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Abstract. We give a systematic overview of techniques to compute efficient arithmetic modulo
2xpy±1. This is useful for computations in the supersingular isogeny Diffie-Hellman (SIDH) key-
exchange protocol which is one of the more recent contenders in the post-quantum public-key
arena. One of the main computational bottlenecks in this key-exchange protocol is computing
modular arithmetic in a finite field defined by a prime of this special shape.
Recent implementations already use this special prime shape to speed up the cryptographic
implementations but it remains unclear if the choices made are optimal or if one can do bet-
ter. Our overview shows that in the SIDH setting, where arithmetic over a quadratic extension
field is required, the approaches based on Montgomery multiplication are to be preferred. Fur-
thermore, the outcome of our search reveals that there exist moduli which result in even faster
implementations.

1 Introduction

Over the last years there have been significant advancements in quantum computing [19,30].
This has significantly accelerated the research into post-quantum cryptographic schemes [36]
which can be used as drop-in replacements for the current classical public-key cryptographic
primitives. This demand is driven by the interest from standardization bodies such as the
National Institute of Standards and Technology [15] (which even put forward a call for pro-
posals for new public-key cryptographic standards [35]) and the European Union’s prestigious
PQCrypto research effort [2].

One relatively recent approach to realize post-quantum public-key cryptography is based
on the hardness of constructing an isogeny between two isogenous supersingular elliptic curves
defined over a finite field where the degree of the isogeny is smooth and known and was intro-
duced in 2011 [27]. This problem was used to define a supersingular isogeny Diffie-Hellman
(SIDH) key-exchange protocol. Recently, the authors of [17] have improved the performance
of SIDH significantly and demonstrated the potential of this post-quantum key-exchange ap-
proach by providing a fast constant-time software implementation. The initial results looks
promising especially with respect to the key sizes. The public key is 564 bytes for 128-bit
post-quantum security. However, more research is required in terms of cryptanalysis to gain
more confidence. One step in this direction has recently been taken by Galbraith et al. [21]
who describe a general active attack against the static-key variant of the SIDH key-exchange
protocol. However, the approach from [17] is not subject to this type of attack since it de-
scribes an ephemeral key exchange. Another direction where more research is required is to
study the various algorithms and techniques to translate the SIDH approach to an efficient
cryptographic implementation.

This paper is concerned with the latter research direction, more specifically investigating
the main computational bottleneck: computing arithmetic modulo m = 2x · py ± 1 where
p is a small prime such that 2x ≈ py (and m ≈ 2768 to guarantee 128-bit post-quantum
security). The cryptographic research area which studies efficient modular arithmetic and its



implementations is vast and ranges from designing methods which can run more efficiently
using the single instruction, multiple data programming paradigm (e.g. [12,23,13,37]) to using
the single instruction multiple threads paradigm (e.g. [6,25]) to modular arithmetic methods
designed for a specific family of moduli (e.g. [8,22,16] but see also the references given in
Section 3).

This work is about optimizing various modular multiplication and reduction techniques
for a modulus of the form 2x · py ± 1. We study the application of Barrett reduction [7] as
used in the first implementation of SIDH [3], Montgomery reduction [34] as applied by the
more recent implementations presented in [17,4,5] and approaches which use a radix-system
which is directly derived from the prime shape similar to the approach presented in [29]. This
paper gives a systematic overview of the different optimizations one can apply when using the
different modular reduction algorithms and in which setting they make sense (e.g. computing
arithmetic in the finite field Fm or in an extension field thereof) with respect to an efficient
implementation.

Although the Montgomery modular multiplication [34] approach from [17] demonstrates
that the number of multiplication instructions per modular reduction can be reduced signifi-
cantly when exploiting the special prime shape, we show how this can be improved even fur-
ther for the specific prime used in their implementation (cf. Section 5). In the non-interleaved
setting, which is the one considered for SIDH implementations, we introduce a competitive
reduction method based on Barrett reduction [7] which uses a folding technique [26] which
is slightly slower compared to the special Montgomery multiplication. Finally, we have con-
ducted a search for more suitable SIDH-friendly prime moduli of the form 2xpy ± 1 which
result in better performance. In Section 5 we show our implementation results and compare
this to the current state-of-the-art. We plan to make all our source code freely and publicly
available soon.

2 Preliminaries

One well-known approach to enhance the practical performance of modular multiplication by
a constant factor is based on precomputing a particular value when the used modulus m is
fixed. We recall two such approaches in this section.

In the remainder of the paper we use the following notation. By Zm we denote the finite
ring Z/mZ: the ring of integers modulo m which we might write as Fm when m is prime. The
bit-length of m is denoted by N = dlog2(m)e. We target computer architectures which use a
word size w which can represent unsigned integers less than r = 2w (e.g. typical values are
w = 32 or w = 64): this means that most unsigned arithmetic instructions work with inputs
bounded by 0 and r and the modulus m can be represented using n = dN/we computer words.
We represent integers (or residues in Zm) in a radix-R representation: given a positive integer
R, a positive integer a < R` for some positive integer ` can be written as a =

∑`−1
i=0 ai · Ri

where 0 ≤ ai < R for 0 ≤ i < `. In order to assess the performance of various modular
multiplication or reduction approaches we count the number of required multiplication in-
structions to implement this in software. This instruction is a map mul : Zr × Zr → Zr2
where mul(x, y) = x · y. We are aware that just considering the number of multiplication
instructions is a rather one-dimensional view which ignores the required additions, loads /
stores and cache behavior but we argue that this metric is the most important characteristic
when implementing modular arithmetic for the medium sizes residues which are used in the
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current SIDH schemes. We verify this assumption by comparing to implementation results in
Section 5.

