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Abstract. In e-voting protocol design, cryptographers must balance us-
ability and strong security guarantees, such as privacy and verifiability.
In traditional e-voting protocols, privacy is often provided by a trusted
authority that learns the votes and computes the tally. Some protocols
replace the trusted authority by a set of authorities, and privacy is guar-
anteed if less than a threshold number of authorities are corrupt. For
verifiability, stronger security guarantees are demanded. Typically, cor-
rupt authorities that try to fake the result of the tally must always be
detected.
To provide verifiability, many e-voting protocols use Non-Interactive
Zero-Knowledge Proofs (NIZKs). Thanks to their non-interactive nature,
NIZKs allow anybody, including third parties that do not participate in
the protocol, to verify the correctness of the tally. Therefore, NIZKs can
be used to obtain universal verifiability. Additionally, NIZKs also improve
usability because they allow voters to cast a vote using a non-interactive
protocol.
The disadvantage of NIZKs is that their security is based on setup as-
sumptions such as the common reference string (CRS) or the random or-
acle (RO) model. The former requires a trusted party for the generation
of a common reference string. The latter, though a popular methodology
for designing secure protocols, has been shown to be unsound.
In this paper, we address the design of an e-voting protocol that pro-
vides verifiability without any trust assumptions, where verifiability here
is meant without eligibility verification. We show that Non-Interactive
Witness-Indistinguishable proofs (NIWI) can be used for this purpose.
The e-voting scheme is private under the Decision Linear assumption,
while verifiability holds unconditionally. To our knowledge, this is the
first private e-voting scheme with perfect universal verifiability, i.e. one
in which the probability of a fake tally not being detected is 0, and non-
interactive protocols that do not rely on trust assumptions.
Keywords: e-voting, verifiability, witness indistinguishability, bilinear
maps.
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1 Introduction

1.1 Background and Statement of the Problem

The parties participating in a standard e-voting protocol are multiple voters and
one authority. First, the authority sets up a public key. A voter computes a ballot
on input her intended vote and sends the ballot to a write-only public bulletin
board (PBB), which records it in an entry associated with that voter. In case of
abstention, a special symbol ⊥ is recorded on the PBB. The authority uses its
secret key to compute the tally on input all the ballots on the PBB, which could
possibly be ⊥ in case of abstention. Finally, the correctness of the tally can be
checked by running a verification algorithm.1

E-voting protocols must provide two security properties: privacy and verifia-
bility. Privacy should protect the secrecy of the votes. Verifiability should prevent
a corrupt authority from faking the tally. We will provide a formal definition of
verifiability that is stronger than previous ones in some respects.

Privacy protection assumes the existence of a trusted authority in many e-
voting systems [Cha81,CGS97,DJ01,CCC+09,Adi08,RS06,RT09,JCJ10]. As for
schemes that distribute the trust among several authorities, privacy protection
still requires that not all of the authorities are corrupt. Nevertheless, verifiability
(also called integrity) should be guaranteed even if the authorities are corrupt.

Many e-voting systems make use of Non-Interactive Zero-Knowledge Proofs
(NIZK) [BFM88,DMP88,Gol01,RS92,DDO+01] to provide verifiability. NIZK
must provide two properties: soundness and zero-knowledge. Soundness prevents
a corrupt prover from proving a false statement, i.e., a statement for which no
witness exists. Zero-knowledge ensures that the verifier does not learn any infor-
mation about the witness.

Zero-knowledge is defined following the simulation paradigm, i.e., it requires
the existence of a simulator that computes a valid proof without knowledge of
the witness. However, if such a simulator existed, soundness would not hold.
This apparent contradiction is solved by resorting to trust assumptions like the
Common Reference String (CRS) model [BFM88]. In the CRS model, a trusted
party generates a CRS that is used by both provers and verifiers. The simulator is
given the additional power of computing the CRS. Thanks to that, the simulator
knows trapdoor information that allows it to simulate proofs for all statements.

For some applications of NIZK, the CRS model is not problematic. For in-
stance, in IND-CCA public key encryption schemes [NY90,DDO+01,CS03b],
zero-knowledge does not need to hold for the receiver of ciphertexts because
the receiver must be able to decrypt anyway. Therefore, the CRS is computed
by the receiver, while the NIZK proofs are computed by the sender of cipher-
texts. However, in e-voting, the authority cannot compute the CRS because it
must compute proofs that show the correctness of the tally.

An alternative to the CRS model is the Random Oracle (RO) model [BR93].
The RO model assumes the availability of a perfect random function available

1 In this description we skipped some details (e.g., eligibility and authentication) that
are not relevant to our setting. See below for more discussion.
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to all parties. NIZKs that use the RO model are constructed following the Fiat-
Shamir heuristic [FS87]. To prove that a NIZK proof constructed following this
heuristic is zero-knowledge, we need programmability of the RO, i.e., the ability
of the simulator to change the input/output of the RO.

To compute a proof, in practice, the prover replaces the RO by some “secure”
hash function. Therefore, this hash function must be chosen honestly for zero-
knowledge to hold. Consequently, all the parties must trust the implementation
of a concrete hash function (e.g., SHA-3 [BDPA11]). We note that a hash function
could have been designed in a malicious way (e.g., “programmed” like in the
simulation) to allow the computation of a proof for a false statement. Currently,
this needed trust on the implementation of hash functions does not exist. In fact,
different political entities have developed their own hash functions because they
do not trust the hash functions designed by others. For instance, the Russian
government discourages the use of SHA-3 and encourages the use of its own hash
function [Fed12].

Moreover, even when programmability is not needed, the RO methodology
has been shown to be unsound [CGH98]. Further problems are known regarding
the programmability of the RO in the context of NIZK [GK03,Kal06,BDSG+13].
The current techniques to avoid the need of programmability resort to the CRS
model [DFN06,Lin15,CG15,CPSV16].

This motivates our main question: is it possible to design an e-voting scheme
that is verifiable without assuming any trust assumption (like CRS and RO)?

In a survey [Lip05], Lipmaa asks whether Non-Interactive Witness Indistin-
guishable Proofs (NIWI) can be used to replace NIZKs. NIWIs can be con-
structed without using any trust assumptions [GOS06,DN00,BOV03,BP15].2

NIWI is a non-interactive proof/argument system that provides weaker secu-
rity guarantees in comparison to NIZKs. While NIZKs ensure that a proof does
not reveal any information about the witness, NIWIs only guarantee that, for
any two witnesses w1 and w2 for the same statement, a proof computed with
w1 is computationally indistinguishable from a proof computed with w2. Note
that this notion only makes sense for languages with multiple witnesses for each
statement, which is not always the case.

To our knowledge, it was not known how to use NIWI to construct an e-
voting scheme (eVote, in short) that is both private and verifiable. Usually, it
is very difficult to use NIWI because of its weaker security guarantee. Nonethe-
less, inspired by a recent result on functional encryption [BSW11,GGH+13] of
Badrinarayanan, Goyal, Jain and Sahai [BGJS16], we are surprisingly able to
profitably use NIWI to answer our main question affirmatively.

2 Note that in the literature there exist both NIWIs in the CRS model [GS08] and one-
message NIWIs without CRS (see the citations above). Henceforth, unless specified
otherwise, we refer only to one-message NIWIs without CRS, and in particular to
the NIWIs for CircuitSat of Groth et al. [GOS06].
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1.2 Our Results

First, we define correctness, privacy and verifiability properties for an eVote.
We define two flavors of privacy and verifiability: weak and full. We propose an
eVote that is (fully) private and (fully) verifiable. Its privacy can be reduced to
the Decision Linear assumption [BBS04]. Its verifiability is perfect (see below)
and thus is not based on any assumption. Moreover, its verifiability is universal,
i.e., even a third party who did not participate in the election process should
be able to verify the correctness of the tally. As a warm-up, we also describe an
eVote that fulfills the weak privacy and weak verifiability properties.

Our eVote uses as building blocks a NIWI proof system, a public key en-
cryption scheme with perfect correctness and unique secret key, and a per-
fectly binding commitment scheme. It can be instantiated by using just bilinear
groups [Jou04,BF03]. For instance, we can instantiate our construction with the
NIWI of Groth et al. [GOS06] and the Decision Linear encryption scheme of
Boneh et al. [BBS04]. When instantiated with those building blocks, our con-
struction is the first eVote with non-interactive algorithms for casting and ver-
ifying ballots and for computing and verifying the tally that provides perfect
(weak and full) verifiability (as defined in Def. 3) and that fulfills the (weak
and full) privacy property under the Decision Linear assumption [BBS04]. The
Decision Linear assumption is a well-studied assumption over bilinear groups.
Our construction attains universal verifiability, i.e., even third parties who did
not participate in the election process are able to verify the tally.

We prove that our weakly verifiable eVote fulfills the weak verifiability and
weak privacy properties in Corollary 3, and we prove that our (fully) verifiable
eVote fulfills the (full) verifiability and (full) privacy properties in Corollary 6.
We remark that the computational assumption is only needed to prove that our
eVotes fulfill the (weak or full) privacy properties. In contrast, no assumption at
all is necessary to prove that they fulfill the (weak or full) verifiability properties.

Therefore, our eVote with non-interactive algorithms is the first eVote whose
perfect verifiability is not based on any trust and that is provably secure under a
well-studied and falsifiable assumption [Nao03]. The latter is a key point of our
results because otherwise one could just claim that an eVote in the RO model
is secure when instantiated with any hash function. However, even when using
such “unfalsifiable” assumptions, perfect verifiability cannot be achieved against
unbounded adversaries because, in practice, for any hash function whose domain
is larger than the range, the probability of finding a collision is not 0.

In Section 5, we outline how to adapt our (fully) verifiable construction to
a model with multiple authorities. In this model, the tally evaluation algorithm
is run by a set of authorities and the privacy property must hold if at least one
authority is honest. (As this is not the main focus of our work, we do not present
formal definitions and details for its construction.) An important advantage of
our construction is that no interaction among the authorities is required. In
this respect, our techniques completely diverge from previous approaches to the
problem and may be of independent interest. We stress that the multi-string
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model of Groth and Ostrovsky [GO14], though conceptually appealing in this
scenario, fails to provide a solution.

In this work, we use cryptographic primitives to demonstrate the achievabil-
ity of perfect verifiable systems. However, we are not concerned about usability
and “human-friendly” verifiability, as dealt with in [Riv06,RR06,RRI16]. Fur-
thermore, we only consider traditional e-voting systems and hence we neglect
other approaches [KY02,DJ03,Gro04,HRZ10,KSRH12,GIR16].

Our privacy definition is inspired by the one of Benaloh [Ben87], also called
“PRIV” in [BCG+15], which we reformulate by using modern terminology and
we modify conveniently to withstand the attacks shown in [BCG+15]. We be-
lieve that our (fully) verifiable eVote can be proven secure according to other
definitions of security, like for instance the one of Chase et al. [CKLM13], but
we did not investigate the details because it is out of the scope of this initial
work.

Organization. In Section 8 we present the definitions of an eVote, its verifi-
ability and privacy; an overview of them is presented in Section 2. In Section
9 we present the building blocks we will use in our constructions. In Section 3
(resp. Section 4) we include all major details needed to understand our construc-
tion for a weakly verifiable eVote (resp. fully verifiable eVote) and its security
properties. In Section 10 (resp. Section 11) we present the full details of our
construction for a weakly verifiable eVote (resp. fully verifiable eVote) and of its
security properties.

In Section 5, we outline how to adapt our (fully) verifiable eVote to a model
with multiple authorities and threshold privacy. In this model, the tally evalu-
ation algorithm is run by a set of authorities and privacy must hold if at least
one of the authorities is honest.

In Section 6 we make some additional remarks about our definitions and
in particular about the possibility of re-using the parameters through different
elections. In Section 7 we discuss relevant related works.

Finally, in Section 12 we discuss some future directions in cryptography and
e-voting that our work opens up.

2 Our Model and Definitions

In this section, we introduce our definitions of privacy and verifiability. We use
a simple e-voting model with a single authority. We remark that, even for this
model, it was not known how to avoid the use of CRSs or ROs. In Section 5,
we outline how to adapt our constructions to a model with multiple authorities.
Formal definitions of an eVote and of its privacy and verifiability are given in
Section 8.1.

We use a general tally function F : (M∪ {⊥})N → {0, 1}? ∪ {⊥}, where M
is the message space. The special symbol ⊥ denotes either an invalid vote or a
blank ballot, when it is input to the function, or an error, when it is output by
the function. A voter casts ⊥ to denote a blank ballot, i.e., a valid ballot where
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no candidate is chosen. A voter abstains from voting by not casting any ballot
or by casting an invalid ballot, which is replaced by ⊥ in the evaluation phase.

Our general tally function F must satisfy a very natural property given in
Def. 2. The messages belong to a message space M that is not specified. As
byproduct, our constructions can be instantiated, for instance, to the case of a
YES/NO election with the sum as tally function. As shown in [BCG+15], care
has to be taken when considering general tally functions.

2.1 Privacy

Our privacy definition is indistinguishability-based and states that no PPT ad-
versary can win the following game with non-negligible advantage. The adver-
sary receives the public key generated by a challenger and chooses two tuples
of strings that encode either valid votes in the message space M∪ {⊥} or ar-
bitrary ballots, which are cast by possibly corrupt voters. We require that the
tally function outputs the same result on input any of the tuples of strings.

The challenger chooses at random one of the two tuples. The challenger
runs the ballot verification algorithm on input each of the arbitrary ballots and
replaces the arbitrary ballot in the tuple by ⊥ if verification is unsuccessful. The
challenger runs the cast algorithm on input each of the valid votes in the message
space to compute a ballot and replaces the valid vote in the tuple by the ballot.
Then the challenger computes the tally and a proof of correctness of the tally.

The new tuple, which replaces valid votes by ballots and invalid arbitrary
votes by ⊥, is given to the adversary along with a proof of the correctness of the
tally. The adversary guesses which of the two tuples was chosen by the challenger.

More formally, the adversary sends two tuples V0 = (m0,1, . . . ,m0,N ) and
V1 = (m1,1, . . . ,m1,N ) and a set S ⊂ [N ]. The set S contains the indices of
the strings of arbitrary ballots. For each j ∈ S, m0,j = m1,j must hold. For
each j /∈ S, m0,j ,m1,j ∈ M ∪ {⊥} must hold. Moreover, we require that for
all d1, . . . , dN ∈ M ∪ {⊥}, F (m′0,1, . . . ,m

′
0,N ) = F (m′1,1, . . . ,m

′
1,N ) must hold,

where, for each j ∈ S,m′0,i = m′1,i = di must hold, and for each j /∈ S, b ∈
{0, 1},m′b,j = mb,j must hold.

Our definition can be viewed as a variant of Benaloh’s ballot privacy defini-
tion [Ben87] (also called “PRIV” in [BCG+15]) reformulated by using modern
terminology and corrected to rule out some known attacks [BCG+15].

We also define weak privacy. The difference between the definitions of weak
privacy and privacy is that, in weak privacy, the set S must be empty, i.e., the
adversary cannot submit arbitrary ballots.

The privacy definitions that we use here are simple and do not capture vote
replay attacks, see e.g. [CS10]. Such attacks are easily prevented by enforcing
ballot independence. This can e.g. be done by appending a proof of knowledge
of the plaintext in the ballots of the voters. Presently, this has not been done in
the NIWI setting, so we will disregard this point for clarity. However, we stress
that it is easy to change the schemes to satisfy full privacy definitions within the
framework of having trust for privacy, but not for verifiability.
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2.2 Verifiability

We define a ballot verification and a tally verification algorithm. In our definition
of verifiability, we require two conditions two hold. The first condition states that,
if each ballot and the proof of correctness of the tally issued by the authority are
verified successfully by the respective algorithms, then each ballot Ci (possibly
computed on input a maliciously generated public key) must be associated with
a unique message mi ∈ M ∪ {⊥}, and the result y claimed by the authority
equals F (m1, . . . ,mn).

The second one requires that, even when the adversary generates the public
key, if honest voters cast a ballot that is accepted by the ballot verification algo-
rithm, then the ballot has to be “counted”. More concretely, consider that some
ballots are computed by honest voters and are accepted by the ballot verification
ballot algorithm. (These ballots could be ill-formed if they are computed on in-
put a public key generated by the adversary.) Consider also that the remaining
ballots are computed by corrupt voters. In this situation, the tally evaluation
algorithm outputs a tally y and a proof of correctness that, along with the public
key and the ballots, is accepted by the tally verification algorithm. Then, it must
be the case that the ballots sent by honest voters were counted to obtain y. For
example, if the tally function is a sum function that sums binary votes and three
honest voters cast three 1’s, then the authority should not be able to claim that
y < 3.

Remarkably, our construction provides perfect verifiability. Perfect verifiabil-
ity means that the probability that a malicious authority computes an incorrect
tally and a proof that are accepted by the tally algorithm is null.

We also define weak verifiability. In weak verifiability, the authority can incor-
rectly claim that y = ⊥. The second condition described above is still guaranteed
for all the tallies y 6= ⊥. For a weakly verifiable eVote, we only require weak pri-
vacy.

Although our weakly verifiable eVote satisfies weaker properties, it represents
a worthwhile warm-up. Our (fully) verifiable eVote is based on it, though with
some relevant modifications. Our weakly verifiable construction does not need a
ballot verification algorithm, but for simplicity we use the same syntax for both
the weakly verifiable and (fully) verifiable schemes. In Section 2.3, we describe
a definition of correctness that is stronger than previous ones. This definition is
needed to exclude the case that an eVote, that is intuitively not verifiable, fulfills
formally the definition of verifiability.

