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Abstract. The success rate is the classical metric for evaluating the
performance of side-channel attacks. It is generally computed empirically
from measurements for a particular device or using simulations. Closed-
form expressions of success rate are desirable because they provide an
explicit functional dependence on relevant parameters such as number
of measurements and signal-to-noise ratio which help to understand the
effectiveness of a given attack and how one can mitigate its threat by
countermeasures. However, such closed-form expressions involve high-
dimensional complex statistical functions that are hard to estimate.
In this paper, we define the success exponent (SE) of an arbitrary side-
channel distinguisher as the first-order exponent of the success rate as
the number of measurements increases. Under fairly general assumptions
such as soundness, we give a general simple formula for any arbitrary
distinguisher and derive closed-form expressions of it for DoM, CPA,
MIA and the optimal distinguisher when the model is known (template
attack). For DoM and CPA our results are in line with the literature.
Experiments confirm that the theoretical closed-form expression of the
SE coincides with the empirically computed one, even for reasonably
small numbers of measurements. Finally, we highlight that our study
raises many new perspectives for comparing and evaluating side-channel
attacks, countermeasures and implementations. In appendix, we show
that the SE can also be computed in the case the implementation is
protected by masking.

Keywords: Side-channel distinguisher, Evaluation metric, Success rate,
Success exponent, Closed-form expressions.

1 Introduction

Side-channel attacks analyze physical leakage that is unintentionally emitted
during cryptographic operations in a device. This side-channel leakage is statis-
tically dependent on intermediate processed values involving the secret key. It
? Annelie Heuser is a Google European fellow in the field of privacy and is partially
founded by this fellowship.
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is then possible to retrieve the secret from the measured data by maximizing
some statistical distinguisher. In the past decade, many distinguishers have been
proposed: difference of means test [19] (DoM), Pearson correlation [5] (CPA), mu-
tual information [14] (MIA), etc. Such distinguishers have different characteristics
and performances, depending on the implementation, measurement noise, and
assumed knowledge on how the device leaks.

To evaluate the performance of a given distinguisher for a limited number
of measurements, the average probability of success a.k.a. success rate (SR) is
the ideal and most common evaluation metric [36]. It provides everything one
needs to know about the performance of a particular attack scenario. Ideally,
one would exhibit an explicit functional relationship of the SR with the number
of measurements, signal-to-noise ratio (SNR), and other important quantities
determining the relationship between correct and false key hypotheses such as
confusion coefficients [12]. The resulting closed-form expression would allow one
to better understand how effective the attack can be under specific conditions
and how one can mitigate it with appropriate countermeasures.

So far, however, it can be theoretically computed only for a very narrow
range of distinguishers (DoM [12], CPA [35,37,21], Bayesian attacks [35]) and
only under restrictive “ideal” scenarios (e.g., perfectly known leakage model in
Gaussian noise). Moreover, the resulting exact expressions involve high dimen-
sional functions whose dependency on the relevant parameters (such as confusion
coefficients) can be very complex. For DoM and CPA under ideal scenarios, the re-
sulting formulas involve a multivariate normal c.d.f. [34] for which no closed-form
expression exists, while as was found in the case of CPA [35] the corresponding
matrices are not of full rank and require heavy Monte-Carlo computation.

In this paper, we carry out a theoretical derivation of the SR for quite arbitrary
distinguishers, at the first order of the exponent. More precisely, our computation
yields closed-form expressions of the success exponent (SE) associated to the
failure rate (1−SR) at first order as the number of measurements m increases:

1− SR ≈ e−m·SE. (1)

(The precise mathematical meaning of the the equivalence ≈ will be given in
Def. 7.) Even though we obtain the derived expression for the SE under the
asymptotic condition that m tends to infinity, simulations show that Eq. (1) is
still accurate even for fairly small values of m.

Such an evaluation of the success rate, suitable even for a small number of
traces, allows one to compare all possible distinguishers in any scenario (noise
distribution, unprotected or protected implementation, etc.). A recent paper by
Duc et al. [11, Thm. 2] tackles this problem and achieves a unilateral bound.
Here we give both a lower and an upper bound, and as an illustration derive
the exact expression of the SE for DoM, CPA, MIA and the optimal distinguisher
when model is known (template attack) in terms of the appropriate relevant
parameters.

The rest of this paper is organized as follows. Sect. 2 gives the necessary
definitions about distinguishers, success and soundness. In Sect. 3, we examine
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the convergence of success rate and apply a central limit theorem to derive the SE
(Theorem 1). Sect. 4 validates the SE even for relatively small number of traces,
and Sect. 5 provides closed-form expressions of SE for some popular distinguishers.
The conclusions and promising perspectives are in Sect. 6. Eventually, when the
implementation is protected by masking, we show in App. A that an SE can
also be computed. This allows to contrast the efficiency of attacks in both the
unprotected and protected cases.

2 Preliminaries

In the sequel, we consider a standard univariate side-channel scenario as defined
in [25]. Let k∗ denote the secret cryptographic key, k any possible key hypothesis.
Also let X be a random variable5 representing the measured leakage and T
be the (random) input or cipher text used for a given encryption request. The
attacker knows some mapping f corresponding to an the internally processed
variable f(k, T ). A common consideration is f(T, k) = Sbox[T ⊕ k] where Sbox
is a substitution box. The measured leakage X can then be written as

X = ϕ(f(T, k∗)) +N, (2)

where ϕ is a deterministic leakage function and where N is an independent—not
necessarily Gaussian—additive noise with zero mean (E{N} = 0). The device-
specific deterministic function ϕ is normally unknown to the attacker but she
may estimate it as ϕ̂ and compute the sensitive variable Y (k) = ϕ̂(f(T, k)) for
each key hypothesis k. For later ease of notation we may drop the letter k and
write Y = Y (k) and Y ∗ = Y (k∗). We do not make any particular assumption on
ϕ or f so that our framework can be applied to any arbitrary scenario.

