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Abstract. With the advent of the Internet of Things, lightweight de-
vices necessitate secure and cost-efficient key storage. Since traditional
secure storage is expensive, the valuable entropy could originate from
noisy sources, for which fuzzy extractors allow strong key derivation.
While providing information-theoretic security, fuzzy extractors require
large amount of input entropy to account for entropy loss in the key
extraction process. It has been shown by Fuller et al. [20] that the en-
tropy loss can be reduced if the requirement is relaxed to computational
security based on the hardness of the Learning with Errors problem.
Using this computational fuzzy extractor, we show how to construct a
device-server authentication system providing outsider chosen perturba-
tion security and pre-application robustness. We present the first imple-
mentation of a lossless computational fuzzy extractor where the entropy
of the source equals the entropy of the key on a constrained device.
The implementation needs only 1.45KB of SRAM and 9.8KB of Flash
memory on an 8-bit microcontroller. We compare our implementation to
existing work in terms of security, while achieving no entropy loss.

Keywords: Computational fuzzy extractor · Learning with errors · Authen-
tication system · Implementation

1 Introduction

After file sharing, e-commerce, and social media, the next generation of the
Internet—the Internet of Things (IoT)—is connecting machines to machines.
These IoT devices range from sensors and security cameras to vehicles, produc-
tion machines, buildings and smart cities. It is expected that there will be 50
billion connected IoT devices by 2020 [19]. Due to connectivity, security is a
major concern for IoT systems.

1.1 Security in the IoT and Problem Description

The IoT will consist of countless devices with a connection to the Internet and
constrained in terms of memory, power supply and computational power. Sensor



nodes, in particular, change the way we used to think about computer-based sys-
tems. They will become the eyes and ears for our everyday ubiquitous computing
world. That way, cyber-physical systems can directly influence our physical envi-
ronment with their collected data, e.g. a fire door unlocks upon smoke detection
or a car brakes due to input from various sensors detecting an obstacle. There-
fore, it is widely recognized that authenticity of their data and communication
will be a requirement to guarantee the safe and secure running of IoT systems.

Cryptographic mechanisms ensuring secure deployment and operation of IoT
devices rely on high-entropy keys. Harvesting entropy on IoT devices, however,
turns out to be a challenging task because of the inherently constrained nature
of these devices. The number and type of peripherals available on such devices is
kept at a minimum for cost reasons. Moreover, since noise-free high-entropy
sources are not generally available, IoT devices must rely on noisy entropy
sources [4]. Examples of noisy entropy sources4 include biometrics [12], quantum
information [7] and physically unclonable functions (PUF) [24,40,21,48]. Espe-
cially PUFs are an emerging trend in IoT systems and can be found in devices
ranging from small chip card microcontrollers like NXP’s SmartMX2 to modern
high-performance FPGAs and MPSoCs like Xilinx UltraScale family. Due to the
lightweight, resource-constrained nature of IoT systems, securely storing keys
on IoT devices remains a challenge. Here, PUFs are considered an attractive
solution as the key can be seen to be embedded intrinsically in hardware.

As a result, potential entropy sources and, in turn, the overall amount of
available entropy are scarce. Efficient use of the available entropy is therefore a
necessary prerequisite for building secure and privacy-respecting IoT systems.

1.2 Background and Aim

As mentioned previously, PUFs are attractive because they provide for secure
and cheap cryptographic key storage, even in constrained environments as those
found in IoT systems. To deal with the PUF noise and, more generally, be able
to derive secure cryptographic keys from noisy sources, fuzzy extractors were
introduced [17]. Fuzzy extractors are essentially comprised of two procedures.
The generate procedure establishes a key and a helper data from a measure-
ment. The reproduce procedure takes a noisy measurement, alongside with the
helper data, and reproduces the exact same key. It can be formally shown that
the public helper data leaks negligible (or no) information about the derived
key [17,10,20]. Because of this, fuzzy extractors can be found in cryptographic
protocols [10,23,3,13]. Security of fuzzy extractors constructions has been shown
in the information-theoretic sense. However, it comes at the cost of an entropy
loss equal to the difference between the measurement (source) entropy and the
entropy of the extracted key. In constrained devices, such entropy loss results in
increased costs for the overall system (more entropy from a PUF, implies addi-
tional SRAM cells, oscillators, etc. which, in turn result in addtional area and
therefore increased cost).

4 Clearly, not all such sources are meant to be used with constrained IoT devices.
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Fig. 1: Figure of our computational fuzzy extractor in an IoT setting.

In [20], Fuller et al. introduced a computational fuzzy extractor (CFE), which
can be transformed into a lossless fuzzy extractor, i.e., an extractor that has no
entropy loss. In contrast to information theoretic constructions where the ex-
tracted key is derived from the noisy source measurement, the main idea behind
a computational fuzzy extractor is to use the measurement to encrypt a uniformly
chosen secret. Because the encryption and decryption relies on the Learning with
Errors (LWE) problem [42], recovering the secret is still possible with a noisy
measurement that is sufficiently close to the initial one. Such a construction
has the additional advantage of being post-quantum secure, thanks to inherited
security from LWE.

In this paper, our aim is to design, implement and evaluate the feasibil-
ity of a cheap IoT node and corresponding system supporting lightweight mu-
tual authentication in a post-quantum world. We achieve this via algorithms
which minimize the required (software or hardware) resources and the entropy
required for key derivation (and therefore for authentication). Post quantum
security follows directly from our use of computational fuzzy extractors whose
construction is based on the LWE problem. Our evaluation indicates that it is
feasible to implement such (CFE) schemes in highly constrained environments.
In the process of showing this feasibility results, we provide novel constructions
of random number generators for ultra-constrained environments and algorithms
which minimize the area required for the CFE implementation.

1.3 System Model

We describe how our proposed system can be implemented as in Fig. 1. An IoT
node is connected with a server over the Internet. The node itself is equipped
with a true random number generator (TRG), a memory, a CPU which runs the
generate procedure (CFE.Gen) and a pre-shared secret entropy source. Here, we
assume a TRG which requires no additional hardware costs and we show in this
paper the validity of this assumption. Further we assume a strong PUF as pre-
shared secret entropy source in our system and we note that the implementation
of the PUF is outside the scope of this paper. The TRG provides freshness for
each protocol run and the volatile memory stores intermediate values during
calculation.

The server, on the other hand, has access to a database which holds the
corresponding challenge-response pairs for each legitimate PUF which are pre-
measured during an enrollment phase in a secure environment. Also, the server
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runs the reproduce logic of our computational fuzzy extractor (CFE.Rep). We
assume the server—or the cloud—to be protected with high-security measures.
We claim our proposed mutual authentication system offers outsider chosen per-
turbation security and pre-application robustness.

1.4 Adversarial Model

In vision of the IoT depicted in Fig. 1, we assume a strong adversary. The ad-
versary can control the communication channel between a node and a server at
will, due to the wireless nature of the IoT. In addition, the adversary has limited
access to the node itself. In particular, we assume that the adversary cannot per-
form extensive physical attacks or invasive or semi-invasive side-channels attacks
(which require unlimited access to the device for extended periods of time) but
he has the ability to read out secrets from standard non-volatile memory and
change them (replace them). As it is standard, we assume that the PUF in the
system possesses a tamper evidence property, so that if the adversary tries to
learn the secret stored in the PUF, the PUF behavior will change significantly or
be destroyed. Finally, we assume that all the security functionality (algorithms)
related to the CFE is implemented in such a way that it cannot be modified but
is well-known to the adversary (as it is standard in cryptography).

1.5 Contribution

In this paper, we investigate the feasibility of a lossless CFE for typical IoT
devices. To show the limits, we choose a very constrained 8-bit device, as well
as a 32-bit device for comparison. The latter speeds up the client’s generate
procedure from 34.9 to 0.4 seconds. We explore a system based on the loss-
less CFE construction in terms of efficiency and complexity. We summarize our
contributions as follows:

– CFE system. We show how a computational fuzzy extractor can be in-
cluded securely in a client-server authentication system by taking advantage
of reverse and robust fuzzy extractors. Our construction provides outsider
chosen perturbation security and pre-application robustness. Additionally,
our construction immediately achieves post-quantum security due to its the-
oretical relation to the LWE problem.

