
Efficient Commitments and Zero-Knowledge
Protocols from Ring-SIS with Applications to

Lattice-based Threshold Cryptosystems

Carsten Baum1, Ivan Damg̊ard2, Sabine Oechsner2, and Chris Peikert3

1 Department of Computer Science, Bar-Ilan University
carsten.baum@biu.ac.il

2 Department of Computer Science, Aarhus University
{ivan, oechsner}@cs.au.dk

3 Department of Computer Science and Engineering, University of Michigan
cpeikert@umich.edu

Abstract. We present an additively homomorphic commitment scheme
with hardness based on the Ring-SIS problem. Our construction is statis-
tically hiding as well as computationally binding and allows to commit to
a vector of ring elements at once. We define the ring SIS problem in the
canonical embedding (rather than in the standard polynomial represen-
tation) and this allows us to get a stronger connection between breaking
our binding property and known worst case results in ideal lattices.
We show how to instantiate efficient zero-knowledge protocols that can
be used to prove a number of relations among these commitments, and
apply these in the context of lattice-based threshold cryptosystems: we
give a generic transformation that can be used with certain (Ring-)LWE-
based encryption schemes to make their algorithms actively secure. We
show how this transformation can be used to implement distributed de-
cryption with malicious security as well as maliciously secure threshold
key generation in an efficient way.

1 Introduction

Over the past several years, lattice-based cryptography has developed and ma-
tured rapidly. As this development continues, it is desirable to have a full suite
of efficient lattice-based tools and protocols. This is particularly important since
lattice problems are currently some of the promising “post-quantum” replace-
ments for the discrete logarithm and factoring problems. Therefore, we want to
construct standard cryptographic primitives such as encryption and commitment
schemes, plus companion protocols such as zero-knowledge proofs or threshold
key generation, in the lattice setting.

Commitment schemes [Blu82] are a key tool in the design of cryptographic
protocols and have countless applications. In particular, when combined with
zero-knowledge proofs, they can enforce “good” behavior by adversarial par-
ties and make the design of protocols secure against malicious attacks easier.
A prime example where these can be used is in the context of lattice-based

threshold encryption schemes [DF89], where multiple parties collaborate to ge-
nerate a public/private key pair or decrypt ciphertexts using an interactive
protocol. Such encryption schemes are applied, e.g., in the SPDZ MPC pro-
tocol [DPSZ12,DKL+13], where Damg̊ard et al. used a variant of the cryp-
tosystems from [LPR10,BV11,BGV12] in their preprocessing protocol. However,
in [DPSZ12], the question of key generation was avoided by assuming that a
common public key and shares of the corresponding secret key were already in
place (due to the lack of an efficient, actively secure protocol). Later, [DKL+13]
gave a key generation procedure, but it was only covertly secure. As for dis-
tributed decryption, both papers used a simple semi-honestly secure solution:
decryption might produce an incorrect output when players cheat, and the sur-
rounding protocol has to check this output and catch any errors later. This error
checking leads to additional overhead in both computation and communication,
which is unsatisfying.

This state of affairs clearly leaves several problems open: first, we would
like to have maliciously secure distributed key generation protocols that are
efficient and avoid the use of generic zero-knowledge techniques. Second, we
would like to have distributed key generation protocols that do not have to
rely on external checks for malicious security. In this paper we are interested
in constructing a commitment scheme and efficient zero-knowledge protocols
for proving relations among committed values. The security can be based on
the Ring-SIS problem, which can in turn be based on worst-case problems on
ideal lattices [Mic02,Mic07,PR06,LM06,PR07]. At a high level, in Ring-SIS one
is given several uniformly random elements a1, . . . , ak in a ring, and the goal is
to find ring elements x1, . . . , xk (not all zero) such that x1a1 + · · · + xkak = 0
under the constraint that the xi must be “small” (in some appropriate sense
that we formally define later).

1.1 Related Work

There are several earlier works in this area: Kawachi et al.’s work on identifica-
tion schemes [KTX08] presents a string commitment scheme based on the SIS
assumption [Ajt96], where one commits to vectors over Zq. However, the message
space is restricted to vectors of small norm; otherwise, the binding property is
lost. This restriction causes problems in the applications we are interested in: for
instance, if a player wants to prove (efficiently) that he has performed an encryp-
tion or decryption operation correctly in a cryptosystem that uses the ring Zq,
one typically requires a commitment scheme that is linearly homomorphic and
can commit to arbitrary vectors over Zq rather that only short ones.

