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Abstract. Linear cryptanalysis can be considered to be one of the
strongest techniques in the cryptanalyst’s arsenal. In most cases, Mat-
sui’s Algorithm 2 is used for the key recovery part of the attack. The suc-
cess rate analysis of this algorithm is based on an assumption regarding
the bias of a linear approximation for a wrong key, known as the wrong-
key-randomization hypothesis. This hypothesis was refined by Bogdanov
and Tischhauser to take into account the stochastic nature of the bias for
a wrong key. We provide further refinements to the analysis of Matsui’s
algorithm 2 by considering the more natural setting of sampling without
replacement.
This paper derives the distribution for the observed bias for wrong keys
when sampling is done without replacement and shows that less data is
required when duplicate pairs are discarded. It also develops formulas
for the success probability and the required data complexity when this
approach is taken. The formulas predict that the success probability may
reach a peak, then decrease as more pairs are considered. We provide a
new explanation for this behavior and derive the conditions for encoun-
tering it. We empirically verify our results and compare them to previous
work.

Keywords: linear cryptanalysis, wrong-key-randomization hypothesis,
success probability, data complexity

1 Introduction

Linear cryptanalysis can be considered to be one of the most powerful cryptan-
alytic techniques. Due to its enormous importance, it is standard practice for
algorithm designers to show that their new schemes are resistant to it. This is
usually done by providing upper bounds for the cryptographic properties ex-
ploited by a linear attack, which is used to argue that the success probability of
an adversary is negligible.

From the cryptanalyst’s side, much effort was invested in order to improve the
attack, either by better understanding it, or by developing possible extensions.
Among these extension we can name the zero correlation attack [4,5], extensions
using more than a single approximation such as multiple linear cryptanalysis
[1] and multidimensional linear cryptanalysis [10], the partition attack [9], and



more. On the front of better understanding the attack we can find research on the
linear hull effect [14], various papers suggesting statistical models for analyzing
the attack [16,6,2,11], and attempts to quantify the success probability of the
various algorithms underlying the attack and the amount of data required.

In his original paper, Matsui estimated that the data complexity should be
approximately the squared inverse of the bias of the linear approximation em-
ployed in the attack. Selçuk improved this analysis based on the work of Junod
and Vaudenay [11] and suggested a complete statistical model, yielding closed
formulas for the required data complexity and the success probability. Being able
to estimate the success probability of an attack is of great importance to cipher
designers as, without it, larger security margins need to be used, in contradiction
to the growing trend of using lightweight cryptography.

Estimates of the success probability of linear attacks have traditionally used
a simplifying assumption about the behavior of wrong keys. This assumption,
commonly known as the wrong-key-randomization hypothesis, says that when the
adversary tries to determine the right key among a set including some wrong
keys, the key-dependent bias is much larger for the right key than for wrong
ones. The wrong-key-randomization hypothesis was commonly understood to
mean that the the bias for a wrong key is exactly zero. However, Bogdanov and
Tischhauser noted in [6] that the bias for a wrong key is a random variable with a
normal distribution rather than a fixed value. They proposed a corrected wrong
key hypothesis, taking this distribution into account, and developed a model
for the distribution of the empirical bias. Using this model, they have extended
Selçuk’s formula [16] for the success probability of a linear attack.

An interesting consequence of the new formula is that it reaches a maximum
for certain parameters. This result was described as counter-intuitive as it implies
that increasing the data complexity may sometimes lead to a reduced success
probability [6].

1.1 Our Contributions

In this paper we point out the importance of the sampling strategy employed for
obtaining plaintext/ciphertext pairs in a linear attack. We argue that the more
common case is that plaintext/ciphertext pairs are not used more than once, and
thus, the theoretical model should be based on sampling without replacement.

Under this assumption, we redevelop a model for the distribution of the
empirical bias. Our result shows that, for sampling without replacement, the
correction introduced by Bogdanov and Tischhauser is not necessary and is even
undesired.

As a second contribution, we derive a formula for the success probability and
the data complexity of a linear attack for sampling without replacement. These
formulas confirm the intuitive notion that, for sampling without replacement,
the empirical bias converges faster to its real value, which means that the data
complexity can be reduced.

We also confirm that the success probability can show non-monotonous be-
havior as was observed by Tischhauser and Bogdanov [6]. However, their explana-

2



tion does not explain all of our observations. Hence, we explain the phenomenon
anew and derive necessary conditions for its occurrence. The average-case con-
dition, given in Theorem 1, represents a prerequisite for the applicability of
Matsui’s algorithm 2.