– Client-side implementation of a reverse and robust CFE on con-
strained devices. To our knowledge, we present the first actual imple-
mentation5 of a lossless computational fuzzy extractor [20] on resource-
constrained devices (an 8-bit AVR microcontroller with 2.5KB RAM and
a 32-bit ARM Cortex-M3 microcontroller with 96 KBytes of RAM).

5 The work of [26] describes the implementation of a Trapdoor CFE. Our focus is on
a plain CFE, where the additional confidence information of a Trapdoor CFE is not
available. In contrast, we have implemented a lossless CFE, based on LWE instead
of LPN, and on a constrained device rather than a normal computer.
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– True random number generation. We propose a new construction for
generating random numbers from a physical noise source available on off-
the-shelf microprocessors. The proposed construction achieves uniform ran-
domness required in our CFE system.

– Parameter setting and optimized implementation of a lossless CFE.
We show how to optimize the algorithms given by Fuller et al. [20] in a way
that reduces their memory footprint. This enables the application of lossless
CFE in the embedded domain where the devices generally have a limited
amount of memory. In addition, we show how to determine suitable parame-
ters and discuss the impact of the parameters’ choice on the implementation
size and performance. Finally, we compare our setting with related work for
80-bit, 128-bit and 256-bit security.

1.6 Outline

The outline of this paper is as follows: In Section 2, we introduce notation,
necessary background and previous constructions. We then present our reverse
and robust computational fuzzy extractor in Section 3. In Section 4 we show how
to use our previous system construction for an authentication protocol. We give
implementation details and optimizations for the used algorithms in Section 5.
In Section 6 we discuss parameters for a lossless implementation and present
resulting memory requirement. We evaluate our implementation in Section 7 in
terms of memory and performance. A thorough security analysis for our system
construction and our protocol, as well as a comparison with related work is
conducted in Section 8. At last, we discuss possible pre-shared secret entropy
sources for our system in Section 9. We conclude this paper in Section 10.

2 Preliminaries

We follow the same notation as in [20]. For a random variable X = X1|| . . . ||Xn,
where each Xi is over some alphabet Z, we denote by X1,...,k = X1|| . . . ||Xk.
We write for a distinguisher D (or a class of distinguishers D) the computational
distance between X and Y as δD(X,Y ) = |E[D(X)]− E[D(Y )]|. We denote by
Dssec the class of randomized circuits which output a single bit and have size
at most ssec. Un denotes the uniformly distributed random variable on {0, 1}n.
We denote random variables by capitalized letters, e.g. X, matrices or vectors
by bold letters, e.g. A or x, and elements in a vector or samples from a random
variable by lowercase letters, e.g. x. We will write M to denote a metric space
with an associated distance function dis. We will denote the finite field with q
elements by Fq and the corresponding vector space of dimension m over Fq by
Fmq . We denote the binary logarithm with log. We denote an efficient algorithm
as probabilistic polynomial time (PPT). We use a Truly Random Number Gen-
erator (TRNG) to derive truly random binary sequences. Furthermore, we use
Message Authentication Codes (MAC), where MAC uses secret key x and mes-
sage m as inputs and outputs σ = MACx(m). A MAC is verified with function
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Ver on inputs x, m and σ and outputs if the MAC is valid (yes) or not (no). For
our constructions we use an encoding function Enc which uses a key x, a matrix
A and a string w ∈M. The corresponding decoding function Dec takes a vector
b and matrix A as inputs and outputs key x = Dec(b+e,A) if b = Encx(A,w)
and where e is some small noise vector.

2.1 Learning with Errors

Regev introduced the LWE problem [42,43] as a generalization of the Learn-
ing Parity with Noise (LPN) problem. We recall the decisional version of the
problem.

Definition 1 (Decisional LWE [42]) Let n be a security parameter. Let m =
m(n) = poly(n) be an integer and q = q(n) = poly(n) be a prime. Let A be
uniformly distributed over Fm×nq , X be uniformly distributed over Fnq and χ be
an arbitrary distribution on Fmq . The decisional version of the LWE problem,
denoted dist-LWE(n,m,q,χ), is to distinguish the distribution (A,AX + χ) from
the uniform distribution over (Fm×nq ,Fmq ).

We say that dist-LWE(n,m,q,χ) is (ε, ssec)-secure if no (probabilistic) distin-
guisher of size ssec can distinguish the LWE instances from uniform except with
probability ε.

2.2 Computational Fuzzy Extractors

Formalized in [17], fuzzy extractors (FE) can be used to derive keys from noisy
measurements. They have been proven secure in the information-theoretical
sense. A FE consists of two procedures—Gen and Rep. Whereas Gen ”gener-
ates” public helper data from a measurement, Rep tries to ”reproduce” a shared
secret from a noisy measurement and the helper data.

Fuller et al. [20] show how to build computational fuzzy extractors (CFE) to
derive longer keys compared to information-theoretical secure fuzzy extractors
when input entropy remains the same at the cost of achieving only computa-
tional security. Their construction is based on the LWE problem. By using the
variant of LWE [18], which uses a uniformly random distribution (rather than a
discretized Gaussian) and choosing suitable parameters, Fuller et al. also show
how to construct a lossless CFE, i.e., a CFE exhibiting no entropy loss. We first
recall the definition of a CFE [20].

Definition 2 (Computational Fuzzy Extractor [20, Definition 2.5]) Let
W be a family of probability distributions over M. A pair of randomized proce-
dures ”generate” (Gen) and ”reproduce” (Rep) is a (M,W, `, t)-computational
fuzzy extractor that is (ε, ssec)-hard with error δ if Gen and Rep satisfy the fol-
lowing properties:

– The generate procedure Gen on input w ∈ M outputs an extracted string
R ∈ {0, 1}` and a helper string P ∈ {0, 1}∗.
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– The reproduction procedure Rep takes an element w′ ∈ M and a bit string
P ∈ {0, 1}∗ as inputs. The correctness property guarantees that if dis(w,w′) ≤
t and (R,P ) ← Gen(w), then Pr[Rep(w′, P ) = R] ≥ 1− δ, where the proba-
bility is over the randomness of the procedures (Gen,Rep). If dis(w,w′) > t
then no guarantee is provided about the output of Rep.

– The security property guarantees that for any distribution W ∈ W, the string
R is pseudorandom conditioned on P , that is δDsec((R,P ), (U`, P )) ≤ ε.

2.3 Lossless Computational Fuzzy Extractor

As mentioned previously, [20] observes that by careful choice of parameters and
using the LWE version introduced in [18], one can achieve a lossless CFE as
shown in Construction 1. Intuitively, the Gen procedure takes w ← W , where
W is a uniform distribution over Fmρq, as input and outputs a key r and the
helper data p. The secret vector x ∈ Fnq is chosen uniformly, but only the first k
blocks of x result in the key r. This follows directly from the ability to extract
pseudorandom bits, which, in turn, follows from [[1], Theorem 3] that proves
that x has simultaneously many hardcore bits.

The Rep outputs the key r for a given noisy w′ and helper data p, if the error
t is not too big. Basic operations in Gen and Rep are matrix-vector multiplica-
tions and vector-vector additions, or subtractions, in a prime field. The overall
efficiency of this construction relies on the function Decode, which we describe
in Section 5.2.

