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Abstract. Leakage-resilience and misuse-resistance are two important properties for the deployment
of authenticated encryption schemes. They aim at mitigating the impact of implementation flaws due
to side-channel leakages and misused randomness. In this paper, we discuss their interactions and
incompatibilities. For this purpose, we first show that a generic composition of existing leakage-resilient
MAC and encryption schemes leads to a misuse-resistant authenticated encryption mode (without
leakage). Next we show that this misuse-resistance does not hold in case the adversary can additionally
observe leakages, and that misuse-resistance with leakage may be impossible to achieve with simple
primitives such as hash functions and block ciphers. As a result, we formalize a new security notion of
ciphertext integrity with misuse and leakage, which seems the best that can be achieved in a symmetric
cryptographic setting, and describe first efficient constructions satisfying it.

1 Introduction

State-of-the-art. At CCS 2015, Pereira et al. introduced Leakage-Resilient (LR) authentication
and encryption schemes, which they proved to be secure in a pragmatic model combining the
minimal use of an (expensive) leak-free component with much more efficient (less protected) im-
plementations [27]. Such a model nicely matches the reality of modern embedded devices, where
physical security against side-channel attacks is now a necessary condition for deployment, while
cost constraints require to limit the overheads of the countermeasures against such attacks. Con-
cretely, the leak-free component will typically be implemented by a block cipher (e.g., the AES
Rijndael) protected with a combination of hardware and algorithmic techniques, e.g., noise addi-
tion [17], masking [31] and shuffling [37]. The latter ones usually increase the “code size × cycle
count” metric (for software implementations) or the “throughput / area” metric (for hardware
ones) by factors ranging from hundreds to thousands, hence motivating their minimal use.1 In
practice, this good tradeoff between security and performance is achieved by requiring only a single
execution of the leak-free component, independently of the length of the message to be encrypted or
authenticated. For long messages, the majority of the computational work can then be performed
by weakly protected block-cipher implementations.

Besides, the recent literature also suggests an increasing interest for combined primitives such
as Authenticated Encryption (AE), which typically aims to prevent flaws in the interaction between
secret-key encryption and secret-key authentication, as exhibited, e.g., in [2,8,26]. In this context, a
desirable security notion is Misuse-Resistance (MR), which guarantees that the encryption scheme
only provides minimum advantage to the adversary in case the nonce or IV (which is needed for
semantic security) is weak or even controlled by the adversary [34]. Informally, the only thing an
adversary will be able to detect is whether the same message is encrypted with the same nonce/IV
twice. So, to some extent, misuse-resistance can also be viewed as an important property to prevent
implementation flaws.

Eventually, we note that leakage-resilience also becomes a desirable feature for implementation
in high(er)-end devices, as suggested by recent works on timing attacks against OpenSSL [1,14], or
power and electromagnetic analyses of powerful ARM cores running at high frequencies [4,16].

1 See Table 4 in [27] for an illustration of these overheads.



Our contributions. Based on this state-of-the-art, it appears as an important challenge to design
(jointly) leakage-resilient and misuse-resistant encryption schemes. Our results in this direction are
in six parts.

First, we show how to generically construct a misuse-resistant authenticated encryption scheme
by combining an IV-based Message Authentication Code and an IV-based encryption scheme [24].
The resulting “Double IV” (DIV) composition differs from the SIV composition due to [33,34] (and
generalized in [24,25]) since it encrypts the IV. While this may seem useless in front of an adversary
controlling the IV, we argue that it leads to interesting opportunities to improve security in the
presence of leakage (see Sections 5.3, 7.2 and 8 for the details). Since these properties are ensured
by the CCS 2015 MAC and encryption schemes, such building blocks can be used to design a
misuse-resistant authenticated encryption scheme (without leakage), next denoted as PSV-AE.

Second, we show that as soon as a leakage oracle is added to the adversary’s capabilities, the
misuse-resistance of PSV-AE falls down. More precisely, we show that there is a realistic standard
Differential Power Analysis (DPA) attack [18] targeting the ephemeral key(s) of PSV-AE which
enables forgery of valid ciphertexts with a few queries.2 The attack essentially exploits the fact that
the leakage-resilience of PSV-AE heavily relies on the randomness of its IVs, which can be forced
to constant thanks to misuse.

Third, we introduce a new construction for authenticated encryption, that we denote as the
DTE scheme (for Digest, Tag and Encrypt), which allows preventing this DPA forgery attack. We
formalize the security property that this new construction achieves as Ciphertext Integrity with
Misuse and Leakage (CIML), which is a natural extension of the ciphertext integrity given in [6].

Fourth, we argue that (standard) misuse-resistance with leakage may be impossible to achieve
from standard symmetric cryptographic primitives only. For this purpose, we put forward a (more
theoretical) Simple Power Analysis (SPA) attack against the DTE scheme, which also targets an
ephemeral key forced to a constant thanks to misuse, and allows distinguishing actual ciphertexts
from random ones.3 Interestingly, this distinguishing attack can be viewed as an amplification of
the impossibility result discussed in [27]. Namely, since a single bit of leakage on the plaintexts
(which seems impossible to avoid without unrealistic hardware assumptions) trivially breaks the
semantic security game, it is natural that the leakage of an ephemeral key (due to misuse) leads
to even more serious issues. Intuitively, this observation once more highlights the separation be-
tween unpredictability-based and indistinguishability-based security in the presence of leakage, first
mentioned in [23].

Fifth, since combining (standard) misuse-resistance and leakage-resilience appears to be impos-
sible, we investigate the gains that can be obtained if we also drop the requirement of (standard)
misuse-resistance without leakage – so that we reach similar security guarantees with and without
leakage. As a result, we introduce another authenticated encryption scheme, that we denote as the
DCE scheme (for Digest, Commit and Encrypt) which reduces the number of leak-free block cipher
executions from two (in DTE) to one, at the cost of moving to the random oracle model instead of
relying on standard assumptions.

Eventually, we show the leakage-resilient CPA security of our new constructions in a model
borrowed from [27].

These results are summarized in Table 1.

2 Informally, standard DPAs are side-channel attacks taking advantage of the leakage of multiple (different) inputs.
3 Informally, SPAs are side-channel attacks taking advantage of the leakage of a single input, possibly measured

multiple times to reduce the measurement noise, e.g., by exploiting powerful (yet less practical) algebraic/analytical
techniques [13,36].
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Table 1. Summary of our constructions. LR-CPA = leakage resilient chosen plaintext attack se-
curity; (��LR) MR = misuse resistance in the absence of leakage; CIML = ciphertext integrity with
misuse and leakage, LF executions counts the number of executions of the leak free component that
are required for an encryption, and the models are either the standard one or the random oracle
model.

LR-CPA (��LR) MR CIML Model LF executions
PSV-AE 3 3 7 std. 2
DTE 3 3 3 std. 2
DCE 3 7 3 RO 1

We conclude the paper by discussing the remaining challenge of protecting an authenticated
encryption scheme where the leakage of the decryption algorithm can also be exploited by the
adversary (which was left out of the analysis in [27], motivated by applications such as smart cards
where one low-cost prover has to be protected against side-channel attacks).

2 Background

We use calligraphic fonts for sets and denote as a (q, t)-bounded algorithm a probabilistic algorithm
that can make at most q queries to the oracles he is granted access to and can perform computation
bounded by running time t.

2.1 Definitions

We first need the following definition of collision-resistant hash function.

Definition 1. A (0, t, εcr)-collision resistant hash function H : S ×M → B is a function that is
such that, for every (0, t)-bounded adversary A, the probability that A(s) outputs a pair of distinct
messages (m0,m1) ∈ M2 such that Hs(m0) = Hs(m1) is bounded by εcr, where s ← S is selected
uniformly at random.

We next need the following definition of range-oriented preimage resistance.

Definition 2. A (1, t, εpr)-range-oriented preimage resistant hash function H : S ×M → B is a
function that is such that, for every (0, t)-bounded adversary A, the probability that A(s, y) outputs
a message m ∈ M such that Hs(m) = y is bounded by εpr, where s ← S, y ← B are selected
uniformly at random.

Note that the usual notion of preimage resistance samples a random m0 ←M over the domain of
Hs and then sets y = Hs(m0). Definition 2 uniformly samples y ← B over the range of Hs, which
was introduced in [3].

In the following, we assume that the key s is not private, and refer to the hash function simply
as H for simplicity, the key s being implicit.

We also need the following definition of pseudorandom function.

Definition 3. A function F : K × B → T is a (q, t, εF)-pseudorandom function (PRF) if for all
(q, t)-bounded adversaries A provided with oracle access to the function, the advantage∣∣∣ Pr

[
AFk(.) ⇒ 1

]
− Pr

[
Af(.) ⇒ 1

] ∣∣∣
is upper-bounded by εF, where k and f are chosen uniformly at random from their domains, namely
K and the set of functions matching the signature of F.
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In order to capture authenticity, we additionally introduce the notion of IV-based MAC. We use
this variant of the standard definition of MAC because it actually corresponds to the construction
of leakage-resilient MAC in [27]. We will naturally say that ivM = (K,Mac,Vrfy) is an IV-based
MAC if there is a probabilistic algorithm MAC : K ×M→ T which on inputs k ∈ K and m ∈ M
picks a random IV ∈ IV and outputs IV and τ ← Mack(IV,m).

Definition 4. An IV-based MAC is a tuple ivM = (K,Mac,Vrfy) such that:
– Mac : K × IV ×M→ T takes a key, an IV, and a message and outputs a tag.
– Vrfy : K × IV ×M× T → {> ∪ ⊥} and outputs > only if τ is a valid tag for IV, message m

and key k.
More precisely, ∀k ∈ K, ∀IV ∈ IV, ∀m ∈M: Vrfyk(IV,m,Mack(IV,m)) = >.

While the traditional property required from MACs is unforgeability, our constructions will rely
on a stronger property of the Mac function. Namely, we will require Mac to be a pseudorandom
function for any (potentially repeated) adversarially chosen IV.

Definition 5. ivM is (q, t, εcip) chosen-IV pseudorandom if for all (q, t)-bounded adversary A, the
cip advantage

Advcip
ivM,A :=

∣∣∣Pr
[
AO

cip
real ⇒ 1

]
− Pr

[
AO

cip
rand ⇒ 1

] ∣∣∣
is upper-bounded by εcip. Here, Ocip

real is an oracle initialized on k ← K which on input (IV,m)

outputs τ ← Mack(IV,m), and where Ocip
rand is an oracle which on new input (IV,m) outputs a

random τ ← T and on re-used input outputs the corresponding previous outcome.