The paper is organized as follows: Section 2 briefly recalls a few basic no-
tions from probability theory and discusses previous work on the wrong-key-
randomization hypothesis. In Section 3 we discuss the behavior of the empirical
bias. The influence of the sampling strategy is clarified, and the distribution of
the sample bias is derived. Section 4 deals with the non-monotonicity of the
success probability. The phenomenon is explained, and the conditions for its
occurrence are developed. A discussion of the success probability and the data
complexity is provided in section 5. Finally, we verify our results experimentally
in Section 6. Section 7 concludes the paper.

2 Preliminaries and Related Work

A random variable is denoted by bold letters e.g., X,Y. The expected value of a
random variable X is denoted by E [X], and its variance by Var [X]. By writing
X ∼ N

(
µ, σ2

)
, we mean that X follows a normal distribution with mean µ and

variance σ2. Similarly, X ∼ Hypergeometric(N,M,R) means that X follows a
hypergeometric distribution, i.e., X is a random variable counting the number of
occurrences of an item of type I in N draws from a population of size M known
to include R such items, where the draws are performed without replacement.
The conditional random variable X given Y is denoted by X | Y. This notation
carries over to conditional expectations and variances.

During our analysis, it will frequently be convenient to approximate the hy-
pergeometric distribution. Several accurate χ2 and normal approximations exist,
see for example [13]. For our purposes, the following result given by Feller [8]
shall suffice. The interested reader may find two proofs of the result by Pinsky
in [15].

Lemma 1 ([8]). Let X ∼ Hypergeometric (N,M, pM). If N,M → ∞ in such
manner that N/M → t ∈ (0, 1), then X has asymptotic distribution

X ∼ N (pN,N(1− t)p(1− p)) .

2.1 Linear Cryptanalysis

We now describe linear cryptanalysis [12]. Let f : Fn
2 → Fn

2 be an n-bit permu-
tation. A linear approximation for f is a pair of masks (α, β) ∈ Fn

2 × Fn
2 such

that αtf(Y) = βtY holds with probability p for Y uniform over Fn
2 . The bias

of the approximation is defined as ε = p − 1/2. In the following, the bit-length
of the round key of the cipher under attack will be denoted by m.

Without loss of generality, in a key-recovery attack using Matsui’s Algorithm
2, the approximation (α, β) covers R − 1 rounds of an R-round cipher used to
encrypt N plaintexts. The resulting N ciphertexts are then 1-round decrypted
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using 2m different key guesses, and the linear approximation is evaluated against
the resulting pairs. For each key ki, the adversary keeps a counter Ti counting the
number of times a pair satisfies the linear approximation. Once enough data have
been observed, the adversary calculates the empirical bias ε̂i = Ti/N−1/2. The
biases are sorted in descending order according to their magnitude, and their
respective keys are tried in this order. If the bias corresponding to the right
key is ranked among the highest 2m−a biases, the attacker is said to obtain an
advantage a over brute-force. Throughout our paper, the subscript zero refers to
the right key. In particular, the counter and bias for the correct key are denoted
respectively by T0 and ε0.

2.2 The Wrong-Key-Randomization Hypothesis

The success rate analysis performed by Selçuk [16] uses order statistics to inves-
tigate the probability that the right key is among the 2m−a top ranked keys. The
main underlying assumption of this analysis is that the real bias for a wrong key
is zero, and thus, that the sample bias would have a normal distribution centered
around zero. This assumption may be summarized in the following hypothesis:

Hypothesis 1 (Simple wrong-key-randomization hypothesis). The bias for a
wrong key equals zero:

εw = 0.

If Hypothesis 1 is true, we have the following lemma.

Lemma 2. Let ε̂w be the empirical bias obtained from a counter associated with
a wrong key using N pairs of plaintexts and ciphertexts. Assuming Hypothesis 1
is true and sampling is performed with replacement, we have approximately

ε̂w ∼ N
(

0,
1

4N

)
.

However, Bogdanov and Tischhauser noted in [6] that, in accordance with
Daemen and Rijmen [7], the underlying bias of a random linear approximation
is not necessarily zero but a random variable. This resulted in the following
extension of Hypothesis 1:

Hypothesis 2 (Bogdanov and Tischhauser [6]). The bias εw for a wrong key is
distributed as for a random permutation, i.e.

εw ∼ N
(
0, 2−n−2

)
.

This hypothesis requires the usage of a compound model for the empirical
bias, which takes into account the distribution of the wrong bias. This leads to
the following statement about the distribution of the sample bias for wrong keys.

Lemma 3 ([6], Lemma 1). Let ε̂w be defined as before, then assuming the validity
of Hypothesis 2, we have approximately

ε̂w ∼ N
(

0,
1

4
·
(

1

N
− 1

2n

))
.
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Selçuk gives the success probability of a linear attack as

PS(N) = Φ
(

2
√
N |ε0| − Φ−1(1− 2−a−1)

)
, (1)

which holds under Hypothesis 1. However, as was noted by Bogdanov and Tis-
chhauser, the bias for wrong keys has a normal distribution centered around
zero, in accordance with Hypothesis 2. Using the distribution of Lemma 3, they
extend Selçuk’s formula as follows:

PS(N) = Φ

(
2
√
N |ε0| −

√
1 +

N

2n
Φ−1(1− 2−a−1)

)
. (2)

An experimental verification of the above formula is provided in [3].

