
Zero Knowledge Protocols from Succinct Constraint Detection

Eli Ben-Sasson
eli@cs.technion.ac.il

Technion

Alessandro Chiesa
alexch@berkeley.edu

UC Berkeley

Michael A. Forbes
miforbes@csail.mit.edu

Stanford University

Ariel Gabizon
ariel@z.cash

ZcashCo∗

Michael Riabzev
mriabzev@cs.technion.ac.il

Technion

Nicholas Spooner
nick.spooner@berkeley.edu

UC Berkeley

September 20, 2017

Abstract

We study the problem of constructing proof systems that achieve both soundness and zero knowledge uncondi-
tionally (without relying on intractability assumptions). Known techniques for this goal are primarily combinatorial,
despite the fact that constructions of interactive proofs (IPs) and probabilistically checkable proofs (PCPs) heavily rely
on algebraic techniques to achieve their properties.

We present simple and natural modifications of well-known ‘algebraic’ IP and PCP protocols that achieve
unconditional (perfect) zero knowledge in recently introduced models, overcoming limitations of known techniques.

• We modify the PCP of Ben-Sasson and Sudan [BS08] to obtain zero knowledge for NEXP in the model of
Interactive Oracle Proofs [BCS16, RRR16], where the verifier, in each round, receives a PCP from the prover.

• We modify the IP of Lund, Fortnow, Karloff, and Nisan [LFKN92] to obtain zero knowledge for #P in the model
of Interactive PCPs [KR08], where the verifier first receives a PCP from the prover and then interacts with him.

The simulators in our zero knowledge protocols rely on solving a problem that lies at the intersection of coding theory,
linear algebra, and computational complexity, which we call the succinct constraint detection problem, and consists of
detecting dual constraints with polynomial support size for codes of exponential block length. Our two results rely on
solutions to this problem for fundamental classes of linear codes:

• An algorithm to detect constraints for Reed–Muller codes of exponential length. This algorithm exploits the
Raz–Shpilka [RS05] deterministic polynomial identity testing algorithm, and shows, to our knowledge, a first
connection of algebraic complexity theory with zero knowledge.

• An algorithm to detect constraints for PCPs of Proximity of Reed–Solomon codes [BS08] of exponential degree.
This algorithm exploits the recursive structure of the PCPs of Proximity to show that small-support constraints are
“locally” spanned by a small number of small-support constraints.

Keywords: probabilistically checkable proofs, interactive proofs, sumcheck, zero knowledge, polynomial identity testing

∗Work conducted while at Technion.

1

Contents
1 Introduction 3

1.1 Results . 3

2 Techniques 7
2.1 Detecting constraints for exponentially-large codes . 7
2.2 From constraint detection to zero knowledge via masking . 9
2.3 Achieving zero knowledge beyond NP . 11
2.4 Roadmap . 12

3 Definitions 13
3.1 Basic notations . 13
3.2 Single-prover proof systems . 13
3.3 Zero knowledge . 15
3.4 Codes . 16

4 Succinct constraint detection 18
4.1 Definition of succinct constraint detection . 18
4.2 Partial sums of low-degree polynomials . 20
4.3 Univariate polynomials with BS proximity proofs . 22

5 Sumcheck with perfect zero knowledge 28
5.1 Step 1 . 29
5.2 Step 2 . 32

6 Perfect zero knowledge for counting problems 34

7 Perfect zero knowledge from succinct constraint detection 35
7.1 A general transformation . 35
7.2 Perfect zero knowledge IOPs of proximity for Reed–Solomon codes . 38

8 Perfect zero knowledge for nondeterministic time 40
8.1 Perfect zero knowledge IOPs of proximity for LACSPs . 41
8.2 Perfect zero knowledge IOPs for RLACSPs . 42
8.3 Putting things together . 44

A Prior work on single-prover unconditional zero knowledge 45

B Proof of Lemma 4.3 46

C Proof of Lemma 4.6 47

D Proof of Lemma 4.11 48

E Proof of Claim 4.23 49

F Definition of the linear code family BS-RS 50

G Proof of Lemma 4.27 52
G.1 The recursive cover and its combinatorial properties . 52
G.2 Computing spanning sets of dual codes in the recursive cover . 54
G.3 Putting things together . 55

H Folklore claim on interpolating sets 56

Acknowledgements 57

References 57

2

1 Introduction
The study of interactive proofs (IPs) [BM88, GMR89] that unconditionally achieve zero knowledge [GMR89] has led
to a rich theory, with connections well beyond zero knowledge. For example, the class of languages with statistical
zero knowledge IPs, which we denote by SZK-IP, has complete problems that make no reference to either zero
knowledge or interaction [SV03, GV99] and is closed under complement [Oka00, Vad99]. Despite the fact that all
PSPACE languages have IPs [Sha92], SZK-IP is contained in AM ∩ coAM, and thus NP is not in SZK-IP
unless the polynomial hierarchy collapses [BHZ87]; one consequence is that Graph Non-Isomorphism is unlikely to
be NP-complete. Moreover, constructing SZK-IP for a language is equivalent to constructing instance-dependent
commitments for the language [IOS97, OV08], and has connections to other fundamental information-theoretic notions
like randomized encodings [AR16, VV15] and secret-sharing schemes [VV15].

Unconditional zero knowledge in other models behaves very differently. Ben-Or, Goldwasser, Kilian, and Wigderson
[BGKW88] introduced the model of multi-prover interactive proofs (MIPs) and showed that all such proofs can be made
zero knowledge unconditionally. The analogous statement for IPs is equivalent to the existence of one-way functions, as
shown by [GMR89, IY87, BGG+88] in one direction and by [Ost91, OW93] in the other (unless BPP = PSPACE,
in which case the statement is trivial). Subsequent works not only established that all NEXP languages have MIPs
[BFL91], but also led to formulating probabilistically checkable proofs (PCPs) and proving the celebrated PCP Theorem
[FRS88, BFLS91, FGL+96, AS98, ALM+98], as well as constructing statistical zero knowledge PCPs [KPT97] and
applying them to black-box cryptography [IMS12, IMSX15].

The theory of zero knowledge for these types of proofs, however, is not as rich as in the case of IPs. Most notably,
known techniques to achieve zero knowledge MIPs or PCPs are limited, and come with caveats. Zero knowledge MIPs
are obtained via complex generic transformations [BGKW88], assume the full power of the PCP Theorem [DFK+92],
or support only languages in NP [LS95]. Zero knowledge PCPs are obtained via a construction that incurs polynomial
blowups in proof length and requires the honest verifier to adaptively query the PCP [KPT97]. Alternative approaches
are not known, despite attempts to find them. For example, [IWY16] apply PCPs to leakage-resilient circuits, obtaining
PCPs for NP that do have a non-adaptive honest verifier but are only witness indistinguishable.

Even basic questions such as “are there zero-knowledge PCPs of quasilinear-size?” or “are there zero-knowledge
PCPs with non-adaptive honest verifiers?” have remained frustratingly hard to answer, despite the fact the answers to
these questions are well understood when removing the requirement of zero knowledge. This state of affairs begs the
question of whether a richer theory about zero knowledge MIPs and PCPs could be established.

The current situation is that known techniques to achieve zero knowledge MIPs and PCPs are combinatorial, namely
they make black-box use of an underlying MIP or PCP, despite the fact that most MIP and PCP constructions have a rich
algebraic structure arising from the use of error correcting codes based on evaluations of low-degree polynomials. This
separation is certainly an attractive feature, and perhaps even unsurprising: while error-correcting codes are designed to
help recover information, zero knowledge proofs are designed to hide it.

Yet, a recent work by Ben-Sasson, Chiesa, Gabizon, and Virza [BCGV16] brings together linear error correcting
codes and zero knowledge using an algebraic technique that we refer to as ‘masking’. The paper introduces a “2-round
PCP” for NP that unconditionally achieves zero knowledge and, nevertheless, has both quasilinear size and a non-
adaptive honest verifier. Their work can be viewed not only as partial progress towards some of the open questions
above, but also as studying the power of zero knowledge for a natural extension of PCPs (“multi-round PCPs” as
discussed below) with its own motivations and applications [BCS16, RRR16, BCG+17].

The motivation of this work is to understand the power of algebraic tools, such as linear error correcting codes, for
achieving zero knowledge unconditionally (without relying on intractability assumptions).

1.1 Results
We present new protocols that unconditionally achieve soundness and zero knowledge in recently suggested models that
combine features of PCPs and IPs [KR08, BCS16, RRR16]. Our protocols consist of simple and natural modifications
to well-known constructions: the PCP of Ben-Sasson and Sudan [BS08] and the IP for polynomial summation of Lund,
Fortnow, Karloff, and Nisan [LFKN92]. By leveraging the linear codes used in these constructions, we reduce the
problem of achieving zero knowledge to solving exponentially-large instances of a new linear-algebraic problem that
we call constraint detection, which we believe to be of independent interest. We design efficient algorithms for solving

3

this problem for notable linear code families, along the way exploiting connections to algebraic complexity theory and
local views of linear codes. We now elaborate on the above by discussing each of our results.

1.1.1 Zero knowledge for non-deterministic exponential time

Two recent works [BCS16, RRR16] independently introduce and study the notion of an interactive oracle proof (IOP),
which can be viewed as a “multi-round PCP”. Informally, an IOP is an IP modified so that, whenever the prover sends to
the verifier a message, the verifier does not have to read the message in full but may probabilistically query it. Namely,
in every round, the verifier sends the prover a message, and the prover replies with a PCP. IOPs enjoy better efficiency
compared to PCPs [BCG+17], and have applications to constructing argument systems [BCS16] and IPs [RRR16].

The aforementioned work of [BCGV16] makes a simple modification to the PCP of Ben-Sasson and Sudan [BS08]
and obtains a 2-round IOP for NP that is perfect zero knowledge, and yet has quasilinear size and a non-adaptive honest
verifier. Our first result consists of extending this prior work to all languages in NEXP, positively answering an open
question raised there. We do so by constructing, for each time T and query bound b, a suitable IOP for NTIME(T)
that is zero knowledge against query bound b; the result for NEXP follows by setting b to be super-polynomial.

The foregoing notion of zero knowledge for IOPs directly extends that for PCPs, and requires showing the existence
of an algorithm that simulates the view of any (malicious and adaptive) verifier interacting with the honest prover and
making at most b queries across all oracles; here, ‘view’ consists of the answers to queries across all oracles.1

Theorem 1.1 (informal statement of Thm. 8.1). For every time bound T and query bound b, the complexity class
NTIME(T) has 2-round Interactive Oracle Proofs that are perfect zero knowledge against b queries, and where the
proof length is Õ(T + b) and the (honest verifier’s) query complexity is polylog(T + b).

The prior work of [BCGV16] was “stuck” at NP because their simulator runs in poly(T + b) time so that T, b
must be polynomially-bounded. In contrast, we achieve all of NEXP by constructing, for essentially the same simple
2-round IOP, a simulator that runs in time poly(q̃+ log T + log b), where q̃ is the actual number of queries made by the
malicious verifier. This is an exponential improvement in simulation efficiency, and we obtain it by conceptualizing and
solving a linear-algebraic problem about Reed–Solomon codes, and their proximity proofs, as discussed in Section 1.1.3.

In sum, our theorem gives new tradeoffs compared to [KPT97]’s result, which gives statistical zero knowledge
PCPs for NTIME(T) with proof length poly(T, b) and an adaptive honest verifier. We obtain perfect zero knowledge
for NTIME(T), with quasilinear proof length and a non-adaptive honest verifier, at the price of “2 rounds of PCPs”.

1.1.2 Zero knowledge for counting problems

Kalai and Raz [KR08] introduce and study the notion of interactive PCPs (IPCPs), which “sits in between” IPs and
IOPs: the prover first sends the verifier a PCP, and then the prover and verifier engage in a standard IP. IPCPs also enjoy
better efficiency compared to PCPs or IPs alone [KR08].

We show how a natural and simple modification of the sumcheck protocol of Lund, Fortnow, Karloff, and Nisan
[LFKN92] achieves perfect zero knowledge in the IPCP model, even with a non-adaptive honest verifier. By running
this protocol on the usual arithmetization of the counting problem associated to 3SAT, we obtain our second result,
which is IPCPs for #P that are perfect zero knowledge against unbounded queries. This means that there exists a
polynomial-time algorithm that simulates the view of any (malicious and adaptive) verifier making any polynomial
number of queries to the PCP oracle. Here, ‘view’ consists of answers to oracle queries and the transcript of interaction
with the prover. (In particular, this notion of zero knowledge is a ‘hybrid’ of corresponding notions for PCPs and IPs.)

Theorem 1.2 (informal statement of Thm. 6.2). The complexity class #P has Interactive PCPs that are perfect zero
knowledge against unbounded queries. The PCP proof length is exponential, and the communication complexity of the
interaction and the (honest verifier’s) query complexity are polynomial.

Our construction relies on a random self-reducibility property of the sumcheck protocol (see Section 2.2.2 for a
summary) and its completeness and soundness properties are straightforward to establish. As in our previous result, the

1More precisely, while in a zero knowledge IP or MIP one is required to simulate the entire transcript of interaction (with one or multiple provers),
in a zero knowledge IOP or PCP one is merely required to simulate answers to the oracle queries but not the entire oracle.

4

“magic” lies in the construction of the simulator, which must solve the same type of exponentially-large linear-algebraic
problem, except that this time it is about Reed–Muller codes rather than Reed–Solomon codes. The algorithm that
we give to solve this task relies on connections to the problem of polynomial identity testing in the area of algebraic
complexity theory, as we discuss further below.

Goyal, Ishai, Mahmoody, and Sahai [GIMS10] also study zero knowledge for IPCPs, and show how to obtain IPCPs
for NP that (i) are statistical zero knowledge against unbounded queries, and yet (ii) each location of the (necessarily)
super-polynomial size PCP is polynomial-time computable given the NP witness. They further prove that these two
properties are not attainable by zero knowledge PCPs. Their construction consists of replacing the commitment scheme
in the zero knowledge IP for 3-colorability of [GMW91] with an information-theoretic analogue in the IPCP model.
Our Theorem 1.2 also achieves zero knowledge against unbounded queries, but targets the complexity class #P (rather
than NP), for which there is no clear analogue of property (ii) above.

Information-theoretic commitments also underlie the construction of zero knowledge PCPs [KPT97]. One could
apply the [KPT97] result for NEXP to obtain zero knowledge PCPs (thus also IPCPs) for #P, but this is an indirect
and complex route (in particular, it relies on the PCP Theorem) that, moreover, yields an adaptive honest verifier. Our
direct construction is simple and natural, and also yields a non-adaptive honest verifier.

We now discuss the common algebraic structure that allowed us to obtain both of the above results. We believe that
further progress in understanding these types of algebraic techniques will lead to further progress in understanding the
power of unconditional zero knowledge for IOPs and IPCPs, and perhaps also for MIPs and PCPs.

1.1.3 Succinct constraint detection for Reed–Muller and Reed–Solomon codes

The constructions underlying both of our theorems achieve zero knowledge by applying a simple modification to
well-known protocols: the PCP of Ben-Sasson and Sudan [BS08] underlies our result for NEXP and the sumcheck
protocol of Lund, Fortnow, Karloff, and Nisan [LFKN92] underlies our result for #P.

In both of these protocols the verifier has access (either via a polynomial-size representation or via a PCP oracle)
to an exponentially-large word that allegedly belongs to a certain linear code, and the prover ‘leaks’ hard-to-compute
information in the process of convincing the verifier that this word belongs to the linear code. We achieve zero
knowledge via a modification that we call masking: the prover sends to the verifier a PCP containing a random codeword
in this code, and then convinces the verifier that the sum of these two (the original codeword and this random codeword)
is close to the linear code.2 Intuitively, zero knowledge comes from the fact that the prover now argues about a random
shift of the original word.

However, this idea raises a problem: how does the simulator ‘sample’ an exponentially-large random codeword in
order to answer the verifier’s queries to the PCP? Solving this problem crucially relies on solving a problem that lies at
the intersection of coding theory, linear algebra, and computational complexity, which we call the constraint detection
problem. We informally introduce it and state our results about it, and defer to Section 2.2 a more detailed discussion of
its connection to zero knowledge.
Detecting constraints in codes. Constraint detection is the problem of determining which linear relations hold across
all codewords of a linear code C ⊆ FD, when considering only a given subdomain I ⊆ D of the code rather than all
of the domain D. This problem can always be solved in time that is polynomial in |D| (via Gaussian elimination);
however, if there is an algorithm that solves this problem in time that is polynomial in the subdomain’s size |I|, rather
than the domain’s size |D|, then we say that the code has succinct constraint detection; in particular, the domain could
have exponential size and the algorithm would still run in polynomial time.

Definition 1.3 (informal). We say that a linear code C ⊆ FD has succinct constraint detection if there exists an
algorithm that, given a subset I ⊆ D, runs in time poly(log |F| + log |D| + |I|) and outputs z ∈ FI such that∑
i∈I z(i)w(i) = 0 for all w ∈ C, or “no” if no such z exists. (In particular, |D| may be exponential.)

We further discuss the problem of constraint detection in Section 2.1, and provide a formal treatment of it in Section 4.1.
Beyond this introduction, we shall use (and achieve) a stronger definition of constraint detection: the algorithm is
required to output a basis for the space of dual codewords in C⊥ whose support lies in the subdomain I , i.e., a basis for

2This is reminiscent of the use of a random secret share of 0 to achieve privacy in information-theoretic multi-party protocols [BGW88].

5

the space {z ∈ DI : ∀w ∈ C ,
∑
i∈I z(i)w(i) = 0}. Note that in our discussion of succinct constraint detection we

do not leverage the distance property of the code C, but we do leverage it in our eventual applications.
Our zero knowledge simulators’ strategy includes sampling a “random PCP”: a random codeword w in a linear

code C with exponentially large domain size |D| (see Section 2.2 for more on this). Explicitly sampling w requires
time Ω(|D|), and so is inefficient. But a verifier makes only polynomially-many queries to w, so the simulator has
to only simulate w when restricted to polynomial-size sets I ⊆ D, leaving open the possibility of doing so in time
poly(|I|). Achieving such a simulation time is an instance of (efficiently and perfectly) “implementing a huge random
object” [GGN10] via a stateful algorithm [BW04]. We observe that if C has succinct constraint detection then this
sampling problem for C has a solution: the simulator maintains the set {(i, ai)}i∈I of past query-answer pairs; then, on
a new verifier query j ∈ D, the simulator uses constraint detection to determine if wj is linearly dependent on wI , and
answers accordingly (such linear dependencies characterize the required probability distribution, see Lemma 4.3).

Overall, our paper thus provides an application (namely, obtaining zero knowledge simulators) where the problem
of efficient implementation of huge random objects arises naturally.

We now state our results about succinct constraint detection.
(1) Reed–Muller codes, and their partial sums. We prove that the family of linear codes comprised of evaluations
of low-degree multivariate polynomials, along with their partial sums, has succinct constraint detection. This family
is closely related to the sumcheck protocol [LFKN92], and indeed we use this result to obtain a PZK analogue of the
sumcheck protocol (see Section 2.2.2 and Section 5), which yields Theorem 1.2 (see Section 2.3.1 and Section 6).

Recall that the family of Reed–Muller codes, denoted RM, is indexed by tuples n = (F,m, d), where F is a finite
field and m, d are positive integers, and the n-th code consists of codewords w : Fm → F that are the evaluation of an
m-variate polynomial Q of individual degree less than d over F. We denote by ΣRM the family that extends RM with
evaluations of all partial sums over certain subcubes of a hypercube:

Definition 1.4 (informal). We denote by ΣRM the linear code family that is indexed by tuples n = (F,m, d,H), where
H is a subset of F, and where the n-th code consists of codewords (w0, . . . , wm) such that there exists an m-variate
polynomial Q of individual degree less than d over F for which wi : Fm−i → F is the evaluation of the i-th partial sum
of Q over H , i.e, wi(~α) =

∑
~γ∈Hi Q(~α,~γ) for every ~α ∈ Fm−i.

The domain size for codes in ΣRM is Ω(|F|m), but our detector’s running time is exponentially smaller.

Theorem 1.5 (informal statement of Thm. 4.9). The family ΣRM has succinct constraint detection:
there is a detector algorithm for ΣRM that runs in time poly(log |F|+m+ d+ |H|+ |I|).

We provide intuition for the theorem’s proof in Section 2.1.1 and provide the proof’s details in Section 4.2; the proof
leverages tools from algebraic complexity theory. (Our proof also shows that the family RM, which is a restriction
of ΣRM, has succinct constraint detection.) Our theorem implies perfect and stateful implementation of a random
low-degree multivariate polynomial and its partial sums over any hypercube; our proof extends an algorithm of [BW04],
which solves this problem in the case of parity queries to boolean functions on subcubes of the boolean hypercube.
(2) Reed–Solomon codes, and their PCPPs. Second, we prove that the family of linear codes comprised of
evaluations of low-degree univariate polynomials concatenated with corresponding BS proximity proofs [BS08] has
succinct constraint detection. This family is closely related to quasilinear-size PCPs for NEXP [BS08], and indeed we
use this result to obtain PZK proximity proofs for this family (see Section 2.2.3 and Section 7), from which we derive
Theorem 1.1 (see Section 2.3.2 and Section 8).

Definition 1.6 (informal). We denote by BS-RS the linear code family indexed by tuples n = (F, L, d), where F is an
extension field of F2, L is a linear subspace in F, and d is a positive integer; the n-th code consists of evaluations on L
of univariate polynomials Q of degree less than d, concatenated with corresponding [BS08] proximity proofs.

The domain size for codes in BS-RS is Ω(|L|), but our detector’s running time is exponentially smaller.

Theorem 1.7 (informal statement of Thm. 4.12). The family BS-RS has succinct constraint detection:
there is a detector algorithm for BS-RS that runs in time poly(log |F|+ dim(L) + |I|).

We provide intuition for the theorem’s proof in Section 2.1.2 and provide the proof’s details in Section 4.3; the proof
leverages combinatorial properties of the recursive construction of BS proximity proofs.

6

2 Techniques
We informally discuss intuition behind our algorithms for detecting constraints (Section 2.1), their connection to zero
knowledge (Section 2.2), and how we derive our results about #P and NEXP (Section 2.3). Throughout, we provide
pointers to the technical sections that contain further details.

2.1 Detecting constraints for exponentially-large codes
As informally introduced in Section 1.1.3, the constraint detection problem corresponding to a linear code family
C = {Cn}n with domain D(·) and alphabet F(·) is the following: given an index n ∈ {0, 1}∗ and subset I ⊆ D(n),
output a basis for the space {z ∈ D(n)I : ∀w ∈ Cn ,

∑
i∈I z(i)w(i) = 0}. In other words, for a given subdomain I ,

we wish to determine all linear relations that hold for codewords in Cn restricted to the subdomain I .
If a generating matrix forCn can be found in polynomial time, this problem can be solved in poly(|n|+|D(n)|) time

via Gaussian elimination (such an approach was implicitly taken by [BCGV16] to construct a perfect zero knowledge
simulator for an IOP for NP). However, in our setting |D(n)| is exponential in |n|, so the straightforward solution is
inefficient. With this in mind, we say that C has succinct constraint detection if there exists an algorithm that solves its
constraint detection problem in poly(|n|+ |I|) time, even if |D(n)| is exponential in |n|.

The formal definition of succinct constraint detection is in Section 4.1. In the rest of this section we provide intuition
for two of our theorems: succinct constraint detection for the family ΣRM and for the family BS-RS. As will become
evident, the techniques that we use to prove the two theorems differ significantly. Perhaps this is because the two
codes are quite different: ΣRM has a simple and well-understood algebraic structure, whereas BS-RS is constructed
recursively using proof composition.

2.1.1 From algebraic complexity to detecting constraints for Reed–Muller codes and their partial sums

The purpose of this section is to provide intuition about the proof of Theorem 1.5, which states that the family ΣRM
has succinct constraint detection. (Formal definitions, statements, and proofs are in Section 4.2.) We thus outline how
to construct an algorithm that detects constraints for the family of linear codes comprised of evaluations of low-degree
multivariate polynomials, along with their partial sums. Our construction generalizes the proof of [BW04], which
solves the special case of parity queries to boolean functions on subcubes of the boolean hypercube by reducing this
problem to a probabilistic identity testing problem that is solvable via an algorithm of [RS05].

Below, we temporarily ignore the partial sums, and focus on constructing an algorithm that detects constraints for
the family of Reed–Muller codes RM, and at the end of the section we indicate how we can also handle partial sums.
Step 1: phrase as linear algebra problem. Consider a codeword w : Fm → F that is the evaluation of an m-variate
polynomial Q of individual degree less than d over F. Note that, for every ~α ∈ Fm, w(~α) equals the inner product
of Q’s coefficients with the vector φ~α that consists of the evaluation of all dm monomials at ~α. One can argue that
constraint detection for RM is equivalent to finding the nullspace of {φ~α}~α∈I . However, “writing out” this |I| × dm
matrix and performing Gaussian elimination is too expensive, so we must solve this linear algebra problem succinctly.
Step 2: encode vectors as coefficients of polynomials. While each vector φ~α is long, it has a succinct description; in
fact, we can construct an m-variate polynomial Φ~α whose coefficients (after expansion) are the entries of φ~α, but has an
arithmetic circuit of only size O(md): namely, Φ~α(~X) :=

∏m
i=1(1 + αiXi + α2

iX
2
i + · · ·+ αd−1

i Xd−1
i). Computing

the nullspace of {Φ~α}~α∈I is thus equivalent to computing the nullspace of {φ~α}~α∈I .
Step 3: computing the nullspace. Computing the nullspace of a set of polynomials is a problem in algebraic
complexity theory, and is essentially equivalent to the Polynomial Identity Testing (PIT) problem, and so we leverage
tools from that area.3 While there are simple randomized algorithms to solve this problem (see for example [Kay10,
Lemma 8] and [BW04]), these algorithms, due to a nonzero probability of error, suffice to achieve statistical zero
knowledge but do not suffice to achieve perfect zero knowledge. To obtain perfect zero knowledge, we need a solution
that has no probability of error. Derandomizing PIT for arbitrary algebraic circuits seems to be beyond current

3PIT is the following problem: given a polynomial f expressed as an algebraic circuit, is f identically zero? This problem has well-known
randomized algorithms [Zip79, Sch80], but deterministic algorithms for all circuits seem to be beyond current techniques [KI04]. PIT is a central
problem in algebraic complexity theory, and suffices for solving a number of other algebraic problems. We refer the reader to [SY10] for a survey.

7

techniques (as it implies circuit lower bounds [KI04]), but derandomizations are currently known for some restricted
circuit classes. The polynomials that we consider are special: they fall in the well-studied class of “sum of products of
univariates”, and for this case we can invoke the deterministic algorithm of [RS05] (see also [Kay10]). (It is interesting
that derandomization techniques are ultimately used to obtain a qualitative improvement for an inherently probabilistic
task, i.e., perfect sampling of verifier views.)

The above provides an outline for how to detect constraints for RM. The extension to ΣRM, which also includes partial
sums, is achieved by considering a more general form of vectors φ~α as well as corresponding polynomials Φ~α. These
polynomials also have the special form required for our derandomization. See Section 4.2 for details.

2.1.2 From recursive code covers to detecting constraints for Reed–Solomon codes and their PCPPs

The purpose of this section is to provide intuition about the proof of Theorem 1.7, which states that the family BS-RS
has succinct constraint detection. (Formal definitions, statements, and proofs are in Section 4.3.) We thus outline how
to construct an algorithm that detects constraints for the family of linear codes comprised of evaluations of low-degree
univariate polynomials concatenated with corresponding BS proximity proofs [BS08].

Our construction leverages the recursive structure of BS proximity proofs: we identify key combinatorial properties
of the recursion that enable “local” constraint detection. To define and argue these properties, we introduce two notions
that play a central role throughout the proof:

A (local) view of a linear code C ⊆ FD is a pair (D̃, C̃) such that D̃ ⊆ D and C̃ = C|D̃ ⊆ FD̃.
A cover of C is a set of local views S = {(D̃j , C̃j)}j of C such that D = ∪jD̃j .

Combinatorial properties of the recursive step. Given a finite field F, domain D ⊆ F, and degree d, let C :=
RS[F, D, d] be the Reed–Solomon code consisting of evaluations on D of univariate polynomials of degree less than d
over F; for concreteness, say that the domain size is |D| = 2n and the degree is d = |D|/2 = 2n−1.

The first level of [BS08]’s recursion appends to each codeword f ∈ C an auxiliary function π1(f) : D′ → F with
domain D′ disjoint from D. Moreover, the mapping from f to π1(f) is linear over F, so the set C1 := {f‖π1(f)}f∈C ,
where f‖π1(f) : D ∪D′ → F is the function that agrees with f on D and with π1(f) on D′, is a linear code over F.
The code C1 is the “first-level” code of a BS proximity proof for f .

The code C1 has a naturally defined cover S1 = {(D̃j , C̃j)}j such that each C̃j is a Reed–Solomon code
RS[F, D̃j , dj] with 2dj ≤ |D̃j | = O(

√
d), that is, with rate 1/2 and block length O(

√
d). We prove several combinato-

rial properties of this cover:

• S1 is 1-intersecting. For all distinct j, j′ in J , |D̃j ∩ D̃j′ | ≤ 1 (namely, the subdomains are almost disjoint).

