
Efficient Commitments and Zero-Knowledge
Protocols from Ring-SIS with Applications to

Lattice-based Threshold Cryptosystems

Carsten Baum1, Ivan Damg̊ard1, Sabine Oechsner1, and Chris Peikert2

1 Department of Computer Science, Aarhus University
{cbaum, ivan, oechsner}@cs.au.dk

2 Department of Computer Science and Engineering, University of Michigan
cpeikert@umich.edu

Abstract. We present an additively homomorphic commitment scheme
with hardness based on the Ring-SIS problem. Our construction is sta-
tistically hiding as well as computationally binding and allows to commit
to a vector of ring elements at once.
We show how to instantiate efficient zero-knowledge protocols that can
be used to prove a number of relations among these commitments, and
apply these in the context of lattice-based threshold cryptosystems: we
give a generic transformation that can be used with certain (Ring-)LWE-
based encryption schemes to make their algorithms actively secure. We
show how this transformation can be used to implement distributed de-
cryption with malicious security as well as maliciously secure threshold
key generation in an efficient way.

1 Introduction

Since Regev [Reg05] introduced the LWE problem and demonstrated its connec-
tion to lattice problems, lattice-based cryptography has developed and matured
rapidly. As its development continues, it becomes more and more important to
have a full set of efficient tools and protocols based on the hardness of it. This
is particularly necessary as it currently is one of the promising candidates as
a potential post-quantum replacement for the discrete logarithm problem and
factoring. Therefore, it is of importance to construct standard cryptographic
primitives such as encryption or commitment schemes based on it, plus compan-
ion protocols such as zero-knowledge proofs or threshold key generation.

Commitment schemes [Blu82] are a key tool in the design of cryptographic
protocols and have countless applications. In particular, when combined with
zero-knowledge proofs, they allow to enforce “good” behavior by adversarial
parties and make the design of protocols secure against malicious attacks eas-
ier. A prime example where these can be used is in the context of lattice-
based threshold encryption schemes [DF89], where multiple parties collaborate
to generate a public/private key pair or decrypt ciphertexts using an interactive
protocol. Such encryption schemes are applied e.g. in the SPDZ MPC proto-
col [DPSZ12,DKL+13], where Damg̊ard et al. used a variant of the cryptosystem



from [BV11,BGV12] in their preprocessing protocol. However, in [DPSZ12], the
question of key generation was avoided by assuming that a common public key
and shares of the corresponding secret key were already in place (due to the
lack of an efficient, actively secure protocol). [DKL+13] gave a key generation
procedure, but it was only covertly secure. As for distributed decryption, both
papers used a simple semi-honestly secure solution: decryption might produce an
incorrect output when players cheat, and the surrounding protocol has to check
this output and catch any errors later. This error checking leads to additional
overhead in both computation and communication, which is unsatisfying.

This clearly leaves several problems open: first, we would like to have mali-
ciously secure distributed key generation protocols that are efficient and avoid
the use of generic zero-knowledge techniques. Second, we would like to have dis-
tributed key generation protocols that do not have to rely on external checks for
malicious security.

In this paper we will therefore be interested in constructing commitment
schemes based on lattice-related problems such as the Ring-SIS problem and
efficient zero-knowledge protocols for proving relations on committed values.
Loosely speaking, in the Ring-SIS problem, one is given a number of elements
a1, . . . , am in a ring and the goal is to find ring elements x1, . . . , xm such that
x1a1 + · · · + xmam = 0 under the constraint that the xi’s must be “small” (in
some appropriate sense that we explain in more detail later).

There are several earlier works in this area: Kawachi et al.’s work about
identification schemes [KTX08] presents a string commitment scheme based on
the SIS assumption, where one commits to vectors over Zq. However, the message
space is restricted to vectors of small norm; otherwise, the binding property is
lost. This restriction causes problems in the applications we are interested in:
for instance, if a player wants to prove (efficiently) that he has performed an
encryption or decryption operation correctly in a cryptosystem that uses the ring
Zq, one typically requires a commitment scheme that is linearly homomorphic
and can commit to arbitrary vectors over Zq rather that only short ones.

In [JKPT12], Jain et al. proposed a commitment scheme where the hiding
property is based on the Learning Parity with Noise (LPN) assumption, a variant
of the LWE assumption. They also constructed zero-knowledge proofs to prove
general relations on bit strings. A generalization of [JKPT12] was proposed by
Xie et al. [XXW13]. Their work presents a commitment scheme that is based
on Ring-LWE instead of LPN, and they build Σ-protocols from it. Further Σ-
protocols based on (Ring-)LWE encryption schemes were presented by Asharov
et al. [AJL+12] and Benhamouda et al. [BCK+14].

A main problem with all these previous schemes is that the zero-knowledge
proofs had a non-negligible soundness error and hence one needs many iterations
to have full security.

However, in [BKLP15], a commitment scheme, as well as companion zero-
knowledge protocols were constructed with much better efficiency: one can com-
mit to a vector over finite field Fq resulting in a commitment that is only a
constant factor larger than the committed vector. Furthermore, they gave pro-

2



tocols for proving knowledge of a committed string as well as proving linear and
multiplicative relations on committed values. These are efficient in the sense that
the soundness error is negligible already for a single iteration of the protocol.
The commitments are unconditionally binding and computationally hiding, and
the underlying assumption is Ring-LWE over Fq[x]/(xN + 1), where q is a prime
congruent to 3 modulo 8 and N is a power of two.

In [BKLP15], it was not worked out in detail how this might be used for
key generation or decryption, so we cannot comment on the exact efficiency
one would get from using these tools, but it is reasonable to expect that this is
possible and that one could do much better than with the previous “generation”
of commitments and protocols. On the other hand, there are also some natural
open questions:

First, can we also get the other flavor of commitments, that is, statistical
hiding and computational binding and second, since [BKLP15] uses a rather
specialized ring, can we get more general results and also perhaps be able to
use other lattice-related assumptions? A natural candidate here is the Ring-SIS
problem as mentioned above.

1.1 Our Contributions

In this paper, we make the following contributions (where Rq = Fq[x]/(f(x))
with f(x) of degree N).

1. We propose a commitment scheme that allows to commit to an N -vector over
Fq, or equivalently, an element in Rq. A commitment consists of two elements
from Rq. The scheme is statistically hiding and computationally binding if
the Ring-SIS problem over Rq is hard. The scheme works for a class of rings
that include the ones from [BKLP15] as a special case. Furthermore, the
scheme can be extended to allow commitments to a vector of elements from
Rq.

2. We give (honest-verifier) zero-knowledge protocols for proving knowledge of
committed values, and for linear relations on committed values. The proto-
cols achieve negligible soundness error in one iteration, and the communica-
tion overhead for doing a proof (compared to just sending the commitment)
is only a logarithmic factor (in the security parameter). Finally, we give a
protocol for proving that a committed value is short. This one does not have
negligible soundness error, but it can be made efficient in an amortized sense
using recent work by Baum et al. [BDLN16]. We note that [BKLP15] also
did not have a one-shot efficient shortness proof.

3. We show how to use these tools to build maliciously secure threshold key
generation and decryption protocols for a class of LWE-based cryptosystems.
The communication overhead of the distributed decryption (compared to just
sending the ciphertext) is a logarithmic factor (in the security parameter),
when the cost is amortized over several decryptions. The amortization comes
in as follows: the parties need to generate some special committed values that
do not depend on the actual ciphertexts to decrypt later. The cost of this is

3



cheap when amortized over many values. But once this is done, the parties
can decrypt a number of ciphertexts, and each such decryption will be cheap,
even if they must be done one at a time.

In comparison to [BKLP15], the most relevant previous work, we have achieved
the other flavor of commitments with similar efficiency but smaller expansion
factor (2 versus at least 3). Our underlying computational problem is different
(Ring-SIS versus Ring-LWE). Moreover, we have a more general class of rings
we can work with, which potentially weakens the assumption we have to make -
it is enough that one of the families of rings in our class will work.

On the technical side, we make use of the observation that the function defin-
ing the SIS problem can be seen both as a collision intractable hash function
(if the SIS problem is hard) and as a universal hash function (if the underly-
ing ring is chosen appropriately). The committer therefore chooses a random
input r and gives away the image of r under one instance of the function so r
effectively is fixed. And then he also applies another instance of the function to
extract randomness that is used as a one-time pad on the message to commit
to. On a very high level this idea goes back to [DPP93]. What distinguishes our
construction is that the same type of SIS function can play both roles and this
gives nice algebraic properties for the commitment scheme and hence efficient
zero-knowledge protocols. We also borrow an idea from [BKLP15] of relaxing the
condition for valid opening of a commitment, in return for a better soundness
error probability in our protocols.

2 Preliminaries

In this paper, we will make use of the rings R = Z[x]/(f(x)) and Rq = R/qR =
Fq[x]/(f(x)), where f(x) ∈ Z[x] is a monic irreducible polynomial of degree N ,
and q is a prime integer. We will base security on the Ring-SIS problem (defined
below) for these parameters, and note that the choice of f(x) may affect how
hard the problem is. We discuss later concrete suitable choices of f(x).

We identify R with its set of standard representatives, namely, integer poly-
nomials of degree less than N . This leads to the standard “coefficient” norm,
defined as ||r0 + r1x+ · · ·+ rN−1x

N−1||∞ = maxi{|ri|}.
We extend this norm to vectors over R in the usual way: ||(r1, . . . , rm)||∞ =

maxi{||ri||∞}.
We define deg(r), the degree of an element in r ∈ R to be the degree of

its minimal degree representative in Z[x]. We extend the definition of degree to
vectors as follows: for r = (r1, . . . , rm) ∈ Rm, deg(r) = maxi{deg(ri)}.

We note that we can make Rq be an R-module in a natural way (using the
fact that Fq is a Z-module), so for any a ∈ R, b ∈ Rq, a · b is in Rq.

Definition 1. The ring Rq = R/qR is (D, γD, dR)-commitment friendly if there
is a subset D ⊆ R such that for any c ∈ D and r ∈ R with deg(r) < 2dR, we
have ||c · r||∞ ≤ γD||r||∞. Furthermore, for any d, d′ ∈ D it holds that d − d′ is
invertible modulo q, and deg(d) < dR.

4



Looking ahead, we will use values in D as challenges sent by the verifier in
our protocols, and we will choose randomness for our commitments using r ∈ R
with small norm ||r||∞ and deg(r) < dR. It will be important that multiplying
such an element by a challenge (even twice, it turns out) does not enlarge its
norm by too much. By limiting the degrees, we avoid reductions modulo f(x),
which further controls the norms of the products.