Construction 1 ([20]) Let n be a security parameter and let m ≥ 3n and
k = n/2. Let q be a prime. Define Gen,Rep as follows:

Gen Rep
1. Input: w ← W (where W is some
distribution over Fmρq)

1. Input: (w′, p) (where dis(w,w′) ≤ t)

2. Sample A ∈ Fm×nq , x ∈ Fnq uniformly 2. Parse p as (A, c); let b = c− w′

3. Compute p = (A,Ax + w), r =
x1,...,k

3. Let x = Decodet(A,b)

4. Output: (r, p) 4. Output: r = x1,...,k

For Construction 1 to be lossless, the parameters in the construction need
to satisfy several conditions. The results from Döttling and Müller-Quade [18]
enable [20] to split a sampled measurement w into blocks wi. Each block then
represents a coordinate in the vector w, where m is the number of coordinates
in w and each wi has a bit width of ρq. The key r gets derived from k hardcore
samples xi from x, so the total number of bits in r is k log q. Fuller et al. observe
that for a lossless construction we need to satisfy m log ρq = k log q, meaning the
measurement vector w has a higher dimension, but each element has less bits,
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than the key r. The above discussion is visualized in (1), where we are abusing the
log notation to illustrate the number of bits needed to represent the operands.
The formal statement is contained in Theorem 1. Theorem 2 summarizes the
security of the lossless CFE construction and it is proven in [20].

log w = log

log ρq︷ ︸︸ ︷

w1

w2

...
wk
...
wm


= m log ρq = k log q = log

log q︷ ︸︸ ︷
x1
x2
...
xk

 = log x (1)

Theorem 1 ([18, Theorem 6]) Let n be a security parameter and let σ ∈
(0, 1) be an arbitrarily small constant. Let q = q(n) be a prime and m = m(n) =
poly(n) be a integer with m ≥ 3n. Let ρ = ρ(n) ∈ (0, 1/10) be such that ρq ≥
2n1/2+σm. If there exists a PPT-algorithm that solves dist-LWE(n,m,q,U([−ρq,ρq]))
with non-negligible probability, then there exists an efficient quantum-algorithm
that approximates the decision-version of the shortest vector problem (GAPSVP)
and the shortest independent vectors problem (SIVP) to within Õ(n1+σm/ρ) in
the worst case.

Theorem 2 ([20, Theorem 4.7]) Let n be a security parameter and let the
number of errors t = c log n for some positive constant c. Let d be a positive
constant (giving us a trade-off between running time of Rep and |w|). Con-
sider the Hamming metric over the alphabet Z = [−2b−1, 2b−1], where b =
log 2(c/d + 2)n2 = O(log n). Let W be uniform over M = Zm, where m =
(c/d+ 2)n = O(n). If GAPSVP and SIVP are hard to approximate within poly-
nomial factors using quantum algorithms, then there is a setting of q = poly(n)
such that for any polynomial ssec = poly(n) there exists ε = ngl(n) such that the
following holds: Construction 1 is a (M,W,m log |Z|, t)-computational fuzzy ex-
tractor that is (ε, ssec)-hard with error δ = e−Ω(n)). The generate procedure Gen
takes O(n2) operations over Fq, and the reproduce procedure Rep takes expected
time O(n4d+3) operations over Fq.

Remark 1 We have chosen to include the formal theorems because they allow
us to discuss the parameters in a precise manner. This is in contrast to a more
informal exposition of the parameters, which can result in confusion when dis-
cussing the parameter selection in the next sections.

Construction 1 is defined by its parameters. As motivated before, it is possible
to achieve a lossless setting. In this section we state the parameters, their relation
and constraints.

– |W |: The length of the source.
– |X1,...,k|: The length of the key.
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– t: Number of errors that can be supported.
– n: LWE security parameter (number of field elements in X).
– q: The size of the field.
– ρ: The fraction of the field needed for error sampling.
– m: The size of each number of samples in the LWE instance.
– k: The number of hardcore bits in X. (k log q = m log ρq)

The goal is to minimize the entropy loss, meaning |W |−|X1,...,k| should be as
small as possible. In the best case this would yield |W | = |X1,...,k|, translating to
m log(ρq) = k log q. For security we need n to be greater than some minimum n0
and q = poly(n). Also, we need a bound on the error t so that efficient decoding
is still possible. The larger we choose the dimension m, the more samples our
decoder can extract, so the more errors we can support. Substituting, the error
t depends on m, which we chose minimal. The previous discussion results in the
following collection of constraints. A detailed derivation is given in [20]:

n0 < n− k (2)

m = 3n (3)

q = poly(n) (4)

ρq = 2n
1
2+σm (5)

m log(ρq) = k log q (6)

The parameter t, i.e., the level of noise our construction can tolerate, is
further explored in Section 7.2.

2.4 Reverse and Robust Fuzzy Extractor

In the following we adapt the definition of a reverse fuzzy extractor from [49]
to our construction, since our Rep-procedure does not reproduce the original
response w but computes the extracted string r that is generated by Gen.

Definition 3 (Reverse Fuzzy Extractor [49, Definition 1]) A pair of PPT
algorithms (Gen,Rep) is a (M,m,m′, t)-reverse fuzzy extractor if it has the fol-
lowing two properties for correctness and security, respectively:

– If r ← (r, p) = Gen(w) and dis(w,w′) ≤ t, then w.h.p Rep(w′, p) = r
– A PPT adversary A with input p ← (r, p) = Gen(w) outputs w with proba-

bility negligible in m′

where w′ ∈ M and w is sampled according to distribution W over M with
min-entropy m.

Security against outsider chosen perturbation attacks describes a stronger notion
of security for reverse fuzzy extractors.

Definition 4 (Outsider Chosen Perturbation Security [49]) An
(M,m,m′, t)-reverse fuzzy extractor as defined in Definition 3 is secure against
outsider chosen perturbation attacks if there is no PPT adversary A that wins
the following security game with more than negligible advantage in m′:
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– A chooses a distribution W ∈M with min-entropy m

– Challenger CPS randomly chooses w
$←W

– A adaptively chooses ei ∈M, s.t. ∀i : |ei| ≤ t and invokes the oracle Gen
– Gen computes (ri, pi) = Gen(wi = w + ei) and outputs pi to A
– A outputs a guess w∗ to CPS
– A wins if w∗ = w

Finally, we restate the definition of a robust fuzzy extractor by Dodis et al. [16].

Definition 5 (Robust Fuzzy Extractor [16, Definition 6]) A (m, l, t, ε)-
fuzzy extractor that is (ε, ssec)-hard has pre-application robustness δ if there is
no PPT adversary that given p from (r, p) = Gen(w) outputs a p′ s.t. p′ 6= p
and Rep(w′, p′) 6=⊥ where dis(w,w′) ≤ t with probability higher than δ, |r| = l
and w has min-entropy m.

Note that specific to our construction we do not consider post-application ro-
bustness as defined in [16, Definition 6], where the adversary is provided with r
from (r, p) = Gen(w′) since in our case r corresponds to a secret value that is
not communicated over a (possibly insecure) channel.

3 Reverse and Robust CFE

We use the reverse fuzzy extractor mechanism of van Herrewege et al. [49] for
authentication and enhance it to a robust fuzzy extractor secure against out-
sider chosen perturbation attacks.

The reverse fuzzy extractor effectively flips the Gen and Rep procedures for
a prover and a verifier, here device and server respectively. The server transmits
a challenge c to the device holding a pre-shared entropy source, e.g. a PUF. The
device stimulates the source and gets a noisy response w′. Then a helper data p
is generated for this noisy response w′ and p is sent back to the server. The server
knows a w close to w′ for the given challenge c from a previous enrollment phase.
The server can correct his w with the helper data p to retrieve w′. That way
the resource-constrained device does not have to do the computationally intense
decoding of a linear random code. A reverse computational fuzzy extractor is
depicted in Fig. 2, which further implments our system from Fig. 1.

Since the manipulation of the public helper data p poses an attack vector [14],
we enhance our reverse computational fuzzy extractor to a reverse and robust
computational fuzzy extractor. We do this by integrating a MAC to prove the
helper data p was generated by the device, i.e., σ = MACx1,...,n(A,Ax + w′).
This enhancement is depicted in Fig. 3. Our construction can detect tampered
helper data p̃, with p 6= p̃. Possible outputs of our Rep construction are therefore
extended with a failure symbol ⊥, when the verification function Ver fails.

Information-theoretic secure fuzzy extractors can leak entropy with a code-
offset or syndrome construction [17]. The leakage between the generated helper
data and secret key can be prevented by adapting techniques from [34], i.e.,
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Fig. 2: Figure of our reverse computational fuzzy extractor authentication
scheme.
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Fig. 3: Figure of our reverse and robust computational fuzzy extractor authenti-
cation scheme.

debiasing. Another solution is presented in [44] where a small noise is added
to the response to still be correctable. This is where Construction 1 benefits
from the LWE problem. If the measurement w is biased, then we can also add
a small (pseudo)random noise for debiasing and the definition of a (M,W, `, t)-
computational fuzzy extractor still holds.