Note that this security property of ivM does not introduce a significantly new object. If Mac′k(m1‖m2)
is a (usual) pseudorandom MAC with message spaceM2, then Mack(IV,m) := Mac′k(IV ‖m) easily
leads to a chosen-IV pseudorandom IV-based MAC. Besides, this property is directly fulfilled by
the CCS 2015 leakage-resilient MAC.

Besides, our authenticated encryption schemes will be based on IV-based encryption schemes,
which we define following Rogaway and Shrimpton [33].

Definition 6. An IV-based encryption scheme is a tuple ivE = (K,Enc,Dec) such that:
– Enc : K × IV ×M → C maps a key selected from K, an IV selected from IV and a message

from M to a ciphertext from C.
– Dec : K × IV × C →M provides the decryption of a pair containing an IV and a ciphertext.

We will use ENC : K ×M → IV × C for the probabilistic function that picks a uniformly random
IV and returns (IV,Enc(k, IV,m))← ENCk(m).

To capture message secrecy, we use the security definition of Namprempre et al. [24] and consider
a distinguishing game in which the adversary tries to determine whether he is facing an encryption
oracle or a random function.

Definition 7. An IV-based encryption scheme ivE = (K,Enc,Dec) is (q, t, εIV-sec)-IV-sec secure if
for any k ← K and for every (q, t)-adversary A, the advantage

AdvIV-sec
ivE,A :=

∣∣∣ Pr
[
AENCk(·) ⇒ 1

]
− Pr

[
A$(·) ⇒ 1

] ∣∣∣
is upper-bounded by εIV-sec, where $(m) picks a random IV ← IV and outputs (IV, σ), where σ is
a random bit string of length |Enck(IV,m)|.
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Resistance against misuse then captures the security in front of an adversary controlling the genera-
tion of the randomness used for encryption. In the case of authenticated encryption, the adversary is
also granted access to a decryption oracle. We consider a definition of misuse-resistant authenticated
encryption equivalent to the one appearing in [33].

Definition 8. An authenticated encryption scheme is a tuple AE = (K,Enc,Dec) such that:
– Enc : K×R×M→ C maps a key selected from K, randomness selected from R and a message

from M to a ciphertext in C.
– Dec : K × C → M ∪ {⊥} provides the decryption of a ciphertext, and can return the special

symbol ⊥ if decryption fails.

The associated probabilistic algorithm first picks a random coin r ∈ R and returns c = Enck(r,m) :=
Enc(k, r,m). We stress that Deck only needs c to recover m, which is the main difference between
our definition and previous IV-based schemes for which an IV additionally needs to be provided.
By contrast, in our case, the encrypted randomness is part of the ciphertext. As mentioned in
introduction, this is motivated by our improved leakage-resilience goal.

Definition 9. An authenticated encryption scheme AE = (K,Enc,Dec) offers (q, t, ε) misuse-
resistance if, for every (q, t)-bounded adversary A, the advantage

Advmr
AE,A :=

∣∣∣ Pr
[
AEnck(·,·),Deck(·) ⇒ 1

]
− Pr

[
A$(·,·),⊥(·) ⇒ 1

] ∣∣∣
is upper-bounded by ε, where $(r,m) outputs c selected as a random bit string of length Enck(r,m)
and the oracle ⊥(c) outputs ⊥ except if c was output by the $(·, ·) oracle earlier, in which case it
returns the associated m.

Note that for conciseness we ignore the specific treatment of associated data in our constructions,
which is orthogonal to the discussions on misuse-resistance and leakage-resistance that motivate
our results and could be carried out using standard techniques (see [28] for a recent example).

Eventually, whenever instantiating our building blocks in the paper, we will consider K = T =
R = B = IV = {0, 1}n using n as a security parameter, and M = {0, 1}n`, that is, a message is
made of on ` blocks of n bits.

2.2 Building blocks

Our starting points are the block-cipher based leakage-resilient MAC and encryption schemes from
CCS 2015. In the next sections, we will explore their composition into an authenticated encryption
scheme, point out limitations in this composition, and propose improved solutions.

The CCS 2015 leakage-resilient MAC is represented in Figure 1. For readability, we use the
color code red for long term secrets, orange for ephemeral secrets and green for publicly released
values. It is based on two block-ciphers F and F∗, both treated as PRF’s, but with the distinction
that F is assumed to be cheap and efficiently implemented but leaking, while F∗ is assumed to be
an expensive and leak-free component.

CCS 2015 leakage-resilient MAC (PSV-MAC)

Mack(IV,m) where m = m1‖ · · · ‖m`

– k0 ← F∗k(IV )
– ki ← Fki−1

(mi), ∀i ∈ [1, `]
– return τ ← k`

Vrfyk(IV,m, τ) proceeds in the natural way.
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Fig. 1. PSV-MAC leakage-resilient MAC [27].

The CCS 2015 leakage-resilient encryption scheme in Figure 2 is based on the same com-
ponents as the previous leakage-resilient MAC.

CCS 2015 leakage-resilient encryption (PSV-ENC)

Enck(IV,m), where m = m1‖ · · · ‖m`

– k0 ← F∗k(IV )
– ∀i ∈ [1, `] : ki ← Fki−1

(pA), yi ← Fki−1
(pB),

ci ← yi ⊕mi, where pA, pB are public constants
– return C = c1||c2|| · · · ||c`
Deck(IV, C) proceeds in the natural way

Fig. 2. PSV-ENC leakage-resilient encryption [27].

3 Generic misuse-resistance

We now show how an IV-based MAC can be composed with an IV-based encryption scheme to get
an authenticated encryption scheme. This composition is named DIV referring to Double-IV.

3.1 The DIV Composition

Let ivM = (K,Mac,Vrfy) be an IV-based MAC with IV-space IV, message space M and tag space
T , and let ivE = (K,Enc,Dec) be an IV-based encryption scheme with message space IV ×M,
IV-space T and ciphertext space C. Then, AEDIV = (K2,DIV.Enc,DIV.Dec) is an authenticated
encryption resulting from the DIV composition if:
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– (kM , kE) is the key selected from K2

– DIV.EnckM ,kE(IV,m), given IV ∈ IV and m ∈ M, returns τ ← MackM(IV,m) and c ←
EnckE(τ, (IV,m)).

– DIV.DeckM ,kE(τ, c) returns (IV,m)← DeckE(τ, c) if VrfykM(IV,m, τ) succeeds. The error symbol
⊥ is returned otherwise.

We have RDIV = IV, MDIV = M, CDIV = T × C and the correctness of AEDIV follows from the
correctness of ivM and ivE in their respective sense. We will show that the authenticated encryption
AEDIV is misuse-resistant as long as (1) ivM is chosen-IV pseudorandom (2) ivE is IV-sec-secure.

Note that we saw in Section 2.1 that chosen-IV pseudorandom IV-based MAC derives easily
from usual pseudorandom MAC. In fact, this security notion is unavoidable for our purpose: if
the authenticated encryption AEDIV is misuse-resistant then the underlying ivM must be chosen-IV
pseudorandom as well (which directly follows from the definitions).

Before moving to the security analysis of the DIV composition, we introduce a strong flavor of
ciphertext integrity which simplifies the presentation of the proof.

3.2 Strong Authentication

Namprempre et al. introduced a nonce-based variant of ciphertext integrity [25, Appendix A],
called authenticity (Auth), to ease their security analysis. In the same spirit, we introduce an even
stronger notion: strong authenticity (SA). While Auth lets A choose non-repeating nonces in the
INT-CTXT experiment, SA lets A completely free in its choice of random coins. It can be viewed
as a misuse-resistant variation of ciphertext integrity.

Definition 10. Let AE = (K,Enc,Dec) be an authenticated encryption scheme. Then, AE satisfies
the notion of (q, t, εsa)-strong authenticity if, for each (q, t)-bounded adversary A, the sa advantage

Advsa
AE,A :=

∣∣∣Pr
[
AOEnc

real ,O
Dec
real ⇒ 1

]
− Pr

[
AOEnc

real ,O
Dec
fake ⇒ 1

] ∣∣∣
is upper-bounded by εsa, where OEnc

real is an oracle which on input a coin r ∈ R and a message m ∈M
outputs a ciphertext c ← Enck(r,m), ODec

real is an oracle which on input c ∈ C outputs Deck(c), and
ODec

fake is an oracle which on input c ∈ C outputs ⊥ except if c is an output of OEnc
real on a past query

(r,m), in which case it returns the corresponding m ∈M.

Clearly, a misuse-resistant authenticated encryption scheme satisfies this indistinguishability-based
notion. The next section shows that a combination of weaker primitives is in fact enough to get
misuse-resistant AE. So the SA notion is only useful as an intermediate step which appears in the
hybrid argument of Section 3.3 through the following result.

Lemma 1. Let AE†DIV = (K2,DIV.Enc†,DIV.Dec†) be the scheme obtained from AEDIV by replacing
the Mac algorithm by a truly random function f : IV × M → T . Namely, DIV.Enc†kM ,kE

(IV,m)

outputs τ ← f(IV,m) and c ← EnckE(τ, (IV,m)) using ivE (and DIV.Dec†kM ,kE
also tests whether

τ = f(IV,m) holds). Then, for any (q,∞)-bounded adversary A, Advsa
AE†DIV,A

(n) ≤ q/|T |.

Proof. Let OEnc†

real , ODec†

real and ODec†

fake denote the oracles defined in the definition of strong authenticity
in the case of AE†DIV. To see why A’s advantage against the strong authenticity is negligible let us

recall how ODec†

real and ODec†

fake differ from each other. In ODec†

real , a valid ciphertext (τ, c) is an encryption
of some (IV,m) under EnckE and for which f(IV,m) = r, where f is a truly random function. In
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ODec†

fake , there is no valid ciphertext not computed by OEnc†

real . Therefore, this advantage is bounded
by the probability of being able to make a decryption query on a fresh but valid ciphertext (τ?, c?)

with respect to ODec†

real . Even though it could not be efficiently computable from A’s perspective let

(IV ?,m?) = DeckE (τ?, c?). We claim that (IV ?,m?) was never submitted toOEnc†

real otherwise (τ?, c?)
would have been returned as an output of DIV.Enc†k which is deterministic, where k = (kM , kE).
Consequently, we are sure that (IV ?,m?) is also fresh and that τ? = f(IV ?,m?) holds from the
validity of the ciphertext. But that means that in a way or another, A is able to predict a new
output of f which is completely independent of A’s view, so that the probability for that event to
occur is qd/|T |, where qd corresponds to the number of queries to the decryption oracle. ut

3.3 Security Analysis

Our security proof follows standard hybrid arguments and extends those of [25] from nonce-based
security to misuse-resistance. We do not consider any leakage-resilient security so far.