We will assume throughout that one can efficiently check membership in D
and invert (nonzero) differences modulo q. For convenience, we will write ele-
ments from D with sans-serif throughout, e.g., f ∈ D.

2.1 The Ring-SIS Problem

In the Ring-SIS problem parameterized by a ring R, integer modulus q, and norm
bound u < q, one is given a uniformly random vector a = (a1, . . . , am) ∈ Rmq as
input, and the goal is to find a nonzero vector s ∈ Rm such that a · s = 0 ∈ Rq
and ||s||∞ ≤ u.

Whether this is hard depends of course on the parameters and clearly gets no
harder as u increases. But the choice of ring R is also important; in particular,
the polynomial used for constructing R matters.

One can think of a as the specification of a hash function which is collision
intractable if the Ring-SIS instance a is hard. Specifically, the function sends an
input vector v ∈ Rm of norm at most u/2 to a · v ∈ Rq. For any collision, the
difference between the colliding inputs trivially gives a Ring-SIS solution.

3 Commitment Scheme

We start by some intuition: in [DPP93], a simple construction of a commitment
scheme was proposed based on any collision intractable hash function h. To
commit to a bit string x, one chooses a random (sufficiently long) string r, and
the commitment is defined as (h(r), φ, φ(r) ⊕ x), where φ is a universal hash
function. The idea was that by collision intractability, the committer cannot
change his mind about r and hence not about x either. It is hiding by the
randomness extraction property of φ: if r is long enough compared to h(r), then
φ(r) is essentially uniform and masks x.

One can now observe that the “Ring-SIS function” defined by a ∈ Rmq that
sends a short vector r to a·r can be thought of as a collision intractable function.
However, the same type of function can also be used as a randomness extractor
by choosing suitable parameters. The intuition behind our scheme is therefore
to instantiate the idea from [DPP93] using instances of the Ring-SIS function
over Rq for both h and φ.

However, in contrast to standard instantiations of [DPP93], both functions
are defined over the same polynomial ring and this gives the scheme some nice
algebraic properties. It turns out that we can use these for constructing efficient
zero-knowledge protocols for the scheme.

5



We can now describe the commitment scheme we propose in its most general
form. Fig. 1 gives an overview of the parameters of the scheme. We leave open
the concrete choice of the underlying ring as well as the distribution with which
the randomness is chosen. In Section 5, we make suggestions for these and argue
that computational binding is likely to hold.

– KeyGen: The public commitment key is the specification of a (D, γD, dR)-
commitment friendly ring Rq, a uniformly random matrix A ∈ R2×m

q and
constants γ > 1 and β such that γNmβγ2D < q. Finally, we assume that a
distribution D is given that will output vectors in Rm. It is required that any
vector that can be produced with non-zero probability has norm at most β
and degree less than dR (we specify this distribution in Section 5).

– Commit: To commit to a message x ∈ Rq, draw a r ∈ Rm, according to D
(so ||r||∞ ≤ β and deg(r) < dR), and compute

Com(x; r) := Ar +
(
0
x

)
.

– Open: A valid opening of a commitment c is a 3-tuple: x ∈ Rq, r ∈ Rm, and
f ∈ D. The verifier checks that

Ar +
(

0
fx

)
= fc,

and that ||r||∞ ≤ γNmβγD,deg(r) < 2dR.

We will often omit the choice of randomness and write C(x) or C(x; r) instead
of Com(x; r).

Note that an honest committer can always open by letting f = 1, and would
always have its value of r be shorter than γNmβγD, namely it would have norm
at most β. We only allow for these relaxed conditions in order to get soundness
and zero-knowledge for the protocols we propose in Section 4: we will only be
able to guarantee that a dishonest prover can open his values using f-values that
are (possibly) not 1, and r-values that are somewhat longer than β. This is fine,
as long as the scheme is still binding under the relaxed condition, as indeed we
show below.

3.1 Security

We will now show properties of our commitment scheme. The first lemma shows
that breaking the binding property implies one can solve the Ring-SIS problem
over Rq. The second lemma shows that the commitment scheme is statistically
hiding.

Lemma 1 (Binding Property). From a commitment c and correct openings
r, f, r′, f ′ to two different messages x, x′, one can efficiently compute a solution
s with ||s||∞ ≤ 2Nmγβγ2D to the Ring-SIS problem instance defined by the top
row of A.

6



Parameter Explanation

f(x) Monic irreducible integer polynomial defining R = Z[x]/(f(x))

q Prime integer defining Rq = R/qR = Fq[x]/(f(x))

N Degree of f

D Special subset of R, used for challenges

γD Norm expansion factor when multiplying by a challenge

dR Max degree of ring elements used for randomness in proofs

A Public matrix over Rq

γ Constant that regulates the abort probability

D Distribution of honest prover’s randomness for commitments

β Norm bound for honest prover’s randomness

m Dimension (over Rq) for the SIS problem

λ, κ Computational/statistical security parameter

Fig. 1. Overview of Parameters.

Proof. Let c and x, r, f and x′, r′, f ′ be as assumed in the lemma. Then

A(f ′r) +
(

0
ff ′x

)
= ff ′c = A(fr′) +

(
0

ff ′x′
)

and so
A(f ′r − fr′) =

( 0
ff ′(x−x′)

)
.

Since x − x′ 6= 0 and the actions of both f, f ′ are invertible, we have ff ′(x −
x′) 6= 0. Then it must be that also f ′r − fr′ 6= 0 since otherwise the above
equation would be false. Hence we have found a solution f ′r−fr′ to the Ring-SIS
problem instance defined by the top row of A. Furthermore, by the definition of a
commitment friendly ring, the norms of f ′r and fr′ are at most (NmγβγD) · γD
and hence f ′r− fr′ has norm at most 2Nmγβγ2D by the triangle inequality. ut

Lemma 2 (Hiding Property). Assume the distribution D and that Rq, m
are chosen such that 1) the min-entropy of a vector drawn from D is at least
2 log |Rq| + κ where κ is a (statistical) security parameter, and 2) the class of
functions {fa | a ∈ Rmq } where fa(r) = a · r is universal when mapping the
support of D to Rq. Then the scheme is statistically hiding.

Proof. Note that a commitment gives the adversary log |Rq| bits of information
on r, namely the dot product of r with the top row a0 of A. So even given this
dot-product we have log |Rq| + κ bits of randomness left in r. Let a1 be the
bottom row of A. Then from the assumptions and the left-over hash lemma, it
follows that fa1(r) is statistically close to random, even given a0 · r and so the
scheme is indeed statistically hiding. ut

Later, when we propose concrete instantiations of Rq in Section 5, we will have
to argue that the condition in the lemma is in fact satisfied.

7



3.2 Extension to message vectors

The commitment scheme can be extended to allow committing to vectors x ∈ Rkq
(for constant k) by modifying it in the following way:

– KeyGen: Output a (D, γD, dR)-commitment friendly ring Rq, a uniformly

random matrix A ∈ R(k+1)×m
q , constants γ > 1 and β such that γNmβγ2D <

q, and a distribution D that will output vectors in Rm. The same restrictions
on D as before apply.

– Commit: To commit to a message x ∈ Rkq , draw a r ∈ Rm, according to D
(so ||r||∞ ≤ β and deg(r) < dR), and compute

Com(x; r) := Ar +
(
0
x

)
.

– Open: A valid opening of a commitment c is a 3-tuple: x ∈ Rkq , r ∈ Rm, and
f ∈ D. The verifier checks that

Ar +
(

0
fx

)
= fc,

and that ||r||∞ ≤ γNmβγD,deg(r) < 2dR.

The security properties of the extended commitment scheme remain similar:

Lemma 3 (Binding Property). From a commitment c and correct openings
r, f, r′, f ′ to two different message vectors x,x′, one can efficiently compute a
solution s with ||s||∞ ≤ 2Nmγβγ2D to the Ring-SIS problem instance defined by
the top row of A.

Lemma 4 (Hiding Property). Assume the distribution D and that Rq, m
are chosen such that 1) the min-entropy of a vector drawn from D is at least
(k+ 1) log |Rq|+κ where κ is a (statistical) security parameter, and 2) the class
of functions {fa | a ∈ Rmq } where fa(r) = a · r is universal when mapping the
support of D to Rq. Then the scheme is statistically hiding.

The binding and hiding property follow by the same arguments as in Lemma 1
and Lemma 2, respectively.

For the sake of readability, we will use the commitment scheme throughout
this paper only to commit to single ring elements x ∈ Rq.

4 Zero-Knowledge Proofs

In this section, we describe Σ-protocols that can be constructed for our com-
mitment scheme. The protocols use rejection sampling as introduced by Lyuba-
shevsky [Lyu08,Lyu09] to hide the randomness of the public commitment. Fur-
thermore, the protocols use an auxiliary commitment scheme Caux to hide the
content of the first message from the verifier and thereby enforce the right chal-
lenge distribution. We can use our own commitment scheme for this, but we still
use the notation Caux to make the presentation clearer.

8



Our protocols will have slightly weaker properties than usually considered
for Σ-protocols, but this does not affect their usefulness in practice: We get
statistical honest verifier zero-knowledge rather than perfect, and we get com-
putational soundness rather than perfect, in the sense that a prover who can
answer two different challenges must either know the witness we want him to
know, or he can break the binding property of Caux. All protocols, except the
one for proving bounds (ΠBound), have soundness error 1/|D|, which will turn
out to be negligible for the instantiations we give in Section 5. Moreover, for all
our instantiations, the communication complexity is dominated by the size of
the prover’s last message, which will be O(N log(q) log(N log q)) bits. Note that
a commitment is of size O(N log q) bits, so doing the protocols adds very little
asymptotic overhead.

In Section 4.6 we discuss ways in which we can make our protocols be zero-
knowledge against a dishonest verifier. Note that this is not obvious (even using
rewinding), when the challenge space is large.

4.1 Proof for Opening a Commitment

Suppose the prover has published c = C(x; r) and claims to know a valid open-
ing. Then consider the following protocol to prove this:

Protocol ΠOpen

1. The prover computes a commitment t = C(µ;ρ), where µ and ρ are cho-
sen uniformly from Rq and Rm, respectively, subject to ||ρ||∞ ≤ (1 +
(γNm)/2)βγD and deg(ρ) < 2dR, and sends caux = Caux(t) to the veri-
fier.

2. The verifier sends a random challenge d ∈ D.
3. The prover first checks that d is a valid challenge. The prover’s goal is then

to open t+ dc to z = µ+ dx, rz = ρ+ dr (it is understood that f = 1). The
protocol is aborted if ||rz||∞ > (γNm)/2 · βγD. Otherwise, the prover sends
to the verifier z, rz, and opening information uaux for the commitment caux.

