
Measuring small subgroup attacks against
Diffie-Hellman

Luke Valenta∗, David Adrian†, Antonio Sanso‡, Shaanan Cohney∗,
Joshua Fried∗, Marcella Hastings∗, J. Alex Halderman†, Nadia Heninger∗

∗University of Pennsylvania
†University of Michigan

‡Adobe

Abstract—Several recent standards, including NIST SP 800-
56A and RFC 5114, advocate the use of “DSA” parameters
for Diffie-Hellman key exchange. While it is possible to use
such parameters securely, additional validation checks are
necessary to prevent well-known and potentially devastating
attacks. In this paper, we observe that many Diffie-Hellman
implementations do not properly validate key exchange inputs.
Combined with other protocol properties and implementation
choices, this can radically decrease security. We measure the
prevalence of these parameter choices in the wild for HTTPS,
POP3S, SMTP with STARTTLS, SSH, IKEv1, and IKEv2,
finding millions of hosts using DSA and other non-“safe”
primes for Diffie-Hellman key exchange, many of them in
combination with potentially vulnerable behaviors. We examine
over 20 open-source cryptographic libraries and applications
and observe that until January 2016, not a single one validated
subgroup orders by default. We found feasible full or partial
key recovery vulnerabilities in OpenSSL, the Exim mail server,
the Unbound DNS client, and Amazon’s load balancer, as well
as susceptibility to weaker attacks in many other applications.

I. INTRODUCTION

Diffie-Hellman key exchange is one of the most common
public-key cryptographic methods in use in the Internet. It is
a fundamental building block for IPsec, SSH, and TLS. In
the textbook presentation of finite field Diffie-Hellman, Alice
and Bob agree on a large prime p and an integer g modulo p.
Alice chooses a secret integer xa and transmits a public value
gxa mod p; Bob chooses a secret integer xb and transmits his
public value gxb mod p. Both Alice and Bob can reconstruct
a shared secret gxaxb mod p, but the best known way for a
passive eavesdropper to reconstruct this secret is to compute
the discrete log of either Alice or Bob’s public value.

In order for the discrete log problem to be hard, parameters
must be chosen carefully. A typical recommendation is that p
should be a “safe” prime, that is, that p = 2q + 1 for some
prime q, and that g should generate the group of order q
modulo p. However, the group order q can be much smaller
than p, as long as it is large enough to thwart known attacks,
which for prime q run in time O(

√
q). These parameters were

suggested for use and standardized in DSA signatures [50], and
for brevity we will refer to groups of this form as DSA groups.
A common parameter choice is to use a 160-bit q with a 1024-
bit p or a 224-bit q with a 2048-bit p, to match the security
level under different cryptanalytic attacks. NIST SP 800-56A,
“Recommendations for Pair-Wise Key Establishment Schemes
Using Discrete Logarithm Cryptography” [23] specifically
recommends DSA group parameters for Diffie-Hellman, instead

of recommending safe primes, with the above modulus and
group order sizes. RFC 5114 [53] includes several DSA groups
for use in IETF standards.

Using shorter private exponents yields faster exponentiation
times, and is a commonly implemented optimization. The
justification for matching the order of the subgroup q to the
exponent size rather than making subgroup order as large
as possible is not documented anywhere in the standards
documents. We discuss possible motivations for this choice
later in the paper.

A downside of using DSA primes for Diffie-Hellman instead
of safe primes is that implementations must perform additional
validation checks that the key exchange values they receive
from the other party are contained in the correct subgroup
modulo p. This consists of performing an extra exponentiation
step. If implementations fail to do this, a 1997 attack of Lim
and Lee [54] can allow an attacker to recover a static exponent
by repeatedly sending key exchange values that are in very
small subgroups. In addition, we describe several variants of
small subgroup confinement attacks that allow an attacker with
access to authentication secrets to mount a much more efficient
man-in-the-middle attack against clients and servers that do
not validate group orders.

While small subgroup attacks and countermeasures are well-
known and specified in every standard suggesting the use of
DSA groups for Diffie-Hellman, and DSA groups are commonly
implemented and supported in popular protocols, we observe
that few implementations actually validate group orders. For
protocols like TLS and SSH that allow a server to unilaterally
specify the group to use, this validation step is not possible for
clients to perform for non-safe primes: there is no way for the
server to communicate to the client the intended order of the
group.

We conclude that adopting the Diffie-Hellman group recom-
mendations from RFC 5114 and NIST SP 800-56A may create
vulnerabilities for organizations using existing cryptographic
implementations, as many libraries allow user-configurable
groups but have unsafe default behaviors. This highlights
the need to consider developer usability and implementation
fragility when designing or updating cryptographic standards.

Our Contributions We study the implementation landscape
of Diffie-Hellman from several perspectives and measure the
security impact of the widespread failure of implementations
to follow best security practices:

1



• We examined the code of a wide variety of crypto-
graphic libraries to understand their implementation
choices, and found feasible full private exponent
recovery vulnerabilities in OpenSSL and the Unbound
DNS resolver, and a partial private exponent recovery
vulnerability for the parameters used by the Amazon
Elastic Load Balancer. We observe that no implemen-
tation that we examined validated group order for
subgroups of order larger than two by default prior to
January 2016, leaving users potentially vulnerable to
small subgroup confinement attacks. In addition, we
observed that nearly every implementation uses short
exponents by default, and several use ephemeral-static
keys.

• We performed Internet-wide scans of HTTPS, POP3S,
SMTP with STARTTLS, SSH, IKEv1, and IKEv2,
to provide a snapshot of the deployment of DSA
groups and other non-“safe” primes for Diffie-Hellman,
quantify the incidence of repeated public exponents
in the wild, and quantify the lack of validation
checks even for safe primes. Our work adds to the
growing literature of empirical studies of cryptographic
implementation behavior on the Internet.

• We survey the protocol-level susceptibility to small
subgroup attack scenarios for TLS, IKE, and SSH.
While several of these attacks are well known or
have been described elsewhere, we are unaware of
a comprehensive reference that summarizes the state
of protocol landscape from this perspective, and we
describe variants of these attacks that we have not seen
elsewhere.

• We performed a best-effort attempt to factor p − 1
for all non-safe primes that we found in the wild. We
present the factorizations of p − 1 for several of the
most common non-“safe” primes in use. Group 23 from
RFC 5114, a 2048-bit prime, is particularly vulnerable
to small subgroup key recovery attacks; for TLS a full
key recovery requires 233 online work and 247 offline
work to recover a 224-bit exponent. Factoring random
integers of this size can be nontrivial even though they
do not hide any cryptographic secrets; we spent around
100, 000 core-hours for the computation.

Disclosure and Mitigations We reported the OpenSSL
vulnerability in January 2016. OpenSSL issued a patch to
add additional validation checks and generate single-use
private exponents by default on January 28, 2016 [11]. We
also disclosed these vulnerabilities to the public in a blog
post [65]. We reported the Amazon load balancer vulnerability
to Amazon in November 2015. They responded to our report
informing us that they have removed Diffie-Hellman from their
recommmended ELB security policy, and have reached out to
their customers to recommend that they use these latest policies.
Based on scans performed in February and in May 2016, 88%
of the affected hosts appear to have corrected their exponent
generation behavior. In May 2016, we submitted bug reports
to the developers of several applications and libraries that had
vulnerable combinations of behaviours, including the Unbound
DNS resolver, the Exim mail server, and the LibTomCrypt and
GnuTLS cryptography libraries. Developers of the Unbound

DNS resolver informed us that a fix would be included in
the next release. The GnuTLS developers acknowledged the
issue but have not yet applied patches. In October 2016,
Exim responded to our bug report stating that they would
use their own generated Diffie-Hellman groups by default,
without specifying subgroup order for validation [10], [12].
There was no response from LibTomCrypt. We found that
products of several noteworthy companies, including Microsoft,
Cisco, and VMWare, do not validate that a key exchange value
is in the range (1, p− 1). We informed these companies and
others about this missing check, and discuss their responses in
Section III-D.

II. BACKGROUND

A. Groups, orders, and generators

The two types of groups used in practice for Diffie-Hellman
key exchange are multiplicative groups over finite fields (“mod
p”) and elliptic curve groups. In this paper, we focus on the
“mod p” case, so a group is typically specified by a prime p and
a generator g of a multiplicative subgroup modulo p. Optionally,
the group order q can be specified. The order of a group is the
smallest positive integer satisfying gq ≡ 1 mod p; equivalently,
it is the number of distinct elements {g, g2, g3, . . . mod p}.

The order of the subgroup q generated by g modulo p must
be a divisor of p− 1 by Lagrange’s theorem. Since p is prime,
p − 1 will be even, and there will always be a subgroup of
order 2 generated by the element −1. For the other factors qi
of p− 1, there are subgroups of order qi mod p. One can find
a generator gi of a subgroup of order qi using a randomized
algorithm: try random integers h until h(p−1)/qi 6= 1 mod p;
gi = h(p−1)/qi mod p is a generator of the subgroup. A random
h will satisfy this property with probability 1− 1/qi.

In theory, neither p nor q is required to be prime; one
could perform a Diffie-Hellman key exchange with a composite
modulus or with a composite group order. In that case, the order
of the full multiplicative group modulo p is φ(p) where φ is
Euler’s totient function, and the order of the subgroup generated
by g must divide φ(p). In practice, Diffie-Hellman is always
done modulo prime p outside of implementation mistakes.

B. Diffie-Hellman

Diffie-Hellman key exchange allows two parties to agree
on a shared secret in the presence of an eavesdropper [29].
Alice and Bob begin by agreeing on shared parameters (prime
p, generator g, and optionally group order q) for an algebraic
group. Depending on the protocol, the group may be requested
by the initiator (as in IKE), unilaterally chosen by the responder
(as in TLS), or fixed by the protocol itself (SSH originally built
in support for a single group).

Having agreed on a group, Alice chooses a secret xa < q
and sends Bob ya = gxa mod p. Likewise, Bob chooses
a secret xb < q and sends Alice yb = gxb mod p. Each
participant then computes the shared secret key gxaxb mod p.

Depending on the implementation, the parties’ public values
ya and yb might be ephemeral—freshly generated for each
connection—or static and reused for many connections.

2



C. Discrete log algorithms

The best known attack against Diffie-Hellman is for the
eavesdropper to compute the discrete log of one of Alice or
Bob’s public values ya or yb, and use it to compute the shared
secret. It is not known in general whether the hardness of
computing the shared secret from the public values is equivalent
to the hardness of discrete log.

The computational Diffie-Hellman assumption states that
computing the shared secret gxaxb from gxa and gxb is hard for
some choice of groups. A stronger assumption, the decisional
Diffie-Hellman problem, states that given gxa and gxb , the
shared secret gxaxb is computationally indistinguishable from
random for some groups. This assumption is often not true
for groups used in practice; even with safe primes as defined
below, many implementations use a generator that generates
the full group of order p − 1 rather than the subgroup of
order (p− 1)/2, which means that even a passive attacker can
recover one bit of information about the secret exponent. To
avoid leaking this bit, one can compute the Diffie-Hellman
shared secret as y2x mod p to ensure that the shared secret
value is always in the subgroup of order (p− 1)/2.

