d dimensions. The authorized function for a d-dimensional
PORE is f :M×M→ {(0, 0), (0, 1), (1, 0), (1, 1)}, where M = ({0, 1}n)

d
. For

m1 = (x1
1, . . . , x

1
d) ∈ M and m2 = (x2

1, . . . , x
2
d) ∈ M we define a function that

determines the order

ord(m1,m2) :=

{
1 if x1

i ≤ x2
i ∀i ∈ [d]

0 otherwise

Then we can define the authorized function similar to the 2-dimensional case:

f(m1,m2) := (ord(m1,m2), ord(m2,m1))

We will prove the security of our scheme with respect to the following leakage
function (similar to the one defined for the 2-dimensional case):

L(m1, · · · ,mq) =
{
f(mi,mj), pos(mi,mj) | i, j ∈ [q]

}
Given a pseudorandom function

F : {0, 1}κ × {0, 1}∗ → {0, 1}κ

we define the following d+ 2 functions:

F
(1)
K , F

(2)
K :M× [n+ 1]d → {0, 1, 2}

F
(k+2)
K : {0, 1}n × [n]→ {0, 1} for k ∈ [d]

where given a plaintext m = (x1, . . . , xd) ∈ M and d indices i1, . . . , id ∈ [n+ 1]
we define

F
(1)
K (m, (i1, . . . , id)) = FK(1, prefix(x1, i1 − 1), . . . , prefix(xd, id − 1)) mod 3

F
(2)
K (m, (i1, . . . , id)) = FK(2, prefix(x1, i1 − 1), . . . , prefix(xd, id − 1)) mod 3

and for k ∈ [d] we define

F
(k+2)
K (xk, ik) = FK(k + 2, prefix(xk, ik − 1)) mod 2

Construction 2 Fix a security parameter κ ∈ N. We define a PORE for d-
dimensional points ΠPORE = (Setup,Enc,Eval) as follows

14

Setup: On input the security parameter κ ∈ N, sample and output a key K ←$

{0, 1}κ.

Encryption: Given a point m = (x1, . . . , xd) ∈ M and a secret key K. Com-
pute for all k ∈ [d] and for all ik ∈ [n+ 1]: let S = {k ∈ [d]|ik ≤ n},

αi1···id =

0 if xk,ik = 0 ∀k ∈ S ∨ S = ∅
1 if xk,ik = 1 ∀k ∈ S ∧ S 6= ∅
z otherwise

where z = F
(1)
K (m, (i1, . . . , id)) and xk,ik is the ik-th bit in xk. Then compute

cmi1···id = F
(2)
K (m, (i1, . . . , id)) + αi1···id mod 3

bxk,ik = F
(k+2)
K (xk, ik) + xk,ik mod 2

Output C = (cm, bx1, . . . , bxd).
4

Evaluation: On input two ciphertexts

C1 = (cm1, bx1
1, . . . , bx

1
d) = Enc(K,m1)

C2 = (cm2, bx2
1, . . . , bx

2
d) = Enc(K,m2)

For k ∈ [d], let ik be the first index such that bx1
k,ik

and bx2
k,ik

are different

(ik = n+ 1 if bx1
k = bx2

k). If ik = n+ 1 for all k ∈ [d], the algorithm outputs
(1, 1) (since m1 = m2). Otherwise, compute

t = cm1
i1···id − cm

2
i1···id mod 3

Next, the algorithm branches on the value of t:

– If t = −1, output (1, 0) (since m1 < m2);

– If t = 1, output (0, 1) (since m1 > m2);

– Otherwise output (0, 0), since the two points are incomparable.

Correctness. Given two points m1 = (x1
1, . . . , x

1
d) and m2 = (x2

1, . . . , x
2
d) such

that pos(m1,m2) = (l1, . . . , ld). Then, by the same arguments as in the 2-
dimensional case, we can prove for all k ∈ [d] that bx1

k,ik
= bx2

k,ik
for ik < `k,

and if `k < n + 1 then there exists ik < n + 1 such that bx1
k,ik
6= bx2

k,ik
. Thus,

we can identify the cell (l1, . . . , ld) in cm1 and cm2 that determines the partial
order of the points. Next, we can do the same case analysis as in the proof for 2
dimensions by a natural extensions to d dimensions.

4 Note that cm is a d-dimensional matrix with entries on the form cmi1···id , and for
k ∈ [d], bxk = (bxk,1, . . . , bxk,n) is a vector of length n.