4. The verifier checks that uaux is valid, that C(z; zr) = t+ dc, that ||rz||∞ ≤
(γNm)/2 · βγD and that deg(rz) < 2dR.

We now look at the properties of this protocol.

Lemma 5 (Completeness). The verifier always accepts an honest prover when
ΠOpen does not abort. The probability of abort is at most 2/γ.

Proof. An honest prover can clearly answer correctly for any challenge d and
hence an honest verifier will always accept if the protocol did not abort. Re-
call that an element in Rq can be thought of as a polynomial with at most N
coefficients and the vector rz is therefore defined by a total of at most Nm co-
efficients. Since Rq is commitment friendly, coefficients in dr have norm at most
βγD, the probability that a single coefficient will cause an abort is

p =
2βγD

2(1 + γNm/2)βγD + 1
≤ 2

γNm
(1)

9



and hence the probability that some coefficient causes an abort is at most 2/γ
by the union bound. ut

Lemma 6 (Special Soundness). On input commitment c and a pair of trans-
cripts for ΠOpen (caux, d, (uaux, t, z, rz)), (caux, d

′, (u′aux, t
′, z′, r′z)) where d 6= d′,

we can extract either a witness for breaking the auxiliary commitment scheme,
or a valid opening of c.

Proof. We first note that if t 6= t′ in the input information, this breaks binding
for the auxiliary scheme (of course one expects that this occurs with negligible
probability). Otherwise t = t′, and one can compute the message contained in
c as x = f−1(z − z′) where f = d − d′ and is indeed invertible since Rq is
commitment-friendly. We set the randomness to be r = rz − r′z.

This works since if we subtract the two equations the verifier would check in
the two transcripts, we obtain

(d− d′)c = A(rz − r′z) +
(

0
z−z′

)
,

which by definition of f and rµ can be rewritten to

fc = Ar +
(

0
fx

)
.

So the opening information we obtain is x, f, rz − r′z. Note that indeed, ||r||∞ ≤
γNmβγD and deg(r) < 2dR as required. ut

Lemma 7 (Honest-verifier zero-knowledge). Executions of ΠOpen with an
honest verifier can be simulated with statistically indistinguishable distribution.

Proof. The probability that a single coefficient in the prover’s randomness causes
an abort is p, as defined in Equation (1), p clearly does not depend on any of
the prover’s secrets. The prover aborts if any of the coefficients causes an abort,
so the overall abort probability is pabort = 1− (1− p)T where T = 2dRm is the
number of coefficients used in rz.

Therefore, on input c, the simulator first decides to simulate an aborting
conversation with probability pabort. In this case, the simulator just outputs
Caux(t) for an arbitrary value t of the same length as a basic commitment.

Otherwise, to simulate an accepting conversation, draw a random d from D
and a random rz subject to ||rz||∞ ≤ (γNm)/2 · βγD, deg(rz) < 2dR. Finally,
set t = C(z; zr)− dc, and commit to t using the auxiliary commitment scheme.
As for correctness of output distribution, note that aborting and non-aborting
conversations occur with the correct probabilities. The aborting conversations
have statistically indistinguishable distribution by hiding of the auxiliary scheme.
The non-aborting ones have exactly the right distribution since the last two
messages are directly chosen with the correct distribution and the first follows
from the last two. To this end, note that since dr has degree less than 2dR and
norm at most βγD, the choice of ρ completely randomizes rz = ρ + dr in the
non-aborting case. This follows exactly as in [Lyu09]. ut

10



4.2 Proof for Opening to a Specific Message.

The protocol ΠOpen demonstrates that the prover knows how to open a com-
mitment to some message, without revealing the randomness. An easy variant,
which we will call ΠOpen-x, can be used to show that the prover can open c to a
specific message x: First we observe that is enough to show that a commitment
can be opened to 0, since one can use that protocol on input c− (0, x).

Now, to prove that a commitment can be opened to 0, execute ΠOpen, with
the following change: µ is always set to 0. As a result, z = 0 and the verifier checks
that this is indeed the case. It trivial to show completeness, special soundness
and honest verifier zero-knowledge for this protocol, and we leave this to the
reader.

4.3 Proof of Linear Relation

Suppose that the prover has published two commitments c1 = C(x1; r1), c2 =
C(x2; r2) and claims that x2 = g(x1) for a linear function g. Then consider the
following protocol for proving that two commitments contain linearly related
vectors:

Protocol ΠLin

1. The prover computes commitments t1 = C(µ1;ρ1), t2 = C(µ2;ρ2) where
µ1,ρ1,ρ2 are chosen uniformly from Rq and Rm, resp., subject to ||ρ1||∞,
||ρ2||∞ ≤ (1 + (γNm)/2)βγD and deg(ρ1),deg(ρ2) < 2dR. Furthermore,
set µ2 = g(µ1). The prover then sends commitments caux,1 = Caux(t1),
caux,2 = Caux(t2) to the verifier.

2. The verifier sends a random challenge d ∈ D.
3. The prover first checks that d is a valid challenge. The prover’s goal is to open
t1 + dc1 to z1 = µ1 + dx1 and rz1 = ρ1 + dr1, and t2 + dc2 to z2 = µ2 + dx2
and rz2 = ρ2 + dr2. The protocol is aborted if ||rz1 ||∞ > (γNm/2)βγD
or ||rz2 ||∞ > (γNm/2)βγD. Otherwise, the prover sends to the verifier z1,
rz1 , z2, rz2 , and opening information uaux,1 and uaux,2 for the commitments
caux,1 and caux,2.

4. The verifier checks that uaux,1, uaux,2 are valid, that C(z1; rz1) = t1+dc1 and
C(z2; rz2) = t2+dc2, that g(z1) = z2, that ||rz1 ||∞, ||rz2 ||∞ ≤ (γNm/2)βγD,
and that deg(rz1),deg(rz2) < 2dR.

We now look at the properties of the protocol. The proof is in Appendix A.

Lemma 8. The protocol ΠLin has the following properties:

– Completeness: The verifier always accepts an honest prover when the protocol
does not abort. The probability of abort is at most 4/γ.

– Special Soundness: On input two commitments c1, c2 and a pair of trans-
cripts ((caux,1, caux,2), d, (uaux,1, uaux,2, t1, t2, z1, z2, rz1 , rz2)),
((caux,1, caux,2), d′, (u′aux,1, u

′
aux,2, t

′
1, t
′
2, z
′
1, z
′
2, r
′
z1 , r

′
z2)) where d 6= d′, we

can extract either a witness for breaking the auxiliary commitment scheme,
or valid openings of c1 and c2.

11



– Honest-verifier zero-knowledge: Executions of protocol ΠLin with an honest
verifier can be simulated with statistically indistinguishable distribution.

4.4 Proof of Sum

Suppose that the prover has published three commitments c1 = C(x1; r1), c2 =
C(x2; r2), c3 = C(x3; r3) and claims that x3 = α1x1 + α2x2 where α1, α2 ∈ Rq
are public constants.

Protocol ΠSum

1. The prover draws uniform µ1, µ2 from Rq and ρi (i ∈ {1, 2, 3}) from Rm

subject to ||ρi||∞ ≤ (1 + (γNm)/2)βγD and deg(ρi) < 2dR, and sets µ3 =
α1µ1 + α2µ2. He then computes ti = C(µi;ρi) and caux,i = Caux(ti) (i ∈
{1, 2, 3}). Finally, the prover sends caux,i to the verifier.

2. The verifier sends a random challenge d ∈ D.
3. The prover first checks that d is a valid challenge. The prover’s goal is then

to open ti + dci to zi = µi + dxi and rzi = ρi + dri. The protocol is aborted
if ||rzi ||∞ > (γNm/2)βγD. Otherwise, the prover sends to the verifier zi,
rzi , and opening information uaux,i for the commitments caux,i.

4. The verifier checks that uaux,i are valid, that C(zi; rzi) = ti + dci, that
z3 = α1z1 +α2z2, that ||rzi ||∞ ≤ (γNm/2)βγD, and that deg(ρi) < 2dR for
i ∈ {1, 2, 3}.

Lemma 9. The protocol ΠSum has the following properties:

– Correctness: The verifier always accepts an honest prover when the protocol
does not abort. The probability of abort is at most 6/γ.

– Special soundness: On input α1, α2, three commitments c1, c2, c3 and a pair
of transcripts ((caux,i)i∈{1,2,3}, d, (uaux,i, ti, zi, rzi)i∈{1,2,3}),
((caux,i)i∈{1,2,3}, d

′, (u′aux,i, t
′
i, z
′
i, r
′
zi)i∈{1,2,3}) where d 6= d′, we can extract

either a witness for breaking the auxiliary commitment scheme, or valid open-
ings of c1, c2, c3.

– Honest-verifier zero-knowledge: Executions of protocol ΠSum with an honest
verifier can be simulated with statistically indistinguishable distribution.

Proof. An honest prover can clearly answer correctly for any challenge d and
hence an honest verifier will always accept if the protocol did not abort. Since
each coefficient of dri has norm at most βγD, the probability that a single coef-
ficient of rzi will cause an abort is

2βγD
2(1 + γNm/2)βγD + 1

≤ 2

γNm
.

Hence the probability that some coefficient of one of the rzi causes an abort is
at most 3 · 2/γ by the union bound.

The proof of special soundness is similar to that of Lemma 6. If we cannot
break the auxiliary commitment scheme, then by the same argument, we can

12



assume that ti = t′i. In this case, one can compute the messages contained in
ci as xi = f−1(zi − z′i), where f = d − d′ and f is again invertible. Then set the
randomness ri = rzi − r′zi .

For honest-verifier zero-knowledge, first note that the probability pabort that
an abort occurs in the protocol is independent of the prover’s secret (cf. Lemma 7).
But it is well-defined from the parameters β, γ,N and m. Therefore, on input ci,
the simulator first decides to simulate an aborting conversation with probability
pabort. In this case, the simulator just outputs Caux(ti) for arbitrary values ti of
the same length as a basic commitment.

Otherwise, to simulate an accepting conversation, draw a random d from D
and random z1, z2, rzi subject to ||rzi ||∞ ≤ (γNm)/2·βγD. Set z3 = α1z1+α2z2.
Finally, set ti = C(zi; rzi)− dci, and commit to ti using the auxiliary commit-
ment scheme. As for correctness of output distribution, note that aborting and
non-aborting conversations occur with the correct probabilities. The aborting
conversations have statistically indistinguishable distribution by hiding of the
auxiliary scheme. As argued in the proof of Lemma 7, the non-aborting ones
have exactly the right distribution since the last two messages are directly cho-
sen with the correct distribution and the first follows from the last two. ut

4.5 Proving Bounds

Suppose that the prover has published a commitment c = C(x; rx) and claims
that the norm of x is small. The idea is to add a short random value µ to x and
check whether the sum is sufficiently short. Since the challenge has to be taken
into account as well, we can only allow for small challenges, i.e. we restrict the
challenge space here to {0, 1}. This of course increases the soundness error. The
protocol can be made efficient in an amortized sense using recent work of Baum
et al. [BDLN16] and Cramer and Damg̊ard [CD16].