In Section 5, we outline how to adapt our (fully) verifiable construction to a
model with multiple authorities. In this model, the tally is computed by a set of
authorities. Privacy must hold if at least one authority is honest. Because this
model is not the main focus of our work, we do not present formal definitions or a
detailed description of its construction. We note that such a construction would
satisfy a different, but still without trust assumptions, definition of verifiability
that essentially states that if there is at least one honest voter, the verifiability
holds with overwhelming probability over the random coins of such voter, a very
minimal assumption.

8



In this paper, for simplicity, we do not directly address issues of eligibility.
We assume that a ballot is associated with a voter uniquely and that the adver-
sary cannot submit a ballot on behalf of some voters. Unconditional eligibility
verifiability seems hard or impossible to achieve, since we normally use some
commitment, e.g. a PKI, and digital signatures on the ballots to prove the eligi-
bility, but such an approach is not secure against an computationally unbounded
adversary.

Our construction can however easily be extended to take into account such
attacks by using digital signatures in a standard, but non-perfect, way, see e.g.
[CGGI14]. The resulting construction would nonetheless satisfy a meaningful
notion of verifiability secure against computationally bounded adversaries not
based on any trust assumption and this constitutes an advancement to the state
of the art in the field. In fact, to our knowledge, it is not even known how
to construct an eVote protocol with computational verifiability without trusted
parties.

2.3 On the Need of a Stronger Correctness Property

We justify here why a stronger correctness property is needed. Traditionally,
the correctness property guarantees both that the ballot verification algorithm
accepts the ballots computed by the cast algorithm, and (2) that the tally verifi-
cation algorithm accepts the tally and the proof computed by the tally evaluation
algorithm. In the latter, the ballots taken as input by the tally evaluation al-
gorithm are computed by the cast algorithm. Therefore, it is not guaranteed
that the tally verification algorithm accepts the output of the tally evaluation
algorithm when the ballots are not computed by the cast algorithm.

We explain now that this is an issue. In our weakly verifiable scheme, the
ballot verification algorithm accepts any ballot. Therefore, it would be possible to
say that such a scheme is (fully) verifiable by just changing the tally verification

algorithm so that it accept y
4
= ⊥ only when all the ballots equal ⊥. As can be

seen, condition (1) in the definition of (full) verifiability (cf. Def. 3) is fulfilled
because “if part” of the condition does not never holds.

However, intuitively, such a scheme is incorrect. Namely, if an honest author-
ity that runs tally evaluation algorithm and gets y = ⊥ (because some ballots
where ill-formed), the tally verification algorithm should accept that result.

To address this issue, we add condition (2) to the definition of correctness (cf.
Def. 3). This condition states that the tally verification algorithm must accept
the output of the tally algorithm when run on input ballots that are accepted
by the ballot verification algorithm (as opposed to ballots computed by the cast
algorithm). We point out that in some works on definitional foundations (e.g.,
Bernhard et al. [BCG+15]) this issue has been overlooked.

3 Warm-up: Our Weakly Verifiable eVote (Sketch)

In this section, we sketch our construction for a weakly verifiable eVote, i.e. an
eVote that fulfills the weak verifiability and weak privacy properties. A (fully)
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verifiable eVote, which satisfies (full) verifiability and (full) privacy, is presented
in Section 4. We stress that in practice such weakly verifiable eVote lacks funda-
mental security guarantees, but nonetheless it serves as a worthwhile warm-up
to our fully verifiable eVote.

3.1 Intuition

Our weakly verifiable eVote uses 3 instances of a public key encryption (PKE)
scheme in parallel. We require that the PKE scheme fulfills two properties: per-
fect correctness and unique secret key (see Def. 6). PKE schemes with those
properties are known in the literature [DH76,BBS04] and can be constructed,
e.g., from the Decision Linear assumption [BBS04]. The voter encrypts her vote
3 times using the PKE scheme without adding any proof of ciphertext well-
formedness. Therefore, a ballot consists of three ciphertexts.

To compute the tally, the authority proceeds as follows. The authority de-
crypts the first ciphertext and the second ciphertext in a ballot. The authority
replaces decrypted messages that do not belong to the message space by ⊥.

The authority evaluates the tally function twice. First, the authority uses as
input the messages encrypted in the first ciphertext of each ballot. Second, it uses
the messages encrypted in the second ciphertext of each ballot. If both tallies
are equal, the authority outputs the tally along with a proof of correctness, else
the authority returns ⊥ to indicate an error.

The property of unique secret key guarantees that the decrypted message
will be unique for each ciphertext. Without this property, it could be possible
that a voter cast an invalid ciphertext Ct not belonging to the ciphertext space
such that the decrypted message is different when using two well-formed secret
keys Sk1 and Sk2 for the same public key. Note that this is not prevented by the
correctness property, which only holds when the ciphertext is an output of the
encryption algorithm.

Sketch of the construction. Let N be the number of voters and let F be a
tally function with message space M. The public key Pk of our eVote consists
of the 3 PKs (Pk1, . . . ,Pk3) of the underlying PKE. The secret key consists of
the 3 corresponding SKs (Sk1, . . . ,Sk3) of the PKE.

Our cast algorithm takes as input the public key (Pk1, . . . ,Pk3), the index j
of the voter3, and for j ∈ [N ], a vote v. The cast algorithm outputs a ballot for
the j-th voter. Our cast algorithm just encrypts the vote v with the 3 instances
of the PKE to produce the ciphertexts Ct1, . . . ,Ct3. The ballot given as output

is Blt
4
= (Ct1, . . . ,Ct3).

3 The index is needed to associate a ballot with a unique voter. For instance, an eVote
could require that each voter encrypts her ballot with a different PKE public key,
adding a proof of well-formedness. The public key of the eVote would contain N
PKE’s public keys, one for each voter, and so the statement of the proof would have
to contain the index of the voter in the set N .
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The tally evaluation algorithm gives output y and works as follows. For all
j ∈ [N ], if the corresponding voter cast her vote, for all l ∈ [2], decrypt Ctj,l with
Skl to get mj,l. Then, for all l ∈ [2] compute yl = F (m1,l, . . . ,mN,l), where for
indices j such that either mj,l /∈ M or the j-th voter did not cast her vote, we
set mj,l = ⊥. If the two yl’s are equal to the same string y then return this as the
tally, otherwise return an error y = ⊥. Finally, compute a NIWI proof γ of the
fact that x = (Blt1, . . . ,BltN ,Pk1, . . . ,Pk3) satisfies the relation Rdec in Fig. 1
using as witness (Sk1,Sk2, s1, s2). Another part of the witness is the two indices
i1, i2 ∈ [3], i1 < i2, which determine which two columns of ciphertexts that are
used in the tally. In the real mode described above, we have i1 = 1, i2 = 2, but
we can also have trapdoor modes with other index choices which will be essential
for privacy.

Relation Rdec(x,w):

Instance: x = (Blt1, . . . ,BltN ,Pk1, . . . ,Pk3, y). (Recall that a ballot is set to ⊥ if
the corresponding voter did not cast her vote.)

Witness: w = (Sk′1, Sk
′
2, s1, s2, i1, i2), where the si’s are the randomness used to

generate the secret key/public key pairs, which is known to the authority that set
up the system.

Rdec(x,w) = 1 if and only if the following condition holds: 2 of the secret keys
corresponding to indices Pki1 ,Pki2 are constructed using honestly generated public
and secret key pairs and are equal to Sk′1, Sk

′
2; and either y = ⊥ or for all l ∈ [2],

y = F (ml
1, . . . ,m

l
N ) and for all j ∈ [N ], if Bltj 6= ⊥ then for l ∈ [2], Sk′l decrypts

ciphertext Ctj,il in Bltj to m
il
j ∈M; and for all l ∈ [2], ml

j = ⊥ if either Bltj = ⊥
or Sk′l decrypts Ctj,il to a string /∈M.

Fig. 1. Relation Rdec.

Note that the proof γ can be computed using as witness the randomness used
to compute the public and secret key pairs. Finally, the algorithm outputs the
pair (y, γ). The tally verification algorithm verifies y by using the verification
algorithm of the NIWI system.

3.2 Weak Verifiability of the Construction

Weak verifiability (cf. Def. 3) requires that, given a public key and a set of
messages decrypted from the ballots, the authority cannot output a pair (y, γ),
y 6= ⊥, such that y is an incorrect tally, but γ is accepted by the tally verification
algorithm. However, the authority is able to claim that y = ⊥ even if that is not
the correct tally. The construction described above suffers from this problem.
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We give a detailed proof that our construction fulfills the weak verifiability
property in Theorem 1. In the following, we explain why our construction above
fulfills the two conditions required by the weak verifiability property. First, we
show that it fulfills the first condition. The first condition states that, if each bal-
lot and the proof of correctness of the tally issued by the authority are verified
successfully by the respective algorithms, then each ballot Ci (possibly com-
puted on input a maliciously generated public key) must be associated with a
unique message mi ∈M∪{⊥}, and the result y claimed by the authority equals
F (m1, . . . ,mn).

We use a contradiction to show that our construction fulfills the first condi-
tion. Let us assume that there exist two results y0, y1 6= ⊥ such that y0 6= y1,
and two proofs γ0, γ1 that are accepted by the tally verification algorithm. By
the unique secret key property, the decryption of the ciphertexts in the ballots
produces a unique result. By the pigeon principle, there exists one index i? ∈ [3]
used by both proofs. Therefore, it must be the case that either y1 = y2 = ⊥
or y1 and y2 are equal to the evaluation of the tally function F on input the
messages obtained by decrypting the ciphertexts. Consequently, y0, y1 6= ⊥ is a
contradiction.

The second condition requires that, even when the adversary generates the
public key, if honest voters cast a ballot that is accepted by the ballot verification
algorithm, then the ballot has to be “counted”. We recall that an honest ballot
for the j-th voter consists of three ciphertexts that encrypt the same message
m. The perfect soundness of the NIWI ensures that the public key for the PKE
scheme is honestly generated. The perfect correctness of the PKE scheme ensures
that a ballot that encrypts m will be decrypted to m. Therefore, if the claimed
tally y does not equal ⊥, y has to be in the range of the function F restricted
to m at index j.

3.3 Weak Privacy of the Construction

We explain how we prove that our construction fulfills the weak privacy prop-
erty. The proof consists of a sequence of hybrid experiments [GM84], which are
summarized in Table 3.3.

Table 1. Sequence of hybrid games to prove fulfillment of the weak privacy property.

Exp (Ctj,1,Ctj,2,Ctj,3) Sk index γ Security

H1 (m0,j ,m0,j ,m0,j) (1,2,3) R -

H2 (m0,j ,m0,j ,m1,j) (1,2,3) R IND-CPA

H3 (m0,j ,m0,j ,m1,j) (1, 2,3 ) T WI

H4 (m0,j ,m1,j ,m1,j) (1,2,3) T IND-CPA

H5 (m0,j ,m1,j ,m1,j) ( 1,2 ,3) T WI

H6 (m1,j ,m1,j ,m1,j) (1,2,3) T IND-CPA

H7 (m1,j ,m1,j ,m1,j) ( 1,2 ,3) R WI
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For simplicity, in this sketch we assume that the adversary submits a chal-
lenge that consists of two tuples (m0,1, . . . ,m0,N ) and (m1,1, . . . ,m1,N ), where
each of the messages belongs to the message space M. In the table, the first
column shows the name of the hybrid experiment. The second column shows the
three messages that are encrypted in the 3 ciphertexts Ctj,1, . . . ,Ctj,3 contained
in the challenge ballot Bltj = (Ctj,1, . . . ,Ctj,3) associated with voter j. The text
in blue in the “Sk index” column denotes the indices used as witness in the proof
γ. As mentioned above, if such blue indices correspond to the set {1, 2} (resp.
to a set different from {1, 2}) we say that the statement or proof is in real mode
(resp. trapdoor mode), which we denote by R (resp. T ) in the column γ. The
text in red indicates the difference from the previous hybrid experiment.

The first four hybrid experiments and the last four are symmetrical. There-
fore, it suffices to explain how we prove indistinguishability between the first
four hybrid experiments.

Hybrid H1 corresponds to the real experiment, except that the challenger
sets the bit b = 0.

In hybrid H2, we switch the third message (in red) in any ballot to encrypt
m1,j . This is possible because the witness used to compute the proof γ does not
contain the randomness used to compute the third secret key. Thanks to that,
we can show indistinguishability between H1 and H2 by using the IND-CPA
property of the PKE scheme.

In hybrid H3, the witness used to compute the proof γ contains the in-
dices {1, 3} instead of {1, 2}. Therefore, γ is in trapdoor mode. The witness-
indistinguishability property of the NIWI allows as to show that H3 cannot be
distinguished from H2. Note that the result of the decryption does not change
thanks to the constraint in the weak privacy definition that F (m0,1, . . . ,m0,N ) =
F (m1,1, . . . ,m1,N ) must hold.

In hybrid H4, we switch the second message (in red) in any ballot to encrypt
m1,j . This is possible because the witness used to compute the proof γ does not
contain the randomness used to compute the second secret key. Thanks to that,
we can show indistinguishability between H4 and H3 by using the IND-CPA
property of the PKE scheme.

We remark that, in order to switch the encrypted messages to m1,j ’s in
every ballot, we use a simple property: the witness of the proof γ contains the
randomness used to compute two of the secret keys. Thanks to that, we can
show indistinguishability between H1 and H2 and between H3 and H4 by using
the IND-CPA property of the PKE scheme whose randomness is not needed
to compute γ. We point out that, to prove indistinguishability between those
hybrid experiments, we need to use N “sub-hybrids”. In each “sub-hybrid”, we
switch the message encrypted in just one ballot.

In Section 10, we present our weakly verifiable eVote in a more detailed
manner.
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4 Our Fully Verifiable eVote (Sketch)

The scheme sketched in Section 3 suffers from a severe problem: the authority
can claim that the tally is ⊥ when it is not. That is, there can be two tallies
y0 6= ⊥ and y1 = ⊥ and two proofs γ0 and γ1 such that both proofs are accepted
by the tally verification algorithm.

For instance, consider the following case. The ballots submitted by the voters
are such that the tally y1 obtained by evaluating the tally function on input the
messages decrypted from the first ciphertext of each ballot equals the tally y2
obtained when using the second ciphertext of each ballot, but differs from the
tally y3 obtained when using the third ciphertext. Then, by using the indices
(1, 2), the authority can prove successfully that the result of the election is y1 =
y2, and by using indices (1, 3), the authority can claim that the result of the
election was ⊥. The voters do not learn the indices that the authority used in
the NIWI proof.

This also allows severe DoS attacks. For example, if just one voter submits a
wrong ballot that makes the two tallies y1 and y2 be different from each other,
then an honest authority has to output ⊥. Furthermore, this scheme only fulfills
the weak privacy property, which does not take into account corrupt voters.

Therefore, we propose a scheme that fulfills the (full) verifiability and the
(full) privacy properties. This scheme solves the above-mentioned problems in
an elegant way. Here we show a sketch of the scheme. In Section 11, we present
our (fully) verifiable eVote in a more detailed manner.

4.1 Sketch of the Construction

In addition to the three public keys of the PKE scheme, the public key of the
authority contains a perfectly binding commitment Z to the bit 1, i.e., the public
key is Pk = (Pk1,Pk2,Pk3, Z), where Z = Com(1).

A ballot consist of three ciphertexts, which are computed as in the weakly
verifiable scheme, and of a proof that either the three ciphertexts encrypt the
same message in the message spaceM∪{⊥} or Z is a commitment to 0. Formally,
the ballot contains a NIWI proof for the relation in Fig. 2.

The ballot verification algorithm runs the verification algorithm for the NIWI
proof system for the relation Renc,full. (We recall that the ballot verification al-
gorithm of our weakly verifiable eVote accepts any ballot.) The tally evaluation
algorithm is the same as in our weakly verifiable eVote.

The tally verification algorithm also follows the one of the weakly verifiable
eVote with the following modification. If either (1) not all inputs are ⊥ and
y = ⊥, or (2) all inputs are ⊥ and y 6= ⊥, the tally verification algorithm
outputs ⊥.

We explain the reason for this modification. First, note that, in the (fully)
verifiable scheme, the ballots that are rejected by the ballot verification algorithm
are replaced by ⊥ as input to the tally evaluation algorithm. We recall that, in
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Relation Renc,full(x,w):

Instance: x
4
= (j,Ct1, . . . ,Ct3, E .Pk1, . . . , E .Pk3, Z).

Witness : w
4
= (m, r1, . . . , r3, u), where the values rl’s are the random values used

to encrypt the ciphertexts Ctl’s and u is the random value used to compute the
commitment Z.

Renc,full(x,w) = 1 if and only if either of the following two conditions hold:

1. Real mode. All 3 ciphertexts (Ct1, . . . ,Ct3) encrypt the same message in
M∪ {⊥}.

OR

2. Trapdoor mode. Z is a commitment to 0.

Fig. 2. Relation Renc,full.

the weakly verifiable scheme, the tally evaluation algorithm is run on input ⊥
only when voters do not send any ballot.

Our tally functions must fulfill a very natural property: F (m1, . . . ,mN ) = ⊥
iff m1 = ⊥, . . . ,mN = ⊥ (cf. Def. 2). That is, if at least one message is valid,
then it has to be “counted”.

As we show below, if the public key is honestly generated, the tally evalu-
ation algorithm never returns ⊥ on input a tuple of possibly dishonest ballots.
Therefore, except for the case that all the ballots are invalid, a tally y = ⊥
may only occur if the authority acted dishonestly and, consequently, the tally
verification algorithm should not accept y = ⊥.

4.2 (Full) Verifiability of the Construction

We show that our scheme fulfills the (full) verifiability property. This property
consists of two conditions described in Section 2 and defined in Def. 3.