The server knows a challenge-response pair (c,w). The device outputs the
helper data p, which consists of matrix A, the encoded Ax+w′ = Encx1,...,n(A,w′)
and a MAC σ = Macx1,...,n(A,Ax + w′) of the previous two. The server then
subtracts b = Ax + w′ − w = Sub(Ax + w′,w) and decodes b to retrieve
x1,...,n = Dec(b,A). With this retrieved x1,...,n and the public matrix A, the
server can verify if the helper data was changed. For verification the server cal-
culates w′ = Ã · x1,...,n − ( ˜Ax + w′), where w′ should be close to w. If the
verification is successful the first k hardcore bits of x1,...,n are recovered as a
shared secret x1,...,k.

Security proofs of our construction being a reverse and a robust computa-
tional fuzzy extractor, secure against outsider chosen perturbation attacks, are
given in Section 8.1.

4 Mutual Authentication Protocol

In this section, we demonstrate how to actually use the authentication scheme
from Fig. 3. Delvaux et al. reviewed several PUF-based lightweight entity au-
thentication protocols [13]. For our authentication scheme we chose the reverse
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FE protocol [49] as a basis, working with strong PUFs. A modified version of the
reverse FE protocol also offers mutual authentication, but uses weak PUFs [33].
Also, the generate and reproduce procedures are the ones from our reverse and
robust computational fuzzy extractor as depicted in Fig. 3. Our system model
and assumptions are the same as in Section 1, but are formally described in the
following.

4.1 System Model

Our scheme consists of at least three parties, namely an issuer I, a device D and
a server S. The adversary is denoted with A. S can access a database DB, where
all IDs of legitimate devices D alongside their pre-measured challenge-response
pairs are listed. I initializes and maintains DB.

4.2 Trust Model and Assumptions

Issuer I and server S We assume I and S to be trusted, which is a typical
assumption in PUF-based authentication protocols. D, S and DB are initialized
in a secure environment.

Device D We assume D to be a passive device, meaning it cannot start a com-
munication. Also, we assume a present strong PUF, i.e. the pre-shared entropy
source in Fig. 3 is implemented as a strong PUF, denoted as fi(·) with i stating
the PUF’s uniqueness. Furthermore, we assume a TRNG, a hash function and
the generate procedure of Fig. 3 on D.

Adversary A We assume an active adversary who has full control over the
communication channel between D and S, i.e., A can eavesdrop, modify and
intercept all protocol messages and can send arbitrary messages to S and D alike.
The goal of the adversary is to impersonate either the server or the device. We
allowA to know whether an authentication was successful or not. Additionally,A
can read any information stored in non-volatile memory before and after protocol
execution, e.g. during an unsecure distribution chain. However, A cannot get
responses of the entropy source f(·) and cannot access temporary data of D, e.g.
intermediate results, while the protocol is executed6.

4.3 Protocol

The system is initialized by issuer I, who stores a random identifier ID in the
non-volatile memory of device D. Also, I creates r > 0 challenge-response pairs
(c1,w1), . . . , (cr,wr) during a secure enrollment phase from f(·) of device D.
Challenge-response pairs are stored in database DB with the corresponding ID .

6 We note that an adversary could use side-channel attacks to extract these intermedi-
ate values and one should harden a system with side-channels aware designs, which
are outside the scope of this paper.
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Device D Server S
fi(·), ID DB = (ID ′, (c1,w1), . . . , (cr,wr))

auth←−−−−
ID−−→ if (ID 6= ID ′) then ⊥

j
U←− {1, . . . , r}

w′j
R←− fi(cj)

cj , η←−−− η
U←− {0, 1}l

(x1,...,k, pj ) := Gen(w′j)

a := Hash(ID , η,x1,...,k, pj )
pj , a−−−→

x1,...,k := Rep(wj , pj )
if (Hash(ID , η,x1,...,k, pj ) 6= a) then ⊥

if (Hash(a,x1,...,k) 6= b) then ⊥ b←− b := Hash(a,x1,...,k)

Fig. 4: Mutual authentication protocol

For the actual authentication protocol, as shown in Fig. 4, the server S
starts by sending an authentication request auth to device D. D answers with
its identifier ID and if ID is not present in DB then the protocol aborts. Next,
S selects a random challenge-response pair (cj ,wj) from DB and a random
nonce η and transmits (cj , η) to D. Upon reception, D stimulates the pre-

shared entropy source w′j
R←− fi(cj), generates (x1,...,k, pj ) := Gen(w′j) with

our reverse and robust computational fuzzy extractor, calculates hash a :=
Hash(ID , η,x1,...,k, pj ) and sends (pj , a) to S. In return, S reproduces the se-
cret x1,...,k with x1,...,k := Rep(wj , pj ) using the premeasured wj from DB. S
checks if Hash(ID , η,x1,...,k, pj ) = a and aborts if not. Otherwise, S computes
b := Hash(a,x1,...,k) and sends b to D which accepts if Hash(a,x1,...,k) = b and
aborts otherwise.

We show in Section 8.2 that our protocol holds correctness and mutual au-
thentication.

5 Optimizations and Details for Used Algorithms

We implemented the reverse and robust computational fuzzy extractor-based
authentication scheme shown in Fig. 3. As the client, we use a device with an
8-bit ATmega32u4 microprocessor, the server implementation runs on a 3.2GHz
single core machine with 8GB RAM.

5.1 Generate Procedure

For the Gen procedure, as defined in Construction 1, notice that there are three
main variables, namely A, x and w. These three variables are drawn from a
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Algorithm 1 Gen

1: (Input w ∈ Fmρq)
2: Sample x ∈ Fnq
3: for i = 1 . . .m do
4: acc = 0
5: for j = 1 . . . n do
6: Sample aij ← TRG
7: Output aij
8: acc = aij × xj + acc
9: end for

10: Sample wi ← Pre-shared entropy source
11: bi = acc+ wi // Ax + w = b
12: Output bi
13: end for
14: Output r = x1,...,n/2

predefined distribution, i.e., w ← W (where W is some distribution over Fmρq),
A ∈ Fm×nq uniformly and x ∈ Fnq uniformly.

The size of matrix A is a bottleneck. We solve this by not storing A in
memory, but rather computing it ”on the fly” as every element aij ∈ A is
used only once in the Gen procedure. The elements aij are the outputs of a
true random number generator TRG, described in Section 5.1. We also apply
the same idea for the measurement w, so that the complete vector w does not
need to be held in memory, but rather gets measured element by element. The
pseudocode for our encoding is given in Algorithm 1. With this algorithm the
memory overhead gets reduced as A gets streamed out of the Gen procedure.
The public helper data p is still p = (A,Ax + w) and also the output of the
secret r = x1,...,n/2. So, our improvement meets the definition of Construction 1.
The memory footprint can be further reduced by shifting the sampling of x in
the outer loop. That way only the upper half of x needs to be stored, as it is
the output secret r. The lower half of x is not reused and can be stored in a
temporary variable.

Multiplication Our implementation requires a fast multiplication of two 30-
bit values, i.e., aij × xj in Algorithm 1. For this, we adopt the column-wise
multiplication from Gura et al. [25]. We represent each number by an array of
four bytes and the multiplication result by an array of eight bytes. This leaves
the two, or four respectively, most significant bits without meaning. The idea is
shown in Fig. 5.

Modular Reduction Solinas describes a way to efficiently calculate a result b
of reducing a modulo p, where p is a prime and a is less than p2 [46]. We choose
our 30-bit prime p = 230 − 218 − 1 = 1073479679 and every 60-bit integer a can
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a3 a2 a1 a0
x3 x2 x1 x0
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a3x3
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r7 r6 r5 r4 r3 r2 r1 r0

×

+

Fig. 5: Figure of our implemented multi-precision multiplication from [25]. The
operation shows r = a× x, where a and x are 30-bit numbers and r is a 60-bit
number.

be written as

a = a9 ·254+a8 ·248+a7 ·242+a6 ·236+a5 ·230+a4 ·224+a3 ·218+a2 ·212+a1 ·26+a0

where each ai is a 6-bit integer. As a concatenation of 6-bit words, this can be
denoted by a = (a9||a8|| . . . ||a0). The expression for b is then

b := T + S1 + S2 + S3 + S4 mod p

where the 30-bit terms are given by

T = ( a4 || a3 || a2 || a1 || a0 )
S1 = ( a6 || a5 || 0 || a6 || a5 )
S2 = ( 0 || a7 || a7 || 0 || a7 )
S3 = ( a8 || a8 || 0 || a8 || 0 )
S4 = ( a9 || a9 || a9 || 0 || a9 )

We apply this modular reduction after every multiplication and addition in Al-
gorithm 1.