15

Security. The security proof of the d-dimensional PORE scheme is a direct
generalization of the security proof for the 2-dimensional PORE from Section 4.1.

Simulator. Denote the adversarial chosen message as m1, . . . ,mq, where mi =
(xi1, . . . , x

i
d) ∈ M. Initially, simulator S0 is empty, and simulator S1 sets C1 =

(cm1, bx1
1, . . . , bx

1
d), where cm1, bx1

k for k ∈ [d] are all drawn uniformly at ran-
dom. Furthermore, it sets stS = (C1). Define the simulator Si (for 2 ≤ i ≤ q) as
in Figure 3.

(Ci, stS)← Si(stS ,L(m1, . . . ,mi))

For each cell (i1, . . . , id) in cmi:

1. If ∃j < i such that pos(mi,mj) = (l1, . . . , ld) with lk > ik for all k ∈ [d],
and ∃k such that lk > ik, then set cmi

i1···id = cmj
i1···id .

2. If ∃j < i such that pos(mi,mj) = (i1, . . . , id), then
– if mi > mj , set cmi

i1···id = cmj
i1···id + 1 mod 3

– if mi < mj , set cmi
i1···id = cmj

i1···id − 1 mod 3

– if they are incomparable, set cmi
i1···id = cmj

i1···id
3. Else set cmi

i1···id ←$ {0, 1, 2}.

For each cell ik in bxik, for all k ∈ [d]:

4. If ∃j < i such that pos(mi,mj) = (l1, . . . , ld) and lk > ik, then set
bxik,ik = bxjk,ik .

5. If ∃j < i such that pos(mi,mj) = (l1, . . . , ld) and lk = ik, then set
bxik,ik = bxjk,ik + 1 mod 2.

6. Else set bxik,ik ←$ {0, 1}.

Output Ci = (cmi, bxi1, . . . , bx
i
d) and stS = (C1, . . . , Ci)

Fig. 3. Simulator Si (for 2 ≤ i ≤ q) for the d-dimensional PORE.

Theorem 2. The RE scheme ΠPORE from Construction 2 is secure with leakage
function L.

Proof. We state a series of hybrid games, which are similar to the 2-dimensional
case:

H0: The real experiment: REALPORE
A (κ), where the ciphertexts are generated by

the encryption algorithm.

H1: Same as H0, except we replace the PRF F with a truly random function f .

16

H2: The ideal experiment: IDEALPORE
A,S,L(κ), where the ciphertexts are generated

by the simulator.

The first step of the proof is to replace the pseudorandom function F with a
truly random function f . Thus, from the property of the pseudorandom function,
we get that hybrid H0 (the real experiment) and hybrid H1 are indistinguish-
able. Next, we prove by induction that hybrid H1 generates ciphertexts, which
are indistinguishable from simulated ciphertexts (hybrid H2). This is proven in
the same manner as for the 2-dimensional PORE. Separately, we study each
cell in the d-dimensional matrix cm and each cell in the n-dimensional vectors
bx1, . . . , bxd, and prove that the cell created using the random function f is in-
distinguishable from the simulated version. From the definition of the simulator
and hybrid H1 we get that each cell is independent from the others. Thus, we
can conclude that the construction is secure with leakage function L.

5 Efficiency of PORE

In this section we analyze the efficiency of our PORE construction.

5.1 Theoretical Efficiency

Let κ be the security parameter, d the number of dimensions and n the bit length
of each entry. Then we can compute the storage and computational complexity
of our scheme.

Storage Complexity. The bit length of a ciphertext in our PORE scheme is
exactly:

1.6(n+ 1)d + nd = O(nd)

Computational Overhead. Performing an encryption requires

2(n+ 1)d + nd = O(nd)

calls to a PRF (with unbounded domain). Note that running the evaluation
algorithm requires no invocation of the PRF (only d binary searches into vectors
of n bits each and a single addition modulo 3).

5.2 Implementation Choices

In this section we describe the result of our experimental validation of the effi-
ciency of our PORE scheme.

Plaintext Space. We have implemented our scheme for a range of parameters d
and n. We report here the results for all combinations (d, n) with d ∈ {2, . . . , 8}
and n = 2i for i ∈ {1, . . . , 13} s.t. the ciphertext size is less than 20MB.

17

PRF Choice. We implement the PRF F : {0, 1}κ × {0, 1}∗ → {0, 1}κ using
AES-CBC mode, with key size κ = 128 bits. This is a particularly convenient
choice thanks to the AES native instruction in modern CPUs.