2.1 Montgomery reduction

The idea behind Montgomery reduction [34] is to change the representation of the integers
used and change the modular multiplication accordingly. By doing this one can replace the
cost of a division by roughly the cost of a multiplication which is faster in practice by a
constant factor. Given a modulus m co-prime to r, the idea is to select the Montgomery radix
such that rn−1 < m < rn.

Given an integer c (such that 0 ≤ c < m2) Montgomery reduction computes

c+ (µ · c mod rn) ·m
rn

≡ c · r−n (mod m),

where µ = −m−1 mod rn is the precomputed value which depends on the modulus used.
After changing the representation of a, b ∈ Zm to ã = a · rn mod m and b̃ = b · rn mod m,
Montgomery reduction of ã · b̃ ≡ a · b · r2n (mod m) becomes a · b · r2n · r−n ≡ a · b · rn
(mod m) which is the Montgomery representation of a · b mod m. Hence, at the start and end
of the computation a transformation is needed to and from this representation. Therefore,
Montgomery multiplication is best used when a long series of modular arithmetic is needed;
a setting which is common in public-key cryptography.

It can be shown that when 0 ≤ c < m2 then 0 ≤ c+(µ·c mod rn)·m
rn < 2m and at most a single

conditional subtraction is needed to reduce the result to [0, 1, . . . ,m − 1]. This conditional
subtraction can be omitted when the Montgomery radix is selected such that 4m < rn and
a redundant representation is used for the input and output values of the algorithm. More
specifically, whenever a, b ∈ Z2m (the redundant representation) where 0 ≤ a, b < 2m, then the
output a · b · r−n is also upper-bounded by 2m and can be reused as input to the Montgomery
multiplication again without the need for a conditional subtraction [38,39].

As presented the multiplication and the modular reduction steps are separated. This
has the advantage that asymptotically fast approaches for the multiplication can be used.
The downside is that the intermediate results in the reduction parts of the algorithm are
stored in up to 2n + 1 computer words. The radix-r interleaved Montgomery multiplication
algorithm [20] combines the multiplication and reduction step digit wise. This means the pre-
computed Montgomery constant needs to be adjusted to µ = −m−1 mod r and the algorithm
initializes c to zero and then updates it according to

c← c+ ai · b+ (µ · (c+ ai · b) mod r) ·m
r

(1)

for i = 0 to n−1. The intermediate results are now bounded by rn+1 and occupy at most n+1
computer words. It is not hard to see that the cost of computing the reduction part of the
interleaved Montgomery multiplication requires n2 + n multiplication instructions since the
divisions and multiplications by r in the interleaved algorithm (or rn in the non-interleaved
algorithm) can be computed using shift operations when r is a power of two.

2.2 Barrett Reduction

After the publication of Montgomery reduction Barrett proposed a different way of computing
modular reductions using precomputed data which only depends on the modulus used [7]. The
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idea behind this method is inspired by a technique of emulating floating point data types with
fixed precision integers. Let m > 0 be the fixed modulus used such that rn−1 < m < rn where
r is the word-size of the target architecture (just as in Section 2.1). Let 0 ≤ c < m2 be the
input which we want to reduce. The idea is based on the observation that c′ = c mod m can
be computed as

c′ = c−
⌊ c
m

⌋
·m. (2)

Hence, this approach computes not only the remainder c′ but also the quotient q = b cmc of
the division of c by m and does not require any transformation of the inputs.

In order to compute this efficiently the idea is to use a precomputed value µ = b r2nm c < rn+1

to approximate q by

q1 =
⌊c · µ
r2n

⌋
=

⌊
c

r2n
·
⌊
r2n

m

⌋⌋
. (3)

This is a close approximation since one can show that q − 1 ≤ q1 ≤ q and the computation
uses cheap divisions by r which are shifts. The multiplication c ·µ can be computed in a naive
fashion with 2n(n + 1) multiplication instructions. The computation of q1 · m (to compute
the remainder c′ in Eq. 2) can be carried out with (n+ 1)n multiplication instructions for a
total of 3n(n+ 1) multiplications.

Since m > rn−1 the n − 1 lower computer words of c contribute at most 1 to q = b cmc.
When defining ĉ = bc/rn−1c < rn+1 one can further approximate

q2 =

⌊
bc/rn−1c · rn−1 · µ

r2n

⌋
=

⌊
ĉ · rn−1 · µ

r2n

⌋
=

⌊
ĉ · µ
rn+1

⌋
. (4)

This approximation is still close since q − 2 ≤ q2 ≤ q.
A straight-forward optimization is to observe that ĉ · µ is divided by rn+1 in Eq. 4 and

a computation of the full-product is therefor not needed. It suffices to compute the n + 3
most significant words of the product ignoring the lower n− 1 computer words. Similarly, the
product q2 ·m in Eq. 2 only requires the n+ 1 least significant words of the product. Hence,
these two products can be computed using

(n+ 1)2 −
n−1∑
i=1

i︸ ︷︷ ︸
for ĉ·µ

+
n∑
i=1

i+ n︸ ︷︷ ︸
for q2·m

= (n+ 1)2 + 2n (5)

multiplication instructions. This is larger compared to the n2 + n multiplication instructions
needed for the Montgomery multiplication but no change of representation is required.