Let βx be an upper bound on the norms of all possible x and βr an upper
bound on the norm of the possible µ, where βr ≥ γxNβx for γx > 0.

Protocol ΠBound

1. The prover computes a commitment t = C(µ;ρ) for uniform µ ∈ Rq and
ρ ∈ Rm subject to ||µ||∞ ≤ βx(1 + γxN/2), ||ρ||∞ ≤ (1 − γNm/2)β and
deg(ρ) < 2dR, and sends caux = Caux(t) to the verifier.

2. The verifier sends a random challenge bit d ∈ {0, 1}.
3. The prover first checks that d is a valid challenge. The prover’s goal is then

to open t + dc to z = µ + dx and zr = ρ + dr. The protocol is aborted if
||z||∞ > γxNβx/2 or ||rz||∞ > (γNm/2)β. Otherwise, the prover sends to
the verifier z, rz, and opening information uaux for the commitment c.

4. The verifier checks that uaux is valid, that C(z; rz) = t + dc, that ||z||∞ ≤
(γxNβx/2), that ||rz||∞ ≤ (γNm/2)β, and that deg(ρ) < 2dR.

We now look at the properties of ΠBound. The proof is in Appendix A.

Lemma 10. The protocol ΠBound has the following properties:

13



– Correctness: The verifier always accepts an honest prover when the protocol
does not abort. The probability of abort is at most 2/γ + 2/γx.

– Special soundness: On input commitment c and a pair of transcripts
(caux, d, (uaux, t, z, rz)), (caux, d

′, (u′aux, t
′, z′, r′z)) where d 6= d′, we can ex-

tract either a witness for breaking the auxiliary commitment scheme, or a
valid opening of c where the message x has norm at most γxNβx.

– Honest-verifier zero-knowledge: Executions of protocol ΠBound with an honest
verifier can be simulated with statistically indistinguishable distribution.

4.6 Achieving Zero-Knowledge for Dishonest Verifiers

One easy way to have our protocols be zero-knowledge against dishonest verifiers
is if a trusted source of random bits is available (which can be implemented via a
coin-flipping protocol). One gets the challenge from this source and then clearly
honest-verifier zero-knowledge is sufficient.

A different approach is possible if a trapdoor commitment scheme Ctrap is
available, where commitments in this scheme can be equivocated if the trapdoor
is known. Then we can transform each of our protocols to a new one that is
zero-knowledge: The prover commits to the first message a using Ctrap, gets
the challenge d and then opens Ctrap(a) and answers d. If the simulator knows
the trapdoor, it can make a fake commitment first. Once d arrives, it runs the
simulation and equivocates the initial commitment to the value of a that it
wants.

5 Instantiations of the Commitment Scheme and
Commitment-Friendly Rings

In this section, we make some suggestions for a concrete construction of commitment-
friendly rings and for parameter choices. We recall the definition:

Definition 2. The ring Rq = R/qR is (D, γD, dR)-commitment friendly if there
is a subset D ⊆ R such that for any c ∈ D and r ∈ R with deg(r) < 2dR, we
have ||c · r||∞ ≤ γD||r||∞. Furthermore, for any d, d′ ∈ D it holds that d − d′ is
invertible modulo q, and deg(d) < dR.

In addition, to complete the construction we need to choose a bound β on the
randomness for commitments and specify a distribution D such that it outputs
elements in R with norm at most β. Furthermore, D must be such that the class
of functions {fa | a ∈ Rmq } where fa(r) = a · r is universal when mapping the
support of D to Rq.

First, we will set β > 1 to be constant. Our strategy (which is inspired
by [BKLP15]) is then to choose the polynomial f(x) in Rq = Fq[x]/(f(x)) in
an appropriate way. Note that if f(x) splits in a constant number of distinct
irreducible polynomials f(x) = f1(x) · · · · · fu(x), then Rq is the direct product
of u fields. Suppose furthermore that all the fi have the same degree, then any

14



polynomial of degree less than N/u will be unchanged when reduced modulo any
of the fi, and it will therefore be invertible. This means that a natural candidate
for the set D is a set of “short” polynomials of degree less than N/u. For reasons
that will become clear later, we will want the degree to be always less than N/3.
So we will set dR = min(N/3, N/u), and our final definition of D is

D = {r ∈ R | ||r||∞ ≤ β,deg(r) < dR}

This means that |D| ≥ βN/u and since u is constant, our soundness error
1/|D| is negligible.

We define the distribution D for the prover’s randomness to be the uniform
distribution over Dm. Now, trivially all outputs have norm at most β and degree
less than dR as required. Jumping ahead, we will later choose γD = βN , so that
indeed elements in D will have norm less than γD, as required in Definition 2.

We then consider the functions of form fa(r) = a · r from Dm to Rq and
we want to show that they are universal hash functions. Because of the direct
product structure of Rq, we can think of the function as the direct product of
u functions defined over the fields Fi = Fq[x]/(fi(x)). Each of these functions
are universal since they compute the dot product over fields and so they have
collision probability 1/|Fi|. Now since fa is linear, a collision occurs if and only if
the function sends a non-zero input to 0. However, a non-zero vector in r ∈ Dm

is also non-zero when reduced modulo any fi(x) because only low degree poly-
nomials occur in r. Hence a collision only occurs if one occurs in each subfield,
and so the collision probability is

∏
i 1/|Fi| = 1/|Rq| – which shows that fa is

universal.
We then need to estimate how much the norm of an element r ∈ R is increased

when multiplying it by an element c ∈ D, i.e. we need the value of the parameter
γD. The requirements in Definition 2 ensure that when we compute d · r, no
reductions modulo f(x) take place and so the only increase in norm comes from
the polynomial product. It is now easy to see that the increase in norm is by at
most a factor γD = βN .

In Lemma 1, we saw that breaking binding would produce an Ring-SIS solu-
tion of norm at most 2Nmγβγ2D = 2Nmγββ2N2 ∈ O(N3m). In the specification
of the commitment scheme we required that γNmβγ2D < q, which is necessary
since otherwise the SIS solution we find is certainly not “short”. So this means
we need q ∈ Ω(N3m).

We now consider the choice of m. For statistical hiding we need that the
entropy of the honest committer’s randomness is at least 2N log q+κ where κ is
the statistical security parameter. By definition of the distribution D this means
we need mN/3 · log(β) = 2N log q + κ. Since κ is unrelated to the Ring-SIS
problem and so does not need to grow with the other parameters, we can safely
assume that N ≥ κ as far as the asymptotics are concerned. So we see that
m ∈ O(log q) will be sufficient.

We can now summarize what we did in the the following theorem:

Theorem 1. Assume that Rq = Fq[x]/(f(x)), where deg(f) = N and f =∏u
i=1 fi(x), where u is constant and the fi(x)’s are irreducible (over Fq), fur-

15



thermore q is a prime where q ∈ Ω(N3 log q). Let dR = min(N/3, N/u) and
D = {r ∈ R | ||r||∞ ≤ β, deg(r) < dR}. Furthermore, in the commitment
scheme, let m ∈ O(log q), and let β, γ > 1 be constants. If the commitment
scheme is set up in this way, it will be statistically hiding, and breaking the
binding property implies one can solve the Ring-SIS problem over Rq in time
polynomial in N and log q given a vector of length m as input, and where solu-
tions will have norm in O(N3 log q).

It is not a priori clear whether Ring-SIS is going to be hard in all the cases
covered by the above theorem. But in some specific cases we can say more. For
instance, we may consider the special case that was also used in [BKLP15], where
q mod 8 = 3, N is a 2-power, and f(x) = xN + 1. In this case, it is known that
f(x) splits in 2 irreducible factors of degree N/2, so this is a special case of
our framework. The Ring-SIS problem over rings Rq using this polynomial were
studied in [LM06], and under certain conditions on q, m and N it was shown
that the Ring-SIS problem in this case is as hard as solving certain problems
in ideal lattices in the worst case. These conditions include, of course, that q
must be sufficiently larger than the required norm of the solution for the SIS
problem (intuitively, otherwise the solution cannot be claimed to be “short”). If
we choose q in O(N2 · N3 log q) = O(N5 log q), the conditions are satisfied by
our parameter choices, so there is good reason to believe that Ring-SIS is indeed
hard for this choice of f(x).

Other choices for f(x) that will also work based on the results in [LM06]
include cyclotomic polynomials where we choose q such that f(x) splits in only
a small number of irreducible factors. (Note that the factors are all of the same
degree.)

Beyond this, one may also consider the much more general case of number
rings or orders, for which worst case hardness theorems are also shown in [LM06]
and [PR07]. We will work out this option in detail in the final version of this
paper.

6 Distributed Key Generation and Decryption

In this section, we describe how to efficiently compile passively secure distributed
key generation and decryption protocols into actively secure counterparts for n
parties P = {P1, . . . , Pn}, out of which at most n − 1 can be malicious. Our
transformation is generic and applies to schemes that are based on the (Ring-
)LWE assumption. The presented protocols are only secure under sequential
composition due to the use of rewinding. In Appendix B we will show how to
achieve UC security for these protocols.

6.1 Distributed Cryptosystems

We start with an abstract definition of the class of cryptosystems to which our
solution applies: let d, `c, `pk, `sk, `s, `d, βs, ωs, βd, ωd ∈ N, βs, βd � q (we assume

16



Parameter Explanation

Pi Party i

P Set of parties

I Set of corrupted parties

n Number of parties

A Adversary

d Dimension of the plaintext space {0, 1}d of the cryptosystem

`s Length of the randomness that goes into key generation

`c Length of a ciphertext

`pk, `sk Length of the public and private key

`d Length of the decryption, before being decoded into a plaintext

βs, βd Maximal norm of randomness used in key generation

and the noise used in distributed decryption

ωs, ωd “Slack” in norm between honestly chosen vectors and guarantees

of ΠBound in key generation and decryption

U`β Random distribution for vectors of length ` and norm at most β

F KG
a ,F c Matrix applied in key generation & decryption

Fig. 2. Parameters used in this Section.

that these parameters implicitly are functions of the computational security
parameter λ). An overview over the parameters and notation used in this section
can be found in Fig. 2. The parameters of the commitments and zero-knowledge
proofs can be found in Fig. 1.