3 Sample Bias for Wrong Keys

This section deals with the distribution of the sample bias for wrong keys. The
details of this distribution are relevant for the construction and the analysis of
statistical procedures that attempt to distinguish the right key from wrong keys.

As mentioned in the related work section, the distribution of ε̂w must be
described by a compound model whenever Hypothesis 2 is used. This is clarified
in Section 3.1.

Generally speaking, the sample bias can be fully described given the dis-
tribution of the bias for the wrong keys and a sampling strategy. The former is
completely determined by the choice of Hypothesis 1 or 2 and requires no further
discussion. The latter will be discussed in Section 3.2.

Finally, the main result of this section is presented in Lemma 4, which ap-
proximates the distribution of the sample bias for a random wrong key in the
case of sampling without replacement. The resulting distribution turns out to
be the same as the one given in Lemma 2.

3.1 Compound model

It is important to distinguish between two different random variables: the sample
bias for a specific wrong key, and the sample bias for a uniformly selected random
wrong key. We shall refer to the former by ε̂w | εw and the latter will be written
as ε̂w. The idea of a compound model is that a parameter in the distribution of
a random variable is randomized, i.e. is itself a random variable. The probability
density of the compound variable ε̂w is given by the probability density of ε̂w
given εw = ε, weighted by the probability that εw = ε, for any possible ε that
εw can take. Formally, if fε̂w|εw is the probability density function of ε̂w | εw,
and fεw likewise for εw, then we may write

fε̂w(εw) =

∫
ε

fε̂w|εw(εw, ε)fεw(ε)dε,
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for the density of ε̂w. This is depicted in Figure 1.
The behavior of the random variable ε̂w | εw is completely determined by

the sampling strategy. For example, for sampling without replacement, Tw | εw
follows a hypergeometric distribution centered around N

(
1
2 + εw

)
.

εw

ε

ε1

fε̂w|εw (εw, ε1)

ε2

fε̂w|εw (εw, ε2)

ε3

fε̂w|εw (εw, ε3)

fε̂w (εw)

f ε
w

(ε
)

Fig. 1: The curve along the vertical axis represents the density function of εw. The
probability density function of ε̂w is shown at the bottom. ε̂w has a compound
distribution obtained by weighed integration over the smaller curves which rep-
resent the sample biases for specific keys.

3.2 Sampling strategies

The way plaintext/ciphertext pairs are obtained in linear cryptanalysis corre-
sponds to sampling from a population of size 2n. For each sample, a trial is
conducted: it is checked whether or not a fixed linear approximation holds. Re-
call that the sum of the outcomes (zero or one) of these trials is stored in a
counter Ti.

One could conceive of many strategies for sampling, but here we will limit
the discussion to two common cases:

1. Sampling with replacement, trials are independent and N > 2n is possible.
2. Sampling without replacement. Trials are not independent and N ≤ 2n.

The existing analyses that we are aware of [2,6,16] implicitly start from the
assumption that the first strategy is used. This leads to a binomial distribution
for the counters.

We now argue that the second strategy is preferable. This will lead to a hyper-
geometric distribution for the counters. Since for a given key, a specific plaintext
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always results in the same ciphertext, duplicates provide no new information for
the estimation of the real bias. Moreover, increasing the data complexity beyond
what is needed for the attack reduces its efficiency, and may render it worse than
exhaustive search in some cases. Hence, whenever possible, an adversary would
prefer sampling without replacement.

3.3 Sampling without Replacement

Given that duplicate draws provide no additional information to the cryptana-
lyst, we argue that sampling without replacement is a more practical strategy.

Assume then that N distinct plaintext/ciphertext pairs are sampled at ran-
dom from the total population of 2n pairs. The counter for a specific wrong key
follows a hypergeometric distribution

Tw | R ∼ Hypergeometric(N, 2n, R),

where R = 2n(εw + 1/2) equals the amount of plaintext/ciphertext pairs in the
population for which the linear approximation holds. Given this starting point,
the proof of the next lemma derives the distribution of the sample bias for a
random wrong key.

Lemma 4 (Lemma 2, stet.). Under Hypothesis 2, and for sampling without
replacement, we have for the sample bias ε̂w of a random wrong key

ε̂w ∼ N
(

0,
1

4N

)
,

approximately.

Proof. By Lemma 1, we have asymptotically

Tw | εw ∼ N
(
N

(
1

2
+ εw

)
, N

(
1− N

2n

)(
1

4
− ε2w

))
.