• S1 is O(
√
d)-local. Every partial assignment to O(

√
d) domains D̃j in the cover that is locally consistent with the

cover can be extended to a globally consistent assignment, i.e., to a codeword of C1. That is, there exists κ = O(
√
d)

such that every partial assignment h : ∪κ`=1 D̃j` → F with h|D̃j` ∈ C̃j` (for each `) equals the restriction to the

subdomain ∪κ`=1D̃j` of some codeword f‖π1(f) in C1.

• S1 is O(
√
d)-independent. The ability to extend locally-consistent assignments to “globally-consistent” codewords

of C1 holds in a stronger sense: even when the aforementioned partial assignment h is extended arbitrarily to κ
additional point-value pairs, this new partial assignment still equals the restriction of some codeword f‖π1(f) in C1.

The locality property alone already suffices to imply that, given a subdomain I ⊆ D ∪D′ of size |I| <
√
d, we can

solve the constraint detection problem on I by considering only those constraints that appear in views that intersect I
(see Lemma 4.22). But C has exponential block length so a “quadratic speedup” does not yet imply succinct constraint
detection. To obtain it, we also leverage the intersection and independence properties to reduce “locality” as follows.
Further recursive steps. So far we have only considered the first recursive step of a BS proximity proof; we show how
to obtain covers with smaller locality (and thereby detect constraints with more efficiency) by considering additional
recursive steps. Each code C̃j in the cover S1 of C1 is a Reed–Solomon code RS[F, D̃j , dj] with |D̃j |, dj = O(

√
d),

and the next recursive step appends to each codeword in C̃j a corresponding auxiliary function, yielding a new code

8

C2. In turn, C2 has a cover S2, and another recursive step yields a new code C3, which has its own cover S3, and so
on. The crucial technical observation (Lemma 4.20) is that the intersection and independence properties, which hold
recursively, enable us to deduce that Ci is 1-intersecting, O(2i

√
d)-local, and O(2i

√
d)-independent; in particular, for

r = log log d+O(1), Sr is 1-intersecting, O(1)-local, O(1)-independent.
Then, recalling that detecting constraints for local codes requires only the views in the cover that intersect I

(Lemma 4.22), our constraint detector works by choosing i ∈ {1, . . . , r} such that the cover Si is poly(|I|)-local,
finding in this cover a poly(|I|)-size set of poly(|I|)-size views that intersect I , and computing in poly(|I|) time a
basis for the dual of each of these views — thereby proving Theorem 1.7.

Remark 2.1. For the sake of those familiar with BS-RS we remark that the domain D′ is the carefully chosen subset
of F× F designated by that construction, the code C1 is the code that evaluates bivariate polynomials of degree O(

√
d)

on D ∪D′ (along the way mapping D ⊆ F to a subset of F× F), the subdomains D̃j are the axis-parallel “rows” and
“columns” used in that recursive construction, and the codes C̃j are Reed–Solomon codes of block length O(

√
d). The

O(
√
d)-locality and independence follow from basic properties of bivariate Reed–Muller codes; see Example 4.14.

Remark 2.2. It is interesting to compare the above result with linear lower bounds on query complexity for testing
proximity to random low density parity check (LDPC) codes [BHR05, BGK+10]. Those results are proved by obtaining
a basis for the dual code such that every small-support constraint is spanned by a small subset of that basis. The
same can be observed to hold for BS-RS, even though this latter code is locally testable with polylogarithmic query
complexity [BS08, Thm. 2.13]. The difference between the two cases is due to the fact that, for a random LDPC
code, an assignment that satisfies all but a single basis-constraint is (with high probability) far from the code, whereas
the recursive and 1-intersecting structure of BS-RS implies the existence of words that satisfy all but a single basis
constraint, yet are negligibly close to being a codeword.

2.2 From constraint detection to zero knowledge via masking
We provide intuition about the connection between constraint detection and zero knowledge (Section 2.2.1), and how
we leverage this connection to achieve two intermediate results: (i) a sumcheck protocol that is zero knowledge in the
Interactive PCP model (Section 2.2.2); and (ii) proximity proofs for Reed–Solomon codes that are zero knowledge in
the Interactive Oracle Proof model (Section 2.2.3).

2.2.1 Local simulation of random codewords

Suppose that the prover and verifier both have oracle access to a codeword w ∈ C, for some linear code C ⊆ FD with
exponential-size domain D, and that they need to engage in some protocol that involves w. During the protocol, the
prover may leak information about w that is hard to compute (e.g., requires exponentially-many queries to w), and so
would violate zero knowledge (as we see below, this is the case for protocols such as sumcheck).

Rather than directly invoking the protocol, the prover first sends to the verifier a random codeword r ∈ C (as an
oracle since r has exponential size) and the verifier replies with a random field element ρ ∈ F; then the prover and
verifier invoke the protocol on the new codeword w′ := ρw + r ∈ C rather than w. Intuitively, running the protocol on
w′ now does not leak information about w, because w′ is random in C (up to resolvable technicalities). This random
self-reducibility makes sense for only some protocols, e.g., those where completeness is preserved for any choice of ρ
and soundness is broken for only a small fraction of ρ; but this will indeed be the case for the settings described below.

The aforementioned masking technique was used by [BCGV16] for codes with polynomial-size domains, but we use
it for codes with exponential-size domains, which requires exponentially more efficient simulation techniques. Indeed,
to prove (perfect) zero knowledge, a simulator must be able to reproduce, exactly, the view obtained by any malicious
verifier that queries entries of w′, a uniformly random codeword in C; however, it is too expensive for the simulator
to explicitly sample a random codeword and answer the verifier’s queries according to it. Instead, the simulator must
sample the “local view” that the verifier sees while querying w′ at a small number of locations I ⊆ D.

But simulating local views of the form w′|I is reducible to detecting constraints, i.e., codewords in the dual code
C⊥ whose support is contained in I . Indeed, if no word in C⊥ has support contained in I then w′|I is uniformly
random; otherwise, each additional linearly independent constraint of C⊥ with support contained in I further reduces

9

the entropy of w′|I in a well-understood manner. (See Lemma 4.3 for a formal statement.) In sum, succinct constraint
detection enables us to “implement” [GGN10, BW04] random codewords of C despite C having exponential size.

Note that in the above discussion we implicitly assumed that the set I is known in advance, i.e., that the verifier
chooses its queries in advance. This, of course, need not be the case: a verifier may adaptively make queries based
on answers to previous queries and, hence, the set I need not be known a priori. This turns out to not be a problem
because, given a constraint detector, it is straightforward to compute the conditional distribution of the view w′|I given
w′|J for a subset J of I . This is expressed precisely in Lemma 4.3.

We now discuss two concrete protocols for which the aforementioned random self-reducibility applies, and for
which we also have constructed suitably-efficient constraint detectors.

2.2.2 Zero knowledge sumchecks

The celebrated sumcheck protocol [LFKN92] is not zero knowledge. In the sumcheck protocol, the prover and verifier
have oracle access to a low-degree m-variate polynomial F over a field F, and the prover wants to convince the verifier
that

∑
~α∈Hm F (~α) = 0 for a given subset H of F. During the protocol, the prover communicates partial sums of F ,

which are #P-hard to compute and, as such, violate zero knowledge.
We now explain how to use random self-reducibility to make the sumcheck protocol (perfect) zero knowledge, at

the cost of moving from the Interactive Proof model to the Interactive PCP model.
IPCP sumcheck. Consider the following tweak to the classical sumcheck protocol: rather than invoking sumcheck on
F directly, the prover first sends to the verifier (the evaluation of) a random low-degree polynomial R as an oracle; then,
the prover sends the value z :=

∑
~α∈Hm R(~α) and the verifier replies with a random field element ρ; finally, the two

invoke sumcheck on the claim “
∑

~α∈Hm Q(~α) = z” where Q := ρF +R.
Completeness is clear because if

∑
~α∈Hm F (~α) = 0 and

∑
~α∈Hm R(~α) = z then

∑
~α∈Hm(ρF + R)(~α) = z;

soundness is also clear because if
∑

~α∈Hm F (~α) 6= 0 then
∑

~α∈Hm(ρF + R)(~α) 6= z with high probability over ρ,
regardless of the choice of R. (For simplicity, we ignore the fact that the verifier also needs to test that R has low
degree.) We are thus left to show (perfect) zero knowledge, which turns out to be a much less straightforward argument.
The simulator. Before we explain how to argue zero knowledge, we first clarify what we mean by it: since the verifier
has oracle access to F we cannot hope to ‘hide’ it; nevertheless, we can hope to argue that the verifier, by participating
in the protocol, does not learn anything about F beyond what the verifier can directly learn by querying F (and the fact
that F sums to zero on Hm). What we shall achieve is the following: an algorithm that simulates the verifier’s view by
making as many queries to F as the total number of verifier queries to either F or R.4

On the surface, zero knowledge seems easy to argue, because ρF +R seems random among low-degree m-variate
polynomials. More precisely, consider the simulator that samples a random low-degree polynomial Q and uses it instead
of ρF +R and answers the verifier queries as follows: (a) whenever the verifier queries F (~α), respond by querying
F (~α) and returning the true value; (b) whenever the verifier queries R(~α), respond by querying F (~α) and returning
Q(~α) − ρF (~α). Observe that the number of queries to F made by the simulator equals the number of (mutually)
distinct queries to F and R made by the verifier, as desired.

However, the above reasoning, while compelling, is insufficient. First, ρF +R is not random because a malicious
verifier can choose ρ depending on queries to R. Second, even if ρF +R were random (e.g., the verifier does not query
R before choosing ρ), the simulator must run in polynomial time, both producing correctly-distributed ‘partial sums’ of
ρF +R and answering queries to R, but sampling Q alone requires exponential time. In this high level discussion we
ignore the first problem (which nonetheless has to be tackled), and focus on the second.

At this point it should be clear from the discussion in Section 2.2.1 that the simulator does not have to sample Q
explicitly, but only has to perfectly simulate local views of it by leveraging the fact that it can keep state across queries.
And doing so requires solving the succinct constraint detection problem for a suitable code C. In this case, it suffices to
consider the code C = ΣRM, and our Theorem 1.5 guarantees the required constraint detector.

The above discussion omits several details, so we refer the reader to Section 5 for further details.
4A subsequent work [CFS17] shows how to bootstrap this IPCP sumcheck protocol into a more complex one that has a stronger zero knowledge

guarantee: the simulator can sample the verifier’s view by making as many queries to F as the number of verifier queries (plus one). Nevertheless,
the weaker zero knowledge guarantee that we achieve suffices for our purposes.

10

2.2.3 Zero knowledge proximity proofs for Reed–Solomon

Testing proximity of a codeword w to a given linear code C can be aided by a proximity proof [DR04, BGH+06], which
is an auxiliary oracle π that facilitates testing (e.g., C is not locally testable). For example, testing proximity to the
Reed–Solomon code, a crucial step towards achieving short PCPs, is aided via suitable proximity proofs [BS08].

From the perspective of zero knowledge, however, a proximity proof can be ‘dangerous’: a few locations of π can
in principle leak a lot of information about the codeword w, and a malicious verifier could potentially learn a lot about
w with only a few queries to w and π. The notion of zero knowledge for proximity proofs requires that this cannot
happen: it requires the existence of an algorithm that simulates the verifier’s view by making as many queries to w as
the total number of verifier queries to either w or π [IW14]; intuitively, this means that any bit of the proximity proof π
reveals no more information than one bit of w.

We demonstrate again the use of random self-reducibility and show a general transformation that, under certain
conditions, maps a PCP of proximity (P, V) for a code C to a corresponding 2-round Interactive Oracle Proof of
Proximity (IOPP) for C that is (perfect) zero knowledge.
IOP of proximity for C. Consider the following IOP of Proximity: the prover and verifier have oracle access to a
codeword w, and the prover wants to convince the verifier that w is close to C; the prover first sends to the verifier a
random codeword r in C, and the verifier replies with a random field element ρ; the prover then sends the proximity
proof π′ := P (w′) that attests that w′ := ρw + r is close to C. Note that this is a 2-round IOP of Proximity for C,
because completeness follows from the fact that C is linear, while soundness follows because if w is far from C, then
so is ρw + r for every r with high probability over ρ. But is the zero knowledge property satisfied?
The simulator. Without going into details, analogously to Section 2.2.2, a simulator must be able to sample local views
for random codewords from the code L := {w‖P (w) }w∈C , so the simulator’s efficiency reduces to the efficiency of
constraint detection for L. We indeed prove that if L has succinct constraint detection then the simulator works out. See
Section 7.1 for further details.
The case of Reed–Solomon. The above machinery allows us to derive a zero knowledge IOP of Proximity for
Reed–Solomon codes, thanks to our Theorem 1.7, which states that the family of linear codes comprised of evaluations
of low-degree univariate polynomials concatenated with corresponding BS proximity proofs [BS08] has succinct
constraint detection; see Section 7.2 for details. This is one of the building blocks of our construction of zero knowledge
IOPs for NEXP, as described below in Section 2.3.2.

2.3 Achieving zero knowledge beyond NP

We outline how to derive our results about zero knowledge for #P and NEXP.

2.3.1 Zero knowledge for counting problems

We provide intuition for the proof of Theorem 1.2, which states that the complexity class #P has Interactive PCPs that
are perfect zero knowledge.

We first recall the classical (non zero knowledge) Interactive Proof for #P [LFKN92]. The language L#3SAT,
which consists of pairs (φ,N) where φ is a 3-CNF boolean formula and N is the number of satisfying assignments of
φ, is #P-complete, and thus it suffices to construct an IP for it. The IP for L#3SAT works as follows: the prover and
verifier both arithmetize φ to obtain a low-degree multivariate polynomial pφ and invoke the (non zero knowledge)
sumcheck protocol on the claim “

∑
~α∈{0,1}n pφ(~α) = N”, where arithmetic is over a large-enough prime field.

Returning to our goal, we obtain a perfect zero knowledge Interactive PCP by simply replacing the (non zero
knowledge) IP sumcheck mentioned above with our perfect zero knowledge IPCP sumcheck, described in Section 2.2.2.
In Section 6 we provide further details, including proving that the zero knowledge guarantees of our sumcheck protocol
suffice for this case.

2.3.2 Zero knowledge for nondeterministic time

We provide intuition for the proof of Theorem 1.1, which implies that the complexity class NEXP has Interactive
Oracle Proofs that are perfect zero knowledge. Very informally, the proof consists of combining two building blocks:

11

(i) [BCGV16]’s reduction from NEXP to randomizable linear algebraic constraint satisfaction problems, and (ii) our
construction of perfect zero knowledge IOPs of Proximity for Reed–Solomon codes, described in Section 2.2.3. Besides
extending [BCGV16]’s result from NP to NEXP, our proof provides a conceptual simplification over [BCGV16] by
clarifying how the above two building blocks work together towards the final result. We now discuss this.
Starting point: [BS08]. Many PCP constructions consist of two steps: (1) arithmetize the statement at hand (in our
case, membership of an instance in some NEXP-complete language) by reducing it to a “PCP-friendly” problem
that looks like a linear-algebraic constraint satisfaction problem (LACSP); (2) design a tester that probabilistically
checks witnesses for this LACSP. In this paper, as in [BCGV16], we take [BS08]’s PCPs for NEXP as a starting point,
where the first step reduces NEXP to a “univariate” LACSP whose witnesses are codewords in a Reed–Solomon
code of exponential degree that satisfy certain properties, and whose second step relies on suitable proximity proofs
[DR04, BGH+06] for that code. Thus, overall, the PCP consists of two oracles, one being the LACSP witness and
the other being the corresponding BS proximity proof, and it is not hard to see that such a PCP is not zero knowledge,
because both the LACSP witness and its proximity proof reveal hard-to-compute information.
Step 1: sanitize the proximity proof. We first address the problem that the BS proximity proof “leaks”, by simply
replacing it with our own perfect zero knowledge analogue. Namely, we replace it with our perfect zero knowledge
2-round IOP of Proximity for Reed–Solomon codes, described in Section 2.2.3. This modification ensures that there
exists an algorithm that perfectly simulates the verifier’s view by making as many queries to the LACSP witness as the
total number of verifier queries to either the LACSP witness or other oracles used to facilitate proximity testing. At this
point we have obtained a perfect zero knowledge 2-round IOP of Proximity for NEXP (analogous to the notion of a
zero knowledge PCP of Proximity [IW14]); this part is where, previously, [BCGV16] were restricted to NP because
their simulator only handled Reed–Solomon codes with polynomial degree while our simulator is efficient even for
such codes with exponential degree. But we are not done yet: to obtain our goal, we also need to address the problem
that the LACSP witness itself “leaks” when the verifier queries it, which we discuss next.
Step 2: sanitize the witness. Intuitively, we need to inject randomness in the reduction from NEXP to LACSP
because the prover ultimately sends an LACSP witness to the verifier as an oracle, which the verifier can query. This is
precisely what [BCGV16]’s reduction from NEXP to randomizable LACSPs enables, and we thus use their reduction
to complete our proof. Informally, given an a-priori query bound b on the verifier’s queries, the reduction outputs a
witness w with the property that one can efficiently sample another witness w′ whose entries are b-wise independent.
We can then simply use the IOP of Proximity from the previous step on this randomized witness. Moreover, since the
efficiency of the verifier is polylogarithmic in b, we can set b to be super-polynomial (e.g., exponential) to preserve zero
knowledge against any polynomial number of verifier queries.

The above discussion is only a sketch and we refer the reader to Section 8 for further details. One aspect that we did not
discuss is that an LACSP witness actually consists of two sub-witnesses, where one is a “local” deterministic function
of the other, which makes arguing zero knowledge somewhat more delicate.

2.4 Roadmap
After providing formal definitions in Section 3.1, the rest of the paper is organized as summarized by the table below.

§4.2 Theorem 1.5/4.9 detecting constraints for ΣRM §4.3 Theorem 1.7/4.12 detecting constraints for BS-RSy y
§5 Theorem 5.3 PZK IPCP for sumcheck §7 Theorem 7.3 PZK IOP of Proximity for RS codesy y
§6 Theorem 1.2/6.2 PZK IPCP for #P §8 Theorem 1.1/8.1 PZK IOP for NEXP

12

3 Definitions

3.1 Basic notations

Functions, distributions, fields. We use f : D → R to denote a function with domain D and range R; given a subset
D̃ of D, we use f |D̃ to denote the restriction of f to D̃. Given a distribution D, we write x ← D to denote that x
is sampled according to D. We denote by F a finite field and by Fq the field of size q; we say F is a binary field if
its characteristic is 2. Arithmetic operations over Fq cost polylog q but we shall consider these to have unit cost (and
inspection shows that accounting for their actual polylogarithmic cost does not change any of the stated results).
Distances. A distance measure is a function ∆: Σn × Σn → [0, 1] such that for all x, y, z ∈ Σn: (i) ∆(x, x) = 0,
(ii) ∆(x, y) = ∆(y, x), and (iii) ∆(x, y) ≤ ∆(x, z) + ∆(z, y). We extend ∆ to distances to sets: given x ∈ Σn and
S ⊆ Σn, we define ∆(x, S) := miny∈S ∆(x, y) (or 1 if S is empty). We say that a string x is ε-close to another string
y if ∆(x, y) ≤ ε, and ε-far from y if ∆(x, y) > ε; similar terminology applies for a string x and a set S. Unless noted
otherwise, we use the relative Hamming distance over alphabet Σ (typically implicit): ∆(x, y) := |{i : xi 6= yi}|/n.
Languages and relations. We denote by R a (binary ordered) relation consisting of pairs (x,w), where x is the
instance and w is the witness. We denote by Lan(R) the language corresponding to R, and by R|x the set of witnesses
in R for x (if x 6∈ Lan(R) then R|x := ∅). As always, we assume that |w| is bounded by some computable function of
n := |x|; in fact, we are mainly interested in relations arising from nondeterministic languages: R ∈ NTIME(T) if
there exists a T (n)-time machine M such that M(x,w) outputs 1 if and only if (x,w) ∈ R. Throughout, we assume
that T (n) ≥ n. We say that R has relative distance δR : N→ [0, 1] if δR(n) is the minimum relative distance among
witnesses in R|x for all x of size n. Throughout, we assume that δR is a constant.
Polynomials. We denote by F[X1, . . . , Xm] the ring of polynomials in m variables over F. Given a polynomial P
in F[X1, . . . , Xm], degXi(P) is the degree of P in the variable Xi. We denote by F<d[X1, . . . , Xm] the subspace
consisting of P ∈ F[X1, . . . , Xm] with degXi(P) < d for every i ∈ {1, . . . ,m}.
Random shifts. We later use a folklore claim about distance preservation for random shifts in linear spaces.

Claim 3.1. Let n be in N, F a finite field, S an F-linear space in Fn, and x, y ∈ Fn. If x is ε-far from S, then αx+ y
is ε/2-far from S, with probability 1− |F|−1 over a random α ∈ F. (Distances are relative Hamming distances.)

3.2 Single-prover proof systems
We use two types of proof systems that combine aspects of interactive proofs [Bab85, GMR89] and probabilistically
checkable proofs [BFLS91, AS98, ALM+98]: interactive PCPs (IPCPs) [KR08] and interactive oracle proofs (IOPs)
[BCS16, RRR16]. We first describe IPCPs (Section 3.2.1) and then IOPs (Section 3.2.2), which generalize the former.

3.2.1 Interactive probabilistically checkable proofs

An IPCP [KR08] is a PCP followed by an IP. Namely, the prover P and verifier V interact as follows: P sends to V a
probabilistically checkable proof π; afterwards, P and V π engage in an interactive proof. Thus, V may read a few bits
of π but must read subsequent messages from P in full. An IPCP system for a relation R is thus a pair (P, V), where
P, V are probabilistic interactive algorithms working as described, that satisfies naturally-defined notions of perfect
completeness and soundness with a given error ε(·); see [KR08] for details.

We say that an IPCP has k rounds if this “PCP round” is followed by a (k− 1)-round interactive proof. (That is, we
count the PCP round towards round complexity, unlike [KR08].) Beyond round complexity, we also measure how many
bits the prover sends and how many the verifier reads: the proof length l is the length of π in bits plus the number of
bits in all subsequent prover messages; the query complexity q is the number of bits of π read by the verifier plus the
number of bits in all subsequent prover messages (since the verifier must read all of those bits).

In this work, we do not count the number of bits in the verifier messages, nor the number of random bits used by
the verifier; both are bounded from above by the verifier’s running time, which we do consider. Overall, we say that a
relation R belongs to the complexity class IPCP[k, l, q, ε, tp, tv] if there is an IPCP system for R in which: (1) the
number of rounds is at most k(n); (2) the proof length is at most l(n); (3) the query complexity is at most q(n); (4) the
soundness error is ε(n); (5) the prover algorithm runs in time tp(n); (6) the verifier algorithm runs in time tv(n).

13

3.2.2 Interactive oracle proofs

An IOP [BCS16, RRR16] is a “multi-round PCP”. That is, an IOP generalizes an interactive proof as follows: whenever
the prover sends to the verifier a message, the verifier does not have to read the message in full but may probabilistically
query it. In more detail, a k-round IOP comprises k rounds of interaction. In the i-th round of interaction: the verifier
sends a message mi to the prover; then the prover replies with a message πi to the verifier, which the verifier can query
in this and later rounds (via oracle queries). After the k rounds of interaction, the verifier either accepts or rejects.

An IOP system for a relation R with soundness error ε is thus a pair (P, V), where P, V are probabilistic interactive
algorithms working as described, that satisfies the following properties. (See [BCS16] for more details.)

Completeness: For every instance-witness pair (x,w) in the relation R, Pr[〈P (x,w), V (x)〉 = 1] = 1.

Soundness: For every instance x not in R’s language and unbounded malicious prover P̃ , Pr[〈P̃ , V (x)〉 = 1] ≤ ε(n).

Beyond round complexity, we also measure how many bits the prover sends and how many the verifier reads: the
proof length l is the total number of bits in all of the prover’s messages, and the query complexity q is the total number
of bits read by the verifier across all of the prover’s messages. Considering all of these parameters, we say that a relation
R belongs to the complexity class IOP[k, l, q, ε, tp, tv] if there is an IOP system for R in which: (1) the number of
rounds is at most k(n); (2) the proof length is at most l(n); (3) the query complexity is at most q(n); (4) the soundness
error is ε(n); (5) the prover algorithm runs in time tp(n); (6) the verifier algorithm runs in time tv(n).
IOP vs. IPCP. An IPCP (see Section 3.2.1) is a special case of an IOP because an IPCP verifier must read in full all
of the prover’s messages except the first one (while an IOP verifier may query any part of any prover message). The
above complexity measures are consistent with those defined for IPCPs.

3.2.3 Restrictions and extensions

The definitions below are about IOPs, but IPCPs inherit all of these definitions because they are a special case of IOP.
Adaptivity of queries. An IOP system is non-adaptive if the verifier queries are non-adaptive, i.e., the queried
locations depend only on the verifier’s inputs.
Public coins. An IOP system is public coin if each verifier message mi is chosen uniformly and independently at
random, and all of the verifier queries happen after receiving the last prover message.
Proximity. An IOP of proximity extends the definition of an IOP in the same way that a PCP of proximity extends
that of a PCP [DR04, BGH+06]. An IOPP system for a relation R with soundness error ε and proximity parameter δ is
a pair (P, V) that satisfies the following properties.

Completeness: For every instance-witness pair (x,w) in the relation R, Pr[〈P (x,w), V w(x)〉 = 1] = 1.

Soundness: For every instance-witness pair (x,w) with ∆(w,R|x) ≥ δ(n) and unbounded malicious prover P̃ ,
Pr[〈P̃ , V w(x)〉 = 1] ≤ ε(n).

Similarly to above, a relation R belongs to the complexity class IOPP[k, l, q, ε, δ, tp, tv] if there is an IOPP system
for R with the corresponding parameters. Following [IW14], we call an IOPP exact if δ(n) = 0.
Promise relations. A promise relation is a relation-language pair (RYES,L NO) with Lan(RYES) ∩L NO = ∅. An IOP
for a promise relation is the same as an IOP for the (standard) relation RYES, except that soundness need only hold for
x ∈ L NO. An IOPP for a promise relation is the same as an IOPP for the (standard) relation RYES, except that soundness
need only hold for x ∈ Lan(RYES) ∪L NO.

3.2.4 Prior constructions

In this paper we give new IPCP and IOP constructions that achieve perfect zero knowledge for various settings. Below
we summarize known constructions in these two models.
IPCPs. Prior work obtains IPCPs with proof length that depends on the witness size rather than computation size
[KR08, GKR08], and IPCPs with statistical zero knowledge [GIMS10] (see Section 3.3 for more details).

14

IOPs. Prior work obtains IOPs with perfect zero knowledge for NP [BCGV16], IOPs with small proof length and
query complexity [BCG+17], and an amortization theorem for “unambiguous” IOPs [RRR16]. Also, [BCS16] show
how to compile public-coin IOPs into non-interactive arguments in the random oracle model.

3.3 Zero knowledge
We define the notion of zero knowledge for IOPs and IPCPs achieved by our constructions: unconditional (perfect) zero
knowledge via straightline simulators. This notion is quite strong not only because it unconditionally guarantees simu-
lation of the verifier’s view but also because straightline simulation implies desirable properties such as composability.
We now provide some context and then give formal definitions.

At a high level, zero knowledge requires that the verifier’s view can be efficiently simulated without the prover.
Converting the informal statement into a mathematical one involves many choices, including choosing which verifier
class to consider (e.g., the honest verifier? all polynomial-time verifiers?), the quality of the simulation (e.g., is it
identically distributed to the view? statistically close to it? computationally close to it?), the simulator’s dependence
on the verifier (e.g., is it non-uniform? or is the simulator universal?), and others. The definitions below consider two
variants: perfect simulation via universal simulators against either unbounded-query or bounded-query verifiers.

Moreover, in the case of universal simulators, one distinguishes between a non-blackbox use of the verifier, which
means that the simulator takes the verifier’s code as input, and a blackbox use of it, which means that the simulator only
accesses the verifier via a restricted interface; we consider this latter case. Different models of proof systems call for
different interfaces, which grant carefully-chosen “extra powers” to the simulator (in comparison to the prover) so to
ensure that efficiency of the simulation does not imply the ability to efficiently decide the language. For example: in ZK
IPs, the simulator may rewind the verifier; in ZK PCPs, the simulator may adaptively answer oracle queries. In ZK
IPCPs and ZK IOPs (our setting), the natural definition would allow a blackbox simulator to rewind the verifier and
also to adaptively answer oracle queries. The definitions below, however, consider only simulators that are straightline
[FS89, DS98], that is they do not rewind the verifier, because our constructions achieve this stronger notion.

We are now ready to define the notion of unconditional (perfect) zero knowledge via straightline simulators. We
first discuss the notion for IOPs, then for IOPs of proximity, and finally for IPCPs.

3.3.1 ZK for IOPs

We define zero knowledge (via straightline simulators) for IOPs. We begin by defining the view of an IOP verifier.

Definition 3.2. Let A,B be algorithms and x, y strings. We denote by View 〈B(y), A(x)〉 the view of A(x) in
an interactive oracle protocol with B(y), i.e., the random variable (x, r, a1, . . . , an) where x is A’s input, r is A’s
randomness, and a1, . . . , an are the answers to A’s queries into B’s messages.