2.1 Distinguisher

In practice, the distinguisher is a function of m i.i.d. leakage measurements
X1, X2, . . . , Xm and sensitive variables Y1(k), Y2(k), . . . , Ym(k) whose maximiza-
tion over the key hypothesis yields k̂ = arg maxk D̂(k), where

D̂(k) = D̂(X1, X2, . . . , Xm;Y1(k), Y2(k), . . . , Ym(k)). (3)

Definition 1 (Theoretical Distinguisher). We assume that there is a “theo-
retical” value of the distinguisher

D(k) = D(X,Y (k)) (4)

for each k such that D̂(k) converges to D(k) as m→ +∞ in the mean-squared
sense, i.e., the mean-squared error

MSEm = E
{(
D̂(k)−D(k)

)2
}
→ 0 as m→ +∞. (5)

5 Capitals such as X denote random variables. The corresponding lowercase x denotes
realizations of these random variables. We write P{A} for the probability of an event
A and E{X} for the expectation of a random variable X.
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This implies that D̂(k)→ D(k) in probability. Thus we may consider the practical
distinguisher D̂(k) as an estimator of the theoretical D(k). The corresponding
bias and variance of D̂(k) are

Bm(k) = E{D̂(k)} − D(k) (6)

Vm(k) = Var(D̂(k)). (7)

Example 1 (CPA [5]). For correlation analysis we have

D̂(k) = m
∑m

i=1
XiYi−

∑m

i=1
Xi
∑m

i=1
Yi√

m
∑m

i=1
X2
i
−(
∑m

i=1
Xi)2

√
m
∑m

i=1
Y 2
i
−(
∑m

i=1
Yi)2

(8)

D(k) = ρ(X,Y ) = Cov(X,Y )
σXσY

= E{(X − µX)(Y − µY )}
σXσY

. (9)

Example 2 (MIA [14]). For mutual information

D(k) = I(X,Y ) = H(X)−H(X|Y ) (10)

can be estimated e.g. with histograms as

D̂(k) =
∑
x

∑
y

P̂(x, y) log2
P̂(x, y)
P̂(x)P̂(y)

. (11)

Lemma 1. Bias Bm(k) and variance Vm(k) tend to zero as m increases.

Proof. One has the well-known bias-variance compromise: MSEm = E{
(
D̂(k)−

E{D̂(k)}+Bm(k)
)2} = Vm(k) +Bm(k)2 + 0 where the cross-term vanishes. Since

MSEm → 0 it follows that Vm(k)→ 0 and Bm(k)→ 0. ut

2.2 Success Rate

The success rate (SR) is the classical evaluation metric when comparing empirical
side-channel distinguishers D̂(k). It is generally calculated empirically [25,22,10].
The exact (theoretical) value of SR [35,12,37,21] is as follows.

Definition 2 (Success Rate and Failure Rate). The average success proba-
bility is defined by

SR(D̂) = P{∀k 6= k∗, D̂(k∗) > D̂(k)}. (12)

where k∗ is the actual value of the secret key. It is sometimes convenient to
consider the average failure rate as the complementary probability

FR(D̂) = 1− SR(D̂) = P{∃k 6= k∗, D̂(k) ≥ D̂(k∗)}. (13)

Evaluating probabilities of events like {∃k 6= k∗, D̂(k) ≥ D̂(k∗)} may be
cumbersome. In order to pass from those to individual events {D̂(k) ≥ D̂(k∗)}
for each k, the following lemma is convenient.
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Lemma 2 (Squeezing the Failure Rate). One can lower and upper bound
the failure rate as follows:

max
k 6=k∗

P{D̂(k) ≥ D̂(k∗)} ≤ FR(D̂) ≤
∑
k 6=k∗

P{D̂(k) ≥ D̂(k∗)}. (14)

Proof. We can write FR(D̂) = P
{⋃

k 6=k∗
{
D̂(k) ≥ D̂(k∗)

}}
. The upper bound

follows from the union bound P{
⋃
k Ak} ≤

∑
k P{Ak}. Now the probability of

the union is not less that that of any individual event {D̂(k) ≥ D̂(k∗)}. Choosing
the one with maximal probability gives the lower bound. ut

Remark 1. The lower bound approximation in Eqn. (14) is reminiscent of ideas
developed by Whitnall and Oswald in [40] where they define a framework for the
theoretical evaluation of side-channel distinguishers. Their outcome is captured
by the relative behavior of the distinguisher for the correct key and its nearest
rival. We leverage on this idea to prove our Theorem 1 in Sec. 3.

Lemma 2 leads us to define pairwise quantities (see e.g., [35, Eq. (13)]).

Definition 3 (Pairwise Deltas). For any function f(k) define

∆f(k∗, k) = f(k∗)− f(k). (15)

Thus ∆D̂(k∗, k) = D̂(k∗)− D̂(k) and ∆D(k∗, k) = D(k∗)−D(k). The pairwise
error probability for the transition k∗ → k is

P{D̂(k) ≥ D̂(k∗)} = P{∆D̂(k∗, k) ≤ 0}. (16)

Lemma 3. The difference ∆D̂(k∗, k) estimates ∆D(k∗, k) with bias and variance

Bm(k∗, k) = Bm(k∗)−Bm(k) (17)

Vm(k∗, k) = Var(∆D̂(k∗, k)) (18)

tending to zero as m→ +∞.

Proof. Since D̂(k) → D(k) and D̂(k∗) → D(k∗) in the mean-square sense
(Definition 1) we can deduce that D̂(k∗) − D̂(k) → D(k∗) − D(k) also in the
mean-square sense. This follows from Minkowski’s inequality

√
E{(X ± Y )2} ≤√

E{X2}+
√
E{Y 2}. The proof of Lemma 1 now applies verbatim to show that

Bm(k∗, k)→ 0 and Vm(k∗, k)→ 0. ut

2.3 Soundness

Definition 4 (Soundness Condition). The attack using distinguisher D̂(k) is
sound if the corresponding theoretical distinguisher’s values satisfy the inequalities

D(k∗) > D(k) for all k 6= k∗. (19)



6 Sylvain Guilley, Annelie Heuser, Olivier Rioul, and Nicolas Bruneau

In other words ∆D(k∗, k) > 0 for all bad key hypotheses k.
In [15] the authors give a proof of soundness for CPA. Note that, DoM can be

seen as a special case of CPA (when m → ∞) where Y ∈ {±1} and thus is all
the more sound. MIA was proven sound for Gaussian noise in [28,32].

Proposition 1 (Soundness). When the attack is sound, the success eventually
tends to 100% as m increases:

SR(D̂)→ 1 as m→ +∞. (20)

This has been taken as a definition of soundness in [36, § 5.1]. We provide an
elegant proof.