Theorem 1. Let ivM be a chosen-IV pseudorandom IV-based MAC and let ivE be a secure IV-
based encryption scheme. Then AEDIV is a misuse-resistant authenticated encryption scheme. More
precisely, let A be a (q, t)-bounded adversary against AEDIV, then we build a (q, t1)-bounded adver-
sary B1(A) against ivM and a (q, t2)-bounded adversary B2(A) against ivE such that Advmr

AEDIV,A is
upper-bounded by

Advcip
ivM,B1(A) + Advsa

AE†DIV,A
+ AdvIV-sec

ivE,B2(A),

where AE†DIV is the scheme described in Lemma 1. Moreover, the running times satisfy t1 ≤ t+q · te
and t2 ≤ t+ q · t′, where te is the maximum time needed to perform encryption or decryption in ivE
and t′ is the time to look for an entry in a table of size at most q.

Proof. Let A be a (q, t)-bounded adversary against the misuse-resistance of AEDIV. By defini-

tion, if we set k = (kM , kE) ← K2, the advantage Advmr
AEDIV,A is given by |Pr[AOEnc

real ,O
Dec
real ⇒

1] − Pr[AOEnc
rand,O

Dec
fake ⇒ 1] |, where OEnc

real runs DIV.Enck on inputs (IV,m) and ODec
real runs DIV.Deck

on input ciphertexts (τ, c) for the left-hand side probability, and where OEnc
rand returns random

(τ, c)← CDIV on inputs (IV,m) and where ODec
fake returns ⊥ on input ciphertexts (τ, c) not generated

from OEnc
rand and m if (τ, c) was the answer of an encryption query (IV,m) for the right-hand side

probability.
The first step of the proof is to rely on the chosen-IV pseudorandomness of ivM to replace the

real MackM in the computation of DIV.Enck(IV,m) and DIV.Deck(τ, c) by a truly random function
f ← F where F is the set of all functions from IV ×M to T . This modification results in replacing
the real execution of AEDIV by the real execution of AE†DIV. To avoid confusion with the oracles of

AEDIV, OEnc†

real and ODec†

real stand for the real oracles of AE†DIV. Therefore, Advmr
AEDIV,A is upper-bounded

by ∣∣Pr[AOEnc
real ,O

Dec
real ⇒ 1]− Pr[AOEnc†

real ,O
Dec†
real ⇒ 1]

∣∣
+
∣∣Pr[AOEnc†

real ,O
Dec†
real ⇒ 1]− Pr[AOEnc†

rand ,O
Dec†
fake ⇒ 1]

∣∣
+
∣∣Pr[AOEnc†

rand ,O
Dec†
fake ⇒ 1]− Pr[AOEnc

rand,O
Dec
fake ⇒ 1]

∣∣ ,
where the last term vanishes since OEnc†

rand = OEnc
rand and ODec†

fake = ODec
fake are independent of the descrip-

tion of AEDIV and AE†DIV. This development leads to

Advmr
AEDIV,A ≤ Advcip

ivM,B1(A) + Advmr
AE†DIV,B

′
2(A)
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for some challenger B1 against the chosen-IV pseudorandomness of ivM and some challenger B′2
against the misuse-resistance of AE†DIV which still need to be described. Given an oracle access
to either MackM or f, algorithm B1 emulates encryption and decryption as follows: picks a key
kE ← K of ivE = (K,Enc,Dec) such that on an encryption query (IV,m), B1 sends (IV,m) to its
own cip oracle which is either Ocip

real or Ocip
rand and gets back some τ ∈ T from which it computes

c = EnckE (τ, (IV,m)) and returns (τ, c); on decryption query (τ, c), B1 first computes (IV,m) =
DeckE (τ, c) and makes a deterministic-tag query on (IV,m), then from the answer τ ′, B1 outputs
m if there is a match with τ and outputs ⊥ otherwise. If q is the cumulated number of encryption
and decryption queries made by A, then B1 makes at most q queries to its cip oracle and runs in
time t2 ≤ t+ q · te, where te is the maximum running time of EnckE and DeckE . This shows that we

indeed have Advcip
ivM,B1(A) which is a negligible function by assumption. As a result, it remains to

show that the second term of the above development is negligible. To do so, we now upper-bound
Advmr

AE†DIV,A
by

∣∣Pr[AOEnc†
real ,ODec†

real ⇒ 1]− Pr[AOEnc†
real ,ODec†

fake ⇒ 1]
∣∣

+
∣∣Pr[AOEnc†

real ,ODec†
fake ⇒ 1]− Pr[AOEnc†

rand ,ODec†
fake ⇒ 1]

∣∣
and we argue that Advsa

AE†DIV,A
and AdvIV-sec

ivE,B2(A) upper-bound this expression term-by-term for

some explicit challenger B2 against the IV-sec security of ivE.

By definition, the first term is indeed the advantage of A against the strong authenticity of
AE†DIV. Lemma 1 shows that this advantage is smaller than q/|T | which is negligible since ivM
and/or ivE are secure. To conclude the proof we need to show the last term is bounded by the
advantage of some B2(A) against ivE.

Since ODec†

fake gives no information on whether A is exchanging with OEnc†

real or OEnc†

rand , and since
answer (τ, c) to encryption query (IV,m) has a value τ ∈ T independent of (IV,m), the only
relevant part in both views is whether c = EnckE (τ, (IV,m)) or c = f ′(τ, IV,m) for another random
function f ′ : T × IV × M → C. It is now straightforward to build a challenger B2 against the
security of ivE. In more details, when A makes an encryption query (IV,m), B1 queries its own
oracle on the message (IV,m) and gets back (τ, c), where τ is a random IV of ivE. Then, B1 stores
(IV,m, τ, c) in a new entry of an initially empty table. When A makes a decryption query on some
(τ, c), B2 first looks in the table for an entry of the form (IV,m, τ, c), for some (IV,m). If such
entry lies in the table B2 returns the corresponding (IV,m) to A, and ⊥ otherwise. Obviously, B2
makes at most the same amount of queries as A since on A’s decryption query B2 does not make
any query. If B2’s running time is t2 and if t′ is the maximum time needed to store and look for an
entry in a table of size q, we find t2 ≤ t+ q · t′, which concludes the proof of the theorem. ut

4 The PSV-AE authenticated encryption

In this section, we apply the DIV composition to PSV-MAC (Figure 1) and PSV-ENC (Figure 2)
to get PSV-AE. Theorem 1 directly implies that PSV-AE is misuse-resistant without leakage. We
then illustrate the limitations of this combination by trying to improve PSV-AE in two ways: first
we look at its single key variant, next we try look at its misuse-resistance with leakage. However,
none of these attempts succeeds and we exhibit attacks in both cases, which therefore motivates
our new constructions in the next sections.
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4.1 Specification

We instantiate PSV-MAC with ` blocks and PSV-ENC with ` + 1 blocks to get PSV-AE with `
blocks by applying the DIV composition. We split PSV-AE into two parts: the first part generates
an authenticated ephemeral key k0, as shown in Figure 3.

Fig. 3. PSV-AE leakage-resilient AE (part I).

Given k0, the second part generates, using the public constant pA and pB, a pseudorandom vector
(y0, y1, . . . , y`) of ` + 1 blocks in order to XOR (r,m1, . . . ,m`) with it, as shown in Figure 4. The
full specification is given in the PSV-AE box.

Fig. 4. PSV-AE leakage-resilient AE (part II).

4.2 Misuse-resistance without leakage

The security of PSV-AE is stated in the next theorem.

Theorem 2. Let assume that the functions F∗ and F are pseudorandom, then PSV-AE is a misuse-
resistant authenticated encryption scheme.

It is already established that PSV-ENC is a chosen-IV pseudorandom IV-based MAC and PSV-ENC
is a secure IV-based encryption if the underlying functions F are taken within a PRF familly.
Therefore, the result follows directly from Theorem 1. Note that this result is qualitative and
proven for the authenticated encryption of fixed-length messages. We ignored the treatment of
quantitative bounds and variable-length messages because the following sections will anyway show
that PSV-AE is not a good candidate for misuse-resistance with leakage. Quantitative bounds will
be given for our improved constructions, for which variable-length security is directly obtained by
the use of a hash function.
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PSV-AE: PSV-ENC ◦DIV PSV-MAC

Enck(m):
– Parse m = (m1, . . . ,m`)

– Pick r
$← {0, 1}n

– k′0 ← F∗kM
(r)

– k′i ← Fk′i−1
(mi) ∀i = 1, . . . , `

– τ ← k′l
– k0 ← F∗kE

(τ)
– c0 ← Fk0(pB)⊕ r // yi := Fki(pB)
– ki ← Fki−1(pA), ci ← Fki(pB)⊕mi ∀i = 1, . . . , `
– return C ← (τ, c0, c1, c2, . . . , cl)

Deck(C):
– Parse C = (τ, c0, c1, c2, . . . , cl)
– k0 ← F∗kE

(τ)
– r ← Fk0(pB)⊕ c0
– ki ← Fki−1(pA), mi ← Fki(pB)⊕ ci ∀i = 1, . . . , `
– k′0 ← F∗kM

(r)
– k′i ← Fk′i−1

(mi) ∀i = 1, . . . , `

– if k′l = τ return (m1, ...,ml), else return ⊥.

4.3 Insecurity of single-key variant

One natural improvement of the PSV-AE would be to use a single long-term key k, i.e. kM = kE , for
its two leak-free components. We show here that misuse resistance falls down in this case due to the
following attack (when ` = 2). (1) The adversary A requests an encryption on (r,m1,m2), where r
is any chosen value of {0, 1}n. A receives back (τ, c0, c1, c2) (2) A requests a second encryption on
(τ, pA, pB) and gets (τ ′, c′0, c

′
1, c
′
2). These queries allow A to distinguish the evaluation of the real

encryption scheme from the function which outputs random elements. Indeed, A simply has to test
whether c1⊕ τ ′ = m1 holds: if A is facing the real encryption, this always passes the test, and if A
receives random answer, this test fails with overwhelming probability. Misuse resistance no more
holds.