Straightline simulators in the context of IPs were used in [FS89], and later defined in [DS98]. The definition below
considers this notion in the context of IOPs, where the simulator also has to answer oracle queries by the verifier. Note
that since we consider the notion of unconditional (perfect) zero knowledge, the definition of straightline simulation
needs to allow the efficient simulator to work even with inefficient verifiers [GIMS10].

Definition 3.3. We say that an algorithm B has straightline access to another algorithm A if B interacts with A,
without rewinding, by exchanging messages with A and also answering any oracle queries along the way. We denote by
BA the concatenation of A’s random tape and B’s output. (Since A’s random tape could be super-polynomially large,
B cannot sample it for A and then output it; instead, we restrict B to not see it, and we prepend it to B’s output.)

Recall that an algorithm A is b-query if, on input x, it makes at most b(|x|) queries to any oracles it has access to.
We are now ready to define zero knowledge IOPs.

Definition 3.4. An IOP system (P, V) for a relation R is perfect zero knowledge (via straightline simulators)
against unbounded queries (resp., against query bound b) if there exists a simulator algorithm S such that for ev-
ery algorithm (resp., b-query algorithm) Ṽ and instance-witness pair (x,w) ∈ R, SṼ (x) and View 〈P (x,w), Ṽ (x)〉
are identically distributed. Moreover, S must run in time poly(|x|+ qṼ (|x|)), where qṼ (·) is Ṽ ’s query complexity.

15

For zero knowledge against arbitrary polynomial-time adversaries, it suffices for b to be superpolynomial. Note that
S’s running time need not be polynomial in b (in our constructions it is polylogarithmic in b); rather its running time
may be polynomial in the input size |x| and the actual number of queries Ṽ makes (as a random variable).

We say that a relation R belongs to the complexity class PZK-IOP[k, l, q, ε, tp, tv, b] if there is an IOP system
for R, with the corresponding parameters, that is perfect zero knowledge with query bound b; also, it belongs to the
complexity class PZK-IOP[k, l, q, ε, tp, tv, ∗] if the same is true with unbounded queries.

3.3.2 ZK for IOPs of proximity

We define zero knowledge (via straightline simulators) for IOPs of proximity. It is a straightforward extension of the
corresponding notion for PCPs of proximity, introduced in [IW14].

Definition 3.5. An IOPP system (P, V) for a relation R is perfect zero knowledge (via straightline simulators)
against unbounded queries (resp., against query bound b) if there exists a simulator algorithm S such that for every
algorithm (resp., b-query algorithm) Ṽ and instance-witness pair (x,w) ∈ R, the following two random variables are
identically distributed: (

SṼ ,w(x) , qS

)
and

(
View 〈P (x,w), Ṽ w(x)〉 , qṼ

)
,

where qS is the number of queries to w made by S, and qṼ is the number of queries to w or to prover messages made
by Ṽ . Moreover, S must run in time poly(|x|+ qṼ (|x|)), where qṼ (·) is Ṽ ’s query complexity.

We say that a relation R belongs to the complexity class PZK-IOPP[k, l, q, ε, δ, tp, tv, b] if there is an IOPP
system for R, with the corresponding parameters, that is perfect zero knowledge with query bound b; also, it belongs to
the complexity class PZK-IOPP[k, l, q, ε, δ, tp, tv, ∗] if the same is true with unbounded queries.

Remark 3.6. Analogously to [IW14], our definition of zero knowledge for IOPs of proximity requires that the number
of queries to w by S equals the total number of queries (to w or prover messages) by Ṽ . Stronger notions are possible:
“the number of queries to w by S equals the number of queries to w by Ṽ ”; or, even more, “S and Ṽ read the same
locations of w”. The definition above is sufficient for the applications of IOPs of proximity that we consider.

3.3.3 ZK for IPCPs

The definition of perfect zero knowledge (via straightline simulators) for IPCPs follows directly from Definition 3.4 in
Section 3.3.1 because IPCPs are a special case of IOPs. Ditto for IPCPs of proximity, whose perfect zero knowledge
definition follows directly from Definition 3.5 in Section 3.3.2. (For comparison, [GIMS10] define statistical zero
knowledge IPCPs, also with straightline simulators.)

3.4 Codes
An error correcting code C is a set of functions w : D → Σ, where D,Σ are finite sets known as the domain and
alphabet; we write C ⊆ ΣD. The message length of C is k := log|Σ| |C|, its block length is ` := |D|, its rate is
ρ := k/`, its (minimum) distance is d := min{∆(w, z) : w, z ∈ C , w 6= z} when ∆ is the (absolute) Hamming
distance, and its (minimum) relative distance is τ := d/`. At times we write k(C), `(C), ρ(C), d(C), τ(C) to make
the code under consideration explicit. All the codes we consider are linear codes, discussed next.
Linearity. A code C is linear if Σ is a finite field and C is a Σ-linear space in ΣD. The dual code of C is the set
C⊥ of functions z : D → Σ such that, for all w : D → Σ, 〈z, w〉 :=

∑
i∈D z(i)w(i) = 0. We denote by dim(C) the

dimension of C; it holds that dim(C) + dim(C⊥) = ` and dim(C) = k (dimension equals message length).
Code families. A code family C = {Cn}n∈{0,1}∗ has domain D(·) and alphabet F(·) if each code Cn has domain
D(n) and alphabet F(n). Similarly, C has message length k(·), block length `(·), rate ρ(·), distance d(·), and relative
distance τ(·) if each code Cn has message length k(n), block length `(n), rate ρ(n), distance d(n), and relative distance
τ(n). We also define ρ(C) := infn∈N ρ(n) and τ(C) := infn∈N τ(n).
Reed–Solomon codes. The Reed–Solomon (RS) code is the code consisting of evaluations of univariate low-degree
polynomials: given a field F, subset S of F, and positive integer d with d ≤ |S|, we denote by RS[F, S, d] the linear

16

code consisting of evaluations w : S → F over S of polynomials in F<d[X]. The code’s message length is k = d, block
length is ` = |S|, rate is ρ = d

|S| , and relative distance is τ = 1− d−1
|S| .

Reed–Muller codes. The Reed–Muller (RM) code is the code consisting of evaluations of multivariate low-degree
polynomials: given a field F, subset S of F, and positive integers m, d with d ≤ |S|, we denote by RM[F, S,m, d]
the linear code consisting of evaluations w : Sm → F over Sm of polynomials in F<d[X1, . . . , Xm] (i.e., we bound
individual degrees rather than their sum). The code’s message length is k = dm, block length is ` = |S|m, rate is
ρ = (d

|S|)
m, and relative distance is τ = (1− d−1

|S|)m.

17

4 Succinct constraint detection
We introduce the notion of succinct constraint detection for linear codes. This notion plays a crucial role in constructing
perfect zero knowledge simulators for super-polynomial complexity classes (such as #P and NEXP), but we believe
that this naturally-defined notion is also of independent interest. Given a linear code C ⊆ FD we refer to its dual code
C⊥ ⊆ FD as the constraint space of C. The constraint detection problem corresponding to a family of linear codes
C = {Cn}n with domain D(·) and alphabet F(·) is the following:

Given an index n and subset I ⊆ D(n), output a basis for {z ∈ D(n)I : ∀w ∈ Cn ,
∑
i∈I z(i)w(i) = 0}.5

If |D(n)| is polynomial in |n| and a generating matrix for Cn can be found in polynomial time, this problem can
be solved in poly(|n|+ |I|) time via Gaussian elimination; such an approach was implicitly taken by [BCGV16] to
construct a perfect zero knowledge simulator for an IOP for NP. However, in our setting, |D(n)| is exponential in |n|
and |I|, and the aforementioned generic solution requires exponential time. With this in mind, we say C has succinct
constraint detection if there exists an algorithm that solves the constraint detection problem in poly(|n|+ |I|) time
when |D(n)| is exponential in |n|. After defining succinct constraint detection in Section 4.1, we proceed as follows.

• In Section 4.2, we construct a succinct constraint detector for the family of linear codes comprised of evaluations of
partial sums of low-degree polynomials. The construction of the detector exploits derandomization techniques from
algebraic complexity theory. Later on (in Section 5), we leverage this result to construct a perfect zero knowledge
simulator for an IPCP for #P.

• In Section 4.3, we construct a succinct constraint detector for the family of evaluations of univariate polynomials
concatenated with corresponding BS proximity proofs [BS08]. The construction of the detector exploits the recursive
structure of these proximity proofs. Later on (in Section 8), we leverage this result to construct a perfect zero
knowledge simulator for an IOP for NEXP; this simulator can be interpreted as an analogue of [BCGV16]’s
simulator that runs exponentially faster and thus enables us to “scale up” from NP to NEXP.

Throughout this section we assume familiarity with terminology and notation about codes, introduced in Section 3.4.
We assume for simplicity that |n|, the number of bits used to represent n, is at least logD(n) + logF(n); if this does
not hold, then one can replace |n| with |n|+ logD(n) + logF(n) throughout the section.

Remark 4.1 (sparse representation). In this section we make statements about vectors v in FD where the cardinality of
the domain D may be super-polynomial. When such statements are computational in nature, we assume that v is not
represented as a list of |D| field elements (which requires Ω(|D| log |F|) bits) but, instead, assume that v is represented
as a list of the elements in supp(v) (and each element comes with its index in D); this sparse representation only
requires Ω(|supp(v)| · (log |D|+ log |F|)) bits.

4.1 Definition of succinct constraint detection
Formally define the notion of a constraint detector, and the notion of succinct constraint detection.

Definition 4.2. Let C = {Cn}n be a linear code family with domain D(·) and alphabet F(·). A constraint detector
for C is an algorithm that, on input an index n and subset I ⊆ D(n), outputs a basis for the space{

z ∈ D(n)I : ∀w ∈ Cn ,
∑
i∈I

z(i)w(i)
}
.

We say that C has T (·, ·)-time constraint detection if there exists a detector for C running in time T (n, `); we also
say that C has succinct constraint detection if it has poly(|n|+ `)-time constraint detection.

A constraint detector induces a corresponding probabilistic algorithm for ‘simulating’ answers to queries to a
random codeword; this is captured by the following lemma, the proof of which is in Appendix B. We shall use such
probabilistic algorithms in the construction of perfect zero knowledge simulators (see Section 5 and Section 8).

5In fact, the following weaker definition suffices for the applications in our paper: given an index n and subset I ⊆ D(n), output z ∈ F(n)I such
that

∑
i∈I z(i)w(i) = 0 for all w ∈ Cn, or ‘independent’ if no such z exists. We achieve the stronger definition, which is also easier to work with.

18

Lemma 4.3. Let C = {Cn}n be a linear code family with domain D(·) and alphabet F(·) that has T (·, ·)-time
constraint detection. Then there exists a probabilistic algorithm A such that, for every index n, set of pairs S =
{(α1, β1), . . . , (α`, β`)} ⊆ D(n)× F(n), and pair (α, β) ∈ D(n)× F(n),

Pr
[
A(n, S, α) = β

]
= Pr
w←Cn

w(α) = β

∣∣∣∣∣∣∣
w(α1) = β1

...
w(α`) = β`

 .

Moreover A runs in time T (n, `) + poly(log |F(n)|+ `).

For the purposes of constructing a constraint detector, the sufficient condition given in Lemma 4.6 below is
sometimes easier to work with. To state it we need to introduce two ways of restricting a code, and explain how these
restrictions interact with taking duals; the interplay between these is delicate (see Remark 4.7).

Definition 4.4. Given a linear code C ⊆ FD and a subset I ⊆ D, we denote by (i) C⊆I the set consisting of the
codewords w ∈ C for which supp(w) ⊆ I , and (ii) C|I the restriction to I of codewords w ∈ C.

Note that C⊆I and C|I are different notions. Consider for example the 1-dimensional linear code C = {00, 11}
in F{1,2}2 and the subset I = {1}: it holds that C⊆I = {00} and C|I = {0, 1}. In particular, codewords in C⊆I are
defined over D, while codewords in C|I are defined over I . Nevertheless, throughout this section, we sometimes
compare vectors defined over different domains, with the implicit understanding that the comparison is conducted over
the union of the relevant domains, by filling in zeros in the vectors’ undefined coordinates. For example, we may write
C⊆I ⊆ C|I to mean that {00} ⊆ {00, 10} (the set obtained from {0, 1} after filling in the relevant zeros).

Claim 4.5. Let C be a linear code with domain D and alphabet F. For every I ⊆ D,

(C|I)⊥ = (C⊥)⊆I ,

that is, {
z ∈ D(n)I : ∀w ∈ Cn ,

∑
i∈I

z(i)w(i)
}

=
{
z ∈ C⊥

n
: supp(z) ⊆ I

}
.

Proof. For the containment (C⊥)⊆I ⊆ (C|I)⊥: if z ∈ C⊥ and supp(z) ⊆ I then z lies in the dual of C|I because
it suffices to consider the subdomain I for determining duality. For the reverse containment (C⊥)⊆I ⊇ (C|I)⊥: if
z ∈ (C|I)⊥ then supp(z) ⊆ I (by definition) so that 〈z, w〉 = 〈z, w|I〉 for every w ∈ C, and the latter inner product
equals 0 because z is in the dual of C|I ; in sum z is dual to (all codewords in) C and its support is contained in I , so z
belongs to (C⊥)⊆I , as claimed.

Observe that Claim 4.5 tells us the constraint detection is equivalent to determining a basis of (Cn|I)⊥ = (C⊥
n

)⊆I .
The following lemma asserts that if, given a subset I ⊆ D, we can find a set of constraints W in C⊥ that spans (C⊥)⊆I
then we can solve the constraint detection problem for C; we defer the proof of the lemma to Appendix C.

Lemma 4.6. Let C = {Cn}n be a linear code family with domain D(·) and alphabet F(·). If there exists an algorithm
that, on input an index n and subset I ⊆ D(n), outputs in poly(|n| + |I|) time a subset W ⊆ F(n)D(n) (in sparse
representation) with (C⊥

n
)⊆I ⊆ span(W) ⊆ C⊥

n
, then C has succinct constraint detection.

Remark 4.7. The following operations do not commute: (i) expanding the domain via zero padding (for the purpose of
comparing vectors over different domains), and (ii) taking the dual of the code. Consider for example the code C =

{0} ⊆ F{1}2 : its dual code is C⊥ = {0, 1} and, when expanded to F{1,2}2 , the dual code is expanded to {(0, 0), (1, 0)};
yet, when C is expanded to F{1,2}2 it produces the code {(0, 0)} and its dual code is {(0, 0), (1, 0), (0, 1), (1, 1)}. To
resolve ambiguities (when asserting an equality as in Claim 4.5), we adopt the convention that expansion is done always
last (namely, as late as possible without having to compare vectors over different domains).

19

4.2 Partial sums of low-degree polynomials
We show that evaluations of partial sums of low-degree polynomials have succinct constraint detection (see Defini-
tion 4.2). In the following, F is a finite field, m, d are positive integers, and H is a subset of F; also, F<d[X1, . . . , Xm]
denotes the subspace of F[X1, . . . , Xm] consisting of those polynomials with individual degrees less than d. More-
over, given Q ∈ F<d[X1, . . . , Xm] and ~α ∈ F≤m (vectors over F of length at most m), we define Q(~α) :=∑
~γ∈Hm−|~α| Q(~α,~γ), i.e., the answer to a query that specifies only a suffix of the variables is the sum of the val-

ues obtained by letting the remaining variables range over H . We begin by defining the code that we study, which
extends the Reed–Muller code (see Section 3.4) with partial sums.

Definition 4.8. We denote by ΣRM[F,m, d,H] the linear code that comprises evaluations of partial sums of polyno-
mials in F<d[X1, . . . , Xm]; more precisely, ΣRM[F,m, d,H] := {wQ}Q∈F<d[X1,...,Xm] where wQ : F≤m → F is the
function defined by wQ(~α) :=

∑
~γ∈Hm−|~α| Q(~α,~γ) for each ~α ∈ F≤m.6 We denote by ΣRM the linear code family

indexed by tuples n = (F,m, d,H) and where the n-th code equals ΣRM[F,m, d,H]. (We represent indices n so to
ensure that |n| = Θ(log |F|+m+ d+ |H|).)

We prove that the linear code family ΣRM has succinct constraint detection:

Theorem 4.9 (formal statement of 1.5). ΣRM has poly(log |F|+m+ d+ |H|+ `)-time constraint detection.

Combined with Lemma 4.3, the theorem above implies that there exists a probabilistic polynomial-time algorithm
for answering queries to a codeword sampled at random from ΣRM, as captured by the following corollary.

Corollary 4.10. There exists a probabilistic algorithmA such that, for every finite field F, positive integers m, d, subset
H of F, subset S = {(α1, β1), . . . , (α`, β`)} ⊆ F≤m × F, and (α, β) ∈ F≤m × F,

Pr
[
A(F,m, d,H, S, α) = β

]
= Pr
R←F<d[X1,...,Xm]

R(α) = β

∣∣∣∣∣∣∣
R(α1) = β1

...
R(α`) = β`

 .

Moreover A runs in time poly(log |F|+m+ d+ |H|+ `).

We sketch the proof of Theorem 4.9, for the simpler case where the code is RM[F,m, d,H] (i.e., without partial
sums). We can view a polynomial Q ∈ F<d[X1, . . . , Xm] as a vector over the monomial basis, with an entry for each
possible monomial Xi1

1 . . . Xim
m (with 0 ≤ i1, . . . , im < d) containing the corresponding coefficient. The evaluation of

Q at a point ~α ∈ Fm then equals the inner product of this vector with the vector φ~α, in the same basis, whose entry for
Xi1

1 . . . Xim
m is equal to αi11 . . . αimm . Given ~α1, . . . , ~α`, we could use Gaussian elimination on φ~α1

, . . . , φ~α` to check
for linear dependencies, which would be equivalent to constraint detection for RM[F,m, d,H].

However, we cannot afford to explicitly write down φ~α, because it has dm entries. Nevertheless, we can still
implicitly check for linear dependencies, and we do so by reducing the problem, by building on and extending ideas of
[BW04], to computing the nullspace of a certain set of polynomials, which can be solved via an algorithm of [RS05]
(see also [Kay10]). The idea is to encode the entries of these vectors via a succinct description: a polynomial Φ~α whose
coefficients (after expansion) are the entries of φ~α. In our setting this polynomial has the particularly natural form:

Φ~α(~X) :=

m∏
i=1

(1 + αiXi + α2
iX

2
i + · · ·+ αd−1

i Xd−1
i) ;

note that the coefficient of each monomial equals its corresponding entry in φ~α. Given this representation we can
use standard polynomial identity testing techniques to find linear dependencies between these polynomials, which
corresponds to linear dependencies between the original vectors. Crucially, we cannot afford any mistake, even with
exponentially small probability, when looking for linear dependencies for otherwise we would not achieve perfect
simulation; this is why the techniques we leverage rely on derandomization. We now proceed with the full proof.

6Note that ΣRM[F,m, d,H] is indeed linear: for everywQ1 , wQ2 ∈ ΣRM[F,m, d,H], a1, a2 ∈ F, and ~α ∈ F≤m, it holds that a1wQ1 (~α)+
a2wQ2

(~α) = a1
∑
~γ∈Hm−|~α| Q1(~α,~γ) + a2

∑
~γ∈Hm−|~α| Q2(~α,~γ) =

∑
~γ∈Hm−|~α| (a1Q1 + a2Q2)(~α,~γ) = wa1Q1+a2Q2

(~α). But
wa1Q1+a2Q2

∈ ΣRM[F,m, d,H], since F<d[X1, . . . , Xm] is a linear space.

20

Proof of Theorem 4.9. We first introduce some notation. Define [< d] := {0, . . . , d − 1}. For vectors ~α ∈ Fm and
~a ∈ [< d]m, we define ~α~a :=

∏m
i=1 α

ai
i ; similarly, for variables ~X = (X1, . . . , Xm), we define ~X~a :=

∏m
i=1X

ai
i .

We identify ΣRM[F,m, d,H] with F[<d]m ; a codeword wQ then corresponds to a vector ~Q whose ~a-th entry is the
coefficient of the monomial ~X~a in Q. For ~α ∈ F≤m, let

φ~α :=

~α~a ∑
~γ∈Hm−|~α|

~γ
~b

~a∈[<d]|~α| ,~b∈[<d]m−|~α|

.

We can also view φ~α as a vector in F[<d]m by merging the indices, so that, for all ~α ∈ F≤m andwQ ∈ ΣRM[F,m, d,H],

wQ(~α) =
∑

~γ∈Hm−|~α|
Q(~α,~γ) =

∑
~γ∈Hm−|~α|

∑
~a∈[<d]|~α|

∑
~b∈[<d]m−|~α|

~Q~a,~b · ~α
~a~γ
~b

=
∑

~a∈[<d]|~α|

∑
~b∈[<d]m−|~α|

~Q~a,~b · ~α
~a

∑
~γ∈Hm−|~α|

~γ
~b = 〈 ~Q, φ~α〉 .

Hence for every ~α1, . . . , ~α`, ~α ∈ F≤m and a1, . . . , a` ∈ F, the following statements are equivalent (i) w(~α) =∑`
i=1 aiw(~αi) for all w ∈ ΣRM[F,m, d,H]; (ii) 〈~f, φ~α〉 =

∑`
i=1 ai〈~f, φ~αi〉 for all ~f ∈ F[<d]m (iii) φ~α =∑`

i=1 aiφ~αi . We deduce that constraint detection for ΣRM[F,m, d,H] is equivalent to the problem of finding
a1, . . . , a` ∈ F such that φ~α =

∑`
i=1 aiφ~αi , or returning ‘independent’ if no such a1, . . . , a` exist.

However, the dimension of the latter vectors is dm, which may be much larger than poly(log |F|+m+d+ |H|+ `),
and so we cannot afford to “explicitly” solve the ` × dm linear system. Instead, we “succinctly” solve it, by taking
advantage of the special structure of the vectors, as we now describe. For ~α ∈ Fm, define the polynomial

Φ~α(~X) :=

m∏
i=1

(1 + αiXi + α2
iX

2
i + · · ·+ αd−1

i Xd−1
i) .

Note that, while the above polynomial is computable via a small arithmetic circuit, its coefficients (once expanded over
the monomial basis) correspond to the entries of the vector φ~α. More generally, for ~α ∈ F≤m, we define the polynomial

Φ~α(~X) :=

 |~α|∏
i=1

(1 + αiXi + · · ·+ αd−1
i Xd−1

i)

m−|~α|∏
i=1

∑
γ∈H

(1 + γXi+|~α| + · · ·+ γd−1Xd−1
i+|~α|)

 .

Note that Φ~α is a product of univariate polynomials. To see that the above does indeed represent φ~α, we rearrange the
expression as follows:

Φ~α(~X) =

 |~α|∏
i=1

(1 + αiXi + · · ·+ αd−1
i Xd−1

i)

 ∑
~γ∈Hm−|~α|

m−|~α|∏
i=1

(1 + γiXi+|~α| + · · ·+ γd−1
i Xd−1

i+|~α|)

= Φ~α(X1, . . . , X|~α|)

 ∑
~γ∈Hm−|~α|

Φ~γ(X|~α|+1, . . . , Xm)

 ;

indeed, the coefficient of ~X~a,~b for ~a ∈ [< d]|~α| and~b ∈ [< d]m−|~α| is ~α~a
∑
~γ∈Hm−|~α| ~γ

~b, as required.
Thus, to determine whether φα ∈ span(φα1

, . . . , φα`), it suffices to determine whether Φα ∈ span(Φα1
, . . . ,Φα`).

In fact, the linear dependencies are in correspondence: for a1, . . . , a` ∈ F, φα =
∑`
i=1 aiφαi if and only if Φα =∑`

i=1 aiΦαi . Crucially, each Φαi is not only in F<d[X1, . . . , Xm] but is a product of m univariate polynomials each
represented via an F-arithmetic circuit of size poly(|H|+ d). We leverage this special structure and solve the above
problem by relying on an algorithm of [RS05] that computes the nullspace for such polynomials (see also [Kay10]), as
captured by the lemma below;7 for completeness, we provide an elementary proof of the lemma in Appendix D.

7One could use polynomial identity testing to solve the above problem in probabilistic polynomial time; see [Kay10, Lemma 8]. However, due to
a nonzero probability of error, this suffices only to achieve statistical zero knowledge, but does not suffice to achieve perfect zero knowledge.

21

Lemma 4.11. There exists a deterministic algorithm D such that, on input a vector of m-variate polynomials ~Q =
(Q1, . . . , Q`) over F where each polynomial has the form Qk(~X) =

∏m
i=1Qk,i(Xi) and each Qk,i is univariate of

degree less than d with d ≤ |F| and represented via an F-arithmetic circuit of size s, outputs a basis for the linear space
~Q⊥ := {(a1, . . . , a`) ∈ F` :

∑`
k=1 akQk ≡ 0}. Moreover, D runs in poly(log |F|+m+ d+ s+ `) time.

The above lemma immediately provides a way to construct a constraint detector for ΣRM: given as input an index
n = (F,m, d,H) and a subset I ⊆ D(n), we construct the arithmetic circuit Φα for each α ∈ I , and then run the
algorithm D on vector of circuits (Φα)α∈I , and directly output D’s result. The lemma follows.

4.3 Univariate polynomials with BS proximity proofs
We show that evaluations of univariate polynomials concatenated with corresponding BS proximity proofs [BS08] have
succinct constraint detection (see Definition 4.2). Recall that the Reed–Solomon code (see Section 3.4) is not locally
testable, but one can test proximity to it with the aid of the quasilinear-size proximity proofs of Ben-Sasson and Sudan
[BS08]. These latter apply when low-degree univariate polynomials are evaluated over linear spaces, so from now
on we restrict our attention to Reed–Solomon codes of this form. More precisely, we consider Reed–Solomon codes
RS[F, L, d] where F is an extension field of a base field K, L is a K-linear subspace in F, and d = |L| · |K|−µ for some
µ ∈ N+. We then denote by BS-RS[K,F, L, µ, k] the code obtained by concatenating codewords in RS[F, L, |L|·|K|−µ]
with corresponding BS proximity proofs whose recursion terminates at “base dimension” k ∈ {1, . . . ,dim(L)} (for
completeness we include a formal definition of these in Appendix F); typically K, µ, k are fixed to certain constants
(e.g., [BS08] fixes them to F2, 3, 1, respectively) but below we state the cost of constraint detection in full generality.
The linear code family BS-RS is indexed by tuples n = (K,F, L, µ, k) and the n-th code is BS-RS[K,F, L, µ, k], and
our result about BS-RS is the following:

Theorem 4.12 (formal statement of 1.7). BS-RS has poly(log |F|+ dim(L) + |K|µ + `)-time constraint detection.

The proof of the above theorem is technically involved, and we present it via several steps, as follows. (1) In
Section 4.3.1 we introduce the notion of a code cover and two key combinatorial properties of these: κ-locality and
κ-independence. (2) In Section 4.3.2 we introduce the notion of a recursive code cover and relate its combinatorial
properties to those of (standard) code covers. (3) In Section 4.3.3 we show how to construct succinct constraint
detectors starting from algorithms that detect constraints only ‘locally’ for code covers and recursive code covers. (4) In
Section 4.3.4 we show that BS-RS has a recursive code cover with the requisite properties and thus implies, via the
results of prior steps, a succinct constraint detector, as claimed. Several sub-proofs are deferred to the appendices, and
we provide pointers to these along the way.
The role of code covers. We are interested in succinct constraint detection: solving the constraint detection problem
for certain code families with exponentially-large domains (such as BS-RS). We now build some intuition about how
code covers can, in some cases, facilitate this.

Consider the simple case where the codeC ⊆ FD is a direct sum of many small codes: there exists S = {(D̃j , C̃j)}j
such that D = ∪jD̃j and C = ⊕jC̃j where, for each j, C̃j is a linear code in FD̃j and the subdomain D̃j is small and
disjoint from other subdomains. The detection problem for this case can be solved efficiently: use the generic approach
of Gaussian elimination independently on each subdomain D̃j .

Next consider a more general case where the subdomains are not necessarily disjoint: there exists S = {(D̃j , C̃j)}j
as above but we do not require that the D̃j form a partition of D; we say that each (D̃j , C̃j) is a local view of C because
D̃j ⊆ D and C̃j = C|D̃j , and we say that S is a code cover of C. Now suppose that for each j there exists an efficient

constraint detector for C̃j (which is defined on D̃j); in this case, the detection problem can be solved efficiently at
least for those subsets I that are contained in D̃j for some j. Generalizing further, we see that we can efficiently solve
constraint detection for a code C if there is a cover S = {(D̃j , C̃j)}j such that, given a subset I ⊆ D, (i) I is contained
in some subdomain D̃j , and (ii) constraint detection for C̃j can be solved efficiently.

We build on the above ideas to derive analogous statements for recursive code covers, which arise naturally in
the case of BS-RS. But note that recursive constructions are common in the PCP literature, and we believe that our
cover-based techniques are of independent interest as, e.g., they are applicable to other PCPs, including [BFLS91, AS98].

22

4.3.1 Covering codes with local views

The purpose of this section is to formally define the notion of cover and certain combinatorial properties of these.