In [JKPT12], Jain et al. proposed a commitment scheme where the hiding
property is based on the Learning Parity with Noise (LPN) assumption, a spe-
cial case of the Learning With Errors (LWE) assumption [Reg05]. They also
constructed zero-knowledge proofs to prove general relations on bit strings. A
generalization of [JKPT12] was proposed by Xie et al. [XXW13]. Their work pre-
sents a commitment scheme that is based on Ring-LWE [LPR10] instead of LPN,
and they build Σ-protocols from it. Further Σ-protocols based on (Ring-)LWE

2

encryption schemes were presented by Asharov et al. [AJL+12] and Benhamouda
et al. [BCK+14].

A main drawback of all these previous schemes is that the zero-knowledge
proofs had a non-negligible soundness error, and hence one needs many iterations
to have full security. In [BKLP15], a commitment scheme, as well as companion
zero-knowledge protocols were constructed with much better efficiency: one can
commit to a vector over Zq resulting in a commitment that is only a constant
factor larger than the committed vector. Furthermore, they gave protocols for
proving knowledge of a committed string as well as proving linear and multipli-
cative relations on committed values. These are efficient in the sense that the
soundness error is negligible already for a single iteration of the protocol. The
commitments are unconditionally binding and computationally hiding, and the
underlying assumption is Ring-LWE for a rather constrained parameter set.

Very recently, Lyubashevsky and Seiler [LS17] proposed an explicit con-
struction for certain sets that are also used in our commitment scheme (see
Section 3). While their approach mainly focuses on certain sets of parameters,
our construction of these can be used in a more general setting.

1.2 Our Contributions

We adopt the following notation: let R = Z[ζm] ∼= Z[X]/〈Φm(X)〉 denote the
mth cyclotomic ring, where Φm(X) is the mth cyclotomic polynomial, which has
degree N = ϕ(m). Let q be a suitable prime integer and denote Rq = R/qR ∼=
Fq[X]/〈Φm(X)〉.

A New Commitment Scheme. We propose a commitment scheme that allows
committing to an N -vector over Fq, or equivalently, an element in Rq. A com-
mitment consists of just two elements from Rq. The scheme is statistically hiding
and computationally binding, with security based on an instantiation of the Ring-
SIS problem. The protocol and analysis uses the powerful basis (or “tensored”)
representation of the ring R [LPR13], rather than the better-known power basis
of Z[X]/〈Φm(X)〉 as in previous works. This allows us to obtain a tighter bound,
in the canonical embedding, on the size of the Ring-SIS solution that we extract
from a cheating prover. This in turns leads to a tighter connection to worst-case
lattice problems than in previous work, and a broader range of instantiations
(e.g., choices of ring). More specifically, the Ring-SIS norm bound is Õ(N3.5).

Zero-Knowledge Protocols. We give (honest-verifier) zero-knowledge protocols
for proving knowledge of committed values, and for linear relations among com-
mitted values. The protocols achieve negligible soundness error4 in one itera-
tion, and the communication overhead of a proof, compared to just sending the
commitment, is only a logarithmic factor in the security parameter. For the

4 Already [Lyu09] gave proofs with negligible soundness error, but ours (similar
to [BKLP15]) have stronger properties: [Lyu09] extracts a collision in some un-
derlying hash function, while we have to extract a witness for the statement.

3

soundness analysis we require an exponentially large set of invertible and short
elements in Rq. We give a new construction of such a set, defined over a subset of
the powerful basis. This is what ultimately allows the improved reduction from
Ring-SIS.

Zero-Knowledge Proof of Shortness. We also give a protocol for proving that a
committed value is short. This protocol does not have negligible soundness error,
but it can be made efficient in an amortized sense using recent work [BDLN16,CDXY17].
We note that [BKLP15] also did not have a one-shot efficient shortness proof.

Threshold Protocols. We show how to use these tools to build maliciously secure
threshold key generation and decryption protocols for a class of LWE-based cryp-
tosystems. The communication overhead of the distributed decryption, compared
to just sending the ciphertext, is a logarithmic factor in the security parame-
ter, when the cost is amortized over several decryptions, as follows: the parties
need to generate some special committed values that do not depend on the cip-
hertexts to decrypt later. The cost of this is cheap when amortized over many
values. Once this is done, the parties can decrypt a number of ciphertexts, and
each such decryption will be cheap, even if they must be done one at a time.