Note that in the theoretical analysis we stated that the complexity of the
encryption is O(nd) when measured as the number of calls to a PRF with un-
bounded domain. However in practice, when instantiating F with AES in CBC
mode the running time (in terms of number of calls to AES) grows linearly with
the number of blocks needed for the plaintext, namely ddn/128e. Therefore, a
näıve implementation would be significantly slower than promised. We notice,
however, that thanks to the special structure of the inputs of our PRF it is pos-
sible to get rid of this extra factor. In particular, we note that in our matrix of
ciphertexts we evaluate the PRF on inputs of the form

FK(prefix(x1, i1), . . . , prefix(xd, id))

where each value prefix(xk, ik) is given as input to n different PRFs. Therefore
we modify the way we evaluate the PRF by first precomputing

uk,i = F kK(prefix(xk, i)) ∀k ∈ [d], i ∈ [n]

and then implement

FK(prefix(x1, i1), . . . , prefix(xd, id)) = F 0
K(u1,i1 ⊕ · · · ⊕ ud,id)

so that the inputs to F 0
K is of fixed length 128. Therefore (even adding the

O(n2d) extra AES invocations on “long” n-bit values used to precompute the
u’s), the total number of calls to AES and hence the running time is O(nd) as
initially promised.

Note, the XOR operation over d strings takes O(d) time. However, the
points which are in the same position in the first k dimensions shares the value
u1,i1⊕· · ·⊕uk,ik . By making these values reusable, we can reduce the amortized

complexity to
∑d
i=1

1
ni−1 = O(1).

5.3 Experimental Setup

The reported encryption timings (Table 1) are the average taken over a 100
executions of the encryption algorithm. For the evaluation timings (Table 2), we
randomly pick 500 pairs from the 100 ciphertexts and take the average of the 500
executions of the evaluation algorithm. To measure the size of the ciphertexts
(Table 3), we keep track of the size of the required space each time the encryption
algorithm applies the memory.

Hardware. The experiments were executed on a machine with the following
characteristics:

– OS: Linux TitanX1 3.19.0-15-generic #15-Ubuntu SMP
– CPU: Intel(R) Xeon(R) CPU E5-2675 v3 1.80GHz
– Memory: 128GB
– GCC: gcc version 4.9.2 (Ubuntu 4.9.2-10ubuntu13) (Compile option -O2)

18

n
d

2 3 4 5

2 2.0 (±0.42) µs 4.0 (±0.61) µs 18.2 (±4.56) µs 45.1 (±7.53) µs
4 7.0 (±0.76) µs 23.9 (±1.98) µs 100.2 (±4.81) µs 411.4 (±36.60) µs
8 16.2 (±0.98) µs 107.5 (±4.31) µs 749.3 (±95.20) µs 5.6 (±0.60) ms
16 49.2 (±1.81) µs 622.3 (±63.24) µs 7.6 (±1.12) ms 110.6 (±6.49) ms
32 154.8 (±5.05) µs 3.5 (±0.37) ms 93.0 (±6.40) ms 3.2 (±0.01) s
64 546.8 (±47.95) µs 21.9 (±2.21) ms 1.4 (±0.01) s
128 1.8 (±0.22) ms 162.5 (±8.32) ms
256 6.5 (±0.83) ms 1.3 (±0.02) s
512 21.8 (±2.53) ms
1024 83.3 (±5.95) ms
2048 326.5 (±7.58) ms
4096 1.3 (±0.02) s
8192 5.3 (±0.03) s

n
d

6 7 8

2 124.1 (±7.18) µs 342.8 (±25.00) µs 744.3 (±21.90) µs
4 1.6 (±0.22) ms 7.4 (±1.03) ms 33.7 (±4.03) ms
8 39.3 (±0.59) ms 358.0 (±12.67) ms
16 1.9 (±0.01) s

Table 1. Encryption time and standard deviation

5.4 Results

In this section, we analyze the results of the experiments.

Encryption Complexity. Table 1 shows how long it takes to encrypt a sin-
gle plaintext for different values of d and n. As expected, we observe that the
encryption time grows as the dimension d and bit lengths n increases.

Evaluation Complexity. Note that the theoretically complexity of the eval-
uation algorithm is O(d). However, the actual running time of the evaluation
algorithm from Table 2 indicates that the algorithm is so fast that for most
choices of parameters it is hard to appreciate the theoretical complexity.