Proof. By Lemma 2, 1 − SR(D̂) ≤
∑
k 6=k∗ P{∆D̂(k∗, k) ≤ 0}. It suffices to

show that for each k 6= k∗, P{∆D̂(k∗, k) ≤ 0} = P{∆D(k∗, k) − ∆D̂(k∗, k) ≥
∆D(k∗, k)} tends to zero. Now by the soundness assumption, ∆D = ∆D(k∗, k) >
0. Dropping the dependency on (k∗, k) for notational convenience, one obtains

P{∆D −∆D̂ ≥ ∆D} ≤
E
{(
∆D −∆D̂

)2
}

∆D2 → 0 (21)

where we have used Chebyshev’s inequality P{X ≥ ε} ≤ E{X2}
ε2 and the fact that

∆D̂(k∗, k)→ ∆D(k∗, k) in the mean-square sense (Lemma 3). ut

Since SR(D̂)→ 1 as m increases we are led to investigate the rate of conver-
gence of FR(D̂) = 1− SR(D̂) toward zero. This is done next.

3 Derivation of Success Exponent

3.1 Normal Approximation and Assumption

We first prove some normal (Gaussian) behavior in the case of additive distin-
guishers and then generalize.

Definition 5 (Additive Distinguisher [21]). An additive distinguisher can
be written in the form of a sum of i.i.d. terms:

D̂(X1, X2, . . . , Xm;Y1(k), Y2(k), . . . , Ym(k)) = 1
m

m∑
i=1
D̂(Xi;Yi(k)). (22)

Remark 2. DoM is additive (see e.g., [12]). Attacks maximizing scalar products∑m
i=1 XiYi are clearly additive; they constitute a good approximation to CPA,

and are even equivalent to CPA if one assumes that the first and second moments
of Y (k) are constant independent of k (see [35,16,33] for similar assumptions).
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Lemma 4. When the distinguisher is additive, the corresponding theoretical
distinguisher is

D(X,Y (k)) = E{D̂(X;Y (k))}. (23)

Thus ∆D̂(k∗, k) is an unbiased estimator of ∆D(k∗, k), whose variance is

Vm(k∗, k) =
Var
(
D̂(X;Y (k∗))− D̂(X;Y (k))

)
m

(24)

Proof. Letting E{D̂(X;Y (k))} = D(k), since the terms D̂(Xi;Yi(k)) are inde-
pendent and identically distributed, one has

E
{(
D̂(k)−D(k)

)2
}

= 1
m2 E

{∑m

i=1

(
D̂(Xi;Yi(k))−D(k)

)2
}

(25)

= 1
m E

{(
D̂(X;Y (k))−D(k)

)2
}
→ 0. (26)

Therefore, 1
m

∑m
i=1 D̂(Xi;Yi(k)) → E{D̂(X;Y (k))} in the mean-square sense.

(This is actually an instance of the weak law of large numbers). The corresponding
bias is zero: E{D̂(k)} − D(k) = 0.

Taking differences, it follows from Lemma 3 that ∆D̂(k∗, k)→ ∆D(k∗, k) in
the mean-square sense with zero bias. The corresponding variance is computed as
above as E

{(
∆D̂(k∗, k)−∆D(k∗, k)

)2} = 1
m E

{((
D̂(X;Y (k∗))−D̂(X;Y (k))

)
−(

D(X;Y (k∗))−D(X;Y (k))
))2} = 1

mVar
(
D̂(X;Y (k∗))− D̂(X;Y (k))

)
. ut

Proposition 2 (Normal Approximation). When the distinguisher is addi-
tive, ∆D̂(k∗, k) follows the normal approximation

∆D̂(k∗, k) ∼ N
(
∆D(k∗, k), Vm(k∗, k)

)
(27)

as m increases. This means that

∆D̂(k∗, k)−∆D(k∗, k)√
Vm(k∗, k)

(28)

converges to the standard normal N (0, 1) in distribution.

Proof. Apply the central limit theorem to the sum of i.i.d. variablesm∆D̂(k∗, k) =∑m
i=1 D̂(Xi;Yi(k∗))− D̂(Xi;Yi(k)). It follows that

m∆D̂(k∗, k)−m∆D(k∗, k)√
m ·Var

(
∆D̂(k∗, k)

) = ∆D̂(k∗, k)−∆D(k∗, k)√
Vm(k∗, k)

(29)

tends in distribution to N (0, 1). ut

Remark 3. Notice that the normal approximation is not a consequence of a
Gaussian noise assumption or anything actually related to the leakage model but
is simply a genuine consequence of the central limit theorem.
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The above result for additive distinguishers leads us to the following.

Definition 6 (Normal Assumption). We say that a sound distinguisher fol-
lows the normal assumption if

∆D̂(k∗, k) ∼ N
(
E{∆D̂(k∗, k)}, Vm(k∗, k)

)
(30)

as m increases.

Remark 4. We note that in general

E{∆D̂(k∗, k)} = ∆D(k∗, k) +∆Bm(k∗, k) (31)

has a bias term (Lemma 3). By Proposition 2 any additive distinguisher follows the
above normal assumption (with zero bias). We shall adopt the normal assumption
even in situations where the distinguisher is not additive (as is the case of MIA)
with possibly nonzero bias. The corresponding outcomes will be justified by
simulations in Sect. 4.

3.2 The Main Result: Success Exponent

Recall a well-known mathematical definition that two functions are equivalent:
f(x) ∼ g(x) if f(x)/g(x)→ 1 as x→ +∞. The following defines a weaker type
of equivalence f(x) ≈ g(x) at first order of exponent, which is required to derive
the success exponent SE.
Definition 7 (First-Order Exponent [9, Chap. 11]).We say that a function
f(x) has first order exponent ξ(x) if

(
ln f(x)

)
∼ ξ(x) as x→ +∞, in which case

we write

f(x) ≈ exp ξ(x). (32)

Lemma 5. Let Q(x) = 1√
2π

∫ +∞
x

e−t
2/2 dt be the tail probability of the standard

normal (a.k.a. Marcum function). Then as x→ +∞,

Q(x) ≈ e−x
2/2. (33)

Proof. For t > x, we can write∫ +∞

x

1 + 1/t2

1 + 1/x2
e−t

2/2
√

2π
dt ≤ Q(x) ≤

∫ +∞

x

t

x

e−t
2/2

√
2π

dt. (34)

Taking antiderivative yields

1
1 + 1/x2

1√
2π

e−x
2/2

x
≤ Q(x) ≤ 1

x
√

2π
e−x

2/2. (35)

Taking the logarithm gives

−x2/2− ln(x+ 1/x)− ln(2π)/2 ≤ lnQ(x) ≤ −x2/2− ln x− ln(2π)/2 (36)

which shows that lnQ(x) ∼ −x2/2. ut
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Lemma 6. Under the normal assumption,

P{∆D̂(k∗, k) ≤ 0} ≈ exp
(
−
(
∆D(k∗, k) +∆Bm(k∗, k)

)2

2 Vm(k∗, k)

)
. (37)