There are several families of discrete log algorithms that
apply to special types of groups and parameter choices, which
implementations must take care to avoid. These include:

Small-order groups The Pollard rho [62] and Shanks’ baby
step-giant step algorithms [66] can be used to compute discrete
logs in groups of order q in time O(

√
q). To avoid being

vulnerable to such an attack, implementations must choose a
group order with bit length at least twice the desired bit security
of the key exchange. In practice, this means that group orders
q should be at least 160 bits to have an 80-bit security level.

Composite-order groups If the group order q is a composite
with prime factorization q =

∏
i q

ei
i , then the attacker can

use the Pohlig-Hellman algorithm [60] to compute a discrete
log in time O(

∑
i ei
√
qi). The Pohlig-Hellman algorithm

computes the discrete log in each subgroup of order qeii and
then uses the Chinese remainder theorem to reconstruct the
log modulo q. Adrian et al. [18] found several thousand TLS
hosts using primes with composite-order groups, and were able
to compute discrete logs for several hundred Diffie-Hellman
key exchanges using this algorithm. To avoid being vulnerable
to this attack, implementations should choose g so that it
generates a subgroup of large prime order modulo p.

Small prime moduli When the subgroup order is not small
or composite, and the prime modulus p is relatively large,
the fastest known algorithm is the number field sieve [40],
which runs in subexponential time in the bit length of p,
exp

(
(1.923 + o(1))(log p)1/3(log log p)2/3

)
. Adrian et al. re-

cently applied the number field sieve to attack 512-bit primes
in about 90,000 core-hours [18], and they argue that attacking
1024-bit primes—which are widely used in practice—is within
the resources of large governments. To avoid this attack, current
recommendations call for p to be at least 2048 bits [21].

Short exponents If the secret exponent xa is relatively small
or lies within a known range of values of a relatively small
size, m, then the Pollard lambda “kangaroo” algorithm [63]

can be used to find xa in time O(
√
m). To avoid this attack,

implementations should choose secret exponents to have bit
length at least twice the desired security level. For example,
one should use exponents of length at least 160 bits for an
80-bit security level.

D. Diffie-Hellman group characteristics

“Safe” primes In order to maximize the size of the subgroup
used for Diffie-Hellman, one can choose a p such that p = 2q+1
for some prime q. Such a p is called a “safe” prime, and q is a
Sophie Germain prime. For sufficiently large safe primes, the
best attack will be solving the discrete log using the number
field sieve.

Many standards explicitly specify the use of safe primes for
Diffie-Hellman in practice. The Oakley protocol [58] specified
five “well-known” groups for Diffie-Hellman in 1998. These
included three safe primes of size 768, 1024, and 1536 bits, and
was later expanded to include six more groups in 2003 [51]. The
Oakley groups have been built into numerous other standards,
including IKE [43] and SSH [70].

DSA groups The DSA signature algorithm [50] is also
based on the hardness of discrete log. DSA parameters have
a subgroup order q of much smaller size than p. In this case
p− 1 = qr where q is prime and r is a large composite, and g
generates a group of order q. FIPS 186-4 [50] specifies 160-bit
q for 1024-bit p and 224- or 256-bit q for 2048-bit p. The
small size of the subgroup allows the signature to be much
shorter than the size of p.

DSA-style parameters have also been recommended for use
for Diffie-Hellman key exchange. NIST Special Publication
800-56A, “Recommendation for Pair-Wise Key Establishment
Schemes Using Discrete Logarithm Cryptography” [23], first
published in 2007, specifies that finite field Diffie-Hellman
should be done over a prime-order subgroup q of size 160 bits
for a 1024-bit prime p, and a 224- or 256-bit subgroup for a
2048-bit prime. While the order of the multiplicative subgroups
is in line with the hardness of computing discrete logs in
these subgroups, no explanation is given for recommending a
subgroup of precisely this size rather than setting a minimum
subgroup size or using a safe prime. Using a shorter exponent
will make modular exponentiation more efficient, but the order
of the subgroup q does not increase efficiency—on the contrary,
the additional modular exponentiation required to validate that
a received key exchange message is contained in the correct
subgroup will render key exchange with DSA primes less
efficient than using a “safe” prime for the same exponent length.
Choosing a small subgroup order is not known to have much
impact on other cryptanalytic attacks, although the number
field sieve is somewhat (not asymptotically) easier as the linear
algebra step is performed modulo the subgroup order q. [18]

RFC 5114, “Additional Diffie-Hellman Groups for Use
with IETF Standards” [53], specifies three DSA groups with
the above orders “for use in IKE, TLS, SSH, etc.” These
groups were taken from test data published by NIST [1]. They
have been widely implemented in IPsec and TLS, as we will
show below. We refer to these groups as Group 22 (1024-
bit group with 160-bit subgroup), Group 23 (2048-bit group
with 224-bit subgroup), and Group 24 (2048-bit group with

3



256-bit subgroup) throughout the remainder of the paper to be
consistent with the group numbers assigned for IKE.

RFC 6989, “Additional Diffie-Hellman Tests for the Internet
Key Exchange Protocol Version 2 (IKEv2)” [67], notes that
“mod p” groups with small subgroups can be vulnerable to
small subgroup attacks, and mandates that IKE implementations
should validate that the received value is in the correct subgroup
or never repeat exponents.

E. Small subgroup attacks

Since the security of Diffie-Hellman relies crucially on the
group parameters, implementations can be vulnerable to an
attacker who provides maliciously generated parameters that
change the properties of the group.

Small subgroup confinement attacks In a small subgroup
confinement attack, an attacker (either a man-in-the-middle or
a malicious client or server) provides a key-exchange value
that lies in a subgroup of small order. This will force the
other party’s view of the shared secret to lie in the subgroup
generated by the attacker. This type of attack was described
by van Oorschot and Wiener [68] and ascribed to Vanstone
and Anderson and Vaudenay [20]. Small subgroup confinement
attacks are possible even when the server does not repeat
exponents: the only requirement is that an implementation does
not validate that received Diffie-Hellman key exchange values
are in the correct subgroup.

When working mod p, there is always a subgroup of order
2, since p−1 is even. A malicious client Mallory could initiate
a Diffie-Hellman key exchange value with Alice and send her
the value yM = p− 1 ≡ −1 mod p, which is is a generator of
the group of order 2 mod p. When Alice attempts to compute
her view of the shared secret as ka = yaM mod p, there are
only two possible values, 1 and −1 mod p.

The same type of attack works if p − 1 has other small
factors qi. Mallory can send a generator gi of a group of order
qi as her Diffie-Hellman key exchange value, and Alice’s view
of the shared secret will be an element of the subgroup of
order qi. Mallory then has a 1/qi chance of blindly guessing
Alice’s shared secret in this invalid group, and given a message
from Alice encrypted using Alice’s view of the shared secret,
Mallory can brute force Alice’s shared secret in qi guesses.

More recently, Bhargavan and Delignat-Lavaud [25] de-
scribe “key synchronization” attacks against IKEv2 where a
man-in-the-middle connects to both initiator and responder in
different connections, uses a small subgroup confinement attack
against both, and observes that there is a 1/qi probability of the
shared secrets being the same in both connections. Bhargavan
and Leurent [26] describe several attacks that use this type
of small subgroup confinement attack to obtain a transcript
collision and break protocol authentication.

To protect against this type of attack, implementations
should do Diffie-Hellman exchanges over prime-order sub-
groups with a well defined and known subgroup order, and both
parties must validate that the key exchange values they receive
are in the proper subgroup. That is, for a known subgroup
order q, a received Diffie-Hellman key exchange value y should
satisfy yq ≡ 1 mod p. For a safe prime, it suffices to check
that y is strictly between 1 and p− 1.

Small subgroup key recovery attacks Lim and Lee [54]
discovered a further attack that arises when an implementation
fails to validate subgroup order and, in addition, reuses the
same secret exponent for multiple key exchanges. A malicious
party may be able to perform multiple subgroup confinement
attacks for different prime factors qi of p − 1 and then use
the Chinese remainder theorem to reconstruct the static secret
exponent.

The attack works as follows. Let p− 1 have many small
factors p − 1 = q1q2 . . . qn. Mallory, a malicious client, uses
the procedure described in Section II-A to find a generator of
the subgroup gi of order qi mod p. Then Mallory transmits the
value gi as her Diffie-Hellman key exchange value, and receives
a message encrypted with Alice’s view of the shared secret gxa

i ,
which Mallory can brute force to learn the value of xa mod qi.
Once Mallory has repeated this process several times, she can
use the Chinese remainder theorem to reconstruct xa mod∏

i qi. The running time of this attack is
∑

i qi, assuming
that Mallory performs an offline brute-force search for each
subgroup.

A randomly chosen prime p is likely to have subgroups
of large enough order that this attack is infeasible to carry
out for all subgroups. However, if in addition Alice’s secret
exponent xa is small, then Mallory only needs to carry out this
attack for a subset of subgroups of orders q1, . . . , qk satisfying∏k

i=0 qi > xa, since the Chinese remainder theorem ensures
that xa will be uniquely defined.

Mallory can also improve on the running time of the attack
by taking advantage of the Pollard lambda algorithm. That is,
she could use a small subgroup attack to learn the value of
xa mod

∏k
i=1 qi for a subset of subgroups

∏k
i=1 qi < xa, and

then use the Pollard lambda algorithm to reconstruct the full
value of a, as it has now been confined to a smaller interval.

In summary, an implementation is vulnerable to small
subgroup key recovery attacks if it:

1) Does not verify that received Diffie-Hellman key
exchange values are in the correct subgroup;

2) Uses a prime p such that p− 1 has small factors; and
3) Reuses Diffie-Hellman secret exponent values for

multiple connections.

The attack is made even more practical if the implementation
uses small exponents.

A related attack exists for elliptic curve groups: an invalid
curve attack. Similarly to the case we describe above, the
attacker generates a series of elliptic curve points of small
order and sends these points as key exchange messages to the
victim. If the victim does not validate that the received point
is on the intended curve, they return a response that reveals
information about the secret key modulo different group orders.
After enough queries, the attacker can learn the victim’s entire
secret. Jager, Schwenk, and Somorovsky [45] examined eight
elliptic curve implementations and discovered two that failed
to validate the received curve point. For elliptic curve groups,
this attack can be much more devastating because the attacker
has much more freedom in generating different curves, and can
thus find many different small prime order subgroups. For the
finite field Diffie-Hellman attack, the attacker is limited only
to those subgroups whose orders are factors of p− 1.

4



Application Crypto Library Short Exponent Exponent Reuse

OpenSSH OpenSSL No No
Cerberus OpenSSL No Yes
GNU lsh GnuTLS No No
Dropbear LibTomCrypt No No
Lighttpd OpenSSL Yes No
Unbound OpenSSL Yes Yes
Exim OpenSSL Library Dependent Yes
Postfix OpenSSL No No

TABLE I: Common application behavior—Applications make a diverse set of decisions on how to handle Diffie-Hellman
exponents, likely due to the plethora of conflicting, confusing, and incorrect recommendations available.

III. TLS

TLS (Transport Layer Security) is a transport layer pro-
tocol designed to provide confidentiality, integrity and (most
commonly) one-side authentication for application sessions. It
is widely used to protect HTTP and mail protocols.