Reducing arbitrary length input. Barrett reduction is typically analyzed for an input
c which is bounded above by r2n and a modulus m < rn. Let us consider the more general
scenario where c is bounded by r` and the quotient and remainder are computed for a divisor
m < rn. We derive the number of multiplications required for Barrett reduction.

Computing the k least significant words using schoolbook multiplication of a times b where
0 ≤ a < r`a and 0 ≤ b < r`b can be done using L(`a, `b, k) multiplication instructions where

L(`a, `b, k) =

min{k−1,`a+`b}∑
i=0

min{i+ 1, `a + `b − (i+ 1), `a, `b}.
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On the other hand, to compute the k most significant words of a multiplication result with
an error of at most 1 we need to compute k+ 2 words of the result. For a product of length n
this means not computing the least significant n− k − 2 words. Hence, computing the most
significant k+ 2 words of the product of a and b costs H(`a, `b, k) multiplication instructions
where

H(`a, `b, k) = k2 − L(`a, `b, `a + `b − k − 2).

Combining these two we get the total cost CostBarrett(`, n) expressed in multiplication in-
structions for computing the quotient and remainder when dividing c (0 ≤ c < r`) by m
(0 ≤ m < rn) using Barrett reduction as

CostBarrett(`, n) = H(`− n+ 1, `− n+ 1, `− n+ 1) + L(`− n+ 1, n, n+ 1). (6)

Note that CostBarrett(2n, n) = (n+1)2−
∑

i=0(i+1)+n+
∑n−1

i=0 (i+1) which equals Eq. (5)
as expected.

Folding. An optimization to Barrett reduction which needs additional precomputation but
reduces the number of multiplications is called folding [26]. Given an N -bit modulus m and a
D-bit integer c where D > N a partial reduction step is used first and next regular Barrett is
used to reduce this number further. First, a cut-off point x such that N < x < D is selected
and a precomputed constant m′ = 2x mod m is used to compute c′ ≡ c mod m as

c′ = (c mod 2x) +
⌊ c

2x

⌋
·m′.

Now c′ < 2x + 2D−x+N at the cost of multiplying a D − x bit with an N bit integer. This is
a more general description compared to the one in [26] where D = 2N and x = 3N/2 is used
such that c is reduced from 2N bits to at most 1.5N + 1 bits.

3 Fast arithmetic modulo 2xpy ± 1

The SIDH key-exchange approach uses isogeny classes of supersingular elliptic curves with
smooth orders so that rational isogenies of exponentially large (but smooth) degree can be
computed efficiently as a composition of low degree isogenies. To instantiate this approach let
p and q be two small prime numbers and let f be an integer cofactor, then the idea is to find
a prime m = f · qx · py ± 1. It is then possible to construct a supersingular elliptic curve E
defined over Fm2 of order (f · qx · py)2 [14] which is used in SIDH. For efficiency reasons (as
will become clear in this section) it makes sense to fix q to 2. In practice, most instantiations
use q = 2 and p = 3. In order to be generic we leave the parameter p but fix q to 2. Moreover,
we assume the cofactor f = 1 to simplify the explanation: our methods can be immediately
generalized for non-trivial values of the cofactor f .

In this section we survey different approaches to optimize arithmetic modulo m = 2xpy±1
where p is an odd small prime. The idea is to use the special shape of the modulus to reduce
the number of multiplication instructions needed in an implementation when computing arith-
metic modulo m. Typically, there are two approaches to realize this modular multiplication:
the first approach computes the multiplication and reduction in two separate steps while the
second approach combines these two steps by interleaving them. We refer to these methods
as non-interleaved (or separated) and interleaved modular multiplication, respectively.
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Both of these approaches have their individual dis-/advantages. For instance, intermedi-
ate results are typically longer and therefore require more memory or registers in the non-
interleaved approach. In some applications one approach is clearly to be preferred over the
other. One such setting is when computing arithmetic in Fm2 = F(i) for i2 = −1. Let
a, b ∈ Fm2 and write a = a0 + a1·i and b = b0 + b1 · i, then c = a · b = c0 + c1 · i where
c0 = a0b0 − a1b1 and c1 = a0b1 + a1b0. This can be computed using four interleaved modular
multiplications or four multiplications and two modular reductions. When using Karatsuba
multiplication [28] this can be reduced to three multiplications and two modular reductions
by computing c1 as (a0 + a1)(b0 + b1) − a0b0 − a1b1. In the interleaved setting this can be
computed with three modular multiplications while in the non-interleaved setting computing
three multiplications and two modular reductions suffices. Hence, when computing modular
arithmetic in Fm2 (which is the setting in SIDH) the non-interleaved modular multiplication is
to be preferred except when the interleaved approach significantly outperforms the separated
technique.