Definition 4.13. Let C be a linear code with domain D and alphabet F. A (local) view of C is a pair (D̃, C̃) such that
D̃ ⊆ D and C|D̃ = C̃. A cover of C is a set of local views S = {(D̃j , C̃j)}j of C such that D = ∪jD̃j . Also, we
define a cover’s domain intersection as di(S) := ∪i 6=j(D̃i ∩ D̃j) and, given a set J , we define D̃J := ∪j∈JD̃j .

Example 4.14 (line cover of RM). Suppose for instance that C is the Reed–Muller code RM[F,F,m, d]: C consists
of evaluations over D = Fm of polynomials in F<d[X1, . . . , Xm] (see Definition 3.4). A cover of C that is extensively
studied in the PCP and property-testing literature is the one given by (axis-parallel) lines. A line (in the i-th direction) is
a set of |F| points that agree on all but one coordinate (the i-th one); and the line cover of C is thus S = {(D̃`, C̃`)}
where ` ranges over all (axis-parallel) lines and C̃` is the Reed–Solomon code RS[F,F, d] (see Definition 3.4).

Observe that the domain intersection of the line cover equals Fm, which is also the domain D of the base code C.
However, for BS-RS, we consider a cover whose domain intersection is a strict subset of D (see Appendix G).

Next, we specify a notion of locality for covers. A partial assignment w′ ∈ FD′ is locally consistent with a cover
S = {(D̃j , C̃j)}j if for every local view (D̃j , C̃j) with D̃j ⊆ D′ the restriction w′|D̃j is a codeword of C̃j . Then we

say that a cover is κ-local if any locally consistent assignment w′ ∈ FD′ , where D′ is a union of at most κ domains in
the cover, can be extended to a “globally consistent” codeword w of C.

Definition 4.15. Let C be a linear code with domain D and alphabet F. Given κ ∈ N, a κ-local cover of C is a cover
S = {(D̃j , C̃j)}j of C such that: for every subset of view-indices J of size at most κ and every word w′ ∈ FD̃J with
w′|D̃j ∈ C̃j (for every j ∈ J), the word w′ can be extended to some word w in C, i.e., w satisfies w|D̃J = w′). (The
trivial cover S = {(D,C)} of C is κ-local for every κ.)

The following definition significantly strengthens the previous one. Informally, a cover is κ-independent if every
partial assignment over a subdomain D′ that is the union of κ subdomains from the cover and κ auxiliary locations can
be extended to a “globally consistent” codeword. We use this stronger notion in our main Lemma 4.20.

Definition 4.16. Let C be a linear code with domain D and alphabet F. Given κ ∈ N, a κ-independent cover of C is
a κ-local cover S = {(D̃j , C̃j)}j such that for every set J of size at most κ, subdomain D′ ⊆ di(S) of size at most κ,
and w′ ∈ FD′∪D̃J with w′|D̃j ∈ C̃j for every j ∈ J , there exists w ∈ C such that w|D′∪D̃J = w′. (The trivial cover
S = {(D,C)} of C is κ-independent for every κ ∈ N because it is κ-local and has di(S) = ∅.)

Example 4.17. The line cover from Example 4.14 is d-local because any evaluation on at most d (axis-parallel)
lines `1, . . . , `d that is a polynomial of degree (d − 1) along each of `1, . . . , `d can be extended to a codeword of
RM[F,F,m, d]. Furthermore, it is d/2-independent because any locally consistent assignment to d/2 such lines and
d/2 points p1, . . . , pd/2 can be extended to a valid Reed–Muller codeword. To see this, observe that there exists an
interpolating set H1 × · · · ×Hm (with |Hi| = d) that contains p1, . . . , pd/2 and intersects each line in d points; we
shall later use this observation for the bivariate case (m = 2), a proof for that case is provided at Claim H.1.

4.3.2 Recursive covers and locality

Proximity proofs for codes such as the Reed–Solomon code and the Reed–Muller code are typically obtained via
techniques of proof composition [AS98]. Informally, a problem is reduced to a set of smaller sub-problems of the same
kind (which are usually interconnected), and a sub-proof is constructed for each sub-problem. This process leads to a
proof for the original problem that is “covered” by the sub-proofs for the sub-problems, and naturally imply a cover of
the proof by these sub-proofs. This process is then repeated recursively until the sub-problems are small enough for the
verifier to check directly — and in our case leads to the notion of recursive covers, which we define below.

To support the definition of a recursive cover, we first introduce notation for rooted trees. Edges in a rooted tree
T = (V,E) are directed from the root r towards the leaves; the edge directed from v to u is denoted (v, u); v is the
predecessor of u and u the successor of v; if there is a path from v to v′ we say that v is an ancestor of v′; if there is no
directed path between v and v′ (in either direction) we say that the two vertices are disconnected. The set of successors

23

of v is denoted successors(T, v). The depth of a vertex v in T is denoted depth(T, v) and equals the number of edges
on the path from r to v. The depth of T is denoted depth(T) and equals the maximum of depth(T, v) as v ranges
in V . The i-th layer of T is denoted layer(T, i) and equals the set of v ∈ V such that depth(T, v) = i. (Note that
depth(T, r) = 0 and layer(T, 0) = {r}.) An equidepth tree is a tree in which all leaves have equal depth.

Definition 4.18. Let C be a linear code with domain D and alphabet F. A recursive cover of C is a directed rooted
equidepth tree T of non-zero depth where each vertex v is labeled by a view (C̃v, D̃v) such that: (i) C̃v is a linear code
with domain D̃v and alphabet F; (ii) if v is the root, then (C̃v, D̃v) = (C,D); and (iii) for every non-leaf v the set
Tv := {(C̃u, D̃u)}u∈successors(T,v) is a cover of C̃v . Furthermore we define the following notions:

• Given d ∈ {0, . . . ,depth(T)}, the d-depth restriction of T is T |d :=
⋃
v∈layer(T,d){(C̃v, D̃v)}. (Note that

T |0 = {(C,D)}.)

• Given c ∈ N, we say that T is c-intersecting if |D̃u ∩ D̃u′ | ≤ c for every two disconnected vertices u, v.

• Given κ ∈ N, we say that T is κ-independent if Tv is a κ-independent cover of C̃v for every non-leaf vertex v in T .

Remark 4.19. The above definition is restricted to equidepth trees, but can be extended to general trees as follows.
Iteratively append to each leaf v of non-maximal depth a single successor u labeled by (C̃u, D̃u) := (C̃v, D̃v); this
leads to a cover of Tv that is 0-intersecting and κ-doubly independent for κ that equals C̃v’s dual distance.

Below we state the main lemma of this section. This lemma says that (given certain restrictions) if a recursive cover
has the local property of independence (of some degree) at each internal vertex, then each of its layers has the global
property of locality (of some degree) as a cover of the root. Later on (in Section 4.3.3) we show how cover locality is
used to construct constraint detectors.

Lemma 4.20 (main). Let C be a linear code with domain D and alphabet F, and let T be a recursive cover of C such
that (i) T is c-intersecting for c > 0, and (ii) for every non-leaf vertex v in T it holds that Tv is a κ-independent cover
of C̃v . Then, for every d ∈ {0, . . . ,depth(T)}, T |d is a κ

c -local cover of C.

Proof. We prove the statement by induction on the non-negative integer d. The base case is when d = 0, and holds
because T |0 = {(D,C)} is the trivial cover, thus it is a κ′-local cover of C for any κ′ ≥ 0 and, in particular, a κ

c -local
cover. We now assume the statement for d < depth(T) and prove it for depth d+ 1.

Let T |d = {(D̃j , C̃j)}j be the d-depth cover of C, and let T |d+1 = {(D̃i,j , C̃i,j)}i,j be the (d+ 1)-depth cover of
C, where, for every i, T |(i)d+1 = {(D̃i,j , C̃i,j)}j is the cover of C̃i (this can be ensured via suitable indexing). Let J
be a set of pairs (i, j) of size at most κc , and let w′ ∈ FD̃J be such that w′|D̃i,j ∈ C̃i,j for every (i, j) ∈ J . We show
that there exists w ∈ C such that w|D̃J = w′. Define I := {i : ∃ j s.t. (i, j) ∈ J} and note that |I| ≤ |J | ≤ κ

c . By the

inductive assumption, it suffices to show that there exists w ∈ FD̃I such that (a) w|D̃i,j = w′|D̃i,j for every (i, j) ∈ J ,

and (b) w|D̃i ∈ C̃i for every i ∈ I .

For simplicity assume I = {1, . . . , |I|}. We construct w incrementally and view w as belonging to (F ∪ {∅})D̃I ,
i.e., it is a partial mapping from D̃I to F. Let def(w) := {α ∈ D̃I : w(α) 6= ∅} denote the set of locations where
w is defined. Initialize def(w) = D̃J and w|D̃J = w′; then, for increasing i = 1, . . . , |I|, iteratively extend w to be

defined (also) over D̃i, eventually obtaining w ∈ FD̃I . In the i-th iteration (that handles D̃i), it is sufficient to prove the
existence of a codeword wi ∈ C̃i such that wi|D̃i∩def(w) = w|D̃i∩def(w). If such a codeword exists then we shall define
w on D̃i by w|D̃i = wi, thus eventually reaching w that satisfies the stated requirements.

To show that during the i-th iteration the desired wi exists, partition the elements of D̃i ∩ def(w) into two sets:
V := ∪j s.t. (i,j)∈JD̃i,j and W := (D̃i ∩ def(w)) \ V . Note that W ⊆ ∪i′ 6=i(D̃i ∩ D̃i′), because defining w(α) for any
α ∈W can be done only: (i) in the initialization phase, so that α ∈ D̃i′,j′ ⊆ D̃i′ for some (i′, j′) ∈ J with i′ 6= i (as
otherwise α ∈ V); or (ii) in a previous iteration, so that α ∈ D̃i′ for some i′ < i (as D̃i′ was already handled and w
is already defined on all of D̃i′). The above implies that W ⊆ di(T |(i)d+1) and the assumption that T is c-intersecting
implies

|W | ≤
∑
i′ 6=i

|D̃i ∩ D̃i′ | ≤ c · |I| ≤ c · |J | ≤ κ .

24

Similarly, note that for every fixed i ∈ I the number of pairs (i, j) ∈ J is at most |J | ≤ κ. By assumption C̃i has a
κ-independent cover and thus we conclude (via Definition 4.16) that the desired wi exists, as required.

4.3.3 From recursive covers to succinct constraint detection

The purpose of this section is to establish sufficient conditions for succinct constraint detection by leveraging covers
with small-enough views and large-enough locality. First, in Definition 4.21 and Lemma 4.22, we define cover-based
constraint detection and prove that it implies succinct constraint detection; informally, we consider the case when
a code has a sequence of covers where view size and locality reduce together, and prove that we can locally detect
constraints in a number of views that is proportional to the constraint’s weight and each view’s size is proportional to
the constraint’s weight, by choosing the right cover from the sequence. Then, in Definition 4.24 and Lemma 4.25, we
extend our discussion to recursive code covers by defining recursive-cover-based constraint detection and establishing
that it implies the previous notion. We conclude (in Corollary 4.26) that recursive-cover-based constraint detection
implies succinct constraint detection.

Definition 4.21. Let C = {Cn}n be a linear code family with domain D(·) and alphabet F(·). We say that C has
cover-based constraint detection if there exists an algorithm that, given an index n and subset I ⊆ D(n), outputs in
poly(|n|+ |I|) time a subset W ⊆ F(n)D(n) for which there exists a subset S′ of some |I|-local cover S of Cn, and
the following holds: (i) |S′| ≤ |I|; (ii) I ⊆ (∪(D̃,C̃)∈S′ D̃); (iii) span(W) = span(∪(D̃,C̃)∈S′ C̃

⊥).

Lemma 4.22. Let C = {Cn}n be a linear code family with domain D(·) and alphabet F(·). If C has cover-based
constraint detection then C has succinct constraint detection.

To prove this lemma we require a technical claim, the proof of which is deferred to Appendix E.

Claim 4.23. Let C be a linear code with domain D and alphabet F, let S = {(D̃j , C̃j)}j be a κ-local cover of C. For
any set J of size at most κ it holds span(∪j∈J C̃⊥j) = (C⊥)⊆(∪j∈JD̃j).

Proof of Lemma 4.22. By Lemma 4.6, it suffices to show an algorithm that, on input an index n and subset I ⊆ D(n),
outputs a subset W ⊆ F(n)D(n) with (C⊥

n
)⊆I ⊆ span(W) ⊆ C⊥

n
in poly(|n|+ |I|) time. We take this algorithm to

be the one guaranteed by Definition 4.21. To see correctness, let D̃S′ := ∪(D̃,C̃)∈S′ D̃, and note that Definition 4.21
and Claim 4.23 imply that span(W) = (C⊥

n
)⊆D̃S′ and (C⊥

n
)⊆I ⊆ (C⊥

n
)⊆D̃S′ ⊆ C

⊥
n

, as required.

Next we show that, under certain conditions, code families with recursive covers imply a sequence of covers that we
can use to construct cover-based constraint detectors. Combined with Lemma 4.22, this result is key for establishing a
connection from certain proximity proof constructions to succinct constraint detectors.

Definition 4.24. Let C = {Cn}n be a linear code family with domain D(·) and alphabet F(·). We say that C has
recursive-cover-based constraint detection if:

• there exists c ∈ N such that, for every index n, Cn has a c-intersecting recursive cover Tn;

• there exists an algorithm that, given an index n and subset I ⊆ D(n), outputs in poly(|n| + |I|) time a subset
W ⊆ F(n)D(n) for which there exist d ∈ {0, . . . ,depth(Tn)} and U ⊆ layer(Tn, d) such that: (i) for every
vertex v in Tn with depth(Tn, v) < d, the cover Tn,v is c|I|-independent; (ii) |U | ≤ |I|; (iii) I ⊆ (∪u∈U D̃u);
(iv) span(W) = span(∪u∈U C̃⊥u).

Lemma 4.25. Let C = {Cn}n be a linear code family with domain D(·) and alphabet F(·). If C has recursive-cover-
based constraint detection, then C has cover-based constraint detection.

Proof. The definition of recursive-cover-based detection says that there exist (a) c ∈ N such that, for every index n, Cn
has a c-intersecting recursive cover Tn, and (b) an algorithm satisfying certain properties. We show that this algorithm
meets the requirements for being a cover-based constraint detector (see Definition 4.21). Consider any index n and
subset I ⊆ D(n), and let W be the output of the algorithm. Let d ∈ {0, . . . ,depth(Tn)} and U ⊆ layer(Tn, d) be the
objects associated to W (guaranteed by the definition of recursive-cover-based constraint detection). Let S := Tn|d

25

(i.e., S is the d-depth restriction of Tn) and S′ := {(D̃u, C̃u)}u∈U ; it suffices to show that S is |I|-local. The claim
follows directly by the assumption on d and Lemma 4.20, because Tn,v is c|I|-independent for every vertex v in Tn
with depth(Tn, v) < d, and thus S = Tn|d is indeed a |I|-local cover of C.

Corollary 4.26. Let C = {Cn}n be a linear code family with domain D(·) and alphabet F(·). If C has recursive-
cover-based constraint detection, then C has succinct constraint detection.

Proof. Follows directly from Lemma 4.25 (recursive-cover-based constraint detection implies cover-based constraint
detection) and Lemma 4.22 (cover-based constraint detection implies succinct constraint detection).

4.3.4 Proof of Theorem 4.12

The purpose of this section is to prove Theorem 4.12. By Corollary 4.26, it suffices to argue that the linear code family
BS-RS has recursive-cover-based constraint detection (see Definition 4.24).

Recall that we consider Reed–Solomon codes RS[F, L, d] where F is an extension field of a base field K, L is
a K-linear subspace in F, and d = |L| · |K|−µ for some µ ∈ N; and we denote by BS-RS[K,F, L, µ, k] the code
obtained by concatenating codewords in RS[F, L, |L| · |K|−µ] with corresponding [BS08] proximity proofs with “base
dimension” k ∈ {1, . . . ,dim(L)} (see Appendix F for details). The linear code family BS-RS is indexed by tuples
n = (K,F, L, µ, k) and the n-th code is BS-RS[K,F, L, µ, k].

We represent indices n so that log |F|+ dim(L) + |K|µ ≤ poly(|n|). The base field K and extension field F require
O(log |K|) and O(log |F|) bits to represent; the subspace L requires O(dim(L)) elements in F to represent; and the
two integers µ and k require O(logµ) and O(log k) bits to represent. In addition, we add |K|µ arbitrary bits of padding.
Overall, we obtain that |n| = Θ(log |K|+log |F|+log |F|·dim(L)+logµ+log k+|K|µ) = Θ(log |F|·dim(L)+|K|µ).

The main claim in this section is the following (and does not rely on fixing K, µ).

Lemma 4.27. Define the depth function d(K, L, µ, a) := log2 dim(L)− log2(log|K| a+ µ+ 2)− 1. The linear code
family BS-RS satisfies the following properties.

• For every index n = (K,F, L, µ, k), BS-RS[K,F, L, µ, k] has a 1-intersecting recursive cover Tn. Also, for every
positive integer m and non-leaf vertex v in Tn with depth(Tn, v) < d(K, L, µ,m), the cover Tn,v is m-independent.

• There exists an algorithm that, given an index n = (K,F, L, µ, k) and subset I ⊆ D(n), outputs in time poly(log |F|+
dim(L) + |K|µ + |I|) a subset W ⊆ FD(n) for which there exist U ⊆ layer(Tn, d(K, L, µ, |I|)) such that: (i) |U | ≤
|I|; (ii) I ⊆ (∪u∈U D̃u); (iii) span(W) = span(∪u∈U C̃⊥u).

Given the above lemma, we can complete the proof of Theorem 4.12, as explained below. We defer the (long and
technical) proof of the lemma to Appendix G, and instead end this section with an overview of that proof.

Proof of Theorem 4.12. The proof follows from Lemma 4.27 above and from Corollary 4.26, as we now explain.
Corollary 4.26 states that if a linear code family C has recursive-cover-based constraint detection (see Defini-

tion 4.24), then C has succinct constraint detection (see Definition 4.2). Also recall that the definition of recursive-
cover-based detection requires having a c-intersecting recursive cover for each code in the class, and an algorithm
satisfying certain properties.

Observe that Lemma 4.27 guarantees that every code in BS-RS has a 1-intersecting recursive code and, moreover,
guarantees the existence of an algorithm whose output satisfies the required properties. We are left to argue that the
algorithm runs in time poly(|n|+ |I|). But this immediately follows from the running time stated in Lemma 4.27 and
the fact that log |F|+ dim(L) + |K|µ ≤ poly(|n|).

Overview of Lemma 4.27’s proof. We assume familiarity with the linear code family BS-RS from [BS08]; for
completeness, we provide formal definitions and notations in Appendix F. Recall that the Reed–Solomon code is not
locally testable, but one can test proximity to it with the aid of BS proximity proofs [BS08]; the linear code family
BS-RS consists of the concatenation of Reed–Solomon codes with BS corresponding proximity proofs.

The construction of the aforementioned proximity proofs is recursive, with each step in the recursion reducing both
the evaluation domain size |L| and the degree d to (approximately) their square roots. Namely, testing proximity of a

26

codeword w to RS[F, L, d] is reduced to testing proximity of Θ(
√
|L|) codewords {wi}i to {RS[F, Li, di]}i, where

|Li|, di = Θ(
√
|L|) for each i. This step is then recursively applied (by way of proof composition [AS98]) to each

codeword wi, until the domain size is “small enough”.
The first part of the proof of Lemma 4.27 consists of various combinatorial claims (see Appendix G.1). First, we

observe that the union of the domains of the codewords wi covers (and, actually, slightly expands) the domain of the
original codeword w; this holds recursively, and induces a recursive cover T (see Definition G.3). We prove that T is
1-intersecting (see Claim G.4) and that, for every vertex v in T of depth at most d, the cover Tv is (|L|2−d−1 · |K|−µ−2)-
independent, which implies the stated independence property about Tv (see Claim G.5). The core of the argument
for this second claim is to show that the code C̃v equals BS-RS[K,F, Lv, µ, k] for some subspace Lv such that
dim(L) · 2−d ≤ dim(L̃) ≤ dim(L) · 2−d + 2µ (see Claim G.6).

The second part of the proof of Lemma 4.27 consists of establishing the computational efficiency of certain tasks
related to the recursive cover (see Appendix G.2). Specifically, we bound the time required to compute a spanning set
for covers in T (see Claim G.8). After a few more observations, we are able to conclude the proof.

27

5 Sumcheck with perfect zero knowledge
We obtain an IPCPP for sumcheck that is perfect zero knowledge against unbounded queries. (Since the input F is an
oracle given to the verifier, the proof system is formally an exact IPCP of proximity for a promise relation.)
Sumcheck. The sumcheck protocol [LFKN92, Sha92] is an IP for the claim “

∑
~α∈Hm F (~α) = 0”, where F is a

polynomial in F<d[X1, . . . , Xm] and H is a subset of F. The prover and verifier have input (F,m, d,H) and oracle
access to (the evaluation table on Fm of) F . The sumcheck protocol has soundness error 1− (1− d

|F|)
m; the prover

runs in space poly(log |F|+m+ d+ |H|) and the verifier in time poly(log |F|+m+ d+ |H|); the number of rounds
is m; finally, the protocol is public coin and the verifier queries F only at one random point.
Leakage. The sumcheck protocol is not zero knowledge: a verifier, by interacting with the honest prover, learns partial
sums of F , in addition to the fact that “

∑
~α∈Hm F (~α) = 0” is true. Assuming one way functions, one can make any

interactive proof, including the sumcheck protocol, to be (computational) zero knowledge [GMR89, IY87, BGG+88];
moreover, one-way functions are necessary for obtaining zero knowledge IPs for non-trivial languages [OW93]. As we
do not wish to make intractability assumptions, we now turn to a different proof system model.
Perfect zero knowledge via IPCPPs. We obtain an IPCPP for sumcheck that is perfect zero knowledge against
unbounded queries. Namely, a malicious verifier has oracle access to a proof string π and also interacts with the prover,
but learns no information about F beyond the fact that the statement about F is true, in the following sense. There exists
an algorithm that perfectly simulates the verifier’s view by making as many queries to F as the total number of verifier
queries to either F or the oracle π. (Analogously to zero knowledge for proximity testers, a verifier may query F at any
time, so any such information comes “for free” and, also, any query to π ‘counts’ as a query to F ; see Section 3.3.)

Our construction proceeds in two steps:

• Step 1. We modify the sumcheck protocol to make it perfect zero knowledge, but in a hybrid model where the prover
and verifier have access to a random polynomial R ∈ F<d[X1, . . . , Xm]. Crucially, soundness relies only on the fact
that R is low-degree, but not the fact that it is random. Also, the modified protocol does not depend on a bound on
the malicious verifier’s queries, and thus maintains zero knowledge even against unbounded queries.

• Step 2. We observe that in the IPCPP model the prover can send an oracle proof string π that represents the evaluation
table of R, and the verifier can test that π is close to low-degree, and then use self correction to query it. This
extension preserves the zero knowledge properties of the previous step.

The more interesting of the two steps is the first one, so we briefly discuss the intuition behind it. Our idea is that,
rather than executing the sumcheck protocol on F directly, the prover tells the verifier that

∑
~α∈Hm R(~α) = z, then

they engage in the sumcheck protocol on the claim
∑

~α∈Hm ρF (~α) + R(~α) = z, where ρ is chosen at random by
the verifier (after R is sampled). Completeness is clear because if

∑
~α∈Hm F (~α) = 0 and

∑
~α∈Hm R(~α) = z then∑

~α∈Hm(ρF + R)(~α) = z; soundness is also clear because if
∑

~α∈Hm F (~α) 6= 0 then
∑

~α∈Hm(ρF + R)(~α) 6= z
with high probability over ρ (regardless of whether

∑
~α∈Hm R(~α) = z or not). We are thus left to show perfect zero

knowledge, which turns out to be a much less straightforward argument.
On the surface, perfect zero knowledge appears easy to argue: simply note that ρF + R is random among all

polynomials in F<d[X1, . . . , Xm]. However, this argument, while compelling, is not enough. First, ρF + R is not
random because a malicious verifier can choose ρ depending on queries to R; we discuss this issue further down below.
Second, even if ρF +R were random (e.g., the verifier does not query R before choosing ρ), the simulator must run in
polynomial time but it is not clear how that is possible, as we now explain.

Consider the following simulator: (1) sample a random polynomial Qsim ∈ F<d[X1, . . . , Xm] and use it to simulate
ρF +R; (2) whenever the verifier queries F (~α), respond by querying F (~α) and returning the true value; (3) whenever
the verifier queries R(~α), respond by querying F (~α) and returning Qsim(~α)− ρF (~α). One can argue that the simulator
produces the correct distribution; moreover, the number of queries to F made by the simulator equals the number of
(mutually) distinct queries to F and R made by the verifier, as desired.

But how does the simulator sample a random polynomial in F<d[X1, . . . , Xm] in polynomial time? The size of the
representation of such a polynomial is Ω(dm), which is exponential. We get around this problem by exploiting the fact
that the number of queries the verifier can make is polynomially bounded, and the simulator can keep state about the
answers to past queries and ‘make up’ on the fly the answer to a new query by resolving dependencies between queries.

28

More precisely, we leverage our construction of a succinct constraint detector for evaluations of low-degree polynomials
(see Section 4.2), which itself relies on tools borrowed from algebraic complexity theory. The same detector also allows
to simulate partial sums, which the prover sends in the course of the sumcheck protocol itself.

Finally, we explain how we address the issue that the verifier may choose to query R before sending ρ. We handle
this by first (implicitly) sampling a random polynomial Rsim, and responding to each verifier query to R(~α) with
Rsim(~α). Then, when the verifier sends ρ, we draw Qsim conditioned on the already-queried values for R being
‘correct’; i.e., for each point ~α queried before ρ is sent, we add the condition that Qsim(~α) = ρF (~α) +Rsim(~α). We
then continue as described above, and it is not too difficult to argue that this strategy yields the correct distribution.

We are now ready to turn the above discussions into formal definitions and proofs. First, we give the definition of the
sumcheck relation and of a PZK IPCPP system for sumcheck; then we state and prove the PZK Sumcheck Theorem.

Definition 5.1. The sumcheck relation and its promise variant are defined as follows.

• The sumcheck relation is the relation RSC of instance-witness pairs
(
(F,m, d,H, v), F

)
such that (i) F is a finite field,

H is a subset of F, v is an element of F, and m, d are positive integers with md
|F| <

1
2 ; (ii) F is in F<d[X1, . . . , Xm]

and sums to v on Hm.

• The sumcheck promise relation is the pair of relations (RYES

SC,R
NO

SC) where RYES

SC := RSC and RNO

SC are the pairs(
(F,m, d,H, v), F

)
such that (F,m, d,H, v) is as above and F ∈ F<d[X1, . . . , Xm] but does not sum to v onHm.8

Definition 5.2. A PZK exact IPCPP system for sumcheck with soundness error ε is a pair of interactive algorithms
(P, V) that satisfies the following properties.9

• COMPLETENESS. For every
(
(F,m, d,H, v), F

)
∈ RYES

SC, Pr
[
〈PF (F,m, d,H, v), V F (F,m, d,H, v)〉 = 1

]
= 1.

• SOUNDNESS. For every
(
(F,m, d,H, v), F

)
∈ RNO

SC and malicious prover P̃ , Pr
[
〈P̃ , V F (F,m, d,H, v)〉 = 1

]
≤ ε.

• PERFECT ZERO KNOWLEDGE. There exists a straightline simulator S such that, for every
(
(F,m, d,H, v), F

)
∈ RYES

SC

and malicious verifier Ṽ , the following two random variables are identically distributed(
SṼ ,F (F,m, d,H, v) , qS

)
and

(
View 〈PF (F,m, d,H, v), Ṽ F 〉 , qṼ

)
,

where qS is the number of queries to F made by S and qṼ is the number of queries to F or the PCP oracle made by
Ṽ . Moreover, S runs in time poly(log |F|+ |H|+m+ qṼ), where qṼ is Ṽ ’s query complexity.

Theorem 5.3 (PZK Sumcheck). There exists a PZK public-coin exact IPCPP system (P, V) for the sumcheck promise
relation (RYES

SC,R
NO

SC) with soundness error ε = O(md|F|) and the following efficiency parameters.
• Oracle round: P sends an oracle proof string π : Fm → F.
• Interactive proof: after the oracle round, P and V engage in an (m+ 1)-round interactive proof; in total, the verifier

sends to the prover O(m) field elements, while the prover sends to the verifier O(md) field elements.
• Queries: after the interactive proof, V non-adaptively queries π at poly(log |F|+m+ d) locations.
• Space and time: P runs in space poly(log |F|+m+ d+ |H|), while V in time poly(log |F|+m+ d+ |H|). (The

prover’s space complexity assumes that the randomness tape is two-way rather than one-way; see Remark 5.7 below.)

5.1 Step 1
We construct a public-coin IP for sumcheck that is perfect zero knowledge, in the “R-hybrid” model, where the prover
and verifier have access to a uniformly random R ∈ F<d[X1, . . . , Xm].

Construction 5.4. The IP system (PIP, VIP) is defined as follows. Both PIP and VIP receive a tuple (F,m, d,H, v) as
common input, and two polynomials F,R ∈ F<d[X1, . . . , Xm] as oracles. The interaction proceeds as follows:

8This promise is not the same notion as in Section 3.2.3; there the promise is with respect to instances, whereas here it is with respect to witnesses.
9This is exactly the standard definition of an IPCPP (Section 3.3.2), but with a soundness condition respecting our current notion of a promise.