A TLS client initiates a TLS handshake with the Client-
Hello message. This message includes a list of supported
cipher suites, and a client random nonce rc. The server
responds with a ServerHello message containing the
chosen cipher suite and server random nonce rs, and a
Certificate message that includes the server’s X.509
certificate. If the server selects a cipher suite using ephemeral
Diffie-Hellman key exchange, the server additionally sends
a ServerKeyExchange message containing the server’s
choice of Diffie-Hellman parameters p and g, the server’s
Diffie-Hellman public value ys = gxs mod p, a signature by
the server’s private key over both the client and server nonces
(rc and rs), and the server’s Diffie-Hellman parameters (p,
g, and ys). The client then verifies the signature using the
public key from the server’s certificate, and responds with a
ClientKeyExchange message containing the client’s Diffie-
Hellman public value yc = gxc mod p. The Diffie-Hellman
shared secret Y = gxsxc mod p is used to derive encryption
and MAC keys. The client then sends ChangeCipherSpec
and Finished messages. The Finished message contains
a hash of the handshake transcript, and is encrypted and
authenticated using the derived encryption and MAC keys.
Upon decrypting and authenticating this message, the server
verifies that the hash of the transcript matches the expected
hash. Provided the hash matches, the server then sends its own
ChangeCipherSpec and Finished messages, which the
client then verifies. If either side fails to decrypt or authenticate
the Finished messages, or if the transcript hashes do not
match, the connection fails immediately [28].

TLS also specifies a mode of using Diffie-Hellman with
fixed parameters from the server’s certificate [61]. This mode
is not forward secret, was never widely adopted, and has been
removed from all modern browsers due to dangerous protocol
flaws [44]. The only widely used form of Diffie-Hellman in
TLS today is ephemeral Diffie-Hellman, described above.

A. Small Subgroup Attacks in TLS

Small subgroup confinement attacks A malicious TLS
server can perform a variant of the small subgroup attack
against a client by selecting group parameters g and p such

that g generates an insecure group order. TLS versions prior
to 1.3 give the server complete liberty to choose the group,
and they do not include any method for the server to specify
the desired group order q to the client. This means a client
has no feasible way to validate that the group sent by the
server has the desired level of security or that a server’s key
exchange value is in the correct group for a non-safe prime.

Similarly, a man in the middle with knowledge of the
server’s long-term private signing key can use a small sub-
group confinement attack to more easily compromise perfect
forward secrecy, without having to rewrite an entire connection.
The attack is similar to the those described by Bhargavan
and Delignat-Lavaud [25]. The attacker modifies the server
key exchange message, leaving the prime unchanged, but
substituting a generator gi of a subgroup of small order qi
for the group generator and gi for the server’s key exchange
value ys. The attacker then forges a correct signature for the
modified server key exchange message and passes it to the
client. The client then responds with a client key exchange
message yc = gxc

i mod p, which the man-in-the-middle leaves
unchanged. The server’s view of the shared secret is then
gxcxs
i mod p, and the client’s view of the shared secret is
gxc
i mod p. These views are identical when xs ≡ 1 mod qi,

so this connection will succeed with probability 1/qi. For
small enough qi, this enables a man in the middle to use
a compromised server signing key to decrypt traffic from
forward-secret ciphersuites with a reasonable probability of
success, while only requiring tampering with a single handshake
message, rather than having to actively rewrite the entire
connection for the duration of the session.

Furthermore, if the server uses a static Diffie-Hellman key
exchange value, then the attacker can perform a small subgroup
key-recovery attack as the client in order to learn the server’s
static exponent xs mod qi for the small subgroup. This enables
the attacker to calculate a custom generator such that the client
and server views of the shared secret are always identical,
raising the above attack to a 100% probability of success.

Small subgroup key recovery attacks In TLS, the client
must authenticate the handshake before the server, by providing
a valid Finished message. This forces a small subgroup key
recovery attack against TLS to be primarily online. To perform
a Lim-Lee small subgroup key recovery attack against a server
static exponent, a malicious client initiates a TLS handshake
and sends a generator gi of a small subgroup of order qi as
its client key exchange message yc. The server will calculate

5



Implementation RFC 5114 Support Allows Short Exponents Reuses Exponents Validates Subgroup

Mozilla NSS No Yes, hardcoded No g ≤ 2
OpenJDK No Yes, uses max of p_size / 2 and 384 No g ≤ 2
OpenSSL
1.0.2

Yes Yes, if q set or if user sets a shorter length Default until Jan ’16 Yes, as of Jan ’16

BouncyCastle Yes No Application dependent g ≤ 2
Cryptlib No Yes, uses quadratic curve calculation Application dependent g ≤ 2
libTomCrypt No Yes, hardcoded Application dependent No
CryptoPP No Yes, uses work factor calculation Application dependent No
Botan Yes Yes, uses work factor calculation No No
GnuTLS Application dependent Yes, restricts to q_size (max 256) Application dependent No

TABLE II: TLS Library Behavior—We examined popular TLS libraries to determine which weaknesses from Section II-E were
present. Reuse of exponents often depends on the use of the library; the burden is on the application developer to appropriately
regenerate exponents. Botan and libTomCrypt both hardcode their own custom groups, while GnuTLS allows users to specify
their own parameters.

Ys = gxs
i mod p as the shared secret. The server’s view of the

shared secret is confined to the subgroup of order qi. However,
since gi and g generate separate subgroups, the server’s public
value ys = gxs gives the attacker no information about the value
of the shared secret Ys. Instead, the attacker must guess a value
for xs mod qi, and send the corresponding client Finished
message. If the server continues the handshake, the attacker
learns that the guess is correct. Therefore, assuming the server
is reusing a static value for xs, the attacker needs to perform
at most qi queries to learn the server’s secret xs mod qi [54].
This attack is feasible if qi is small enough and the server
reuses Diffie-Hellman exponents for sufficiently many requests.

The attacker repeats this process for many different primes
qi, and uses the Chinese remainder theorem to combine them
modulo the product of the primes qi. The attacker can also use
the Pollard lambda algorithm to reconstruct any remaining bits
of the exponent [54].

We note that in the TLS False Start extension [52], the
specified server-side false start behavior allows the server to
send application data before receiving the client’s authentication.
The specification only allows this behavior for abbreviated
handshakes, which do not include a full key exchange. If a full
key exchange were allowed, the fact that the server authenticates
first would allow a malicious client to mount a mostly offline
key recovery attack.

B. OpenSSL

Prior to early 2015, OpenSSL defaulted to using static-
ephemeral Diffie-Hellman values. Server applications generate
a fresh Diffie-Hellman secret exponent on startup, and reuse this
exponent until they are restarted. A server would be vulnerable
to small subgroup attacks if it chose a DSA prime, explicitly
configured the dh->length parameter to generate a short
exponent, and failed to set SSL_OP_SINGLE_DH_USE to
prevent repeated exponents. OpenSSL provides some test code
for key generation which configures DSA group parameters,
sets an exponent length to the group order, and correctly sets
the SSL_OP_SINGLE_DH_USE to generate new exponents
on every connection. We found this test code widely used
across many applications. We discovered that Unbound, a DNS
resolver, used the same parameters as the tests, but without

setting SSL_OP_SINGLE_DH_USE, rendering them vulnera-
ble to a key recovery attack. A number of other applications
including Lighttpd used the same or similar code with non-safe
primes, but correctly set SSL_OP_SINGLE_DH_USE.

In the spring of 2015, OpenSSL made several changes to
implement explicit support for RFC 5114 groups [6], including
the ability for a server to specify a subgroup order in a set of
Diffie-Hellman group parameters, and automatically matching
exponent length to subgroup size when the subgroup order q is
specified. However, the update did not contain code to validate
subgroup order for key exchange values, leaving OpenSSL
users vulnerable to precisely the key recovery attack outlined
in Section III-A.

We disclosed this vulnerability to OpenSSL in January 2016.
The vulnerability was patched by including code to validate
subgroup order when a subgroup was specified in a set of Diffie-
Hellman parameters and setting SSL_OP_SINGLE_DH_USE
by default [15]. Prior to this patch, any code using OpenSSL
for DSA-style Diffie-Hellman parameters was vulnerable to
small subgroup attacks by default.

Exim [4], a popular mail server that uses OpenSSL, provides
a clear example of the fragile situation created by this update.
By default, Exim uses the RFC 5114 Group 23 parameters
with OpenSSL, does not set an exponent length, and does
not set SSL_OP_SINGLE_DH_USE. In a blog post, an Exim
developer explains that because of “numerous issues with
automatic generation of DH parameters”, they added support
for groups found in the RFCs and picked Group 23 as the
default [12]. Exim narrowly avoided being fully vulnerable to
a key recovery attack by not including the size of the subgroup
generated by q in the Diffie-Hellman parameters that it passes
to OpenSSL. Had this been included, OpenSSL would have
automatically shortened the exponent length, leaving the server
fully vulnerable to a key recovery attack. For this group, an
attacker can recover 130 bits of information about the secret
exponent using 233 online queries, but this does not allow the
attacker to recover the server’s 2048-bit exponent modulo the
correct 224-bit group order q as the small subgroup orders qi
are all relatively prime to q.

We looked at several other applications as well, but did not
find them to be vulnerable to key recovery attacks (Table I).

6



Number of hosts that use. . .

Protocol Scan Date Total Hosts Diffie-Hellman Non-Safe
Primes

Static
Exponents

Static Exponents and
Non-Safe Primes

HTTPS 2/2016 40,578,754 10,827,565 1,661,856 964,356 309,891
POP3S 10/2015 4,368,656 3,371,616 26,285 32,215 25
STARTTLS 10/2015 3,426,360 3,036,408 1,186,322 30,017 932
SSH 10/2015 15,226,362 10,730,527 281 1,147 0
IKEv1 2/2016 2,571,900 2,571,900 340,300 109 0
IKEv2 2/2016 1,265,800 1,265,800 177,000 52 0

TABLE III: IPv4 non-safe prime and static exponent usage—Although non-safe primes see widespread use across most
protocols, only a small number of hosts reuse exponents and use non-safe primes; these hosts are prime candidates for a small
subgroup key recovery attack.

C. Other Implementations

We examined the source code of multiple TLS implementa-
tions (Table II). Prior to January 2016, no TLS implementations
that we examined validated group order, even for the well-
known DSA primes from RFC 5114, leaving them vulnerable
to small subgroup confinement attacks.

Most of the implementations we examined attempt to
match exponent length to the perceived strength of the prime.
For example, Mozilla Network Security Services (NSS), the
TLS library used in the Firefox browser and some versions
of Chrome [7], [36], uses NIST’s “comparable key strength”
recommendations on key management [21], [22] to determine
secret exponent lengths from the length of the prime. [2]
Thus NSS uses 160-bit exponents with a 1024-bit prime, and
224-bit exponents with a 2048-bit prime. In Fall 2015, NSS
added an additional check to ensure that the shared secret
gxaxb 6≡ 1 mod p [5].

Several implementations go to elaborate lengths to match
exponent length to perceived prime strength. The Cryptlib
library fits a quadratic curve to the small exponent attack cost
table in the original van Oorschot paper [68] and uses the
fitted curve to determine safe key lengths [41]. The Crypto++
library uses an explicit “work factor” calculation, evaluating the
function 2.4n1/3(log n)2/3 [46]. Subgroup order and exponent
lengths are set to twice the calculated work factor. The work
factor calculation is taken from a 1995 paper by Odlyzko on
integer factorization [57]. Botan, a C++ cryptography and TLS
library, uses a similar work factor calculation, derived from
RFC 3766 [42], which describes best practices as of 2004 for
selecting public key strengths when exchanging symmetric keys.
RFC 3766 uses a similar work factor algorithm to Odlyzko,
intended to model the running time of the number-field sieve.
Botan then doubles the length of the work factor to obtain
subgroup and exponent lengths [9].