First, we show that our scheme fulfills the first condition. (A detailed proof is
given in Theorem 4.) This condition requires that the authority cannot output
two tallies y1, y2 such that y1 6= y2 and two proofs γ1 and γ2 that are accepted
by the tally verification algorithm.

Our tally verification algorithm only accepts a tally y = ⊥ when all the
ballots are invalid. Therefore, (1) the authority is not able to wrongly claim that
a tally is ⊥. Furthermore, as in our weakly verifiable eVote, (2) the authority
cannot output two tallies y1, y2 such that y1 6= y2, y1, y2 6= ⊥ along with proofs γ1
and γ2 that are accepted by the ballot verification algorithm. Therefore, (1) and
(2) imply that the authority cannot output two tallies y1, y2 such that y1 6= y2.
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We show now that the second condition also holds. First, we note that the
authority can only create a dishonest public key by setting the commitment
dishonestly. The reason is that the authority has to prove that the public key
of the PKE scheme is honestly generated. Therefore, the perfect correctness of
the NIWI and of the PKE scheme guarantee that an honestly computed ballot4

for the j-th voter that encrypts message m will always be “counted”, i.e., for
any (y, γ) pair that is accepted by the tally verification algorithm, y will be
compatible with m at index j according to Def. 1.

4.3 (Full) Privacy of the Construction

We show now that our scheme fulfills the (full) privacy property. Here we sum-
marize the proof. In Section 11.2, we describe the proof in detail. We stress that,
for privacy to hold, the authority must be honest and thus the public key is
honestly generated.

In the security proof, we consider a sequence of hybrid experiments. First,
we define an experiment HZ in which the commitment in the public key is a
commitment to 0. We show thatHZ is indistinguishable from the real experiment
under the computationally hiding property of the commitment.

Second, we define an event E1 in experiment HZ . In E1, the adversary sub-
mits a ballot that is accepted by the ballot verification algorithm but, when
decrypting the three ciphertexts in the ballot, the three decrypted messages in
M∪ {⊥} are not equal. We show that the probability of E1 is negligible under
the computationally hiding property of the commitment. More concretely, we
show that, if E1 occurs with non-negligible probability, then the adversary can
be used to distinguish a commitment to 0 from a commitment to 1. We note
that, if Z is a commitment to 1, the perfect soundness of the NIWI guarantees
that the adversary can never submit an ill-formed ballot that is accepted by the
ballot verification algorithm.

The next hybrid experiments are similar to the ones used in the security proof
of the weakly verifiable scheme. Thanks to the hybrid experiment HZ , we can
still show indistinguishability between those hybrid experiments by using the
IND-CPA property of the PKE scheme. The reason is that, thanks to HZ , the
NIWI proof in the ballots can be a proof that the commitment in the public key
is a commitment to 0. Therefore, we avoid the computation of a proof that shows
that the three ciphertexts encrypt the same message, which allows us to switch
the message encrypted in one of the ciphertexts and prove indistinguishability
by using the IND-CPA assumption.

4 Here, “honestly computed ballot” just means that it is computed by the voter using
the Cast algorithm on input the public key of the authority, which could be honestly
or dishonestly created. By design of our construction, an honestly generated ballot
computed on input an honestly created public key has the same distribution of an
honestly created ballot computed on input any possibly dishonest public key when-
ever the authority is able to compute proofs of tally correctness that are accepted
by the tally verification algorithm.
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There is one difference between the hybrid experiments in the weakly veri-
fiable scheme and in the (full) verifiable scheme. Namely, in the (full) verifiable
scheme, we have to handle possibly dishonest ballots. In particular, we have to
guarantee that, when we switch the indices used as witness for the NIWI proof
of tally correctness, the tally does not change. To illustrate this issue, suppose
that, in an adversarial ballot, the first two ciphertexts encrypt the same message
x but the third one encrypts a different message z. Then the tally computed
by the secret keys for indices {1, 2} could differ from the one computed with
secret keys for indices {2, 3}. In that case, we cannot prove indistinguishability
between a hybrid experiment where the NIWI witness comprises Sk1,Sk2 and a
hybrid experiment where the NIWI witness comprises Sk2,Sk3.

To solve this issue, we show that event E1 occurs with negligible probability.
Therefore, it is sufficient to analyze the advantage of the adversary in the hybrid
experiments conditioned on the occurrence of Ē1 (i.e., the complement of E1).

More concretely, the sequence of hybrid experiments after HZ is as follows.
We recall that the adversary sends two tuples V0 = (m0,1, . . . ,m0,N ) and V1 =
(m1,1, . . . ,m1,N ), and a set S ⊂ [N ] that contains the indices of the strings of
arbitrary ballots.

– Hybrid experiment H1 is equal to the experiment HZ , except that the chal-

lenger sets the bit b
4
= 0.

– Hybrid experiment H2 switches the message encrypted in the third cipher-
text in any ballot to encrypt m1,j instead of m0,j . More in detail, for k = 0
to N , we define a sequence of hybrid experiments Hk

2 . Hk
2 is identical to H1,

except that, for all j = 1, . . . , k such that j /∈ S, the challenger computes
the third ciphertext of the ballot on input m1,k. Therefore, H0

2 is identi-
cal to H1, while HN

2 is identical to H2. We show that Hk
2 and Hk+1

2 are
indistinguishable thanks to the IND-CPA property of the PKE scheme.

– Hybrid experiment H3 is identical to experiment H2, except that the chal-
lenger computes the NIWI proof γ on input a witness that contains indices
(1, 3) and secret keys Sk1,Sk3, instead of indices (1, 2) and secret keys Sk1,
Sk2. We show that H3 and H2 are indistinguishable thanks to the witness-
indistinguishability property of the NIWI proof. Because Ē1 occurs with
overwhelming probability, any ballot in S is either replaced by ⊥, if the bal-
lot verification algorithms does not accept it, or decrypted to the same value
in H2 and H3. Therefore, the tally evaluation algorithm outputs the same
tally in H2 and H3.

– Hybrid experiment H4 is identical to H3, except that the second ciphertext
in any ballot encrypts m1,j instead of m0,j . More in detail, for k = 0 to N ,
we define a sequence of hybrid experiments Hk

4 . Hk
4 is identical to H3, except

that, for all j = 1, . . . , k such that j /∈ S, the challenger computes the second
ciphertext of the ballot on input m1,k. Therefore, H0

4 is identical to H3, while
HN

4 is identical to H4. We show that Hk
4 and Hk+1

4 are indistinguishable
thanks to the IND-CPA property of the PKE scheme.

The remaining hybrid experiments are symmetrical to the ones described
in above. In H5, the witness used to compute the NIWI proof contains the in-
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dices (2, 3) and secret keys Sk2,Sk3, and indistinguishability between H5 and
H4 follows from the witness-indistinguishability property of the NIWI proof. In
H6, the first ciphertext of each ballot encrypts m1,j instead of m0,j and indistin-
guishability between H6 and H5 follows from the IND-CPA property of the PKE
scheme. Finally, in H7 the witness used to compute the NIWI proof contains the
indices (1, 2) and secret keys Sk1,Sk2, and indistinguishability between H7 and
H6 follows from the witness-indistinguishability property of the NIWI proof.

We would like to remark the subtle difference between ill-formed and invalid
ballots. An ill-formed ballot is a ballot that is not in the range of the cast algo-
rithm. However, an ill-formed ballot could be valid in the sense that, along with
other (possibly ill- or well- formed) N − 1 ballots, the authority obtains a tally,
i.e., the tally obtained when decrypting the first and the second ciphertext in the
ballots is the same. An ill-formed ballot can be computed when the commitment
in the public is computed dishonestly.

The event Ē1 may occur even if the adversary submits an ill-formed ballot
that is accepted by the ballot verification algorithm. In fact, if a (non-honestly
computed) ballot is formed by strings that are not in the ciphertext space of the
encryption algorithm of the PKE, but decryption of those strings outputs the
same message, such a ballot is not considered invalid.

Note also that the proof of well-formedness of the ballots states that the
encrypted messages may be equal to ⊥. Ballots that encrypt ⊥ are blank ballots.
We consider tally functions in which the symbol ⊥ indicates a blank vote. For
example, in case of an eVote for the sum function in which ⊥ is counted as 0, an
adversary should not be able to distinguish three ballots that encrypt (1, 1,⊥)
from three ballots that encrypt (1,⊥, 1).

5 eVote with Multiple Authorities and Threshold Privacy

In this section, we sketch how to generalize our (fully) verifiable construction
to fit a model with multiple authorities. In this model, the tally evaluation
algorithm is run by a set of authorities. The privacy property must hold if not
all the authorities are corrupt. Our generalized scheme guarantees a statistical
verifiability property (see below), which assumes that there is at least one honest
voter.

First, we note that the multi-string model of Groth and Ostrovsky [GO14]
does not provide a solution to this problem. The multi-string model assumes that
the majority of the parties that set up the CRSs are honest. It does not guarantee
soundness, which would provide verifiability in our application, when all those
parties, which would be the authorities in our application, are corrupt. In the
multi-string model, there is a trade-off between soundness and zero-knowledge.
Namely, soundness could hold when all the authorities are corrupt, but then
zero-knowledge does not hold. Zero-knowledge is guaranteed only when there is
a majority of honest authorities. In contrast, our generalized scheme fulfills the
privacy property when at least one authority is honest.
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5.1 Sketch of the Construction

Our generalized construction works for tally functions that can be represented
as polynomials. Such tally functions comprise many functions of interest for
e-voting. For simplicity, henceforth we only consider the case of the sum func-
tion with a binary message space. The general case follows by using Lagrange’s
polynomial interpolation.

Consider the sum function over a set of integers Sk, which we specify later.
Consider m authorities. Each authority k ∈ [m] publishes a public key that
consists of the public key of our (fully) verifiable eVote and, in addition, a com-
mitment comj to a tuple of N 0’s for j ∈ [m].

Each voter shares her vote vj in m shares vj,1, . . . , vj,m whose sum is vj .
(Later we describe how the shares are computed in order to preserve privacy.)
For all k ∈ [m], a voter encrypts vj,k under the public key of the k-th authority.
As result, a voter obtains the ciphertexts Ct1, . . . ,Ctm. In addition, the voter
adds a proof that either (the real statement) for all k ∈ [m], Ctk encrypts a
number in Sk such that the sum of the encrypted numbers is in {0, 1} (for
simplicity, here we do not consider messages equal to ⊥) OR (the trapdoor
statement) for all k ∈ [m], comk is a commitment to a tuple (z1, . . . , zN ) such
that zj is equal to her ballot, i.e., to the tuple (Ct1, . . . ,Ctm).

For each k ∈ [m], the k-th authority computes the tally yk as in the (fully)
verifiable scheme. The proof of correctness of the tally is a proof for the following
modified relation: either (the real statement) the witness satisfies the relation
Rdec,full of the (fully) verifiable scheme and comk is a commitment to 0 OR (the
trapdoor statement) comk is a commitment to a tuple (z1, . . . , zN ) such that
zj = Bltj for all j ∈ [N ], where Blt1, . . . ,BltN are the N ballots published on
the public bulletin board.

Finally, the tally is computed by summing the tallies yk’s output by each of
the authorities to obtain y. We give more details below.

To support functions represented as polynomials, the following modifications
should be applied. To compute the shares vj,1, . . . , vj,m, the voter j chooses a
polynomial pj of degree m−1 such that pj(0) equals her vote vj . The shares are
the evaluation of pj on input 1, . . . ,m. The tally is computed by using Lagrange
interpolation.

5.2 Verifiability of the Construction

We analyze now the verifiability of our generalized construction. If the commit-
ments in the public key are computed honestly, we can show that the generalized
construction fulfills the verifiability property by using the same arguments given
for our construction with one authority.

Consider that w.l.o.g the k-th authority outputs a commitment comk that
does not commit to a tuple of 0’s. If at least one voter j is honest, the proba-
bility that this voter outputs a ballot Bltj such that comk is a commitment to a
tuple (z1, . . . , zN ) and zj = Bltj is negligible over the random coins of the j-th
voter. Therefore, assuming that there is at least one honest voter, the authorities
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can compute proofs of tally correctness by using the witness for the “trapdoor
statement” in the relation only with negligible probability. Similarly, assuming
that there is at least one honest voter, the voters can compute proofs of ballot
correctness by using the witness for the “trapdoor statement” only with negli-
gible probability over the random coins of the honest voters. In conclusion, the
generalized construction fulfills (a statistical variant of) the verifiability property
thanks to the verifiability of the (fully) verifiable eVote in Section 11 and to the
fact that, in real mode, the sum of the messages encrypted in the m ciphertexts
of a ballot is equal to a number in {0, 1}.

5.3 Privacy of the Construction

We use a selectively-secure model [CHK04] for our definition of privacy. In the
game between the challenger and the adversary, the adversary has to declare
its challenge at the outset of the game before receiving the public keys of the
authorities. The adversary is allowed to receive the secret keys of all except one
authority.

We show that our generalized construction fulfills this definition of privacy.
First, we define the sets Sk and a method for computing the shares vj,1, . . . , vj,m
for a vote vj . This method must guarantee that any subset of m− 1 authorities
does not get any information about vj . For simplicity, consider that m = 2.
Then, the sets S1 = S2 = S are equal by definition to {−p, . . . , p}, where p is a
number of size super-polynomial in the security parameter. The message space
of the PKE scheme must comprise numbers between −Np and Np. To encrypt
0 (resp. 1), the voter chooses a random number v1 in S and sets v2 to −v1 (resp.
−v1+1). It is easy to see that, except when either v1 or v2 equal −p, any value of
v2 (resp. v1) can correspond to v1 = −v2 (resp. v2 = −v1) if the voter cast a vote
for 0 or to v1 = −v2 + 1 (resp. v2 = −v1 + 1) if the voter cast a vote for 1. The
case in which either v1 or v2 equal −p occurs with negligible probability, which
is guaranteed by choosing p to be super-polynomial in the security parameter.
Consequently, each authority does not get any information on the vote vj . This
method can be generalized to the case m > 2. We skip the details.

Because the adversary receives the public-keys after sending the challenge, in
the security proof we can define a hybrid experiment where the commitments in
the public key commit to ballots (Blt1 . . . ,BltN ) computed on input the challenge
messages. Like in the reduction of Section 11.2, we prove that the probability
that the adversary submits an ill-formed ballot that is accepted by the ballot
verification algorithm is negligible by using the computationally hiding property
of the commitment scheme.

In the next hybrid experiments, the NIWI proofs of ballot correctness and
of tally correctness can be computed by using the witness for the trapdoor
statement, i.e., the randomness used to compute the commitments. Thanks to
that, we are able to compute ballots where not all the ciphertexts encrypt the
same message. This allows us to switch the message encrypted in one of the
ciphertexts of the ballots and prove indistinguishability between the experiments
by using the IND-CPA property of the PKE scheme.
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To prove that our scheme fulfills a definition for privacy in a non-selective
(i.e., full) security model, one can use complexity leveraging arguments. Such
arguments can profit from the fact that, in our formulation, we required the
number of voters N and the size of the message space to be independent of the
security parameter. This allows the challenger to just guess the challenge mes-
sages in advance with constant probability. This requirement can be weakened
to the case of N and size of message space logarithmic in the security parameter.
We leave open how to achieve full security without complexity leveraging.

Note that we do not require any interaction between the authorities. The pub-
lic keys of the authorities are completely independent from each other. Moreover,
the authorities do not need any coordination (e.g., to run sequentially), i.e., the
tally can be computed and publicly verified from the output of each authority
individually. Thus, our techniques completely diverge from previous approaches
to the problem.

6 On The Reusability of the Public Parameters

Our definition of verifiability does not prevent the following undesirable case.
Consider an ill-formed ballot Blt1. Consider other valid ballots Blt2, . . . ,BltN
that encrypt respectively v2, . . . , vN . The authority is able to compute a tally
y = F (v1, . . . , vN ) and a valid proof of tally correctness. Consider now other
valid ballots Blt′2, . . . ,Blt

′
N that encrypt v′2, . . . , v

′
N . The authority can possibly

compute another tally y′ = F (v′1, v
′
2, . . . , v

′
N ) and another proof of tally correct-

ness. The problem is that the ill-formed ballot Blt1 can be decrypted to more
than one message.

This does not contradict our definition because, for Blt1, . . . ,BltN , there still
exist messages v1, . . . , vN that satisfy the statement of the definition, i.e., given
Pk and Blt1, . . . ,BltN , the authority cannot output two different results and two
valid proofs of tally correctness for each of them. However, it can occur that for
Pk,Blt1,Blt

′
2, . . . ,Blt

′
N , there are different messages that satisfy the definition.

We remark that the public key Pk does not change.

Let us present a concrete example. Consider two 0/1 elections with only
2 voters. A ballot could possibly be reused in the second election, i.e., if the
public parameters of the system are reused, the same ballot can be cast again.
Given an ill-formed ballot Blt1, there could exist two ballots Blt2 and Blt′2 such
that, in an election with ballots Blt1 and Blt2, the result is 2, and, in a election
with ballots Blt1 and Blt′2, the result is 0. This can only happen if the first
ballot is “associated” with vote 1 in the first election and with vote 0 in the
second election. Therefore, the first and the second elections are incoherent. More
undesirable issues would emerge if different tally functions could be computed
in different elections carried out with the same parameters and ballots.

A stronger definition could state that, for all Pk and all Blt1, there exists m1

such that, for all Blt2, . . . ,BltN , there exist m2, . . . ,mn such that the authority is
only able to output a tally y = F (m1, . . . ,mN ) along with a valid proof of tally
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correctness. We note that this is a simplification because a general definition
should take into account multiple dishonest voters.