We make the simplifying assumption that `c, `pk, `sk, `s, `d are multiples of the
parameter N that was introduced in the definition of the commitment scheme.
Let U`β be an algorithm that efficiently samples from Z`q by choosing each co-
ordinate uniformly at random from [−β, β] (when representing each Zq-element
by its representative from (−q/2, q/2]).

The probabilistic encryption algorithm Enc maps a string m ∈ {0, 1}d to
an element c ∈ Z`cq . Moreover, we define generic algorithms KG,Dec for key
generation and decryption. These depend on matrices

F KG
a ∈ Z(`pk+`sk)×`s

q ,F c ∈ Z`d×`cq

and we assume that they are implicitly defined, respectively, by some CRS
and the ciphertext c to be decrypted (we may also just sample F KG

a using a
distributed coin-flipping protocol). The decryption additionally uses a publicly
known algorithm

decode : Z`dq → {0, 1}d ∪ {⊥}

that removes the noise in the ciphertext and differs depending on whether the
message is stored in the higher or lower bits of the ciphertext. We then define

17



the key generation and decryption abstractly as being “mostly linear”, i.e. both
operations consist of multiplying a secret vector with a known public matrix,
plus eventually adding some noise. The algorithms KG and Dec are defined as
follows:

KG(1λ, n,F KG
a , s1, . . . , sn):

1. For i ∈ [n] compute (pki, ski) = F KG
a si.

2. Output (pk =
∑
i pki, pk1, . . . , pkn, sk1, . . . , skn).

Dec(F c, sk1, . . . , skn, e1, . . . , en):
1. For i ∈ [n] compute di = ei + F cski.
2. Output (decode(

∑
i di),d1, . . . ,dn).

We can now define a distributed cryptosystem:

Definition 3 (Distributed Cryptosystem). The tuple of (probabilistic)
polynomial-time algorithms D = (KG,Enc,Dec) is a distributed cryptosystem if
there exist protocols ΠKG, ΠDec that securely implement FKGD.

Our above definition captures the encryption schemes [BV11,BGV12] di-
rectly, but can also be adapted to [FV12] with minor changes in the Dec proce-
dure. Unfortunately it does not directly apply to [HPS98] due to the structure
of pk. We refer to [CS16] for an overview over the mentioned schemes.

For those schemes mentioned above, FKGD can easily be implemented with
security against passive adversaries. In the case of active adversaries, we have to
ensure that si, ei are bounded as in FKGD. Moreover, pki, ski,di of the dishonest
parties may depend on those values of the honest parties, and they may not be
computed using F KG

a ,F c at all. We remark that the parameters ωs, ωd allow the
adversary in the dishonest case to choose slightly larger values than in the honest
case. This is necessary because ΠBound naturally comes with some tightness
slack.

6.2 Actively Secure Key Generation

The key generation protocol can informally be described as follows: in a first step,
we let all parties sample a value si that they commit to. They then prove in zero-
knowledge that this commitment indeed contains a short value. We moreover let
each party commit to the values pki, ski as they can be computed from si and
let them prove that the commitments can indeed be obtained using the public
linear transform F KG

a . As was shown in the previous section, all of these steps
can be done efficiently. Finally we let the parties open pki, so that they then
individually can compute the public key locally.

To ease notation, we can rewrite the above definition as

F KG
a =

(
F pk
a

F sk
a

)
,

where F pk
a ∈ Z`pk×`sq ,F sk

a ∈ Z`sk×`sq . Since we made the simplifying assumption

that all matrix dimensions are multiples of N , we can decompose F pk
a ,F

sk
a into

18



Functionality FKGD

Key Generation:
1. Wait for each party Pi to input

(
KeyGen,F KG

a

)
.

2. For each Pi ∈ I, A inputs si. If si 6∈ Z`sq or ||si||∞ > ωs · βs, then output
(Abort, Pi) to all honest parties and stop.

3. For each Pi ∈ P \ I sample si
$← U`sβs .

4. Compute (pk, pk1, . . . , pkn, sk1, . . . , skn)← KG(1λ, n,F KG
a , s1, . . . , sn).

5. Locally store (Keys, pk, sk1, . . . , skn) if no such pk has been stored before.
6. Output

(
pk, (pki)Pi∈P\I

)
to A and (pk, ski) to each honest Pi.

Decryption:
1. Wait for each party Pi to input (Decrypt, pk,F c).
2. Load (Keys, pk, sk1, . . . , skn). If no such entry can be found, abort.
3. For each Pi ∈ I A inputs ei. If ei 6∈ Z`dq or ||ei||∞ > ωd · βd then output

(Abort, Pi) to all honest parties and stop.

4. For each i ∈ P \ I sample ei
$← U`dβd .

5. Compute (m,d1, . . . ,dn)← Dec(F c, sk1, . . . , skn, e1, . . . , en).
6. Output

(
m, (di)Pi∈P\I

)
to each dishonest Pi and m to each honest Pi.

Fig. 3. FKGD: Ideal functionality for distributed key generation.

Protocol ΠKG

1. Each Pi locally samples si
$← U`sβs .

2. Each Pi computes and broadcasts the commitments C(si), C(F pk
a si), C(F sk

a si).
3. Each Pi uses the following proofs towards all parties. Sample the challenge

using FRand:
(a) ΠBound on C(si) to show that ||si||∞ ≤ βs.
(b) ΠLin on C(si), C(F pk

a si) using F pk
a .

(c) ΠLin on C(si), C(F sk
a si) using F sk

a .
If one of the proofs fails then abort.

4. Denote with pki the committed value in C(F pk
a si). Each Pi proves to all parties

that C(F pk
a si) contains pki using ΠOpen-x. If one of the proofs fails, then abort.

5. If all proofs were correct, then output pk =
∑
i∈[n] pki.

Fig. 4. ΠKG: Protocol for actively secure key generation.

submatrices of size N ×N . Moreover, let r be a vector r = (r1| . . . |rk)> where
each ri ∈ Rq, then C(r) is an abbreviation for the list of commitments to each
individual ri. This gives an intuitive way to extend ΠOpen-x, ΠSum and ΠBound to
longer vectors. We therefore implicitly assume that if we apply ΠLin to a matrix
F and C(r), then the appropriate number of individual instances of ΠLin with
the respective submatrices of F is being used.

Using this above generalization, we can instantiate KG with active security as
shown in Fig. 4. We assume that there exists a coin-flipping functionality FRand

because the zero-knowledge protocols are only honest-verifier zero-knowledge.

19



The commitments C(ski) := C(F sk
a si) will be saved for later: we will use it

again in the distributed decryption.

Protocol ΠDec

The parties in P want to decrypt the ciphertext c. Pi has ski. The commitment
C(ski) is known to each Pj ∈ P.

1. Each Pi locally samples ei
$← U`dβd .

2. Each Pi derives F c from c and computes and broadcasts the commitments

C(F cski), C(ei), C(F cski + ei).

3. Each Pi uses the following proofs towards all parties. Sample the challenge
using FRand:
(a) Prove using ΠBound about C(ei) that ||ei||∞ ≤ βd.
(b) Prove using ΠLin that C(F cski) is the linear transform of C(ski) when

applying F c.
(c) Prove using ΠSum that C(F cski + ei) is the sum of C(F cski) and C(ei).
If one of the proofs fails then abort.

4. Each Pi broadcasts di and proves towards all parties that C(F cski +ei) opens
as di using ΠOpen-x.

5. If all proofs were correct then output m← decode(
∑
i∈[n] di).

Fig. 5. ΠDec: Protocol for the actively secure decryption of a ciphertext.

6.3 Actively Secure Distributed Decryption

An actively secure version of Dec can be obtained using a similar compilation step
to the one that turned KG into ΠKG. The main difference lies in the computed
values and in the zero-knowledge proofs that are applied. We moreover use the
commitments C(ski) that are publicly known in the process. This allows that
each party can prove that it has applied F c to the correct key share. The protocol
can be found in Fig. 5.

6.4 Security of ΠKG and ΠDec

We now show that the above two protocols can be used to implement FKGD with
active security.

Theorem 2. The protocols ΠKG, ΠDec implement FKGD in the standalone set-
ting with security against static active adversaries corrupting up to n− 1 parties
in the FRand-hybrid model with auxiliary commitments and broadcast.

A simulator for the protocols is provided in Fig. 6. In the proof, we will argue

about the indistinguishability of certain distributions, where
c
≈ symbolizes that

20



Simulator SKGD

Key Generation:
1. Wait for A to input the set I of corrupted parties.
2. For each honest Pi ∈ P \ I choose si ← U`sβs .

3. For each honest Pi compute the commitments C(si), C(F pk
a si), C(F sk

a si)
and send them to all dishonest parties Pj .

4. For each honest party Pi perform the zero-knowledge proofs in Step (3) of
ΠKG honestly. Abort if the protocol aborts.

5. Rewind A for the proofs of ΠBound to extract sj for all dishonest parties.
Change the output of FRand to achieve extraction.

6. Also rewind A to extract the witnesses from ΠLin. If they do not match
with the extracted sj then abort.

7. Submit all the sj of the dishonest parties to FKGD and obtain pki.
8. During Step (4) open each C(F pk

a si) as pki by simulating ΠOpen-x. Therefore
fix the challenge in advance using FRand.

9. For all dishonest parties in Step (4) also abort if the extracted witness of
C(F pk

a sj) disagrees with the value pkj announced by Pj .

Distributed Decryption:
1. The set of dishonest parties I is the same as in ΠKG. Let ski := F sk

a si and
C(ski) = C(F sk

a si) be the same commitment as in the instance of ΠKG.

2. Sample ei
$← U`dβd for each honest Pi.

3. Compute the commitments C(F cski), C(ei), C(F cski+ei) honestly for all
honest Pi, then broadcast them.

4. Run Step (3) honestly with the correct inputs for the honest parties.
5. In Step (3) use rewinding for the dishonest parties to extract the witnesses

for ΠBound, ΠLin, ΠSum. If a witness is not compatible with skj then abort.
Also abort if the protocol aborts.

6. Rename the witnesses of the dishonest Pj from ΠSum as dj . Send these to
FKGD. Obtain di for all honest Pi from FKGD.

7. In Step (4) simulate the opening of C(F cski + ei) using ΠOpen-x as di by
adjusting the output of FRand.

8. For all dishonest parties in Step (4) abort if they prove that the value inside
C(F cskj + ej) is different from dj as extracted before.

Fig. 6. SKGD: Simulator for the protocols ΠKG, ΠDec.

two distributions are computationally indistinguishable. Similarly, we use
s
≈,

p
≈ if

the distributions are statistically close or perfectly indistinguishable.