Proof. Noting that

P{∆D̂(k∗, k) ≤ 0} = P
{
∆D̂(k∗,k)−E{∆D̂(k∗,k)}√

Vm(k∗,k)
≤ −E{∆D̂(k∗,k)}√

Vm(k∗,k)

}
(38)

and using the normal approximation it follows that

P{∆D̂(k∗, k) ≤ 0} ≈ Q
(E{∆D̂(k∗, k)}√

Vm(k∗, k)

)
(39)

where E{∆D̂(k∗, k)} = ∆D(k∗, k) +∆Bm(k∗, k). The assertion now follows from
Lemma 5. ut

Theorem 1. Under the normal assumption,

FR(D̂) = 1− SR(D̂) ≈ exp
(
− min
k 6=k∗

(
∆D(k∗, k) +∆Bm(k∗, k)

)2

2 Vm(k∗, k)

)
. (40)

Proof. We combine Lemma 2 and 6. The lower bound of FR(D̂) is

≈ max
k 6=k∗

exp
(
−
(
∆D(k∗, k) +∆Bm(k∗, k)

)2

2 Vm(k∗, k)

)
(41)

= exp
(
− min
k 6=k∗

(
∆D(k∗, k) +∆Bm(k∗, k)

)2

2 Vm(k∗, k)

)
. (42)

The upper bound is the sum of vanishing exponentials (for k 6= k∗) which is
equivalent to the maximum of the vanishing exponentials, which yields the same
expression. The result follows since the lower and upper bounds from Lemma 2
are equivalent as m increases. ut

Corollary 1. For any additive distinguisher,

FR(D̂) = 1− SR(D̂) ≈ e−m·SE(D̂) (43)

where

SE(D̂) = min
k 6=k∗

∆D(k∗, k)2

2 Var
(
D̂(X;Y (k∗))− D̂(X;Y (k))

) . (44)

Proof. Apply the above theorem using Lemma 4 and Proposition 2. ut

Remark 5. We show in Sect. 5 that for non-additive distinguisher such as MIA
the closed-form expression for the first-order exponent is linear in the number
of measurements m so that the expression 1− SR ≈ e−m·SE may be considered
as fairly general for large m. Moreover, we experimentally show in in the next
section that this approximation already holds with excellent approximation for a
relatively small number of measurements m.
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4 Success Exponent for Few Measurements

Some devices such as unprotected 8-bit microprocessors require only a small
number of measurements to reveal the secret key. As the SNR is relatively high,
the targeted variable has the length of the full size, and on such processors, the
pipeline is short or even completely absent. On such worst-case platforms, such as
the AVR ATMega, the SNR can be as high as 7, for those instructions consisting
in memory look-ups. A CPA requires m = 12 measurements (cf. DPA contest v4,
for attacks reported in [2]).

In order to investigate the relation SR ≈ 1−e−mSE for such small values of m,
we target PRESENT [4], which is an SPN (Substitution Permutation Network)
block cipher, with leakage model given by Y (k) = HW (Sbox(T ⊕ k)), where
Sbox : F4

2 → F4
2 is the PRESENT substitution box and k ∈ F4

2. We considered
N ∼ N (0, 1) in our simulations applied to the following distinguishers:

– optimal distinguisher (a.k.a. template attack [8], whose formal expression is
given in [17] for Gaussian noise);

– DoM [20] 6 on bit #2;
– CPA (Example 1),
– MIA (Example 2), with three distinct bin widths of length ∆x ∈ {1, 2, 4},

and two kinds of binning:
• B1, which partitions R as

⋃
i∈N[i∆x, (i+ 1)∆x[, and

• B2, which partitions R as
⋃
i∈N[(i− 1

2 )∆x, (i+ 1
2 )∆x[.

Fig. 1: Failure rate for few measurements. (a) Optimal distinguisher, CPA, DoM,
and MIA. (b) Zoom out for less efficient attacks DoM and MIA.

Figure 1 shows the failure rate in a logarithmic scale for 10, 000 simulations
with additional error bars as described in [23]. To assess the linear dependence
log(1− SR) = −mSE between the logarithm of the error rate and the number of
traces, we have superimposed the linear slope −SE in black. We find that CPA
and the optimal distinguishers behave according to the law for m as small as 2!
6 It is known that for bit #1, the DoM is not sound: the same distinguisher value can
be obtained for the correct key k = k∗ and for at least one incorrect key k = k∗⊕0x9.
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The error rate of MIA and DoM becomes linear for m ≥ 40. Interestingly, for
MIA, the binning size has an impact (see also [14,28]). The best parameterization
of the MIA corresponds to ∆x = 2, for both B1 and B2.

5 Closed-Form Expressions of SE

5.1 Success Exponents for DoM and CPA

We precise our side-channel model from Eq. (2) in case of additive distinguishers.
As these distinguishers are most usually used when the leakage X is linearly
depend on Y ∗, we assume similar to previous works [12,37] X = αY ∗ +N . To
simplify the derivation, we assume that the distribution of Y (k) is identical for
all k. In other words, knowing the distribution of Y (k) does not give any evidence
about the secret (see [16,33] for similar assumptions). In particular Var{Y (k)}
is constant for all k. Without loss of generality we may normalize the sensitive
variable Y such that E{Y (k)} = 0 and Var{Y (k)} = E{Y (k)2} = 1. The SNR is
thus equal to α2/σ2.

We first introduce the idea of confusion coefficient and its generalization. The
notion of confusion coefficient arises from the customary analysis of the 2 × 2
confusion matrix, containing true/false positive/negative prediction outcomes
of a binary random variable. It can be extended in a straightforward manner
to arbitrary predictions, e.g., that of an integer-valued (e.g., Hamming weight)
or a real-valued (e.g., UWSB [39,41,17]) model. Such extension is similar to the
idea presented by Thillard et al. [37], which we call general 2-way confusion
coefficients.