4.4 Misuse with leakage

We now consider the case where the adversary can not only control the random coins r of Figures 3
and 4 but also observe the leakages due to the computation of these schemes. In this context, we
show that the leakage security argument used in [27] directly falls down, leading to an even more
serious (forgery) attack. For this purpose, let us start by considering the variant of PSV-AE with a
single long-term key (of which misuse resistance has just been broken) and assume F is instantiated
with a block cipher such as the AES. In this case, by keeping the r constant, the adversary can
ensure that the ephemeral keys k′0 and k0 actually become long-term secrets, which can directly
be turned into a forgery attack. More precisely, the adversary can proceed as follows: (1) Fix the
random coin r. (2) Recover k′0 via standard DPA by encrypting several (different) `-block messages
m. (3) Pick up a new (` − 1)-block message m′ that has not been encrypted yet. (4) For i = 1 to
`− 1, compute k′i = Fk′i−1

(mi). (5) Compute m` = F−1
k′`−1

(r). (6) Encrypt m′ with k′0.

Intuitively, the attack essentially works by adapting the last message block m` so that the tag
produced corresponds to the chosen coin r, which ensures that the two ephemeral keys k′0 and k0
are identical which consequently allows forging valid ciphertexts (without the target chip).

Now just observe that for the actual PSV-AE scheme with two long-term keys, the forgery of a
valid tag (for the first part of the authenticated encryption scheme) remains unchanged. And the
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forgery of valid ciphertexts could simply take advantage of the fact that the encryption mode of
Figure 4 emulates a one-time pad so that if the ephemeral key k′0 is fixed (despite unknown), it
is directly possible to forge the ciphertexts corresponding to any linear combination of previously
observed messages.4 As explained in Appendix A, the alternative leakage-resilient MAC proposed
in [27] could be broken by similar (though slightly more elaborate) attacks.

5 Digest, Tag and Encrypt (DTE)

In this section we investigate whether we can get better efficiency and security than the previous
composition. For this purpose, we build a scheme with a single key which enjoys a form of leakage-
resilience.

5.1 Specifications

We apply the DIV composition – with the exception that kM and kE are replaced by a unique key
k – to another IV-based MAC combined with PSV-ENC, resulting in DTE. This MAC uses a hash
function as a sub-ingredient, hence the name DTE for digest, tag, and encrypt.

Fig. 5. DTE leakage-resilient AE (part I). Part II is identical to Fig. 4.

The full description of DTE is given below. The values pA and pB are public constants in {0, 1}n.

5.2 Misuse-resistance without leakage

It would be possible to prove the misuse resistance of DTE by applying Theorem 1 and showing
that the single-key variant is indistinguishable from the two-key variant. However, to get a better
bound, we analyze the misuse-resistance of DTE from scratch.

Theorem 3. Let H : {0, 1}n × {0, 1}? → {0, 1}n be a (0, t1, εcr)-collision resistant and (1, t1, εpr)-
range-oriented preimage resistant hash function. Let F? : {0, 1}n×{0, 1}n → {0, 1}n be a (2q, t1, εF?)-
pseudorandom function and F : {0, 1}n × {0, 1}n → {0, 1}n be a (2, t2, εF)-pseudorandom function.
Then the DTE authenticated encryption scheme which encrypts `-block messages is (q, t, ε)-misuse
resistant as long as t ≤ min{t1−q(tH+2`tF), t2−qe(tH+2`tF)} with 0 ≤ qe+qd ≤ q, where qe (resp.
qd) is the number of encryption (resp. decryption) queries, where tH and tF are the time needed to
evaluate H and F, and we have

ε ≤ εF? + εcr + 2q · εpr + q(`+ 1) · εF +
(
qd + q2e + q2e(`+ 1)2

)
· 2−n.

4 Note that recovering the k0 corresponding to the selected τ = r thanks to SPA is also feasible (see Section 6).
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DTE

Enck(m):
– Parse m = (m1,m2, . . . ,m`)

– r
$← {0, 1}n

– h← H(r||m) // digest
– τ ← F∗k(h) // tag
– k0 ← F∗k(τ) // ...and encrypt
– c0 ← Fk0(pB)⊕ r // yi := Fki(pB)
– ki ← Fki−1(pA), ci ← Fki(pB)⊕mi ∀i = 1, . . . , `
– return C ← (τ, c0, c1, c2, . . . , c`)

Deck(C):
– Parse C = (τ, c0, c1, c2, . . . , c`)
– k0 ← F∗k(τ)
– r ← Fk0(pB)⊕ c0
– ki ← Fki−1(pA), mi ← Fki(pB)⊕ ci ∀i = 1, . . . , `
– h← H(r||m)
– if τ = F∗k(h) return (m1, ...,m`), return ⊥.

The guideline of the proof follows the same principle as in the proof of Theorem 1 for the generic
construction. First we start by arguing that all decryption queries can be answered by ⊥ and then
answers to encryption queries are gradually replaced by random outputs, block by block.

The easiest transition relies on the pseudorandmoness of F?, which is replaced by a truly random
function f. Therefrom, we can move to show the invalidity of the first fresh decryption query
C = (τ, c), where c = (c0, c1, . . . , c`). Since (τ, c) is fresh, we will see that the decrypted tuple
(r,m = (m1, . . . ,m`)) is fresh. Thereby, the collision resistance ensures that h = H(r‖m) is not the
output of any previous evaluation of H during the encryption queries. If h never appeared until the
first decryption query, then f(h) 6= τ except by pure chance. However, we must also consider the
event by which h = τ ′, where τ ′ is the returned tag associated to some previous encryption query.5

Hence the need of the range-oriented preimage resistance of H since, as an output of f , τi is random
over {0, 1}n.

In order to ease the process of the proof we rely on an equivalent definition of range-oriented
preimage resistance where an adversary can ask as many targets y

$← {0, 1}n as wanted to return
one preimage. A straightforward hybrid argument shows that any efficient (q, t)-adversary receiving
at most q targets can be reduced to an adversary receiving at most one target with a security loss
factor q, in the same time.

Remark 1. A stronger flavor of range-oriented preimage resistance was introduced by Rogaway
and Shrimpton [32] under the name of everywhere preimage resistance. In their definition, the
hardness of computing preimage must hold for all the possible targets y ∈ {0, 1}n and thus for
all the possible distributions over {0, 1}n where y is sampled. Like standard preimage resistance,
Definition 2 focuses on the hardness over a single distribution.

Proof. By the definition of misuse resistance and using the same notation as in the proof of Theo-
rem 1, for any efficient adversary A against DTE, we show that the following advantage is negligible:∣∣Pr[AOEnc

real ,O
Dec
real ⇒ 1]− Pr[AOEnc

rand,O
Dec
fake ⇒ 1]

∣∣.
Let A be a (q, t, ε)-adversary against the misuse resistance of DTE, meaning that the above distance
is bounded by ε when A runs in time t and makes at most q ≥ qe + qd queries, where qe is the

5 Intuitively, this event would reveal information to the adversary: since f(τ ′) = k′0 and is revealed to the adversary,
we could not state that f(h) is independent from all other observed values.
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number of encryption queries made by A to OEnc
real or OEnc

rand, and where qd is the number of decryption
queries made by A to ODec

real or ODec
fake respectively. Without loss of generality, we assume that any

answer to some encryption query is not later sent as a decryption query and that any answer to
some decryption query is not later sent as an encryption query. Indeed, if it were not the case we
could simply send back the input of the previous query as the answer to the later query. Moreover,
we also assume that a same query is never made twice for encryption and decryption.

We will use a sequence of hybrid games, beginning with the real game, named game 0, where
A interacts with OEnc

real and ODec
real and ending with random-and-invalid game, named game 3, where

A interacts with OEnc
rand and ODec

fake. Then, using the adversary A we show that any transition can be
reduced to either an efficient distinguisher against the PRF F? or F, or to an efficient algorithm
that either outputs a collision or a range-oriented preimage of H. We name Ei the event whereby
A outputs 1 at the end of the game i. We then start from Pr[E0] = Pr[AOEnc

real ,O
Dec
real ⇒ 1] and we end

with Pr[E3] = Pr[AOEnc
rand,O

Dec
fake ⇒ 1].

We define game 1 as game 0, except that, in the computation of the encryption and decryption,
the function F? is replaced by a random function f, namely we assume that f is chosen uniformly
at random within all the possible functions from {0, 1}n to {0, 1}n. In order to show that |Pr[E0]−
Pr[E1]| is negligible we build a challenger B1, which on input 1n and given an oracle access to
either F?k or f, has to distinguish which functions the oracle evaluates. The challenger B1 picks
pA, pB ← {0, 1}n and H at random and emulates the encryption and decryption oracles interacting
with A as follows. On each query made by A, the challenger runs all the steps described by DTE,
except for the computation of the tags τ and the ephemeral key k0: B1 calls its own oracle on h to
get τ and then it calls it again on τ to get k0. When A outputs its guess bit B1 simply returns that
bit as its own guess. Obviously, depending on whether B1 is given oracle access to either F? or f,
A is playing game 0 or game 1. Therefore, any difference between Pr[E0] and Pr[E1] leads to the
same difference in distinguishing F? from f, making B1 a (2q, t+ q(tH + 2`tF))-adversary against the
PRF F?, since two evaluations of the function are needed in each encryption and each decryption
emulation, and where tH and tF are the time needed to evaluate H and F. Moreover, by assumption
we have t+ q(tH + 2`tF) ≤ t1 and F? is (2q, t1, εF?)-pseudorandom so that |Pr[E0]− Pr[E1]| ≤ εF? .

In game 1 we consider two events F1 and F2 depending on some efficiently checkable properties
related to the encryption and decryption queries. To each encryption query (ri,mi) for some mi =
(mi

1, . . . ,m
i
`) we associate the digest hi = H(ri‖mi) and the tag τi = f(hi). To each decryption

query Cj = (τj , cj) for some cj = (cj0, c
j
1, . . . , c

j
`) we associate the digest hj = H(rj‖mj) and the tag

τj , where rj and mj = (mj
1, . . . ,m

j
`) are computed during the (emulation of the) decryption, but

we consider this association only if (τj , cj) is considered valid in the game, namely if f(hj) = τj .
First, we define F1 as the event that at least two associated digests are equal. Second, we define
F2 as the event that some associated digest is equal to some associated tag. If we let F3 be the
complement of F1 ∪ F2, we have Pr[E1] ≤ Pr[F1] + Pr[F2] + Pr[E1|F3].