Since ε2w is small, we have approximately

Tw | εw ∼ N
(
N

(
1

2
+ εw

)
,
N

4

(
1− N

2n

))
.

It follows that for the sample bias

ε̂w | εw ∼ N
(
εw,

1

4N

(
1− N

2n

))
.

A compound normal distribution with normally distributed mean is again nor-
mal. That is, if X ∼ N

(
µ, σ2

1

)
with µ ∼ N

(
µ, σ2

2

)
, then X ∼ N

(
µ, σ2

1 + σ2
2

)
.1

In this particular case we obtain

E [ε̂w] = 0

Var [ε̂w] =
1

4N

(
1− N

2n

)
+

1

2n+2
=

1

4N
.

1 For a proof, note that X− µ ∼ N
(
0, σ2

1

)
is independent of µ.
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Observation. The preceding lemma shows that ε̂w for sampling without re-
placement has approximately the same distribution as given by Lemma 2. In
other words, the correction provided in Lemma 3 should not be taken into ac-
count for sampling without replacement. Note, however, that the result is based
on Hypothesis 2 rather than the simpler Hypothesis 1.

The mean and variance of Tw can also be computed directly, without using
any of the approximations used in Lemma 4. The first two central moments of
R are given by

E [R] = 2n−1

Var [R] = 22nVar [ε̂w + 1/2] = 2n−2.

Hence, the expected value of Tw is given by

E [Tw] = E [E [Tw | R]] = E
[
NR 2−n

]
= N/2.

For the variance of Tw we have

Var [Tw] = E [Var [Tw | R]] + Var [E [Tw | R]]

= E

[
N

R

2n
2n −R

2n
2n −N
2n − 1

]
+ Var

[
N

R

2n

]
=
N(2n −N)

22n(2n − 1)
E [R(2n −R)] + Var

[
N

R

2n

]
=
N(2n −N)

22n(2n − 1)

(
2nE [R]−E

[
R2
])

+
N2

22n
Var [R]

=
N(2n −N)

22n(2n − 1)

(
2nE [R]−Var [R]−E [R]

2
)

+
N2

22n
Var [R]

=
N(2n −N)

22n(2n − 1)

(
22n−2 − 2n−2

)
+

N2

2n+2
.

If n is sufficiently large, it is reasonable to assume that 22n−2 − 2n−2 ≈ 22n−2.
This gives

Var [Tw] ≈ N(2n −N)

2n+2 − 1/4
+

N2

2n+2
≈ N

4
.

Assuming that the distribution of Tw can be approximated using a normal
distribution, we also obtain Lemma 4.

4 Non-monotonicity of the Success Probability

For sampling with replacement, Selçuk estimates the success probability as given
by (1). Bogdanov and Tischhauser have extended this result to (2). Due to the
fact that the biases for the wrong keys are selected at random from N

(
0, 2−n−2

)
,
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the success probability PS(N) is in fact a random variable. Hence, the probability
given by (2) is an estimate for the average success probability. Despite this
complication, we shall continue to use the notation PS(N) in the sense that
PS(N) = E [PS(N)].

We give two results related to two aspects of this random variable:

— According to (2), PS(N) can be non-monotonous. This effect was also ob-
served in [6]. We provide an explanation for this phenomenon, as well as
necessary conditions for its occurrence.

— In Section 5, we derive a formula for the average success probability in the
case of sampling without replacement.

4.1 Explanation of Non-monotonicity

Bogdanov and Tischhauser have observed that, in some cases, the success prob-
ability shows a maximum [6]. They attribute this effect to the fact that, as N
increases, the number of duplicate samples increases which amplifies the “noise”
due to the random distribution of the biases for the wrong keys. In the present
section we propose a different explanation for the non-monotonicity and show
that the phenomenon is not counter-intuitive. Note that a maximum can also
be observed for sampling without replacement, hence without duplicates, which
is difficult to reconcile with the explanation given by [6]. The discussion below
and the conditions given in the next section are independent of the sampling
strategy.

When the bias ε0 of the right key is close to zero, there is a non-negligible
probability that some of the wrong keys have a higher absolute bias than |ε0|.
This is depicted in Figure 2. In this case, the correct key should not be expected
to be ranked higher than (some of the) wrong keys. As N increases, the accuracy
of the ranking increases because the variances of all sample biases decrease. It
follows that, if there are wrong keys with absolute bias higher than |ε0|, then for
large N those will be ranked higher than the right key. If there are more such
keys than the attacker advantage allows, i.e. more than 2m−a, then this causes
a decreasing success probability. In this case, if N → ∞ (or N = 2n without
replacement) then also PS(N) → 0, almost surely. In other words: given all
possible information, the attack will always fail.