D. Measurements

We used ZMap [32] to probe the public IPv4 address
space for hosts serving three TLS-based protocols: HTTPS,
SMTP+STARTTLS, and POP3S. To determine which primes
servers were using, we sent a ClientHello message contain-
ing only ephemeral Diffie-Hellman cipher suites. We combined
this data with scans from Censys [30] to determine the overall
population. The results are summarized in Table III.

In August 2016, we conducted additional scans of a random
1% sample of HTTPS hosts on the Internet. First, we checked
for nontrivial small subgroup attack vulnerability. For servers
that sent us a prime p such that p− 1 was divisible by 7, we
attempted a handshake using a client key exchange value of
g7 mod p, where g7 is a generator of a subgroup of order 7. (7
is the smallest prime factor of p− 1 for Group 22.) When we
send g7, we expect to correctly guess the PreMasterSecret
and complete the handshake with one seventh of hosts that
do not validate subgroup order. In our scan, we were able to
successfully complete a handshake with 1477 of 10714 hosts
that offered a prime such that p−1 was divisible by 7, implying
that approximately 96% of these hosts fail to validate subgroup
order six months after OpenSSL pushed a patch adding group
order validation for correctly configured groups.

Second, we measured how many hosts performed even the
most basic validation of key exchange values. We attempted to
connect to HTTPS hosts with the client key exchange values
of yc = 0 mod p, 1 mod p,−1 mod p. As Table IV shows, we
found that over 5% of hosts that accepted DHE ciphersuites
accepted the key exchange value of −1 mod p and derived
the PreMasterSecret from it. These implementations are
vulnerable to a trivial version of the small subgroup confinement
attacks described in Section III-A, for any prime modulus
p. By examining the default web pages of many of these
hosts, we identified products from several notable companies

Key Exchange Value Support DHE Accepted

0 mod p 143.5 K 87
1 mod p 142.2 K 4.9 K
−1 mod p 143.5 K 7.6 K
g7 mod p 10.7 K 1.5 K

TABLE IV: TLS key exchange validation—We performed a
1% HTTPS scan in August 2016 to check if servers validated
received client key exchange values, offering generators of
subgroups of order 1, 2 and 7. Our baseline DHE support
number counts hosts willing to negotiate a DHE key exchange,
and in the case of g7, if p− 1 is divisible by 7. We count hosts
as “Accepted” if they reply to the ClientKeyExchange
message with a Finished message. For g7, we expect this
to happen with probability 1/7, suggesting that nearly all of
the hosts in our scan did not validate subgroup order.

7



Group Host Counts

Source Prime Size Subgroup Size HTTPS SMTP POP3S SSH

RFC 5114 Group 22 1024 160 1,173,147 145 86 0
Amazon Load Balancer 1024 160 277,858 0 1 0
JDK 768 160 146,491 671 16,515 0
JDK 1024 160 52,726 2,445 9,510 0
RFC 5114 Group 24 2048 256 3,543 5 0 6
JDK 2048 224 982 12 20 0
Epson Device 1024 < 948 372 0 0 0
RFC 5114 Group 23 2048 224 371 1,140,363 2 0
Mistyped OpenSSL 512 512 497 0 717 0 0

Other Non-Safe Primes — — 6,366 41,964 151 275
Safe Primes — — 9,165,709 1,850,086 3,345,331 10,730,246

Total 10,827,565 3,036,408 3,371,616 10,730,527

TABLE V: IPv4 top non-safe primes—Nine non-safe primes account for the majority of hosts using non-safe primes.

including Microsoft, Cisco, and VMWare. When we disclosed
these findings, VMWare notified us that they had already
applied the fix in the latest version of their products; Microsoft
acknowledged the missing checks but chose not to include
them since they only use safe primes, and adding the checks
may break functionality for some clients that were sending
unusual key exchange values; and Cisco informed us that they
would investigate the issue.

Of 40.6 M total HTTPS hosts found in our scans,
10.8 M (27%) supported ephemeral Diffie-Hellman, of which
1.6 M (4%) used a non-safe prime, and 309 K (0.8%) used a non-
safe prime and reused exponents across multiple connections,
making them likely candidates for a small subgroup key
recovery attack. We note that numbers we present for hosts
reusing exponents are an underestimate, since we only mark
hosts as such if we found them using the same public Diffie-
Hellman value across multiple connections, and some load
balancers that cycle among multiple values might have evaded
detection.

While 77% of POP3S hosts and 39% of SMTP servers used
a non-safe prime, a much smaller number used a non-safe prime
and reused exponents (<0.01% in both protocols), suggesting
that the popular implementations (Postfix and Dovecot [31])
that use these primes follow recommendations to use ephemeral
Diffie-Hellman values with DSA primes.

We found that nine primes accounted for the majority of
non-safe primes used by hosts in the wild. We list these non-
safe primes in Table V along with counts of how many times
we found these primes used by hosts in the protocols in our
scan dataset.

Table V shows that over 1.17M hosts across all of our
HTTPS scans negotiated Group 22 in a key exchange. To get
a better picture of which implementations provide support for
this group, we examined the default web pages of these hosts to
identify companies and products, which we show in Table VI.

Of the the 307 K HTTPS hosts that both use non-safe
primes and reuse exponents, 277 K (90%) belong to hosts
behind Amazon’s Elastic Load Balancer [8]. These hosts use
a 1024-bit prime with a 160-bit subgroup. We set up our
own load balancer instance and found that the implementation

failed to validate subgroup order. We were able to use a
small-subgroup key recovery attack to compute 17 bits of
our load balancer’s private Diffie-Hellman exponent xs in only
3813 queries. We responsibly disclosed this vulnerability to
Amazon. Amazon informed us that they have removed Diffie-
Hellman from their recommended ELB security policy, and
are encouraging customers to use the latest policy. In May
2016, we performed additional scans and found that 88% of
hosts using this prime no longer repeated exponents. We give
a partial factorization for p− 1 in Table XIII; the next largest
subgroups have 61 and 89 bits and an offline attack against
the remaining bits of a 160-bit exponent would take 271 time.
For more details on the computation, see Section VI.

SSLeay [33], a predecessor for OpenSSL, includes several
default Diffie-Hellman primes, including a 512-bit prime.
We found that 717 SMTP servers used a version of the
OpenSSL 512-bit prime with a single character difference in the
hexadecimal representation. The resulting modulus that these
servers use for their Diffie-Hellman key exchange is no longer
prime. We include the factorization of this modulus along with
the factors of the resulting group order in Table XIII. The use
of a composite modulus further decreases the work required to
perform a small subgroup attack.

Company Product(s) Count

Ubiquiti Networks airOS/EdgeOS 272,690
Cisco DOCSIS 3.0 Gateway 65,026
WatchGuard Fireware XTM 62,682
Supermicro IPMI 42,973
ASUS AiCloud 39,749
Electric Sheep Fencing pfSense 14,218
Bouygues Telecom Bbox 13,387
Other — 135,432

TABLE VI: HTTPS support for RFC5114 Group 22—In a
100% HTTPS scan performed in October 2016, we found that of
the 12,835,911 hosts that accepted Diffie-Hellman key exchange,
901,656 used Group 22. We were able to download default
web pages for 646,157 of these hosts, which we examined to
identify companies and products.

8



Although TLS also includes static Diffie-Hellman cipher
suites that require a DSS certificate, we did not include them
in our study; no browser supports static Diffie-Hellman [44],
and Censys shows no hosts with DSS certificates, with only
652 total hosts with non-RSA or ECDSA certificates.

IV. IPSEC

IPsec is a set of Layer-3 protocols which add confidentiality,
data protection, sender authentication, and access control to
IP traffic. IPsec is commonly used to implement VPNs. IPsec
uses the Internet Key Exchange (IKE) protocol to determine
the keys used to secure a session. IPsec may use IKEv1 [43]
or IKEv2 [49]. While IKEv2 is not backwards-compatible
with IKEv1, the two protocols are similar in message structure
and purpose. Both versions use Diffie-Hellman to negotiate
shared secrets. The groups used are limited to a fixed set of
pre-determined choices, which include the DSA groups from
RFC 5114, each assigned a number by IANA [49], [51], [53].

IKEv1 IKEv1 [43], [55], [59] has two basic methods
for authenticated key exchange: Main Mode and Aggressive
Mode. Main Mode requires six messages to establish the
requisite state. The initiator sends a Security Association (SA)
payload, containing a selection of cipher suites and Diffie-
Hellman groups they are willing to negotiate. The responder
selects a cipher and responds with its own SA payload. After
the cipher suite is selected, the initiator and responder both
transmit Key Exchange (KE) payloads containing public Diffie-
Hellman values for the chosen group. At this point, both
parties compute shared key materials, denoted SKEYID. When
using signatures for authentication, SKEYID is computed
SKEYID = prf(Ni|Nr, g

xixr ). For the other two authentication
modes, pre-shared key and public-key encryption, SKEYID
is derived from the pre-shared key and session cookies,
respectively, and does not depend on the negotiated Diffie-
Hellman shared secret.

Each party then in turn sends an authentication message
(AUTH) derived from a hash over SKEYID and the handshake.
The authentication messages are encrypted and authenticated
using keys derived from the Diffie-Hellman secret gxixr . The
responder only sends her AUTH message after receiving and
validating the initiatior’s AUTH message.

Aggressive Mode operates identically to Main Mode, but in
order to reduce latency, the initiator sends SA and KE messages
together, and the responder replies with its SA, KE, and AUTH
messages together. In aggressive mode, the responder sends an
authentication message first, and the authentication messages
are not encrypted.

IKEv2 IKEv2 [48], [49] combines the SA and KE messages
into a single message. The initiator provides a best guess
ciphersuite for the KE message. If the responder accepts that
proposal and chooses not to renegotiate, the responder replies
with a single message containing both SA and KE payloads.
Both parties then send and verify AUTH messages, starting
with the initiator. The authentication messages are encrypted
using session keys derived from the SKEYSEED value which
is derived from the negotiated Diffie-Hellman shared secret.
The standard authentication modes use public-key signatures
over the handshake values.

A. Small Subgroup Attacks in IPsec

Small subgroup confinement attacks There are several
variants of small subgroup confinement attacks against IKEv1
and IKEv2. In IKEv1 Main Mode, either peer can carry out a
small subgroup confinement attack against the other by sending
a generator of a small subgroup as its key exchange message.
The attacker must then guess the other’s view of the Diffie-
Hellman shared secret to compute the session keys to encrypt
its authentication message. The attack is similar for IKEv2
authentication.

In IKEv1 Aggressive Mode, the responder sends its AUTH
message before the initiator. However, this value is not
encrypted with a session key. For signature authentication,
the SKEYID and resulting hashes are derived from the Diffie-
Hellman shared secret, so the initiator can perform an offline
brute-force attack against the responder’s authentication mes-
sage to learn their exponent in the small subgroup.

There are several variants of subgroup confinement attacks
for IKE that can be performed by a man in the middle who
has access to the secrets used for authentication. Similar to
the attack described for TLS, a man in the middle can use a
small subgroup confinement attack to force weak encryption
in a connection by only interfering with a small number of
handshake messages, without having to rewrite the entire
connection. For IKEv1 main mode, the man in the middle
could modify the key exchange messages from both client and
server to substitute a generator gi of a subgroup of small order
qi. The man in the middle must then replace the handshake
authentication messages, which would require knowledge of
the long-term authentication secret.