In this section we describe techniques to speed-up modular reduction and interleaved
modular multiplication plus reduction (which is of independent interest) when using the
shape of 2xpy ± 1.

3.1 Using Barrett reduction

The first implementation of SIDH [3] uses Barrett reduction (see Section 2.2) to compute
modular reductions and uses primes of the form 2x3y−1 to define the finite field. The special
shape of the modulus is not exploited in this implementation.

As explained in Section 2.2 Barrett reduction requires two multiplications, one with the
precomputed constant µ and one with the modulus m. It seems non-trivial to accelerate the
multiplication with µ = b r2nm c = b r2n

2xpy±1c since this typically does not have a special shape.
The multiplication with m = 2xpy ± 1, however, can be computed more efficiently since the
product a ·m = a · 2x · py ± a and this can be computed using shift operations (for the 2x

part) and a shorter multiplication by py followed by an addition or subtraction depending on
the sign of the ±1.

Assuming 2x ≈ py (which is the case in the SIDH setting) then the computation of
q2 ·m where only the least significant n + 1 computer words are required can be done using
CostBarrett(32n,

1
2n) = 5

8n
2 + 13

4 n+ 1 multiplication instructions.

3.2 Using Montgomery reduction

It is well-known, and has been (re)discovered multiple times, that Montgomery multiplication
can benefit (in terms of lowering the number of multiplications) from a modulus of a specific
form (cf. e.g., [33,1,31,24,10,11]). When m = ±1 mod rn then µ = −m−1 = ∓1 mod rn

and the multiplications by µ become negligible. Such moduli are sometimes referred to as
Montgomery-friendly primes. In the SIDH setting m = 2xpy ± 1 = ±1 mod 2x, hence one
can reduce the number of multiplications required when multiplying with µ. This is exactly
the approach used by the authors of [17,4] in their high-performance SIDH implementation.
They use the non-interleaved approach for Montgomery multiplication using the so-called
product scanning technique [32], which was introduced in [20], where all the multiplications
by µ are eliminated. We describe this approach and some variants below in detail. We note
that in the hardware implementation described in [5] a high-radix variant of the Montgomery
multiplication suitable for hardware architectures [9] is used.
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Interleaved Montgomery multiplication. As described in Section 2.1 the interleaved
Montgomery multiplication approach interleaves the computation of the product and the
modular reduction. Let us describe an optimization when computing multiplication modulo
m = 2xpy − 1. Every step of the algorithm computes the product of a single digit from the
input ã with all digits from the other input b̃ and reduces the result after accumulation by
one digit. We write our integers in a radix-R representation. Let Bw ≤ x for some B ∈ Z>0,
if R = 2Bw then the multiplication with the precomputed constant µ simply vanishes since
µ = −m−1 mod R = −(2xpy − 1)−1 mod 2Bw = 1. Hence, after initializing c to zero Eq. (1)
simplifies to

c← c+ aib+ (µ(c+ aib) mod R)m

R
=

∑n
i=0 diR

i + d0(2
xpy − 1)

2Bw

=

∑n
i=1 diR

i + d02
xpy

2Bw

=
n∑
i=1

diR
i−1 + d02

x−Bwpy (7)

where d = c+ ai · b =
∑n

i=0 diR
i and this is repeated

⌈
N
Bw

⌉
times.

The computation cost expressed in the number of multiplication instructions of Eq. (7) is⌈
N

Bw

⌉(
B

⌈
N

w

⌉
+B

(⌈
N

w

⌉
−B

))
. (8)

However, since in practice N ≈ 2x, the N -bit modulus 2xpy ± 1 has a special shape which
ensures that the multiplication by 2xpy in Eq. (7) can be computed more efficiently (for some
values of B). We illustrate this in the following example.

Example 1. Consider the prime m = 23723239 − 1 as used in the SIDH key-exchange protocol
in [17]. This is the setting where p = 3, x = 372, y = 239, N = 751, and µ = 1. Assume
we target a 64-bit platform (which means w = 64 and n = 12), then there are five different
values for B. The following shows the cost for the modular multiplication when evaluating
Eq. (8)

B Eq. (8)
(#mul instructions)

B = 1 276
B = 2 264
B = 3 252
B = 4 240
B = 5 285

However, these numbers can be improved since 23723239 ≡ 0 (mod 25·64) so multiplication by
the least significant five 64-bit words can be sped-up when computing a product where the
modulus is one of the input operands. Moreover, whenever B exactly divides n =

⌈
N
w

⌉
= 12

(the number of 64-bit digits of m) this is optimal in the sense that computing multiple
iterations in the interleaved Montgomery multiplication exactly match the radix-2Bw length
n. Hence, all variants require 122 multiplication instructions for the integer multiplication of
a · b but for the values B ∈ {1, 2, 3, 4} 12 · 7 multiplication instructions are needed for the
modular reduction for a total of 228 multiplication instructions. The authors of [17] used
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B = 1 in their implementation but this analysis shows that using a larger radix R = 2Bw

results in the same number of multiplication instructions required. ut

To summarize, using B = 1 (or any larger B such that B ≡ 0 mod n, where n =
⌈
N
w

⌉
)

and assuming 2x fits in n
2 computer words then the total cost of the reduction can be reduced

using this technique from n2 + n to 1
2n

2 multiplication instructions (a performance increase
by more than a factor two) assuming n is even.