From the discussion above, we may conclude that non-monotonous behavior
indicates that the attack can not be conducted using Matsui’s algorithm 2. In
fact, a correct identification of the right key amounts to a false positive. This is
formalized in the next section, by giving a bound on the required bias for given
values of 2n and a. This bound hence also expresses a prerequisite for Matsui’s
algorithm 2.

4.2 Conditions for Non-monotonicity

This subsection derives necessary conditions for non-monotonous behavior of the
success probability. These conditions are necessarily probabilistic, since they are
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Fig. 2: The biases for a few keys are indicated by dots, the dashed line represents
the bias for the right key. One of the wrong keys has a larger bias than the right
key.

determined by the biases of individual wrong keys. Hence, it can be expected
that for some values of a, n,m and ε0, PS(N) is non-monotonous only for some
keys. The main result is Theorem 1, which gives a necessary condition for average
non-monotonicity and hence for the applicability of Matsui’s algorithm 2.

The following lemma gives a first result on the probability of monotonicity.
It is independent of the sampling strategy.

Lemma 5. The probability that PS(N) is a monotonous function is given by

Pr [PS(N) is monotonous ] = Φ

((
2−a − 2−m−1 − p

)
2m/2√

p(1− p)

)
,

where
p = 2

(
1− Φ

(
|ε0|2n/2+1

))
.

Proof. The probability that a random permutation has absolute bias larger than
|ε0| can be computed as

Pr [|εw| ≥ |ε0|] = 2(1− Pr [εw < |ε0|]) = 2
(

1− Φ
(
|ε0|2n/2+1

))
,

since εw ∼ N
(
0, 2−n−2

)
. For a decreasing success probability, we require at least

2m−a keys with bias larger than |ε0|. Let C be the random variable describing
the amount of such keys, then C is approximately binomially distributed. Fur-
thermore, if the amount of keys 2m is sufficiently large, C can be approximated
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with a normal distribution:

C ∼ N (p2m, p(1− p)2m) where p = 2
(

1− Φ
(
|ε0|2n/2+1

))
.

The probability that PS(N) is monotonous for some |ε0|,m and a can hence be
computed as

Pr [PS(N) is monotonous] = Pr
[
C < 2m−a

]
.

Using the normal approximation of C, we get:

Pr [PS(N) is monotonous] = Φ

(
2m−a − 2−1 − p2m√

p(1− p)2m

)

= Φ

(
(2−a − 2−m−1 − p)2m/2√

p(1− p)

)
.

Observe that, as the bias ε0 approaches 0, the success probability is almost
surely non-monotonous. If E [C] ≥ 2m−a, then PS(N) is non-monotonous on
average, i.e. over all keys and all distinct attacks. This condition can be used to
derive the following theorem.

Theorem 1 (Prerequisite of Matsui’s algorithm 2). The success probability is
monotonous on average if and only if

|ε0| > 2−n/2−1Φ−1(1− 2−a−1).

Proof. The condition E [C] ≥ 2m−a corresponds to the inequality

2
(

1− Φ
(
|ε0|2n/2+1

))
2m ≥ 2m−a,

which can be rewritten as

1− Φ
(
|ε0|2n/2+1

)
≥ 2−a−1

⇐⇒ |ε0| ≤ 2−n/2−1Φ−1(1− 2−a−1).

Theorem 1 expresses a necessary condition for a nonzero success probability
in the average case as N → ∞ (or N = 2n without replacement). Hence, when
the condition does not hold, the advantage a can only be obtained as a false-
positive during key recovery with Matsui’s algorithm 2.

It can be verified that the condition of Theorem 1 ensures that the maximum
of PS(N) as defined by equation (2) corresponds to a positive value of N .

Bogdanov and Tischhauser have observed non-monotonous behavior with
|ε0| = 2−10, a = 12 and n = 20 [6]. Theorem 1 gives:

p = 2
(
1− Φ(2−10 · 211)

)
≈ 0.0455.
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and
|ε0| ≤ 2−11Φ−1(1− 2−13) ≈ 2−9.125.

Hence, with these parameters, the average attack setup will lead to non-monotonous
behavior. By Lemma 5, the probability of monotonicity is Φ(−218.78) ≈ 0.

5 Average Success Probability and Data Complexity

To compute the average success probability, we will make the approximation
that the non-identically distributed sample biases for wrong keys can be replaced
by an equal amount of independent and identically distributed random variables
with distribution given by Lemma 4. A similar approximation was also implicitly
made in [6] and greatly simplifies the distribution of the order statistics.

The derivation of PS(N) is similar to that of Selçuk [16], with the important
difference that the counter for the right key is distributed as

T0 ∼ Hypergeometric

(
N, 2n,

(
ε0 +

1

2

)
2n
)
. (3)

The corresponding distribution function of ε̂0 will be denoted by Fε̂0 and can be
written in terms of the distribution function FT0 of T0:

Fε̂0(ε) = FT0

(
N

2
+Nε

)
.