We use the collision resistance of H to bound Pr[F1]. If F1 occurs it happens that H(r‖m) =
H(r′‖m′) whereas (r,m) and (r′,m′) come from (answer to) distinct queries. If some of this tuple,
say (r,m), is the answer to some decryption query, say (τ, c), it must be the case that a re-
encryption of (r,m) gives back (τ, c), since the random coin is fixed and τ = f(H(r‖m)). Actually,
the (emulated) encryption algorithm is deterministic given the coin and the message and we avoid
that (τ, c) = (τ ′, c′) happens in our analysis. Therefore, we must have (r,m) 6= (r′,m′) in all the
cases. As a consequence, in F1, it is easy to build an adversary having the same running time and
answering queries in the same way as B1 and which is an adversary against the (0, t1, εcr)-collision
resistant hash function H. By assumption we have t+ q(tH + 2`tF) ≤ t1 and then Pr[F1] ≤ εcr.
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We use the range-oriented preimage resistance of H to bound Pr[F2]. Actually, we have Pr[F2] =
Pr[F ′2] where F ′2 is the analogue of F2 in game 1’. The difference between game 1 and game 1’ is
purely conceptual. In game 1’, instead of picking a random function f that is directly evaluated,
the outputs are now implicitly computed by the challenger B′1 against the range-oriented preimage
resistance of H. It means that each time B′1 needs a new evaluation of the random function f to
emulate encryption and decryption as B1 does, B′1 simply requests a new random target in {0, 1}n.
If F ′2 occurs, it happens that some associated digest h = H(r‖m) is equal to some associated tag τ ′

which is among the at most 2q targets. Since H(r‖m) = τ ′, B′1 is at most a (2q, t + q(tH + 2`tF))-
adversary against the multiple target range-oriented preimage resistance which is (2q, t1, 2q× εpr)-
secure if H is a (1, t1, εpr)-range-oriented preimage resistant hash function (with one target) and
we must have Pr[F ′2] ≤ 2qεpr. (Note that it is equivalent that B′1 receives all the targets at the
beginning of game 1’.)

We go on with bounding Pr[E1|F3]. We define game 2 as the conditional game “game 1 if
F3”, except that to each decryption query we return ⊥ (we do not modify the emulation of the
encryption). Clearly, |Pr[E1|F3]−Pr[E2] | = Pr[F4] where F4 occurs if some of the qd ciphertexts sent
as decryption requests were valid, as the new game will deem them invalid. If F4 occurs, it must hold
that for some h = H(r,m) computed from a decryption query (τ, c) we have f(h) = τ . However, since
F3 also occurs, h was never an input of f before the challenger checks the validity of the ciphertext
and then f(h) remains completely independent of the adversary’s view. Therefore, f(h) 6= τ except
by pure chance and we thus get Pr[F4] ≤ qd/2

n. To ensure freshness of the tags associated to
encryption queries in the remaining part of the proof we define game 2’ as game 2, except that we
abort the game if a collision on these tags occurs. We then have |Pr[E2]−Pr[E′2]| ≤ qe(qe+1)/2n+1.

In game 2’ we reach a game where decryption gives no information to the adversary. We will
show in game 3 how all the qe (`+2)-block ciphertexts of game 2’ can be indistinguishably replaced
by qe random `+ 2 blocks of {0, 1}n. Actually, all the tags τ are already distinct and random from
game 2’. Therefore, for each encryption query (ri,mi), where mi = (mi

1, . . . ,m
i
`), for 1 ≤ i ≤ qe, it

is enough to show that from the ephemeral keys (ki0, k
i
1 . . . , k

i
`) the tuple (yi0, y

i
1, . . . , y

i
`) computed

in the emulation of the encryption of game 2’ can be replaced by a uniformly random tuple. Indeed,
we have ci = (ci0, c

i
1, . . . , c

i
`) = (mi

1, . . . ,m
i
`) ⊕ (yi0, y

i
1, . . . , y

i
`) and Ci = (τi, ci). For that purpose,

we consider qe(` + 1) hybrid games Gi,j , for 1 ≤ i ≤ qe and 0 ≤ j ≤ `, such that each block pair
(kuv+1, y

u
v ) with (u < i) or (u = i ∧ v ≤ j) are random6 and ki`+1 never appeared yet in the game7

whereas all the remaining pairs are computed as in game 2’ resuming from the random but fresh
ephemeral key kij+1 if (j < `) or ki+1

0 if (j = ` ∧ i < qe). We move from one hybrid to the other
with respect to the lexicographic order of the indexes (i, j). At the end of these transitions we reach
game 3 since it is equal to game Gqe,`.

We rename game 2’ as game G0,` in order to show that each transition from game Gi,` to game
Gi+1,0, for 0 ≤ i < qe, can be reduced to the pseudorandomness of F. In game Gi,` and game Gi+1,0,
the i first encryption queries are answered with random ciphertexts and f(τi+1) = ki+1

0 is already
random. But, in game Gi,` we have Fki+1

0
(pA) = ki+1

1 and Fki+1
0

(pB) = yi+1
0 whereas in game Gi+1,0

the ephemeral key ki+1
1 and yi+1

0 are random and is ki+1
1 . The remaining parts of the encryption

from ki+1
1 are the same in both games and as in game 2’ as well as the answers to all the next

encryption queries. Let B′′i+1,0 be a challenger against the (2, t2, εF)-pseudorandom F. To emulate
ciphertexts, B′′i+1,0 answers with random outputs to the i first encryption queries. Since τi+1 never

appears until this time, ki+1
0 has never been generated yet. Therefore, instead of computing ki+1

0 ,

6 Note that we introduce a dummy ephemeral key ki`+1 which is not used in encryption.
7 Otherwise, the next yij+1 could not be indistinguishably replaced by an independent value since Fki

`+1
(pB) would

already be defined in the adversary’s view.
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B′′i+1,0 calls its PRF oracle on pA and pB to get ki+1
1 and yi+1

0 and aborts if ki+1
1 matches a previous

ephemeral key. From these outputs, B′′i+1,0 is efficiently able to end the emulation as specified in
game 2’. Obviously, we have |Pr[Ei,`]−Pr[Ei+1,0]| ≤ εF + [i(`+ 1) + 1]/2n since B′′i+1,0 runs in time
at most t + qe(tH + 2`tF) which is less than t2 by assumption and where [i(` + 1) + 1]/2n is the
probability that that challenger aborts. (We stress that B′′i+1,0 actually computes at most qe − i
hashes/digests and 2`(qe − i)− 2 evaluations of F).

We now move on to transition from game Gi,j to game Gi,j+1, for each 1 ≤ i ≤ qe and each
0 ≤ j < `, whose indistinguishability is also implied by the pseudorandomness of F. In game Gi,j

and game Gi,j+1 the i − 1 first encryption queries are answered with random ciphertexts and in
the answer to the i − th encryption query (ki0, . . . , k

i
j , k

i
j+1) and (yi0, . . . , y

i
j) are already random.

However, in game Gi,j we have Fkij+1
(pA) = kij+2 and Fkij+1

(pB) = yij+1 whereas in game Gi,j+1 the

ephemeral key kij+2 and yij+1 are random and kij+2 is fresh. The remaining parts of the encryption
are the same in both games and as in game 2’. Let B′′i,j+1 be a challenger against the (2, t2, εF)-
pseudorandom F. To emulate ciphertexts, B′′i,j+1 answers with random outputs to the i − 1 first

encryption queries. For the i−th encryption query, B′′i,j+1 picks yi0, . . . , y
i
j ← {0, 1}n at random and,

instead of picking a random kij+1, it calls its PRF oracle on pA and pB to get kij+2 and yij+1 and

aborts if kij+2 is not fresh. From these outputs, B′′i,j can end the emulation as specified in game 2’.
Obviously, we have |Pr[Ei,j ]−Pr[Ei,j+1]| ≤ εF+[(i−1)(`+1)+(j+2)]/2n since B′′i,j+1 runs in time
at most t+qe(tH +2`tF) which is less than t2 by assumption and where [(i−1)(`+1)+(j+2)]/2n is
the probability that the challenger aborts. (We stress that B′′i,j+1 actually computes at most qe − i
hashes/digests and (qe − i)2`+ 2(`− j)− 2 evaluations of F).

Putting all the probabilities together we find,

|Pr[E0]− Pr[E3]| ≤ |Pr[E0]− Pr[E1]|+ Pr[F1] + Pr[F ′2]

+ Pr[F4] + |Pr[E2]− Pr[E′2]|+ |Pr[E′2]− Pr[E3]|,

where the last term |Pr[E′2]− Pr[E3]| is bounded by

qe∑
i=1

(
|Pr[Ei−1,`]− Pr[Ei,0]|+

`−1∑
j=0

|Pr[Ei,j ]− Pr[Ei,j+1]|
)

≤ qe(`+ 1) · εF +
1

2n
·
qe−1∑
i=0

∑̀
j=0

i(`+ 1) + (j + 1)

so that ε = |Pr[E0]− Pr[E3]| is bounded by

εF? + εcr + 2q · εpr + qd · 2−n + qe(qe + 1) · 2−n−1

+ qe(`+ 1) · εF + qe(`+ 1)[qe(`+ 1) + 1] · 2−n−1 ,

which concludes the proof. ut

5.3 Ciphertext integrity with misuse & leakage

We now generalize the definition of ciphertext-integrity given by Bellare and Namprempre [6] to
capture both the ability for an adversary to generate the random coins and to learn more information
from a leakage function of the encryption algorithm. In this respect, a significant issue that appears
when trying to deal with side-channel information in a formal way is the problem of defining and
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quantifying, or at least upper-bounding, the amount of information that can be disclosed through
side-channel leakage. We will indeed have to tackle this problem in Section 7. However, in the
current section, we are able to provide a positive result (i.e., a provably secure construction) in a
conservative context where no assumptions are needed to limit the amount of information leaked
to the adversary (beyond our leak-free execution). We first define this unbounded leakage model.

Definition 11. We define the unbounded leakage model as a model in which, when queried, oracles
return, in addition to the usual output values, a function L yielding all ephemeral keys and random
coins generated during the computation of the oracle’s answer.

So this definition is in line with our assumptions (in Section 2.2) regarding the availability of two
distinct pseudorandom functions: a cheap, leaking F, and an expensive but leak-free component F∗.
In other words, our model assumes that the only values that will not be revealed through leakage
are the long-term secrets used exclusively in combination with F∗. All other processed data and
intermediary values are supposed to be totally disclosed through leakage, which is modeled by the
fact that they can be reconstructed by the attacker based on the output of L by the oracle. As
an example, in the unbounded leakage model, our DTE construction yields the leakage function
L(r,m; k) := k0 (r is not explicitly needed as part of the output as it can be reconstructed from k0).

Considering an authenticated encryption AE = (K,Enc,Dec), we define the CIML experiment,
in which the adversary tries to generate a fresh valid ciphertext having access to unbounded leakage
during encryption queries in addition to the encryption and decryption oracle. Note again that as
in [27], the adversary is not given the leakage during decryption queries (see the conclusions section
for a complementary discussion on this issue).