Definition 8 (General 2-way confusion coefficients). For k 6= k∗ we define

κ(k∗, k) = E
{(Y (k∗)− Y (k)

2

)2}
, (45)

κ′(k∗, k) = E
{
Y (k∗)2

(Y (k∗)− Y (k)
2

)2}
. (46)

Remark 6. The authors of [12] defined the confusion coefficient as κ(k∗, k) =
P{Y (k∗) 6= Y (k)}. A straightforward computation gives

P{Y (k∗) 6= Y (k)} = P{Y (k∗) = −1, Y (k) = 1)}+ P{Y (k∗) = −1, Y (k) = 1}

= E{
(Y (k∗)− Y (k)

2
)2}. (47)

Thus our definition is consistent and a natural extension of the work in [12].
The alternative confusion coefficient introduced in [37] is defined as κ◦(k∗, k) =

E{Y (k∗)Y (k)}. The following relationship is easily obtained:

κ◦(k∗, k) = 1− 2κ(k∗, k). (48)
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Proposition 3 (SE for CPA). The success exponent for CPA takes the closed-
form expression

SE = min
k 6=k∗

α2κ2(k∗, k)
2(α2(κ′(k∗, k)− κ2(k∗, k)) + σ2κ(k∗, k)) . (49)

Proof. Proposition 3 is an immediate consequence of the formula in Eq. (44) and
the following lemma. ut

Lemma 7. The first two moments of ∆̂D(k∗, k) are given by

E{∆̂D(k∗, k)} = 2ακ(k∗, k), (50)

Var(∆̂D(k∗, k)) = 4[α2(κ′(k∗, k)− κ2(k∗, k)) + σ2κ(k∗, k)]. (51)

Proof. Recall from Remark 2 that ∆̂D(k∗, k) = XY ∗−XY = (αY ∗+N)(Y ∗−Y ).
On one hand, since we assumed that E{(Y ∗)2} = 1, we obtain

E{Y ∗(Y ∗ − Y )} = 1− E{Y ∗Y } = 2E
{(Y ∗ − Y

2

)2}
= 2κ(k∗, k). (52)

On the other hand, since N is independent of Y ,

E{N(Y ∗ − Y )} = E{N} · E{Y ∗ − Y } = 0. (53)

Combining we obtain E{∆̂D(k∗, k)} = 2ακ(k∗, k). For the variance we have

E{∆̂D(k∗, k)2} = E{(XY ∗ −XY )2} (54)
= E{N2(Y ∗ − Y )2}+ α2 E{Y ∗2(Y ∗ − Y )2} (55)
= 4σ2κ(k∗, k) + α24κ′(k∗, k), (56)

since all cross terms with N vanish. It follows that

Var(∆̂D(k∗, k)) = E{∆̂D(k∗, k)2} − E{∆̂D(k∗, k)}2 (57)
= 4[α2(κ′(k∗, k)− κ2(k∗, k)) + σ2κ(k∗, k)]. (58)

as announced. ut

For DoM with one-bit variables Y (k) ∈ {±1} we can further simplify the
success exponent such that it can be expressed directly through the SNR = α2/σ2,
number of measurements and 2-way confusion coefficient κ(k∗, k):

Proposition 4 (SE for 1-bit DoM). The success exponent for DoM takes the
closed-form expression

SE = 1

max
k 6=k∗

(2− 2κ(k∗, k)
κ(k∗, k) + 2

κ(k∗, k) SNR

) (59)
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Proof. When Y (k) ∈ {±1} one has the additional simplification:

κ(k∗, k) = E
{(Y (k∗)− Y (k)

2

)2}
= E

{
Y (k∗)2

(Y (k∗)− Y (k)
2

)2}
= κ′(k∗, k).

(60)

Now Proposition 4 follows directly from Proposition 3. ut

Remark 7. Estimating the success rate directly from confusion coefficients in-
cludes a computation of a multivariate normal cumulative distribution func-
tion [34] for which we have found that no closed-form expression exists. Moreover,
the corresponding covariance matrices [κ(k∗, i, j)]i,j and [κ(k∗, i)× κ(k∗, j)]i,j
that depend on the confusion coefficients are not of full rank. This effect was
similarly discovered for CPA by Rivain in [35], where the author propose to use
Monte-Carlo simulation to overcome this problem.

Therefore, it is difficult to rederive the expressions above for the success
exponent from the exact expressions of SR in [12,35]. However, one clearly
obtains the same exponential convergence behavior of SR toward 100%.

As a result, we stress that the closed-form expressions of SE above are more
convenient than the exact expressions for the SR for DoM and CPA, since in the
SE, only 2-way confusion coefficients κ(k∗, k), κ′(k∗, k) are involved without the
need to compute multivariate distributions.

5.2 Success Exponent for the Optimal Distinguisher

Definition 9 (Optimal distinguisher [17]). In case α is known and the noise
is Gaussian the optimal distinguisher is additive7 and given by

D(k) = −(X − αY )2 (61)

D̂(X,Y (k)) = −(X − αY (k))2. (62)

Interestingly, as we show in the following proposition the optimal distinguisher
involves the following confusion coefficient.

Definition 10 (Confusion coefficient for the optimal distinguisher). For
k 6= k∗ we define

κ′(k∗, k) = E
{(Y (k∗)− Y (k)

2

)4}
. (63)

Notice that κ(k∗, k) and κ′(k∗, k)− κ(k∗, k)2 are respectively the mean and the
variance of the random variable Y (k∗)−Y (k)

2 .
7 At least, expressions in Eqn. (61) and (62) are additive. These expressions remain
optimal distinguishers after a composition with any strictly increasing function.
However, they remain additive if and only if they are affinely scaled, with a strictly
positive linear coefficient. This is in line with the scale-invariant expression (44) of
the success exponent for additive distinguishers.
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Proposition 5 (SE for the optimal distinguisher). The success exponent
for the optimal distinguisher takes the closed-form expression

SE = min
k 6=k∗

α2κ2(k∗, k)
2(σ2κ(k∗, k) + α2(κ′(k∗, k)− κ(k∗, k)2) . (64)

Proof. Proposition 5 is an immediate consequence of the formula in Eq. (44) and
the following lemma. ut

Lemma 8. The first two moments of ∆̂D(k∗, k) are given by

E{∆̂D(k∗, k)} = 4α2κ(k∗, k), (65)

Var(∆̂D(k∗, k)) = 16α2(σ2κ(k∗, k) + α2(κ(k∗, k)′′ − κ(k∗, k)2)). (66)

Proof. Recall that E{N}=0. Straightforward calculation yields

E{∆̂D(k∗, k)} = E{−(X − αY ∗)2 + (X − αY )2} (67)
= E{2Nα(Y ∗ − Y )}+ E{α2(Y ∗ − Y )2} (68)
= 4α2κ(k∗, k). (69)

Next we have

E{∆̂D(k∗, k)2} = E{(2Nα(Y ∗ − Y ) + α2(Y ∗ − Y )2)2} (70)
= E{4N2α2(Y ∗ − 2)2}+ E{(Y ∗ − Y )4α4} (71)
= 16α2σ2κ(k∗, k) + 16α4κ′(k∗, k) (72)

which yields the announced formula for the variance. ut

Corollary 2. The closed-form expressions for DoM, CPA and for the optimal
distinguisher simplify for high noise σ � α in a single equation:

SE ≈ min
k 6=k∗

α2κ2(k∗, k)
2σ2κ(k∗, k) = 1

2 · SNR · min
k 6=k∗

κ(k∗, k). (73)

Proof. By Taylor expansion in SNR → 0. ut

Remark 8. Corollary 2 is inline with the findings in [17], that CPA and the
optimal distinguisher become closer the lower the SNR. However, note that,
in [17] CPA is the correlation of the absolute value.