When the combined size of all 100 ciphertext from the experiments does not
exceed 6MB (i.e. each ciphertext does not exceed 60kB), then all ciphertexts fits
inside the L2 cache of the CPU. By observing the variation of the evaluation
timings in Table 2 and the ciphertext size in Table 3, we can conclude that
there is a tendency that when the ciphertexts fits inside the L2 cache, then the
variation stays below 0.07 µs.

6 Revealing Encryption For Other Functions

In this section we present some ideas for constructing simple revealing encryption
schemes for other natural functions.

19

n
d

2 3 4 5

2 0.27 (±0.02) 0.56 (±0.05) 0.59 (±0.05) 0.62 (±0.06)
4 0.54 (±0.05) 0.57 (±0.05) 0.61 (±0.05) 0.54 (±0.06)
8 0.54 (±0.05) 0.58 (±0.06) 0.43 (±0.05) 0.37 (±0.05)
16 0.55 (±0.05) 0.42 (±0.05) 0.35 (±0.04) 0.91 (±0.57)
32 0.43 (±0.04) 0.32 (±0.02) 0.30 (±0.22) 0.35 (±0.28)
64 0.42 (±0.05) 0.56 (±0.51) 0.95 (±0.79)
128 0.37 (±0.04) 0.71 (±0.62)
256 0.30 (±0.04) 0.80 (±0.73)
512 0.39 (±0.31)
1024 0.40 (±0.35)
2048 0.52 (±0.60)
4096 0.50 (±0.44)
8192 0.24 (±0.02)

n
d

6 7 8

2 0.61 (±0.06) 0.64 (±0.73) 0.48 (±0.06)
4 0.49 (±0.07) 0.41 (±0.06) 3.78 (±3.24)
8 0.91 (±0.53) 1.40 (±0.76)
16 1.27 (±0.78)

Table 2. Evaluation time and standard deviation (µs)

6.1 Difference Revealing Encryption

Modular Difference. Given a plaintext space Zn (for any integer n), it is easy
to see that one-time pad encryption, with key re-use, is a perfectly secure RE
scheme for the function f : Zn × Zn → Zn

f(x, y) = x− y mod n

In particular, let k ← Zn be a random key and pp = n, then given a plaintext
mi ∈ Zn

ci = Enc(k,mi) = mi + k mod n

Given two ciphertexts ci, cj it is now possible to compute

Eval(pp, ci, cj) = ci − cj mod n = mi −mj = f(mi,mj)

The scheme can be easily proven secure according to the optimal leakage function

L(m1, . . . ,mq) = {f(mi,mj)|i, j ∈ [q]}

since the simulator only needs to pick a random ciphertext c1 ←$ Zn to start
with, and then compute each following ciphertext c2, . . . , cq as

cj = c1 − f(m1,mj)

20

n
d

2 3 4 5 6 7 8

2 32 B 84 B 232 B 668 B 1.9 kB 5.7 kB 17.1 kB
4 48 B 212 B 1016 B 4.9 kB 24.4 kB 122.1 kB 610.4 kB
8 80 B 660 B 5.7 kB 51.3 kB 461.3 kB 4.1 MB
16 144 B 2.3 kB 38.4 kB 652.5 kB 10.8 MB
32 536 B 17.0 kB 561.5 kB 18.1 MB
64 1.5 kB 99.0 kB 6.3 MB
128 5.1 kB 650.1 kB
256 18.1 kB 4.5 MB
512 68.3 kB
1024 264.5 kB
2048 1.0 MB
4096 4.0 MB
8192 16.1 MB

Table 3. The size of the ciphertexts

Absolute Difference. More interestingly, the above simple construction can
be turned into a revealing encryption for absolute difference between integers
of bounded magnitude B i.e., for the function f(x, y) : [B] × [B] → [0 : B − 1]
defined as

f(x, y) = |x− y|
(Note that the challenge here is to construct a scheme where the output of the
Eval function should be the same no matter what the order of its input is). Our
construction is as follows: The setup algorithm outputs a secret key sk = (s, k),
where k ←$ [2B−1] and s←$ {−1,+1}, and pp = B. The encryption algorithm
on input a plaintext mi ∈ [B] outputs

ci = Enc(sk,mi) = s ·mi + k mod 2B − 1

and given two ciphertexts ci, cj the evaluation function outputs

Eval(pp, ci, cj) = min{|ci − cj |, 2B − 1− |ci − cj |}

For correctness, we observe that

ci − cj mod 2B − 1 = s(mi −mj) mod 2B − 1

Given that mi,mj ∈ [B] we have that −B < s(mi − mj) < B. Thus we can
conclude that the evaluation algorithm outputs the absolute difference of the
two messages:

Eval(pp, ci, cj) = |s(mi −mj)| = f(mi,mj)

Also in this case the scheme can be proven secure according to the optimal
leakage function

L(m1, . . . ,mq) = {f(mi,mj)|i, j ∈ [q]}

21

using the following simulation strategy: start by picking a random ciphertext
c1 ←$ [2B−1], and for any i ∈ [q] such that f(mi,m1) = 0, set ci = c1. Let k ∈ [q]
be the smallest index such that f(mk,m1) 6= 0, then let ck = c1 + s · f(mi,m1).
For 2 ≤ i ≤ q do the following

1. if f(mk,mi) =
∣∣f(mk,m1)− f(mi,m1)

∣∣, then compute

ci = c1 + s · f(mi,m1)

2. otherwise compute

ci = c1 − s · f(mi,m1)

Note, the reason why we distinguish between these two cases is to determine
whether mi is on the same side (or opposite side) of m1 compared to mk. In case
1) m1 is the maximum or minimum among m1,mk,mi, thus, mk and mi are on
the same side. In case 2) they are on opposite sides.

6.2 Hamming distance

Given a plaintext space {0, 1}n, we define a RE scheme for the function f :
{0, 1}n × {0, 1}n → Zn

f(x, y) = dH(x, y)

where dH(x, y) = |{xj 6= yj |j ∈ Zn}| is the Hamming distance between the bit
vectors x and y.

Our construction is as follows: the setup algorithm outputs pp = n and
sk = (π, r), where π : [n] → [n] is a random permutation and r ←$ {0, 1}n is a
random n-bit string. The encryption algorithm on input m ∈ {0, 1}n outputs

c = Enc(sk,m) =
(
mπ(1), . . . ,mπ(n)

)
⊕ r

(i.e. we permute the bits of the message m and XOR the result with a random
value r). Given two ciphertexts c1, c2 the evaluation algorithm outputs

Eval(pp, c1, c2) = dH(c1, c2)

Note that when computing the Hamming distance between the two cipher-
texts, the random value r will cancel out. This leaves the permuted plaintexts,
which has the same Hamming distance as the original plaintexts. Thus, the
scheme enjoys correctness. Next, the scheme can be proven secure according to
the following leakage function for q ≤ 3

L(m1, . . . ,mq) = {dH(mi,mj)|i, j ∈ [q]}

To prove that the scheme is secure we take a look at the general case for
an arbitrary q, and investigate what the ciphertexts leak about the structure

22

and relation between the queried messages m1, . . . ,mq. For all s ∈ {0, 1}q and
i ∈ [n], define As as follows:

i ∈ As iff s = (m1,i, . . . ,mq,i)

where mj,i denotes the ith bit of message mj for j ∈ [q]. Denote the leaked
structure by

T (m1, . . . ,mq) = {(s, |As|+ |As̄|) | s1 = 0}

where s̄ is defined such that s̄j 6= sj for all j ∈ [q]. Thus, we define a new leakage
function

L∗(m1, . . . ,mq) = L(m1, . . . ,mq) ∪ T (m1, . . . ,mq)

The simulator then proceeds by picking random ciphertexts c1, . . . , cq under
the condition that T (m1, . . . ,mq) = T (c1, . . . , cq). Then it can be proven that
c1, . . . , cq is indistinguishable from real encryptions of messages m1, . . . ,mq un-
der leakage function L∗. Finally, we can prove that for q ≤ 3 the information
leaked by L∗ can be computed given the information leaked by L.

Insecurity when q > 3. We will now give a concrete example of why leakage
function L is not enough for q > 3. For two different set of queried messages
{m1, . . . ,mq} and {m′1, . . . ,m′q} with the same leakage under L, they can have
different structure of T . For example (for q = 4):

m1 = 0000 m′1 = 0000
m2 = 0011 m′2 = 0011
m3 = 0101 m′3 = 0101
m4 = 1001 m′4 = 0110

Here we observe that dH(mi,mj) = dH(m′i,m
′
j) for all 1 ≤ i < j ≤ 4.

However, for s = (0, 0, 0, 0) we note that (s, 0) ∈ T (m1,m2,m3,m4), while
(s, 1) ∈ T (m′1,m

′
2,m

′
3,m

′
4). Thus, the two sets of queries have different structure,

which for q > 3 cannot be computed given only the information provided by
leakage function L.