Proof. We will first prove security of ΠKG by showing that the distribution τΠ
of protocol transcripts of ΠKG is indistinguishable from the distribution τsim of
outputs of SKGD using a sequence of hybrids.

Key generation. We start by defining τ1,KG to be the same simulator as τsim
except that it now aborts if the proofs in Steps (3)− (4) of ΠKG are not correct,
i.e. we do not specifically check the relations on the extracted data anymore.

21



Because ΠLin, ΠOpen-x are computationally sound we get that τsim
c
≈ τ1,KG. De-

fine τ2,KG to be the same as τ1,KG except that we now simulate the proofs in
Step (3) of ΠKG. Because ΠBound, ΠLin are statistical zero-knowledge, it follows

that τ1,KG
s
≈ τ2,KG.

Now we start from the other side: define τ ′1,KG to be the same as τΠ except
that we replace the honest proofs in Steps (3)− (4) with simulations. Therefore

τΠ
s
≈ τ ′1,KG. Because we do now not need witnesses anymore, we can define τ ′2,KG

to be the same as τ ′1,KG except that the commitments in Step (2) are replaced
with those generated by SKGD. By the statistical hiding of the commitment

scheme, it holds that τ ′1,KG

s
≈ τ ′2,KG. Moreover, the distributions of τ2,KG and

τ ′2,KG are identical and the claim follows.

Decryption. We start similarly as in the ΠKG case: first, let τ1,Dec be a simulator
that does the same as SKGD, but aborts in Steps (3) − (4) only if one of the

proofs aborts. We obtain hat τsim
c
≈ τ1,Dec due to the computational binding

property. In particular, this means that in τ1,Dec the adversary must use the
correct decryption key and succeeds using another one only by breaking the
binding property of our scheme. We then define τ2,Dec to be the same as τ1,Dec,
just that the proofs in the simulation are now simulated by programming FRand

appropriately, which yields τ1,Dec
s
≈ τ2,Dec. Similarly as above, we define τ ′1,Dec to

be the same as τΠ where we now simulate the zero-knowledge proofs. This implies

τ ′1,Dec

s
≈ τΠ . But observe that we can then again replace the commitments C(ei),

C(F cski +ei) generated in Step (2) with those that were used in Step (3) of the
Simulator SKGD. Due to the statistical hiding property of C(·), it follows that

τ ′1,Dec

s
≈ τ ′2,Dec. We now observe that τ ′2,Dec

p
≈ τ2,Dec due to their construction,

which concludes the proof. ut

Optimizing away some of the proofs In practice we can, with a careful
choice of parameters, avoid using the proof ΠSum: opening the sum C(a+ b, r1 +
r2) = C(a, r1) + C(b, r2) of two commitments C(a, r1), C(b, r2) leaks informa-
tion about the individual randomness r1, r2, thereby breaking the security. This
is why we use ΠSum in the protocols to prove that a commitment opens to the
sum of two other commitments.

On the other hand, if we open C(a+ b, r1 +r2) using ΠOpen-x then only a+ b
is revealed, thereby not leaking information about the randomness of the terms
anyway. As an optimization one can therefore avoid the use of ΠSum and simply
add commitments directly, as long as the number of terms is small enough such
that the randomness does not grow too large (which would break the binding of
C(·)).

6.5 On the Efficiency of the Protocols

It remains open how to instantiate the above protocols, namely how to choose
ωd, ωs based on the properties of the zero-knowledge proofs. For the sake of sim-
plicity, we will assume that each matrix or committed vector in ΠKG has length

22



N , i.e. we will invoke each zero-knowledge proof only for one witness. First, we
observe from ΠBound that ωs = N ·γx. That is, the tightness of ΠKG crucially de-
pends upon the correctness of ΠBound. When not using amortization techniques,
we will run ΠBound κ times in parallel to achieve good enough soundness. By
a union bound, at least one of these κ instances fails with probability at most
pabort ≤ κ · (2/γ + 2/γx).

Assuming we want pabort to be constant (which means that in the worst
case, we may have to repeat the above experiment O(κ) times) then this implies
that γ, γx = O(κ). While this yields a very tight bound of ωs = O(N · κ), in
the worst case we may have to run ΠBound up to κ2 times. It can easily be
verified that one needs at most O(κ/ log(κ)) instances of ΠLin and ΠOpen-x. As a
consequence, by lowering the error probability of all the κ parallel zero-knowledge
proofs to 1/poly(κ) one can reduce the total number of instances of ΠBound to
O(κ2/ log(κ)) at the expense of setting ωs = N · poly(κ).

In the case of ΠDec we could moreover do the following: assume we want
to decrypt multiple ciphertexts simultaneously, let’s say O(log(κ)) many. This
then allows to use the amortization technique from [BDLN16], which lowers the
number of instances of ΠBound per instance of ΠDec to O(κ). Unfortunately
this yields a larger bound on ωd, namely ωd = O(N2 · κO(log(κ))). Using the
recent improvement of this technique due to [CD16], one can decrypt O(κ2)
simultaneously using ΠDec with ωd = O(N · κ). Observe that these proofs can
actually be performed before decryption needs to be done. This is because they
are independent of the decrypted value, hence preprocessing them allows to
circumvent the need to run multiple instances of ΠDec at once.

6.6 Threshold Protocols for other Lattice-based Primitives

It might be tempting to hope that the above techniques can also be used to
give more efficient protocols for e.g. threshold signatures. There are (currently)
two main approaches for lattice signatures, namely Fiat-Shamir style protocols
like [Lyu09] or those that use a hash-and-sign approach such as [GPV08]. In the
first case, such signature schemes have a rejection-sampling step where a bit is
chosen with a certain abort probability that depends both on the signature and
the secret basis, which is the signing key. This requires computation with very
high precision. For hash-and-sign type constructions, the signer has to sample
a short lattice vector using a trapdoor. It has been shown [BKP13] that this
can actually be done in a distributed fashion, but the approach requires that all
parties sample shares according to a Gaussian distribution. It is an interesting
open question how to perform this efficiently with active security. For both cases,
we do not see how our commitment scheme could be applied to solve the actual
bottlenecks of the threshold versions.

References

AJL+12. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low com-

23



munication, computation and interaction via threshold FHE. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology - EU-
ROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages
483–501. Springer, 2012.

BCK+14. Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyuba-
shevsky, and Gregory Neven. Better zero-knowledge proofs for lattice en-
cryption and their application to group signatures. In Advances in Cryptol-
ogy - ASIACRYPT 2014, pages 551–572, 2014.

BDLN16. Carsten Baum, Ivan Damg̊ard, Kasper Larsen, and Michael Nielsen. How
to prove knowledge of small secrets. In Advances in Cryptology-CRYPTO
2016. Springer, 2016.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. In Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference, pages 309–325.
ACM, 2012.

BKLP15. Fabrice Benhamouda, Stephan Krenn, Vadim Lyubashevsky, and Krzysztof
Pietrzak. Efficient zero-knowledge proofs for commitments from learning
with errors over rings. In Computer Security - ESORICS 2015, pages 305–
325, 2015.

BKP13. Rikke Bendlin, Sara Krehbiel, and Chris Peikert. How to share a lattice
trapdoor: Threshold protocols for signatures and (H)IBE. In Applied Cryp-
tography and Network Security - 11th International Conference, ACNS 2013,
Banff, AB, Canada, June 25-28, 2013. Proceedings, pages 218–236, 2013.

Blu82. Manuel Blum. Coin flipping by telephone - A protocol for solving impossible
problems. In COMPCON’82, Digest of Papers, Twenty-Fourth IEEE Com-
puter Society International Conference, San Francisco, California, USA,
February 22-25, 1982, pages 133–137, 1982.

BRS02. John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme
security in the presence of key-dependent messages. In Selected Areas in
Cryptography, 9th Annual International Workshop, SAC 2002, St. John’s,
Newfoundland, Canada, August 15-16, 2002. Revised Papers, pages 62–75,
2002.

BV11. Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption
from ring-lwe and security for key dependent messages. In Advances in
Cryptology–CRYPTO 2011, pages 505–524. Springer, 2011.

CD16. Ronald Cramer and Ivan Damg̊ard. Amortized complexity of zero-knowledge
proofs revisited: Achieving linear soundness slack. Cryptology ePrint
Archive, Report 2016/681, 2016. http://eprint.iacr.org/2016/681.

CS16. Ana Costache and Nigel P. Smart. Which ring based somewhat homomor-
phic encryption scheme is best? In Topics in Cryptology - CT-RSA 2016
- The Cryptographers’ Track at the RSA Conference 2016, San Francisco,
CA, USA, February 29 - March 4, 2016, Proceedings, pages 325–340, 2016.

DF89. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Advances
in Cryptology - CRYPTO ’89, 9th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings,
pages 307–315, 1989.

DKL+13. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,
and Nigel P. Smart. Practical covertly secure MPC for dishonest majority
- or: Breaking the SPDZ limits. In Computer Security - ESORICS 2013 -
18th European Symposium on Research in Computer Security, Egham, UK,
September 9-13, 2013. Proceedings, pages 1–18, 2013.

24

http://eprint.iacr.org/2016/681


DPP93. Ivan Damg̊ard, Torben P. Pedersen, and Birgit Pfitzmann. On the existence
of statistically hiding bit commitment schemes and fail-stop signatures. In
Advances in Cryptology - CRYPTO ’93, pages 250–265, 1993.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party Computation from Somewhat Homomorphic Encryption. In Proceed-
ings of Crypto, pages 643–662, Springer Verlag 2012.

FV12. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomor-
phic encryption. IACR Cryptology ePrint Archive, 2012:144, 2012.

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 197–206, 2008.

HPS98. Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A ring-based
public key cryptosystem. In Algorithmic number theory, pages 267–288.
Springer, 1998.

JKPT12. Abhishek Jain, Stephan Krenn, Krzysztof Pietrzak, and Aris Tentes. Com-
mitments and efficient zero-knowledge proofs from learning parity with
noise. In Advances in Cryptology - ASIACRYPT 2012, pages 663–680, 2012.

KTX08. Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently secure
identification schemes based on the worst-case hardness of lattice problems.
In Advances in Cryptology - ASIACRYPT 2008, 14th International Con-
ference on the Theory and Application of Cryptology and Information Se-
curity, Melbourne, Australia, December 7-11, 2008. Proceedings, pages 372–
389, 2008.

LM06. Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knap-
sacks are collision resistant. In Automata, Languages and Programming,
pages 144–155. Springer, 2006.