29

1. PIP sends z :=
∑

~α∈Hm R(~α) to VIP;
2. VIP draws a random element ρ in F, and sends ρ to PIP;
3. PIP and VIP run the sumcheck IP [LFKN92, Sha92] on the statement “

∑
~α∈Hm Q(~α) = ρv+z” whereQ := ρF+R

(with PIP playing the role of the prover and VIP that of the verifier).

Note that (PIP, VIP) is public-coin, and satisfies the following efficiency properties.

– Communication: The number of rounds is m + 1. Across the interaction, VIP sends O(m) field elements to PIP,
while PIP sends O(md) field elements to VIP.

– Queries: VIP queries F and R each at a single random point because, at the end of the sumcheck protocol, the verifier
queries Q at a random point ~γ, and such a query can be “simulated” by querying F and R at ~γ and then using these
answers, along with ρ, to compute the necessary value for Q.

– Space and time: PIP runs in space poly(log |F| + m + d + |H|), while VIP in time poly(log |F| + m + d + |H|).
(The prover’s space complexity assumes that the randomness tape is two-way; see Remark 5.7 below.)

We now state and prove the completeness, soundness, and perfect zero knowledge properties.

Lemma 5.5. The IP system (PIP, VIP) satisfies the following properties.

• COMPLETENESS. For every
(
(F,m, d,H, v), F

)
∈ RYES

SC and R ∈ F<d[X1, . . . , Xm] with
∑

~α∈Hm R(~α) = 0,

Pr
[
〈PF,RIP (F,m, d,H, v), V F,RIP (F,m, d,H, v)〉 = 1

]
= 1 .

• SOUNDNESS. For every
(
(F,m, d,H, v), F

)
∈ RNO

SC, R ∈ F<d[X1, . . . , Xm], and malicious prover P̃ ,

Pr
[
〈P̃ , V F,RIP (F,m, d,H, v)〉 = 1

]
≤ md+ 1

|F|
.

• PERFECT ZERO KNOWLEDGE. There exists a straightline simulator SIP such that, for every
(
(F,m, d,H, v), F

)
∈

RYES

SC and malicious verifier Ṽ , the following two random variables are identically distributed(
SṼ ,FIP (F,m, d,H, v) , qSIP

)
and

(
View 〈PF,RIP (F,m, d,H, v), Ṽ F,R〉 , qṼ

)
,

where R is uniformly random in F<d[X1, . . . , Xm], qSIP
is the number of queries to F made by SIP, and qṼ is the

number of queries to F or R made by Ṽ . Moreover, SIP runs in time poly(log |F|+m+ d+ |H|+ qṼ) where qṼ
is Ṽ ’s query complexity.

Proof. We argue first completeness, then soundness, and, finally, perfect zero knowledge.
Completeness. If both F sums to v on Hm and R sums to z on Hm, then Q := ρF +R sums to ρv + z on Hm for
every choice of ρ. Then completeness follows from the completeness of standard sumcheck.
Soundness. For every F,R ∈ F<d[X1, . . . , Xm] with

∑
~α∈Hm F (~α) 6= v,

∑
~α∈Hm Q(~α) equals ρv + z for at most

one choice of ρ, namely, (
∑

~α∈Hm R(~α)−z)/(v−
∑

~α∈Hm F (~α)). Thus, except with probability 1/|F|, the sumcheck
protocol is invoked on an incorrect claim, which incurs a soundness error of at most md|F| . The claimed soundness error
follows by a union bound.
Perfect zero knowledge. We begin by proving perfect zero knowledge via a straightline simulator Sslow whose
number of queries to F equals qṼ , but runs in time poly(|F|m + qṼ). After that, we explain how to modify Sslow into
another simulator SIP, with an identical output distribution, that runs in the faster time claimed in the lemma.

30

The simulator Sslow, given straightline access to Ṽ and oracle access to F , works as follows:

1. Draw a uniformly random Rsim ∈ F<d[X1, . . . , Xm] and send zsim :=
∑

~α∈Hm Rsim(~α) to Ṽ .
2. Whenever Ṽ queries F at ~γ ∈ Fm, return F (~γ); whenever Ṽ queries R at ~γ ∈ Fm, return Rsim(~γ).
3. Receive ρ̃ from Ṽ , and draw a uniformly randomQsim ∈ F<d[X1, . . . , Xm] conditioned on

∑
~α∈Hm Qsim(~α) = ρ̃v+zsim

and Qsim(~γ) = ρ̃F (~γ) +Rsim(~γ) for every coordinate ~γ ∈ Fm queried in Step 2. (This latter condition requires querying
F at ~γ for every coordinate ~γ ∈ Fm queried to Rsim in Step 2.)

4. Hereafter: whenever Ṽ queries F at ~γ ∈ Fm, return F (~γ); whenever Ṽ queries R at ~γ ∈ Fm, return Qsim(~γ)− ρ̃F (~γ).
(In either case, a query to F is required.)

5. Run the sumcheck protocol with Ṽ on Qsim. (Note that Ṽ may query F or R before, during, or after this protocol.)
6. Output the view of the simulated Ṽ .

Note that Sslow runs in time poly(|F|m + qṼ). Also, Sslow makes one query to F for every query to F or R by Ṽ (at
least provided that Ṽ ’s queries have no duplicates, which we can assume without loss of generality). Thus, overall, the
number of queries to F by Sslow is qṼ . We now argue that Sslow’s output is identically distributed to Ṽ ’s view when
interacting with the honest prover PIP, for R random in F<d[X1, . . . , Xm].

Claim. SṼ ,Fslow ≡ View 〈PF,RIP , Ṽ F,R〉.

Proof. Define the random variable Q := ρ̃F +R, where ρ̃ is chosen by Ṽ . Observe that there exists a
(deterministic) function v(·) such that

View 〈PF,RIP , Ṽ F,R〉 = v(Q,F, r) and SṼ ,Fslow = v(Qsim, F, r) ,

where the random variable r is Ṽ ’s private randomness. Indeed, (i) the messages sent and received by
Ṽ are identical to those when interacting with PIP on Q and Qsim, respectively; (ii) Ṽ ’s queries to F
are answered honestly; (iii) Ṽ ’s queries to R are answered by R = Q − ρ̃F and Rsim = Qsim − ρ̃F
respectively. We are only left to argue that, for any choice of r, Q and Qsim are identically distributed:

– Q = ρ̃F + R is uniformly random in F<d[X1, . . . , Xm] conditioned on
∑

~α∈Hm Q(~α) = ρ̃v + z,
because R is uniformly random in F<d[X1, . . . , Xm] and satisfies

∑
~α∈Hm R(~α) = z (and F is in

F<d[X1, . . . , Xm] and satisfies
∑

~α∈Hm F (~α) = v); and

– Qsim is uniformly random in F<d[X1, . . . , Xm] conditioned on
∑

~α∈Hm Qsim(~α) = ρ̃v + zsim,
because Qsim is sampled at random in F<d[X1, . . . , Xm] conditioned on

∑
~α∈Hm Qsim(~α) = ρ̃v +

zsim and Qsim(~γi) = Rsim(~γi) + ρ̃F (~γi) for some (adversarial) choice of ~γ1, . . . , ~γk. But Rsim is
uniformly random in F<d[X1, . . . , Xm], so the latter condition says that Qsim matches a random
polynomial on the set of points {~γ1, . . . , ~γk}, giving the claimed distribution for Qsim.

We explain how to modify Sslow so as to reduce the running time to poly(log |F|+m+ d+ |H|+ qṼ).
Note that Sslow’s inefficiency arises from sampling two random polynomials in F<d[X1, . . . , Xm], namely Rsim

and Qsim, subject to certain constraints, and using them to answer Ṽ ’s messages and queries. We observe (and carefully
justify below) that all information about Rsim and Qsim received by Ṽ is answers to queries of the form “given
~γ ∈ F≤m, return the value A(~γ) :=

∑
~α∈Hm−|~γ| A(~γ, ~α)” for a random A ∈ F<d[X1, . . . , Xm], possibly conditioned

on previous such queries; when ~γ has length zero we use the symbol ⊥, so that A(⊥) denotes
∑

~α∈Hm A(~α). The new
simulator can use the algorithm A from our Corollary 4.10 to adaptively answer such queries, without ever explicitly
sampling the two polynomials.

We now argue that all information about Rsim and Qsim received by Ṽ from Sslow can be viewed as queries of the
above form, by discussing each step of Sslow.

• In Step 1, Sslow draws a uniformly random Rsim ∈ F<d[X1, . . . , Xm] and sends zsim = Rsim(⊥).

• In Step 2, Sslow answers any query ~γ ∈ Fm to R with Rsim(~γ).

31

• In Step 3, Sslow draws a uniformly random Qsim ∈ F<d[X1, . . . , Xm] conditioned on Qsim(⊥) = ρ̃v + zsim and
also on Qsim(~γ) = Rsim(~γ) + ρ̃F (~γ) for at most qṼ points ~γ ∈ Fm (namely, the points corresponding to queries in
Step 2).

• In Step 4, Sslow replies any query ~γ ∈ Fm to R with Qsim(~γ)− ρ̃F (~γ).

• In Step 5, Sslow runs the sumcheck protocol with Ṽ on Qsim, which requires computing univariate polynomials of the
form

∑
~α∈Hm−|θ|−1 Qsim(~θ,X, ~α) ∈ F[X] for various choices of ~θ ∈ F<m. Each of these polynomials has degree

less than d, and so can be obtained by interpolation from its evaluation at any d distinct points; each of these is the
answer of a query Qsim(~γ) of the required form, with ~γ = (~θ, δ) for some δ ∈ F. Overall, during the protocol, Sslow

only needs to query Qsim at md points ~γ ∈ F≤m.

In sum, we can modify Sslow so that instead of explicitly sampling Rsim and Qsim, it uses A to sample the answer for
each query to Qsim or Rsim, conditioning the uniform distribution on the answers to previous queries. Putting all of this
together, we obtain the simulator SIP described below, whose output is identically distributed to the output of Sslow.

The simulator SIP, given straightline access to Ṽ and oracle access to F , works as follows:

1. Let ansRsim be a subset of F≤m × F that records query-value pairs for Rsim.
2. Whenever Ṽ queries F at ~γ ∈ Fm, return F (~γ); whenever Ṽ queriesR at ~γ ∈ Fm, return β := A(F,m, d,H, ansRsim , ~γ).

In the latter case, add (~γ, β) to ansRsim .
3. Send zsim := A(F,m, d,H, ansRsim ,⊥), and add (⊥, zsim) to ansRsim .
4. Receive ρ̃ from Ṽ , and compute ansQsim := {(~γ, β + ρ̃F (~γ))}(~γ,β)∈ansRsim

; this subset of F≤m × F records query-value
pairs for Qsim. Note that ansQsim includes the pair (⊥, ρ̃v + zsim) because F (⊥) = v by assumption.

5. Hereafter: whenever Ṽ queries F at ~γ ∈ Fm, return F (~γ); whenever Ṽ queries R at ~γ ∈ Fm, return β′ := β − ρ̃F (~γ)
where β := A(F,m, d,H, ansQsim , ~γ). In the latter case, add (~γ, β) to ansQsim .

6. Run the sumcheck protocol with Ṽ on Qsim, by using the algorithm A and updating ansQsim appropriately. (Note that Ṽ
may query F or R before, during, or after this protocol.)

7. Output the view of the simulated Ṽ .

Note that SIP makes the same number of queries to F as Sslow does. Also, the number of pairs in ansRsim is at most
qṼ +md+ 1; ditto for ansQsim . Since the algorithm A is called at most qṼ +md times, the running time of SIP is
poly(log |F|+m+ d+ |H|+ qṼ), as required.

5.2 Step 2
The IP described and analyzed in Section 5.1 is in the “R-hybrid” model. We now compile that IP into an IPCPP, by
using proximity testing and self-correction, thereby concluding the proof of the PZK Sumcheck Theorem.

Proof of Theorem 5.3. Construct an IPCPP system (P, V) for sumcheck as follows:

• The prover P , given input (F,m, d,H, v) and oracle access to F , samples a uniformly random polynomial R ∈
F<d[X1, . . . , Xm] and sends its evaluation π : Fm → F to the verifier V . Then P simulates PF,RIP (F,m, d,H, v).

• The verifier V , after receiving a proof string π : Fm → F, simulates V F,πIP (F,m, d,H, v) up to VIP’s single query
~α ∈ Fm to π (which occurs after the interaction), which V does not answer directly but instead answers as follows.
First, V checks that π is %-close to the evaluation of a polynomial in F<d[X1, . . . , Xm] by performing an individual-
degree test with proximity parameter % := 1

8 and soundness error ε := md
|F| [GS06, GR15]; then, V computes π(~α)

via self-correction with soundness error ε [RS96, AS03], and replies with that value. Both procedures require
poly(log |F|+m+ d) queries and time. Finally, V rejects if VIP rejects or the individual degree test rejects.

Completeness and perfect zero knowledge of (P, V) are inherited, in a straightforward way, from those of (PIP, VIP).
We now argue soundness. So consider an instance-witness pair

(
(F,m, d,H, v), F

)
∈ RNO

SC and a malicious prover P̃ ,
and denote by π̃ : Fm → F the proof string sent by P̃ . We distinguish between the following two cases.

32

• Case 1: π̃ is %-far from evaluations of polynomials in F<d[X1, . . . , Xm].

In this case, the low-degree test accepts with probability at most ε.

• Case 2: π̃ is %-close to evaluations of polynomials in F<d[X1, . . . , Xm].

In this case, let R̃ be the unique polynomial in F<d[X1, . . . , Xm] whose evaluation is %-close to π̃; this polynomial
exists because % is less than the unique decoding radius (of the corresponding Reed–Muller code), which equals
1
2 (1− d−1

|F|)m, and is at least 1
4 by the assumption that md|F| <

1
2 . By the soundness of (PIP, VIP), the probability that

V F,R̃IP accepts is at most md+1
|F| (see Lemma 5.5). However V only has access to π̃, and uses self-correction on it to

compute R̃ at the single location ~α ∈ Fm required by VIP; the probability that the returned value is not correct is at
most ε. Hence, by a union bound, V accepts with probability at most md+1

|F| + ε.

Overall, we deduce that V accepts with probability at most max{ε , md+1
|F| + ε} ≤ 3md|F| .

Remark 5.6 (is interaction needed?). One may be tempted to “flatten” the IPCPP used to prove Theorem 5.3, by
sending a single PCP that already contains all possible transcripts, relative to all possible ρ’s. Such a modification does
indeed preserve completeness and soundness. (In fact, even a small subset of ρ’s is enough for constant soundness error,
because only one ρ in F is “bad”.) However, this modification does not preserve zero knowledge: if a verifier learns,
say, the partial sums α1 := ρ1F (~γ) +R(~γ) and α2 := ρ2F (~γ) +R(~γ) for ρ1 6= ρ2 and some ~γ ∈ F≤m then he also
learns F (~γ) = α1−α2

ρ1−ρ2 , violating zero knowledge. (Yet, the modification does preserve honest-verifier zero knowledge.)

Remark 5.7 (space complexity of the prover). The prover in a zero knowledge protocol is a probabilistic function, and
hence reads bits from its randomness tape. In the case of the above protocol, the prover P must sample the evaluation of
a random polynomial R in F<d[X1, . . . , Xm]; the entropy of R is exponential and thus requires reading an exponential
number of random bits from the randomness tape. (Beyond this, P requires no other randomness.)

It is easy to see that P can run in exponential time and space. However, if the prover has two-way access to its
random tape, P can run in exponential time and polynomial space: the prover treats the random tape as the coefficients of
R, computing an evaluation at a given point by reading the tape coefficient-by-coefficient and summing the contributions
of each monomial.

Two-way access to the randomness tape is a relaxation of the standard definition, which permits only one-way
access to it [Nis93]; that is, random bits must be stored on the work tape in order to be accessed again. It is not known
whether the relaxation makes polynomial-space machines more powerful for decision problems (the class is equivalent
to “almost”-PSPACE [BVW98]), nor do we know how to obtain a polynomial-space prover with only one-way
access. Nevertheless, we believe that polynomial space with two-way access to the random tape is still quite meaningful,
e.g., it yields standard polynomial space relative to a random oracle.

33

6 Perfect zero knowledge for counting problems
We prove that #P has an IPCP that is perfect zero knowledge against unbounded queries. (Recall that #P corresponds
to all counting problems associated to decision problems in NP.) We do so by constructing a suitable protocol for the
counting problem associated to 3SAT, which is #P-complete.

Definition 6.1. Let L#3SAT be the language of pairs (φ,N) where φ is a 3-CNF boolean formula andN is the number
of satisfying assignments of φ. We denote by n the number of variables and by c the number of clauses in φ.

We construct a public-coin IPCP system for L#3SAT that is perfect zero knowledge against unbounded queries,
and has exponential proof length and polynomial query complexity. As in the non-ZK IP counterpart, the number of
rounds is O(n), the prover runs in space poly(c) (with a caveat, see Remark 5.7), and the verifier in time poly(c).

Theorem 6.2 (formal statement of 1.2). There exists a IPCP system (P, V) that puts L#3SAT in the complexity class

PZK-IPCP

rounds k = O(n)
proof length l = exp(n)
query complexity q = poly(c)
soundness error ε = 1/2
prover space sp = poly(c)
verifier time tv = poly(c)
query bound b = ∗

 .

Moreover, the verifier V is public-coin and non-adaptive.

Proof. Let (PSC, VSC) be the PZK IPCPP system for sumcheck from Theorem 5.3, and let SSC be any simulator
attesting to its perfect zero knowledge. We construct an IPCP system (P, V) for L#3SAT as follows.

• The proverP , given an instance (φ,N), finds a prime q ∈ (2n, 22n], computes the arithmetization pφ ∈ F<3c
q [X1, . . . , Xn]

of φ and simulatesPFSC(F,m, d,H, v) with F := Fq ,m := n, d := 3c,H := {0, 1}, v := N , andF (X1, . . . , Xn) :=
pφ(X1, . . . , Xn). (The prover P also communicates the prime q to the V verifier.)

• The verifier V , given an instance (φ,N), also computes F,m, d,H, v, F , and then simulates V FSC(F,m, d,H, v), and
accepts if and only if the simulation accepts.

Note that the arithmetization of a 3-CNF formula φ can be computed in time poly(c), and the claimed given efficiency
parameters follow from Theorem 5.3. We now argue completeness, then soundness, and finally perfect zero knowledge.
Completeness. Completeness follows from the completeness of (PSC, VSC) and the fact that if (φ,N) ∈ L#3SAT

then
(
(F,m, d,H, v), F

)
= ((Fq, n, 3c, {0, 1}n, N), pφ) ∈ RYES

SC.
Soundness. Soundness follows from the soundness of (PSC, VSC) and the fact that if (φ,N) /∈ L#3SAT then(
(F,m, d,H, v), F

)
= ((Fq, n, 3c, {0, 1}n, N), pφ) ∈ RNO

SC.
Perfect zero knowledge. We construct a simulator S that provides perfect zero knowledge. Given an instance
(φ,N) and straightline access to a verifier Ṽ , the simulator S computes F,m, d,H, v, F as above and simulates
SṼ ,FSC (F,m, d,H, v). By the perfect zero knowledge property of (PSC, VSC), the simulator’s output is identically
distributed to View 〈PFSC(F,m, d,H, v), Ṽ F 〉; but note that Ṽ does not query any oracles outside of its interaction with
PSC so that Ṽ F = Ṽ . By the construction of P above, this view equals View 〈P (φ,N), Ṽ 〉, as desired.

34

7 Perfect zero knowledge from succinct constraint detection
We show how to obtain perfect zero knowledge 2-round IOPs of Proximity for any linear code that has proximity proofs
with succinct constraint detection (Section 7.1). Afterwards, we instantiate this general transformation for the case of
Reed–Solomon codes (Section 7.2), whose proximity proofs we discussed in Section 4.3.

7.1 A general transformation

PCPs of proximity for codes. A PCP of Proximity [DR04, BGH+06] for a code family C = {Cn}n is a pair (PC , VC)
where for every index n and w ∈ FD(n): if w ∈ Cn then V w,πC (n) accepts with probability 1 with π := P (n, w); if
w is ‘far’ from Cn then w ∈ Cn rejects with high probability regardless of π. We do not formally define this notion
because it is a special case of a 1-round IOP of Proximity (see Section 3.2.3) where the verifier message is empty; we
use PCPP[l, q, ε, δ, tp, tv] to denote the corresponding complexity class. Note that, since both π and w are provided
as oracles to V , the query complexity of V is the total number of queries across both oracles.
Leakage from proximity proofs. While proximity proofs facilitate local testing, they are a liability for zero knowledge:
in principle even a single query to π may ‘summarize’ information that needs many queries to w to simulate. (This holds
for BS proximity proofs [BS08], for instance.) Our construction facilitates local testing while avoiding this leakage.
Perfect zero knowledge IOPs of Proximity. The notion of zero knowledge for IOPs of Proximity that we target is
defined in Section 3.3.2 and is analogous to [IW14]’s notion for PCPs of Proximity (a special case of our setting).
Informally, it requiress an algorithm that simulates the verifier’s view by making as many queries to w as the total
number of verifier queries to either w or any oracles sent by the prover; intuitively, this means that any bit of any
message oracle reveals no more information than one bit of w.
A generic ‘masking’ construction. Suppose that the linear code family C = {Cn}n has a PCP of Proximity. Consider
the 2-round IOP of Proximity that uses masking via random self-reducibility (similarly to [BCGV16]) as follows. The
prover and verifier have input n and oracle access to a codeword w, and the prover wants to convince the verifier that
w is close to Cn. Rather than sending a proximity proof for w, the prover samples a random codeword z ∈ Cn and
sends it to the verifier; the verifier replies with a random field element ρ; the prover sends a proximity proof for the new
codeword ρw + z. Completeness follows from linearity of Cn; soundness follows from the fact that if w is far from Cn
then so is the word ρw + z for every z with high probability over ρ.

Perfect zero knowledge intuitively follows from the observation that ρw+ z is essentially a random codeword (up to
malicious choice of ρ). We formally prove this for the case where the linear code family consisting of the concatenation
of codewords in C with corresponding proximity proofs has succinct constraint detection.

We are now ready to turn the above discussions into formal definitions and proofs. Throughout, given a code family C ,
we denote by Rel(C) the relation consisting of all pairs (n, w) such that w ∈ Cn.

Definition 7.1. Let C = {Cn}n be a linear code family with domain D(·) and alphabet F(·), and let (P, V) be a
PCPP system for Rel(C). We say that (P, V) is linear if P is deterministic and is linear in its input codeword: for
every index n there exists a matrix An with entries in F(n) such that P (n, w) = An · w for all w ∈ Cn (equivalently,
the set {w‖P (n, w) }w∈Cn

is a linear code).

Definition 7.2. Let C = {Cn}n be a linear code family with domain D(·) and alphabet F(·), and let (P, V) be a
PCPP system for Rel(C). We say that (P, V) has T (·, ·)-time constraint detection if (P, V) is linear and, moreover,
the linear code family L = {Ln} has T (·, ·)-time constraint detection, where Ln := {w‖P (n, w) }w∈Cn

; we also say
that (P, V) has succinct constraint detection if the same holds with T (n, `) = poly(n+ `).

Theorem 7.3. Let C = {Cn}n be a linear code family with domain D(·), alphabet F(·), block length `(·), and a
S(·)-time sampler. Suppose that there exists a PCPP system (PC , VC) for Rel(C) that (is linear and) has succinct

35

constraint detection and puts Rel(C) in the complexity class

PCPP

answer alphabet F(n)
proof length lC (n)
query complexity qC (n)
soundness error εC (n)
proximity parameter δC (n)
prover time tpC (n)
verifier time tvC (n)
verifier randomness rvC (n)

.

Then there exists an IOPP system (P, V) that puts Rel(C) in the complexity class

PZK-IOPP

answer alphabet F(n)
rounds k(n) = 2
proof length l(n) = lC (n) + `(n)
query complexity q(n) = 2qC (n)
soundness error ε(n) = εC (n) + 1

|F(n)|
proximity parameter δ(n) = 2δC (n)
prover time tp(n) = tpC (n) + S(n) +O(`(n))
verifier time tv(n) = tvC (n) +O(qC (n))
verifier randomness rv(n) = rvC (n) + log |F(n)|
query bound b(n) = ∗

.

Remark 7.4 (the case of LTCs). It is tempting to apply Theorem 7.3 to the notable special case where the proximity
proof is empty (e.g., when C is locally testable so no proximity proofs are needed). However, in this case, the zero
knowledge guarantee of our construction does not buy anything compared to when the verifier queries only the codeword
(indeed, the verifier already learns precisely the value of codeword at those positions which it queries and nothing else).

Construction 7.5. The IOPP system (P, V) is defined as follows. The prover receives a pair (n, w) as input, while the
verifier receives the index n as input and w as an oracle. The interaction proceeds as follows:
1. P samples a random codeword z in Cn and sends z to V ;
2. V samples a random element ρ in F(n) and sends ρ to P ;
3. P computes the proof π := PC (n, ρw + z) and sends π to V ;
4. V checks that V w

′,π
C (n) accepts, where w′ := ρw + z (any query α to w′ is computed as ρw(α) + z(α)).

The round complexity, proof length, query complexity, and prover and verifier complexities claimed in Theorem 7.3
follow in a straightforward way from Construction 7.5. We now argue completeness and soundness (Claim 7.6) and
perfect zero knowledge (Claim 7.7).

Claim 7.6. The IOPP system (P, V) has completeness 1 and soundness error ε(n) = εC (n) + 1
|F(n)| .

Proof. First we argue completeness. Suppose that the instance-witness pair (n, w) is in the relation Rel(C), i.e., that
the word w is in the code Cn. Then, the linearity of Cn implies that, for every word z in Cn and element ρ in F(n), the
word ρw + z is also in Cn. Thus completeness of (P, V) follows from the completeness of (PC , VC).

Next we argue soundness. Suppose that w is 2δC (n)-far from Cn. For every word z in F(n)`(n) (not necessarily
in Cn), there exists at most one ρ in F(n) such that ρw + z is δC (n)-close to Cn (see Claim 3.1). The soundness of
(PC , VC) implies that VC accepts with probability at most εC (n) if VC is invoked on a word that is δC (n)-far from Cn.
Thus, since V invokes VC on the word ρw + z, the probability that V accepts is at most εC (n) + 1

|F(n)| .

Claim 7.7. There exists a straightline simulator S such that, for every (n, w) ∈ Rel(C) and malicious verifier Ṽ , the
following two random variables are identically distributed(

SṼ ,w(n) , qS

)
and

(
View 〈Pw(n), Ṽ w〉 , qṼ

)
,

where qS is the number of queries to w made by S and qṼ is the number of queries to w or to prover messages made by
Ṽ . Moreover, S runs in time poly(n+ qṼ), where qṼ is Ṽ ’s query complexity.

36

Proof. We begin by proving perfect zero knowledge via a straightline simulator Sslow whose number of queries to w
equals qṼ , but runs in time poly(tp(n) + qṼ). After that, we explain how to modify Sslow into another simulator S,
with an identical output distribution, that runs in the faster time claimed in the lemma.

The simulator Sslow, given straightline access to Ṽ and oracle access to w, works as follows:

1. Draw a uniformly random zsim ∈ Cn.
2. Whenever Ṽ queries w at α ∈ D(n), return w(α); whenever Ṽ queries z at α ∈ D(n), return zsim(α).
3. Receive ρ̃ from Ṽ , and draw a uniformly random w′sim‖πsim ∈ Ln conditioned on w′sim(α) = ρ̃w(α) + zsim(α) for every

coordinate α ∈ D(n) queried in Step 2. (This latter condition requires querying w at α for every coordinate α ∈ D(n)
queried to zsim in Step 2.)

4. Hereafter: whenever Ṽ queriesw at α ∈ D(n), returnw(α); whenever Ṽ queries z at α ∈ D(n), returnw′sim(α)− ρ̃w(α).
(In either case, a query to w is required.)

5. Tell Ṽ that the oracle π has been ‘sent’; whenever Ṽ queries the i-th entry of π, return the i-th entry of πsim. (Note that Ṽ
may query w or z before or after learning about π.)

6. Output the view of the simulated Ṽ .

Note that Sslow runs in time poly(tp(n) + qṼ). Also, Sslow makes one query to w for every query to w or z by Ṽ (at
least provided that Ṽ ’s queries have no duplicates, which we can assume without loss of generality), and zero queries to
w for every query to π by Ṽ . Thus, overall, the number of queries to w by Sslow is at most qṼ ; clearly, this number of
queries can be padded to be equal to qṼ . We now argue that Sslow’s output is identically distributed to Ṽ ’s view when
interacting with the honest prover P , for z random in Cn.

Claim. SṼ ,wslow ≡ View 〈Pw(n), Ṽ w〉.