7 Conclusion

In this work, we introduced a generalization of order-revealing encryption (ORE)
called revealing encryption (RE), which is an encryption scheme that allows
to compute a (selected) function f of the plaintexts given only the encrypted
data. We adopt the simulation-based security notion presented by Chenette et
al. [CLWW15], which define security with respect to a leakage function. This
enables one to determine the exact information that the ciphertexts leak about
the underlying messages (which will always include the function f evaluated on
all possible ciphertexts).

23

Revealing encryption is of special interest in relation to applications like
computation or queries on outsourced encrypted data. However, these encryp-
tion schemes leak potentially sensitive information about the encrypted data
depending on the actual application in which RE is used. This means that be-
fore using RE in a concrete application one should make a proper analysis to
understand whether the leakage provided is problematic or not. As an example,
Naveed et al. [NKW15] presented several attacks on databases encrypted using
order preserving encryption (OPE). In these attacks, they were able to recover
sensitive data using only the encrypted data and public auxiliary information.

Acknowledgements

This project was supported by: the Danish National Research Foundation and
The National Science Foundation of China (grant 61361136003) for the Sino-
Danish Center for the Theory of Interactive Computation.

References

AKSX04. Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu.
Order-preserving encryption for numeric data. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, Paris, France,
June 13-18, 2004, pages 563–574, 2004.

BBO07. Mihir Bellare, Alexandra Boldyreva, and Adam ONeill. Deterministic and
efficiently searchable encryption. In Annual International Cryptology Con-
ference, pages 535–552. Springer, 2007.

BCLO09. Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill.
Order-preserving symmetric encryption. In Advances in Cryptology - EU-
ROCRYPT 2009, 28th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cologne, Germany, April 26-30,
2009. Proceedings, pages 224–241, 2009.

BCO11. Alexandra Boldyreva, Nathan Chenette, and Adam ONeill. Order-
preserving encryption revisited: Improved security analysis and alternative
solutions. In Annual Cryptology Conference, pages 578–595. Springer, 2011.

BCOP03. Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Per-
siano. Public key encryption with keyword search. IACR Cryptology ePrint
Archive, 2003:195, 2003.

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. Cryptology ePrint Archive, Report 2001/069, 2001. http://

eprint.iacr.org/2001/069.
BHJP14. Christoph Bösch, Pieter H. Hartel, Willem Jonker, and Andreas Peter. A

survey of provably secure searchable encryption. ACM Comput. Surv.,
47(2):18:1–18:51, 2014.

BKS01. S. Borzsony, D. Kossmann, and K. Stocker. The skyline operator. In Data
Engineering, 2001. Proceedings. 17th International Conference on, pages
421–430, 2001.

BKV13. Suvarna Bothe, Panagiotis Karras, and Akrivi Vlachou. eskyline: Process-
ing skyline queries over encrypted data. Proc. VLDB Endow., 6(12):1338–
1341, August 2013.

24

http://eprint.iacr.org/2001/069
http://eprint.iacr.org/2001/069

BLR+15. Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and
Joe Zimmerman. Semantically secure order-revealing encryption: Multi-
input functional encryption without obfuscation. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
pages 563–594. Springer, 2015.

BRRS09. Mihir Bellare, Thomas Ristenpart, Phillip Rogaway, and Till Stegers.
Format-preserving encryption. In Selected Areas in Cryptography, 16th An-
nual International Workshop, SAC 2009, Calgary, Alberta, Canada, August
13-14, 2009, Revised Selected Papers, pages 295–312, 2009.

BSW11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Defini-
tions and challenges. In Theory of Cryptography - 8th Theory of Cryptog-
raphy Conference, TCC 2011, Providence, RI, USA, March 28-30, 2011.
Proceedings, pages 253–273, 2011.

BZ15. Mark Bun and Mark Zhandry. Order-revealing encryption and the hardness
of private learning. Cryptology ePrint Archive, Report 2015/417, 2015.
http://eprint.iacr.org/2015/417.

CD15. Payal Chaudhari and Maniklal Das. Privacy-preserving attribute based
searchable encryption. Cryptology ePrint Archive, Report 2015/899, 2015.
http://eprint.iacr.org/2015/899.

CGKO06. Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Search-
able symmetric encryption: Improved definitions and efficient construc-
tions. Cryptology ePrint Archive, Report 2006/210, 2006. http://eprint.
iacr.org/2006/210.

CLOZ16. David Cash, Feng-Hao Liu, Adam O’Neill, and Cong Zhang. Reducing the
leakage in practical order-revealing encryption. Cryptology ePrint Archive,
Report 2016/661, 2016. http://eprint.iacr.org/2016/661.