For pre-shared key authentication, the attacker must know
the pre-shared key in order to construct the authentication hash
which is derived from it. The authentication message does
not depend on the negotiated Diffie-Hellman shared secret.
With probability 1/qi, gxi

i ≡ gxr
i mod p, so the two parties

will agree on their view of the shared secret. The man in the
middle can then brute force this value after viewing messages
encrypted using this value. For signature authentication, the
signed hash transmitted from each side is derived from the
nonces and the negotiated shared secret. The attacker must
know the private keys corresponding to both initiator and
responder signing keys and brute force pi values of SKEYID
from the received signature in order to forge the modified
authentication signatures on each side. The two parties will
agree on their view of the shared secret with probability 1/qi.
For public key authentication, the attacker must know the
private keys corresponding to the public keys used to encrypt
the ID and nonce values on both sides in order to forge a valid
authentication hash. Since the authentication does not depend
on the shared Diffie-Hellman negotiated value, the man in the
middle attacker must then brute force the negotiated shared
key once he receives a message encrypted with the derived key.
The two parties will agree on their view of the shared key with
probability 1/qi.

For IKEv1 aggressive mode with signature authentication,
a man-in-the-middle attacker can always succeed in a small
subgroup confinement attack. The man-in-the-middle replaces
the initiator’s key exchange with a generator gi for a small
subgroup. For signature authentication, the responder’s key

9



exchange message is sent together with the responder’s sig-
nature which depends on the negotiated shared secret, so the
man in the middle brute forces the qi possible values for xr
and replaces the responder’s key exchange message with qxr

i
and forges an appropriate signature. For pre-shared key and
public-key authentication, the authentication messages do not
depend on the negotiated shared Diffie-Hellman secret. The
rest of the attack is then similar to the main mode attacks, and
the shared secret will be synchronized with probability 1/qi.

For IKEv2, a similar small subgroup confinement attack is
possible by a man-in-the-middle attacker who knows authenti-
cation secrets. The man in the middle rewrites the key exchange
values on each side to contain a generator of the same subgroup
of small order. The next handshake messages are encrypted
using the shared secret. The man in the middle can then brute
force the shared secret, and if they know the authentication
secrets corresponding to the authentication method, forge the
authentication for each side of the communication. The initiator
and responder views of the shared secret will be synchronized
with probability 1/qi. For all of these attacks, the man-in-
the-middle attacker only needs to rewrite a small number of
handshake messages; any further encrypted communications
can then be decrypted at leisure without requiring the man-in-
the-middle attacker to continuously rewrite the connection.

Bhargavan, Delignat-Lavaud, and Pironti [25] describe a
transcript synchronization attack against IKEv2 that relies on
a small subgroup confinement attack. A man-in-the-middle
initiates simultaneous connections with an initiator and a
responder using identical nonces, and sends a generator gi
for a subgroup of small order qi to each as its KE message.
The two sides have a 1/qi chance of negotiating an identical
shared secret, so an authentication method depending only on
nonces and shared secrets could be forwarded, and the session
keys would be identical.

Small subgroup key recovery attacks Similar to TLS, an
IKE responder that reuses private exponents and does not
verify that the initiator key exchange values are in the correct
subgroup is vulnerable to a small subgroup key recovery attack.
The most recent version of the IKEv2 specification has a
section discussing reuse of Diffie-Hellman exponentials, and
states that “because computing Diffie-Hellman exponentials
is computationally expensive, an endpoint may find it advan-
tageous to reuse those exponentials for multiple connection
setups” [49]. Following this recommendation could leave a host
open to a key recovery attack, depending on how exponent
reuse is implemented. A small subgroup key recovery attack
on IKE would be primarily offline for IKEv1 with signature
authentication and for IKEv2 against the initiator.

For each subgroup of order qi, the attacker’s goal is to
obtain a responder AUTH message, which depends on the secret
chosen by the responder. If an AUTH message can be obtained,
the attacker can brute-force the responder’s secret within the
subgroup offline. This is possible if the server supports IKEv1
Aggressive Mode, since the server authenticates before the
client, and signature authentication produces a value dependent
on the negotiated secret. In all other IKE modes, the client
authenticates first, leading to an online attack. The flow of the
attack is identical to TLS; for more details see Section III.

Ferguson and Schneier [34] describe a hypothetical small-

subgroup attack against the initiator where a man-in-the-
middle abuses undefined behavior with respect to UDP packet
retransmissions. A malicious party could “retransmit” many
key exchange messages to an initiator and potentially receive a
different authentication message in response to each, allowing
a mostly offline key recovery attack.

B. Implementations

We examined several open-source IKE implementations
to understand server behavior. In particular, we looked for
implementations that generate small Diffie-Hellman exponents,
repeat exponents across multiple connections, or do not cor-
rectly validate subgroup order. Despite the suggestion in IKEv2
RFC 7296 to reuse exponents [49], none of the implementations
that we examined reused secret exponents.

All implementations we reviewed are based on
FreeS/WAN [13], a reference implementation of IPSec.
The final release of FreeS/Wan, version 2.06, was released
in 2004. Version 2.04 was forked into Openswan [16] and
strongSwan [17], with a further fork of Openswan into
Libreswan [14] in 2012. The final release of FreeS/WAN
used constant length 256-bit exponents but did not support
RFC 5114 DSA groups, offering only the Oakley 1024-bit and
1536-bit groups that use safe primes.

Openswan does not generate keys with short exponents. By
default, RFC 5114 groups are not supported, although there is a
compile-time option that can be explicitly set to enable support
for DSA groups. strongSwan both supports RFC 5114 groups
and has explicit hard-coded exponent sizes for each group. The
exponent size for each of the RFC 5114 DSA groups matches
the subgroup size. However, these exponent sizes are only used
if the dh_exponent_ansi_x9_42 configuration option is
set. It also includes a routine inside an #ifdef that validates
subgroup order by checking that gq ≡ 1 mod p, but validation
is not enabled by default. Libreswan uses Mozilla Network
Security Services (NSS) [7] to generate Diffie-Hellman keys. As
discussed in Section III-C, NSS generates short exponents for
Diffie-Hellman groups. Libreswan was forked from Openswan
after support for RFC 5114 was added, and retains support for
those groups if it is configured to use them. Several closed
source implementations also provide support for the 2048-
bit MODP group with a 256-bit subgroup (Group 24). These
include Cisco’s IOS [27], Juniper’s Junos [47], and Windows
Server 2012 R2 [56].

Although none of the implementations we examined were
configured to reuse Diffie-Hellman exponents across connec-
tions, the failure to validate subgroup orders even for the pre-
specified groups renders these implementations fragile to future
changes and vulnerable to subgroup confinement attacks.

C. Measurements

We performed a series of Internet scans using ZMap to
identify IKE responders. In our analysis, we only consider hosts
that respond to our ZMap scan probes. Many IKE hosts that
filter their connections based on IP are excluded from our results.
We further note that, depending on VPN server configurations,
some responders may continue with a negotiation that uses
weak parameters until they are able to identify a configuration
for the connecting initiator. At that point, they might reject the

10



Group IKEv1 IKEv2

Group 22 320.7 K 170.1 K
Group 23 323.5 K 169.7 K
Group 24 340.3 K 177 K

Baseline 1907.1 K 1265.8 K

TABLE VII: IKE support for RFC5114 groups—We mea-
sured support for RFC5114 DSA groups in IKEv1 and IKEv2
by performing 100% IPv4 scans and counting how many hosts
reply with a valid key exchange message for the selected group.

connection. As an unauthenticated initiator, we have no way
of distinguishing this behavior from the behaviour of a VPN
server that legitimately accepts weak parameters. For a more
detailed explanation of possible IKE responder behaviors in
response to scanning probes, see Wouters [69].

In February 2016, we performed a series of scans offering
the most common cipher suites and group parameters we found
in implementations to establish a baseline population for IKEv1
and IKEv2 responses. For the IKEv1, the baseline scan offered
Oakley groups 2 and 14 and RFC 5114 groups 22, 23, and 24 for
the group parameters; SHA1 or SHA256 for the hash function;
pre-shared key or RSA signatures for the authentication method;
and AES-CBC, 3DES, and DES for the encryption algorithm.
Our IKEv2 baseline scan was similar, but also offered the 256-
bit and 384-bit ECP groups and AES-GCM for authenticated
encryption.

To measure support for the non-safe RFC 5114 DSA
groups, we conducted additional scans, once per non-safe group,
offering only the single Diffie-Hellman group. We found that
13% of IKEv1 hosts and 14% of IKEv2 hosts supported using
one of the RFC 5114 groups. These results are presented in
Table VII. We observed that across all of the IKE scans, 109
IKEv1 hosts and 52 IKEv2 hosts repeated a key exchange value.
This may be due to entropy issues in key generation rather
than static Diffie-Hellman exponents; we also found 15,891
repeated key exchange values across different IP addresses. We
found no hosts that used both repeated key exchange values
and non-safe groups. We summarize these results in Table III.

Additionally, we measured how many hosts validate sub-
group order. We performed four handshakes with each IKE
host, using different key exchange values within the non-safe
Oakley Group 23. We show our results in Table VIII. 27% of
IKEv1 hosts that accepted Group 23 with a valid key exchange
value also accepted 1 mod p or −1 mod p as a key exchange
value, even though this is explicitly warned against in the
RFC [58]. This behavior leaves these hosts open to a small
subgroup confinement attack even for safe primes, as described
in Section II-E.

For safe groups, a check that the key exchange value is
strictly between 1 and p− 1 is sufficient validation. However,
when using non-safe DSA primes, it is also necessary to verify
that the key exchange value lies within the correct subgroup
(i.e., yq ≡ 1 mod p). We created a generator g3 of a subgroup
of order 3, and offered it as our key exchange value. Of the
IKE responders that accepted Group 23, over 98% accepted
g3 as a key exchange value, meaning that they continued the

KE Value IKEv1 IKEv2

1 mod p 89.1 K 1
−1 mod p 88.7 K 0
g3 mod p 318.8 K 164.9 K

Group 23 Support 323.5 K 169.7 K

TABLE VIII: IKE validation—In a 100% IPv4 scan in
February 2016, we measured the number of IKE hosts that
accepted various key exchange values from Group 23. g3 is a
generator of a subgroup with order 3.

negotiation without any indication of an error. This suggests that
almost no hosts supporting DSA groups are correctly validating
subgroup order.

We did not scan using the key exchange value 0 because of
a vulnerability present in unpatched Libreswan and Openswan
implementations that causes the IKE daemon to restart when
it receives such a value [3].

V. SSH

SSH contains three key agreement methods that make use
of Diffie-Hellman. The “Group 1” and “Group 14” methods
denote Oakley Group 2 and Oakley Group 14, respectively [70].
Both of these groups use safe primes. The third method, “Group
Exchange”, allows server to select a custom group [35]. The
group exchange RFC specifies that all custom groups should use
safe primes. Despite this, RFC 5114 notes that group exchange
method allows for its DSA groups in SSH, and advocates for
their immediate inclusion [53].

In all Diffie-Hellman key agreement methods, after ne-
gotiating cipher selection and group parameters, the SSH
client generates a public Diffie-Hellman key exchange value
yc = gxc mod p and sends it to the server. The server computes
its own Diffie-Hellman public value ys = gxs mod p and sends
it to the client, along with a signature from its host key over
the resulting shared secret Y = gxsxc mod p and the hash of
the handshake so far. The client verifies the signature before
continuing.