Proof. Define the random variable w′ := ρ̃w + z, where ρ̃ is chosen by Ṽ . Observe that there exists a
(deterministic) function v(·) such that

View 〈Pw,z, Ṽ w,z〉 = v(w′, w, r) and SṼ ,wslow = v(w′sim, w, r) ,

where the random variable r is Ṽ ’s private randomness. Indeed, (i) the messages sent and received by
Ṽ are identical to those when interacting with P on w′ and w′sim, respectively; (ii) Ṽ ’s queries to w
are answered honestly; (iii) Ṽ ’s queries to z are answered by z = w′ − ρ̃w and zsim = w′sim − ρ̃w
respectively; (iv) Ṽ ’s queries to π are answered by PC (n, w′) and PC (n, w′sim) respectively. We are
only left to argue that, for any choice of r, w′ and w′sim are identically distributed:

– w′ = ρ̃w + z is uniformly random in Cn, because z is uniformly random in Cn, w is in Cn, and Cn is
linear; and

– w′sim is uniformly random in Cn, because w′sim is sampled at random in Cn conditioned on w′sim(αi) =
zsim(αi) + ρ̃w(αi) for some (adversarial) choice of α1, . . . , αk. But zsim is uniformly random in Cn,
so the latter condition says that w′sim matches a random codeword on the set of points {α1, . . . , αk},
giving the claimed distribution for w′sim.

We explain how to modify Sslow so as to reduce the running time to poly(n+ qṼ). The inefficiency of Sslow comes
from sampling zsim ∈ Cn and w′sim‖πsim ∈ Ln, which takes time poly(S(n) + `(n)) and poly(tpC (n)) respectively,
which need not be polynomial in n. In the following, we show how to not explicitly sample these codewords but,
instead, adaptively sample them by relying on constraint detection.

First, note that if L has constraint detection with a certain efficiency then so does C with the same efficiency. The
theorem’s hypothesis says that L has succinct constraint detection; so both C and L have succinct constraint detection.
We then invoke Lemma 4.3 to obtain probabilistic polynomial-time algorithms AC ,AL for the code families C ,L
respectively. Using these algorithms, we write the more efficient simulator S, as follows.

37

Let D∗(n) be the domain of Ln: this is the disjoint union of D(n) (the domain of Cn) and [lC (n)] (the domain of PC (n, Cn)).
The simulator S, given straightline access to Ṽ and oracle access to w, works as follows:

1. Let anszsim be a subset of D(n)× F(n) that records query-value pairs for zsim; initially, anszsim equals ∅.
2. Whenever Ṽ queries w at α ∈ D(n), return w(α); whenever Ṽ queries z at α ∈ D(n), return β := AC (n, anszsim , α).

In the latter case, add (α, β) to anszsim .
3. Receive ρ̃ from Ṽ , and compute ans := {(α, β + ρ̃w(α))}(α,β)∈anszsim ; this subset of D∗(n)× F(n) records query-value

pairs for w′sim‖πsim.
4. Hereafter: whenever Ṽ queries w at α ∈ D(n), return w(α); whenever Ṽ queries z at α ∈ D(n), return β′ := β − ρ̃w(α)

where β := AL (n, ans, α) and add (α, β) to ans.
5. Tell Ṽ that the oracle π has been ‘sent’; note that we do not yet commit to any entries in the proof, save for those which are

implied by the verifier’s previous queries to w. Whenever Ṽ queries the i-th location in π, return πi := AL (n, ans, i) and
add (i, πi) to ans. (Note that Ṽ may query w or z before or after learning about π.)

6. Output the view of the simulated Ṽ .

Note that S makes the same number of queries to w as Sslow does. Also, the number of pairs in anszsim is at most qṼ ;
ditto for ans. Since the algorithm A is called at most qṼ times, the running time of S is poly(n+ qṼ), as required.

We conclude with a lemma that says that succinct constraint detection is in some sense inherent to the “masking”
approach used in Construction 7.5.

Lemma 7.8. If (PC , VC) is a linear PCPP such that Construction 7.5 yields (P, V) with perfect zero knowledge, then
(PC , VC) has a constraint detector that runs in probabilistic polynomial time. (In fact, the same statement holds even if
the construction yields (P, V) with only statistical zero knowledge.)

Proof. The linear code Ln := {w‖P (n, w) }w∈Cn
has domain D∗(n) := D(n) t [lC (n)], which is the disjoint union

of D(n) (the domain of Cn) and [lC (n)] (the domain of P (n, Cn)); see Definition 7.2. Let I ⊆ D∗(n). We need, in
probabilistic polynomial time, to output a basis for (Ln|I)⊥. Construct a malicious verifier Ṽ that works as follows:

1. Receive z ∈ Cn from P .
2. Send ρ = 0 to P .
3. Receive π from P .
4. For each i ∈ I: if i ∈ D(n) then query z at i, and if i ∈ [lC (n)] then query π at i; call the answer βi.

By PZK, there is a probabilistic polynomial time algorithm S such that the output of SṼ ,w(n) is identically distributed
to View 〈Pw(n), Ṽ w〉, for every w ∈ Cn. Set w to be the zero codeword, and suppose we run SṼ ,w(n); this invocation
makes S sample answers (βi)i∈I = (z′(i))i∈I for z′ = z‖PC (n, z) uniformly random in Ln.

Thus, to perform constraint detection in probabilistic polynomial time, we proceed as follows. We run SṼ ,w(n)

k > |I| times, recording a vector ~βj = (βi)i∈I at the j-th iteration. Let B be the k × |I| matrix with rows ~β1, . . . , ~βk.
Output a basis for the nullspace of B, which we can find in poly(log |F|+ k + |I|) time.

We now argue correctness of the above approach. First, for every u ∈ FI such that
∑
i∈I u(i)w′(i) = 0 for every

w′ ∈ Ln, it holds that u is in the nullspace of B, because codewords used to generate B satisfy the same relation. Next,
the probability that there exists u ∈ FI in the nullspace of B such that

∑
i∈I u(i)w′(i) 6= 0 for some w′ ∈ Ln is at

most 1/|F|k−|I|. Indeed, for every such u, Prz′←Ln
[
∑
i∈I u(i)z′(i) = 0] ≤ 1/|F| (since Ln is a linear code), so the

probability that u is in the nullspace of B is at most 1/|F|k; we then obtain the claimed probability by a union bound.
Overall, the probability that the algorithm answers incorrectly is at most 1/|F|k−|I|.

7.2 Perfect zero knowledge IOPs of proximity for Reed–Solomon codes
We have already proved that the linear code family BS-RS, which consists of low-degree univariate polynomials
concatenated with corresponding BS proximity proofs [BS08], has succinct constraint detection. When combined with
the results in Section 7.1, we obtain IOPs of Proximity for Reed–Solomon codes, as stated in the corollary below.

Definition 7.9. We denote by RS+ the linear code family indexed by tuples n = (F, L, d), where F is an extension
field of F2 and L is an F2-linear subspace of F with d ≤ |L|/8, and the n-th code consists of the codewords from the
Reed–Solomon code RS[F, L, d].

38

Theorem 7.10 ([BS08]). For every function δ : {0, 1}∗ → (0, 1), the linear code family RS+ has PCPs of Proximity
with soundness error 1/2, proximity parameter δ, prover running time (and thus proof length) that is quasilinear in the
block length `(n), and verifier running time (and thus query complexity) that is polylogarithmic in `(n)/δ(n).

Corollary 7.11. For every function δ : {0, 1}∗ → (0, 1), there exists an IOPP system that puts Rel(RS+) in the
complexity class

PZK-IOPP

answer alphabet F(n)
rounds k(n) = 2

proof length l(n) = Õ(`(n))
query complexity q(n) = polylog(`(n)/δ(n))
soundness error ε(n) = 1/2
proximity parameter δ(n)

prover time tp(n) = Õ(`(n))
verifier time tv(n) = polylog(`(n)/δ(n))
query bound b(n) = ∗

.

Proof. Invoke Theorem 7.3 on the linear code family RS+ with corresponding BS proximity proofs (Theorem 7.10).
Indeed, the concatenation of codewords in RS+ and proximity proofs yields the family BS-RS, which has succinct
constraint detection by Theorem 4.12. (This last step omits a technical, but uninteresting, step: the proximity proofs
from Theorem 4.12 consider the case where the degree d equals the special value |L|/8, rather than being bounded by
it; but proximity proofs for smaller degree d are easily obtained from these, as explained in [BS08].)

When constructing perfect zero knowledge IOPs for NEXP (Section 8) we shall need perfect zero knowledge IOPs
of Proximity not quite for the family RS+ but for an extension of it that we denote by ERS+, and for which [BS08] also
gives PCPs of proximity. The analogous perfect zero knowledge result follows in a similar way, as explained below.

Definition 7.12. Given a field F of characteristic 2, F2-linear subspaces H,L ⊆ F with |H| ≤ |L|/8, and d0, d1 ∈ N
with d0, d1 ≤ |L|/8, we denote by ERS+[F, L,H, d0, d1] the linear code consisting of all pairs (w0, w1) where
w0 ∈ RS[F, L, d0], w1 ∈ RS[F, L, d1], and w1(x) = 0 for all x ∈ H . We denote by ERS+ the linear code family
indexed by tuples n = (F, L, d0, d1) for which the n-th code is ERS+[F, L,H, d0, d1].

Theorem 7.13 ([BS08]). For every function δ : {0, 1}∗ → (0, 1), the linear code family ERS+ has PCPs of Proximity
with soundness error 1/2, proximity parameter δ, prover running time (and thus proof length) that is quasilinear in the
block length `(n), and verifier running time (and thus query complexity) that is polylogarithmic in `(n)/δ(n).

Proof sketch. A PCP of proximity for a codeword (w0, w1) to ERS+[F, L,H, d0, d1] consists of (π0, w
′
1, π1), where

• π0 is a PCP of proximity for w0 to RS[F, L, d0];
• w′1 is the evaluation of the polynomial obtained by dividing (the polynomial of) w1 by the zero polynomial of H;
• π1 is a PCP of proximity for w′1 to RS[F, L, d1 − |H|].
The verifier, which has oracle access to (w0, w1) and (π0, w

′
1, π1), checks both PCPs or proximity and then performs a

consistency check between w1 and w′1. See [BS08] for details.

Corollary 7.14. For every function δ : {0, 1}∗ → (0, 1), there exists an IOPP system that puts Rel(ERS+) in the
complexity class

PZK-IOPP

answer alphabet F(n)
rounds k(n) = 2

proof length l(n) = Õ(`(n))
query complexity q(n) = polylog(`(n)/δ(n))
soundness error ε(n) = 1/2
proximity parameter δ(n)

prover time tp(n) = Õ(`(n))
verifier time tv(n) = polylog(`(n)/δ(n))
query bound b(n) = ∗

.

Proof. Invoke Theorem 7.3 on the linear code family ERS+ with corresponding BS proximity proofs (Theorem 7.13),
which has succinct constraint detection as we now clarify. A codeword (w0, w1) has proximity proof (π0, w

′
1, π1), and

Theorem 4.12 implies that (w0, π0) and (w′1, π1) have succinct constraint detection. But every coordinate of w′1 is easy
to compute from the same coordinate in w1, and concatenating codewords preserves succinct constraint detection.

39

8 Perfect zero knowledge for nondeterministic time
We prove that NEXP has 2-round IOPs that are perfect zero knowledge against unbounded queries. We do so by
constructing a suitable IOP system for NTIME(T) against query bound b, for each time function T and query bound
function b, where the verifier runs in time polylogarithmic in both T and b. Crucially, the simulator runs in time
poly(q̃ + log T + log b), where q̃ is the actual number of queries made by the malicious verifier; this exponential
improvement over [BCGV16], where the simulator runs in time poly(T + b), enables us to “go up to NEXP”.

Theorem 8.1 (formal statement of Theorem 1.1). For every constant d > 0, time bound function T : N → N with
n ≤ T (n) ≤ 2n

d

, and query bound function b : N→ N with b(n) ≤ 2n
d

, there exists an IOP system (P, V) that makes
NTIME(T) a subset of the complexity class

PZK-IOP

answer alphabet F(n) = F2

rounds k(n) = 2

proof length l(n) = Õ(T (n) + b(n))
query complexity q(n) = polylog(T (n) + b(n))
soundness error ε(n) = 1/2

prover time tp(n) = poly(n) · Õ(T (n) + b(n))
verifier time tv(n) = poly(n+ log(T (n) + b(n)))
query bound b(n)

.

Moreover, the verifier V is public-coin and non-adaptive.

Our proof is similar to that of [BCGV16], and the only major difference is that [BCGV16]’s simulator explicitly
samples random codewords, while we rely on succinct constraint detection to do so implicitly. Indeed, the reduction
from NTIME(T) generates codewords of size Õ(T), which means that sampling random codewords of that size is
infeasible when T is super-polynomial. We structure our argument in three steps, highlighting the essential components
that implicitly underlie [BCGV16]’s ‘monolithic’ argument; we view this as a conceptual contribution of our work.
Step 1 (Section 8.1). We construct perfect zero knowledge IOPs of Proximity for linear algebraic constraint
satisfaction problems (LACSPs) [BCGV16], a family of constraint satisfaction problems whose domain and range are
linear codes. An instance x of LACSP is specified by a function g and a pair of codes C0, C1; a witness w for x is a
pair (w0, w1) such that w0 ∈ C0, w1 ∈ C1, and g(w0) = w1. A natural approach to construct a perfect zero knowledge
IOPP for this relation is the following: if we are given a perfect zero knowledge IOP of Proximity for the relation
Rel(C0 × C1), then the verifier can test proximity of w = (w0, w1) to C0 × C1 and then sample a random index j and
check that g(w0)[j] = w1[j]. In order for the verifier’s strategy to make sense, we require g to (i) satisfy a distance
condition with respect to C0, C1, namely, that C1 ∪ g(C0) has large relative distance; (ii) be ‘local’, which means that
computing g(w0)[j] requires examining only a few indices of w0; and (iii) be ‘evasive’, which means that if w̃0 is close
to some w0 ∈ C0, then g(w̃0) is close to g(w0). All of this implies that if (w̃0, w̃1) is far from any valid witness but
close to C0 × C1, we know that g(w̃0) is far from w̃1, so that examining a random index j gives good soundness.
Step 2 (Section 8.2). We build on the above result to derive perfect zero knowledge IOPs for a subfamily of LACSPs
called randomizable LACSPs (RLACSPs) [BCGV16]. The key difference between this protocol and the IOP of
Proximity described above is that in the “proximity setting”, the verifier, and thus also the simulator, has oracle access
to the witness, while in the “non-proximity setting” the witness is sent to the verifier but the simulator must make do
without it; in particular, merely sending the witness (w0, w1) is not zero knowledge. We thus rely on the randomizability
property of RLACSPs to generate witnesses from a t-wise independent distribution, where t is larger than the query
bound b. In particular, while the simulator runs in time polynomial in the actual number of queries made by a verifier, it
runs in time polylogarithmic in t, and thus we can set b to be super-polynomial in order to obtain unbounded-query
zero knowledge against polynomial-time verifiers.
Step 3 (Section 8.3). We derive Theorem 8.1 (perfect zero knowledge IOPs for NTIME(T)) by combining: (1) the
aforementioned result for RLACSPs; (2) [BCGV16]’s reduction from NTIME to RLACSPs; (3) a perfect zero
knowledge IOP of Proximity for a suitable choice of C0 × C1, which we derived in Section 7.2. This last component is
the one that makes use of succinct constraint detection, and relies on the technical innovations of our work.

40

8.1 Perfect zero knowledge IOPs of proximity for LACSPs
A constraint satisfaction problem asks whether, for a given “local” function g, there exists an input w such that g(w) is
an accepting output. For example, in the case of 3SAT with n variables and m clauses, the function g maps {0, 1}n to
{0, 1}m, and g(w) indicates which clauses are satisfied by w ∈ {0, 1}n; hence w yields an accepting output if (and
only if) g(w) = 1m. Below we introduce a family of constraint satisfaction problems whose domain and range are
linear-algebraic objects, namely, linear codes.

We begin by providing the notion of locality that we use for g, along with a measure of g’s “pseudorandomness”.

Definition 8.2. Let g : Σn → Σm be a function. We say that g is q-local if for every j ∈ [m] there exists Ij ⊆ [n] with
|Ij | = q such that g(w)[j] (the j-th coordinate of g(w)) depends only on w|Ij (the restriction of w to Ij). Moreover, we
say that g is s-evasive if for every I ⊆ [n] the probability that Ij intersects I for a uniform j ∈ [m] is at most s · |I|n .

For example, if g is a 3SAT formula then g is 3-local because Ij equals the variables appearing in clause j; moreover,
g is s-evasive if and only if every variable xi appears in at most a fraction s/n of the clauses (i.e., the evasiveness
property corresponds to the fraction of clauses in which a variable appears). Also, a natural case where g is q-evasive is
when the elements of Ij are individually uniform in [n] when j is uniform in [m].

Definition 8.3. Let g : Σn → Σm be a function. We say that g is c-efficient if there is a c-time algorithm that, given j
and w|Ij , computes the set Ij and value g(w)[j].

The above definition targets succinctly-described languages. For example, a succinct 3SAT instance is given by a
circuit of size S that, on input j, outputs a description of the j-th clause; the definition is then satisfied with c = O(S).

Definition 8.4 (LACSP). Let C0(n), C1(n) be (descriptions of) linear codes over F(n) with block length `(n) and
relative distance τ(n). The promise relation of linear algebraic CSPs (LACSPs)

(RYES

LACSP,L
NO

LACSP)[F(n), C0(n), C1(n), `(n), τ(n), q(n), c(n)]

considers instance-witness pairs (x,w) of the following form.

• An instance x is a tuple (1n, g) where:

– g : F(n)`(n) → F(n)`(n) is q(n)-local, q(n)-evasive, and c(n)-efficient;
– C1(n) ∪ g(C0(n)) has relative distance at least τ(n) (though may not be a linear space).

• A witness w is a tuple (w0, w1) where w0, w1 ∈ F(n)`(n).

The yes-relation RYES
LACSP consists of all pairs (x,w) as above where the instance x and witness w jointly satisfy the

following: w0 ∈ C0(n), w1 ∈ C1(n), and g(w0) = w1. (In particular, a witness w = (w0, g(w0)) with w0 ∈ C0(n)
satisfies x if and only if g(w0) ∈ C1(n).) The no-language consists of all instances x as above where x /∈ Lan(RYES

LACSP).

Remark 8.5. In [BCGV16] the codes C0 and C1 are allowed to have distinct block lengths while, for simplicity, we
assume that they have the same block length; this restriction does not change any of their, or our, results.

We are now ready to give perfect zero knowledge IOPs of proximity for LACSPs.

Theorem 8.6. Suppose that there exists an IOPP system (P̂ , V̂) that puts Rel(C0 × C1) in the complexity class

PZK-IOPP[F, k̂, l̂, q̂, δ̂, ε̂, t̂p, t̂v, ∗] .

Then there exists an IOPP system (PLACSP, VLACSP) that puts (RYES
LACSP,L

NO
LACSP)[F, C0, C1, `, τ, q, c] in the complexity class

PZK-IOPP

answer alphabet F(n)

rounds k(n) = k̂(n)

proof length l(n) = l̂(n)
query complexity q(n) = q̂(n) + q(n) + 1

soundness error ε(n) = max
{
ε̂(n) , 1− τ(n) + 2δ̂(n) · (q(n) + 1)

}
proximity parameter δ(n) = δ̂(n)
prover time tp(n) = t̂p(n)
verifier time tv(n) = t̂v(n) + c(n)
query bound b(n) = ∗

.

41

Moreover, if (P̂ , V̂) is non-adaptive (respectively, public-coin) then so is (PLACSP, VLACSP).

Proof. We construct the IOPP system (PLACSP, VLACSP) for R, where the prover receives (x,w) =
(
(1n, g), (w0, w1)

)
as

input while the verifier receives x as input and w as an oracle, as follows:
1. PLACSP and VLACSP invoke the IOPP system (P̂ , V̂) to prove that (w0, w1) ∈ C0 × C1;
2. VLACSP chooses a random j ∈ [`] and checks that g(w0)[j] = w1[j];
3. VLACSP rejects if and only if V̂ rejects or the above check fails.
Completeness. If (x,w) ∈ RYES

LACSP, then (i) w0 ∈ C0, w1 ∈ C1, so V̂ always accepts, and (ii) g(w0) = w1 so the
consistency check succeeds for every j ∈ [`]. We deduce that VLACSP always accepts.

Soundness. Suppose that x ∈ Lan(RYES
LACSP) ∪L NO

LACSP and w̃ are such that ∆(w̃,RYES
LACSP|x) ≥ δ̂. Writing w̃ = (w̃0, w̃1),

we argue as follows.

• Case 1: ∆(w̃, C0 × C1) ≥ δ̂. In this case V̂ rejects with probability at least 1− ε̂.

• Case 2: ∆(w̃, C0 × C1) < δ̂. There exist codewords w0 ∈ C0 and w1 ∈ C1 such that (w0, w1) is δ-close to
(w̃0, w̃1) for δ < δ̂. By assumption, ∆(w̃,RYES

LACSP|x) ≥ δ̂, so in particular (w0, w1) cannot be in RYES
LACSP|x, and

g(w0) 6= w1. Since C1 ∪ g(C0) has relative distance at least τ , ∆(g(w0), w1) ≥ τ . Observe that since C0 and
C1 have the same block length, ∆(w̃0, w0) ≤ 2δ̂ and ∆(w̃1, w1) ≤ 2δ̂. Thus since g is q-evasive, the probability
that the set of coordinates I := {i ∈ [`] : w0[i] 6= w̃0[i]} intersects with Ij for random j ∈ [`] is at most 2δ̂q, so
∆(g(w0), g(w̃0)) ≤ 2δ̂q. Using the triangle inequality, we deduce that

∆(g(w̃0), w̃1) ≥ τ − 2δ̂(q + 1),

which means the consistency check rejects with probability at least τ − 2δ̂(q + 1).

It follows that VLACSP accepts with probability at most max{ε̂, 1− τ + 2δ̂(q + 1)}.
Perfect zero knowledge. We can choose the simulator SLACSP for (PLACSP, VLACSP) to equal any simulator Ŝ that fulfills
the perfect zero knowledge guarantee of (P̂ , V̂). Indeed, the behavior of PLACSP is the same as P̂ , and so the view of any
malicious verifier Ṽ when interacting with PLACSP is identical to its view when interacting with P̂ .

8.2 Perfect zero knowledge IOPs for RLACSPs
The above discussion achieves perfect zero knowledge for LACSPs, “up to queries to the witness”. We now explain
how to simulate these queries as well, without any knowledge of the witness, for a special class of LACSPs called
randomizable LACSPs. For these, the prover can randomize a given witness (w0, g(w0)) by sampling a random u′ in a
t-wise independent subcode C ′ of C0, and use the new ‘shifted’ witness (w0 + u′, g(w0 + u′)) instead of the original
one. We now define the notion of randomizable LACSPs, and then show how to construct perfect zero knowledge IOPs
for these, against bounded-query verifiers and where the the query bound depends on t.

Definition 8.7 (randomizability). An instance x = (1n, g) is t(n)-randomizable in time r(n) (with respect to code
families C0(n), C1(n)) if: (i) there exists a t(n)-wise independent subcode C ′ ⊆ C0(n) such that if (w0, g(w0))
satisfies x, then, for every w′0 in C ′+w0 := {w′+w0 | w′ ∈ C ′}, the witness (w′0, g(w′0)) also satisfies x; and (ii) one
can sample, in time r(n), three uniformly random elements in C ′, C0(n), C1(n) respectively.

Definition 8.8 (RLACSP). The promise relation of randomizable linear algebraic CSPs (RLACSPs) is

(RYES

RLACSP,L
NO

RLACSP)[F(n), C0(n), C1(n), `(n), τ(n), q(n), c(n), t(n), r(n)]

where RYES
RLACSP is obtained by restricting RLACSP to instances that are t-randomizable in time r, and L NO

RLACSP := L NO
LACSP.

Theorem 8.9. Suppose that there exists an IOPP system (P̂ , V̂) that puts Rel(C0 × C1) in the complexity class

PZK-IOPP[F, k̂, l̂, q̂, δ̂, ε̂, t̂p, t̂v, ∗] .

42

Then there exists an IOP system (PRLACSP, VRLACSP) that puts (RYES
RLACSP,L

NO
RLACSP)[F, C0, C1, `, τ, q, c, t, r] (with c polynomi-

ally bounded) in the complexity class

PZK-IOP

answer alphabet F(n)

rounds k(n) = k̂(n)

proof length l(n) = l̂(n) + `(n)
query complexity q(n) = q̂(n) + q(n) + 1

soundness error ε(n) = max
{
ε̂(n) , 1− τ(n) + 2 · δ̂(n) · (q(n) + 1)

}
prover time tp(n) = t̂p(n) + c(n) · `(n) + r(n)
verifier time tv(n) = t̂v(n) + c(n)
query bound b(n) = t(n)/q(n)

.

Moreover, if (P̂ , V̂) is non-adaptive (respectively, public-coin) then so is (PRLACSP, VRLACSP).

Proof. Let (PLACSP, VLACSP) be the IOPP system for RLACSP guaranteed by Theorem 8.6. We construct the IOP system
(PRLACSP, VRLACSP) for (RYES

RLACSP,L
NO
RLACSP), where the prover receives (x,w) =

(
(1n, g), (w0, w1)

)
as input while the verifier

receives x as input, as follows:

1. The prover PRLACSP parses the witness w as (w0, w1) ∈ C0 × C1, samples a random u′ ∈ C ′ (the subcode of C0 for
which t-randomizability holds), sets w′0 := u′ + w0 and w′1 := g(w′0), and sends w′ := (w′0, w

′
1) to VRLACSP.

2. In parallel to the above interaction, the prover PRLACSP and verifier VRLACSP invoke the IOPP system (PLACSP, VLACSP) on
the input x and new “prover-randomized” witness w′. The verifier VRLACSP accepts if and only if VLACSP does.

The claimed efficiency parameters immediately follow by construction. We now show that (PRLACSP, VRLACSP) satisfies
completeness, soundness, and perfect zero-knowledge.
Completeness. Suppose that (x,w) =

(
(1n, g), (w0, w1)

)
is in the relation RYES

RLACSP, so that w0 ∈ C0, w1 ∈ C1, and
g(w0) = w1. By randomizability (Definition 8.8), since w′0 ∈ C ′ + w0, we deduce that w′ = (w′0, w

′
1) = (w′0, g(w′0))

satisfies x, and so (x,w′) ∈ RYES
LACSP. Completeness then follows by the completeness of (PLACSP, VLACSP).

Soundness. Suppose that x = (1n, g) is in the language L NO
RLACSP = L NO

LACSP, so that RYES
LACSP|x = ∅. Regardless of

what ‘witness’ w′ is sent by PRLACSP, it holds that ∆(w′,RYES
LACSP|x) = ∆(w′, ∅) = 1 ≥ δ̂, so that the soundness of

(PLACSP, VLACSP) implies that VLACSP, and thus VRLACSP, accepts with probability at most max{ε̂, 1− τ + 2δ̂ · (q + 1)}.
Perfect zero knowledge. Let Ṽ be any verifier that makes at most b := t/q queries, and let SLACSP be the perfect zero
knowledge simulator for (PLACSP, VLACSP). We construct a simulator SRLACSP for (PRLACSP, VRLACSP) as follows:

SṼRLACSP(x):

1. SRLACSP initializes two empty strings ŵ0 and ŵ1 which will be partially filled during the simulation.

2. SRLACSP invokes SṼ ,(ŵ0,ŵ1)
LACSP , and during the execution answers oracle queries to (ŵ0, ŵ1) in the following way.

(a) If SLACSP queries ŵ0 at a location j ∈ [`]: if ŵ0[j] is already defined then return that value; otherwise
sample a random a ∈ F(n), set ŵ0[j] := a, and reply with ŵ0[j].

(b) If SLACSP queries ŵ1 at a location j ∈ [`]: if ŵ1[j] is already defined then return that value; otherwise
compute the set of indices Ij ⊆ [`] that g(·)j depends on; then ‘query’ the values of ŵ0[i] for all i ∈ Ij
as in the previous step; then update ŵ1[j] := g(ŵ0)[j] and reply with ŵ1[j].

Observe that SRLACSP runs in time poly(|x|+ qṼ + c), where qṼ denotes the actual number of queries made by Ṽ and c
is g’s efficiency (see Definition 8.3). Since c is polynomially bounded, SRLACSP runs in time poly(|x|+ qṼ), as required.

We must show that View 〈PRLACSP(x,w), Ṽ (x)〉 and SṼRLACSP(x) are identically distributed. Recall that PRLACSP(x,w)
samples w′ and then invokes PLACSP(x,w

′); viewing w′ as a random variable, we get that View 〈PRLACSP(x,w), Ṽ (x)〉 ≡
View 〈PLACSP(x,w

′), Ṽ (x)〉. By (PLACSP, VLACSP)’s perfect zero knowledge guarantee, we also know that(
View 〈PLACSP(x,w

′), Ṽ (x)〉, qṼ
)
≡
(
SṼ ,w

′

LACSP (x), qSLACSP

)
.

We are left to show that SṼ ,w
′

LACSP (x) ≡ SṼRLACSP(x).