True Random Number Generation Kristinsson explored in his work [30]
the feasibility of using the noise delivered by one unconnected analog pin to an
internal voltage comparator as a TRG. He also showed the presence of a strong
bias, when using a single pin for measurement. This bias depends mostly on the
environmental temperature.

We overcome this bias by measuring two analog pins and comparing them.
Thus, we cancel out any biasing effects from the environment. The idea is de-
picted in Fig. 6 with the two unconnected analog input pins—Analog0 and Ana-
log1. As noise source we utilize the random atmospheric noise, which occurs
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Conversion Logic

10-bit DAC ‒

+

Analog0
Analog1

Gain

Differential Amplifier

Positive Differential Input  Negative Differential Input  Gain
ADC1  ADC0  200x

‒

+

internal voltage 
reference

Output
⁄ 10

Comparator

Fig. 6: Figure of the internal analog comparator.

during the analog to digital conversion. We first amplify the unconnected analog
pins by a gain of 200×, meaning that we further amplify the noise. Second, the
signal is converted with a 10-bit digital-to-analog converter (DAC), which works
with a 2.56V internal voltage reference.

As a post-processing step, we take the least significant bit out of each 10-bit
output value to generate a stream of random bits. We further estimate the min-
entropy of our random bit sequence with the tests described in [5], yielding an
estimated min-entropy of 3.95 bits per byte. We input at least twice the esti-
mated min-entropy into the HMAC-SHA-256 as privacy amplification in order to
guarantee a nearly full entropy random number [5]. All in all, we need to sample
at least 122 bits from our noise source to generate a 30-bit random number. Our
random numbers pass the tests of the NIST Statistical Test Suite [39].

If the microcontroller lacks an analog comparator, the entropy source for a
TRG can also be, e.g., the SRAM [27] with the construction proposed in [3].

5.2 Decode

The Construction 1 is only efficient if the function Decodet is efficient. Fuller et
al. [20] presented a simple decoding algorithm given in Construction 2 that can
correct O(log n) errors in polynomial time using the given random linear code.

Construction 2 ([20, Construction 4.5]) We consider a setting of (n,m, q, χ)
where m ≥ 3n. We describe Decodet:

1. Input A, b = Ax + w −w′.
2. Randomly select rows without replacement i1, . . . , i2n ← [1,m].
3. Restrict rows from A,b to rows i1, . . . , i2n; denote these Ai1,...,i2n ,bi1,...,i2n .
4. Find n linearly independent rows in Ai1,...,i2n . If no such rows exist, output
⊥ and stop.

5. Denote A′,b′ as these n restrictions of Ai1,...,i2n ,bi1,...,i2n (respectively) to
these rows. Compute x′ = (A′)−1b′.

6. If b−Ax′ has more than t nonzero coordinates, go to step 2.
7. Output x′.

As the authors of Construction 2 remark, their construction has not been
optimized for constants. Also, the presented algorithm, when used in the com-
putationally setting of Construction 1 will always output a correct key R, mean-
ing Construction 2 will always have x′ = x as an output or it aborts when an
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Algorithm 2 Decode

1: Input A,b = Ax + w −w′, limit
2: while limit > 0 do
3: A′ = n rows of A randomly selected
4: if A′ has full rank then
5: b′ = same n restrictions of b as in A′

6: x′ = (A′)−1b′

7: if b−Ax′ has ≤ t nonzero coordinates then
8: Output x′

9: end if
10: end if
11: limit = limit− 1
12: end while
13: Output ⊥

non-invertible A′ was selected. Note that Construction 2 does not necessary ter-
minate when the error is too big or the row restrictions in step 5 are chosen badly,
i.e., the same n linearly independent rows in A are selected, so Construction 2
could run infinitely. To avoid this issues, we optimized the decoding algorithm
such that the behavior is defined for the case dis(w,w′) > t. We specifically
optimized the following points:

– The row selection and restriction in steps 2, 3 and 5 can be replaced by a
deterministic selection, so that rows will not be selected twice and that the
algorithm terminates when all possibilities have been tried. This avoids the
infinite loop problem of Construction 2.

– The algorithm could end too early in step 4 when disadvantageous rows were
selected, e.g., in the first selection round, even if the error t = 0. To avoid
this and to make our algorithm more robust, we introduce a parameter limit
to try a minimum amount of selected row combinations.

Algorithm 2 describes our Decode function. The input limit is the maximum
number of decoding attempts to find a solution and thereby avoids an infinite
loop. If the algorithm outputs a ⊥ then the error t was too big with high proba-
bility. We implemented the inversion of A′ via Gauss-Jordan elimination, which
runs in O(n3). Note that all operations are calculated in Fq. Our Decode func-
tion returns a valid solution, if it finds n noise-free elements in b. If the error
t gets large, say t > m/2, and a solution has to be found, then the randomly
selected restrictions can be replaced by a deterministic selection. The number

of all possible restrictions is given by

(
m
n

)
. In an IoT setting this number of

possible restrictions can still be feasible, since the decoding happens on a server.
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6 Lossless Implementation Parameters

Regev [42] and Peikert [41] show that the dist-LWE(n,m,q,χ), as defined in Defini-
tion 1, is secure when the distribution χ is Gaussian. This holds with a discretized
Gaussian distribution Ψα with variance (αq)2/(2π).

If we change the error source from a discretized Gaussian distribution to
a uniform one, we are bounded by Theorem 1. There, the problem is reduced
to dist-LWE(n,m,q,U([−ρq,ρq])). Note that the error ranges from [−ρq, ρq] and no
longer from [−q, q]. Since this uniform error distribution is the noise level α, it
should be high enough to hold security. Since we can not influence α directly,
we have to increase ρ to increase the noise level. By Theorem 1 [18] we know
the following bound on 2

√
n ≤ αq ≤ ρq

mnσ . It is clear, in order to maximize α,
we have

α =
ρ

mnσ
, (7)

where ρ has the most influence on the noise level. In order to still have a lossless
construction we substitute this bound with the constraints above, clarifying that
the noise level is given by the dividing factor ρ.

α =
ρ

nσ3n
(8)

The constraint m log(ρq) = k log q, with k = n/2 and m = 3n, of the lossless
construction dictates this ρ:

log(ρq) =
1

6
log q, (9)

meaning that by increasing the sample size m = 3n we need the bit width of one
element in w to be 1/6 of the bit width of one element in x, so that we still can
extract k = n/2 hardcore blocks as key. This is, again, visualized in (1).

For a lossless construction we choose parameters as described in Section 2.3.
We found that parameters n = 256,m = 768, k = 128, q = 1073479679 yield
log(q) ≈ 30 and log(ρq) ≈ 5, thus making the construction lossless withm log(ρq)−
k log(q) = 768× 5− 128× 30 = 0. This results in a minimum security parameter
n0 ≈ 128. The parameters match with the ones chosen by Lindner and Peik-
ert [31]. Their parameters of n = 256,m = 768, q = 4093 achieve a security level
of 128 bit. From an implementation perspective our 30-bit prime fits well into 4
byte machine words, as do the elements of the key, each with a bit width of 30.
The bit width of our source w is 5 for each element, which also is well suited as it
fits into a single byte. There is room for further optimization so that elements of
w fill a byte completely. However, this would also increase the dimension n and
m to maintain the lossless construction, thus making decoding harder. We found
our parameters are a good trade-off between security parameter n0, unused bits
in the byte architecture and the decoding time.

We conduct a security analysis in Section 8.3.
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7 Evaluation

Our system, as shown in Fig. 3, requires m log(ρq) = 3840 bits from the fuzzy
source and the lossless CFE extracts k log(q) = 3840 bits as key. The key has
full entropy, since the secret x is chosen uniformly. For the lossless construction,
the fuzzy measurement w is assumed to come from an uniform distribution. The
helper data p is matrix A, vector Ax + w′ and the MAC σ, summing up to a
total of 5,921,536 bits (ca. 740KB).