Non-interleaved Montgomery multiplication The non-interleaved Montgomery approach,
where the multiplication c = a · b is performed first and the modular reduction is computed
in a separate next step can be done in exactly the same way as the interleaved approach.
The idea is to use the product c immediately (instead of initializing this to zero in the first
iteration when computing Eq. (7)) and therefore not adding the aib values. This means that
the values of d are not bounded by rn+1 anymore but by r2n+1 instead: this means comput-
ing more additions while the number of multiplications remains unchanged compared to the
modular reduction as outlined for the interleaved Montgomery approach (n

2

2 multiplication
instructions).

3.3 Using an unconventional radix

Another idea is to use a function of the prime shape as the radix of the representation.
This is exactly what a recent approach [29] suggested in the setting of designing a hardware
implementation. Let us summarize the approach here and provide a detailed analysis where
we assume that the radix r is the same as the word-size of the target architecture and rn−1 ≤
m < rn. Assume that m = 2 ·2x ·3y−1 where y is even. Use a radix R = 2

x
2 3

y
2 to represent an

integer a < m as a = a2 ·R2 +a1 ·R+a0 where 0 ≤ a0, a1 < R and 0 ≤ a2 ≤ 1. The approach
outlined in [29] converts integers once at the start and once at the end of the algorithm to
and from a radix-2

x
2 3

y
2 representation, similar to when using the Montgomery multiplication.

The proposed method is an interleaved modular multiplication method where throughout the
computation the in- and output remain in this representation. The idea is to use the fact that
2x · 3y ≡ 2−1 (mod m). Given two integers a and b their modular product c = a · b mod m
can be computed using

c2 ·R2 + c1 ·R+ c0 = ((a2b0 + a1b1 + a0b2) mod 2) ·R2 +(⌊
a2b1 + a1b2

2

⌋
+ (a1b0 + a0b1)

)
·R +(

(2−2 mod m)a2b2 + a0b0 +

((a2b1 + a1b2) mod 2) · R
2

+

⌊
a2b0 + a1b1 + a0b2

2

⌋)
.

Assuming r
n
2
−1 < 2

x
2 3

y
2 < r

n
2 then each multiplication ai ·bj where i 6= 2 6= j can be computed

using n2

4 multiplication instructions and four such multiplications need to be computed in
total. Whenever one of the operands is either a2 or b2 the product can be computed without
multiplications by simply selecting (or masking) the correct result. Note, however, that c1
and c0 need to be reduced further since they are larger than R. This is done with two
calls to a Barrett reduction which takes advantage of the fact that the divisions by 2

x
2 can

8



be done more efficiently. Assume c1 and c0 each fit in n computer words (for simplicity
assume n ≡ 0 mod 4) then computing a Barrett reduction of c0 (or c1) by R = 2

x
2 3

y
2 requires

CostBarrett(n, n2 ) = n2

4 + 2n+ 1 multiplication instructions (see Section 2.2). However, since

the computation of the quotient and the remainder when dividing by 2
x
2 comes essentially for

free (requires no multiplications) this computation can be done with CostBarrett(34n,
1
4n) =

1
32n(5n + 52) + 1 multiplication instructions (assuming that r

n
4
−1 ≤ 2

x
2 , 3

y
2 < r

n
4 ). This

is a reduction of 3
32n(n + 4) multiplication instructions. Assuming the inputs are already

converted in this radix-2
x
2 3

y
2 representation (which is just a one time cost) then the total

cost for a single interleaved modular multiplication becomes n2 + 2( 1
32n(5n + 52) + 1) =

21
16n

2+ 13
4 n+2 multiplication instructions. This can be further optimized when using Karatsuba

multiplication [28] to compute a1b0 + a0b1 as (a0 + a1)(b0 + b1) − a1b1 − a0b0. This lowers
the number of multiplications to only three and improves the approach to 17

16n
2 + 13

4 n + 2
multiplication instructions.

Let us present a different method inspired by this approach for moduli of the form m =
2xpy − 1. For simplicity, assume that both x and y are even (although this can be made to
work for odd values as well) when using a radix R = 2

x
2 p

y
2 . Represent integers as usual as

a = a1 ·R+ a0 where 0 ≤ a0, a1 < R. Since R2 = 1 mod m. We have

c ≡ a1b1 ·R2 +
(

(a0 + a1)(b0 + b1)− a1b1 − a0b0
)
·R+ a0b0

≡ a1b1 + (σ1 ·R+ σ0) ·R+ a0b0

≡ σ0 ·R+ (a0b0 + a1b1 + σ1) (mod m)

again using Karatsuba multiplication where σ1 · R + σ0 = a0b1 + a1b0 is computed with a
Barrett reduction using the special shape of R. However, this approach does require both
inputs to be converted to their radix-R representation at the cost of two special Barrett
reductions. Assuming r

n
2
−1 < 2

x
2 p

y
2 < r

n
2 then this approach requires to compute three

times n2

4 multiplication instructions and three calls to the Barrett reduction for a total of

3n
2

4 + 3 · CostBarrett(3n4 ,
n
4 ) = 39

32n
2 + 39

8 n + 3 multiplication instructions and significantly
fewer additions compared to the approach from [29]. The main difference with the approach
presented in [29] is that this approach requires the inputs to be converted to the correct radix
system every time when computing a modular multiplication while we do not need to convert
the output. When comparing the two multiplication counts it becomes clear that this approach
is inherently slower compared to the one presented in [29]. However, in certain situations this
approach might be preferred. For instance, when computing a modular squaring the input
only needs to be converted once while such an optimization is not possible with the other
approach.