Remark 9. From Corollary 2 and the relationship 1− SR ≈ e−m·SE one can
directly determine that if, e.g., the SNR is decreased by a factor of 2 the number
of measurements m have to multiplied by 2 in order to achieve the same success.
This verifies a well-known “rule of thumb” for side-channel attacks (see e.g., [24]).
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5.3 Success Exponent for MIA

Unlike CPA or DoM, the estimation of the mutual information in MIA:

D(k) = I(X,Y ) = H(X)−H(X|Y ) (74)

= −
∫
p(x) log p(x) dx+

∑
y

p(y)
∫
p(x|y) log p(x|y) dx (75)

is a nontrivial problem. While Y is discrete, the computation of mutual infor-
mation requires the estimation of the conditional pdfs p(x|y). For a detailed
evaluation of estimation methods for MIA we refer to [38].

In the following, we consider the estimation with histograms (H-MIA) in order
to simplify the derivation of a closed-form expression for SE. One partitions the
leakage X into h distinct bins bi of width ∆x with i = 1, . . . , h.

Definition 11. Let p̂(x) = #bi
m where #bi is the number of leakage values falling

into bin bi and let p̂(x|y) be the estimated probability knowing Y = y. Then

D̂(k) = −
∑
x

p̂(x) log p̂(x) +
∑
y

p̂(y)
∑
x

p̂(x|y) log p̂(x|y). (76)

To simplify the presentation that follows, we consider only the conditional
negentropy −Ĥ(X|Y ) as a distinguisher, since Ĥ(X) does not depend on the
key hypothesis k. Additionally, we assume that the distribution of Y is known to
the attacker so that she can use p(y) instead of p̂(y). Now H-MIA simplifies to

H-MIA(X,Y ) =
∑
y

p(y)
∑
x

p̂(x|y) log p̂(x|y) + log∆x. (77)

The additional term log∆x arises due to the fact that we have estimated the
differential entropy H(X). For more information on differential entropy and
mutual information we refer to [9].

Proposition 6 (SE for H-MIA).

SE ≈ min
k∗ 6=k

1
2
(
∆D(k∗, k) + ∆x2

24
(
∆J(k∗, k)

))2∑
y

p(y) Var{− log p(X|Y = y)}+
∑
y∗

p(y∗) Var{− log p(X|Y = y∗)}
,

(78)

where ∆D(k∗, k) = H(X|Y ) − H(X|Y ∗), ∆J(k∗, k) = J(X|Y ) − J(X|Y ∗),
J(X|Y ) =

∑
y p(y)J(X|Y = y) and J(X|Y ) is the Fisher information [13]:

J(X|Y = y) =
∫ ∞
−∞

[ ddxp(x|y)]2

p(x|y) dx. (79)
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Proof. Since Y is discrete the bias only arise due to the discretization of X and
the limited number of measurements m. Therefore, we use the approximations
given for the bias of Ĥ(X) in [27] (3.14) to calculate E{D̂(k)} and E{∆̂D(k∗, k)}
for H-MIA. To be specific, let h define the number of bins and ∆x their width.
Then

E{D̂(k)} = −E{Ĥ(X|Y )} = −
∑
y

p(y)E{Ĥ(X|Y = y)}, (80)

≈ −
∑
y

p(y)
[
H(X|Y = y) + ∆x2

24 J(X|Y = y)
]
− h− 1

2m , (81)

E{∆̂D(k∗, k)} ≈
∑
y

p(y)
[
H(X|Y = y) + ∆x2

24 J(X|Y = y)
]

−
(∑
y∗

p(y∗)
[
H(X|Y ∗ = y∗) + ∆x2

24 J(X|Y ∗ = y∗)
])
, (82)

with J(X|Y ) =
∑
y p(y)J(X|Y = y) and J(X|Y = y) being the Fisher informa-

tion
∫∞
−∞

[ ddxp(x|y)]2

p(x|y) dx [13].
To calculate Var{D̂(k)} we use the law of total variance [18] and the approxi-

mations for the variance given in [27] (4.9):

Var{D̂(k)} = Var{Ĥ(X|Y )}} = Var{E{Ĥ(X|Y = y)}} (83)

≈ Var{H(X)} − 1
m

∑
y

p(y) Var{− log p(x|y)} (84)

Var{∆̂D(k∗, k)} = Var{E{Ĥ(X|Y = y}} −Var{E{Ĥ(X|Y ∗ = y∗}} (85)
− 2 Cov(E{Ĥ(X|Y = y}},E{Ĥ(X|Y ∗ = y∗}})

≈ 1
m

(∑
y

p(y) Var{− log p(x|y)}+
∑
y

p(y∗) Var{− log p(x|y∗)}
)

(86)

From Eqs. (82) and (86) Proposition 6 follows directly. ut

Remark 10. Interestingly, even if MIA is not additive the SE is linear in the
number of measurements m just like for DoM and CPA. This is also confirmed
experimentally in the next subsection.

Remark 11. If N is normal distributed with variance σ2 we can further simplify
H(X|Y ∗ = y∗) = 1

2 log(2πeσ2) since p(x|y∗) = pN (x − y∗). Moreover, one has
J(X|Y ∗ = y) = 1

σ2 and Var{− log p(x|y∗)} = 1
2m .

Remark 12. Remarkably, the variance term does not depend on the size of ∆x
except in extreme cases like ∆x = 1 and ∆x→∞ – see [27] for more information.
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×10−3 σ = 5 σ = 7 σ = 10

DPA CPA OPT MIA DPA CPA OPT MIA DPA CPA OPT MIA

SE 0.2 4.5 4.8 1.4 0.1 2.3 2.4 0.8 0.01 1.2 1.2 0.4
SE (Eq. (73)) 0.2 4.7 4.7 — 0.1 2.4 2.4 — 0.01 1.2 1.2 —

ŜE 0.3 4.7 4.6 1.4 0.1 2.3 2.3 0.8 0.1 1.1 1.2 0.2

Table 1: Experimental validation of SE for several σ (values ×10−3)

5.4 Validation of the SE

To illustrate the validity of the success exponent and the derived closed-form
expressions, we choose the same scenario as in Sect. 4 (targeting the Sbox of
PRESENT) with a higher variance of the noise. We increased the bin width ∆x
to 4 for MIA, which lead to the best success when comparing with other widths.
To be reliable we conducted 500 independent experiments in each setting.