A. Small Subgroup Attacks in SSH

Small subgroup confinement attacks An SSH client could
execute a small subgroup confinement attack against an SSH
server by sending a generator gi for a subgroup of small order qi
as its client key exchange, and immediately receive the server’s
key exchange gxs mod p together with a signature that depends
on the server’s view of the shared secret Ys = gxs

i mod p.
For small qi, this allows the client to brute force the value of
xs mod qi offline and compare to the server’s signed handshake
to learn the correct value of xs mod qi. To avoid this, the SSH
RFC specifically recommends using safe primes, and to use
exponents at least twice the length of key material derived from
the shared secret [35].

If client and server support Diffie-Hellman group exchange
and the server uses a non-safe prime, a man in the middle with
knowledge of the server’s long-term private signing key can use
a small subgroup confinement attack to man-in-the-middle the

11



connection without having to rewrite every message. The attack
is similar to the case of TLS: the man in the middle modifies
the server group and key exchange messages, leaving the prime
unchanged, but substituting a generator gi of a subgroup of
small order qi for the group generator and gi for the server’s
key exchange value ys. The client then responds with a client
key exchange message yc = gxc

i mod p, which the man in the
middle leaves unchanged. The attacker then forges a correct
signature for the modified server group and key exchange
messages and passes it to the client. The server’s view of the
shared secret is gxcxs

i mod p, and the client’s view of the shared
secret is gxc

i mod p. As in the attack described for TLS, these
views are identical when xs ≡ 1 mod qi, so this connection
will succeed with probability 1/qi. For a small enough qi, this
enables a man in the middle to use a compromised server
signing key to decrypt traffic with a reasonable probability
of success, while only requiring tampering with the initial
handshake messages, rather than having to actively rewrite the
entire connection for the duration of the session.

Small subgroup key recovery attacks Since the server
immediately sends a signature over the public values and the
Diffie-Hellman shared secret, an implementation using static
exponents and non-safe primes that is vulnerable to such a
small subgroup confinement attack would also be vulnerable
to a mostly offline key recovery attack, as a malicious client
would only need to send a single key exchange message per
subgroup.

B. Implementations

Censys [30] SSH banner scans show that the two most
common SSH server implementations are Dropbear and
OpenSSH. Dropbear group exchange uses hard-coded safe
prime parameters from the Oakley groups and validates that
client key exchange values are greater than 1 and less than
p− 1. While OpenSSH only includes safe primes by default, it
does provide the ability to add additional primes and does not
provide the ability to specify subgroup orders. Both OpenSSH
and Dropbear generate fresh exponents per connection.

We find one SSH implementation, Cerberus SFTP server
(FTP over SSH), repeating server exponents across connections.
Cerberus uses OpenSSL, but fails to set SSL_OP_SINGLE-
_DH_USE, which was required to avoid exponent reuse prior
to OpenSSL 1.0.2f.

C. Measurements

Of the 15.2 M SSH servers on Censys, of which 10.7 M
support Diffie-Hellman group exchange, we found that 281
used a non-safe prime, and that 1.1 K reused Diffie-Hellman
exponents. All but 26 of the hosts that reused exponents had
banners identifying the Cerberus SFTP server. We encountered
no servers that both reused exponents and used non-safe primes.

We performed a scan of 1% of SSH hosts in February 2016
offering the key exchange values of yc = 0 mod p, 1 mod p
and p−1 mod p. As Table IX shows, 33% of SSH hosts failed
to validate group order when we sent the key exchange value
p− 1 mod p. Even when safe groups are used, this behaviour
allows an attacker to learn a single bit of the private exponent,
violating the decisional Diffie-Hellman assumption and leaving

Key Exchange Value Handshake Initiated Accepted

0 mod p 175.6 K 5.7 K
1 mod p 175.0 K 43.9 K
−1 mod p 176.0 K 59.0 K

TABLE IX: SSH validation—In a 1% SSH scan performed
in February 2016, we sent the key exchange values yc = 0, 1
and p− 1. We count hosts as having initiated a handshake if
they send a SSH_MSG_KEX_DH_GEX_GROUP message, and
we count hosts as “Accepted” if they reply to the client key
exchange message with a SSH_MSG_KEX_DH_GEX_REPLY
message.

the implementation open to a small subgroup confinement
attack (Section III-A).

VI. FACTORING GROUP ORDERS OF NON-SAFE PRIMES

Across all scans, we collected 41,847 unique non-safe
primes, and the group generators used with each prime. To
measure the extent to which each group would facilitate a small
subgroup attack in a vulnerable implementation, we attempted
to factor (p− 1)/2. We used the GMP-ECM [39] implementa-
tion of the elliptic curve method for integer factorization on
a local cluster with 288 cores over a several-week period to
opportunistically find small factors of the group order for each
of the primes.

Given a group with prime p and a generator g, we can check
whether the generator generates the entire group or generates
a subgroup by testing whether gqi ≡ 1 mod p for each factor
qi of (p− 1)/2. When gqi ≡ 1 mod p, then if qi is prime, we
know that qi is the exact order of the subgroup generated by
g; otherwise qi is a multiple of the order of the subgroup. We
show the distribution of group order for groups using non-safe
primes in Table X. We were able to completely factor p− 1
for 4,701 primes. For most of the remaining primes, we did
not obtain enough factors of (p− 1)/2 to determine the group
order.

Of the groups where we were able to deduce the exact
subgroup orders, several thousand had a generator for a
subgroup that was either 8, 32, or 64 bits shorter than the
prime itself. Most of these were generated by the Xlight FTP
server, a closed-source implementation supporting SFTP. It is
not clear whether this behavior is intentional or a bug in an
implementation intending to generate safe primes. Primes of
this form would lead to a more limited subgroup confinement
or key recovery.

Given the factorization of (p − 1)/2, and a limit for the
amount of online and offline work an attacker is willing to
invest, we can estimate the vulnerability of a given group to
a hypothetical small subgroup key recovery attack. For each
subgroup of order qi, where qi is less than the online work
limit, we can learn qi bits of the secret key via an online
brute-force attack over all elements of the subgroup. To recover
the remaining bits of the secret key, an attacker could use the
Pollard lambda algorithm, which runs in time proportional to
the square root of the remaining search space. If this runtime
is less than the offline work limit, we can recover the entire
secret key. We give work estimates for the primes we were

12



Prime Exact Order Known Exact Order Unknown

lg(p) 160 bits 224 bits 256 bits 300 bits lg(p)− 8 lg(p)− 32 lg(p)− 64 Unlikely DSA Likely DSA

512 3 0 0 0 5 0 0 760 43
768 4 0 0 4 2,685 0 0 220 1,402
1024 29 0 0 0 323 944 176 1,559 26,881
2048 0 1 1 0 0 0 0 1,128 4890
3072 0 0 0 0 0 5 0 9 152
4096 4 0 0 0 0 0 0 20 183
8192 0 0 0 0 0 0 0 0 1
Other 0 0 0 0 0 0 0 400 15

TABLE X: Distribution of orders for groups with non-safe primes—For groups for which we were able to determine the
subgroup order exactly, 160-bits subgroup orders are common. We classify other groups to be likely DSA groups if we know that
the subgroup order is at least 8 bits smaller than the prime.

able to factor and the number of hosts that would be affected
by such a hypothetical attack in Table XI.

The DSA groups introduced in RFC 5114 [53] are of
particular interest. We were able to completely factor (p−1)/2
for both Group 22 and Group 24, and found several factors
for Group 23. We give these factorizations in Table XIII. In
Table XII, we show the amount of online and offline work
required to recover a secret exponent for each of the RFC 5114
groups. In particular, an exponent of the recommended size
used with Group 23 is fully recoverable via a small subgroup
attack with 33 bits of online work and 47 bits of offline work.

VII. DISCUSSION

The small subgroup attacks require a number of special
conditions to go wrong in order to be feasible. For the case
of small subgroup confinement attacks, a server must both
use a non-safe group and fail to validate subgroup order; the
widespread failure of implementations to implement or enable
group order validation means that large numbers of hosts using
non-“safe” primes are vulnerable to this type of attack.

For a full key recovery attack to be possible the server must
additionally reuse a small static exponent. In one sense, it is
surprising that any implementations might satisfy all of the
requirements for a full key recovery attack at once. However,
when considering all of the choices that cryptographic libraries
leave to application developers when using Diffie-Hellman, it
is surprising that any protocol implementations manage to use
Diffie-Hellman securely at all.

In this section, we use our results to draw lessons for the
security and cryptographic communities, provide recommen-
dations for future cryptographic protocols, and suggest further
research.

RFC 5114 Design Rationale Neither NIST SP 800-56A
nor RFC 5114 give a technical justification for fixing a much
smaller subgroup order than the prime size. Using a shorter
private exponent comes with performance benefits. However,
there are no known attacks that would render a short exponent
used with a safe prime less secure than an equivalently-sized
exponent used with in a subgroup with order matched to the
exponent length. The cryptanalyses of both short exponents
and small subgroups are decades old.

If anything, the need to perform an additional modular
exponentiation to validate subgroup order makes Diffie-Hellman
over DSA groups more expensive than the safe prime case, for
identical exponent lengths. As a more minor effect, a number
field sieve-based cryptanalytic attack against a DSA prime is
computationally slightly easier than against a safe prime. The
design rationale may have its roots in preferring to implicitly
use the assumption that Diffie-Hellman is secure for a small
prime-order subgroup without conditions on exponent length,
rather than assuming Diffie-Hellman with short exponents
is secure inside a group of much larger order. The former
assumption appears to be mathematically cleaner, but there are
multiple problems with this assumption in practice. First, finite-
field Diffie-Hellman is already distinct from Diffie-Hellman
over a generic group: the known algebraic structure is what
allows subexponential time attacks like the number field sieve.
In addition, our empirical results show that the necessity to
specify and validate subgroup order makes implementations
more fragile in practice.

Cryptographic API design Most cryptographic libraries
are designed with a large number of potential options and
knobs to be tuned, leaving too many security-critical choices
to the developers, who may struggle to remain current with
the diverse and ever-increasing array of cryptographic attacks.
These exposed knobs are likely due to a prioritization of
performance over security. These confusing options in crypto-
graphic implementations are not confined to primitive design:
Georgiev et al. [37] discovered that SSL certificate validation
was broken in a large number of non-browser TLS applications
due to developers misunderstanding and misusing library calls.
In the case of the small subgroup attacks, activating most
of the conditions required for the attack will provide slight
performance gains for an application: using a small exponent
decreases the work required for exponentiation, reusing Diffie-
Hellman exponents saves time in key generation, and failing
to validate subgroup order saves another exponentiation. It is
not reasonable to assume that applications developers have
enough understanding of algebraic groups to be able to make
the appropriate choices to optimize performance while still
providing sufficient security for their implementation.