Following Selçuk, without loss of generality, we only consider the case ε0 ≥ 0.
The discussion for ε0 < 0 is completely analogous. It will be assumed that
the distribution of an order statistic of the sample biases ε̂w for wrong keys
is approximately degenerate relative to that of the right key — Selçuk makes
the same approximation in his discussion. The mean of the (2m−2m−a)th order
statistic ζ is approximately given by E [ζ] = Φ−1(1−2−a−1)/(2

√
N) [16]. Noting

that Pr[ε̂0 < 0] ≈ 0, we have for the average success probability

PS(N) = Pr [ε̂0 − ζ > 0]

≈ Pr [ε̂0 > E [ζ]]

= 1− Fε̂0

(
Φ−1(1− 2−a−1)

2
√
N

)
= 1− FT0

(
N

2
+

√
N

2
Φ−1(1− 2−a−1)

)
︸ ︷︷ ︸

k(N)

.

An accurate approximation of FT0
can be obtained by using a normal approxi-

mation with respect to N . Indeed, by applying Lemma 1 to T0, one obtains the
approximation (assuming ε20 ≈ 0)

T0 ∼ N
(
N

(
1

2
+ |ε0|

)
,

(
1− N

2n

)
N

4

)
,
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which is accurate if N and 2n are sufficiently large. It can be verified that the
above expression also holds for ε0 < 0. In terms of the standard normal distri-
bution, we have

FT0
(k(N)) ≈ Φ

k(N)−N
(
1
2 + |ε0|

)√
N
4

(
1− N

2n

)


= Φ

√NΦ−1(1− 2−a−1)/2−N |ε0|√
N
4

(
1− N

2n

)


= Φ

Φ−1(1− 2−a−1)− 2
√
N |ε0|√

1− N
2n

 .

By symmetry, we then obtain the simple result of the theorem below.

Theorem 2. Assume Hypothesis 2 holds. Let PS(N) denote the average success
probability of a linear attack on a block cipher given N distinct known plain-
text/ciphertext pairs. If the linear approximation has bias ε0 for the right key,
and the desired advantage is a, then we have

PS(N) = Φ

2
√
N |ε0| − Φ−1(1− 2−a−1)√

1− N
2n

 ,

for sampling without replacement.

Theorem 2 directly leads to an expression for the data complexity, which
is given below. Note that when PS(N) is non-monotonous, a value of the suc-
cess probability PS will in general correspond to two data complexities N . For
simplicity, and because non-monotonicity is a prerequisite for practical usage of
Matsui’s algorithm 2, we only deal with the monotonous case.

Corollary 1. Under the same conditions as Theorem 2, and when the condition
given by Theorem 1 is satisfied, the number of plaintext/ciphertext pairs required
to obtain an average success probability PS is

N =

(
2|ε0|α±

√
(2ε0α)2 − (α2 − β2)(2−nβ2 + 4ε20)

4ε20 + 2−nβ2

)2

,

where α = Φ−1(1 − 2−a−1) and β = Φ−1(PS). The plus sign applies whenever
PS ≥ 1/2, otherwise the minus sign applies. For |ε0| � 2−n/2−1Φ−1(PS), this
simplifies to

N =

(
Φ−1(1− 2−a−1) + Φ−1(PS)

2ε0

)2

.
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Proof. The result is obtained by solving the equation

Φ−1(PS)

√
1− N

2n
= 2
√
N |ε0| − Φ−1(1− 2−a−1).

A trite calculation (cf. Appendix A) yields(
2−nβ2 + 4ε20

)
N − 4|ε0|α

√
N + α2 − β2 = 0,

which can be solved to obtain the result.

Note that the approximation for large |ε0| gives the same data complexity
as Selçuk [16]. This is due to the fact that large biases require fewer plain-
text/ciphertext pairs, and for very small N the difference between sampling
with and without replacement is negligible.

In general, the data complexity for sampling without replacement is lower.
This is a consequence of the fact that no duplicates are used. Bogdanov and
Tischhauser provide an algorithm to compute the data complexity for a given
success probability [6].2 Here, the following equivalent closed-form formula for
the monotonous case will be used instead:

N =

(
2|ε0|β +

√
(2ε0β)2 − (α2 − β2)(2−nα2 − 4ε20)

4ε20 − 2−nα2

)2

,

where α = Φ−1(1− 2−a−1) and β = Φ−1(PS).
Figure 3 shows the data complexity for a large bias and for a small bias

close to the bound of Theorem 1. For |ε0| = 2−14 the difference between the
data complexities is relatively small. For instance, at a success probability of
95%, the data complexity is about 14% higher for sampling with replacement.
The difference with sampling without replacement is much more significant for
small values of the bias. In this case, for a success probability of 95%, the data
complexity is 69% higher for sampling with replacement. Note that, due to du-
plicates, the data complexity for sampling with replacement can exceed the size
of the codebook, but not that of the key.