With the appropriate parameters (confusion coefficients, SNR, etc.), we have
computed the exact values for the closed-form expressions in Eq. (49), (59), (64),
and (78) for CPA, DoM, the optimal distinguisher, and MIA which are listed in
Table 1 with SE for several σ’s. Additionally, we computed for CPA, DoM, and
the optimal distinguisher the SE in case of low noise from Eq. (73). To show
that these values are valid and reasonable, we estimated the success exponent
ŜE from the general theoretical formula in Eq. (44) using simulations. One can
observe that Corollary 2 is valid.

Moreover, we estimated the success exponent directly from the obtained
success rate as − log(1 − SR(D̂))/m; this was done for limited values of m to
avoid the saturation effect of the SR(D̂) = 1. Figure 2b displays the theoretical
value of SE along with with the estimations as a function of the number of
measurements for σ = 5. For comparison we plot the success rate in Fig. 2a.

Remarkably, one can see that for all distinguishers, the two estimated values
are getting closer to the theoretical SE as m increases. This confirms our theoret-
ical study in Sect. 3 and also demonstrates that the first-order exponent of MIA
is indeed linear in the number of measurements as expected.

Furthermore, for practical measurements we used an Arduino pro mini board
with an AVR 328p micro-controller running at 16 MHz. We captured the operation
of the AES Substitution box during the first round at 2 GSa/s using an EM probe.
Figure 3a shows the success rate for DoM, CPA and MIA for 1600 independent
retries. We plot − log(1− SR(D̂))/m in Figure 3b. One can observe that DoM
converges to a constant. For CPA and MIA the saturation effect of SR(D̂) = 1 is
disguising the convergence.

These results raise a lot of new perspectives which we discuss next.



18 Sylvain Guilley, Annelie Heuser, Olivier Rioul, and Nicolas Bruneau

(a) Success rate

(b) Validation of the success exponent

Fig. 2: Success rate [top graph] and success exponent (SE) [bottom graph]

(a) Success rate SR(D̂) (b) − log(1− SR(D̂))/m

Fig. 3: Empirical results using real traces (Arduino board)
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6 Conclusion and Perspectives for Further Applications

In this work we investigated in the first-order exponent (success exponent SE) of
the success rate for arbitrary sound distinguishers under a mild normal assumption
as m increases. The resulting expressions were derived under the asymptotic
condition that the number of measurements m tends to infinity, but already hold
accurately for reasonable low values of m. More precisely, in the investigated
scenarios the approximations for CPA hold for m ≥ 2 whereas for MIA we have
m ≥ 40. As an illustration we derived the closed-form expressions of the SE
for DoM, CPA, the optimal distinguisher, and MIA and showed that they agree
theoretically and empirically.

This novel first-order exponent raises many new perspectives. In particular, the
resulting closed-form expressions for the SE allows one to answer questions such
as: “How many more traces?” for achieving a given goal. For example, suppose
that one has obtained SE = 90% after m measurements. To obtain 99% success
with the same distinguisher (hence the same SE), one should approximately
square (1− SR)2 = (0.1)2 = 0.01 which amounts to doubling m. Thus as a rule
of thumb we may say that “doubling the number of traces allows one to go from
90% to 99% chance of success”.

Finally, we underline that the success exponent would constitute another
approach to the question of comparing substitution boxes with respect to their
exploitability in side-channel analysis. It can nicely complement methods like
transparency order [31] (and variants thereof [6,30]). It can also characterize, in
the same framework, various countermeasures such as no masking vs. masking.

The generality of the proposed approach to derive the success exponent allows
one to investigate attack performance in many different scenarios, and we feel
that for this reason it is a promising tool.
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A Success Exponent in the Case of Masking

A.1 Notations for Masking

In this appendix we assume a dth-order perfect Boolean masking scheme [3]. This
means that each sensitive variable is split over d shares. As a consequence the
attacker needs to combine d different leakage samples defined by:

Xδ = ϕδ (fδ (T,M, k∗)) +Nδ (1 ≤ δ ≤ d).

In this equation (the multivariate analogous of Eqn. (2)), ϕδ is the leakage
function which is a characteristic of the device, and fδ denotes the selection
function. This function takes as inputs the text T (that is, either plain text or
cipher text), the secret key k∗ andM, a set of random variables (the masks).
In this model a Gaussian noise is assumed denoted by Nδ; we denote by σδ its
standard deviation.
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In order to exploit the leakages of the d shares an attacker combines them
using a combination function [7,26,29]. In the rest of this section, we assume that
the attacker uses the centered product as combination function [33].

We assume an attacker is able to model the leakage value up to a given
modulation α such that:

Xδ = αδ × Yδ(T,M, k∗) +Nδ (1 ≤ δ ≤ d).

We denote by X the result of the combination by centered product of the
leakage of each share:

X =
∏

1≤δ≤d
Xδ.

An attacker next compares this aggregated leakage with a theoretical model
given by:

Y (T, k) = E

 ∏
1≤δ≤d

Yδ

∣∣∣∣∣ T
 .

In this expression, the expectation is taken over the masksM. In order to
make notations lighter, we use the following shortcuts:

– Y instead of Y (k) or Y (T, k) (the dependency in the guessed key k is implicit);
– Y ∗ instead of Y (k∗) or Y (T, k∗) (that is, Y for the actual key k = k∗).

We have assumed without loss of generality that the leakages and the models
are centered and reduced.

We denote by dth-order CPA (dO-CPA) the attack which consists in recovering
the key as:

k̂ = argmaxkXY (k).

A.2 Success Exponent of HOCPA

One can notice that all the proofs in Sec. 2 and Sec. 3 are agnostic from the
leakages models and as a consequence can be extended to a CPA of any order.

Let us now compute the success exponent of a HOCPA.

Theorem 2. The SE of a dO-CPA is:

SE = min
k 6=k∗

κ (k∗, k)
2
(
κ′(k∗,k)
κ(k∗,k) − κ (k∗, k)

)
+ 2

∑
i∈{0,2}d
i6=(0,...,0)

∏
1≤δ≤d

(
α−iδδ · σiδδ

) ,

where κ′ (k∗, k) = E
{∏

1≤δ≤d (Yδ)2
(
Y ∗−Y

2

)2
}

is the multivariate extension of

Eqn. (46) in Def. 8.
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Proof. Let us now compute E {XY ∗ −XY }.