LSSV16. Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez. More efficient
constant-round multi-party computation from bmr and she. Cryptology
ePrint Archive, Report 2016/156, 2016.

Lyu08. Vadim Lyubashevsky. Lattice-based identification schemes secure under
active attacks. In Public Key Cryptography–PKC 2008, pages 162–179.
Springer, 2008.

Lyu09. Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and
factoring-based signatures. In Advances in Cryptology - ASIACRYPT 2009,
15th International Conference on the Theory and Application of Cryptology
and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings,
pages 598–616, 2009.

PR07. Chris Peikert and Alon Rosen. Lattices that admit logarithmic worst-case to
average-case connection factors, pages 478–487. 2007.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In STOC, pages 84–93, 2005.

XXW13. Xiang Xie, Rui Xue, and Minqian Wang. Zero knowledge proofs from ring-
lwe. In Cryptology and Network Security - 12th International Conference,
CANS 2013, pages 57–73, 2013.

25



A Zero-Knowledge Proofs (Continued)

A.1 Proof of linear relation

Proof (Lemma 8). An honest prover can clearly answer correctly for any chal-
lenge d and hence an honest verifier will always accept if the protocol did not
abort. Since each coefficient of dr has norm at most βγD, the probability that a
single coefficient of rz2 will cause an abort is

2βγD
2(1 + γNm/2)βγD + 1

≤ 2

γNm
.

The probability for coefficients of rz2 is the same. Hence the probability that
some coefficient of either rz1 or rz2 causes an abort is at most 4/γ, by the union
bound.

The proof of special soundness is similar to that of Lemma 6. If we cannot
break the auxiliary commitment scheme, then by the same argument, we can
assume that t1 = t′1 and t2 = t′2. In this case, one can compute the messages
contained in c1 as x1 = f−1z1 − z′1 and in c2 as x2 = f−1z2 − z′2, where f =
d − d′ and f is again invertible. Then set the randomness r1 = rz1 − r′z2 and
r2 = rz2 − r′z2 .

For honest-verifier zero-knowledge, note that the probability pabort that an
abort occurs in the protocol is independent of the prover’s secret. But it is
well defined from the parameters β, γ,N and m. Therefore, on input c1, c2,
the simulator first decides to simulate an aborting conversation with probability
pabort. In this case, the simulator just outputs Caux(s) and Caux(t) for arbitrary
values s and t of the same length as a basic commitment.

Otherwise, to simulate an accepting conversation, draw a random d from
D and random z1, rz1 , rz2 subject to ||rz1 ||∞, ||rz2 ||∞ ≤ (γNm)/2 · βγD. Set
z2 = g(z1). Finally, set t1 = C(z1; rz1) − dc1 and t2 = C(z2; rz2) − dc2, and
commit to t1 and t2 using the auxiliary commitment scheme. As for correctness
of output distribution, note that aborting and non-aborting conversations oc-
cur with the correct probabilities. The aborting conversations have statistically
indistinguishable distribution by hiding of the auxiliary scheme. As argued in
the proof of Lemma 7, the non-aborting ones have exactly the right distribution
since the last two messages are directly chosen with the correct distribution and
the first follows from the last two. ut

A.2 Proving bounds

Proof (Lemma 10). An honest prover can clearly answer correctly for any chal-
lenge d and hence an honest verifier will always accept if the protocol did not
abort. Note that the challenge d is a bit in this case and hence has norm at most
1. Since each coefficient of an element in Rq has norm at most β, the probability
that a single coefficient of rz will cause an abort is

2β

2(1 + γNm/2)β + 1
≤ 2

γNm
.

26



The probability that a single coefficient of z will cause an abort is

2βx
2(1 + γxN/2)βx + 1

≤ 2

γxN

since z ∈ Rq and each coefficient of z has norm at most γxNβx. Hence by the
union bound, the probability that some coefficient of z or rz causes an abort is
at most 2/γ + 2/γx.

The proof of special soundness is similar to that of Lemma 6. If we cannot
break the auxiliary commitment scheme, then by the same argument, we can
assume that t = t′. In this case, one can compute the message contained in
c as x = z − z′. Then set the randomness r = rz − r′z. Note that indeed,
||x||∞ ≤ γxNβx, ||r||∞ ≤ γNmβ ≤ γNmβγD, and deg(r) < 2dR as required.

For honest-verifier zero-knowledge, note that the probability pabort that an
abort occurs in the protocol is independent of the prover’s secret. But it is well
defined from the parameters β, γ, N , m, βx, and γx. Therefore, on input c,
the simulator first decides to simulate an aborting conversation with probability
pabort. In this case, the simulator just outputs Caux(t) for an arbitrary value t
of the same length as a basic commitment.

Otherwise, to simulate an accepting conversation, draw a random d from
{0, 1} as well as random z and rz subject to ||z||∞ ≤ γxNβx/2 and ||rz||∞ ≤
(γNm)/2 · β. Finally, set t = C(z; rz) − dc and commit to t using the auxil-
iary commitment scheme. As for correctness of output distribution, note that
aborting and non-aborting conversations occur with the correct probabilities.
The aborting conversations have statistically indistinguishable distribution by
hiding of the auxiliary scheme. As argued in the proof of Lemma 7, the non-
aborting ones have exactly the right distribution since the last two messages are
directly chosen with the correct distribution and the first follows from the last
two. ut

B More Companion Protocols

For all practical purposes, the protocols ΠKG, ΠDec from the previous section are
not satisfactory. We will now improve them in multiple ways: in a first step, an
extension to achieve UC security will be discussed. Moreover, we show a simple
approach that allows to compute encryptions of powers of sk. This in turn can
be used in an alternative distributed decryption algorithm that uses optimistic
decryption. The protocols in this appendix are presented without proofs: their
actual security depends on details of the schemes and chosen parameters which
would complicate the presentation without yielding any new insights, and the
basic structure of the protocols follows those from Section 6.

B.1 Some Further Assumptions

The starting point is to make some further assumptions about D.Enc. In Sec-
tion 6, we only assumed that such an algorithm exists, while we now require

27



that the encryption algorithm itself can be modeled in a similar way as KG,Dec
– namely, that it can be described in terms of linear operations.

Similarly to the message space Rq of C(·) we define the message space of
Enc as Rp for p� q (instead of {0, 1}d). By representing the coefficients of the
elements as integers from the interval (−p/2, p/2] we can naturally embed each
m ∈ Rp into ZNq . In particular, for a small enough number of ring operations in

Rp we can simulate these operations on the embedding into ZNq , namely, for as
long as the coefficients do not get too big and wrap around modulo q.

We assume that `e, βe ∈ N, βe � q and N divides `e. Similarly as before,
`e is the length of the randomness vector and βe is the maximal norm of the
randomness used in Enc, that we will now also describe in terms of linear oper-
ations: given a public key pk, we require that there is a deterministic algorithm
to compute two matrices F pk

e ∈ Z`c×`eq ,Fme ∈ Z`c×Nq , chosen independently of

the plaintext and the noise, such that Enc, on an input m ∈ Rp, e ∈ Z`eq with
||e||∞ ≤ βe, performs the following operations:

Enc(F pk
e ,F

m
e ,m, e):

1. Consider m as representation in ZNq , which we denote m.
2. Compute c = F pk

e e+ Fme m.
3. Output c.

In a nutshell, the above allows us to encrypt values we committed to inside
the commitment without revealing them. A direct consequence of the above
representation is that, if we assume the embedding of m to be homomorphic,
that Decsk(Encpk(m1) + Encpk(m2)) = m1 + m2. Depending on the relationship
between p, q and βe, we may allow a number of such additions before Dec yields
an incorrect value.

Parameter Explanation

`e Length of randomness vector for encryption

βe Noise bound for randomness in encryption

p Modulus of plaintext space

Rp Plaintext space of D

F pk
e Matrix applied to randomness vector in encryption

Fm
e Matrix applied to message in encryption

Fm
c ,f

m
c Values used to multiply ciphertext c by a constant

βm Noise bound for rerandomization of products with a constant

pki, ski Public/private key pair of the party Pi

Fig. B.1. Additional Parameters used in this Appendix.

An additional requirement is that, given a ciphertext c ∈ Z`cq there exists a

deterministic algorithm to compute Fmc ∈ Z`c×Nq ,fmc ∈ Z`cq from c and indepen-
dently of a such that Decsk(c) · a = Decsk(F

m
c · a + fmc ) given the randomness

28



in c is small enough. This a is a plaintext value, so we require that the result
be decryptable with a normal secret key. Observe that publicly revealing a value
Fmc ·a+fmc may leak information on a. We therefore drown the noise by adding
new encryptions Encpk(0) with noise bound βm in the protocol. The details on
the choice of all these parameters depend on the implementation of the proto-
cols and are not discussed any further here. Similarly as above, we will require
some additive homomorphism for a small number of additions of ciphertexts
obtained from multiplication with a constant. This property follows from the
linearity of the procedure for a suitable choice of parameters. An overview over
the parameters and notation in this appendix can be found in Fig. B.1.

B.2 Making the Protocols UC-secure

Our proof technique crucially relies upon the simulator being able to extract
witnesses from the ZK proofs by rewinding. Unfortunately, such rewinding is
not possible in the UC framework. The standard workaround is to base the
security on the simulator having other means for obtaining these values (e.g.
having secret keys for some encryption scheme or a trapdoor for commitments).
One then claims that a distinguisher between those two worlds exist and this
distinguisher itself can then do rewinding (but will apparently not have access
to the secret information of the simulator). In our case it is obvious that such
a proof technique must fail, since we are not aware of trapdoors for our defined
commitment scheme.

To make ΠKG UC-secure, we use the strengthened definition for the cryp-
tosystem D = (KG,Enc,Dec) and make the additional (mild) setup assumption3

that each party Pi has a key pair (pki, ski) with publicly known pki.
The key generation protocol ΠKG,UC follows the same outline as ΠKG, with

the following difference: the seed si is sampled by party Pi in a special procedure
ProEncCommit where it also generates an encryption [[si]] under its key pki. Pi
will publish the ciphertext and prove that it was computed correctly from si and
some chosen randomness e using the zero-knowledge proofs from the previous
section. The simulator holds the keys ski of the dishonest parties, is able to
decrypt each ciphertext and can then send this value to FKGD as before. The
protocol can be found in Fig. B.2. A similar transformation can also be applied
to ΠDec and the remaining protocols from this section.

B.3 Computing Powers of the Secret Key

We can moreover use the additional assumptions made on D to allow the com-
putation of powers of the key sk securely. It may first seem counter-intuitive
why one would want to compute such a value, but the reason lies in potential
homomorphic properties of D:

3 Implicitly, in our protocol we further assume that `pk = `sk = N to be able to
encrypt public and private keys. This can easily be generalized, and we just make
this assumption to enable a simpler exposition.