CLWW15. Nathan Chenette, Kevin Lewi, Stephen A. Weis, and David J. Wu. Prac-
tical order-revealing encryption with limited leakage. Cryptology ePrint
Archive, Report 2015/1125, 2015. http://eprint.iacr.org/.

DHO16. Ivan Damgrd, Helene Haagh, and Claudio Orlandi. Access control encryp-
tion: Enforcing information flow with cryptography. Cryptology ePrint
Archive, Report 2016/106, 2016. http://eprint.iacr.org/2016/106.

DMNS06. Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Cal-
ibrating noise to sensitivity in private data analysis. In Theory of Cryptog-
raphy, Third Theory of Cryptography Conference, TCC 2006, New York,
NY, USA, March 4-7, 2006, Proceedings, pages 265–284, 2006.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 169–178,
2009.

GGG+14. Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan
Katz, Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-
input functional encryption. In Advances in Cryptology - EUROCRYPT
2014 - 33rd Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Copenhagen, Denmark, May 11-15,
2014. Proceedings, pages 578–602, 2014.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In 54th Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley,
CA, USA, pages 40–49, 2013.

25

http://eprint.iacr.org/2015/417
http://eprint.iacr.org/2015/899
http://eprint.iacr.org/2006/210
http://eprint.iacr.org/2006/210
http://eprint.iacr.org/2016/661
http://eprint.iacr.org/
http://eprint.iacr.org/2016/106

Goh03. Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216,
2003. http://eprint.iacr.org/2003/216.

GPSW06. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-
based encryption for fine-grained access control of encrypted data. In Pro-
ceedings of the 13th ACM Conference on Computer and Communications
Security, CCS 2006, Alexandria, VA, USA, Ioctober 30 - November 3, 2006,
pages 89–98, 2006.

GSW04. Philippe Golle, Jessica Staddon, and Brent R. Waters. Secure conjunctive
keyword search over encrypted data. In Applied Cryptography and Network
Security, Second International Conference, ACNS 2004, Yellow Mountain,
China, June 8-11, 2004, Proceedings, pages 31–45, 2004.

GVW13. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-
based encryption for circuits. In Symposium on Theory of Computing Con-
ference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 545–554,
2013.

JP16. Marc Joye and Alain Passelgue. Practical trade-offs for multi-input func-
tional encryption. Cryptology ePrint Archive, Report 2016/622, 2016.
http://eprint.iacr.org/.

Ker15. Florian Kerschbaum. Frequency-hiding order-preserving encryption. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, Denver, CO, USA, October 12-6, 2015, pages 656–
667, 2015.

KHY13. Dongyoung Koo, Junbeom Hur, and Hyunsoo Yoon. Secure and efficient
data retrieval over encrypted data using attribute-based encryption in cloud
storage. Computers & Electrical Engineering, 39(1):34–46, 2013.

KLN+11. Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya
Raskhodnikova, and Adam D. Smith. What can we learn privately? SIAM
J. Comput., 40(3):793–826, 2011.

KS14. Florian Kerschbaum and Axel Schröpfer. Optimal average-complexity
ideal-security order-preserving encryption. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, Scotts-
dale, AZ, USA, November 3-7, 2014, pages 275–286, 2014.

KSW08. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption sup-
porting disjunctions, polynomial equations, and inner products. In Ad-
vances in Cryptology - EUROCRYPT 2008, 27th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Istanbul, Turkey, April 13-17, 2008. Proceedings, pages 146–162, 2008.

LLM+16. Ximeng Liu, Rongxing Lu, Jianfeng Ma, Le Chen, and Haiyong Bao. Ef-
ficient and privacy-preserving skyline computation framework across do-
mains. Future Generation Computer Systems, 62:161–174, 2016.

LW16. Kevin Lewi and David J. Wu. Order-revealing encryption: New construc-
tions, applications, and lower bounds. Cryptology ePrint Archive, Report
2016/612, 2016. http://eprint.iacr.org/2016/612.

NKW15. Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference at-
tacks on property-preserving encrypted databases. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Secu-
rity, Denver, CO, USA, October 12-6, 2015, pages 644–655, 2015.

PLZ13. Raluca A. Popa, Frank H. Li, and Nickolai Zeldovich. An ideal-security
protocol for order-preserving encoding. In 2013 IEEE Symposium on Se-
curity and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages
463–477, 2013.

26

http://eprint.iacr.org/2003/216
http://eprint.iacr.org/
http://eprint.iacr.org/2016/612

PR12. Omkant Pandey and Yannis Rouselakis. Property preserving symmetric
encryption. In Advances in Cryptology - EUROCRYPT 2012 - 31st Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, pages 375–
391, 2012.