2 In the non-monotonous case, their algorithm returns the lowest data complexity
corresponding to the given success probability.
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Fig. 3: The theoretical data complexity for a given success probability. The top
figure on corresponds to a relatively large bias compared to the bias in the
bottom figure.

15



For completeness and comparison with [6], we also compute the maximum of
PS(N).

Corollary 2. Under the conditions of Theorem 2 and Theorem 1, the success
probability attains a maximum at

arg max
N

PS(N) =

(
2n+1|ε0|

Φ−1(1− 2−a−1)

)2

.

Proof. Maximizing PS(N) amounts to solving

d

dN

2
√
N |ε0| − Φ−1(1− 2−a−1)√

1− N
2n

 = 0.

A trite calculation (cf. Appendix B) shows that the solution is

N =

(
2n+1|ε0|

Φ−1(1− 2−a−1)

)2

.

Finally, note that the condition N ≤ 2n corresponds exactly to the condition
given by Theorem 1.

6 Experimental Verification

Bogdanov et al. have conducted a series of large-scale experiments to verify their
model for the success probability in the monotonous case [3]. Hence, Hypothesis 2
has already been verified implicitly. We use this to simplify the verification of
our theoretical results by using simulations that are based on Hypothesis 2.

Since our model for the success probability relies heavily on the validity of
the distribution of the sample bias ε̂w for wrong keys as given by Lemma 4, we
verify the accuracy of this claim in Section 6.1

In Section 6.2, we provide simulation data for the success probability and
compare the results with Theorem 2.

Finally, our explanation for the non-monotonicity of the success probability
given in Section 5 suggests that the probabilistic nature of the phenomenon
becomes relevant when the bias is close to the bound of Theorem 1. We verify this
for parameters such that the success probability is monotonous with probability
1/2.

6.1 Sample bias

In this section we verify the proposition that, for sampling without replacement,
the distribution of the sample bias is given by Lemma 4. Our experiments do
not attempt to evaluate the validity of Hypothesis 2. We therefore propose the
following simulation procedure:

16



1. Sample 213 biases from N
(
0, 2−n−2

)
and, for each such bias εi, compute the

corresponding number of plaintext/ciphertext pairs for which the approxi-
mation holds, i.e. R = 2n(1/2 + εi).

2. For each εi, sample N values from the corresponding population without re-
placement. Keep a counter Ti for the number of successful approximations.
For this purpose, the simulation performs a series of dependent Bernoulli tri-
als, i.e. after N samples, increasing the counter has probability (R−Ti)/(2n−
N).

With respect to Lemma 4, two aspects must be verified: Firstly, the normal-
ity of ε̂w and secondly the variance, which we claim is 1/(4N) such that the
additional term 2−n−2 from Lemma 2 only applies to sampling with replace-
ment. The normal probability plots in Figure 4 allow for a quick graphical check
of both aspects.

From Figure 4, we see that the empirical quantiles of the observed sample
biases are a linear function of the quantiles of the standard normal distribution.
This indicates that the distribution of the sample bias ε̂w for wrong keys is
approximately normal. For both plots, the slope of a least-squares fit is close
to 1/(2

√
N), the standard deviation of ε̂w. In Figure 4, we have drawn another

straight line with slope 1
2

√
1/N + 1/2n to clarify the difference between Lemma 2

and Lemma 4.
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Fig. 4: Standard normal probability plots of the sample bias for sampling without
replacement. Each plot contains 213 data points. The straight line matching the
data corresponds to the distribution for the sample bias as given by Lemma 4.
The other straight line represents the result of Lemma 3.
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6.2 Success probability

In this subsection, we verify the formula for the success probability given by
Theorem 2. We simulate the attack and compare our formula with the result of
the simulation. This allows a simple verification of Theorem 2 independent of
the accuracy of the assumptions on the sample bias. An attack is simulated as
follows:

1. Generate a list of 2m − 1 zero-initialized counters, each corresponding to
a key with associated bias sampled from N

(
0, 2−n−2

)
in accordance with

Hypothesis 2. An additional counter is kept for the right key, which has bias
ε0.

2. For several values of N , repeat the following steps 28 times to estimate the
proportion of successes:
(a) The value of each counter with corresponding bias ε is sampled directly

from

N
(
N

(
ε+

1

2

)
,
N2

4

(
1− N

2n

))
,

(b) Check whether the absolute bias corresponding to the right key is among
the first 2m−a entries of the list of absolute biases.

To capture the stochastic nature of the success probability, we repeat the above
procedure 400 times.