Cryptographic standards Cryptographic recommendations
from standards committees are often too weak or vague,
and, if strayed from, provide little recourse. The purpose of

13



Work (bits) HTTPS MAIL SSH

Exponent Online Offline Groups Hosts Groups Hosts Groups Hosts

160 20 30 3 2 3 7 0 0
160 30 45 517 1,996 1963 1,143,524 11 10
160 40 60 3,701 8,495 13,547 1,159,853 109 68
224 20 30 0 0 0 0 0 0
224 30 45 2 2 14 16 0 0
224 40 60 307 691 1039 1,141,840 3 1
256 20 30 0 0 0 0 0 0
256 30 45 0 0 1 1 0 0
256 40 60 42 478 180 1,140,668 0 0

TABLE XI: Full key recovery attack complexity—We estimate the amount of work required to carry out a small subgroup
key recovery attack, and show the prevalence of those groups in the wild. Hosts are vulnerable if they reuse exponents and fail to
check subgroup order.

standardized groups and standardized validation procedures
is to help remove the onus from application developers to
know and understand the details of the cryptographic attacks.
A developer should not have to understand the inner workings
of Pollard lambda and the number field sieve in order to size
an exponent; this should be clearly and unambiguously defined
in a standard. However, the tangle of RFCs and standards
attempting to define current best practices in key generation
and parameter sizing do not paint a clear picture, and instead
describe complex combinations of approaches and parameters,
exposing the fragility of the cryptographic ecosystem. As a
result, developers often forget or ignore edge cases, leaving
many implementations of Diffie-Hellman too close to vulnerable
for comfort. Rather than provide the bare minimums for security,
the cryptographic recommendations from standards bodies
should be designed for defense-in-depth such that a single
mistake on the part of a developer does not have disastrous
consequences for security. The principle of defense-in-depth has
been a staple of the systems security community; cryptographic
standards should similarly be designed to avoid fragility.

Protocol design The interactions between cryptographic
primitives and the needs of protocol designs can be complex.
The after-the-fact introduction of RFC 5114 primes illustrates
some of the unexpected difficulties: both IKE and SSH specified
group validation only for safe primes, and a further RFC
specifying extra group validation checks needed to be defined
for IKE. Designing protocols to encompass many unnecessary
functions, options, and extensions leaves room for implemen-
tation errors and makes security analysis burdensome. IKE is

Group Exponent
Size

Online
Work

Offline
Work

Group 22 160 8 72
Group 23 224 33 47
Group 24 256 32 94

TABLE XII: Attacking RFC 5114 groups—We show the log
of the amount of work in bits required to perform a small
subgroup key recovery attack against a server that both uses a
static Diffie-Hellman exponent of the same size as the subgroup
order and fails to check group order.

a notorious example of a difficult-to-implement protocol with
many edge cases. Just Fast Keying (JFK), a protocol created as
a successor to IKEv1, was designed to be an exceedingly simple
key exchange protocol without the unnecessarily complicated
negotiations present in IKE [19]. However, the IETF instead
standardized IKEv2, which is nearly as complicated as IKEv1.
Protocols and cryptosystems should be designed with the
developer in mind, such that they are easy to implement and
verify, with limited edge cases. The worst possible outcome is
a system that appears to work, but provides less security than
expected.

To construct such cryptosystems, secure-by-default prim-
itives are key. As we show in this paper, finite-field based
Diffie-Hellman has many edge cases that make its correct use
difficult, and which occasionally arise as bugs at the protocol
level. For example, SSH and TLS allow the server to generate
arbitrary group parameters and send them to the client, but
provide no mechanism for the server to specify the group order
so that the client can validate the parameters. Diffie-Hellman
key exchange over groups with different properties cannot be
treated as a black-box primitive at the protocol level.

Recommendations As a concrete recommendation, modern
Diffie-Hellman implementations should prefer elliptic curve
groups over safe curves with proper point validation [24]. These
groups are much more efficient and have shorter key sizes than
finite-field Diffie-Hellman at equivalent security levels. The TLS
1.3 draft includes a list of named curves designed to modern
security standards [64]. If elliptic curve Diffie-Hellman is not
an option, then implementations should follow the guidelines
outlined in RFC 7919 for selecting finite field Diffie-Hellman
primes [38]. Specifically, implementations should prefer “safe”
primes of documented provenance of at least 2048 bits, validate
that key exchange values are strictly between 1 and p− 1, use
ephemeral key exchange values for every connection, and use
exponents of at least 224 bits.

VIII. ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
National Science Foundation under Grants No. CNS-1345254,
CNS-1408734, CNS-1409505, CNS-1505799, CNS-1513671,
and CNS-1518888, and a gift from Cisco.

14



Factored
Source Completely? Order Factorization

RFC 5114 Group 22 Yes 2ˆ3 * 7 * df * 183a872bdc5f7a7e88170937189 * 228c5a311384c02e1f287c6b7b2d * 5a85
7d66c65a60728c353e32ece8be1 * f518aa8781a8df278aba4e7d64b7cb9d49462353 * 1a3adf8
d6a69682661ca6e590b447e66ebd1bbdeab5e6f3744f06f46cf2a8300622ed50011479f18143d471
a53d30113995663a447dcb8e81bc24d988edc41f21

RFC 5114 Group 23 No 3ˆ2 * 5 * 2b * 49 * 9d * 5e9a5 * 93ee1 * 2c3f0539 * 136c58359 * 1a30b7358d * 335
a378eb0d * 801c0d34c58d93fe997177101f80535a4738cebcbf389a99b36371eb * 22bbe4b573
f6fc6dc24fef3f56e1c216523b3210d27b6c078b32b842aa48d35f230324e48f6dc2a10dd23d28d3
82843a78f264495542be4a95cb05e41f80b013f8b0e3ea26b84cd497b43cc932638530a068ecc44a
f8ea3cc84139f0667100d426b60b9ab82b8de865b0cbd633f41366622011006632e0832e827febb7
066efe4ab4f1b2e99d96adfaf1721447b167cb49c372efcb82923b3731433cecb7ec3ebbc8d67ef4

RFC 5114 Group 24 Yes 7 * d * 9f5 * 22acf * bd9f34b1 * 8cf83642a709a097b447997640129da299b1a47d1eb3750
ba308b0fe64f5fbd3 * 15adfe949ebb242e5cd0978fac1b43fdbd2e5b0c5f48924fbbd370195c0e
b20596d98ad0a9e3fd98876413d926f41a8b918d2ec4b018a30efe5e336bf3c7ce60d515cf46af5f
acf3bb389f68ad0c4ed2f0b1dbb970293741eb6509c64e731802259a639a7f57d4a9c0d9445241f5
bcdbdc50555b76d9c335c1fa4e11a8351f1bf4730dd67ffed877cc13e8ea40c7d51441c1f4e59155
ef1159eca75a2359f5e0284cd7f3b982c32e5c51dbf51b45f4603ef46bae528739315ca679703c1f
fcf3b44fe3da5999daadf5606eb828fc57e46561be8c6a866361
41b5d11fb3328851084f74de823b5402f6b038172348a147b1ceac47722e31a72fe68b44ef4b

Amazon Load No 2 * 3 * 5 * edb * 181ac5dbfe5ce13b * 18aa349859e9e9de09b7d65 * 9414a18a7b575e8f4
Balancer 2f6cb2dbc22eb1fc21d4929 * 2de9f1171a2493d46a31d508b63532cdf86d21db6f50f717736fc4

b0b722856a504ed4916e0484fe4ba5f5f4a9fff28a1233b728b3d043aec37c4f138ffd58fe7a8c3c
1e93cb52be527395e45db487b61daadded9c8ec35

Mistyped OpenSSL Yes 5 * b * a9b461e1636f4b51ef * 1851583cf5f9f731364e4aa6cdc2cac4f01* 3f0b39cacfc086
512 “Prime” Factors df4baf46c7fa7d1f4dfe184f9d22848325a91c519f79023a4526d8369e86b
Mistyped OpenSSL Yes 2ˆ13 * 3ˆ3 * 5ˆ2 * 11ˆ2 * 269 * 295 * 4d5 * 97c3 * 9acfe7 * 8cdd0e128f * 385
512 Order Factors b564eecd613536818f949 * 146d410923e999f8c291048dc6feffcebf8b9e99eec9a4d585f87422

e49b393256c23c9

TABLE XIII: Group order factorization for common non-safe primes—We used the elliptic curve method to factor (p− 1)/2
for each of the non-safe primes we found while scanning, as well as the mistyped OpenSSL “prime”.

REFERENCES

[1] Finite field cryptography based samples. http://csrc.nist.gov/groups/ST/
toolkit/documents/Examples/KS_FFC_All.pdf.

[2] NSS dh.c. https://hg.mozilla.org/projects/nss/file/tip/lib/freebl/dh.c.
[3] CVE-2015-3240. Available from MITRE, CVE-ID CVE-2015-3240.,

Aug. 2015. http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2015-
3240.

[4] Exim Internet mailer, July 2015. http://www.exim.org/.
[5] Mozilla bug tracker, Nov. 2015. https://bugzilla.mozilla.org/show_bug.

cgi?id=1160139.
[6] OpenSSL changes, Jan. 2015. https://www.openssl.org/news/cl102.txt.
[7] Overview of NSS, Sept. 2015. https://developer.mozilla.org/en-US/docs/

Mozilla/Projects/NSS/Overview.
[8] Amazon Elastic Load Balancer, 2016. https://aws.amazon.com/

elasticloadbalancing/.
[9] Botan, 2016. https://github.com/randombit/botan.

[10] Bug 1837 - small subgroup attack, May 2016. https://bugs.exim.org/
show_bug.cgi?id=1837.

[11] CVE-2016-0701. Available from MITRE, CVE-ID CVE-2016-0701., Jan.
2016. http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2016-0701.

[12] Exim TLS Security, DH and standard parameters, Oct. 2016. https://
lists.exim.org/lurker/message/20161008.231103.c70b2da8.en.html.

[13] FreeS/WAN, 2016. http://www.freeswan.org/.
[14] Libreswan, 2016. https://libreswan.org/.
[15] OpenSSL security advisory [28th Jan 2016], Jan. 2016. https://www.

openssl.org/news/secadv/20160128.txt.
[16] Openswan, 2016. https://www.openswan.org/.
[17] strongSwan, 2016. https://www.strongswan.org/.
[18] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.

Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, B. Vander-
Sloot, E. Wustrow, S. Zanella-Béguelin, and P. Zimmermann. Imperfect
forward secrecy: How Diffie-Hellman fails in practice. In 22nd ACM
Conference on Computer and Communications Security, Oct. 2015.

[19] W. Aiello, S. M. Bellovin, M. Blaze, R. Canetti, J. Ioannidis, A. D.
Keromytis, and O. Reingold. Just fast keying: Key agreement in a
hostile internet. ACM Transactions on Information and System Security
(TISSEC), 7(2):242–273, 2004.

[20] R. Anderson and S. Vaudenay. Minding your p’s and q’s. In Proceedings
of ASIACRYPT, 1996.

[21] E. Barker. NIST special publication 800-57 part 1 revision 4, Jan.
2014. http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
57pt1r4.pdf.

[22] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid. NIST special publi-
cation 800-57 part 1 (revised), Jan. 2007. http://csrc.nist.gov/publications/
nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf.

[23] E. B. Barker, D. Johnson, and M. E. Smid. Sp 800-56a. recommendation
for pair-wise key establishment schemes using discrete logarithm
cryptography (revised). 2007.

[24] D. J. Bernstein and T. Lange. SafeCurves: choosing safe curves for
elliptic-curve cryptography, Jan. 2014. https://safecurves.cr.yp.to/.

[25] K. Bhargavan, A. Delignat-Lavaud, and A. Pironti. Verified contributive
channel bindings for compound authentication. In Proceedings of the
Network and Distributed System Security Symposium, 2015.