A non-interleaved approach. Both interleaved approaches as presented do not compete
with the non-interleaved approaches when arithmetic in quadratic extension field is required
as used in SIDH. Let us explore the possibility to use the special prime shape directly for this
non-interleaved use-case.

Let the radix R be defined and bounded as rn−1 ≤ R = 2xpy > m < rn and assume
throughout this section that r

n
2
−1 ≤ 2x < r

n
2 , the multiplication counts can be trivially

adjusted when these bounds are different. Then after a multiplication step c = a · b (0 ≤
c < m2) write this integer in the radix-2xpy representation c = c1 · R + c0 and compute
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Table 1. Estimates of the number of multiplication instructions required when using different modular multi-
plication (interleaved) or modular reduction (non-interleaved) approaches for a modulus stored in n computer
words. It is assumed that the size of the input(s) to the modular multiplication and modular reduction have
n and 2n computer words, respectively.

approach method moduli family # muls

Montgomery [34]

{
interleaved generic 2n2 + n
interleaved 2xpy − 1 3

2
n2

use radix directly [29] interleaved 2 · 2x · 3y − 1 17
16
n2 + 13

4
n+ 2

use radix directly (new) interleaved 2xpy − 1 39
32
n2 + 39

8
n+ 3

Barrett [7]

{
non-interleaved generic n2 + 4n+ 1
non-interleaved 2xpy ± 1 5

8
n2 + 13

4
n+ 1

Montgomery [34]

{
non-interleaved generic n2 + n

non-interleaved 2xpy − 1 n2

2

use radix directly (new - v1) non-interleaved 2xpy − 1 5
8
n2 + 13

4
n+ 1

use radix directly (new - v2) non-interleaved 2xpy − 1 1
2
n2 + 2n+ 1

use radix directly (new - v3) non-interleaved 2xpy − 1 1
2
n2 + 5

4
n+ 1

c′ ≡ c mod m as

c′ ≡ c1 ·R+ c0

≡ c1(m+ 1) + c0

≡ c1 + c0 (mod m) (9)

where 0 ≤ c′ < 2R. Hence, the main computational complexity is when computing Bar-
rett reduction to write c in the radix-2xpy representation. The naive way of computing
this (denoted version 0) simply does this directly using Barrett reduction at the cost of
CostBarrett(2n, n) = n2+4n+1 multiplication instructions. By simplifying and doing the di-
vision by 2x separately we obtain a method which needs CostBarrett(32n,

1
2n) = 5

8n
2 + 13

4 n+1

multiplication instructions (since r
n
2
−1 ≤ 2x < r

n
2 ) as outlined in the Barrett discussion. We

denote this approach version 1.

However, we can do even better by using the folding approach (see Section 2.2). By choos-
ing x = n we can reduce the input c from 3

2n bits to n bits at the cost of 1
4n

2 multiplication

instructions. Afterwards it suffices to compute CostBarrett(n, 12n) = n2

4 + 2n + 1 multipli-
cation instructions: the total number of multiplication instructions to compute the modular
reduction becomes 1

2n
2+2n+1 which is significantly better compared to version 1. We denote

this version 2.

When applying another folding step we can use x = 0.75n such that we reduce the input
from n bits to n−x+0.5n = 0.75n bits at the cost of another 1

8n
2 multiplication instructions.

The total cost to compute the modular reduction is slightly reduced compared to version 2 to
1
4n

2 + 1
8n

2 + CostBarrett(0.75n, 0.5n) = 1
2n

2 + 5
4n+ 1. We denote this version 3. Computing

additional folding steps does not lower the number of required multiplication instructions.

Table 1 summarizes our findings from this section. Note that in the interleaved setting the
cost for both the multiplication and the modular reduction are included while for the non-
interleaved algorithms only the modular reduction cost is stated. The user can choose any
asymptotically fast multiplication method in this latter setting. From Table 1 it becomes clear
that the approach from [29] is to be preferred in the interleaved setting while the Montgomery
approach is best in the non-interleaved setting. As mentioned before, the SIDH setting prefers
the non-interleaved setting due to the computation of the arithmetic in a quadratic extension
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field. Moreover, assuming the multiplication part is done with one level of Karatsuba (at the
cost of 3

4n
2 multiplication instructions) then the non-interleaved approach has a total cost

of 5
4n

2 and is faster compared to the interleaved approach for all positive n < 18. Hence,
independent of the application, using the non-interleaved Montgomery algorithm is the best
approach for moduli up to 1100 bits.

4 Alternative implementation-friendly moduli

The basic requirement for SIDH-friendly moduli of the form 2xpy ± 1 when targeting the
128-bit post-quantum security level is x ≈ log2(p

y) ≈ 384. For security considerations the
difference between the bit-sizes of 2x and py can not be too large.