The second step of the procedure can be justified by the results of the previous
section, where it was shown that the distribution of the sample bias provided
by Lemma 4 is sufficiently accurate. That is, the distribution from which the
counters are sampled was the starting point for the proof of Lemma 4. The
correspondence between the simulation and our theoretical results is shown in
Figure 5.
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6.3 Non-monotonicity

To test the stochastic nature of the non-monotonicity of the success probability,
we choose parameters n, |ε0| and a such that Lemma 5 predicts monotonicity
with some fixed probability. For n = 32, m = 14 and a = 10, Lemma 5 shows
that PS(N) is monotonous with probability 1/2 for

|ε0| = 2−n/2−1Φ−1
(
1− 2−a−1 + 2−m−2

)
≈ 2−15.27486986.

Note that since m is relatively small3, the above value for |ε0| is not exactly
equal to the bound of Theorem 1 contrary to what one might expect due to
symmetry.

To detect whether an observation of the success probability is monotonous, it
suffices to check that it reaches one for N = 2n, In a total of 400 simulations, we
have observed monotonous behavior in 204 cases (51%). Figure 6 shows the aver-
age curves E [PS(N) | PS(2n) = 0] and E [PS(N) | PS(2n) = 1], corresponding
respectively to the monotonous and non-monotonous case.

From Corollary 2, we see that if there is a maximum success probability, it
should occur for N very close to 2n. Hence, for relatively small values of N ,
the average success probability should behave the same in the monotonous and
non-monotonous case:

E [PS(N) | PS(2n) = 0] ≈ E [PS(N) | PS(2n) = 1] ,

for small N . This is reflected by Figure 6.

3 More precisely, the continuity correction in Lemma 5 is non-negligible.
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7 Conclusion

In this paper we revisited the behavior of the empirical bias for wrong keys. We
have pointed out that previous works implicitly assume that plaintext/ciphertext
pairs are sampled with replacement, which results in larger data complexities
than necessary. We have redeveloped the theory under the assumption that the
adversary can discard duplicate plaintext/ciphertext pairs, and have presented
formulas for the success probability and the data complexity. The previously
observed non-monotonous behavior of the success probability, which was char-
acterized as counter-intuitive, has been explained and the conditions for its oc-
currence have been derived.

All the results in this paper have been verified through simulations. We con-
clude that when an adversary using Matsui’s Algorithm 2 attempts to increase
his advantage beyond certain bounds, what is witnessed to be an increase in the
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success probability is in fact a false positive. As the accuracy of the estimation
increases, the attack is doomed to fail, which is evidenced by a decreasing success
probability as N increases beyond a certain point.

Our simulations also show that, independent of the success probability, the
attack converges faster to its final result when sampling without replacement
is preferred over sampling with replacement. This results in a reduced data
complexity. Since the overall time complexity of an attack includes the time it
takes to generate the required data (i.e., the data complexity), this reduction
may decrease the overall complexity of attacks believed to be more expensive
than exhaustive search.

We believe that alternatives for or extensions to Matsui’s algorithm 2 could
extend the reach of linear cryptanalysis to absolute biases below the bound
given by Theorem 1, provided that they take into account the origins of this
prerequisite.
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A Data Complexity

This section provides the calculations in the proof of Corollary 1. The objective
is to solve the equation

Φ−1(PS)

√
1− N

2n
= 2
√
N |ε0| − α.

Letting α = Φ−1(1− 2−a−1) and β = Φ−1(PS), and squaring yields

β2
(
1− 2−nN

)
= 4N |ε0|2 − 4

√
N |ε0|α+ α2.

Grouping terms appropriately, we obtain

(4|ε0|2 + 2−nβ2)N − 4
√
N |ε0|α+ α2 − β2 = 0.

This equation is quadratic in
√
N and has the solutions

√
N =

2|ε0|α±
√

(2ε0α)2 − (α2 − β2)(2−nβ2 + 4|ε0|2)

4|ε0|2 + 2−nβ2
.

B Maximum of PS(N)

In the proof of Corollary 2, it is mentioned that the maximum is obtained by
solving

d

dN

2
√
N |ε0| − Φ−1(1− 2−a−1)√

1− N
2n

 = 0.

Note that

d

dN

 1√
1− N

2n

 =
1

2n+1

√(
1− N

2n

)3 ,
such that we obtain the equivalent equation

|ε0|√
N
(
1− N

2n

) =
Φ−1(1− 2−a−1)− 2

√
N |ε0|

2n+1

√(
1− N

2n

)3 .

This is readily simplified to

|ε0|
(

1− N

2n

)
=
√
N2−n−1Φ−1(1− 2−a−1)− 2−nN |ε0|,

and further
|ε0| =

√
N2−n−1Φ−1(1− 2−a−1).

Finally, we obtain the result:

N =

(
|ε0|2n+1

Φ−1(1− 2−a−1)

)2

.
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