CIML experiment

Initialization: Oracle EncLk(r,m):

k
$← K C = Enck(r,m)

S ← ∅ S ← S ∪ {C}
Finalization: return (C, L(r,m; k))

C ← AEncLk(·,·),Deck(·)

If C ∈ S, return b = 0 Oracle ODeck(C):
If ⊥ = Deck(C), return

b = 0
return Deck(C)

return b = 1

Definition 12. An authenticated encryption AE provides (q, t, ε)-ciphertext integrity with coin
misuse and unbounded leakage on encryption if for all (q, t)-bounded adversaries A, we have:

Pr [CIMLAE,A ⇒ 1] ≤ ε.

As usual, q is an upper bound on the total number of queries made to oracles.

We now prove that DTE meets this definition.

Theorem 4. Let H : {0, 1}n × {0, 1}? → {0, 1}n be a (0, t′, εcr)-collision resistant and (1, t′, εpr)-
range-oriented preimage resistant hash function. Let F∗ : {0, 1}n × {0, 1}n → {0, 1}n be a (2q +
2, t′, εF∗)-pseudorandom function. Then DTE provides (q, t, ε)-ciphertext integerity with coin misuse
and unbounded leakage on encryption as long as t ≤ t′ − (q + 1)(tH + 2ltF) where tH and tF are the
time needed to evaluate H and F, and we have

ε ≤ εF? + εcr + 2q · εpr + (q + 1) · 2−n.
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In the unbounded leakage model applied to DTE the leakage function L returns the ephemeral
key k0 computed during the encryption of some (r,m). Given k0 the adversary is able to derive
all the ephemeral keys (k0, k1, . . . , k`) used during encryption queries. For instance, the adversary
is able to re-compute (y0, y1, . . . , y`) as in the encryption algorithm using F and check whether
(c0, c1, . . . , c`) = (r,m1, . . . ,m`) ⊕ (y0, y1, . . . , y`) holds. Theorem 4 shows that whether F is pseu-
dorandom or not has no impact on the success probability Pr[CIMLDTE,A] = ε.

Proof. Let A be a (q, t)-CIML adversary against DTE making qe + qd ≤ q queries, where qe is the
number of encryption queries and qd the number of decryption queries. We say that the final output
ciphertext (τ †, c†) is the (q + 1)-th query of the game. Without loss of generality we assume that
any answer to some encryption query is never sent as a decryption query and conversely. We also
assume that the final output is not an answer to some encryption query, otherwise the adversary
looses anyway.

Since we are in the same condition as in the proof of misuse resistant, we name by Ēi the event
where the winning condition of CIML is satisfied which can be viewed as the analogue of Ei with
an additional decryption query: the (q + 1)-th query which is the last of the game. We thus have
to focus on proving that the (q + 1)-th query is also invalid even when all the ephemeral key k0’s
associated to the encryption queries only are given in Ei.

Let see what happens in E1 where F∗ was replaced by a random function f if f(τ) = k0 was
given to the adversary, where τ = f(H(r‖m)) for the encryption query (r,m). Obviously, k0 gives
nothing more since in E1 the encryption algorithm from k0 is run honestly as in E0. We then get
an adversary against F∗ in Ē1 making at most 2(q + 1) queries since we must count the (q + 1)-th
query and running in time bounded by t + (q + 1)(tH + 2ltF) ≤ t′. Nevertheless, we assume F∗ to
be (2q + 2, t′, εF∗)-pseudorandom and we find |Pr[Ē0]− Pr[Ē1]| ≤ εF∗ .

Likewise with E1, we consider the partition Ē1∩(F̄1∪ F̄2) and Ē1∩ F̄3, where F̄1 is the analogue
of F1 meaning that collision on associated digests occurs, where F̄2 is an extended version of F2

where some associated digest H(r,m) = h is equal to some associated τ ′ or to some associated
k′′0 (which simply has the form f(τ ′′) for some associated τ ′′), and where F̄3 is the complement of
F̄1 ∪ F̄2. We stress that the fact that the k0’s associated to encryption queries leak does not affect
the emulations made in F1, F2 and F3 since we remain in the same game. It is now straightforwards
that Pr[F̄1] ≤ εcr since we get an adversary against the (0, t′, εcr)-collision resistance of H running
in the time bounded by t′. Moreover, since in F ′2 we already put targets of the range-oriented
preimage resistance of H in place of all the associated tags and the associated ephemeral key k0’s
we also have an adversary here (built from A), for F̄2, asking/receiving at most (2q + 2) targets
and running in time bounded by t′. By assumption on H, we must have Pr[F̄2] ≤ εcr and we are
thus left with bounding Pr[Ē1|F̄3].

We are ready for the last transition from Ē1|F̄3 to Ē2 where we reach the game where all the
decryption queries including the (q + 1)-th one are answered by ⊥. It is straightforward to show
that |Pr[Ē1|F̄3]− Pr[Ē2]| ≤ (q + 1)/2n, which concludes the proof. ut

6 On the impossibility of misuse-resistance with leakage

The previous section showed that it is possible to combine some form of misuse-resistance and
leakage-resilience, as formalized by the (concretely achievable) notion of ciphertext integrity with
misuse and leakage. Yet, this security notion is admittedly weaker than a combination of standard
misuse resistance (such as discussed in Sections 3, 4.2, 5.2) and leakage-resilience. In this section,
we argue that such a stronger security notion may be impossible to achieve from standard block
ciphers and hash functions only.
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For this purpose, we focus on the second part of the previous authenticated encryption schemes,
represented in Figure 4. In particular, we observe that by fixing the randomness r, we again have
the problem that the ephemeral key k0 will be fixed. So it is theoretically possible to recover this
ephemeral key via SPA. At this point is is worth insisting that such an SPA would require to obtain
noise-free measurements of the encryptions of pA and pB under k0 and to perform some kind of
algebraic/analytical attack as mentioned in Footnote 3. So it is admittedly more challenging to
perform than the DPA of Section 4.4 which takes advantage of the fact that the key k̃′0 can encrypt
an arbitrary number of messages. On the other hand, and from a theoretical point-of-view, it is also
impossible to argue why this attack should not be covered by our threat model. Based on this fact, it
is clear that full misuse-resistance with leakage is not be achievable with the types of constructions
considered in this work. Indeed, recovering the ephemeral key k0 of our encryption schemes trivially
allows the adversary to distinguish his ciphertexts from random. To a large extent, we believe this
is a fundamental limitation, since IV-misuse will always transform ephemeral keys into long-term
ones. As mentioned in introduction, this observation can be seen as one more illustration of the
separation between unpredictability-based and indistinguishability-based security in the presence
of leakage [23]. Overall, this discussion confirms that ciphertext integrity may be the best security
notion we can achieve for authenticated encryption based on standard symmetric cryptographic
primitives, when an adversary can jointly exploit IV misuse and leakage.

7 Digest, Commit and Encrypt (DCE)

Motivated by the previous observation, we now present a construction that drops the requirement
of misuse-resistance without leakage, and only guarantees ciphertext integrity when randomness
misuse is granted to the adversary (with and without leakage). This construction has the advantage
of only requiring one execution of the leak-free function, but at the expense of relying on the random
oracle model for its proof of ciphertext integrity (yet not for its leakage-resilient CPA security, as
will be shown in Section 8).

We note that the use of a random oracle assumption when analyzing implementation weaknesses
is admittedly questionable (since the random oracle abstraction excludes leakage). However, and
as discussed in [10,38,39], it sometimes comes in handy to argue about the security of natural
constructions of which the leakage-resilience seems hard to reach in the standard model. In view
of the practical interest of the next DCE construction, we therefore include a proof in this model
in our treatment and suggest the further investigation of DCE instances as an interesting scope for
further research. We note that our proof does not make use of the programmability of the random
oracle, which is a common source of gaps in the soundness of schemes that are proven to be secure
in this model but are insecure for any instantiation of the random oracle.

7.1 Specifications

The construction named DCE is based on Figure 6 below which is then plugged to Figure 4. The
full specifications are described in the box where H is a hash function and pA and pB are constants
from {0, 1}n. The key k is picked randomly from K, as usual.

7.2 Ciphertext integrity with misuse & leakage

Theorem 5. Let H : {0, 1}n×{0, 1}? 7−→ {0, 1}n be modeled as a random oracle. Let F∗ : {0, 1}n×
{0, 1}n 7−→ {0, 1}n be (q+1, t′, εF∗)-pseudorandom. Then, DCE provides (q, t′, ε)-ciphertext-integrity
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Fig. 6. DCE leakage-resilient AE (part I). Part II is identical to Fig. 4.

DCE

Enck(m) :
– parse m = (m1,m2, . . . ,ml)

– r
$← {0, 1}n

– h← H(r‖m)
– k0 ← F∗k(h)
– c0 ← Fk0(pB)⊕ r
– ki ← Fki−1(pA), ci ← Fki(pB)⊕mi (∀i = 1, . . . , `)
– return C = (h, c0, c1, c2, . . . , cl)

Deck(C):
– parse C = (h, c0, c1, c2, . . . , cl)
– k0 ← F∗k(h)
– r ← Fk0(pB)⊕ c0
– ki ← Fki−1(pA), mi ← Fki(pB)⊕ ci (∀i = 1, . . . , `)
– if h = H(r‖m) return m = (m1, ...,ml), else return ⊥.

with coin misuse and unbounded leakage during encryption for l-block messages, where t ≤ t′− (q+
1)(tH + 2ltF), where tH and tF are the time needed to evaluate H and F, and we have

ε ≤ εF∗ + 4(q + 1)2/2n + (q + 1)/2n.

Proof. Let A be a (q, t)-CIML adversary against DCE making qe + qd ≤ q queries, where qe is the
number of encryption queries and qd the number of decryption queries. We have to bound the
probability Pr[CIMLDCE,A = 1]. Without loss of generality we assume that any answer to some
encryption query is never sent as a decryption query and conversely. We also assume that the final
output is not an answer to some encryption query, otherwise the adversary looses anyway.

The proof is in the spirit of the proof of Theorem 4 except that A cannot compute H itself:
it must query the random oracle to get h. However, since h is random here, the distribution of
F∗k(H(r‖m)) in DCE is similar to the distribution of F∗k ◦ F∗k(H(r‖m)) in DTE by relying on the
pseudorandomness of F∗. Then, all the ephemeral keys k0 associated to encryption queries are
random (See the proof of Theorem 4).