Fortunately, in our e-voting model, as well as in other traditional models, the
parameters cannot be reused through different elections. Therefore, the above-
mentioned problem does not occur.

In a stronger model in which the parameters can be reused, our constructions
would not be secure. Nevertheless, in our (fully) verifiable construction, the
inconsistency of results through different elections would occur only in the case
that a malicious authority sets the commitment in the public key dishonestly to
0, which allows the computation of ill-formed ballots.

This state of affairs could be paralleled to the case of garbled circuits, where
the original one-time version [Yao86,LP09] can be based on the minimal assump-
tion of existence of one-way functions, whereas the reusable variant [GKP+13]
is known to be implementable only under stronger assumptions. Similarly, in
functional encryption, the schemes with bounded security [SS10,GVW12] can
be based just on public key encryption, whereas the unbounded secure variants
are only known to be implementable under very strong assumptions [GGHZ16].
For instance, the scheme of Sahai and Seyalioglu [SS10] becomes completely in-
secure when the adversary can decrypt a ciphertext with two different secret
keys, exactly as it occurs for our schemes.

7 Related Work

Our work is inspired by the work of Badrinarayanan et al. [BGJS16], which
puts forward the concept of verifiable functional encryption. (We note that the
committing IBE of [GH07] can be seen as a weaker variant of verifiable identity-
based encryption.) Our work shares with BGJS the idea of “engineering” multi-
ple witnesses, which are needed when using NIWI proofs, to enforce privacy in
conjunction with verifiability.

Notwithstanding, the constructions are quite different, especially due to the
different requirements of functional encryption and e-voting. For instance, in the
security definition of functional encryption, the keys are handed to the adversary,
so one needs a proof that each secret key and ciphertext is computed correctly.
Instead, in our case, the adversary does not see the secret key. We can profit
from this fact to just prove that the claimed tally equals the evaluation of the
tally function over all ballots.

Such complications in functional encryption introduce a severe limitation: in
the security reduction of BGJS, it is fundamental that the public key contain a
commitment that in some hybrid experiment is set to the challenge ciphertext.
Therefore, it is assumed that the adversary commits to the challenge before
receiving the public key, i.e., security is proven in the selective model [CHK04].
On the contrary, our constructions are secure in the full (i.e., non-selective)
model.

In other respects, in e-voting we face new challenges. In BGJS, the challenger
computes the NIWI on input a witness that comprises all the secret keys and
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proves the well-formedness of all the secret keys except one, but, in addition,
proves that all the secret keys decrypt some challenge ciphertext correctly. This
is sufficient to use the IND-CPA property of functional encryption to prove in-
distinguishability between two hybrid experiments where the message encrypted
in one of the ciphertexts is switched from m0 to m1. The reason is that the secret
keys are supposed to be for the same function f such that f(m0) = f(m1). (More
concretely, in the IND-CPA property of functional encryption, the adversary is
allowed to receive secret keys for a function f that evaluates both challenge mes-
sages to the same value.) Therefore, the secret keys do not allow to distinguish
between the two ciphertexts. In our setting, we can only input to the NIWI all
the secret keys except one. Otherwise we could not use the IND-CPA property to
prove indistinguishability between two hybrid experiments where the encrypted
message is switched from m0 to m1.

Furthermore, in our (full) privacy definition, we have to handle challenge tu-
ples that contain ill-formed ballots, whereas in verifiable multi-input functional
encryption the challenge contains only honestly computed ciphertexts. There-
fore, the differences between the two settings make the respective techniques
utterly incomparable.

It is tempting to think that the construction of BGJS of multi-input verifi-
able functional encryption (which extends multi-input functional encryption of
Goldwasser et al. [GGG+14]) can be directly used to construct a verifiable eVote.
Though it seems plausible, we did not verify that. However, this would eventually
result in a verifiable eVote based on indistinguishability obfuscation [GGH+13],
a very strong assumption, and would only be secure in the selective model.

Needless to say, our techniques, as well as the ones of BGJS, owe a lot to the
celebrated FLS’ OR trick [FLS90]. They can be viewed as a generalization of it.

Kiayias et al. [KZZ15] (see also [CZZ+15] for a distributed implementation)
put forth a verifiable eVote without trust assumptions that represents a break-
through along this direction, but diverges from ours in several fundamental as-
pects:

– It requires interaction between the voters and the board, whereas all our
algorithms are non-interactive.

– Receipt-freeness, accountability and degree of dependence on secure channels
to distribute vote codes are undetermined issues. In our scheme, voters can
verify the election if they just know the ballot they cast. In particular, voters
do not need to store the randomness used to compute it, and the authority
cannot cheat in the tally process.

– It does not achieve universal verifiability, whereas ours does.

– Its information-theoretical verifiability is parameterized and depends on the
number of honest voters, whereas ours is perfect, i.e., the probability of a
wrong tally being accepted by the verification algorithm is equal to zero.

– Its privacy can be reduced to group-based assumptions at the cost of us-
ing complexity leveraging and assuming sub-exponential security, whereas

23



ours only requires the standard version of Decision Linear assumption with
polynomial security.5

– Its definition of verifiability requires an extraction property, whereas ours
does not.

Moran and Naor [MN06] construct an universally verifiable e-voting proto-
col with very strong provable-security properties. However, it assumes either
the availability of a “random beacon” that has to be sampled honestly or the
soundness of the Fiat-Shamir’s heuristic. Therefore, verifiability does not hold
unconditionally, i.e., without any assumption (both physical or computational).

We are not aware of other traditional e-voting schemes that achieve per-
fect verifiability without interaction and without trust assumptions. We refer to
[CGK+16] and [BCG+15] for a survey.

We point out that our definition of verifiability is motivated by the guidelines
of [CGK+16]. In its formalization, our definition is similar to the ones of [GIR16],
the verifiability for multi-input functional encryption of BGJS and the unique-
ness of tally of Bernhard et al. [BCG+15]. Anyhow, the latter is formulated to
hold only against computationally bounded adversaries and both BGJS16 and
Bernhard et al. do not take into account our condition (2) for verifiability.6 See
also [KRS10] for symbolic approaches to verifiability.

Our privacy notion is inspired by the one of Benaloh [Ben87], which is called
“PRIV” in [BCG+15]. We reformulate it by using modern terminology and we
conveniently modify it to withstand the attacks shown in [BCG+15]. We refer
to [BCG+15] for a survey on definitions of privacy for e-voting.

Perfect verifiability and perfect correctness seem incompatible with receipt-
freeness [BT94,SK95,MH96,MN06,DKR06,CFG15]. Notwithstanding, we think
that it should be possible to define a statistical variant of verifiability that could
attain some form of receipt-freeness. Another possibility could be to resort to
some voting server trusted for receipt-freeness but not for privacy, such as the
server that re-randomizes the ballots in BeleniosRF of Cortier, Fuchsbauer and
Galindo [CFG15]. (We note that they also address the problem of authenticity
that we neglect.) As it is out of the scope of this work, we deliberately omit
receipt-freeness in our treatment.

Recently, Bellare, Fuschsbauer and Scafuro [BFS16] started the study of se-
curity of NIZKs in face of public parameter subversion. They showed the impos-
sibility of attaining subversion soundness while retaining zero-knowledge, thus
justifying our need of sidestepping NIZKs.

5 At some point in the security reduction for our (fully) verifiable eVote, we make use
of the fact that the number of voters N is a constant independent of the security
parameter that could be viewed as a complexity leveraging trick or as problematic
in the case that N be large. But we stress that this is done only for simplicity of
exposition and we sketch how the reduction and our results can be generalized even
to the case of N(·) function of the security parameter.

6 Needless to say, for many applications of multi-input functional encryption, the lack
of condition (2) could not pose a threat.
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8 Definitions

Notation. A negligible function negl(k) is a function that is smaller than the
inverse of any polynomial in k (from a certain point and on). We denote by [n]
the set of numbers {1, . . . , n}. If S is a finite set, we denote by a← S the process
of setting a equal to a uniformly chosen element of S. With a slight abuse of
notation, we assume the existence of a special symbol ⊥ that does not belong
to {0, 1}?.

If A is an algorithm, then A(x1, x2, . . .) denotes the probability distribution
of the output of A when A is run on input (x1, x2, . . .) and randomly chosen
coin tosses. Instead, A(x1, x2, . . . ; r) denotes the output of A when run on input
(x1, x2, . . .) and (sufficiently long) coin tosses r. All algorithms, unless explicitly
noted, are probabilistic polynomial time (PPT) and all adversaries are modeled
by non-uniform PPT algorithms.

If A is a PPT algorithm, we say that y ∈ A(x) iff there exists a random value
r such that y = A(x; r); in that case, we say that y is in the range of A(x). If E
is an event in a probability space, Ē denotes its complement.

The following definition is used in the definition of verifiability. Essentially,
it states that a tally y is compatible with votes z1, . . . , zk if the latter values are
in its pre-image.

Definition 1 Given a function F (x1, . . . , xn) : An → B, we say that a value y ∈
B is compatible with z1, . . . , zk ∈ A at indices i1, . . . , ik ∈ [N ] if y is in the range

of the restriction F|Cz1,...,zk,i1,...,ik
of F to Cz1,...,zn,i1,...,in

4
= {(x1, . . . , xn)|∀j ∈

[k], xij = zj}.

8.1 E-Voting Schemes

An e-voting scheme (eVote, in short) is associated with a natural number N > 0,
the number of voters, a set M, the domain of valid votes, a set Σ, the range of
possible results, and a tally function F : (M∪ {⊥})N → Σ ∪ {⊥}, where ⊥ is a
special symbol not in M that indicates that the vote is invalid or has not been
cast and so has not to be “counted“. We allow the tally function to take as input
the special symbol ⊥ that denotes either an invalid ballot or an abstention and
to output ⊥ to indicate an error, but we require that the tally outputs an error
on input a sequence of string iff all strings are equal to ⊥. Formally, the tally
function is defined as follows.

Definition 2 [Tally function] A function F is a tally function if there exists a
natural number N > 1, and sets M, Σ ⊂ {0, 1}? such that the domain of F is
M∪ {⊥}, the range is Σ ∪ {⊥} and for all strings m1, . . . ,mN ∈ M ∪ {⊥}, it
holds that F (m1, . . . ,mN ) = ⊥ iff m1 = ⊥, . . . ,mN = ⊥.

Before presenting the formalization of an eVote, we explain how its algorithms
have to be employed to carry out an election.
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The voting ceremony. The voting ceremony occurs as follows.

– Setup phase. An authority (also called voting authority or election authority)
uses a Setup algorithm to compute a pair of public-key Pk and secret-key Sk.

– Voting phase. Each of the N voters, identified by a number j ∈ [N ], holds
her intended vote v and runs an algorithm Cast on input the identifier j, the
public-key Pk and the vote v ∈ M to compute a ballot Blt and sends it to
an append-only public bulletin board (PBB).

– Tallying phase. The well-formedness of each ballot Blt published in the PBB
can be publicly verified by means of an algorithm VerifyBallot. If a voter did
not cast her vote or her ballot turns out to be invalid it is replaced7 by the
special symbol ⊥ in the next steps.
The authority runs an evaluation tally algorithm EvalTally on input the
public- and secret-key, the N ballots resulting from the previous replace-
ment, and outputs the result of the election (i.e, the tally), that can be
eventually the special symbol ⊥ to indicate an error, and in addition a proof
of correctness of the computation.

– Verification phase. There is a verification algorithm VerifyTally that takes
as input the public-key, a tuple of N strings that represent either ballots
or the special symbol ⊥ (that indicates abstention or invalid vote for the
corresponding voter), the result of the election and the proof of correctness,
and and outputs a value in {OK,⊥}.
Each participant, not necessarily a voter, can verify the correctness of the
result of the election as follows. First, verify whether the ballots cast by
the voters are valid using the VerifyBallot algorithm and thus can verify
whether the authority replaced with ⊥ only the invalid ballots and put ⊥ in
correspondence of a voter who did not cast her vote.
After that, run the VerifyTally algorithm with the public-key, the N ballots
resulting from the previous replacement (if any), the claimed result of the
election and the proof output by the authority.

Definition 3 [E-voting Scheme] A (N,M, Σ, F )-e-voting scheme EVOTE for
number of voters N > 1, domain of valid votes M, range of possible results Σ
and tally function F : (M∪ {⊥})N → Σ ∪ {⊥} is a tuple

EVOTE
4
= (Setup,Cast,VerifyBallot,EvalTally,VerifyTally) is a tuple of 5 PPT

algorithms, with VerifyBallot and VerifyTally deterministic, following the follow-
ing syntax:

1. Setup(1λ): on input the security parameter in unary, outputs the public-key
Pk and the secret-key Sk.

2. Cast(Pk, j, v): on input the public-key Pk, the identifier j ∈ [N ] of the voter,
and a vote v ∈M, outputs a ballot Blt;

3. VerifyBallot(Pk, j,Blt), on input the public-key Pk, the identifier j ∈ [N ] of
the voter and a ballot Blt, output a value in {OK,⊥};

7 Precisely, a new row in which the previous ciphertext is replaced by ⊥ is appended
to the PBB and in the next steps only the new row will be used.
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4. EvalTally(Pk,Sk,Blt1, . . . ,BltN ): on input the public-key Pk, and a tuple of
N strings that can be either ballots cast by a voter or the special symbol ⊥
to indicate an abstention or an invalid vote, output the tally y ∈ Σ ∪ {⊥}
and a proof γ of the correctness of the computation.

5. VerifyTally(Pk,Blt1, . . . ,BltN , y, γ): on input the public-key Pk, a tuple of N
strings that can be either ballots cast by a voter or the special symbol ⊥ to
indicate an abstention or an invalid vote, a claimed tally y ∈ {0, 1}? ∪ {⊥}
and claimed proof γ of the correctness of the computation, output a value
in {OK,⊥}.

In addition we require that an eVote satisfy correctness, verifiability, and
privacy as defined next. We also define weak verifiability and weak privacy, and
we require that a weakly verifiable eVote satisfy correctness, weak verifiability
and weak privacy.

Correctness and verifiability.

– (Perfect) Correctness. We require the following conditions (1) and (2) to
hold.
1. Let Abst be a special symbol not in M ∪ {⊥} used to denote that a

voter did not cast her vote.8 For all Pk ∈ Setup(1λ), all m1, . . . ,mN ∈
M ∪ {⊥,Abst}, all (Bltj)

N
j=1 such that for all j ∈ [N ], Bltj = ⊥ if

mj = Abst, Bltj ∈ Cast(Pk, j,mj) if mj ∈ M and Bltj ∈ Cast(Pk, j,⊥)
otherwise, the following two conditions (a) and (b) hold:
(a) For all j ∈ [N ], if mj 6= ⊥ then VerifyBallot(Pk, j,Bltj) = OK.

(b) if (y, γ)
4
= EvalTally(Pk,Blt1, . . . ,BltN ) then it holds that:

y = F (m1, . . . ,mN ) and VerifyTally(Pk,Blt1, . . . ,BltN , y, γ) = OK.

2. For all Pk ∈ Setup(1λ), Blt1, . . . ,BltN ∈ {0, 1}? ∪ {⊥}, if S
4
= {j| Bltj 6=

⊥∧VerifyBallot(Pk, j,Bltj) = ⊥} and Blt′1, . . . ,Blt
′
N are such that for all

j ∈ [N ], Blt′j = Bltj if j /∈ S and Bltj = ⊥ otherwise, it holds that:

If (y, γ)
4
= EvalTally(Pk,Blt′1, . . . ,Blt

′
N ) then VerifyTally(Pk,Blt′1, . . . ,Blt

′
N ,

y, γ) = OK.
– Weak verifiability. We require the following conditions (1) and (2) to hold.

1. For all Pk ∈ {0, 1}?,Blt1, . . . ,BltN ∈ {0, 1}?∪{⊥}, there existm1, . . . ,mN ∈
M ∪ {⊥} such that for all y 6= ⊥ and γ in {0, 1}?, if S

4
= {j| Bltj 6=

⊥ ∧ VerifyBallot(Pk, j,Bltj) = ⊥} and Ct′1, . . . ,Ct
′
N are such that for all

j ∈ [N ], Blt′j = Bltj if j /∈ S and Bltj = ⊥ otherwise, it holds that:

if VerifyTally(Pk,Blt′1, . . . ,Blt
′
N , y, γ) = OK then y = F (m1, . . . ,mN ).

8 In the following definition, we need Abst to differentiate the case of a voter who
did not cast a vote at all (Abst) from the case of a voter who casts ⊥ as her own
vote but wishes to preserve the anonymity of her choice; however, in both cases the
correctness has to guarantee that the result of the election equals the output of the
tally function in which the inputs corresponding to the voters who, either cast ⊥ or
did not cast any vote, are both counted as ⊥.
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2. For all Pk ∈ {0, 1}λ, all k ∈ [N ], i1, . . . , ik ∈ [N ], all mi1 , . . . ,mik ∈
M ∪ {⊥}, all Blt1, . . . ,BltN ∈ {0, 1}? ∪ {⊥} such that for all j ∈ [k],

Bltj ∈ Cast(Pk,mij ) and VerifyBallot(Pk,Bltj) = OK, if S
4
= {j| Bltj 6=

⊥ ∧ VerifyBallot(Pk, j,Bltj) = ⊥} and Ct′1, . . . ,Ct
′
N are such that for all

j ∈ [N ], Blt′j = Bltj if j /∈ S and Bltj = ⊥ otherwise, it holds that:

if there exist y ∈ {0, 1}? and γ ∈ {0, 1}? such that VerifyTally(Pk,Blt′1,
. . . ,Blt′N , y, γ) = OK, then y is compatible with mi1 , . . . ,mik at indices
i1, . . . ,mk.