7.1 Implementation Cost on the Device

We implemented our system, as described in Sections 3 and 5, on the low-cost
Atmel 8-bit AVR RISC-based microcontroller with 32KB self-programming flash
program memory, 2.5KB SRAM and 1KB EEPROM.

For an efficient encoding, which is a matrix-vector multiplication and a
vector-vector addition, the size of the parameter n is important. As we chose
log(ρq) = 5, log(q) = 30, n = 256 and m = 768, then w consists of log(ρq)×m =
3840 bits, x consists of log(q) × n = 7680 bits and A needs log(q) × n ×m =
5898240 bits. Whereas, w and x is still feasible on a microcontroller in terms of
memory usage, matrix A does not scale. With the optimizations from Section 5
we only need to store x in memory during the Gen procedure.

Additionally, we need some functionality on the microcontroller, e.g., a serial
connection, mathematical operations and generation of a MAC. As MAC we use
a HMAC-SHA-256. Our own files require ca. 6KB and the auxilirary files need
ca. 17.8KB of the SRAM. A detailed memory footprint of our implementation
per module is given in Table 2 in Appendix A. Table 3 in Appendix A sums up
the overall memory footprint.

One run of the generation procedure, i.e., sampling of the source, encoding
and construction of the MAC takes 34.9 seconds on average. A detailed timing
profile is given in Table 4 in Appendix B. If all random numbers would be
sampled via a TRG, the generation time would be infeasible, so we use these as
a seed for a pseudorandom function (PRG). We also implemented the generation
procedure on a 32-bit ARM Cortex-M3, which performs a Gen in 441ms, due to
the internal 32-bit architecture and an overall higher clock speed.

7.2 Performance on the Server

We implemented the other part of our system, the server, as described in Con-
struction 1 and 2. We also implemented our improvements for Algorithm 2. For
this we used NTL7 for fast matrix operations on finite fields.

We can correct t = O(log n) errors, as given in Theorem 2, and are bounded
by the same limitations as Fuller et al. [20] for decoding in polynomial time.
Recall that an error refers to a word in source w, so a single or multiple bit
flips in one element of vector w is one error. In Fig. 7 one can see that the

7 http://www.shoup.net/ntl/
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Fig. 7: Figure of Rep(Gen(w)) simulation with n = 256,m = 3n and a 30-bit
prime q = 230−218−1. It shows the time one decoding takes in seconds with an
increasing error t and also the average rate of a successful decoding with the same
increasing error. The machine has a 3.2GHz single core with 8GB RAM. The
figure shows that we can correct O(log n) = 10 errors. The maximum number of
tries for decoding is n.

decoding time increases with an increasing error t for n = 256, m = 3n and
q = 1073479679. We set a limit for the decoding algorithm at a maximum of n
decoding attempts. As a result, no simulation runs longer than ca. 100 seconds.
However, this speedup comes at the cost that not all tests can be successfully
decoded, starting with an error of t = 11. Thus, with our implementation we
can correct up to

t

m
=

10

768
= 1.3% word errors. (10)

We motivate use cases for this rather low error rate in Section 9. Note that
decoding can be allowed more time to correct more errors and that the time our
implementation takes is independent from the bit width of w,w′ ∈ Fmρq.

8 Security Analysis

In this section we provide the necessary proofs and analysis to show the security
of our system.

8.1 Security for Reverse and Robust CFE

For the sake of completeness we formally state that our construction is a com-
putational fuzzy extractor.

Theorem 3 (Computational Fuzzy Extractor) Our reverse computational
fuzzy extractor as shown in Fig. 2 is an (M,W,m log |Z|, t)-computational fuzzy
extractor that is (ε, ssec)-hard with error δ = e−Ω(n) as in Definition 2.
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Proof. Our construction is based on the computational fuzzy extractor of Fuller
et al. [20]. They are identical in terms of the high-level structure as well as
the chosen parameters (see Section 2.3). Therefore our construction inherits the
hardness properties stated in Theorem 2 and equally meets the requirements of
Definition 2 for being a (M,W,m log |Z|, t)-computational fuzzy extractor.

Our construction shown in Fig. 2 is also a reverse fuzzy extractor.

Theorem 4 (Reverse Fuzzy Extractor) Our reverse computational fuzzy ex-
tractor as shown in Fig. 2 is an (M,m, n, t)-reverse fuzzy extractor as in Defi-
nition 3.

Proof (Sketch). The correctness property in Definition 3 corresponds to the cor-
rectness property of computational fuzzy extractors (see Definition 2). By Theo-
rem 3 our construction is an (M,W,m log |Z|, t)-computational fuzzy extractor
that is (ε, ssec)-hard with error δ = e−Ω(n). Therefore, it is also correct in the
sense of Definition 3.
The security property in Definition 3, on the other hand, ensures that the public
helper data p generated by Gen does not reveal anything about the input w to
the adversary.
Intuitively, p can be regarded as a public key and w as the corresponding secret
key in an encryption scheme. In fact, Ben-Sasson et al. construct a generalized
encryption scheme based on the LWE-assumption where the noise in the LWE-
term is used as the secret key e ∈ Fmq and the public key is constructed by
choosing a random matrix G in Fm×nq , selecting a random g ∈ Image(G) and
computing (G,b = g + e) [6].
Looking at our construction, it is straightforward to see that w is analogue to e
in Ben-Sasson et al.’s construction. Similarly, p can be expressed as the public
key in their scheme: let Im(M) be a function that takes a matrix M ∈ Fm×nq ,
chooses a random vector x ∈ Fnq and outputs Mx.

G := A, e := w, Image := Im (11)

p = (A,Ax + w = Im(A) + w) = (G, Image(G) + e) (12)

Hence, the security of the reverse fuzzy extractor built from our construction
corresponds to the hardness of recovering the secret key from the public key
in Ben-Sasson et al.’s unified framework. The latter in turn is hard under the
LWE-assumption, therefore our construction is a secure reverse fuzzy extractor
under the assumption that LWE is hard, i.e. Theorem 1.

In fact our construction fulfills the stronger notion of security against outsider
chosen perturbation attacks.

Theorem 5 (Outsider Chosen Perturbation Security) Our reverse com-
putational fuzzy extractor as shown in Fig. 2 is an (M,m,m′ = m, t)-reverse
fuzzy extractor secure against outsider chosen perturbation attacks as in Defini-
tion 4.
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Proof. By Theorem 4 we know that a PPT adversary A’s chance of recovering
w from an individual output of the oracle in the outsider chosen perturbation
security game (see Definition 4) is negligible in n. Therefore, we analyze the
security implications of A requesting a set of perturbed outputs through the
security game. Her available information will look like a system of v equations
where v is the number of adversarial queries and wi = w + ei:{

(Ai,bi = Aixi + wi)← Gen(wi)
}
i∈{1,...,v}. (13)

Extracting theA’s chosen perturbations ei, i.e. basic transformations di = bi−ei
and yi = Aixi give{

(Ai,di = yi + w)← Gen(wi)
}
i∈{1,...,v}. (14)

In the resulting system of equations y1, . . . ,yv and w are unknowns, i.e. always
one more unknown than given equations. Hence the adversary is presented with
an underdetermined system of equations, which can either have no solutions or
an infinite amount of solutions. Since w has been fixed beforehand we know
that there must be at least one solution and therefore the number of all possible
solutions is infinite over the domain M.
Therefore, A’s success probability in finding the correct solution w is negligible
in m and hence our construction is an (M,m,m′ = m, t)-reverse fuzzy extractor
secure against outsider chosen perturbation attacks.

As before, we formally state that our construction is a robust fuzzy extractor
in Theorem 6 below. Note that we do not consider post-application robustness
as defined in [16, Definition 6], where the adversary is provided with r from
(r, p) = Gen(w′), as in our case r corresponds to the shared secret between
device and server.

Theorem 6 (Robust Fuzzy Extractor) Our reverse and robust computational
fuzzy extractor as shown in Fig. 3 is an (ε, ssec)-hard (|W |, k, t, ε)-fuzzy extractor
with pre-application robustness negl(m) as in Definition 5.