Let us assume that the final output ciphertext (τ †, c†) is the (q + 1)-th query of the game.
Then we only need to replace q + 1 outputs of F∗k by random values (instead of computing k0’s).
By reusing the argument detailed in the proof of Theorem 4, we obtain that the (q + 1, t′, εF∗)-
pseudorandomness of F∗ is sufficient to bound the gap resulting from this transition by εF∗ : we can
easily build an adversary running in time t+ (q + 1)2ltF ≤ t′, since all the h’s are already random.
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The probability that some collision occurs among all the h’s and the k0’s is bounded by 4(q +
1)2/2n. Therefore, assuming that no collision happens, if a decryption query (h, c) is valid it must be
the case that H(r‖m) returned by the random oracle where r and m are computed during decryption
matches h which has a probability bounded by 1/2n for each query. Thus all the ciphertexts of the
encryption queries including the (q + 1)-th one are invalid except with probability (q + 1)/2n. ut

8 Leakage-resilient CPA security

The ciphertext integrity properties discussed in the previous sections do not imply anything about
the confidentiality of the messages that are encrypted with the DTE and DCE schemes.

This section shows the leakage-resilient CPA security of these schemes, which is measured by
the probability that an adversary distinguishes between playing the PrivKlmcpa,0

AL,AE
and PrivKlmcpa,1

AL,AE

games, defined below and borrowed from PSV [27]. This is essentially the traditional CPA game,
with the addition that the adversary can access a leakage oracle L that can give him leakages from
the attacked circuit on chosen inputs, and that the challenger provides leakages for any computation
it performs, including the test query at step 3.

PrivKlmcpa,b

AL,AE
, with AE = (K,Enc,Dec), is the output of the following experiment:

1. Select k
$← K

2. AL gets access to a leaking encryption oracle that, when queried on a message m of arbitrary block
length, returns Enck(m) together with the leakage resulting from the encryption process.

3. AL submits two messages m0 and m1 of identical block length, to which he is replied with Enck(mb)
and the corresponding leakage.

4. AL can keep accessing the leaking encryption oracle.
5. AL outputs a bit b′.

The PrivKleav,b
AL,AE

game [27], modeling leakage-resilient eavesdropper security, is defined just in
the same way, except that the encryption oracles from steps 2 and 4 disappear.

Definition 13. An authenticated encryption scheme AE = (K,Enc,Dec) with leakage function L
is (q, t, ε) lmcpa-secure (resp. leav-secure) if, for every (q, t)-bounded adversary AL, the advantage

|PrivKlmcpa,0
AL,AE

− PrivKlmcpa,1
AL,AE

| (resp. |PrivKleav,0
AL,AE

− PrivKleav,1
AL,AE

|) is bounded by ε.

8.1 Background on the LMCPA security of the PSV-ENC scheme

Observing that the encryption part of all our schemes essentially follows the PSV-ENC scheme, we
can hope to import the results of the previous analyzes of that scheme.

The security of an implementation of the PSV-ENC scheme relies on the assumption that the
block cipher implementation that it uses has 2-simulatable leakages. (The unbounded leakage used
in the previous sections does not make sense here anymore, since an unbounded leakage would
trivially allow the adversary to win any confidentiality-related game.)

The notion of simulatable leakages is based on the q-sim-game below, from which q-simulatable
leakages are defined. This game essentially measures the capability of a simulator to produce leak-
ages that look consistent with given inputs and outputs of a block cipher, without knowing the key
used in the computation.
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Game q-sim(A,F, L,S, b) [35, Section 2.1].

The challenger selects two random keys k, k∗
$← K. The output of the game is

a bit b′ computed by AL based on the challenger responses to a total of at most
q adversarial queries of the following type:

Query Response if b = 0 Response if b = 1

Enc(x) Fk(x), L(k, x) Fk(x), SL(k∗, x,Fk(x))

and one query of the following type:

Query Response if b = 0 Response if b = 1

Gen(z, x) SL(z, x, k) SL(z, x, k∗)

Definition 14. [q-simulatable leakages [35, Defn. 1]] Let F be a PRF having leakage function L.
Then F is said to have (qS , tS , qA, tA, εq-sim) q-simulatable leakages if there is a (qS , tS)-bounded
simulator SL such that, for every (qA, tA)-bounded adversary AL, we have:

|Pr[q-sim(A,F, L,SL, 1) = 1]− Pr[q-sim(A,F, L,SL, 0) = 1]| ≤ εq-sim.

Based on this definition, the eavesdropper security of PSV-ENC can be summarized as follows.

Theorem 6 ([27], Thm 3.). Let F be a (q, t, εF)-PRF whose implementation has running time tF
and a leakage function LF with (qS , tS , q, t, ε2-sim) 2-simulatable leakages.

The advantage of every (q − qr, t− tr)-bounded ALF playing the PrivKleav,b
PSV−ENC game is bounded

by εeavPSV−ENC = `(Advs + 4(εF + ε2-sim)) where Advs is a bound on the eavesdropper advantage of a
(q−qr′ , t− tr′)-bounded adversary trying to distinguish the encryptions of two single-block messages
encrypted with the PSV-ENC scheme, qr, qr′ are O(`qS) and tr, tr′ are O(`(tS + tF)).

This result relates the eavesdropper security of the PSV-ENC scheme to the security that is offered
in front of an adversary who can only get a single encryption of a single block messages, which is
expected to be much simpler to evaluate (see discussion in [27]). Note that, in our analysis below,
we will not need to use any result about the CPA security of PSV-ENC.

8.2 Bounding hash function leakages

The security of the PSV-ENC scheme is going to be helpful for the encryption part of the DTE and
DCE modes, but the first parts of our modes also include the evaluation of a hash function running
on the message to be encrypted, which may in turn leak information about the message and help
win the PrivKlmcpa,b

AL,AE
game: if the implementation of the hash function just leaks its input in full, we

can obviously not hope for any confidentiality. We therefore turn to the definition of our security
assumption about the hash function implementation, before analyzing the DCE and DTE schemes.

We need a bound on the distinguishing probability of an adversary who would see the leakages
resulting from hashing something containing a message m0 and those resulting from hashing some-
thing containing m1. Simply assuming the indistinguishability of leakages on adversarially chosen
m0 and m1 would be way too strong from a physical point of view: if an adversary knows m0 and
m1, he can obtain leakages computed on these two values directly from the hash function imple-
mentation, and compare those leakages with the leakage returned by the challenger. Recognizing if
a leakage matches another leakage seen before is typically an easy task.

Here, the adversary faces a more difficult problem, since he is not able to predict what message
is hashed when he gets leakages to distinguish. More precisely, the adversary may be able to choose
2 messages m0 and m1, but then must to decide the value of b when he gets H(r‖mb), LH(r‖mb) in
return, where r is a fresh unknown random value and LH(x) is the leakage resulting from evaluating
the hash function on x. A simple comparison is now impossible since the value r is unknown.
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Definition 15. A hash function H : R×M→ B with leakage function L is (q, t, ε)-leakage resilient

if, for every (q, t)-bounded adversary AL, the advantage
∣∣∣Hash0AL,H − Hash1AL,H

∣∣∣ is bounded by ε,

where HashbAL,H is defined as the probability that AL outputs 1 when, after a query (m0,m1) ∈M2,

he is returned with the pair (H(r‖mb), L(r‖mb)) with r
$← R.

The observation that we made above about the ease of recognizing leakages has an important
impact on our designs. If we inspect modes that are related to the DCE and DTE modes, like the SIV
mode [34] for instance, we see that SIV can be expected to be very hard to implement securely in
front of an adversary with leakage access: SIV uses an IV that is computed only from a nonce made
public and the message, which offers a convenient oracle to the adversary for matching leakages.
The DCE and DTE schemes address this difficulty by making sure that, while playing the CPA
game, the adversary never fully knows the inputs of the hash function that is being evaluated: we
always add secret randomness in the first place. As an implementation note, we expect that the
leakage-resilience of a hash function (in the sense defined above) will be higher if, when hashing
(r‖m), the block containing the randomness r is processed before the blocks containing the message.
It guarantees that the adversary only sees leakages about a state that he cannot fully predict.

Remark 2. Admittedly, the following results should be understood similarly to the ones in [27],
where it was argued that semantic security is impossible to achieve even if the leakage of an
encryption would be as low as a single bit. So informally, what we show next is that the execution
of our leakage-resilient authentication scheme for many messages does not significantly degrade the
security compared to the situation with a single message. Concretely though, it always remains that
manipulating the message leaks some information that can be exploited via SPA, because of the
initial hashing of Figures 5 and 6 and the stream encryption of Figure 4. In this respect, we note
that further improvements should possible. For example, one could replace the hash function of
Figures 5 and 6 by the re-keying MAC of Figure 1, keep its intermediate PRF computation results,
and then use these intermediates (rather than the message blocks) when encrypting in Figure 4 (so
that the message is only manipulated once during the authenticated encryption). This would also
break some possible correlations between the message and ciphertext blocks (e.g., if the message
has a special structure) due to the fact that the ciphertext blocks are just obtained by XORing
the key stream in Figure 4.8 Again, such a construction would not change the impossibility result
regarding semantic security, but further minimize the amount of leakage available due to message
manipulation. We leave its investigation as an interesting scope for further research.

8.3 LMCPA Security of the DCE and DTE schemes

We start by focusing on the LMCPA security of the DCE scheme. The leakage function L(k, r,m) for
DCE is defined by the pair (LH(r,m), LPSV(k0, r‖m)), where k0 is naturally defined as Fk(H(r‖m)).
The LH component of this leakage contains the leakage occurring during the evaluation of the hash
function in DCE encryption, and the LPSV component contains the leakage of the encryption part
of the DCE as depicted in Fig. 4, which we refer to as the “PSV-encryption component” of DCE.
The LPSV function itself returns leakages that are made of individual leakages by each PRF and
XOR operation, as defined in [27], but this is irrelevant for our analysis.

Theorem 7. Let H : R×M → B be a (0, t, εcr)-collision resistant and (q, t, εLH)-leakage resilient
hash function. Let F be a (q, t, εF)-pseudorandom function. Let DCE be implemented with a PSV-
encryption component that is (q, t, εleavPSV−ENC)-leavsecure.

8 Note that the latter can also be avoided by replacing this XOR by a block cipher.
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Then, DCE with the leakage function L described above is (q′, t′, εlmcpa)-secure. Here: q′ ≤ q −
qe−1 where qe is the number of encryption queries made by the (q′, t′)-bounded LMCPA adversary;
t′ ≤ t1 − tc − tsc, where tc is the running time needed to run the LMCPA challenger in front of
a (q, t′)-bounded adversary, tsc is the time needed to determine whether a list of qe hash values

contains a collision; and εlmcpa ≤ 2 q2e
|R| + 2εcr + 4εF + εLH + εleavPSV−ENC.