Let us fix the word size of the target platform to 64 bits in the following discussion.
This can be adjusted for smaller architectures when needed. Hence, we expect a modulus
of (around) n = 2·384

64 = 12 computer words. Table 1 summarizes the effort expressed in
the number of multiplication instructions needed for modular multiplication when using the
interleaved approach or for the modular reduction when using the non-interleaved approach.
The approaches are as outlined in Section 3 and the estimates are given as a function of n:
the number of computer words required to represent the modulus. We assume that the inputs
to the modular multiplication or reduction are n-words or 2n-words long, respectively.

Below we discuss the properties of two moduli proposed in SIDH implementations and
constraints to search for other SIDH-friendly moduli which enhances the practical performance
of the modular reduction even further. Lower security levels like the 80-bit post-quantum
security targeted by Koziel et al. [5] for their FPGA implementation are out of scope in this
work.

The modulus m1 = 2(23863242)−1. This modulus was proposed in the first implementa-
tion paper of SIDH [3] and used in the implementations presented in [3,29]. The disadvantage
of m1 is that dlog2(m1)e = 771 > 12 · 64 which implies that n = 13 computer words are re-
quired to represent the residues modulo m1. Hence, the arithmetic is implemented using one
additional computer word for the same target of 128-bit post-quantum security. This increases
the total number of instructions required when implementing the modular arithmetic. This
is true for the modular addition and subtraction but also for the Montgomery multiplication
since it needs, for instance, to compute n = 13 rounds when using a Montgomery radix of 264

instead of the 12 rounds for slightly smaller moduli. Moreover, when using the special Mont-
gomery reduction algorithm a multiplication with the value 233242 > 26·64 is required which
fits in bn/2c + 1 computer words. Hence, the number of required multiplication instructions
is n ·

⌈
n
2

⌉
= 91 (see Table 1) for an odd n.

The modulus m2 = 23723239 − 1. This modulus is proposed in [17] and used in the
implementations [17,4]. The modulus m2 was picked to resolve the main disadvantage when
using m1: dlog2(4m2)e = 753 < 12 ·64 implies that the number of computer words required to
represent residues modulo m2 is n = 12 (which significantly lowers the number of multiplica-
tion instructions required compared to when implementing arithmetic modulo m1). However,
when dividing out the powers of two (due to the Montgomery radix, see Eq. (7)) we need to
multiply by 2523239 which is larger than 26·64 and is therefore stored in seven computer words.
This implies that the multiplication with this constant is more expensive than necessary and
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Table 2. SIDH-friendly prime moduli which target 128-bit post-quantum security.

prime shape bit sizes

2xpy ± 1 (x, dlog2(py)e, dlog2(2xpy ± 1)e)
23853227 − 1 (385, 360, 745)

23945154 + 1 (394, 358, 752)

23945155 − 1 (394, 360, 754)

23967131 + 1 (396, 368, 764)

23931791 + 1 (393, 372, 765)

23911988 − 1 (391, 374, 765)

explains why the estimate for the modular reduction from Table 1 of n2/2 = 72 multipli-
cation instructions is too optimistic. When using m2 the correct number of multiplication
instructions required to implement the modular reduction is n ·

(
n
2 + 1

)
= 84 as reported

in [17]

Alternative moduli. We searched for alternative implementation- and SIDH-friendly prime
moduli using constraints which enhance the practical performance when using the fastest
special modular reduction techniques from Section 3. Besides the size requirement to target the
128-bit post-quantum security (n = 12) we also set additional performance related constraints.
We outline these requirements below when looking for moduli of the form 2x · py ± 1.

1. p is small in order to construct curves in SIDH, hence all the odd primes below 20,
p ∈ {3, 5, 7, 11, 13, 17, 19}

2. require 2x to be at least six 64-bit computer words: 384 ≤ x < 450 and 2300 < py < 2450,
3. the size of modulus is n = 12 computer words, the bit-length is not too small when

targeting the 128-bit post-quantum security: 2740 < 2xpy ± 1 < 2768,
4. the difference between the size of the two prime powers is not too large (balance security):
|2x − py| < 240,

5. 2x · py + 1 or 2x · py − 1 is prime.

Table 2 summarizes the results of our search when taking these constraints into account. The
entry which maximizes min(x, dlog2(p

y)e) is for the prime m3 = 23911988−1 where the size of
1988 is 374 bits. Moreover, dlog2(4m3)e = 767 < 12 ·64 which means one can use n = 12 using
the subtraction-less version of the Montgomery multiplication algorithm. The input operand
used for the multiplication in the Montgomery reduction is 271988 < 26·64 which lowers the
overall number of multiplication instructions required to the estimate of n2/2 = 72.

5 Benchmarking

Table 1 gives an overview of the cost of multiplication modulo 2xpy ± 1 in terms of the
word length n of a specific modulus on a target computer platform when working with the
constraints as outlined in Section 3. In practice, however, one carefully selects one particular
modulus for implementation purposes. The choice of this modulus is first of all driven by the
selected security parameter, which determines n, and secondly by the practical performance.
This latter requirement selects the parameters p, x, and y and (up to a certain degree) can
have some trade-offs with the security parameter. In this section we compare the practical
performance of some of the most promising techniques from Section 3 when using the prime
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Table 3. Benchmark summary and implementation details. The mean x̄ and standard deviation σ are stated
expressed in the number of cycles together with the number of assembly instructions used in the implementa-
tion.