– Verifiability. We require the following conditions (1) and (2) to hold.
1. For all Pk ∈ {0, 1}?,Blt1, . . . ,BltN ∈ {0, 1}? ∪ {⊥}, there exist m1, . . . ,
mN ∈ M ∪ {⊥} such that for all y ∈ {0, 1}? ∪ {⊥} and γ in {0, 1}?, if

S
4
= {j| Bltj 6= ⊥ ∧ VerifyBallot(Pk, j,Bltj) = ⊥} and Ct′1, . . . ,Ct

′
N are

such that for all j ∈ [N ], Blt′j = Bltj if j /∈ S and Bltj = ⊥ otherwise, it
holds that:
if VerifyTally(Pk,Blt′1, . . . ,Blt

′
N , y, γ) = OK then y = F (m1, . . . ,mN ).

2. For all Pk ∈ {0, 1}λ, all k ∈ [N ], i1, . . . , ik ∈ [N ], all mi1 , . . . ,mik ∈
M ∪ {⊥}, all Blt1, . . . ,BltN ∈ {0, 1}? ∪ {⊥} such that for all j ∈ [k],

Bltj ∈ Cast(Pk,mij ) and VerifyBallot(Pk,Bltj) = OK, if S
4
= {j| Bltj 6=

⊥ ∧ VerifyBallot(Pk, j,Bltj) = ⊥} and Ct′1, . . . ,Ct
′
N are such that for all

j ∈ [N ], Blt′j = Bltj if j /∈ S and Bltj = ⊥ otherwise, it holds that:
if there exist y ∈ {0, 1}? ∪ {⊥} and γ ∈ {0, 1}? such that VerifyTally(Pk,
Blt′1, . . . ,Blt

′
N , y, γ) = OK, then y is compatible with mi1 , . . . ,mik at

indices i1, . . . ,mk.

(Note that the difference between condition (2) of verifiability and condition
(2) of weak verifiability lies in the fact that in the latter y has to be 6= ⊥,
whereas in the former the statement has to hold even for y = ⊥.)
In this work, we use the term verifiability and full verifiability interchange-
ably to differentiate it from weak verifiability.

Privacy. We formalize the notion of privacy in the style of indistinguishability-

based security. The privacy for a (n,M, Σ, F )-eVote EVOTE
4
= (Setup,Cast,

VerifyBallot,EvalTally,VerifyTally) is formalized by means of the game in Fig. 3

PrivN,M,Σ,F,EVOTE
A between a stateful adversary A and a challenger C.
The advantage of adversary A in the above game is defined as

AdvEVOTE,Priv
A (1λ)

4
= |Prob[PrivN,M,Σ,F,EVOTE

A (1λ) = 1]− 1/2|

Definition 4 We say that EVOTE for parameters (N,M, Σ, F ) is private or
IND-Secure if all PPT adversaries A have at most advantage negligible in λ in
the above game.

Definition 5 We say that EVOTE for parameters (N,M, Σ, F ) is weakly private
or wIND-Secure if all PPT adversaries A have at most advantage negligible in λ
in a game WeakPrivN,M,Σ,F,EVOTE

A (1λ) that is identical to the one above except
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PrivN,D,Σ,F,EVOTE
A (1λ)

– Setup phase. C generates (Pk, Sk)← Setup(1λ), choose a random bit b← {0, 1}
and runs A on input Pk;

– Query phase. The adversary A outputs two tuples M0
4
= (m0,1, . . . ,m0,N ) and

M1
4
= (m1,1, . . . ,m1,N ), and a set S ⊂ [N ].

(The set S indicates that the strings corresponding to the indices in S are
possibly dishonest ballots and the others are supposed to be votes that have
to be given as input to the Cast procedure.)

– Challenge phase. The challenger computes as follows. For all j ∈ [N ], if j ∈ S
then set Bltj

4
= m0,j and set Bltj ← Cast(Pk, j,mb,j) otherwise. For all j ∈ S,

if VerifyBallot(Pk, j,Bltj) = ⊥ set Bltj
4
= ⊥.

Compute (y, γ) = EvalTally(Pk, Sk,Blt1, . . . ,BltN )) and return
(Blt1, . . . ,BltN , y, γ) to the adversary.

– Output. At some point the adversary outputs its guess b′.
– Winning condition. The adversary wins the game if all the following conditions

hold:
1. b′ = b.
2. For all j ∈ S,m0,j = m1,j . (That is, if the adversary submits a dishonest

ballot it has to be the same in both tuples.)

3. For all d1, . . . , dN ∈ M ∪ {⊥}, for all j ∈ [N ], let m′
0,j

4
= m′

1,j
4
= dj if

j ∈ S, and for all b ∈ {0, 1} let m′
b,j

4
= mb,j if mb,j ∈ M and m′

b,j
4
= ⊥ if

mb,j /∈M. Then, F (m′
0,1, . . . ,m

′
0,N ) = F (m′

1,1, . . . ,m
′
1,N ).

(That is, the tally function gives same output on the two tuples, even if the
ballots corresponding to indices in S are replaced by arbitrary messages
in M∪ {⊥}.)

Fig. 3. Definition of privacy
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that the adversary is required to output a set S that is empty (i.e., adversary
cannot submit dishonest ballots).

Remark 1 We make some remarks on the previous definitions.

– Our definitions suppose that the algorithm VerifyBallot have to be run on
each ballot before the VerifyTally algorithm replacing any ballot that either
was not accepted by the VerifyBallot algorithm or was not cast by the cor-
responding voter with ⊥. Another possibility would be to let the VerifyTally
algorithm to make these tasks by itself.

– We required that VerifyBallot and VerifyTally be deterministic algorithms.
Alternatively, they can be defined as PPT but definitions of weak verifia-
bility and verifiability would have to be changed accordingly to hold with
probability 1 over the random coins of the algorithms.

– Our definition is parameterized by the number of voters N . It is possible
to define a more restricted eVote that may be possibly “unbounded“. Note
that our definition is more general and for instance takes in account e-voting
schemes in which the public-key has size proportional to the number of voters
and has to depend on it.

– Both condition (2) of verifiability and condition (2) of weak verifiability lie in
some sense between correctness and verifiability as they state a requirement
about honest voters.

– In our weakly verifiable construction of Section 10, the VerifyBallot algorithm
could be completely discarded as it accepts any ballot. Both for sake of
generality (there could exist some weakly verifiable eVote that makes a non-
trivial use of VerifyBallot) and for not overburdening the presentation, we
preferred to not differentiate the syntax of weakly verifiable eVote schemes
from verifiable eVote ones.

– For the necessity of condition (2) of correctness, we invite the reader to refer
to the discussion in Section 2.3.

– As shown in [BCG+15] the definition of “Benaloh“ (recall that we restate
it using modern terminology) is subject to attacks when instantiated for
specific tally functions like the majority. Nonetheless, ours is strengthened
to withstand such counter-examples. This is done adding the 3-rd winning
condition.

9 Building Blocks

Our constructions use perfectly binding commitment schemes, (one-message)
non-interactive witness-indistinguishable proof systems with perfect soundness
for NP [GOS06] (see also [FLS90,DN00,DN00,BOV03,BP15]) and IND-CPA
public key encryption with perfect correctness and unique secret key. In this
section, we recall the definitions of those primitives.

Definition 6 [IND-CPA secure PKE with perfect correctness and unique se-
cret key] An IND-CPA (or semantically) secure Public Key Encryption (PKE)
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scheme consists of three PPT algorithms (Setup,Encrypt,Decrypt) defined as fol-
lows.

– Setup(1λ): On input 1λ, it outputs public key Pk and decryption key Sk.
– Encrypt(m,Pk): On input messagem and the public key, it outputs ciphertext

Ct.
– Decrypt(Ct,Sk): On input ciphertext Ct and the decryption key, it outputs
m.

The PKE scheme is said to be IND-CPA (or semantically) secure if for any PPT
adversary A, there exists a negligible function ν(·) such that the following is
satisfied for any two messages m0,m1 and for b ∈ {0, 1}:

|Pr
[
A(1λ,Encrypt(m0,Pk)) = b

]
− Pr

[
A(1λ,Encrypt(m1,Pk)) = b

]
| ≤ ν(λ).

Perfect correctness requires that, for all pairs (Pk,Sk) ∈ Setup, for all mes-
sages m and all ciphertexts Ct output by Encrypt(Pk,m), Decrypt(Ct,Sk) = m
must hold. Unique secret-key requires that, for all Pk, there exist at most one
Sk such that (Pk,Sk) ∈ Setup(1λ) (i.e., there exist some randomness r ∈ {0, 1}λ
such that (Pk,Sk) = Setup(1λ; r)).

The Decision Linear Encryption scheme [BBS04] fulfills those properties. It
is secure under the Decision Linear Assumption [BBS04]. We recall them next.

Bilinear Groups. We assume the existence of a PPT algorithm G(1λ), the bilinear
group generator, that outputs a pairing group setup (p,G,Gt, e, g), where G and
Gt are multiplicative groups of prime order p and e : G × G → Gt is a bilinear
map satisfying the following three properties: (1) bilinearity, i.e., e(gx, gy) =
e(g , g)xy; (2) non-degeneracy, i.e., for all generators g ∈ G, e(g , g) generates
Gt; (3) efficiency, i.e., e can be computed in polynomial time. Furthermore, we
assume that the following problem be hard for G.

Assumption 1 (Decision Linear Assumption for G.[BBS04]) Let (p,G,Gt,
e, g) be a pairing group setup output by a G defined as above, and let g1, g2 and
g3 be generators of G. Given (g1, g2, g3, g

a
1 , g

b
2, g

c
3), where a and b are picked ran-

domly from Zp, the Decision Linear (DLIN) assumption is to decide whether
c = a + b mod p. Precisely, the advantage of an adversary A in solving the
Decision Linear assumption is given by:∣∣Pr [A(G, p, g1, g2, g3, ga1 , gb2, g

a+b
3 ) = 1 | (p,G,Gt, e, g)← G(1λ);

(g1, g2, g3)← G; (a, b)← Zp]−
Pr [A(G, p, g1, g2, g3, ga1 , gb2, gc3) = 1 | (p,G,Gt, e, g)← G(1λ);

(g1, g2, g3)← G; (a, b, c)← Zp]
∣∣

The Decision Linear assumption states that the advantage of A is negligible in
λ. Boneh et al. [BBS04] provide a bilinear group generator G for which such
assumption is conjectured to hold.
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Decision Linear Encryption Scheme. Consider the following PKE scheme de-
scribed by a setup algorithm Setup, an encryption algorithm Encrypt and a de-
cryption algorithm Decrypt.

Setup(1λ): pick (p,G,Gt, e, g)← G(1λ), pick randomly g3 ← G and (x, y)← Zp.
Compute g1 = g

1/x
3 and g2 = g

1/y
3 . Output the public key Pk = (G, p, g1, g2,

g3) and the secret key Sk = (Pk, x, y).
Encrypt(Pk,m): on input a public key Pk and a message m ∈ G, pick random

(a, b)← Zp. Output a ciphertext Ct = (ga1 , g
b
2,m · ga+b3 ).

Decrypt(Sk,Ct): on input a secret key Sk and a ciphertext Ct = (c1, c2, c3),
output m = c3/(c

x
1c
y
2).

This scheme fulfills the IND-CPA property under the Decision Linear assumption
(see [BBS04] for details) and it is easy to verify that it fulfills the unique secret-
key property.

Definition 7 [(Perfectly binding) Commitment Schemes] A commitment scheme
Com is a PPT algorithm that takes as input a string x and randomness r ∈
{0, 1}k and outputs com← Com(x; r). A perfectly binding commitment scheme
must satisfy the following properties:

– Perfectly Binding: This property states that two different strings cannot have
the same commitment. More formally, ∀x1 6= x2 and r1, r2,Com(x1; r1) 6=
Com(x2; r2).

– Computational Hiding: For all strings x0 and x1 (of the same length), for
all PPT adversaries A there exists a negligible function ν(·) such that:
|Prr∈{0,1}k [A(Com(x0; r)) = 1 ]− Prr∈{0,1}k [A(Com(x1; r) = 1)) ]| ≤ ν(k).

NIWI proof systems. Next, we define (one-message) non-interactive witness in-
distinguishability (NIWI) proof systems [GOS06]. Groth et al. [GOS06] construct
such NIWIs for all languages in NP, and in particular for CircuitSat.

Definition 8 [Non-interactive Proof System] A non-interactive proof system for
a language L with a PPT relation R is a tuple of algorithms (Prove,Verify) such
that Verify outputs a symbol in {OK,⊥} and the following properties hold:

– Perfect Completeness: For every (x,w) ∈ R, it holds that
Pr [Verify(x,Prove(x,w)) = 1 ] = OK, where the probability is taken over the
coins of Prove and Verify.

– Perfect Soundness: For every adversary A it holds that:

Pr

[
Verify(x, π) = OK ∧ x /∈ L :
(x, π)← A(1k)

]
= 0.

Definition 9 [NIWI] A non-interactive proof system NIWI = (Prove,Verify) for
a language L with a PPT relation R is witness-indistinguishable (WI, in short) if
for any triplet (x,w0, w1) such that (x,w0) ∈ R and (x,w1) ∈ R, the distributions
{Prove(x,w0)} and {Prove(x,w1)} are computationally indistinguishable.
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10 Our Weakly Verifiable eVote

In this Section, we present our eVote scheme EVOTE that is wIND-Secure and
weakly verifiable.

Definition 10 [EVOTE] Let E = (E .Setup, E .Encrypt, E .Decrypt) be a PKE scheme

with perfectly correctness and unique secret-key (see Def. 6), and let NIWIdec
4
=

(Provedec,Verifydec,full) be a NIWI proof systems for the relation Rdec to be spec-
ified later.

We define a (N,M, Σ, F )-eVote

EVOTEN,M,Σ,F,E,NIWIdec = (Setup,Cast,VerifyBallot,EvalTally,VerifyTally) as fol-
lows.

– Setup(1λ): on input the security parameter in unary, compute as follows.
1. For all l ∈ [3], run (E .Pkl, E .Skl) = E .Setup(1λ; sl) with randomness sl.

2. Output Pk
4
= (E .Pk1, . . . , E .Pk3) and Sk

4
= (E .Sk1, E .Sk2, s1, s2).

(Actually, as the randomness for the setup of a PKE uniquely determines
the secret-key, it would be sufficient to just include the sl’s in Sk.)

– Cast(Pk, j, v): on input the public-key Pk
4
= (E .Pk1, . . . , E .Pk3), the index

j ∈ [N ] of the voter, a vote v, compute as follows.
1. For all l ∈ [3], compute Ctj,l ← E .Encrypt(E .Pkl, v).

2. Output Bltj
4
= (Ctj,1, . . . ,Ctj,3).

– VerifyBallot(Pk, j,Blt): on input the public-key Pk
4
= (E .Pk1, . . . , E .Pk3), the

index j ∈ [N ] of the voter and a ballot Blt
4
= (Ct1, . . . ,Ct3, π), just output

OK (i.e., accept any ballot, even invalid ones).
– EvalTally(Pk,Sk,Blt1, . . . ,BltN ): on input the public-key

Pk
4
= (E .Pk1, . . . , E .Pk3), the secret-key Sk

4
= (E .Sk1, E .Sk2, s1, s2) and a

tuple of N strings (Blt1, . . . ,BltN ) made up of elements that can be either
ballots cast by a voter or the special symbol ⊥ to indicate an abstention, the
evaluation tally procedure computes what follows.
1. For all j ∈ [N ], l ∈ [2],

ml
j =


⊥ if Bltj = ⊥,
⊥ if Bltj 6= ⊥ ∧ E .Decrypt(Ctj,l, E .Skl) /∈M,

E .Decrypt(Ctj,l, E .Skl) otherwise.

2. For all l ∈ [2], compute yl = F (m1,l, . . . ,mN,l).
3. If y1 = y2 then set y = y′; otherwise set y = ⊥.
4. Consider the following relation Rdec in Fig. 4.

Henceforth, if a statement or proof for the relation Rdec is satisfied with
indices i1 = 1, i2 = 2 (resp. i1 6= 1 or i2 6= 2) we will say that the
statement or the proof is in real mode (resp. trapdoor mode).

Run Provedec on input x
4
= (Blt1, . . . ,BltN , E .Pk1, . . . , E .Pk3, y) and the

witness (E .Sk1, E .Sk2, s1, s2, i1
4
= 1, i2

4
= 2) to compute a proof γ.
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Relation Rdec(x,w):

Instance: x
4
= (Blt1, . . . ,BltN , E .Pk1, . . . , E .Pk3, y). (Recall that a ballot is set to

⊥ if the corresponding voter did not cast her vote.)

Witness: w
4
= (E .Sk′1, E .Sk′2, s1, s2, i1, i2), where the sl’s are the randomness used

to generate the secret- and public- keys pairs (that are known to the authority
who set-up the system).

Rdec(x,w) = 1 if and only if the following condition holds.

The 2 secret-keys corresponding to the public-keys E .Pki1 , E .Pki2 are constructed
using honestly generated public- and secret-key pairs and are equal to E .Sk′1, E .Sk′2;
and either y = ⊥ or for all l ∈ [2], y = F (ml

1, . . . ,m
l
N ) and for all j ∈ [N ],

if Bltj 6= ⊥ then for all l ∈ [2] the ciphertext Ctj,il in Bltj decrypts with the

corresponding secret-key E .Skil to m
il
j ∈M; and for all l ∈ [2], ml

j
4
= ⊥ if Bltj = ⊥.

Precisely, Rdec(x,w) = 1 if and only if the following conditions hold. In the
following, items (a) and (c) are not actually conditions that have to be checked

but are steps needed to define the variables (note the use of “
4
=“) E .Pkil ’s, E .Skil ’s

and m
il
j ’s that are used in the checks (b) and (d).