[26] K. Bhargavan and G. Leurent. Transcript collision attacks: Breaking
authentication in TLS, IKE, and SSH. In Proceedings of the Network
and Distributed System Security Symposium, 2016.

[27] Cisco. Security for VPNs with IPsec configuration guide,
2016. http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_conn_
vpnips/configuration/xe-3s/sec-sec-for-vpns-w-ipsec-xe-3s-book.html.

[28] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) protocol.
IETF RFC RFC5246, 2008.

[29] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[30] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman.
A search engine backed by Internet-wide scanning. In Proceedings of
the 22nd ACM Conference on Computer and Communications Security,
Oct. 2015.

15

http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/KS_FFC_All.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/KS_FFC_All.pdf
https://hg.mozilla.org/projects/nss/file/tip/lib/freebl/dh.c
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2015-3240
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2015-3240
http://www.exim.org/
https://bugzilla.mozilla.org/show_bug.cgi?id=1160139
https://bugzilla.mozilla.org/show_bug.cgi?id=1160139
https://www.openssl.org/news/cl102.txt
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Overview
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Overview
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://github.com/randombit/botan
https://bugs.exim.org/show_bug.cgi?id=1837
https://bugs.exim.org/show_bug.cgi?id=1837
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2016-0701
https://lists.exim.org/lurker/message/20161008.231103.c70b2da8.en.html
https://lists.exim.org/lurker/message/20161008.231103.c70b2da8.en.html
http://www.freeswan.org/
https://libreswan.org/
https://www.openssl.org/news/secadv/20160128.txt
https://www.openssl.org/news/secadv/20160128.txt
https://www.openswan.org/
https://www.strongswan.org/
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
https://safecurves.cr.yp.to/
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_conn_vpnips/configuration/xe-3s/sec-sec-for-vpns-w-ipsec-xe-3s-book.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_conn_vpnips/configuration/xe-3s/sec-sec-for-vpns-w-ipsec-xe-3s-book.html


[31] Z. Durumeric, D. Adrian, A. Mirian, J. Kasten, K. Thomas, V. Eranti,
N. Lidzborski, E. Bursztein, M. Bailey, and J. A. Halderman. The Matter
of Heartbleed. In Proceedings of the 15th ACM Internet Measurement
Conference, Oct. 2015.

[32] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast Internet-
wide scanning and its security applications. In Proceedings of the 22nd
USENIX Security Symposium, Aug. 2013.

[33] Y. Eric. SSLeay, 1995. ftp://ftp.pl.vim.org/vol/rzm1/replay.old/libraries/
SSL.eay/SSLeay-0.5.1a.tar.gz.

[34] N. Ferguson and B. Schneier. A cryptographic evaluation of IPsec.
Counterpane Internet Security, Inc, 3031, 2000.

[35] M. Friedl, N. Provos, and W. Simpson. Diffie-Hellman group exchange
for the Secure Shell (SSH) transport layer protocol. IETF RFC 4419,
2006.

[36] S. Gallagher. Google dumps plans for OpenSSL in Chrome, takes own
Boring road, July 2014. http://arstechnica.com/information-technology/
2014/07/google-dumps-plans-for-openssl-in-chrome-takes-own-
boring-road/.

[37] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov. The most dangerous code in the world: Validating SSL
certificates in non-browser software. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security, 2012.

[38] D. Gillmor. Negotiated Finite Field Diffie-Hellman Ephemeral Parame-
ters for Transport Layer Security (TLS). IETF RFC 7919, Aug. 2016.

[39] GMP-ECM Development Team. GMP-ECM, an implementation of the
elliptic curve method for integer factorization, 2016. http://ecm.gforge.
inria.fr/.

[40] D. M. Gordon. Discrete logarithms in GF(p) using the number field
sieve. SIAM Journal of Discrete Math, 1993.

[41] P. Gutmann. Cryptlib, kg_dlp.c, 2010. http://www.cypherpunks.to/~peter/
cl343_beta.zip.

[42] O. H., P. S. Dev., H. P., and V. Consortium. Determining strengths for
public keys used for exchanging symmetric keys. IETF RFC 3766, Apr.
2004.

[43] D. Harkins and D. Carrel. The Internet Key Exchange (IKE). Nov.
1998.

[44] C. Hlauschek, M. Gruber, F. Fankhauser, and C. Schanes. Prying open
Pandora’s box: KCI attacks against TLS. In 9th USENIX Workshop on
Offensive Technologies (WOOT ’15), Aug. 2015.

[45] T. Jager, J. Schwenk, and J. Somorovsky. Practical invalid curve attacks
on TLS-ECDH. In Proceedings of the 20th European Symposium on
Research in Computer Security, 2015.

[46] W. Jeffrey. Crypto++, Nov. 2015. https://github.com/weidai11/
cryptopp/blob/48809d4e85c125814425c621d8d0d89f95405924/
nbtheory.cpp#L1029.

[47] Juniper TechLibrary. VPN feature guide for security devices,
2016. http://www.juniper.net/documentation/en_US/junos15.1x49/topics/
reference/configuration-statement/security-edit-dh-group.html.

[48] C. Kaufman et al. Internet Key Exchange (IKEv2) protocol. IETF RFC
4306, Dec. 2005.

[49] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen. Internet
Key Exchange protocol version 2 (IKEv2). IETF RFC 7296, Oct. 2014.

[50] C. F. Kerry. Digital Signature Standard (DSS). FIPS PUB 186-4, July
2013.

[51] T. Kivinen and M. Kojo. More modular exponential (MODP) Diffie-
Hellman groups for Internet Key Exchange (IKE). IETF RFC 3526,
May 2003.

[52] A. Langley, N. Modaduga, and B. Moeller. Transport Layer Security
(TLS) False Start. IETF RFC Draft, June 2014.

[53] M. Lepinski and S. Kent. Additional Diffie-Hellman groups for use
with ietf standards. IETF RFC 5114, 2008.

[54] C. H. Lim and P. J. Lee. A key recovery attack on discrete log-based
schemes using a prime order subgroup. In Proceedings of the 17th
International Cryptology Conference, 1997.

[55] D. Maughan, M. Schertler, M. Schneider, and J. Turner. Internet security
association and key management protocol ISAKMP. Nov. 1998.

[56] Microsoft Windows Networking Team. VPN interoperability guide for
Windows Server 2012 R2, 2014. https://blogs.technet.microsoft.com/
networking/2014/12/26/vpn-interoperability-guide-for-windows-server-
2012-r2/.

[57] A. M. Odlyzko. The future of integer factorization, July 1995. http://
www.dtc.umn.edu/~odlyzko/doc/future.of.factoring.pdf.

[58] H. Orman. The Oakley key determination protocol. IETF RFC 2412,
Nov. 1998.

[59] D. Piper. The Internet IP security domain of interpretation for ISAKMP.
IETF RFC 2407, Nov. 1998.

[60] S. C. Pohlig and M. E. Hellman. An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance. IEEE
Transactions on Information Theory, 24(1), 1978.

[61] W. Polk, R. Housley, and L. Bassham. Algorithms and identifiers for
the internet X.509 public key infrastructure certificate and certificate
revocation list (CRL) profile. IETF RFC 3279, Apr. 2002.

[62] J. M. Pollard. A Monte Carlo method for factorization. BIT Numerical
Mathematics, 15(3):331–334, 1975.

[63] M. J. Pollard. Kangaroos, Monopoly and discrete logarithms. Journal
of Cryptology, 2000.

[64] E. Rescorla. The Transport Layer Security (TLS) protocol version 1.3
draft 16. IETF RFC Draft, Sept. 2016.

[65] A. Sanso. OpenSSL Key Recovery Attack on DH small subgroups, Jan.
2016. http://blog.intothesymmetry.com/2016/01/openssl-key-recovery-
attack-on-dh-small.html.

[66] D. Shanks. Class number, a theory of factorization, and genera. In
Proceedings of Symposia in Pure Math, volume 20. 1969.

[67] Y. Sheffer and S. Fluhrer. Additional Diffie-Hellman tests for the Internet
Key Exchange protocol version 2 (IKEv2). IETF RFC 6989, 2013.

[68] P. C. Van Oorschot and M. J. Wiener. On Diffie-Hellman key agreement
with short exponents. In Proceedings of EUROCRYPT, 1996.

[69] P. Wouters. 66% of VPN’s are not in fact broken, Oct.
2015. https://nohats.ca/wordpress/blog/2015/10/17/66-of-vpns-are-not-
in-fact-broken/.

[70] T. Ylonen and C. Lonvick. The Secure Shell (SSH) transport layer
protocol. IETF RFC 4253, 2006.

16

ftp://ftp.pl.vim.org/vol/rzm1/replay.old/libraries/SSL.eay/SSLeay-0.5.1a.tar.gz
ftp://ftp.pl.vim.org/vol/rzm1/replay.old/libraries/SSL.eay/SSLeay-0.5.1a.tar.gz
http://arstechnica.com/information-technology/2014/07/google-dumps-plans-for-openssl-in-chrome-takes-own-boring-road/
http://arstechnica.com/information-technology/2014/07/google-dumps-plans-for-openssl-in-chrome-takes-own-boring-road/
http://arstechnica.com/information-technology/2014/07/google-dumps-plans-for-openssl-in-chrome-takes-own-boring-road/
http://ecm.gforge.inria.fr/
http://ecm.gforge.inria.fr/
http://www.cypherpunks.to/~peter/cl343_beta.zip
http://www.cypherpunks.to/~peter/cl343_beta.zip
https://github.com/weidai11/cryptopp/blob/48809d4e85c125814425c621d8d0d89f95405924/nbtheory.cpp#L1029
https://github.com/weidai11/cryptopp/blob/48809d4e85c125814425c621d8d0d89f95405924/nbtheory.cpp#L1029
https://github.com/weidai11/cryptopp/blob/48809d4e85c125814425c621d8d0d89f95405924/nbtheory.cpp#L1029
http://www.juniper.net/documentation/en_US/junos15.1x49/topics/reference/configuration-statement/security-edit-dh-group.html
http://www.juniper.net/documentation/en_US/junos15.1x49/topics/reference/configuration-statement/security-edit-dh-group.html
https://blogs.technet.microsoft.com/networking/2014/12/26/vpn-interoperability-guide-for-windows-server-2012-r2/
https://blogs.technet.microsoft.com/networking/2014/12/26/vpn-interoperability-guide-for-windows-server-2012-r2/
https://blogs.technet.microsoft.com/networking/2014/12/26/vpn-interoperability-guide-for-windows-server-2012-r2/
http://www.dtc.umn.edu/~odlyzko/doc/future.of.factoring.pdf
http://www.dtc.umn.edu/~odlyzko/doc/future.of.factoring.pdf
https://nohats.ca/wordpress/blog/2015/10/17/66-of-vpns-are-not-in-fact-broken/
https://nohats.ca/wordpress/blog/2015/10/17/66-of-vpns-are-not-in-fact-broken/

	Introduction
	Background
	Groups, orders, and generators
	Diffie-Hellman
	Discrete log algorithms
	Diffie-Hellman group characteristics
	Small subgroup attacks

	TLS
	Small Subgroup Attacks in TLS
	OpenSSL
	Other Implementations
	Measurements

	IPsec
	Small Subgroup Attacks in IPsec
	Implementations
	Measurements

	SSH
	Small Subgroup Attacks in SSH
	Implementations
	Measurements

	Factoring Group Orders of Non-Safe Primes
	Discussion
	Acknowledgments
	References