PTFS03. Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An opti-
mal and progressive algorithm for skyline queries. In Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’03, pages 467–478, New York, NY, USA, 2003. ACM.

RACY15. Daniel Roche, Daniel Apon, Seung Geol Choi, and Arkady Yerukhimovich.
Pope: Partial order-preserving encoding. Cryptology ePrint Archive, Re-
port 2015/1106, 2015. http://eprint.iacr.org/2015/1106.

RAD78. Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data
banks and privacy homomorphisms. Foundations of secure computation,
4(11):169–180, 1978.

Sha84. Adi Shamir. Identity-based cryptosystems and signature schemes. In Ad-
vances in Cryptology, Proceedings of CRYPTO ’84, Santa Barbara, Cali-
fornia, USA, August 19-22, 1984, Proceedings, pages 47–53, 1984.

SWP00. Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical tech-
niques for searches on encrypted data. In 2000 IEEE Symposium on Se-
curity and Privacy, Berkeley, California, USA, May 14-17, 2000, pages
44–55, 2000.

WLLX13. Changji Wang, Wentao Li, Yuan Li, and Xi-Lei Xu. A ciphertext-policy
attribute-based encryption scheme supporting keyword search function. In
Cyberspace Safety and Security - 5th International Symposium, CSS 2013,
Zhangjiajie, China, November 13-15, 2013, Proceedings, pages 377–386,
2013.

WRB15. Mor Weiss, Boris Rozenberg, and Muhammad Barham. Practical solutions
for format-preserving encryption. CoRR, abs/1506.04113, 2015.

XFAM02. Jun (Jim) Xu, Jinliang Fan, Mostafa H. Ammar, and Sue B. Moon. Prefix-
preserving IP address anonymization: Measurement-based security evalu-
ation and a new cryptography-based scheme. In 10th IEEE International
Conference on Network Protocols (ICNP 2002), 12-15 November 2002,
Paris, France, Proceedings, pages 280–289, 2002.

XY12. Liangliang Xiao and I-Ling Yen. Security analysis and enhancement for
prefix-preserving encryption schemes. IACR Cryptology ePrint Archive,
2012:191, 2012.

ZXA14. Qingji Zheng, Shouhuai Xu, and Giuseppe Ateniese. VABKS: verifi-
able attribute-based keyword search over outsourced encrypted data. In
2014 IEEE Conference on Computer Communications, INFOCOM 2014,
Toronto, Canada, April 27 - May 2, 2014, pages 522–530, 2014.

27

http://eprint.iacr.org/2015/1106

A Review of Existing Privacy-Preserving Skyline Queries
Systems

In this section we review the security of two existing systems for performing
privacy-preserving skyline queries.

A.1 eSkyline

Bothe et al. [BKV13] present a system called eSkyline with the goal of process-
ing skyline queries over encrypted data. They propose a deterministic secret-key
encryption scheme to encrypt each data vector. However, the scheme is clearly
not IND-CPA secure (as the authors also observe themselves), since a chosen-
plaintext attack will allow an adversary to determine the encryption key. Fur-
thermore, an encryption of the zero-vector will always result in the zero-vector.
Thus, the encryption scheme reveals too much unwanted information, even to
an adversary that only is allowed to observe the encrypted data.

A.2 EPSC

Liu et al. [LLM+16] propose a new system called EPSC (efficient and privacy-
preserving skyline computation). To implement this system they design a new
additive homomorphic public key encryption scheme as follows: let τ, q and η be
large primes, and compute C0 = τ−1 mod q, p = C0 + k0 · q such that p is a
prime, and Φ = p · η. Let pk = (Φ, q) be the public key, and sk = (p, τ, η) be
the private key. Then they propose to encrypt a message x as follows: choose a
random number r (of size significantly smaller than q) and compute

C = Φ · r + x mod q

In the paper, the following parameters are suggested: |q| = 1024, |Φ| = 2048
and |r| = 512. This encryption scheme is unfortunately not secure: given a
ciphertext C, we can determine whether C encrypts x′ by computing

a = (C − x′) · (Φ−1 mod q) = r + (x− x′) · Φ−1 mod q

If x = x′ then a = r, which means that a will be small (i.e. a ≤ 2512

with probability 1), while in all other cases a will be large (i.e., a > 2512 with
overwhelming probability). Thus, the system does not satisfy IND-CPA security.

28

	Revealing Encryption for Partial Ordering