43

By the query bound, we know that SLACSP makes at most t/q queries to w′. By construction of SRLACSP, this causes at
most t entries in ŵ0 to be ‘defined’, since |Ij | ≤ q for all j ∈ [`] (by g’s locality); let E ⊆ [`] be these entries. Since
w1 = g(w0), all of the responses to SLACSP’s queries are determined by w′0|E . While E is itself dependent on w′0 (as Ṽ ’s
queries may be adaptive), this does not affect the distribution of the string w′0|E because |E| ≤ t and w′0 is drawn from
a t-wise independent distribution. We deduce that there exists a deterministic function v(·) such that SLACSP’s queries
to w′ are answered by v(w′0|E) in the ‘real’ execution, and SRLACSP answers the same queries with v(U) where U is
uniformly random in FE . But w′0 is |E|-wise independent, so that w′0|E ≡ U , and thus SṼ ,w

′

LACSP (x) ≡ SṼRLACSP(x).

8.3 Putting things together
We are almost ready to prove Theorem 8.1, the main theorem of this section. The last missing piece is a suitable
reduction from NTIME(T) to RRLACSP, the promise relation of RLACSPs. Below, we state a special case of [BCGV16,
Thm. 7.9], which provides the reduction that we need.

Theorem 8.10 (NTIME→ RRLACSP). For every T, t : N→ N, constant τ ∈ (0, 1), and R ∈ NTIME(T) there exist
algorithms inst,wit1,wit2 satisfying the following conditions:

• EFFICIENT REDUCTION. For every instance x, letting x′ := inst(x):

– if x ∈ Lan(R) then x′ ∈ Lan(RYES
RLACSP);

– if x 6∈ Lan(R) then x′ ∈ L NO
RLACSP;

– for every witness w, if (x,w) ∈ R then (x′,wit1(x,w)) ∈ RYES
RLACSP;

– for every witness w′, if (x′,w′) ∈ RYES
RLACSP then (x,wit2(x,w′)) ∈ R.

Moreover, inst runs in time poly(n+ log(T (n) + t(n))) and wit1,wit2 run in time poly(n) · Õ(T (n) + t(n)).

• RANDOMIZABLE LINEAR ALGEBRAIC CSP. The promise relation (RYES
RLACSP,L

NO
RLACSP) has the parameters:

(RYES

RLACSP,L
NO

RLACSP)

field F = F2log(T+t)+O(log log(T+t))

first code C0

second code C1

block length ` = Õ(T + t)
relative distance τ
map locality q = polylog T
map efficiency c = poly(n+ log T)
randomizability t

randomize time r = Õ(T + t)

.

(The hidden constants depend on the choice of τ ; see [BCGV16, Thm. 7.9] for the dependence on τ .)

• ADDITIVE REED–SOLOMON CODES. Rel(C0 × C1) is a subfamily of ERS+.

Proof of Theorem 8.1. The theorem directly follows by having the prover and verifier reduce the given relation in
NTIME(T) to (RYES

RLACSP,L
NO
RLACSP), following Theorem 8.10, and then invoking Theorem 8.9 with the perfect zero

knowledge IOP of Proximity for ERS+ from Corollary 7.14.

44

A Prior work on single-prover unconditional zero knowledge
We summarize prior work on single-prover proof systems that achieve zero knowledge unconditionally. First, the
complexity classes of PZK IPs and SZK IPs are contained in AM ∩ coAM [For87, AH91], so they do not contain
NP unless the polynomial hierarchy collapses [BHZ87]; thus, IPs have strong limitations. Next, we discuss other
single-prover proof systems: PCPs and IPCPs; all prior work for these is about statistical zero knowledge (SZK), via
simulators that are straightline (which is needed in many of the cryptographic applications explored in these works).
SZK PCP for NEXP. [KPT97] obtain PCPs for NEXP that are SZK against unbounded queries; the PCP has
exponential length, the honest verifier makes a polynomial number of queries, and malicious verifiers can make any
polynomial number of queries. Their construction has two steps: (1) transform a given PCP into a new one that is PZK
against (several independent copies of) the honest verifier; (2) transform the latter PCP into a new one that is SZK
against malicious verifiers. The first step uses secret sharing and builds on techniques of [DFK+92]; the second uses
locking schemes, which are information-theoretic PCP-analogues of commitment schemes. Subsequent work simplifies
the steps: [IW14] use MPC techniques to simplify the first step; and [IMS12, IMSX15] give a simple construction of
locking schemes, by obtaining a non-interactive PCP-analogue of [Nao91]’s commitment scheme.
SZK PCP for NP against unbounded queries. A PCP must have super-polynomial length if it ensures SZK against
any polynomial number of malicious queries: if not, a malicious verifier could read the entire PCP, in which case zero
knowledge is impossible for non-trivial languages [GO94]. If one allows the prover to be inefficient, then invoking
[KPT97]’s result for any language in NEXP, including NP languages, suffices. Yet, in the case of NP, one can
still aim for oracle efficiency: the prover outputs a succinct representation of the oracle, i.e., a polynomial-size circuit
that, given an index, outputs the value at that index. However, [IMS12, MX13, IMSX15] show that languages with
oracle-efficient PCPs that are SZK against unbounded queries are contained in the complexity class of SZP IPs, which
is unlikely to contain NP.
SZK PCP for NP against bounded queries. [KPT97] obtain PCPs for NP that are SZK against b malicious queries,
for a given polynomially-bounded function b. The construction is analogous to the one for NEXP, but with different
parameter choices. (The simplifications in [IMS12, IMSX15, IW14] also apply to this case.)

Subsequently, [IW14] consider the case of zero knowledge PCPs of proximity; they obtain PCPPs for NP that are
SZK against b malicious queries. Like [KPT97], their construction has two steps: (1) use MPC techniques to transform
a given PCPP into a new one that is PZK against (several independent copies of) the honest verifier; (2) use locking
schemes to transform the latter PCPP into a new one that is SZK against malicious verifiers.
SZK IPCP for NP against unbounded queries. For an IPCP to ensure SZK against any polynomial number of
queries, the prover must send a PCP with super-polynomial length: if not, a malicious verifier could read the entire PCP,
forcing the IPCP model to “collapse” to IP (recall that the complexity class of SZK IPs is unlikely to contain NP). As
in the PCP model, one may still aim for oracle efficiency, and this time no limitations apply because a positive result is
known: [GIMS10] obtain oracle-efficient IPCPs for NP that are SZK against unbounded queries. Their construction is
analogous to [KPT97]’s, but relies on interactive locking schemes in the IPCP model, rather than non-interactive ones
in the PCP model; this circumvents the impossibility result for oracle-efficient PCPs.

45

B Proof of Lemma 4.3
The algorithm A, given (n, S, α), where S = {(α1, β1), . . . , (α`, β`)} ⊆ D(n) × F(n) and α ∈ D(n), works as
follows: (1) run C ’s constraint detector on input (n, {α1, . . . , α`, α}); (2) if the detector outputs an empty basis or
a basis z1, . . . , zd where zi(α) = 0 for all i, then output a random element in F(n); (3) if the detector outputs some
basis element zj where zj(α) 6= 0, then output −

∑`
i=1

zj(αi)
zj(α) βi. The stated time complexity of A is clear from its

construction. We now argue correctness. Define the probability

p := Pr
w←Cn

w(α) = β

∣∣∣∣∣∣∣
w(α1) = β1

...
w(α`) = β`

 .

Claim. (A) If there exist a1, . . . , a` ∈ F(n) such that w(α) =
∑`
i=1 aiw(αi) for all w ∈ Cn (Condition A), then p = 1 if

β =
∑`
i=1 aiβi and p = 0 otherwise. (B) If no such a1, . . . , a` exist, then p = 1

|F(n)| .

Proof of claim. If Condition A holds, then, for any w ∈ Cn such that w(α1) = β1, . . . , w(α`) = β`, it holds that w(α) =∑`
i=1 aiw(αi) =

∑`
i=1 aiβi, which proves the first part of the claim.

Next, let d := dim(Cn) and let w1, . . . , wd be a basis of Cn. Define φα := (w1(α), . . . , wd(α)). We argue that
Condition A holds if and only if φα ∈ span(φα1 , . . . , φα`):

• Suppose that Condition A holds. Then wj(α) =
∑`
i=1 aiwj(αi) for every j ∈ {1, . . . , d}. Since wj(α) is the j-th

coordinate of φα, it also holds that φα =
∑`
i=1 aiφαi , so that φα ∈ span(φα1 , . . . , φα`).

• Suppose that φα ∈ span(φα1 , . . . , φα`). Then there exist a1, . . . , a` such that φα =
∑`
i=1 aiφαi . For any w ∈ Cn,

we can write w =
∑d
j=1 bjwj (for some bj’s), so that w(α) =

∑d
j=1 bjwj(α) = 〈w, φα〉 =

∑`
i=1 ai〈w, φαi〉 =∑`

i=1 aiw(αi).

Thus, the negation of Condition A is equivalent to φα /∈ span(φα1 , . . . , φα`), which we now assume to prove the second part
of the claim, as follows.

Let Φ ∈ F(n)`×d be the matrix whose rows are φα1 , . . . , φα` , and let w′1, . . . , w′k be a basis for Φ’s nullspace. Let Φ′

be the matrix Φ augmented with the row φα. Note that rank(Φ′) = rank(Φ) + 1, so the nullspace of Φ′ has dimension
k − 1, which implies that there exists j ∈ {1, . . . , k} such that 〈w′j , φα〉 6= 0. Also note that, for every w ∈ Cn such that
w(α1) = β1, . . . , w(α`) = β` and r ∈ F(n), the codeword w+ rw′j satisfies the same equations as w does. Therefore, if w is
drawn uniformly randomly from Cn such that w(α1) = β1, . . . , w(α`) = β`, then w + rw′j for r uniformly random in F(n)

is identically distributed to w. We conclude that Pr[w(α) = β] = Pr[(w + rw′j)(α) = β] = Pr[r = β−〈w,φα〉
〈w′j ,φα〉

] = 1
|F(n)| ,

since 〈w′j , φα〉 6= 0.

By the definition of constraint detection, a1, . . . , a` as above exist if and only if there exists z in the space output by
the constraint detector such that z(α) = 1. If the constraint detector outputs z1, . . . , zd such that zi(α) = 0 for all i,
then clearly the space contains no such vector. Otherwise, let j be such that zj(α) 6= 0; then ai = −zj(αi)/zj(α) for
i = 1, . . . , ` is a solution. Hence this distribution equals that of A’s output, and moreover fully describes the probability
distribution of w(α). The lemma follows.

46

C Proof of Lemma 4.6
By Claim 4.5, it suffices to show an algorithm that computes a basis of (C⊥

n
)⊆I in poly(|n|+ |I|) time. So consider

the algorithm that, on input an index n and subset I ⊆ D(n), works as follows. First, invoke the hypothesis to compute
the set W ; since vectors are represented sparsely we conclude that |W |, |supp(W)| ≤ poly(|n| + |I|). (Recall that
supp(W) := ∪z∈W supp(z).) We may assume W is linearly independent; otherwise, make it thus via Gaussian
elimination which runs in time poly(|W |+ |supp(W)|). Similarly, the bound on |W | and |supp(W)| implies that a
basis W ′ for the subspace W⊆I can be found in time poly(|n|+ |I|), and we let W ′ be the output of our algorithm.

To argue correctness it suffices to show that span(W ′) = (C⊥
n

)⊆I . We first argue span(W ′) ⊆ (C⊥
n

)⊆I , so let
z′ ∈ span(W ′), which can be represented as z′ =

∑
λ∈Λ aλ

∑
z∈W λ(z) · z; note that z′ ∈ span(W) ⊆ C⊥

n
and

supp(z′) ⊆ supp(W) = I ∪ I . Hence, it suffices to show that supp(z′) ∩ I = ∅; but this is true by the choice of Λ,
because M · λ = 0 for every λ ∈ Λ, so that

∑
z∈W λ(w) · z(α) = 0 for every α ∈ I (by M ’s definition), so that

z′(α) =
∑
λ∈Λ aλ

∑
z∈W λ(z) · z(α) = 0 for every α ∈ I , as required.

We next argue that span(W ′) ⊇ (C⊥
n

)⊆I , and for this it suffices to show that any w ∈ span(W) having representa-
tion w =

∑
z∈W az · z such that ~a := (az)z∈W /∈ span(Λ) can not be in (C⊥

n
)⊆I . This follows by the definition of Λ,

because for any ~a /∈ span(Λ) there exists α ∈ I such that w(α) =
∑
z∈W az · z(α) 6= 0, so that w /∈ (C⊥

n
)⊆I .

47

D Proof of Lemma 4.11
For completeness, we give an elementary proof of Lemma 4.11, by simplifying the proof of [Kay10, Thm. 10] for
polynomials of the form we require; note that [RS05] and [BW04] also use similar techniques. We first introduce
some notation. We consider a polynomial Q ∈ F<d[X1, . . . , Xm] equivalently as a univariate polynomial of degree
less than d in X1 with coefficients in F<d[X2, . . . , Xm], and let ∂j1Q be the coefficient of Xj

1 in this representation.
Define ∂j1 ~Q := (∂j1Q1, . . . , ∂

j
1Q`). In general, given an arbitrary arithmetic circuit representing a polynomial Q, it is

not clear how to efficiently compute a circuit representing ∂j1Q, because Q may have exponentially many monomials.
Nevertheless, for circuits of the required form, this computation is trivial.

Claim. Let ~Q := (Q1, . . . , Q`) be a vector of polynomials in F<d[X1, . . . , Xm]. If d ≤ |F| then ~Q⊥ =
⋂d−1
j=0 (∂j1

~Q)⊥.

Proof. When d ≤ |F|, Q ∈ F<d[X1, . . . , Xm] ≡ 0 if and only if all of its coefficients are zero when written as a formal
sum. Then one direction of the set equality follows straightforwardly from the linearity of ∂j1 , namely, ~Q⊥ ⊆

⋂d−1
j=0 (∂j1

~Q)⊥.

For the other direction, we argue as follows. Fix some (a1, . . . , a`) ∈
⋂d−1
j=0 (∂j1

~Q)⊥ and let T :=
∑`
k=1 akQk; we have

that ∂j1T ≡ 0 for all j ∈ {0, . . . , d − 1}, by linearity. But T =
∑d−1
j=0 (∂j1T)Xj

1 by definition, so T ≡ 0, and thus

(a1, . . . , a`) ∈ ~Q⊥.

Thus to compute a basis of ~Q⊥ it suffices to compute the intersection of the bases of (∂j1
~Q)⊥ for all j ∈ {0, . . . , d− 1}.

The naive approach yields an exponential-time algorithm since we reduce the problem to d subproblems of roughly the
same size. Observe, however, that for Qk of the specified form,

∂j1Qk = ck,jTk where Tk :=

(
m∏
i=2

Qk,i(Xi)

)
,

for constants ck,j computable in time poly(s). Let ~T := (T1, . . . , T`) and let T⊥ ∈ F`×b be a basis for ~T⊥; note that
b ≤ `. Let ~a := (a1, . . . , a`) ∈ F`, and observe that for each j,

∑`
k=1 ak∂

j
1Qk ≡ 0 if and only if

∑`
k=1 akck,jTk ≡ 0,

or equivalently, (a1c1,j , . . . , a`c`,j) ∈ ~T⊥. Hence (a1, . . . , a`) ∈
⋂d
j=0(∂j1

~Q)⊥ if and only if for each j there exists
~vj ∈ Fb such that T⊥ ~vj = (a1c1,j , . . . , a`c`,j). This is a system of linear equations in ~a, ~v0, . . . , ~vd−1 of size
poly(`+ d+ b), and hence we can compute a basis for its solution space in time poly(log |F|+ d+ `+ b). Restricting
this basis to ~a yields a basis for ~Q⊥.

If Q1, . . . , Qn are univariate then we can easily determine a basis for ~Q⊥ in deterministic polynomial time (by
Gaussian elimination). Otherwise, if the Qi are m-variate, we use the procedure above to reduce computing ~Q⊥

to computing ~T⊥ for some ~T = (T1, . . . , T`) where the Ti are (m − 1)-variate. This algorithm terminates in time
poly(log |F|+m+ d+ s+ `).

48

E Proof of Claim 4.23
First we show that span(∪j∈J C̃⊥j) ⊆ (C⊥)⊆(∪j∈JD̃j). For every j ∈ J and z ∈ C̃⊥j , it holds that supp(z) ⊆ D̃j ;

therefore, for every z ∈ span(∪j∈J C̃⊥j), it holds that supp(z) ⊆ ∪j∈JD̃j ; thus it is suffices to show that, for every
z ∈ ∪j∈J C̃⊥j and w ∈ C, it holds that 〈w, z〉 = 0. But this holds because for every z ∈ ∪j∈J C̃⊥j there exists j ∈ J
such that z ∈ C̃⊥j and C|D̃j = C̃j so that 〈w, z〉 = 〈w|D̃j , z〉 = 0, as required.

Next we show that span(∪j∈J C̃⊥j) ⊇ (C⊥)⊆(∪j∈JD̃j), which is equivalent to span(∪j∈J C̃⊥j) ⊇ (C|∪j∈JD̃j)
⊥ by

Claim 4.5. Recall that for any two linear spaces U, V it holds that U ⊆ V if and only if U⊥ ⊇ V ⊥, thus it is sufficient
to show that span(∪j∈J C̃⊥j)⊥ ⊆ C|∪j∈JD̃j , i.e., that every w ∈ span(∪j∈J C̃⊥j)⊥ can be extended to w′ ∈ C. This

latter statement holds because span(∪j∈J C̃⊥j)⊥|D̃j ⊆ (C̃⊥j)⊥ = C̃j for every j ∈ J , and thus w|D̃j ∈ C̃j . Recalling
|J | ≤ κ implies, by Definition 4.15, that w can be extended to a codeword w′ ∈ C, as claimed.

49

F Definition of the linear code family BS-RS
In this section we define the linear code family BS-RS, which consists of evaluations of univariate polynomials
concatenated with corresponding BS proximity proofs [BS08]. The definition is quite technical, and we refer the
interested reader to [BS08] for a discussion of why it enables proximity testing. We begin with notation used later.

Definition F.1. Given a field F, a subfield K ⊆ F, a K-linear space L ⊆ F with a basis (b1, b2, . . . , b`), a positive
integer µ, and a positive integer k > 2µ, we make the following definitions.

• Four subspaces of L and a subset of L:

L0[K,F, L, µ] := spanK(b1, b2, . . . , bb`/2c)

L′0[K,F, L, µ] := spanK(b1, b2, . . . , bb`/2c+µ−1)

L1[K,F, L, µ] := spanK(bb`/2c+1, . . . , b`)

∀β ∈ L1[K,F, L, µ] , Lβ [K,F, L, µ] := spanK(b1, b2, . . . , bb`/2c+µ−1, β
′)

∀β ∈ L1[K,F, L, µ] , Rβ [K,F, L, µ] :=Lβ \ (L0 + β)

where β′ := bb`/2c+µ if β ∈ L′0 and β′ := β otherwise.

• The vanishing polynomial of L0: ZL0
[K,F, L, µ](X) :=

∏
α∈L0

(X − α).

• The following domains:

Dbi[K,F, L, µ] :={(α,ZL0
(β)) : β ∈ L1, α ∈ Lβ}

Dpf [K,F, L, µ] :={(α,ZL0
(β)) : β ∈ L1, α ∈ Rβ}

D�[K,F, L, µ] := ({rs} × L) t ({px} ×Dpf)

where we use the symbols ‘rs’ and ‘px’ to distinguish different parts of the disjoint union.

• The bijection φ[K,F, L, µ] : Dbi → D� is defined by φ(α, β) :=

{
(px, (α, β)) (α, β) ∈ Dpf

(rs, α) otherwise
.

• Given w ∈ FD�[K,F,L,µ], the bivariate function fw : Dbi[K,F, L, µ]→ F is defined by fw(α, β) := w(φ(α, β)).

• The fractional degree ρ[K,F, µ] := |K|−µ.

• The domain DBS-RS
px [K,F, L, µ, k] implied by the recursion below:

– if dim(L) ≤ k then DBS-RS
px [K,F, L, µ, k] := Dpf [K,F, L, µ];

– if dim(L) > k then

DBS-RS
px [K,F, L, µ, k] := Dpf [K,F, L, µ]

⊔ (
tα∈L′0 {(col, α)} ×DBS-RS

px [K,F, ZL0
(L1), µ, k]

)
⊔ (

tβ∈L1
{(row, β)} ×DBS-RS

px [K,F, Lβ , µ, k]
)
.

where we use the symbols ‘col’ and ‘row’ to distinguish different parts of the disjoint union.

• The domain DBS-RS[K,F, L, µ, k] := ({rs} × L) t
(
{px} ×DBS-RS

px [K,F, L, µ, k]
)
.

• Given α ∈ L′0, the embedding φcol,α : DBS-RS[K,F, ZL0
(L1), µ, k] ↪→ DBS-RS[K,F, L, µ, k] is defined by

φcol,α(x) :=

{
(px, ((col, α), x)) x ∈ {px} ×DBS-RS

px [K,F, ZL0
(L1), µ, k]

φ(α, β) x = ({rs}, ZL0
(β))

We denote by Dcol,α the image of φcol,α.

50

• Given β ∈ L1, the embedding φrow,β : DBS-RS[K,F, Lβ , µ, k] ↪→ DBS-RS[K,F, L, µ, k] is defined by

φrow,β(x) :=

{
(px, ((row, β), x)) x ∈ {px} ×DBS-RS

px [K,F, Lβ , µ, k]

φ(α, β) x = ({rs}, α)

We denote by Drow,β the image of φrow,β .

• Given α ∈ L′0, ψcol,α : FDBS-RS[K,F,L,µ,k] → FDBS-RS[K,F,ZL0
(L1),µ,k] is the projection of DBS-RS[K,F, L, µ, k] on

Dcol,α with indices renamed to elements of DBS-RS[K,F, ZL0(L1), µ, k]. Formally, ψcol,α(w) = w′ if and only if
w′(φcol,α(x)) = w(x) for all x ∈ DBS-RS[K,F, ZL0

(L1), µ, k].

• Given β ∈ L1, ψrow,β : FDBS-RS[K,F,L,µ,k] → FDBS-RS[K,F,Lβ ,µ,k] is the projection of DBS-RS[K,F, L, µ, k] on
Drow,β with indices renamed to elements of DBS-RS[K,F, Lβ , µ, k]. Formally, ψrow,β(w) = w′ if and only if
w′(φrow,β(x)) = w(x) for all x ∈ DBS-RS[K,F, Lβ , µ, k].

The following definition considers a code that extends the evaluation of a univariate polynomial with a bivariate
function that represents the polynomial over a specially-chosen set.

Definition F.2 (RS�). Given a field F, a subfield K ⊆ F, a K-linear space L ⊆ F, and a positive integer µ, the code
RS�[K,F, L, µ] consists of all w ∈ FD�[K,F,L,µ] such that fw : Dbi → F is an evaluation of a low degree polynomial:
there exists a polynomial g ∈ F[X,Y] such that: (i) degX(g) < |L0|, (ii) degY (g) < |L1| · ρ[K,F, µ], (iii) g|Dbi

= fw.

Ben-Sasson and Sudhan [BS08] show that:

• v ∈ RS[F, L, |L| · ρ] if and only if there exists w ∈ RS�[K,F, L, µ] such that w|{rs}×L = v;

• w ∈ RS�[K,F, L, µ] if and only if

– for every α ∈ L′0, fw|{α}×ZL0
(L1) ∈ RS[F, ZL0(L1), |L1| · ρ] (with the standard mapping between domains) and

– for every β ∈ L1, fw|Lβ×{ZL0
(β)} ∈ RS[F, Lβ , |L0|] (with the standard mapping between domains).

The above equivalences illustrate the ‘quadratic reduction’ from testing that w ∈ FL is a codeword of RS[F, L, |L| · ρ]
to a set of Θ(

√
|L|) problems of testing membership in codes of the form RS[F, L′, d′] with |L′|, d′ = Θ(

√
|L|).

The code from Definition F.2 corresponds to one step of the recursive construction of [BS08]. We now build on that
definition, and recursively define the linear code family BS-RS.

Definition F.3 (BS-RS). Given a field F, a subfield K ⊆ F, a K-linear space L ⊆ F, a positive integer µ, and a positive
integer k > 2µ, the code BS-RS[K,F, L, µ, k] consists of all words w ∈ FDBS-RS[K,F,L,µ,k] satisfying the following. If
dim(L) ≤ k then w ∈ RS�[K,F, L, µ]. If dim(L) > k the following holds: (1) for every α ∈ L′0 there exists wα ∈
BS-RS[K,F, ZL0

(L1), µ, k] such that wα(φcol,α(x)) = w(x) for every x ∈ D[K,F, ZL0
(L1), µ, k]; (2) for every

β ∈ L1 there exists wβ ∈ BS-RS[K,F, Lβ , µ, k] such that wβ(φrow,β(x)) = w(x) for every x ∈ D[K,F, Lβ , µ, k].

We conclude this section with two claims about BS-RS that we use in later sections. We omit the proof of the first
claim (and refer the interested reader to [BS08]), and prove the second claim based on the first one.

Claim F.4. For every codeword w ∈ RS[F, L, |L| · ρ], positive integer µ, and positive integer k > 2µ, there exists a
unique πw such that w ◦ πw ∈ BS-RS[K,F, L, µ, k].

Claim F.5. The following two statements hold for the code BS-RS[K,F, L, µ, k]:
• for everyα ∈ L′0 andw′ ∈ BS-RS[K,F, ZL0

(L1), µ, k] there existsw ∈ BS-RS[K,F, L, µ, k] such thatψcol,α(w) = w′;
• for every β ∈ L1 and w′ ∈ BS-RS[K,F, Lβ , µ, k] there exists w ∈ BS-RS[K,F, L, µ, k] such that ψrow,β(w) = w′.

Proof. The proofs for the two statements are similar, so we only give the proof for the first statement. Let w′ ∈
BS-RS[K,F, ZL0

(L1), µ, k], and define wrs := w′|{rs}×ZL0
(L1); observe that wrs in RS[F, ZL0

(L1), |L1| · ρ]. By
Claim F.4, w′ is uniquely determined by wrs, thus it suffices to show that there exists w� ∈ RS�[K,F, L, µ] such that
fw�
|{α}×ZL0

(L1) = wrs. By definition of RS�, it suffices to show that there exists a bivariate polynomial g ∈ F[X,Y]
such that: (i) degX(g) < |L0|, (ii) degY (g) < |L1| · ρ, (iii) g|{α}×ZL0

(L1) = wrs ∈ RS[F, ZL0
(L1), |L1| · ρ]. The

existence of such g follows by considering a suitable interpolating set (see, e.g., Appendix H).

51

G Proof of Lemma 4.27
In this section we prove Lemma 4.27. In Appendix G.1 we define the recursive cover and prove its combinatorial
properties; in Appendix G.2 we prove that a spanning set for the duals of codes in this cover can be computed efficiently;
in Appendix G.3, we put these together to conclude the proof.

G.1 The recursive cover and its combinatorial properties
We define a recursive cover for BS-RS and then prove certain combinatorial properties for it. The definition relies on
the definition of another cover, which we now introduce.

Definition G.1. The native cover S[K,F, L, µ, k] of BS-RS[K,F, L, µ, k] is defined as follows:

• if dim(L) ≤ k then the cover contains only the trivial view (DBS-RS[K,F, L, µ, k],BS-RS[K,F, L, µ, k]);

• if dim(L) > k then the cover contains

– the view (BS-RS[K,F, ZL0(L1), µ, k], Dcol,α) for every α ∈ L′0, and
– the view (BS-RS[K,F, Lβ , µ, k], Drow,β) for every β ∈ L1.

We now prove that the native cover is indeed a cover.

Claim G.2. The native cover of BS-RS[K,F, L, µ, k] is a code cover (see Definition 4.13).

Proof. From Claim F.5 we know that:
• for every α ∈ L′0, the restriction of BS-RS[K,F, L, µ, k] to Dcol,α equals BS-RS[K,F, ZL0(L1), µ, k];
• for every β ∈ L1, the restriction of BS-RS[K,F, L, µ, k] to Drow,β equals BS-RS[K,F, Lβ , µ, k].
Therefore, it suffices to show that D� ⊆ (∪α∈L′0Dcol,α) ∪ (∪β∈L1

Drow,β). So let x be an index in D�.
• If there exists α ∈ L′0 such that x ∈ {px} × {(col, α)} ×DBS-RS

pf [K,F, ZL0
(L1), µ, k], then x ∈ Dcol,α.

• If there exists β ∈ L1 such that x ∈ {px} × {(row, β)} ×DBS-RS
pf [K,F, Lβ , µ, k], then x ∈ Drow,β .

• If x ∈ {px}×Dpf [K,F, L, µ], then there exist β ∈ L1 and α ∈ Rβ such that x = (px, (α,ZL0
(β))), so x ∈ Drow,β .

• If x ∈ {rs} × L, then there exist β ∈ L1 and α ∈ Lβ such that φ[K,F, L, µ](α,ZL0
(β)) = x, so x ∈ Drow,β .

The recursive cover of BS-RS is recursively defined based on the native cover of BS-RS.

Definition G.3. The recursive cover T [K,F, L, µ, k] of BS-RS[K,F, L, µ, k] is the tree of depth blog dim(L)− log(k)c
where, for every non-leaf vertex v labeled by (D̃,BS-RS[K,F, L̃, µ, k]), the vertex v has |S[K,F, L̃, µ, k]| successors,
all labeled by elements of S[K,F, L̃, µ, k] with the natural embedding of their domains into D̃.

Claim G.4. The recursive cover of BS-RS[K,F, L, µ, k] is 1-intersecting (see Definition 4.18).