Proof (Sketch). As described above we add a Mac-tag σ to the output generated
from Gen. σ is calculated over p = (A,Ax + w′) using the secret x1,...,n as
key. In fact, recovering x1,...,n from p corresponds to recovering the secret from
an LWE-term, i.e. the search version of LWE [42]. Hence, given p, no efficient
adversary can compute x1,...,n except with negligible probability.
Therefore tampering with p i.e. producing p′ will be detected, since the adversary
cannot compute a valid σ′ without knowledge of x1,...,n.

Concretely, Ver(σ̃, Ã, ˜(Ax + w′),x1,...,n) computes Ã ·x1,...,n− ( ˜Ax + w′) = w̃′.
Since by Theorem 4 it is hard to recover w′ from p, dis(w̃′,w) > t except with
negligible probability in m. Therefore Ver(p̃) will always reject if p̃ 6= p and cause
Rep(p̃) to output ⊥.
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8.2 Security of the Authentication Protocol

Correctness In the context of authentication correctness means that an honest
party is always able to authenticate itself to an other honest party. If this relation
holds both ways, we call it correct mutual authentication.

Definition 6 (Correct Mutual Authentication [49, Definition 4]) A mu-
tual authentication scheme between a device D and a server S is correct if an
honest D always makes an honest S accept and vice versa.

Theorem 7 (Correctness: Mutual Authentication) Our mutual authenti-
cation scheme as shown in Fig. 4 is correct as in Definition 6.

Proof. The correctness property of the reverse fuzzy extractor ensures that
Rep(w, p) = r where (r, p) = Gen(w′) as long as dis(w,w′) ≤ t. The responses
w′ and w for an honest D and an honest S fulfill the distance requirement.
Therefore S will always reconstruct the same r = x1,...,k using Rep when pro-
vided with the helper data p from D’s Gen. This implies both the acceptance of
D by an honest S and the acceptance of S by an honest D, since both depend on
the correct calculation of p (on D’s side), reconstruction of the secret r (on S’s
side) and leaving the secret unchanged throughout one protocol run (on both
sides).

Device Authentication A device authentication mechanism is considered se-
cure when no PPT adversary A succeeds in making an honest S accept A as
a legitimate D. The resulting device authentication game allows A to freely in-
teract with an honest S and D, record exchanged messages between them or
manipulate messages in order to make S accept after a polynomial (in the cho-
sen security parameter) number of adversarial queries.

Definition 7 (Device Authentication [49, Definition 5]) An authentication
scheme achieves µ-device authentication if any PPT-adversary wins the device
authentication game with probability at most negl(µ).

Note that we only give a high-level description of the security notion, since the
proof of security is in fact directly inherited from [49, Theorem 4].

Theorem 8 (Security: Device Authentication) Our mutual authentication
scheme as shown in Fig. 4 achieves µ = m-device authentication in the random
oracle model as in Definition 7 when using the reverse and robust fuzzy extractor
as shown in Fig. 3.

Proof (Sketch). According to [49] the existence of a PPT adversary A that wins
the device authentication game with non-negligible advantage implies the exis-
tence of a PPT adversary B that has non-negligible advantage in winning the
outsider chosen perturbation security game as in Definition 4. Since the struc-
ture of our authentication scheme as shown in Fig. 4 corresponds entirely to
the authentication scheme in [49], we can reuse this result. I.e. by Theorem 5
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there is no PPT adversary B that wins the outsider chosen perturbation security
game with probability higher than negl(m). Therefore, from the non-existence
of B follows by contraposition the non-existence of A with probability at least
1− negl(m).

Server Authentication A device authentication mechanism is considered se-
cure when no PPT adversary A succeeds in making an honest D accept A as a
legitimate S. Analogous to the device authentication game (see 8.2), the server
authentication game lets A conduct passive and active attempts in order to make
an honest D accept A as a legitimate S.

Definition 8 (Server Authentication [49, Definition 6]) An authentication
scheme achieves µ-server authentication if any PPT-adversary wins the server
authentication game with probability at most negl(µ).

As before, we only give a high-level description of the security notion, since the
proof of security is equivalent to the proof of secure server authentication in [49,
Theorem 5].

Theorem 9 (Security: Server Authentication) Our mutual authentication
scheme as shown in Fig. 4 achieves µ = k-server authentication in the random
oracle model as in Definition 8 when using the reverse and robust fuzzy extractor
as shown in Fig. 3.

Proof (Sketch). Similar to the proof of Theorem 8 we use the fact that the
existence of a PPT adversary A that wins the server authentication game with
non-negligible advantage implies the existence of a PPT adversary B that has
non-negligible advantage in winning the outsider chosen perturbation security
game as in Definition 4 [49]. Since the structure of our authentication scheme
as shown in Fig. 4 corresponds entirely to the authentication scheme in [49],
we can reuse this result. I.e. by Theorem 5 there is no PPT adversary B that
wins the outsider chosen perturbation security game with probability higher
than negl(m). Therefore, from the non-existence of B follows by contraposition
the non-existence of A with probability at least 1− negl(m). Note that a replay
attack would only be successful if D selects the same secret x1,...,k twice, s.t. B
can reuse a previously recorded b for the last message of the protocol. Since D
selects x randomly in every round, the probability of a successful replay attack
is negligible in the length of the secret k. Since m > k, the overall probability of
adversary A succeeding in the server authentication game is therefore negl(k).

8.3 Computational Security and Related Work

Our CFE deals with two noises. The error t is from the pre-shared entropy source,
measured in w. The second noise, α, describes the error in the LWE problem
making it hard, as τ for LPN and ρ for the lossless CFE, respectively. A lower
α-noise allows a better decoding and a higher α-noise increases security. This is
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Table 1: Table for different parameter setting for three security levels from the
literature.

Security 80-bit 128-bit 256-bit

Herder et al. [26] (LPN)

– n = 540 –
– τ = 0.4 –
– (α ≈ 0.13698) –
– q = 2 –

Dagdelen et al. [11] (LWE)
n = 240 n = 320 n = 550
α ≈ 0.00026 α ≈ 0.00024 α ≈ 0.00022
q = 327680 q = 327680 q = 327680

Regev [42] (LWE)
n = 160 n = 256 n = 480
α ≈ 0.00147 α ≈ 0.00098 α ≈ 0.00058
q = 25601 q = 65537 q = 230431

LindnerPeikert [31] (LWE)
n = 192 n = 256 n = 660
α ≈ 0.00217 α ≈ 0.00205 α ≈ 0.00168
q = 4093 q = 4093 q = 4093

n = 256 n = 256 n = 256
this work, ρ ≥ 0.003072 ρ ≥ 0.0384 ρ ≥ 0.09984
lossless construction (α ≥ 0.000004) (α ≥ 0.00005) (α ≥ 0.0009)

q = 1073479679 q = 1073479679 q = 1073479679

why we state α and ρ as a lower bound in Table 1, it is the minimal noise we
need from our pre-shared entropy source while still having, e.g., 128-bit security.

Herder et al. [26] give parameters for a security of 128 bit for their com-
putational fuzzy extractor based on the LPN problem. LPN was introduced
by Hopper and Blum [28] and has (n, τ) as parameters. Herder et al. conclude
that their construction meets the required security with parameters n = 540
and τ = 0.4 with respect to the attack by Bernstein and Lange [8]. We find,
while maintaining 128 bit of security, these parameters translate to n = 540,
α = 0.13698 and q = 2 in the LWE problem with the estimator from Albrecht et
al. [2]. Note that the modulus q is inherently 2 in LPN. Also, Herder et al. im-
plemented their fuzzy extractor on a resource rich computer, so there was no
need for optimization for an embedded environment.

Dagdelen et al. [11] give parameter settings for three different security lev-
els. We also compare our work with Regev’s example choices for parameter [42],
i.e., q ≈ n2 and α = 1/(

√
2πn log2

2 n). Lindner and Peikert [31] chose a rela-
tively small modulus q, while increasing the noise level α for their optimized
construction.

In 2015, Albrecht et al. [2] published their work on the hardness of the LWE
problem, collecting and estimating parameters for different attack algorithms.
They surveyed lattice reduction, strategies, attacks and estimation algorithms,
e.g., [36,37,38,31,9]. We used their estimator to compare the needed number
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of bit operations for a successful attack. However, our problem is based on a
m-bounded dist-LWE(n,m,q,χ) problem, whereas the estimations assume an un-
limited amount of elements wi, meaning m is unbounded. Nevertheless we used
the estimator, because Lindner and Peikert [31] state that for sufficiently large
m, with m ≥ 200, the number of rows m in the matrix A becomes irrelevant.