29



Protocol ΠKG,UC

Procedure ProEncCommit(i):

1. Pi locally samples s
$← U`sβs as well as e

$← U`eβe and computes F
pki
e e,Fm

e s.
2. Pi computes and broadcasts the commitments

C(s), C(e), C(F pki
e e), C(Fm

e s) and C(F pki
e e + Fm

e s)

as well as [[s]] = F
pki
e e + Fm

e s.
3. Each Pi uses the following proofs towards all parties. Sample the challenge

using FRand:
(a) ΠBound on C(s) to show that ||s||∞ ≤ βs.
(b) ΠBound on C(e) to show that ||e||∞ ≤ βe.
(c) ΠLin on C(e), C(F

pki
e e) using F

pki
e .

(d) ΠLin on C(s), C(Fm
e s) using Fm

e .

(e) ΠSum on C(F
pki
e e), C(Fm

e s), C(F
pki
e e + Fm

e s).

(f) ΠOpen-x on C(F
pki
e e + Fm

e s) to show that it opens to [[s]].
If any of the proofs fails, then abort.

4. Return C(s).

Key Generation:
1. Each Pi runs (si, C(si))← ProEncCommit(i).
2. Each Pi computes and broadcasts the commitments C(F pk

a si), C(F sk
a si).

3. Each Pi uses the following proofs towards all parties. Sample the challenge
using FRand:
(a) ΠLin on C(si), C(F pk

a si) using F pk
a .

(b) ΠLin on C(si), C(F sk
a si) using F sk

a .
If one of the proofs fails then abort.

4. Denote with pki the committed value in C(F pk
a si). Each Pi proves to all

parties that C(F pk
a si) contains pki using ΠOpen-x. If one of the proofs fails,

then abort.
5. If all proofs were correct, then output pk =

∑
i∈[n] pki.

Fig. B.2. ΠKG,UC: Protocol for actively secure key generation with UC security.

– The encryption scheme due to [BV11] has an inherent ciphertext growth
due to multiplications. The actual key that is used in decryption consists of
powers of the secret key. To allow distributed decryption, a sharing of such
a power of a secret key must be computed.

– The [BGV12] cryptosystem uses a key switching matrix to cope with the
ciphertext growth of [BV11], but this matrix is computed as an encryption
of sk2 (times some constant).

This task of computing a power of the secret key can be achieved using our
commitment scheme, its protocols and D. In a proof of security for our protocol,
one would have to make an additional assumption on D, namely that it is KDM-
secure [BRS02].

30



Here is how the protocol ΠKeySquared works on an intuitive level: first, observe
that there already are commitments to each ski from ΠKG. These commitments
can be used in a first step to compute an encryption c = Encpk(sk) of the secret
key under its public key. This is possible because we can encrypt values that
were contained in a commitment into correct ciphertexts, something which we
already did in ΠKG,UC. Therefore, Pi will encrypt ski and prove correctness of
the ciphertext. It is safe to reveal this encryption due to the KDM assumption
on the cryptosystem. After this is done, these ciphertexts can be added up to
obtain c.

Now observe that each share ski can be considered as a plaintext element,
so we can multiply them with c. This can be done if we compute the matrices
Fmc ,f

m
c which must exist by assumption on the cryptosystem. These matrices

are public and applied to each C(ski) individually, where each Pi knows the
correct value that opens the resulting commitment. Before opening it, each Pi
will rerandomize the resulting ciphertext such as to hide the share ski. The result
of the protocol as depicted in Fig. B.3 is then an encryption of sk2 under pk.

B.4 An Alternative Solution to Distributed Decryption

We want to point out that an alternative approach for distributed decryption
can be based on optimistic decryption, where the zero-knowledge proofs for the
commitments are only executed in the case of a discovered decryption failure
(to uncover a dishonest party). During a regular protocol run we will rely on
proofs of plaintext knowledge for the ciphertexts which can be amortized using
e.g. the technique from [BDLN16]. The reliable decryption technique is similar
to [LSSV16], but we moreover allow to identify the cheater.

The optimistic decryption requires that D is somewhat homomorphic. We
require that there exists an algorithm ⊗ that allows to multiply ciphertexts in
a way that allows decryption using D.Dec. Such an algorithm can be realized
using the output of ΠKeySquared.

Definition 4 (Multiplicative Property). A distributed cryptosystem D is
said to have the multiplicative property if there exists a deterministic poly(λ)-
time algorithm ⊗ such that

Pr

m 6= a · b
(pk, sk)← KG(1λ) ∧ a, b ∈ Rp ∧
ca ← Encpk(a) ∧ cb ← Encpk(b)∧
c← ca ⊗ cb ∧m← Decsk(c)

 ≤ negl(λ),

where the randomness is taken over4 the choice of inputs for KG,Dec,Enc.

Similarly as for ΠKeySquared we will not prove the security of the protocol,
but give some intuition on how it works: to decrypt a ciphertext [[x]] the parties
first generate an encryption of a uniformly random value a. They then encode x
by computing the product [[b]] = [[x]]⊗[[a]]. Before decrypting all three ciphertexts

4 To ease of readability, we leave out the full specification of the inputs to KG,Dec but
simply assume that they are correct according to FKGD.

31



Protocol ΠKeySquared

We assume that a commitment C(ski) of each secret key share is available from
ΠKG and that ||ski||∞ < p.

1. Each Pi samples vi
$← U`eβe and computes and broadcasts the commitments

C(vi), C(F pk
e vi), C(Fm

e ski), C(F pk
e vi+Fm

e ski) as well as [[ski]] = F pk
e vi+Fm

e ski.

2. Each Pi uses the following proofs towards all parties. Sample the challenge
using FRand:
(a) ΠBound on C(vi) to show that ||vi||∞ ≤ βe.
(b) ΠLin on C(ei), C(F pk

e vi) using F pk
e .

(c) ΠLin on C(ski), C(Fm
e ski) using Fm

e .
(d) ΠSum on C(F pk

e vi), C(Fm
e ski), C(F pk

e vi + Fm
e ski).

(e) ΠOpen-x on C(F pk
e vi + Fm

e ski) to show that it opens to [[ski]].
If one of the proofs fails then abort.

3. Each Pi locally computes [[sk]] =
∑n
j=1[[skj ]] and Fm

c ,f
m
c from [[sk]].

4. Each Pi samples wi
$← U`eβm and computes and broadcasts the commitments

C(wi), C(F pk
e wi), C(Fm

c ski + δ1i · fmc ), C(Fm
c ski + δ1i · fmc + F pk

e wi),

as well as
[[sk · ski]] = Fm

c ski + δ1i · fmc + F pk
e wi

where δxy is the Kronecker Delta function.
5. Each Pi uses the following proofs towards all parties. Sample the challenge

using FRand:
(a) ΠBound on C(wi) to show that ||wi||∞ ≤ βm.
(b) ΠLin on C(wi), C(F pk

e wi) using F pk
e .

(c) ΠLin on C(ski), C(Fm
c ski+δ1i ·fmc ) using the linear function g(x) = Fm

c x+
δ1i · fmc .

(d) ΠSum on C(F pk
e wi), C(Fm

c ski + δ1i · fmc ), C(Fm
c ski + fmc + F pk

e wi).
(e) ΠOpen-x on C(Fm

c ski + δ1i · fmc +F pk
e wi) to show that it opens to [[sk · ski]].

If one of the proofs fails then abort.
6. Each Pi locally computes [[sk2]] =

∑n
j=1[[sk · skj ]]. Output [[sk2]].

Fig. B.3. ΠKeySquared: Protocol for actively secure generation of powers of secret keys.

unreliably, each Pi commits to the values F xski, e
x
i ,d

x
i that it will use in Dec to

decrypt [[x]], as well as those values used in the decryption of [[a]], [[b]]. Thereafter,
the parties unreliably decrypt [[x]], [[a]], [[b]] by opening the commitments to dxi ,d

a
i

and dbi . All parties check that a · x = b.
If this equality holds, then we consider the result as correct. If, on the

other hand, it does not hold, then each party proves in zero knowledge that its
dxi ,d

a
i ,d

b
i were correctly generated (as in a correct decryption procedure) based

on the commitments that it provided. The protocol is presented in Fig. B.4,
where Step (1) and Step (2) can be done ahead of decryption time.

32



Protocol ΠDecAlt

A protocol to decrypt a ciphertext [[x]].

1. Each Pi samples ai
$← Rp uniformly at random and computes [[ai]]← Encpk(ai).

2. Each Pi broadcasts [[ai]] together with a proof of plaintext knowledge for Enc.
3. Each Pi locally computes [[a]] =

∑
i∈[n][[ai]] and [[b]]← [[x]]⊗ [[a]].

4. Each Pi locally samples randomness exi , e
a
i , e

b
i

$← U`gβa and computes F x as used
in Dec to decrypt [[x]] as well as F a for [[a]] and F b for [[b]]. Then compute

dxi = F xski + exi and dai = F aski + eai and dbi = F bski + ebi .

5. Each Pi broadcasts

C(F xski), C(F aski), C(F bski), C(exi ), C(eai ), C(ebi ) and C(dxi ), C(dai ), C(dbi ).

6. Each Pi generates auxiliary commitments to commit to dxi ,d
a
i ,d

b
i towards all

parties.
7. Each Pi opens the auxiliary commitments to dxi ,d

a
i ,d

b
i .

8. All parties check that

decode(
∑
i∈[n]

dxi ) · decode(
∑
i∈[n]

dai ) = decode(
∑
i∈[n]

dbi ).

If yes, then they output x← decode(
∑
i∈[n] d

x
i ) and terminate.

9. Otherwise, for each i ∈ [n] the parties do the following, where all parties abort
with Pi if a check fails:
(a) Pi proves using ΠBound that C(exi ), C(eai ), C(ebi ) have∞-norm at most βd.
(b) Pi proves using ΠLin that C(F xski), C(F aski), C(F bski) are derived from

C(ski) using F x,F a,F b.
(c) Pi runs ΠSum on the tuples

– (C(F xski), C(exi ), C(dxi ))
– (C(F aski), C(eai ), C(dai ))
– (C(F bski), C(ebi ), C(dbi )).

(d) Pi proves using ΠOpen-x that C(dxi ), C(dai ), C(dbi ) open to dxi ,d
a
i ,d

b
i .

Fig. B.4. ΠDecAlt: Alternative protocol for the decryption of ciphertexts.

33


	Efficient Commitments and Zero-Knowledge Protocols from Ring-SIS with Applications to Lattice-based Threshold Cryptosystems