Proof. We must show that for every two disconnected vertices u, v it holds that |D̃u ∩ D̃v| ≤ 1. It suffices to do so for
every two distinct siblings u, v, because if a is an ancestor of b then D̃a contains D̃b. Hence, we only need to show that
for every two distinct views (D̃, C̃), (D̃′, C̃ ′) in the native cover S[K,F, L, µ, k], it holds that |D̃ ∩ D̃′| ≤ 1. First we
observe that for every α1 6= α2 ∈ L′0 and β1 6= β2 ∈ L1, the following sets are disjoint by definition:
• {px} × {(col, α1)} ×DBS-RS

pf [K,F, ZL0
(L1), µ, k],

• {px} × {(col, α2)} ×DBS-RS
pf [K,F, ZL0(L1), µ, k],

• {px} × {(row, β1)} ×DBS-RS
pf [K,F, Lβ1

, µ, k],
• {px} × {(row, β2)} ×DBS-RS

pf [K,F, Lβ2
, µ, k].

Thus it is enough to show that:
• Any two columns are distinct: φ(α1, β1) 6= φ(α2, β2) for every α1 6= α2 ∈ L′0 and β1, β2 ∈ ZL0

(L1).
• Any two rows are distinct: φ(α1, β1) 6= φ(α2, β2) for every β1 6= β2 ∈ ZL0(L1), α1 ∈ Lβ1 , and α2 ∈ Lβ2 .
• The intersection of any row and column has at most one element: φ(α, β′) 6= φ(α′, β) for every α, α′ ∈ L′0 and
β, β′ ∈ ZL0

(L1) with (α′, β′) 6= (α, β).
But all the above follow from the fact that φ[K,F, L, µ] is a bijection and, thus, an injection.

52

The next claim establishes a connection between the depth of a vertex v in the recursive cover and the independence
of the cover Tv of the code C̃v .

Claim G.5. For every vertex v in layer(T, d), the cover Tv is (|K|dim(L)·2−d−1−µ−2)-independent. In particular, by
assignment, it holds that, for every positive integer m and every non-leaf vertex v in T [K,F, L, µ, k] with depth less
than log2 dim(L)− log2(log|K|m+ µ+ 2)− 1, the cover Tv is m-independent.

The proof of the above claim directly follows from Claim G.7 and Claim G.6, stated and proved below. The first of
these two claims connects the depth of a vertex v and the dimension of a space Lv such that C̃v = BS-RS[F,K, Lv, µ, k]
(this claim is used separately also for establishing computational properties in in Appendix G.2).

Claim G.6. If v ∈ layer(T [K,F, L, µ, k], d) then C̃v = BS-RS[K,F, L̃, µ, k] for some L̃ such that

dim(L) · 2−d ≤ dim(L̃) ≤ dim(L) · 2−d + 2µ .

Proof. The proof is by induction on d. The base case d = 0 follows directly from the definition; so we now assume
the claim for d− 1 and prove it for d. Let v ∈ layer(T, d) be a vertex of depth d, and let u ∈ layer(T, d− 1) be v’s
predecessor. By the inductive assumption, C̃u = BS-RS[K,F, Lu, µ, k] for some Lu such that dim(L) · 2−(d−1) ≤
dim(Lu) ≤ dim(L) · 2−(d−1) + 2µ.

First we argue that Tu is not the trivial (singleton) cover. For this, it suffices to show that dim(Lu) > k. But this
follows from the inductive assumption, since depth(T, u) < blog dim(L)− log(k)c, so that dim(Lu) ≥ dim(L) ·
2−(blog dim(L)−log(k)c−1) ≥ 2k.

Recall C̃v = BS-RS[K,F, Lv, µ, k] for some space Lv; we are thus left to show that dim(Lu) · 2−1 ≤ dim(Lv) ≤
dim(Lu)·2−1+µ. We do so by giving two cases, based on the form ofLv: (a) ifLv = ZL0[K,F,Lu,µ,k](L1[K,F, Lu, µ, k])

then dim(Lv) = dim(L1[K,F, Lu, µ, k]) = ddim(Lu)
2 e; (b) if there exists β ∈ L1[K,F, Lu, µ, k] such that Lv =

Lβ [K,F, Lu, µ, k] then dim(Lv) = dim(L0[K,F, Lu, µ, k]) + µ = bdim(Lu)
2 c + µ. In either case dim(Lu) · 2−1 ≤

dim(Lv) ≤ dim(Lu) · 2−1 + µ, and the claim follows.

Claim G.7. The native cover S[K,F, L, µ, k] is |K|
dim(L)

2 −µ−2-independent.

Proof. Recalling Definition 4.16, fix arbitrary subsets D′ ⊆ ({col} × L′0) t ({row} × L1) and D′′ ⊆ D�[K,F, L, µ]

both of size at most |K|
dim(L)

2 −µ−2, and define D̃ := D′′ ∪ (∪(col,α)∈D′Dcol,α) ∪ (∪(row,β)∈D′Drow,β). Let w′ ∈
FDBS-RS

be such that: (i) for every (col, α) ∈ D′ it holds that ψcol,α(w′) ∈ BS-RS[K,F, ZL0(L1), µ, k]; and (ii) for
every (row, β) ∈ D′ it holds that ψrow,β(w′) ∈ BS-RS[K,F, Lβ , µ, k]. We need to show that there exists w ∈
BS-RS[K,F, L, µ, k] such that w|D̃ = w′|D̃.

In fact, it suffices to show that there exists w� ∈ RS�[K,F, L, µ] such that w�|D̃∩D�
= w′|D̃∩D�

, because
Claim F.4 implies there exists a unique codeword w ∈ BS-RS[K,F, L, µ, k] such that w|D�

= w� and w|D̃ = w′|D̃.
Thus, we now argue that there exists w� ∈ RS�[K,F, L, µ] such that the following holds.

• For every (col, α) ∈ D′ and β ∈ ZL0(L1), it holds that fw�
(α, β) = w′(φ(α, β)) = (ψcol,α(w′)) (rs, β). In

particular, fw�
|{α}×ZL0

(L1) ∈ RS[F, ZL0(L1), |L1| · ρ], and let pcol,α be its univariate low degree extension to F.

• For every (row, β) ∈ D′ and α ∈ Lβ , it holds that fw�
(α,ZL0

(β)) = w′(φ(α,ZL0
(β))) = (ψrow,β(w′)) (rs, α).

In particular, fw�
|Lβ×{ZL0

(L1)} ∈ RS[F, Lβ , |L0|], and let prow,β be its univariate low degree extension to F.

• For every (α, β) ∈ D′′, it holds that fw�
(α,ZL0

(β)) = w′(φ(α,ZL0
(β))).

By Definition F.2 it suffices to show that there exists a bivariate polynomial g ∈ F[X,Y] such that: (i) degX(g) < |L0|;
(ii) degY (g) < |L1|·ρ; (iii) g|X=α = pcol,α for every (col, α) ∈ D′; (iv) g|Y=ZL0

(β) = prow,β for every (row, β) ∈ D′;
(v) g(α, β) = w′(φ(α,ZL0

(β))) for every (α, β) ∈ D′′. But notice that |D′| + |D′′| ≤ 2 · |K|
dim(L)

2 −µ−2 =

|K|
dim(L)

2 −µ−1 < min{|L0|, |L1| · ρ}, because (a) log|K|(|L0|) = dim(L0) ≥ dim(L)
2 − 1, and (b) log|K|(|L1| · ρ) =

dim(L1)− µ ≥ dim(L)
2 − µ. The claim follows by considering a suitable interpolating set (see Section H).

53

G.2 Computing spanning sets of dual codes in the recursive cover
We prove that spanning sets for duals of codes in the recursive cover can be computed efficiently; this is the key fact
that we later use to argue that the algorithm required by Lemma 4.27 satisfies the stated time complexity.

Claim G.8. For every positive integer m and vertex v in T [K,F, L, µ, k] of depth at least log2 dim(L)− log2 log|K|m,
a spanning set of C̃⊥v can be computed in time poly(log2 |F|+ |K|µ +m).

The above claim directly follows from Claim G.9 and Claim G.10, stated and proved below.

Claim G.9. For every positive integer m and vertex v in T [K,F, L, µ, k] of depth at least log2 dim(L)− log2 log|K|m,
|D̃v| ≤ poly(m+ |K|µ).

Proof. Ben-Sasson and Sudan [BS08] show that the block length of BS-RS[K,F, L, µ, k] is ÕK,µ,k(|L|) for any fixed
K, µ, k. One can verify that, if we do not fix these parameters, the block length is Õ(|L| · |K|µ). Next, observe
that C̃v = BS-RS[K,F, Lv, µ, k] for some Lv such that dim(Lv) ≤ log|K|m + 2µ (Claim G.6); in this case, the
aforementioned bound becomes poly(m+ |K|µ).

Claim G.10. A spanning set for BS-RS[K,F, L, µ, k]⊥ can be found in time poly
(
log2 |F|+ |DBS-RS[K,F, L, µ, k]|

)
.

Proof. We show an algorithm that constructs the desired spanning set in the stated time complexity. First, a spanning
set for RS[F, S, d]⊥ can be found in time poly(log2 |F|+ |S|), for any finite field F, subset S ⊆ F, and degree bound
d < |S|. Hence, a spanning set for RS�[K,F, L, µ]⊥ can be found in time (log2 |F| · |L| · |K|µ)c for some c > 0.

We argue by induction on dim(L) that a spanning set for BS-RS[K,F, L, µ, k]⊥ can be found in time (log2 |F| ·
|L| · |K|µ)c. We rely the property that the code BS-RS[K,F, L, µ, k] is covered by

{(BS-RS[K,F, ZL0(L1), µ, k], Dcol,α)}α∈L′0 ∪ {(BS-RS[K,F, Lβ , µ, k], Drow,β)}β∈L1

and the property that w ∈ BS-RS[K,F, L, µ, k] if an only if:

• ψcol,α(w) ∈ BS-RS[K,F, ZL0
(L1), µ, k] for every α ∈ L′0 and

• ψrow,β(w) ∈ BS-RS[K,F, Lβ , µ, k] for every β ∈ L1.

Thus BS-RS[K,F, L, µ, k]⊥ is spanned by the duals of codes in its cover and, in particular, is spanned by their spanning
sets; in sum, it suffices to construct a spanning set for its cover.

In light of the above, we can bound the construction time of a spanning set for BS-RS[K,F, L, µ, k]⊥ as follows:

• If dim(L) ≤ k, the claim follows as the code in this case simply equals RS�[K,F, L, µ].

• If dim(L) > k, the time to construct a spanning set is at most the time to construct spanning sets for the cover:

|L′0| · (log2 |F| · |L1| · |K|µ)c + |L1| · (log2 |F| · |L′0| · |K|µ+1)c (1)

= |L0| · |K|µ−1 · (log2 |F| · |L1| · |K|µ)c + |L1| · (log2 |F| · |L0| · |K|2µ)c (2)

= |L| · (log2 |F| · |K|µ)
c ·
(
|K|µ−1 · |L1|c−1 + |K|cµ · |L0|c−1

)
(3)

≤ |L| · (log2 |F| · |K|µ)
c ·
(
|K|µ+c−2 · |L|

c−1
2 + |K|cµ · |L|

c−1
2

)
(4)

= |L|
c+1
2 · (log2 |F| · |K|µ)

c ·
(
|K|µ+c−2 + |K|cµ

)
(5)

≤ (log2 |F| · |L| · |K|µ)c . (6)

Above, (1) is by the inductive assumption, (2) is by definition of L′0, (3) is by the fact that |L0| · |L1| = |L|, and (4)
is by definition of L0, L1. We are left to show (6), and this follows from the fact that: (i) dim(L) > k, (ii) k > 2µ by
definition, and (iii) we can choose c to be large enough (namely, so that |K|µ+c−2 + |K|cµ ≤ |L| c−1

2 holds).

54

G.3 Putting things together
Proof of Lemma 4.27. Define the depth function d(K, L, µ, a) := log2 dim(L)− log2(log|K| a+µ+ 2)− 1. We argue
the two conditions in the lemma. First, for every index n = (K,F, L, µ, k), T [K,F, L, µ, k] is a 1-intersecting recursive
cover of BS-RS[K,F, L, µ, k] (by Claim G.4). Moreover, for every positive integer m and non-leaf vertex v in T with
depth(T, v) < d(K, L, µ,m), the cover Tv is m-independent (by Claim G.5).

Second, consider the algorithm that, given an index n = (K,F, L, µ, k) and subset I ⊆ DBS-RS[K,F, L, µ, k],
works as follows: (1) for every α ∈ I choose an arbitrary vertex vα in layer(T, d(K, L, µ, |I|)) such that α ∈ D̃vα , and
then set U := {vα}α∈I ; (2) compute a spanning set Wv set for C̃⊥v ; (3) return W := ∪u∈UWu. This algorithm satisfies
the required properties. First, it runs in time poly(log2 |F|+ dim(L) + |K|µ + |I|) because a spanning set set for C̃⊥u
can be computed in time poly(log2 |F|+ |K|µ + |I|) (by Claim G.8). Next, its output W meets the requirements:
• U ⊆ layer(T [K,F, L, µ, k], d(K, L, µ, |I|));
• |U | ≤ |I|, by definition of U ;
• I ⊆ (∪u∈U D̃u), by definition of U ;
• span(W) = span(∪u∈UWu) = span(∪u∈U C̃⊥u), by definition of W and Wu.
This completes the proof of Lemma 4.27.

55

H Folklore claim on interpolating sets
Claim H.1. Let F be a field, let dcols, drows ∈ N, and consider three sets Scols, Srows ⊆ F and Spnts ⊆ F× F such that
|Scols|+ |Srows|+ |Spnts| ≤ min{dcols, drows}. Let f : F× F→ F be a function such that:

• for every α ∈ Scols there exists gcol,α ∈ F<drows [x] such that f(α, β) = gcol,α(β) for every β ∈ F;

• for every β ∈ Srows there exists grow,β ∈ F<dcols [x] such that f(α, β) = grow,β(α) for every α ∈ F.

Then there exists g ∈ F[X,Y] such that: (i) degX(g) < drows; (ii) degY (g) < dcols; (iii) g|X=α = gcol,α for every
α ∈ Scols; (iv) g|Y=β = grow,β for every β ∈ Srows; (v) g(α, β) = f(α, β) for every (α, β) ∈ Spnts.

Proof. Any rectangle DX ×DY ⊆ F× F with |DX | = drows and |DY | = dcols is an interpolating set: for every w ∈
FDX×DY there exists a unique g ∈ F[X,Y] such that: (i) degX(g) < drows; (ii) degY (g) < dcols; (iii) g|DX×DY = w.
Define

DX := Scols ∪ {α : ∃β s.t. (α, β) ∈ Spnts} and DY := Srows ∪ {β : ∃α s.t. (α, β) ∈ Spnts} .

Note that |DX | ≤ drows and |DY | ≤ dcols; if either is strictly smaller, extend it arbitrarily to match the upper bound.
Choose w ∈ FDX×DY to be a word that satisfies: (i) w(α, β) = f(α, β) for every α ∈ Scols and β ∈ DY ;

(ii) w(α, β) = f(α, β) for every β ∈ Srows and α ∈ DX ; (iii) w(α, β) = f(α, β) for every (α, β) ∈ Spnts. Denote by
gw ∈ F[X,Y] the unique “low degree extension” of w; we show that gw satisfies the requirements of the claim.

The degree bounds and the equivalence on Spnts follows by definition of gw; thus it suffices to show equivalence of
gw with f when restricted to the required rows and columns.

• For every α ∈ Scols: it holds by definition of gw that gw|{α}×DY = f |{α}×DY ; moreover, gw|{α}×F and f |{α}×F
are evaluations of polynomials of degree less than |DY |, which implies that gw|{α}×F = f |{α}×F.

• For every β ∈ Srows: it holds by definition of gw that gw|DX×{β} = f |DX×{β}; moreover, gw|F×{β} and f |F×{β}
are evaluations of polynomials of degree less than |DX |, which implies that gw|F×{β} = f |F×{β}.

56

Acknowledgements
Work of E. Ben-Sasson, A. Gabizon, and M. Riabzev was supported by the Israel Science Foundation (grant 1501/14).
Work of A. Chiesa and N. Spooner was partially supported in part by the UC Berkeley Center for Long-Term
Cybersecurity. Work of M. A. Forbes was supported by the NSF, including NSF CCF-1617580, and the DARPA
Safeware program; it was also partially completed when the author was at Princeton University, supported by the
Princeton Center for Theoretical Computer Science.

References
[AH91] William Aiello and Johan Håstad. Statistical zero-knowledge languages can be recognized in two rounds. Journal of

Computer and System Sciences, 42(3):327–345, 1991. Preliminary version appeared in FOCS ’87.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification and the hardness
of approximation problems. Journal of the ACM, 45(3):501–555, 1998. Preliminary version in FOCS ’92.

[AR16] Benny Applebaum and Pavel Raykov. On the relationship between statistical zero-knowledge and statistical randomized
encodings. In Proceedings of the 36th Annual International Cryptology Conference, CRYPTO ’16, pages 449–477,
2016.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization of NP. Journal of the ACM,
45(1):70–122, 1998. Preliminary version in FOCS ’92.

[AS03] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications. Combinatorica, 23(3):365–426,
2003. Preliminary version appeared in STOC ’97.

[Bab85] László Babai. Trading group theory for randomness. In Proceedings of the 17th Annual ACM Symposium on Theory of
Computing, STOC ’85, pages 421–429, 1985.

[BCG+17] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner. Interactive oracle proofs
with constant rate and query complexity. In Proceedings of the 44th International Colloquium on Automata, Languages
and Programming, ICALP ’17, pages 40:1–40:15, 2017.

[BCGV16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. Quasilinear-size zero knowledge from linear-
algebraic PCPs. In Proceedings of the 13th Theory of Cryptography Conference, TCC ’16-A, pages 33–64, 2016.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In Proceedings of the 14th Theory
of Cryptography Conference, TCC ’16-B, pages 31–60, 2016.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has two-prover interactive
protocols. Computational Complexity, 1:3–40, 1991. Preliminary version appeared in FOCS ’90.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in polylogarithmic time.
In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, STOC ’91, pages 21–32, 1991.

[BGG+88] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan Håstad, Joe Kilian, Silvio Micali, and Phillip Rogaway.
Everything provable is provable in zero-knowledge. In Proceedings of the 8th Annual International Cryptology
Conference, CRYPTO ’89, pages 37–56, 1988.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. Robust PCPs of proximity,
shorter PCPs, and applications to coding. SIAM Journal on Computing, 36(4):889–974, 2006.

[BGK+10] Eli Ben-Sasson, Venkatesan Guruswami, Tali Kaufman, Madhu Sudan, and Michael Viderman. Locally testable codes
require redundant testers. SIAM Journal on Computing, 39(7):3230–3247, 2010.

[BGKW88] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover interactive proofs: how to remove
intractability assumptions. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, STOC ’88,
pages 113–131, 1988.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant
distributed computation. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, STOC ’88,
pages 1–10, 1988.

[BHR05] Eli Ben-Sasson, Prahladh Harsha, and Sofya Raskhodnikova. Some 3CNF properties are hard to test. SIAM Journal on
Computing, 35(1):1–21, 2005.

57

[BHZ87] Ravi B. Boppana, Johan Håstad, and Stathis Zachos. Does co-NP have short interactive proofs? Information Processing
Letters, 25(2):127–132, 1987.

[BM88] László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system, and a hierarchy of complexity
classes. Journal of Computer and System Sciences, 36(2):254–276, 1988.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM Journal on Computing,
38(2):551–607, 2008. Preliminary version appeared in STOC ’05.

[BVW98] Ronald V. Book, Heribert Vollmer, and Klaus W. Wagner. Probabilistic type-2 operators and “almost”-classes.
Computational Complexity, 7(3):265–289, 1998.

[BW04] Andrej Bogdanov and Hoeteck Wee. A stateful implementation of a random function supporting parity queries over
hypercubes. In Proceedings of the 7th International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, and of the 8th International Workshop on Randomization and Computation, APPROX-
RANDOM ’04, pages 298–309, 2004.

[CFS17] Alessandro Chiesa, Michael A. Forbes, and Nicholas Spooner. A zero knowledge sumcheck and its applications.
Cryptology ePrint Archive, Report 2017/305, 2017.

[DFK+92] Cynthia Dwork, Uriel Feige, Joe Kilian, Moni Naor, and Shmuel Safra. Low communication 2-prover zero-knowledge
proofs for NP. In Proceedings of the 11th Annual International Cryptology Conference, CRYPTO ’92, pages 215–227,
1992.

[DR04] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the PCP theorem. In Proceedings
of the 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’04, pages 155–164, 2004.

[DS98] Cynthia Dwork and Amit Sahai. Concurrent zero-knowledge: Reducing the need for timing constraints. In Proceedings
of the 18th Annual International Cryptology Conference, CRYPTO ’98, pages 442–457, 1998.

[FGL+96] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. Interactive proofs and the hardness
of approximating cliques. Journal of the ACM, 43(2):268–292, 1996. Preliminary version in FOCS ’91.

[For87] Lance Fortnow. The complexity of perfect zero-knowledge (extended abstract). In Proceedings of the 19th Annual
ACM Symposium on Theory of Computing, STOC ’87, pages 204–209, 1987.

[FRS88] Lance Fortnow, John Rompel, and Michael Sipser. On the power of multi-prover interactive protocols. In Theoretical
Computer Science, pages 156–161, 1988.

[FS89] Uriel Feige and Adi Shamir. Zero knowledge proofs of knowledge in two rounds. In Proceedings of the 9th Annual
International Cryptology Conference, CRYPTO ’89, pages 526–544, 1989.

[GGN10] Oded Goldreich, Shafi Goldwasser, and Asaf Nussboim. On the implementation of huge random objects. SIAM Journal
on Computing, 39(7):2761–2822, 2010. Preliminary version appeared in FOCS ’03.

[GIMS10] Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. Interactive locking, zero-knowledge PCPs, and
unconditional cryptography. In Proceedings of the 30th Annual Conference on Advances in Cryptology, CRYPTO’10,
pages 173–190, 2010.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: Interactive proofs for Muggles.
In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC ’08, pages 113–122, 2008.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof systems. SIAM
Journal on Computing, 18(1):186–208, 1989. Preliminary version appeared in STOC ’85.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity or all languages in
NP have zero-knowledge proof systems. Journal of the ACM, 38(3):691–729, 1991. Preliminary version appeared in
FOCS ’86.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems. Journal of Cryptology,
7(1):1–32, December 1994.

[GR15] Tom Gur and Ron D. Rothblum. Non-interactive proofs of proximity. In Proceedings of the 6th Innovations in
Theoretical Computer Science Conference, ITCS ’15, pages 133–142, 2015.

[GS06] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear length. Journal of the ACM,
53:558–655, July 2006. Preliminary version in STOC ’02.

[GV99] Oded Goldreich and Salil P. Vadhan. Comparing entropies in statistical zero knowledge with applications to the structure
of SZK. In Proceedings of the 14th Annual IEEE Conference on Computational Complexity, CCC ’99, page 54, 1999.

58

[IMS12] Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. On efficient zero-knowledge PCPs. In Proceedings of the 9th
Theory of Cryptography Conference on Theory of Cryptography, TCC ’12, pages 151–168, 2012.

[IMSX15] Yuval Ishai, Mohammad Mahmoody, Amit Sahai, and David Xiao. On zero-knowledge PCPs: Limitations, simplifica-
tions, and applications, 2015. Available at http://www.cs.virginia.edu/˜mohammad/files/papers/
ZKPCPs-Full.pdf.

[IOS97] Toshiya Itoh, Yuji Ohta, and Hiroki Shizuya. A language-dependent cryptographic primitive. Journal of Cryptology,
10(1):37–50, 1997.

[IW14] Yuval Ishai and Mor Weiss. Probabilistically checkable proofs of proximity with zero-knowledge. In Proceedings of
the 11th Theory of Cryptography Conference, TCC ’14, pages 121–145, 2014.

[IWY16] Yuval Ishai, Mor Weiss, and Guang Yang. Making the best of a leaky situation: Zero-knowledge PCPs from leakage-
resilient circuits. In Proceedings of the 13th Theory of Cryptography Conference, TCC ’16-A, pages 3–32, 2016.

[IY87] Russell Impagliazzo and Moti Yung. Direct minimum-knowledge computations. In Proceedings of the 7th Annual
International Cryptology Conference, CRYPTO ’87, pages 40–51, 1987.

[Kay10] Neeraj Kayal. Algorithms for arithmetic circuits, 2010. ECCC TR10-073.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means proving circuit lower
bounds. Computational Complexity, 13(1-2):1–46, 2004.

[KPT97] Joe Kilian, Erez Petrank, and Gábor Tardos. Probabilistically checkable proofs with zero knowledge. In Proceedings of
the 29th Annual ACM Symposium on Theory of Computing, STOC ’97, pages 496–505, 1997.

[KR08] Yael Kalai and Ran Raz. Interactive PCP. In Proceedings of the 35th International Colloquium on Automata, Languages
and Programming, ICALP ’08, pages 536–547, 2008.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for interactive proof systems.
Journal of the ACM, 39(4):859–868, 1992.

[LS95] Dror Lapidot and Adi Shamir. A one-round, two-prover, zero-knowledge protocol for NP. Combinatorica, 15(2):204–
214, 1995.

[MX13] Mohammad Mahmoody and David Xiao. Languages with efficient zero-knowledge PCPs are in SZK. In Proceedings
of the 10th Theory of Cryptography Conference, TCC ’13, pages 297–314, 2013.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151–158, 1991. Preliminary version
appeared in CRYPTO ’89.

[Nis93] Noam Nisan. On read-once vs. multiple access to randomness in logspace. Theoretical Computer Science, 107(1):135–
144, 1993.

[Oka00] Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. Journal of Computer and System
Sciences, 60(1):47–108, 2000.

[Ost91] Rafail Ostrovsky. One-way functions, hard on average problems, and statistical zero-knowledge proofs. In Proceedings
of the 6th Annual Structure in Complexity Theory Conference, CoCo ’91, pages 133–138, 1991.

[OV08] Shien Jin Ong and Salil P. Vadhan. An equivalence between zero knowledge and commitments. In Proceedings of the
5th Theory of Cryptography Conference, TCC ’08, pages 482–500, 2008.

[OW93] Rafail Ostrovsky and Avi Wigderson. One-way functions are essential for non-trivial zero-knowledge. In Proceedings
of the 2nd Israel Symposium on Theory of Computing Systems, ISTCS ’93, pages 3–17, 1993.

[RRR16] Omer Reingold, Ron Rothblum, and Guy Rothblum. Constant-round interactive proofs for delegating computation. In
Proceedings of the 48th ACM Symposium on the Theory of Computing, STOC ’16, pages 49–62, 2016.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications to program testing.
SIAM Journal on Computing, 25(2):252–271, 1996.

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative models. Computational
Complexity, 14(1):1–19, 2005. Preliminary version appeared in CCC ’04.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM,
27(4):701–717, 1980.

[Sha92] Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, 1992.

[SV03] Amit Sahai and Salil P. Vadhan. A complete problem for statistical zero knowledge. Journal of the ACM, 50(2):196–249,
2003.

59

http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open questions. Foundations
and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.

[Vad99] Salil P. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis, MIT, August 1999.

[VV15] Vinod Vaikuntanathan and Prashant Nalini Vasudevan. Secret sharing and statistical zero knowledge. In Proceed-
ings of the 21st International Conference on the Theory and Application of Cryptology and Information Security,
ASIACRYPT ’15, pages 656–680, 2015.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the 1979 International Symposium
on Symbolic and Algebraic Computation, EUROSAM ’79, pages 216–226, 1979.

60

	Abstract
	Contents
	1 Introduction
	1.1 Results

	2 Techniques
	2.1 Detecting constraints for exponentially-large codes
	2.2 From constraint detection to zero knowledge via masking
	2.3 Achieving zero knowledge beyond NP
	2.4 Roadmap

	3 Definitions
	3.1 Basic notations
	3.2 Single-prover proof systems
	3.3 Zero knowledge
	3.4 Codes

	4 Succinct constraint detection
	4.1 Definition of succinct constraint detection
	4.2 Partial sums of low-degree polynomials
	4.3 Univariate polynomials with BS proximity proofs

	5 Sumcheck with perfect zero knowledge
	5.1 Step 1
	5.2 Step 2

	6 Perfect zero knowledge for counting problems
	7 Perfect zero knowledge from succinct constraint detection
	7.1 A general transformation
	7.2 Perfect zero knowledge IOPs of proximity for Reed–Solomon codes

	8 Perfect zero knowledge for nondeterministic time
	8.1 Perfect zero knowledge IOPs of proximity for LACSPs
	8.2 Perfect zero knowledge IOPs for RLACSPs
	8.3 Putting things together

	A Prior work on single-prover unconditional zero knowledge
	B Proof of Lemma 4.3
	C Proof of Lemma 4.6
	D Proof of Lemma 4.11
	E Proof of Claim 4.23
	F Definition of the linear code family BS-RS
	G Proof of Lemma 4.27
	G.1 The recursive cover and its combinatorial properties
	G.2 Computing spanning sets of dual codes in the recursive cover
	G.3 Putting things together

	H Folklore claim on interpolating sets
	Acknowledgements
	References