(a) For all l ∈ [2], (E .Pkil , E .Skil)
4
= E .Setup(1λ; sl).

(b) For all l ∈ [2], E .Sk′l = E .Skil .
(c) For all j ∈ [N ], l ∈ [2],

m
il
j

4
=


⊥ if Bltj = ⊥,
⊥ if Bltj 6= ⊥ ∧ E .Decrypt(Ctj,il , E .Skil) /∈M,

E .Decrypt(Ctj,il , E .Skil) otherwise.

(d) (y = ⊥) ∨ (for all l ∈ [2], y = F (m
il
1 , . . . ,m

il
N )).

(Note that E .Sk′1 and E .Sk′2 do not have to necessarily correspond to the first two
secret-keys.)

Fig. 4. Relation Rdec
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5. Output (y, γ).
– VerifyTally(Pk,Blt1, . . . ,BltN , y, γ): on input the public-key Pk, a tuple of N

strings that can be either ballots cast by a voter or the special symbol ⊥
to indicate an abstention, a claimed tally y and a claimed proof γ of the
correctness of the computation:
1. if γ = ⊥ output⊥, otherwise output the decision of Verifydec,full((Blt1, . . . ,BltN , E .Pk1, . . . , E .Pk3, y), γ).

Henceforth, for simplicity of notation we will omit the parameters of the scheme
and we will just write EVOTE.

10.1 Correctness and Weak Verifiability of the Construction

Correctness. The (perfect) correctness of EVOTE follows from the perfect cor-
rectness of E and the perfect completeness of NIWIdec.

Weak verifiability.

Theorem 1 For all N > 0, all sets M, Σ ⊂ {0, 1}?, all tally functions F :
(M∪{⊥})N → Σ ∪ {⊥}, if E is a perfectly correct PKE with unique secret-key
(cf. Def. 6 and NIWIdec is a (one-message) NIWI (cf. Def. 9) for the relation Rdec,

then EVOTEN,M,Σ,F,E,NIWIdec satisfies weak verifiability (cf. Def. 3).

Proof. We first prove that condition (1) of verifiability is satisfied.
Since VerifyBallot accepts any ballot, even invalid ones, we have to prove that

for all Pk ∈ {0, 1}?, all Blt1, . . . ,BltN ∈ {0, 1}? ∪ {⊥}, there exist m1, . . . ,mN ∈
M∪ {⊥} such that for all y 6= ⊥ and all γ in {0, 1}?, it holds that:
if VerifyTally(Pk,Blt1, . . . ,BltN , y, γ) = 1 then y = F (m1, . . . ,mN ).

Henceforth, w.l.o.g, we let Pk and Blt1, . . . ,BltN be arbitrary strings. First,
we prove the following claim.

Claim 1 Given Pk and (Blt1, . . . ,BltN ), for every two pairs (y0, γ0) and (y1, γ1)
such that y0, y1 6= ⊥, if VerifyTally(Pk,Blt1,BltN , y0, γ0) = VerifyTally(Pk,Blt1, . . . ,BltN , y1, γ1) =
OK then y1 = y2.

Let y0, γ0, y1, γ1 be arbitrary strings in {0, 1}? ∪ {⊥} such that y0,y1 6= ⊥. Sup-
pose that VerifyTallyfull(Pk,Blt1,BltN , y0, γ0) = VerifyTallyfull(Pk,Blt1, . . . ,BltN , y1, γ1) =
OK, otherwise the claim is proven. The perfect soundness of NIWIdec implies that,

for all b ∈ {0, 1}, the proof γb is verified by some witness wb
4
= (E .Sk′b1 , E .Sk

′b
2 , s

b
1, s

b
2, i

b
1, i

b
2).

Now, by the pigeon principle, there exists an index i? such that one of the
following cases holds.

1. i? = i01 = i12. For all b ∈ {0, 1}, let (mi?,b
1 , . . . ,mi?,b

N ) be the messages guar-
anteed by condition (iii) of relation Rdec for proof γb. Condition (i) for proof
γ0 (resp. γ1) implies that the secret-key Sk′01 (resp. Sk′12 ) is honestly com-
puted and thus, the unique secret-key property and the fact that it corre-
sponds to E .Pki01 = E .Pki? (resp. E .Pki12 = E .Pki? imply that for all j ∈ [N ],

E .Decrypt(Ctj,i? , E .Sk′01 ) = E .Decrypt(Ctj,i? , E .Sk′12 ).
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Furthermore, condition (ii) and (iii) for proof γ0 (resp. γ1) imply that for all

j ∈ [N ], either for all b ∈ {0, 1}.mi?,b
j = ⊥ ormi?,0

j = E .Decrypt(Ctj,i? , E .Sk′01 ) ∈
M (resp. mi?,1

j = E .Decrypt(Ctj,i? , E .Sk′12 ) ∈M).

Hence, for all j ∈ [N ], mi?,0
j = mi?,1

j ∈ M ∪ {⊥}. Now, condition (iv) for

proof γ0 (resp. γ1) implies that either y0 = F (m
i01,0
1 , . . . ,m

i01,0
N ) or y0 = ⊥

(resp. either y1 = F (m
i12,1
1 , . . . ,m

i12,1
N ) or y1 = ⊥) and, as by hypothesis

y0, y1 6= ⊥, it holds that y0 = y1.
(Here, it is where the “weakness“ arises. In fact, EVOTE cannot be proven
(fully) verifiable since it could occur that y0 6= y1, y0 = ⊥.)

2. i? = i02 = i11. This case is symmetrical to the first one, having care of replacing
i01 with i02 and i12 with i11.

3. i? = i01 = i11. This case is symmetrical to the first one, having care of replacing
i12 with i11.

4. i? = i02 = i12. This case is symmetrical to the first one, having care of replacing
i01 with i02.

In all cases, we have that if VerifyTally(Pk,Blt1,BltN , y0, γ0) = VerifyTally(Pk,Blt1, . . . ,BltN , y1, γ1) =
OK then y0 = y1 and the claim is proved.

Now, from the previous claim it follows that there exists a unique value y?

such that for all (y, γ) such that y 6= ⊥, if VerifyTally(Pk,Blt1,BltN , y, γ) = OK
then y = y? (1).

Moreover, it is easy to see that for all (y, γ), if VerifyTally(Pk,Blt1,BltN , y, γ) =
OK, there exist messages m1, . . . ,mN ∈M∪{⊥} such that y = F (m1, . . . ,mN )
(2).

Now, we have two mutually exclusive cases.

– For all (y, γ) such that y 6= ⊥, VerifyTally(Pk,Blt1,BltN , y, γ) = ⊥. Then,
letting m1, . . . ,mN in the statement of the theorem be arbitrary messages
inM∪{⊥}, the statement is verified with respect to Pk and Blt1, . . . ,BltN .

– There exists (y′, γ) such that y′ 6= ⊥ and VerifyTally(Pk,Blt1,BltN , y
′, γ) =

OK. In this case, (2) implies that there exist m′1, . . . ,m
′
N ∈ M ∪ {⊥} such

that y′ = F (m′1, . . . ,m
′
N ) (3). Hence, (1) and (3) together imply that y? =

F (m′1, . . . ,m
′
N ) (4).

Therefore, for all (y, γ) such that y 6= ⊥, if VerifyTally(Pk,Blt1,BltN , y, γ) =
OK then (by (1)) y = y? = (by (4)) = F (m′1, . . . ,m

′
N ).

Then, for m1
4
= m′1, . . . ,mN

4
= m′N , the statement of condition (1) of weak

verifiability is verified with respect to Pk and Blt1, . . . ,BltN .

In both cases, for m1
4
= m′1, . . . ,mN

4
= m′N , the statement of condition (1) of

weak verifiability is verified with respect to Pk and Blt1, . . . ,BltN .
As Pk and Blt1, . . . ,BltN are arbitrary strings, the statement of condition (1)

of weak verifiability is proven.
It is also easy to check that condition (2) of weak verifiability is satisfied;

this follows straightforward from the perfect soundness of NIWIdec,full observing
the following. The authority always proves that the the public-key of the PKE
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is honestly generated and so, by the perfect correctness of the PKE, an honestly
computed ballot for message m for the j-th voter will be decrypted to m (since
an honestly computed ballot, by definition, is constituted by three ciphertexts
that encrypt the same message), and thus if the claimed tally y is different from
⊥ (i.e., if the evaluation of the tally function is equal for all indices), then y has
to be compatible with m at index j (cf. Def. 1).

10.2 Weak Privacy of the Construction

Theorem 2 For all N > 0, all sets M, Σ ⊂ {0, 1}?, all tally functions F :
(M∪{⊥})N → Σ ∪ {⊥}, if E is a perfectly correct PKE with unique secret-key
(cf. Def. 6 and NIWIdec is a (one-message) NIWI (cf. Def. 9) for the relation Rdec,

then EVOTEN,M,Σ,F,E,NIWIdec is wIND-Secure (cf. Def. 5).

Proof. Let A be an arbitrary adversary against the wIND-Security of EVOTE
(henceforth, for simplicity, we will omit its parameters). We prove that AdvEVOTE,WeakPriv

A (1λ) ≤
ν(1λ) for some negligible function ν(λ).

We prove that by means of a series of hybrid experiments. We invite the
reader to refer to Table 3.3 for a pictorial explanation of the experiments as
explained in Section 3.2. In the table, for simplicity, we omitted the indices k
for the experiments Hk

2 ’s,Hk
4 ’s,Hk

6 ’s presented below, and so hybrid H2 (resp.
H4, H6) in the table would correspond to hybrid HN

2 (resp. HN
4 , H

N
6 ) presented

below.

Hybrid H1. Experiment H1 is equal to the experiment WeakPrivN,M,Σ,F,EVOTE
A

except that the challenger sets b
4
= 0.

Hybrid Hk
2 , for k = 0, . . . , N . For all k = 0, . . . , N , experiment Hk

2 is identical
to experiment H1 except that for all j = 1, . . . , k, the challenger computes Ctk,3
to be encryption of m1,k. Note that H0

2 is identical to H1.

Claim 2 For all k = 1, . . . , N the advantage of A in distinguishing Hk−1
2 from

Hk
2 is negligible.

Proof. Suppose toward a contradiction that A have instead non-negligible ad-
vantage ε(λ). We construct an adversary B that has advantage at most ε(λ)
against the IND-CPA security of E .

B receives from the challenger of IND-CPA a public-key pk and sets Pk3
4
= pk.

For l ∈ [2], B runs E .Setup to compute (E .Pkl, E .Skl) and runs A on input

Pk
4
= (E .Pk1, E .Pk2, E .Pk3).
A outputs two tuples (m0,1, . . . ,m0,N ) and (m1,1, . . . ,m1,N ) (and a set S

empty for the wIND-Security game).
B returns (m0,k,m1,k) as its pair of challenge messages to the IND-CPA

challenger that in turn returns to B the challenge ciphertext ct?.
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B computes Bltk
4
= (Ctk,1,Ctk,2, ct

?) by encrypting m0,j in Ctk,1 and Ctk,2.
B can compute the ballots Bltj for all j ∈ [N ], j 6= k exactly as the challenger in
both experiments would do.

B computes y as in the previous experiment (i.e., running EvalTally over
(Pk,Blt1, . . . ,BltN )) and uses the 2 secret-keys E .Sk1, E .Sk2 to compute a proof
γ exactly as the challenger in both experiments would do.

B restarts A on input the so computed ballots along with (y, γ) and returns
the output of A.

It is easy to see that if ct? is an encryption of m0,k then B simulates exper-
iment Hk−1

2 and if ct? is an encryption of m1,k, then B simulates experiment
Hk

2 .

Therefore, B has probability at least ε(λ) of winning the IND-CPA game, a
contradiction.

Hybrid H3,. Experiment H3 is identical to experiment HN
2 except that the

challenger computes the proof γ with indices (1, 3) and secret-keys Sk1,Sk3 (pre-
cisely, with the randomness used to compute them but henceforth, for simplicity,
we omit this detail).

Claim 3 The advantage of A in distinguishing HN
2 from H3 is negligible.

Proof. This follows straight-forward from the WI of NIWIdec observing that both
the randomness used to compute Sk1,Sk2 and the randomness used to compute
Sk1,Sk3 constitute both valid witnesses for (Pk,Blt1, . . . ,BltN ).

Hybrid Hk
4 , for k = 0, . . . , N . For all k = 0, . . . , N , experiment Hk

4 is identical
to experiment H3 except that for all j = 1, . . . , k, the challenger computes Ctk,2
to be encryption of m1,k. Note that H0

4 is identical to H3.

Claim 4 For all k = 1, . . . , N the advantage of A in distinguishing Hk−1
4 from

Hk
4 is negligible.

Proof. The proof is exactly symmetrical to the one for Claim 2 except that the
third index is swapped with the second index.

Hybrid H5,. Experiment H5 is identical to experiment HN
4 except that the

challenger computes the proof γ with indices (2, 3) and secret-keys Sk2,Sk3.

Claim 5 The advantage of A in distinguishing HN
4 from H5 is negligible.

Proof. This follows straight-forward from the WI of NIWIdec observing that both
the randomness used to compute Sk1,Sk3 and the randomness used to compute
Sk2,Sk3 constitute both valid witnesses for (Pk,Blt1, . . . ,BltN ).
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Hybrid Hk
6 , for k = 0, . . . , N . For all k = 0, . . . , N , experiment Hk

6 is identical
to experiment H5 except that for all j = 1, . . . , k, the challenger computes Ctk,1
to be encryption of m1,k. Note that H0

6 is identical to H5.

Claim 6 For all k = 1, . . . , N the advantage of A in distinguishing Hk−1
6 from

Hk
6 is negligible.

Proof. The proof is exactly symmetrical to the one for Claim 2 except that the
third index is swapped with the first index.

Hybrid H7,. Experiment H7 is identical to experiment HN
6 except that the

challenger computes the proof γ with indices (1, 2) and secret-keys Sk1,Sk2.

Claim 7 The advantage of A in distinguishing HN
6 from H7 is negligible.

Proof. This follows straight-forward from the WI of NIWIdec observing that both
the randomness used to compute Sk1,Sk2 and the randomness used to compute
Sk2,Sk3 constitute both valid witnesses for (Pk,Blt1, . . . ,BltN ).

Now, by observing that experiment H1 (resp. H7) is identical to the experiment

WeakPrivN,M,Σ,F,EVOTE
A except that the challenger sets b = 0 (resp. b = 1), it

follows that WeakPrivN,M,Σ,F,EVOTE
A equals at most the sum of the advantages

of A in distinguishing the previous hybrids and, since N is a constant, such
advantage is negligible and the theorem is proven.

Corollary 3 If the Decision Linear assumption (see Section 9) holds, then there
exists a weakly verifiable eVote.

Proof. Boneh et al. [BBS04] show the existence of a PKE with perfect correctness
and unique secret-key from Decision Linear, and Groth et al. [GOS06] show the
existence of (one-message) NIWI (with perfect soundness) for all languages in
NP from the Decision Linear assumption.

Then, combining theorems 1 and 2, the corollary follows.

11 Our (Fully) Verifiable eVote

In this Section, we present our eVote scheme EVOTEfull that is IND-Secure and
(fully) verifiable.

Definition 11 [EVOTEfull] Let E = (E .Setup, E .Encrypt, E .Decrypt) be a PKE
scheme with perfectly correctness and unique secret-key (see Def. 6), Com a per-

fectly binding commitment, and let NIWIdec,full
4
= (Provedec,full,Verifydec,full) and

NIWIenc,full
4
= (Proveenc,full,Verifyenc,full) be two NIWI proof systems, respectively,

for the relations Rdec,full and Renc,full to be specified later.
We define a (N,M, Σ, F )-eVote

EVOTEN,M,Σ,F,E,Com,NIWIdec,full

full = (Setupfull,Castfull,VerifyBallotfull,EvalTallyfull,VerifyTallyfull)
as follows.
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– Setupfull(1
λ): on input the security parameter in unary, compute as follows.

1. Choose randomness r ← {0, 1}λ and for all l ∈ [2], randomness sl ←
{0, 1}λ.

2. For all l ∈ [3], run (E .Pkl, E .Skl) = E .Setup(1λ; sl) with randomness sl,
and set Z = Com(1; r).

3. Output Pk
4
= (E .Pk1, . . . , E .Pk3, Z) and Sk

4
= (E .Sk1, E .Sk2, s1, s2, r).

(Actually, as the randomness for the setup of a PKE uniquely determines
the secret-key, it would be sufficient to just include the sl’s in Sk.)

– Castfull(Pk, j, v): on input the public-key Pk
4
= (E .Pk1, . . . , E .Pk3), the index

j ∈ [N ] of the voter, a vote v, compute as follows.

1. For all l ∈ [3], choose randomness rl ← {0, 1}λ.

2. For all l ∈ [3], compute Ctj,l = E .Encrypt(E .Pkl, v; rl).

3. Consider the following relation Renc,full in Fig. 5.

Relation Renc,full(x,w):

Instance: x
4
= (j,Ct1, . . . ,Ct3, E .Pk1, . . . , E .Pk3, Z).

Witness : w
4
= (m, r1, . . . , r3, u), where the rl’s are the randomness used to

encrypt the Ctl’s and u is the randomness used for the commitment Z.

Renc,full(x,w) = 1 if and only if either of the following two conditions hold:

(a) Real mode. All 3 ciphertexts (Ct1, . . . ,Ct3) encrypt the same string inM∪
{⊥}.
Precisely, for all l ∈ [3], Ctl = E .Encrypt(E .Pkl,m; rl) and m ∈M∪ {⊥}.