Proof. We start by defining Game 0 as the PrivKlmcpa,0
AL,DCE

game.

Game 1 is equal to Game 0, except that we abort if, when processing the queries of AL, the
same randomness r is picked twice. The probability of this event is bounded by q2e/|R|.

Game 2 is equal to Game 1, except that we abort if, when processing the queries of AL, a
collision happens on the hash function, that is, it the adversary provides messages m and m′ such
that, when performing their encryption, it happens that H(r|m) = H(r′|m′) (note that r 6= r′,
because of the failure condition of Game 1). The gap between Game 2 and Game 1 is bounded by
εcr: a collision resistance adversary can run AL and its LMCPA challenger (in time tc, and using
qe + 1 leakage queries), and search for a collision (in time tsc), placing us within the bounds of the
hash function security.

Game 3 is equal to Game 2 except that, for all queries, the challenger replaces the computation
of the key k0 = Fk(h) with the selection of a random key k0

$← B (we assume that this does not
increase its running time). Since the previous failure conditions guarantee that h is always fresh,
the gap between Game 3 from Game 2 is bounded by εF: a PRF adversary can run AL and its
LMCPA challenger (within (qe + 1, tc) bounds), except that it queries the PRF challenger with all
the h values that it computes.

Game 4 is equal to Game 3 except that, during the test query of the LMCPA game, the com-
putation of H(r‖m0) (and the corresponding leakage) is replaced by the computation of H(r‖m1).
Here the probability of distinguishing Game 4 from Game 3 is bounded by εLH: an adversary against
the leakage resilience of H can run AL and its LMCPA challenger (as tweaked in Game 3, and within
(qe +1, tc) bounds), except that it hands the computation of h to the leakage resilient hash function
challenger during the test query.

Game 5 is equal to Game 4 except that, during the test query of the LMCPA game, the selection
of a random k0 (from Game 3) is replaced by the selection of a random h∗ and the computation of
k0 = Fk(h∗). The gap between Game 5 from Game 4 is bounded by εF: a PRF adversary can run AL

and its LMCPA challenger (within (qe + 1, tc) bounds), except that it queries the PRF challenger
with the h∗ value that it computes.

To sum up, at this stage, AL sees:

– During an encryption query: the expected hash and leakage, and an encryption component
encrypting that hash and leakage, but with a randomly chosen k0 (hence independent of the
long-term key k).

– During the test query: the hash and leakage of (r‖m1), followed by a PSV encryption of (r‖m0)
with key k.

The presence of this isolated PSV encryption makes it possible to use the leakage resilient eaves-
dropper security of that scheme.

Game 6 is equal to Game 5 except that, during the test query of the LMCPA game, we encrypt
(r‖m1) instead of (r‖m0). The gap between Game 6 and Game 5 is bounded by εeavPSV−ENC, since we

can build an EAV adversary running AL and the LMCPA challenger (within (qe + 1, tc) bounds),
except that it hands the two messages (r‖m0) and (r‖m1) to the leavchallenger and returns the
corresponding ciphertext to AL.
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Game 7 now hops to the PrivKlmcpa,1
AL,DCE

game by undoing most of the hops that we made before,
introducing the same gaps again, but keeping m1 in place:
– We go back to a uniformly random k0 by undoing the Game 4-5 transform.
– We go back to the selection of random k0’s everywhere to the use of a PRF as in the Game 2-3

transform.
– We stop aborting if the same randomness r is picked twice or if a collision happens in the hash

function, as in the Game 0-2 transforms.
To sum-up we observe that the total gap introduced by our sequence of games is bounded by

2 qe
|R| + 2εcr + 4εF + εLH + εeavPSV−ENC. Besides, none of our reductions requires more leakage function

queries than those needed to run the LMCPA challenger, and time more than the one needed to
run that challenger and look for a collision in the outputs of the evaluation of the hash function
that result from answering the adversary’s queries in the LMCPA game (in Game 2). ut

The leakage-resilient CPA security of the DTE scheme can be shown in an almost identical way.

Theorem 8. Let H : R×M → B be a (0, t, εcr)-collision resistant and (q, t, εLH)-leakage resilient
hash function. Let F be a (2q, t, εF)-pseudorandom function. Let DTE be implemented with a PSV-
encryption component that is (q, t, εleavPSV−ENC)-leavsecure.

Then, DTE with the leakage function L described above is (q′, t′, εlmcpa)-secure. Here: q′ ≤ q −
qe−1 where qe is the number of encryption queries made by the (q′, t′)-bounded LMCPA adversary;
t′ ≤ t1 − tc − tsc, where tc is the running time needed to run the LMCPA challenger in front of
a (q′, t′)-bounded adversary, tsc is the time needed to determine whether a list of qe hash values

contains a collision; and εlmcpa ≤ 2 q2e
|R| + 4 (qe+1)2

|B| + 2εcr + 4εF + εLH + εleavPSV−ENC.

The proof shares almost all features of the one for the DCE scheme, and the handling of ad-
versarial queries is the same. The double use of Fk just loosens the bounds of Thm. 7 by constant
factors, by increasing the probability of collisions and doubling the number of queries that are
needed when replacing the evaluation of F with the selection of random values (which is included
in the tc bound on the challenger running time).

Proof. We only detail the steps that differ from the proof of Thm. 7.
We split Game 3 into two steps, in order to be able to replace the tag τ and key k0 values with

random values. In the first step, we replace Fk with a random function f , bringing an εF gap as
before. In the second step, we replace the evaluation of f by the selection of random values, which
is only equivalent if f is never queried on the same value twice. This is actually the case, except
with probability less than 4(qe + 1)2/|B|. Indeed: a collision between two hashes is precluded by
Games 1 and 2; a collision between two τ values can only happen with probability bounded by
(qe + 1)2/|B| (this upper-bounds the probability of a collision in the range of f invoked on distinct
values); and a collision between a hash and a τ value is also bounded by by (qe + 1)2/|B| (the τ ’s a
selected at random by f , and each of them will collide with one of the qe + 1 distinct hashes with
probability (qe + 1)/B.

In a similar way, we add a step in Game 7, in order to revert the transform above, bringing a
second 2(qe + 1)2/|B| gap. ut

9 Conclusion and open problems

To conclude this paper, we first observe that as in [27], our analyses focused on the leakages occurring
during authenticated encryption, so far excluding the possibility to target a decryption device.
Interestingly, this limitation is very strong in the CCS 2015 leakage-resilient MAC and encryption
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schemes because random IVs are strictly needed for leakage security, and a decryption oracle allows
the adversary to control the IV. As discussed in Section 4.4, contradicting this requirement directly
enables devastating forgery attacks based on a standard DPA. By contrast, our notion of ciphertext
integrity with misuse and leakage aims to mitigate the impact of IV control. So it is natural to
investigate whether it formally rules out any attack against the decryption oracle.

Unfortunately, and despite ciphertext integrity with misuse and leakage indeed rules out many
realistic attacks against a decryption device, our schemes remain susceptible to strong attacks when
the decryption leaks. Taking the example of DTE, we can for example show that it is possible to
forge valid ciphertexts thanks to decryption leakages as follows: (1) Pick a random r and message
m and compute h = H(r‖m). (2) Ask decryption of ciphertext Ci = (τ, ci) with τ = h and a
random ci and recover k0 thanks to leakage. (3) Ask decryption of ciphertext Cj = (τ ′, cj) with
τ ′ = k0 and a random cj and recover k′0 thanks to leakage. (4) From k′0, compute the ciphertext
c produced using the encryption part of DTE from the ephemeral key k′0, the random r and the
message m, so that C = (k0, c) is valid (and has decryption m). A completely similar attack can be
done for DCE. As in Section 6, this attack is admittedly more challenging than the standard DPAs
against the CCS 2015 building blocks. Yet, as in Section 6, it is also impossible to argue why such
attacks should not be covered by our threat model. So we conclude our work by observing that
the DTE and DCE authenticated and encryption schemes make a small step in making side-channel
attacks targeting their decryption leakages less devastating in practice. And we leave the design
of authenticated encryption modes that further minimize the attack surface against decryption
devices as an interesting scope for further research.

Eventually, and quite independently to the previous challenges regarding how to design good
modes of operation mitigating randomness misuse and leakage, the question of how to implement
the leak-free component F∗ is of course another important challenge. In this respect, we note that
besides the protection of standard block ciphers with countermeasures such as noise addition,
masking and shuffling, some alternatives are worth further investigation. One is simply to design
block ciphers that are easier to protect against side-channel analysis (see for example [11,12,29] and
follow-up works). Another option is to consider specialized constructions of leakage-resilient PRFs
that overcome the hardness of protecting stateless primitives discussed in [5], by relying on other
(non-standard) assumptions. For example, a CHES 2012 proposal in this direction assumes that
the leakage of the different S-boxes in a block cipher are similar [21], and an ASIACRYPT 2016
paper investigates the use of unknown plaintexts for similar purposes [22]. A third possibility is to
exploit ideas from the fresh-rekeying literature [20,19,7]. In particular, the recent construction from
CRYPTO 2016 that mixes the efficiency advantages of a re-keying function enjoying (almost) key-
homomorphism with the formal security guarantees of a wPRF [9] appears as a natural candidate
to combine with the leakage-resilient authenticated encryption in this paper.
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A Alternative PSV constructions

Pereira et al. also proposed the hash then MAC construction informally pictured in Figure 7,
leading to the authenticated encryption scheme outlined in Figure 8. It is easy to see that the
attack of Section 4.4 applies nearly identically to this construction. Namely, and first considering
the a single-key variant, the adversary will first recover k′0 via a DPA attack. Then, he will choose a
message m′ and compute a tag τ . The only difference is that this time, he cannot force the second
ephemeral key k0 to be identical to k′0 since it would require that τ = r which implies finding a
preimage to the hash function. Yet, what he can easily do is to use again the leakage of his leaking
device, by setting the random coin r at τ , and to perform a second DPA against the output of the
first leak-free block cipher, which this time will leak k0 and allow forging valid ciphertexts. As for
the 2-key variant, an SPA attack against the second ephemeral key k0 is the easiest option.

Fig. 7. PSV-MAC’ leakage-resilient MAC [27].

Fig. 8. PSV-AE’ leakage-resilient AE (part I).
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