E {XY ∗} =
∏

1≤δ≤d
αδE

 ∏
1≤δ≤d

XδE

 ∏
1≤δ≤d

Yδ|T




=
∏

1≤δ≤d
αδE

Y ∗1 ∏
2≤δ≤d

YδE

 ∏
1≤δ≤d

Yδ|T



(
all the terms which
involve N vanish

)

=
∏

1≤δ≤d
αδE

E

 ∏
1≤δ≤d

Yδ|T

E

 ∏
1≤δ≤d

Yδ|T


 =

∏
1≤δ≤d

αδE
{
Y ∗2

}
.

Similarly:

E {XY } =
∏

1≤δ≤d
αδE

 ∏
1≤δ≤d

XδE

 ∏
1≤δ≤d

Yδ|T


 =

∏
1≤δ≤d

αδE {Y Y ∗} .

Let us define κ (k∗, k) = E
{(

(Y ∗−Y )
2

)2
}

(same as Eqn. (45) in Def. 8). Then

E {XY ∗ −XY } = 2κ (k∗, k)
∏

1≤δ≤d αδ.
Now let us compute E

{
(XY ∗ −XY )2

}
= E

{
X2 (Y ∗ − Y )2

}
. We have:

X2 =
∏

1≤δ≤d
X2
δ =

∏
1≤δ≤d

2∑
iδ=0

(
2
iδ

)
(αδYδ)2−iδ N iδ

δ

=
∑

0≤i1≤2
...

0≤id≤2

∏
2≤δ≤d

(
2
iδ

)
(αδYδ)2−iδ N iδ

δ .

It follows that:

E
{
X2 (Y ∗ − Y )2

}
=

∑
0≤i1≤2

...
0≤id≤2

∏
1≤δ≤d

((
2
iδ

)
· αδ
)
E

 ∏
1≤δ≤d

(Yδ)2−iδ (Y ∗ − Y )2

 ∏
1≤δ≤d

E
{
N iδ
δ

}
.

If there exists one δ such that iδ = 1, then:

∏
1≤δ≤d

(
2
iδ

)
E

 ∏
1≤δ≤d

(αYδ)2−iδ (Y ∗ − Y )2

 ∏
1≤δ≤d

E
{
N iδ
δ

}
= 0.
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It implies:

E
{
X2 (Y ∗ − Y )2

}
=

∑
i1∈{0,2}

...
id∈{0,2}

∏
1≤δ≤d

((
2
iδ

)
· α2−iδ

δ

)
E

 ∏
1≤δ≤d

(Yδ)2−iδ (Y ∗ − Y )2

 ∏
1≤δ≤d

E
{
N iδ
δ

}

=
∑

i1∈{0,2}
...

id∈{0,2}

∏
1≤δ≤d

(
α2−iδ
δ · σiδδ

)
E

 ∏
1≤δ≤d

(Yδ)2−iδ (Y ∗ − Y )2

 .

By the definition of a perfect masking scheme, if there exists a value δ such
that iδ = 2, then we have:

E

 ∏
1≤δ≤d

(Yδ)2−iδ (Y ∗ − Y )2

 = E
{

(Y ∗ − Y )2
}
.

Then, it follows that:

E
{
X2 (Y ∗ − Y )2

}
=
∑
i1=0
...

id=0

∏
1≤δ≤d

(
α2
δ

)
E

 ∏
1≤δ≤d

(Yδ)2 (Y ∗ − Y )2


+

∑
i∈{0,2}d
i6=(0,...,0)

∏
1≤δ≤d

(
α2−iδ
δ · σiδδ

)
E
{

(Y ∗ − Y )2
}
.

We can finally compute Var {(XY ∗ −XY )}:

Var {(XY ∗ −XY )} =
∑
i1=0
...

id=0

∏
1≤δ≤d

(
α2
δ

)
E

 ∏
1≤δ≤d

(Yδ)2 (Y ∗ − Y )2


+

∑
i∈{0,2}d
i 6=(0,...,0)

∏
1≤δ≤d

(
α2−iδ
δ · σiδδ

)
4κ (i∗, i)− 4κ (i∗, i)2 ∏

1≤δ≤d
α2
δ

=
∑
i1=0
...

id=0

∏
1≤δ≤d

(
α2
δ

)E

 ∏
1≤δ≤d

(Yδ)2 (Y ∗ − Y )2

− 4κ (i∗, i)2


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+
∑

i∈{0,2}d
i 6=(0,...,0)

∏
1≤δ≤d

(
α2−iδ
δ · σiδδ

)
4κ (i∗, i)

Let us write as κ′ (k∗, k) = E
{∏

1≤δ≤d (Yδ)2
(
Y ∗−Y

2

)2
}
. It is now possible

to compute the SE:

SE = min
k 6=k∗

4κ
(
k∗, k
)2∏

1≤δ≤d
α2
δ

2
∏

1≤δ≤d

(
α2
δ

)(
4κ′ (k∗, k) − 4κ (k∗, k)2

)
+ 2
∑

i∈{0,2}d
i6=(0,...,0)

∏
1≤δ≤d

(
α

2−iδ
δ

· σ
iδ
δ

)
4κ (k∗, k)

= min
k 6=k∗

2κ
(
k∗, k
)(

κ′(k∗,k)
4κ(k∗,k) − κ (k∗, k)

)
+
∑

i∈{0,2}d
i6=(0,...,0)

∏
1≤δ≤d

(
α
−iδ
δ

· σ
iδ
δ

) .
ut

Of course, we can assume a simpler model, where the SNR α2
δ/σ

2
δ is the same

at each sample 1 ≤ δ ≤ d.

Corollary 3. If α2
δ/σ

2
δ is the same at each sample 1 ≤ δ ≤ d, then:

SE = min
k 6=k∗

κ (k∗, k)

2
(
κ′(k∗,k)
κ(k∗,k) − κ (k∗, k)

)
+ 2

∑
1≤δ≤d

(
d
δ

) (σ2
δ

α2
δ

)δ . (87)

Proof. Straightforward application of Theorem 2. ut

In the limit where the SNR gets small (as in hardware implementations), then
we can derive the following approximation of Eqn. (87):

SE ≈ 1
2 · SNRd · min

k 6=k∗
κ(k∗, k). (88)

The result in Eqn. 88 generalizes Eqn. 73 (established for first-order attacks)
at higher orders d ≥ 1. It also shows the practical relevance of the confusion
coefficient, even when addressing high-order attacks.
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