We collect parameter values from the literature in Table 1. The parameters
are the dimension n, the noise size α and the modulus q. Note that all parameters
n, α and q increase the security. We estimate the security of our implementation
with a given n and q and a needed minimum noise level α. The Security of
our dist-LWE(n,m,q,U([−ρq,ρq])) problem has ρ as parameter, but we know it is at
least as hard as dist-LWE(n,m,q,Ψα) [18]. Also due to Döttling and Müller-Quade,
we know that α = ρ

mnσ , with σ ∈ (0, 1). We further assume, as in [11] that
computers execute about 210 operations per second.

Information-theoretically secure FE deal with PUF bit error rates ranging
from ca. 1% to 15% [35,29]. BCH codes are popular for correcting these PUFs [15]
and robustness can be increased by, e.g., an interleaved code [22,3]. For com-
parison, a (n, k, t)-BCH code has a decoding complexity of O(nt) [45]. Clearly,
traditional FEs can tolerate more errors, compared to our 1.3% word errors, and
have a smaller decoding complexity, but they always have an entropy loss. When
focusing on low-noise entropy sources and relaxed time constrains, our CFE is a
no entropy loss alternative, even for lightweight IoT systems.

9 Potential Pre-shared Entropy Sources

A specific PUF construction is not relevant as long as the error parameters of the
CFE can be combined with a good use case, e.g., biometrics, passwords or PUFs.
Nevertheless, we provide several practical use cases for our lossless construction,
matching the error constraint given in (10).

9.1 Passwords

Our construction excels at sources of entropy where the error occurs as a repre-
sentation of multiple bits, rather than a single bit flip. This means that whether
just a single bit is flipped in the vector element wi or all bits in wi, it counts as
one error.

A suitable problem for this type of error are passwords. For Construction 1
a password is vector w and r is the retrieved key. Here, we can allow an user
to enter up to t wrong symbols and key derivation or authentication would
still be correct. An incorrect symbol, e.g., represented by a char, results in the
desired error type, refraining from a pure bit representation. One symbol would
be represented by one element in w and the symbols have to be chosen at
uniform to hold Theorem 2. However, in this use case we are able to correct
O log(n) errors efficiently and security still relies computationally on w. Again,
we emphasize that the lost entropy is zero, i.e., H(w)−H(r) = 0.
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9.2 Low noise PUFs

The parameters of the lossless construction do not provide error correcting ca-
pabilities to work with the error rate of every PUF. For our system to work,
we need low noise PUFs. An example of such PUFs is the VT -PUF proposed
by Lofstrom et al. [32] with an error rate of 1.3%. Another example is a ring
oscillator PUF (RO-PUF) with reliability enhancement by Suh and Devadas [47]
with an error rate of 0.48%.

9.3 RO-PUF with Trapdoor

One way to improve the decoding is the introduction of a trapdoor. Herder et
al. [26] proposed a Trapdoor CFE working with a RO-PUF, where the trap-
door is the PUF itself. Their PUF outputs an additional confidence information
alongside with the response and based on this confidence information the more
robust values of w are chosen first for decoding. Our algorithms become more
efficient by adapting the constructions of [26] in a straightforward manner. If do-
ing this, the results will not change in terms of size requirements, only decoding
performance changes for the better due to provided confidence information.

9.4 Randomness Extraction before Error Correction

Another idea is to extract the randomness of w before the error correction. For
this, we split our source w into m blocks with an arbitrary length. Then each
block wi gets reduced within a privacy amplification step Ext to a bit width ρq
and each element wi is then close to uniform. The idea is sketched in (15) in
Appendix C. Note that privacy amplification or randomness extraction does not
hold the distance between these blocks, meaning dis(wi, w

′
i) 6= dis(wi,Ext(w

′
i)),

but this is just the case where the computational fuzzy extractor happens to be
good at. Error correction, i.e., decoding of a random linear code, on high entropy
words can be done more efficient. Also, this construction enables the input from
sources with different length.

10 Conclusion

We showed how a client-server authentication system can be secured with a com-
putational fuzzy extractor while providing outsider chosen perturbation security
and pre-application robustness.

We presented the first actual implementation of a lossless computational
fuzzy extractor in an authentication system, thereby bridging the gap between
the CFE theory and practice. Our implementation needs 1.45KB of SRAM and
9.8KB of Flash memory and runs on the low-cost Atmel 8-bit AVR RISC-based
microcontroller in 34.9 seconds. The CFE needs 0.4 seconds, when implemented
on a 32-bit IoT device. Our implementation has a (very) small memory foot-
print due to the optimizations we performed on the original CFE algorithms
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presented by Fuller et al. in [20]. As a side effect, the resource efficiency of our
implementation demonstrates the feasibility of computational fuzzy extractors
for resource-constrained ecosystems like the Internet of Things.

We discussed the relations between the parameters of lossy and lossless CFE
constructions as well as the conditions the parameters must satisfy to ensure
the security of CFE schemes. Based on these considerations, we selected an
exemplary set of CFE parameter values that satisfies the constraints of our
hardware platform.

Finally, we compared our results to existing work under different security
assumptions related to the available noise level.
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A Detailed Memory Footprint

Table 2 gives a detailed memory footprint of our reverse and robust lossless
computational fuzzy extractor implementation on the device (Gen procedure).
Our own files are marked with an *.

Table 2: Memory footprint of on the device.

file
.text .data .bss total

(byte) (byte) (byte) (byte)

SampleX* 38 0 0 38
modularreduction* 582 0 0 582
getrand* 128 0 0 128
add* 230 0 0 230
multiplication* 228 0 0 228
sha256* 3060 0 297 3357
Generate* 438 0 1071 1509

total own files 4704 0 1368 6072

abi 8 0 0 8
CDC 576 8 80 664
HardwareSerial 752 0 0 752
HardwareSerial1 332 0 157 489
HID 1094 2 13 1109
hooks 2 0 0 2
IPAddress 320 0 6 326
main 46 0 0 46
new 16 0 0 16
Print 1620 0 0 1620
Stream 1381 0 0 1381
Tone 1509 1 42 1552
USBCore 1998 0 9 2007
WInterrupts 670 0 10 680
wiring 514 0 9 523
wiring analog 436 1 0 437
wiring digital 600 0 0 600
wiring pulse 266 0 0 266
wiring shift 232 0 0 232
WMath 298 0 0 298
WString 4747 0 1 4748

total auxiliary files 17417 327 297 17756

Table 3 gives the overall memory footprint of our reverse and robust lossless
computational fuzzy extractor implementation on the device (Gen procedure).
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Table 3: Overall memory footprint on the device.

AVR memory usage on device atmega32u4

Program: 9840 bytes (30.0% .text+.data+.bootloader)
Data: 1451 bytes (56.7% .data+.bss+.noinit)

B Detailed Timing Results on Device

Table 4 provides detailed Gen timing results on an Atmega32u4 device. Note
that the generation of all random numbers via TRG would be infeasible, so we
use it as seed for a PRG.

Table 4: Detailed Timing Results on Device.

function single call total
name time (ms) time (ms)

multiplication 0.045 8847
modularreduction 0.015 2949
add 0.003 590
sha256 34.168 34
getrand (PRG) 0.094 18481
getrand (TRG) (41.836) (8225292)
remaining overhead – 3983

Generate – 34885

C Sketched Randomness Extraction before Error
Correction

In (15) the idea is sketched of extracting the randomness of w before the error
correction. The source w is split into m blocks with an arbitrary length (here,
i, j, l, . . . ). Then privacy amplification Ext reduces each block wi to a bit width
ρq, so that each element wi is close to uniform.
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w→



log i︷︸︸︷
w1

...
log j︷︸︸︷
wk
...

log l︷︸︸︷
wm


→



log ρq︷ ︸︸ ︷
Ext(w1)

...
log ρq︷ ︸︸ ︷

Ext(wk)
...

log ρq︷ ︸︸ ︷
Ext(wm)


(15)
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