OR

(b) Trapdoor mode. Z is a commitment to 0.
Precisely, Z = Com(0;u).

Fig. 5. Relation Renc,full

Run Proveenc,full on input x
4
= (j,Ct1, . . . ,Ct3, E .Pk1, . . . , E .Pk3, Z) and

the witness (r1, . . . , r3) to compute a proof π.

Output Bltj
4
= (Ctj,1, . . . ,Ctj,3, πj).

– VerifyBallotfull(Pk, j,Blt): on input the public-key Pk
4
= (E .Pk1, . . . , E .Pk3),

the index j ∈ [N ] of the voter and a ballot Blt
4
= (Ct1, . . . ,Ct3, π), output

the decision of Verifyenc,full((Pk, j,Blt), π).
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– EvalTallyfull(Pk,Sk,Blt1, . . . ,BltN ): on input the public-key

Pk
4
= (E .Pk1, . . . , E .Pk3), the secret-key Sk

4
= (E .Sk1, E .Sk2, s1, s2) and a

tuple of N strings (Blt1, . . . ,BltN ) made up of elements that can be either
ballots cast by a voter or the special symbol ⊥ to indicate an abstention, the
evaluation tally procedure computes what follows.
1. For all j ∈ [N ],, it checks whether VerifyBallot(Pk,Bltj) = ⊥ and in this

case it sets Bltj = ⊥ (i.e., it changes its previous value).

If the check failed for all j ∈ [N ], then output (y
4
= ⊥, γ 4= ⊥) without

proceeding to next step.
2. For all j ∈ [N ], l ∈ [2],

ml
j =


⊥ if Bltj = ⊥,
⊥ if Bltj 6= ⊥ ∧ E .Decrypt(Ctj,l, E .Skl) /∈M,

E .Decrypt(Ctj,l, E .Skl) otherwise.

3. For all l ∈ [2], compute yl = F (m1,l, . . . ,mN,l).
4. If y1 = y2 then set y = y′.
5. Consider the following relation Rdec,full in Fig. 6.

(The reader may have noticed that the value Z in the instance of the
statement may be completely discarded (as it is never used) and that
the relation Rdec,full is equivalent to the relation Rdec used for our weakly
verifiable eVote but for exigency of exposition we prefer to distinguish
among them.)
Henceforth, if a statement or proof for the relation Rdec,full is satisfied
with indices i1 = 1, i2 = 2 (resp. i1 6= 1 or i2 6= 2) we will say that the
statement or the proof is in real mode (resp. trapdoor mode).

Run Provedec,full on input x
4
= (Blt1, . . . ,BltN , E .Pk1, . . . , E .Pk3, y) and

the witness (E .Sk1, E .Sk2, s1, s2, i1
4
= 1, i2

4
= 2) to compute a proof γ.

6. Output (y, γ).
– VerifyTallyfull(Pk,Blt1, . . . ,BltN , y, γ): on input the public-key Pk, a tuple of
N strings that can be either ballots cast by a voter or the special symbol ⊥ to
indicate an abstention, a claimed tally y and a claimed proof γ of the correct-
ness of the computation: If y = ⊥, then checks whether all Bltj ’s are equal to

⊥, otherwise output the decision of Verifydec,full((Blt1, . . . ,BltN , (E .Pk1, . . . , E .Pk3), y), γ),
after having replaced the Bltj ’s with ⊥ when VerifyBallot(Pk,Bltj) = ⊥.
Precisely, the algorithm computes as follows:
1. For all j ∈ [N ], if VerifyBallot(Pk,Bltj) = ⊥, set Bltj = ⊥.

2. If y 6= ⊥, then output the decision of Verifydec,full((Blt1, . . . ,BltN , E .Pk1, . . . , E .Pk3, y), γ).
3. If y = ⊥, then:

If for all j ∈ [N ],Bltj = ⊥ output OK, otherwise output ⊥.

Henceforth, for simplicity of notation we will omit the parameters of the scheme
and we will just write EVOTEfull.
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Relation Rdec,full(x,w):

Instance: x
4
= (Blt1, . . . ,BltN , E .Pk1, . . . , E .Pk3, Z, y). (Recall that a ballot is set

to ⊥ if the corresponding voter either did not cast her vote or her ballot is not
accepted by the verification ballot algorithm.)

Witness: w
4
= (E .Sk′1, E .Sk′2, s1, s2, i1, i2, r), where the sl’s are the randomness

used to generate the secret- and public- keys pairs and r is the randomness used
to compute the commitment Z (that are all known to the authority who set-up
the system).

Rdec(x,w) = 1 if and only if the following condition holds:

The 2 secret-keys corresponding to the public-keys E .Pki1 , E .Pki2 are constructed
using honestly generated public- and secret-key pairs and are equal to E .Sk′1, E .Sk′2;
and either y = ⊥ or for all l ∈ [2], y = F (ml

1, . . . ,m
l
N ) and for all j ∈ [N ],

if Bltj 6= ⊥ then for all l ∈ [2] the ciphertext Ctj,il in Bltj decrypts with the

corresponding secret-key E .Skil to m
il
j ∈M; and for all l ∈ [2], ml

j
4
= ⊥ if Bltj = ⊥.

Precisely, Rdec,full(x,w) = 1 if and only if the following conditions hold. In the
following, items (a) and (c) are not actually conditions that have to be checked

but are steps needed to define the variables (note the use of “
4
=“) E .Pkil ’s, E .Skil ’s

and m
il
j ’s that are used in the checks (b) and (d).

(a) For all l ∈ [2], (E .Pkil , E .Skil)
4
= E .Setup(1λ; sl).

(b) For all l ∈ [2], E .Sk′l = E .Skil .
(c) For all j ∈ [N ], l ∈ [2],

m
il
j

4
=


⊥ if Bltj = ⊥,
⊥ if Bltj 6= ⊥ ∧ E .Decrypt(Ctj,il , E .Skil) /∈M,

E .Decrypt(Ctj,il , E .Skil) otherwise.

(d) For all l ∈ [2], y = F (m
il
1 , . . . ,m

il
N ).

(Note that E .Sk′1 and E .Sk′2 do not have to necessarily correspond to the first two
secret-keys.)

Fig. 6. Relation Rdec,full
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11.1 Correctness and (Full) Verifiability of the Construction

Correctness. Condition (1) of (perfect) correctness of EVOTEfull follows from
the perfect correctness of E and the perfect completeness of NIWIdec,full and
NIWIenc,full. Condition (2) follows analogously observing the following. For all Pk
honestly computed it holds that Pk = (Pk1, . . . ,Pk2,Pk3, Z) for some Pk1,Pk2,Pk3
and Z and Z is a commitment to 1. Thus, relation Renc,full implies that if there

exists a proof π and a statement x
4
= (j,Ct1, . . . ,Ct3,Pk1, . . . ,Pk3, Z) such that

VerifyBallot accepts (x, π), then it must be the case that Ct1, . . . ,Ct3 encrypt the
same string in M∪ {⊥}.

Therefore, for all Blt1, . . . ,BltN , if for all j ∈ [N ], Blt′j is equal to Bltj if Bltj
is accepted by VerifyBallotfull or is replaced by ⊥ otherwise, then it holds that if

(y, γ)
4
= EvalTallyfull(Pk,Blt1, . . . ,BltN ), then y = F (m1, . . . ,mN ), where for all

j ∈ [N ], mj is the string encrypted in the first two ciphertexts of Bltj if Bltj is
accepted by VerifyBallotfull or ⊥ if it is refused.

Then, it is easy to see that VerifyTallyfull(Pk,Blt1, . . . ,BltN , y, γ) = OK.

(Full) verifiability.

Theorem 4 For all N > 0, all sets M, Σ ⊂ {0, 1}?, all tally functions F :
(M∪{⊥})N → Σ ∪ {⊥}, if E is a perfectly correct PKE with unique secret-key
(cf. Def. 6, Com is a PPT algorithm, and NIWIdec,full and NIWIenc,full are (one-
message) NIWIs (cf. Def. 9), respectively, for the relations Rdec,full and Renc,full,

then EVOTEN,M,Σ,F,E,Com,NIWIdec,full

full satisfies (fully) verifiability (cf. Def. 3).

Proof. We first prove that condition (1) of verifiability is satisfied. We have to
prove that for all Pk ∈ {0, 1}?, all Blt1, . . . ,BltN ∈ {0, 1}? ∪ {⊥} such that for
all j ∈ [N ] either Bltj = ⊥ or VerifyBallotfull(Pk, j,Bltj) = OK, then there exist
m1, . . . ,mN ∈M∪ {⊥} such that for all y, γ ∈ {0, 1}?, it holds that:
if VerifyTallyfull(Pk,Blt1, . . . ,BltN , y, γ) = 1 then y = F (m1, . . . ,mN ).

Henceforth, w.l.o.g, we let Pk and Blt1, . . . ,BltN be arbitrary strings such
that for all j ∈ [N ] either Bltj = ⊥ or VerifyBallotfull(Pk, j,Bltj) = OK.

First, we prove the following claim.

Claim 8 Given Pk and (Blt1, . . . ,BltN ), for every two pairs (y0, γ0) and (y1, γ1),
if VerifyTallyfull(Pk,Blt1,BltN , y0, γ0) = VerifyTallyfull(Pk,Blt1, . . . ,BltN , y1, γ1) =
OK then y1 = y2.

For every (y0, γ0) and (y1, γ1), we have two cases.

1. Either y0 = ⊥ and y1 6= ⊥ or y1 = ⊥ and y0 6= ⊥. Suppose w.l.o.g. that
y0 = ⊥ and y1 6= ⊥. The other case (i.e., y1 = ⊥ and y0 6= ⊥) is symmetrical.
By construction, for all y, γ, it holds that (A) if Blt1 = · · · = BltN = ⊥, then
VerifyBallotfull(Pk,Blt1, . . . ,BltN , y, γ) = OK if and only if y = ⊥ and (B) if
for some j ∈ [N ],Bltj 6= ⊥, then VerifyBallotfull(Pk,Blt1, . . . ,BltN ,⊥, γ) = ⊥.
We now have two cases.
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(a) Blt1 = · · · = BltN = ⊥. Suppose that VerifyBallotfull(Pk,Blt1, . . . ,BltN ,y1, γ1) =
VerifyBallotfull(Pk,Blt1, . . . ,BltN ,y0, γ0).
Then, VerifyBallotfull(Pk,Blt1, . . . ,BltN ,y1, γ1) = OK and by (A) y1 = ⊥,
a contradiction

(b) It is not the case that Blt1 = · · · = BltN = ⊥. Then, by (B) VerifyBallotfull(Pk,Blt1, . . . ,BltN ,⊥, γ) =
⊥, and the statement of the claim is verified with respect to (y0, γ0) and
(y1, γ1).

2. y0, y1 6= ⊥. Suppose that VerifyTallyfull(Pk,Blt1,BltN , y0, γ0) = VerifyTallyfull(Pk,Blt1, . . . ,BltN , y1, γ1) =
OK, otherwise the claim is proven. The perfect soundness of NIWIdec,full

implies that, for all b ∈ {0, 1}, the proof γb is verified by some witness

wb
4
= (E .Sk′b1 , E .Sk

′b
2 , s

b
1, s

b
2, i

b
1, i

b
2).

Now, by the pigeon principle, there exists an index i? such that one of the
following cases holds.
(a) i? = i01 = i12. For all b ∈ {0, 1}, let (mi?,b

1 , . . . ,mi?,b
N ) be the messages

guaranteed by condition (iii) of relation Rdec,full for proof γb. Condition
(i) for proof γ0 (resp. γ1) implies that the secret-key Sk′01 (resp. Sk′12 )
is honestly computed and thus, the unique secret-key property and the
fact that it corresponds to E .Pki01 = E .Pki? (resp. E .Pki12 = E .Pki? imply

that for all j ∈ [N ], E .Decrypt(Ctj,i? , E .Sk′01 ) = E .Decrypt(Ctj,i? , E .Sk′12 ).
Furthermore, condition (ii) and (iii) for proof γ0 (resp. γ1) imply that for

all j ∈ [N ], either for all b ∈ {0, 1}.mi?,b
j = ⊥ ormi?,0

j = E .Decrypt(Ctj,i? , E .Sk′01 ) ∈
M (resp. mi?,1

j = E .Decrypt(Ctj,i? , E .Sk′12 ) ∈M).

Hence, for all j ∈ [N ], mi?,0
j = mi?,1

j ∈M∪{⊥}. Now, condition (iv) for

proof γ0 (resp. γ1) implies that either y0 = F (m
i01,0
1 , . . . ,m

i01,0
N ) or y0 = ⊥

(resp. either y1 = F (m
i12,1
1 , . . . ,m

i12,1
N ) or y1 = ⊥) and, as by hypothesis

y0, y1 6= ⊥, it holds that y0 = y1.
(b) i? = i02 = i11. This case is symmetrical to the first one, having care of

replacing i01 with i02 and i12 with i11.
(c) i? = i01 = i11. This case is symmetrical to the first one, having care of

replacing i12 with i11.
(d) i? = i02 = i12. This case is symmetrical to the first one, having care of

replacing i01 with i02.

In all cases, we have that if VerifyTallyfull(Pk,Blt1,BltN , y0, γ0) = VerifyTallyfull(Pk,Blt1, . . . ,BltN , y1, γ1) =
OK then y0 = y1 and the claim is proved.

Now, from the previous claim it follows that there exists a unique value y?

such that for all (y, γ), if VerifyTallyfull(Pk,Blt1,BltN , y, γ) = OK then y = y?

(1).
Moreover, it is easy to see that for all (y, γ), if VerifyTallyfull(Pk,Blt1,BltN , y, γ) =

OK, there exist messages m1, . . . ,mN ∈M∪{⊥} such that y = F (m1, . . . ,mN )
(2).

Now, we have two mutually exclusive cases.

– For all (y, γ), VerifyTallyfull(Pk,Blt1,BltN , y, γ) = ⊥. Then, lettingm1, . . . ,mN

in the statement of the theorem be arbitrary messages inM∪{⊥}, the state-
ment is verified with respect to Pk and Blt1, . . . ,BltN .
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– There exists (y′, γ) such that VerifyTallyfull(Pk,Blt1,BltN , y
′, γ) = OK. In

this case, (2) implies that there exist m′1, . . . ,m
′
N ∈ M ∪ {⊥} such that

y′ = F (m′1, . . . ,m
′
N ) (3). Hence, (1) and (3) together imply that y? =

F (m′1, . . . ,m
′
N ) (4).

Therefore, for all (y, γ), if VerifyTallyfull(Pk,Blt1,BltN , y, γ) = OK then (by
(1)) y = y? = (by (4)) = F (m′1, . . . ,m

′
N ).

Then, for m1
4
= m′1, . . . ,mN

4
= m′N , the statement of condition (1) of verifi-

ability is verified with respect to Pk and Blt1, . . . ,BltN .

In both cases, for m1
4
= m′1, . . . ,mN

4
= m′N , the statement of condition (1) of

verifiability is verified with respect to Pk and Blt1, . . . ,BltN .
As Pk and Blt1, . . . ,BltN are arbitrary strings, the condition (1) of verifiability

is proven.
It is also easy to check that condition (2) of verifiability is satisfied; this

follows straightforward from the perfect soundness of NIWIdec,full observing the
following. The authority always proves that the the public-key of the PKE is
honestly generated and so, by the perfect correctness of the PKE, an honestly
computed ballot for message m for the j-th voter will be decrypted to m (this
holds independently from the value committed in Z since an honestly computed
ballot, by definition, is constituted by three ciphertexts that encrypt the same
message), and thus the claimed tally y has to be compatible with m at index j
(cf. Def. 1).

(In essence, the condition (2) is verified because the degree of freedom of the
authority in creating a dishonest public-key is only in setting the commitment
dishonestly, but this will not affect how the honest ballots will be decrypted and
“counted“.)

Note that for the proof of the theorem above, the security of the commitment
scheme Com is not needed (i.e., the theorem holds for any PPT algorithm Com,
even if insecure).

11.2 Privacy of the Construction

Theorem 5 For all N > 0, all sets M, Σ ⊂ {0, 1}?, all tally functions F :
(M∪{⊥})N → Σ ∪ {⊥}, if E is a perfectly correct PKE with unique secret-key
(cf. Def. 6, Com is a perfectly hiding scheme (cf. Def. 7), and NIWIdec,full and
NIWIenc,full are (one-message) NIWIs (cf. Def. 9), respectively, for the relations

Rdec,full and Renc,full, then EVOTEN,M,Σ,F,E,Com,NIWIdec,full

full is IND-Secure (cf. Def.
4).

Proof. Consider the following experiment HZ
A(1λ) between a challenger and A

(henceforth, often we omit the parameters).

Experiment HZ . ExperimentHZ is equal to the experiment PrivN,M,Σ,F,EVOTEfull

A
except that the challenger sets the commitment Z in the public-key to be a com-
mitment to 0 instead of 1. Note that the output of the experiment is defined to
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be a bit that is 1 if and only if all winning conditions are satisfied. Then, we
have the following.

Claim 9 The probability P 0 that A wins in the experiment PrivN,M,Σ,F,EVOTEfull

A
is negligibly different from the probability P 1 that A wins in game HZ .

Proof. Suppose towards a contradiction the the difference between P0 and P1 is
some non-negligible function ε(λ). We construct an adversary B that breaks the
computational hiding property of Com with probability ≥ ε(λ).
B receives as input a commitment com that is either a commitment for 0 or

for 1. For l ∈ [3], B runs E .Setup(1λ) to compute (E .Pkl, E .Skl) and forms the

public-key for the eVote by setting Pk
4
= (E .Pk1, . . . , E .Pk3, Z

4
= com).