#cycle #mul #add #mov #other

23723239 − 1 (B = 1) [17] 254.9± 9.5 84 332 157 41
23723239 − 1 (B = 2) this paper 275.3± 11.2 84 358 202 59
23723239 − 1 (shifted) this paper 240.2± 10.9 72 299 223 85
23911988 − 1 this paper 224.5± 8.8 72 292 145 38

moduli from the proposed cryptographic implementations of SIDH presented in [17] (since this
is the fastest cryptographic implementation of SIDH). Such a comparison between the fastest
techniques to achieve the various modular reduction algorithms allows us to confirm if the
analysis based on the number of required multiplication instructions is sound. Moreover, this
immediately gives an indication of the real practical performance enhancements the various
techniques or different primes give in practice.

Our benchmark platform is an Intel Xeon CPU E5-2650 v2 (running at 2.60GHz). We have
created a benchmarking framework where we measure the number of cycles using the time
stamp counter using the rdtsc instruction. More specifically, we measure the time to compute
105 dependent modular reductions and store the mean for one operation. This process is
repeated 104 times and from this data set the mean x̄ and standard deviation σ are computed.
After removing outliers (more than 2.5 standard deviations away from the mean) we report
these findings as x̄±σ in Table 3. This table also summarizes the number of various required
assembly instructions used for the modular reduction implementation.

Our base line comparison is the modular reduction implementation from the cryptographic
software library presented in [17] which can be found online [18]. This implementation includes
the conditional subtraction (computed in constant-time) although this is not strictly neces-
sary. In order to make a fair comparison we include this conditional subtraction in all the
other presented modular reduction algorithms as well. As indicated in Table 3 and discussed
in Section 4 the implementation from [17] requires 84 multiplication instructions and uses the
optimized non-interleaved Montgomery multiplication approach (which corresponds to the
B = 1 setting in our generalized description from Section 3.2).

We experimented with a Montgomery multiplication version where B = 2 (see Section 3.2).
This corresponds to using a radix-2128 representation and although this should not change
the number of multiplications required (since n = 12 is even) this could potentially lower
the number of other arithmetic instructions. However, due to the limited number of registers
available we had a hard time implementing the radix-2128 arithmetic in such a way that all
intermediate results are kept in register values. This means we had to move values in- and
out of memory which in turn lead to an increase of instructions and cycle count. This can be
observed in Table 3 which shows that the implementation of this approach is slightly slower
to the one used in [17]. When implemented on a platform where there are sufficient registers
then this approach should be at least as efficient as the approach which uses B = 1.
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An immediate optimization based on the idea from Example 1 is to compute the Mont-
gomery reduction for this particular modulus as

c← c+ (µc mod R)m

R
=
c+ (c mod 264)(23723239 − 1)

264

=

23−j∑
i=1

ci2
64(i−1) + c0(2

3083239)

=

23−j∑
i=1

ci2
64(i−1) + 2256 · 252 · c0 · 3239.

This process is repeated 12 times (for j = 0 to 11) and the input c is overwritten as the
output for the next iteration. The advantage from this approach is that multiplying with
3239 < 26·64 reduces the number of multiplication instructions (as explained in Section 4).
The price to pay is the additional shift of 52 bits (the multiplication with 252). This approach
lowers the number of required multiplication instruction by a factor 6/7 and this results in a
performance increase of over five percent (see Table 3).

Finally, we implemented arithmetic modulo 23911988− 1: the prime which is a result from
our search for SIDH-friendly primes. The number of multiplications required is exactly the
same as for the “shifting” approach but it avoids the computation of the shift operation since

c← c+ (µc mod R)m

R
=
c+ (c mod 264)(23911988 − 1)

264

=

23−j∑
i=1

ci2
64(i−1) + c0(2

3271988)

=

23−j∑
i=1

ci2
64(i−1) + 2320 · c0 · (273239),

where the multiplication by 252 is computed using shifts. This simplifies the code and Table 3
summarizes the reduction of the total number of instructions required for the implementation.
Moreover, this immediately results in an almost 12% speed-up in the modular reduction
routine.

6 Conclusions and Future Work

We have provided an overview of different techniques to compute arithmetic modulo 2xpy±1.
Primes of this shape are of interest to instantiate a recent post-quantum key-exchange candi-
date based on the hardness of constructing an isogeny between two isogenous supersingular
elliptic curves defined over a finite field. Although we have surveyed this in more generality
it turns out that non-interleaved Montgomery reduction which is optimized for such primes
is the best approach. We have identified faster ways of implementing the modular reduction
for a recently proposed prime. Moreover, as the outcome of our search we have found better
SIDH-friendly moduli which lead to faster implementations.

In this work we have primarily focused on arithmetic modulo 2xpy ± 1. It would be inter-
esting to study if other prime shapes can be used in SIDH schemes and if such primes have
additional benefits. Moreover, the applicability to implement the modular reduction algorithm
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in parallel (e.g. using SIMD instructions) is not considered and we leave this as future work.
Another aspect is to study the arithmetic at the elliptic curve and the isogeny level: both
aspects which were left out of scope of this work.
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