B can emulate the rest of the experiments (note that from this point onwards
both experiments coincide) using the first two secret-keys and gets the output
b′ of A. B outputs 1 if and only if all winning conditions are satisfied.

By hypothesis, if com is a commitment to 0, the probability that B outputs
1 equals the probability that A wins in PrivN,M,Σ,F,EVOTEfull

A , and if com is a
commitment to 1, the probability that B outputs 1 equals the probability that
A wins in HZ .

Thus, the advantage of B in breaking the computational hiding property of
Com is ε(λ), a contradiction.

(Before continuing the proof we would like to remark a subtle point. In the
previous claim, we implicitly supposed that the adversary B be able to make all
checks of the winning conditions efficiently.

This is possible if M is efficiently enumerable and its cardinality, as well as
the number of voters N , are constant in the security parameter.

This could seem like resorting to “complexity leveraging“ arguments and
in fact one could ask if our proof would break down in the case that N and
M may depend on the security parameter. However, the whole proof can be
generalized to the case of N and |M| polynomial in the security parameter
using the following observation.

Let A be the event that A submits challenges that satisfy the winning con-
dition. Then, if the probability that A wins in the PrivN,M,Σ,F,EVOTEfull

A is non-
negligible, then it must the case that the event A occurs with non-negligible
probability and, conditioned on it, A wins with non-negligible probability as
well.

Therefore, the rest of the proof would follow analyzing the probability that A
win in the next hybrid experiments conditioned under the occurrence of the event
that, in such experiments, A submit challenges satisfying the winning condition.
As we will see now, a similar “conditioning“argument will be anyhow necessary
for the rest of the proof.)

Let E1 be the event that in experiment HZ , A submits as challenge two

tuples M0
4
= (m0,1, . . . ,m0,N ) and M1

4
= (m1,1, . . . ,m1,N ), and a set S ⊂

[N ] such that there exists j ∈ S such that m0,j = m1,j and, letting B
4
=
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m0,j
4
= (Ct1, . . . ,Ct3) (supposing that can be parsed in a such way), it holds

that VerifyBallot(Pk, B) = OK but there exist i1, i2 ∈ [3], i1 6= i2 such that
E .Decrypt(Cti1 ,Ski1) 6= E .Decrypt(Cti2 ,Ski2).

(Note that E0 and E1 are events in different probability spaces but we can
still study the difference of such probabilities, as we are going to do next.)

Claim 10 The probability that E1 occurs is negligible.

Proof. Suppose towards a contradiction the the probability of occurrence of E1

be some non-negligible function ε(λ). We construct an adversary B that breaks
the computational hiding property of Com with probability ≥ ε(λ).
B receives as input a commitment com that is either a commitment to 0 or

to 1. For l ∈ [3], B runs E .Setup(1λ) to compute (E .Pkl, E .Skl) and forms the

public-key for the eVote by setting Pk
4
= (E .Pk1, . . . , E .Pk3, Z

4
= com).

B can emulate the rest of the experiments (note that from this point onwards
both experiments coincide) using the first two secret-keys and get the two tuples

M0
4
= (m0,1, . . . ,m0,N ) and M1

4
= (m1,1, . . . ,m1,N ), and a set S ⊂ [N ].

For all j ∈ S, B checks whether the following conditions are all satisfied:

m0,j = m1,j and, setting B
4
= m0,j , B can be parsed as (Ct1, . . . ,Ct3) and it

holds that VerifyBallot(Pk, B) = OK but there exist i1, i2 ∈ [3], i1 6= i2 such that
E .Decrypt(Cti1 ,Ski1) 6= E .Decrypt(Cti2 ,Ski2). If for some j ∈ S the conditions
are satisfied B outputs 0, otherwise it outputs 1.

If com is a commitment to 1, by the perfect soundness of NIWIenc,full and the
definition of relation Renc,full it cannot ever happen that the conditions above are
satisfied for some j ∈ S and so B outputs 1 with probability 1.

On the other hand, if com is a commitment to 0, that probability that the
conditions are satisfied for some j ∈ [S] is exactly the probability of occurrence
of E1 and thus with probability ε, B outputs 0 and with probability 1−ε outputs
1.

Thus, the advantage of B in breaking the computational hiding property of
Com is ε(λ), a contradiction.

From Claim 9 and 10 we now know that for some negligible function negl(·)
the following equations hold:∣∣Pr [Priv = 1 ]− Pr

[
HZ = 1

]∣∣ ≤ negl(λ), (1)

Pr
[
E1
]
≤ negl(λ), (2)

Pr
[
HZ = 1

]
= Pr

[
HZ = 1|E1

]
Pr
[
E1
]
+Pr

[
HZ = 1|Ē1

]
Pr
[
Ē1
]
≤ negl+Pr

[
HZ = 1|Ē1

]
(1−negl).

(3)
(Here and henceforth, we omit the parameters but it is meant that the ex-

periments are parameterized by λ as well as negl(·).)
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Thus, to show that Pr [Priv = 1 ] equals 1/2 plus a negligible quantity, it is
sufficient to show that Pr

[
HZ = 1|Ē1

]
equals 1/2 plus negligible as well.

We prove that by means of a series of hybrid experiments. The reader could
still refer to Table 3.3 for a pictorial explanation but the reader is warned that
the experiments in the table, though very similar conceptually to the next ones,
correspond to the security reduction for the weakly verifiable eVote and more-
over, in the following we will analyze the behavior of the adversary conditioned
on the occurrence of the event Ē1.

Hybrid H1. Experiment H1 is equal to the experiment HZ except that the

challenger sets b
4
= 0.

Hybrid Hk
2 , for k = 0, . . . , N . For all k = 0, . . . , N , experiment Hk

2 is identical
to experiment H1 except that for all j = 1, . . . , k such that j /∈ S, the challenger
computes Ctk,3 to be encryption of m1,k. Note that H0

2 is identical to H1.

Claim 11 For all k = 1, . . . , N ,
∣∣Pr
[
Hk−1

2 = 1|Ē1
]
− Pr

[
Hk

2 = 1|Ē1
]∣∣ is neg-

ligible.

Proof. Suppose toward a contradiction that the difference in such probabilities
is non-negligible function ε(λ). We construct an adversary B that has advantage
at most ε(λ) against the IND-CPA security of E .

B receives from the challenger of IND-CPA a public-key pk and sets Pk3
4
= pk.

For l ∈ [2], B runs E .Setup to compute (E .Pkl, E .Skl), computes Z ← Com(0)

and runs A on input Pk
4
= (E .Pk1, E .Pk2, E .Pk3, Z).

A outputs two tuples (m0,1, . . . ,m0,N ) and (m1,1, . . . ,m1,N ) (and a set S
empty for the wIND-Security game).

If k ∈ S, B returns (0, 0) as its pair of challenge messages to the IND-CPA
challenger that in turn returns to B the challenge ciphertext ct?. If k /∈ S, B
returns (m0,k,m1,k) as its pair of challenge messages to the IND-CPA challenger
that in turn returns to B the challenge ciphertext ct?.

If k ∈ S, B sets Bltj as the challenger in the real experiment would do;

otherwise B computes Bltk
4
= (Ctk,1,Ctk,2, ct

?) by encrypting m0,j in Ctk,1 and
Ctk,2. B can compute the ballots Bltj for all j ∈ [N ], j 6= k exactly as the
challenger in both experiments would do.

B computes y using EvalTally and uses the 2 secret-keys E .Sk1, E .Sk2 to com-
pute a proof γ exactly as the challenger in both experiments would do.

B restarts A on input the so computed ballots along with (y, γ) and returns
the output of A.

It is easy to see that if ct? is an encryption of m0,k and if k /∈ S then B
simulates experiment Hk−1

2 and if ct? is an encryption of m1,k and k /∈ S, then
B simulates experiment Hk

2 . Instead, if k ∈ S the advantage of A is clearly 0.

Therefore, B has probability at least ε(λ) of winning the IND-CPA game, a
contradiction.
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Hybrid H3,. Experiment H3 is identical to experiment HN
2 except that the

challenger computes the proof γ with indices (1, 3) and secret-keys Sk1,Sk3 (pre-
cisely, with the randomness used to compute them but henceforth, for simplicity,
we omit this detail).

Claim 12
∣∣Pr
[
HN

2 = 1|Ē1
]
− Pr

[
H3 = 1|Ē1

]∣∣ is negligible.

Proof. This follows from the WI of NIWIdec observing that both the randomness
used to compute Sk1,Sk2 and the randomness used to compute Sk1,Sk3 consti-
tute both valid witnesses for (Pk,Blt1, . . . ,BltN ) and by observing that if event
Ē1 occurs any ballot in the set S either is replaced by ⊥ in both experiments
if VerifyBallotfull refuses it or it is decrypted in both experiments to the same
values and thus the tally is computed identically in both experiments.

Hybrid Hk
4 , for k = 0, . . . , N . For all k = 0, . . . , N , experiment Hk

4 is identical
to experiment H3 except that for all j = 1, . . . , k such that j /∈ S, the challenger
computes Ctk,2 to be encryption of m1,k. Note that H0

4 is identical to H3.

Claim 13 For all k = 1, . . . , N ,
∣∣Pr
[
Hk−1

4 = 1|Ē1
]
− Pr

[
Hk

4 = 1|Ē1
]∣∣ is neg-

ligible.

Proof. The proof is exactly symmetrical to the one for Claim 11 except that the
third index is swapped with the second index.

Hybrid H5,. Experiment H5 is identical to experiment HN
4 except that the

challenger computes the proof γ with indices (2, 3) and secret-keys Sk2,Sk3.

Claim 14
∣∣Pr
[
HN

4 = 1|Ē1
]
− Pr

[
H5 = 1|Ē1

]∣∣ is negligible.

Proof. This follows straight-forward from the WI of NIWIdec observing that both
the randomness used to compute Sk1,Sk3 and the randomness used to compute
Sk2,Sk3 constitute both valid witnesses for (Pk,Blt1, . . . ,BltN ).

Hybrid Hk
6 , for k = 0, . . . , N . For all k = 0, . . . , N , experiment Hk

6 is identical
to experiment H5 except that for all j = 1, . . . , k such that j /∈ S, the challenger
computes Ctk,1 to be encryption of m1,k. Note that H0

6 is identical to H5.

Claim 15 For all k = 1, . . . , N ,
∣∣Pr
[
Hk−1

6 = 1|Ē1
]
− Pr

[
Hk

6 = 1|Ē1
]∣∣ is neg-

ligible.

Proof. The proof is exactly symmetrical to the one for Claim 11 except that the
third index is swapped with the first index.

Hybrid H7,. Experiment H7 is identical to experiment HN
6 except that the

challenger sets b = 1 (so that the winning condition will be computed differently)
and computes the proof γ with indices (1, 2) and secret-keys Sk1,Sk2.

Claim 16
∣∣Pr
[
HN

6 = 1|Ē1
]
− Pr

[
H7 = 0|Ē1

]∣∣ is negligible.
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Proof. This follows straight-forward from the WI of NIWIdec observing that both
the randomness used to compute Sk1,Sk2 and the randomness used to compute
Sk2,Sk3 constitute both valid witnesses for (Pk,Blt1, . . . ,BltN ).

Note that according to the proof received, an adversary against NIWI can
emulate experiment H6 or H7, and return the output of A. In the first case, the
probability that A output 0 is exactly Pr

[
HN

6 = 1|Ē1
]

because the winning
condition is computed with respect to b = 0, whereas in the second case it
is Pr

[
H7 = 0|Ē1

]
because the winning condition is computed with respect to

b = 1.
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Now, observe that:

Pr
[
HZ = 1|Ē1

]
=

Pr
[
HZ = 1|Ē1 ∧ b = 0

]
Pr [ b = 0 ] + Pr

[
HZ = 1|Ē1 ∧ b = 1

]
Pr [ b = 1 ] =

= 1/2 ·
(
Pr
[
HZ = 1|Ē1 ∧ b = 0

]
+ Pr

[
HZ = 1|Ē1 ∧ b = 1

])
=

(since H1 is identically distributed to HZ with bit b = 0 and H7 to HZ with b = 1)

= 1/2 ·
(
Pr
[
H1 = 1|Ē1

]
+ Pr

[
H7 = 1|Ē1

])
=

= 1/2 + 1/2 ·
(
Pr
[
H1 = 1|Ē1

]
− Pr

[
H7 = 0|Ē1

])
=

(since H1 (resp. H3, H5) is identically distributed to H0
2 (resp. H0

4 , H
0
6 ))

= 1/2 + 1/2 · (
N−1∑
k=0

(Pr
[
Hk

2 = 1|Ē1
]
− Pr

[
Hk+1

2 = 1|Ē1
]
) + (Pr

[
HN

2 = 1|Ē1
]
− Pr

[
H0

4 = 1|Ē1
]
)+

N−1∑
k=0

(Pr
[
Hk

4 = 1|Ē1
]
− Pr

[
Hk+1

4 = 1|Ē1
]
)(Pr

[
HN

4 = 1|Ē1
]
− Pr

[
H0

6 = 1|Ē1
]
)+

N−1∑
k=0

(Pr
[
Hk

6 = 1|Ē1
]
− Pr

[
Hk+1

6 = 1|Ē1
]
)(Pr

[
HN

6 = 1|Ē1
]
− Pr

[
H7 = 0|Ē1

]
)) ≤

1 ≤ /2 + 1/2 · |(
N−1∑
k=0

(Pr
[
Hk

2 = 1|Ē1
]
− Pr

[
Hk+1

2 = 1|Ē1
]
) + (Pr

[
HN

2 = 1|Ē1
]
− Pr

[
H0

4 = 1|Ē1
]
)+

N−1∑
k=0

(Pr
[
Hk

4 = 1|Ē1
]
− Pr

[
Hk+1

4 = 1|Ē1
]
)(Pr

[
HN

4 = 1|Ē1
]
− Pr

[
H0

6 = 1|Ē1
]
)+

N−1∑
k=0

(Pr
[
Hk

6 = 1|Ē1
]
− Pr

[
Hk+1

6 = 1|Ē1
]
)(Pr

[
HN

6 = 1|Ē1
]
− Pr

[
H7 = 0|Ē1

]
))| ≤

(by the triangle inequality)

≤ 1/2 + 1/2 · (
N−1∑
k=0

|Pr
[
Hk

2 = 1|Ē1
]
− Pr

[
Hk+1

2 = 1|Ē1
]
|+ |(Pr

[
HN

2 = 1|Ē1
]
− Pr

[
H0

4 = 1|Ē1
]
)|+

N−1∑
k=0

|Pr
[
Hk

4 = 1|Ē1
]
− Pr

[
Hk+1

4 = 1|Ē1
]
||Pr

[
HN

4 = 1|Ē1
]
− Pr

[
H0

6 = 1|Ē1
]
|+

N−1∑
k=0

|Pr
[
Hk

6 = 1|Ē1
]
− Pr

[
Hk+1

6 = 1|Ē1
]
||Pr

[
HN

6 = 1|Ē1
]
− Pr

[
H7 = 0|Ē1

]
|) ≤

(by Claims 11 - 16)

≤ 3k · negl,
(4)

where negl is the sum of the negligible functions guaranteed by Claims 11 -
16.

51



Finally, Claim 9 and Equations 2,3 and 4 imply that Pr [Priv = 1 ] ≤ ν for
some negligible function ν and the theorem is proven.

Corollary 6 If the Decision Linear assumption (see Section 9) holds, then there
exists a (fully) verifiable eVote.

Proof. Boneh et al. [BBS04] show the existence of a PKE with perfect correctness
and unique secret-key from Decision Linear, and Groth et al. [GOS06] show the
existence of (one-message) NIWI (with perfect soundness) for all languages in
NP and of statistically binding commitments, both from the Decision Linear
Assumption.

Then, combining Theorems 4 and 5, the corollary follows.
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12 Future Directions

Our work opens up new directions in e-voting and generally in cryptography.
We discuss some of them.

– Efficiency. In our work, in order to compute the NIWI proofs of Groth et al.
[GOS06] for CircuitSat, we need to represent the computation as a Boolean
circuit and, though this can be done in polynomial time, it can be inefficient
in practice. An important objective is to sidestep the reduction to circuits
by employing a more direct approach. A possibility would be to explore the
achievability of our results from variants of Groth-Sahai NIWIs [GS08]. The
NIWI of Groth-Sahai, as it stands, is formulated in the CRS model but it is
worthy to study in which settings it can be instantiated without CRS.
Another important direction is to improve the efficiency of the verification.
It would be desirable that the verifiers make a work sub-linear in the number
of voters. The verifiability guarantees attained would then be computational
but hopefully it could be possible to avoid trust assumptions. A possibility
would be to employ variants of succinct arguments (see [Bit14] for a survey).

– Receipt-freeness. Perfect verifiability and perfect correctness seem incom-
patible with receipt-freeness [BT94,SK95,MH96,MN06,DKR06,CFG15], but
we think that it should be possible to define a statistical variant of verifiabil-
ity that could coexist with some form of receipt-freeness. Another possibility
could be to resort to some voting server trusted for receipt-freeness but not
for privacy that re-randomizes the ballots, as done in BeleniosRF of Cortier,
Fuchsbauer and Galindo [CFG15].

– Other applications of our techniques. We think that our techniques
could be of wide applicability to other settings. For instance, Camenisch
and Shoup [CS03a] put forth the concept of verifiable encryption (that in
some sense could be also viewed as a special case of verifiable functional
encryption [BGJS16]) and present numerous applications of it, such as key
escrow, optimistic fair exchange, publicly verifiable secret and signature shar-
ing, universally composable commitments, group signatures, and confirmer
signatures. We believe that our techniques can be employed profitably to im-
prove their results with the aim of removing the need of trust assumptions.
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