In comparison to [BKLP15], which is the most closely related previous work,
we have achieved “the other flavor” of commitment, namely, statistically hiding
and computationally binding, with similar efficiency but smaller commitment
size (2 versus at least 3 ring elements). We obtain “everlasting security,” i.e.,
our computational assumption only has to hold until we stop using the public
key. In contrast, when using unconditional binding and computational hiding (as
in [BKLP15]) the assumption must hold “forever”, because such commitments
can be broken offline, at any point after the protocol. In addition, our underlying
computational assumption is different and potentially weaker: we use Ring-SIS
versus Ring-LWE. This is an advantage because Ring-SIS is at least as hard as
a corresponding instantiation of Ring-LWE, and the known worst-case hardness
theorems for Ring-SIS are stronger: the reductions are classical, while for Ring-
LWE only quantum reductions are known [LPR10,PRS17]. Finally, we instan-
tiate our scheme with a larger class of rings than [BKLP15], namely, arbitrary
cyclotomics.

2 Preliminaries

We use ⊕,� to denote the coordinate-wise addition and multiplication of two
vectors. The tensor product of matrices or rings is denoted by ⊗. The statistical
security parameter is κ, while λ is the computational security parameter. The
set {1, ..., n} is denoted by [n].

The Ring-SIS problem, as we use it in our work, is defined using concepts
and tools used in [PR07,LPR13], such as the canonical embedding and the po-
werful basis. This permits tighter analysis that avoids cruder concepts like ring
“expansion factors.”

4

Consider the polynomial Φm(X) whose roots are all the primitive complex
mth roots of unity. The polynomial Φm(X) is called mth cyclotomic polynomial
and it is a standard fact that Φm(X) ∈ Z[X] and that it is monic and irreducible
over Q. For m ≥ 2 the roots are not in Q so we can consider the number field
K = Q[X]/〈Φm(X)〉 and its ring of integers R = Z[X]/〈Φm(X)〉. The extension
has degree N = deg(Φm(X)) = ϕ(m), and K is a Q-vector space with the basis5

{1, ζm, ζ2m, . . . , ζN−1m }, and the same holds for R as a Z-module with the same
basis.

Given the factorization m = m1 · · ·m` into coprime prime powers mi, we
consider the rings of integers for each Ki = Q(ζmi), which are denoted Ri =

Z[ζmi]. Then R can be written as the tensor product of these Ri, R =
⊗`

i=1Ri.
This leads to a different basis of K,R:

Definition 1 ([LPR13]). The powerful basis B of K = Q(ζm), R = Z[ζm] is
defined as follows:

– If m is a prime power, then B is the vector (ζim)0≤i<N ∈ R.

– If m =
∏`
i=1mi where mi,mj are coprime prime powers, then B =

⊗`
i=1Bi

where Bi is the powerful basis of Ri.

For a Z-basis B = {b1, ..., bN} of the field K we define the `2, `∞-norm of
x = x1b1 + · · ·+ xNbN as ||x||2 = (

∑
i |xi|2)1/2 and ||x||∞ = maxi |xi|

The Canonical Embedding. The canonical embedding of K into CN is de-
fined as follows: let ζm be the mth primitive root of unity in K and {ωim}i∈Z∗m
be all N of the mth primitive roots of unity in C. Then σi is the unique ring
homomorphism that fixes Q and maps ζm to ωim, for i ∈ Z∗m. Concatenating all
these σi yields the injective ring homomorphism (where the ring operations are
coordinate-wise)

σ : K → CN

x 7→ (σi(x))i∈Z∗m .

For x ∈ K we define its canonical norms similarly as above, namely we let
||x||c2 = (

∑
i |σi(x)|2)1/2 and ||x||c∞ = maxi |σi(x)|. The canonical embedding

σ has the advantage that both addition and multiplication of field elements is
coordinate-wise under it, i.e., ∀x, y ∈ K, σ(x+ y) = σ(x)⊕ σ(y) and σ(x · y) =
σ(x)� σ(y). This gives tight bounds on products6 of elements of K:

∀x, y ∈ K : ||x · y||c2 ≤ ||x||c∞ · ||y||c2

By [LPR13, Lemma 4.3], we have the following bounds on the relationship
between || · ||cp-norms and their || · ||p-counterparts.

5 This basis is normally referred to as the power basis.
6 This actually holds for arbitrary `p norms, not just the `2 norm.

5

Remark 1. We consider elements of K with respect to the powerful basis B. Let
x ∈ K,y ∈ Kk for k ∈ N. Then

1. ||x||c∞ ≤
√
N · ||x||2 and ||y||c∞ ≤

√
N · ||y||2

2. ||x||c∞ ≤ N · ||x||∞ and ||y||c∞ ≤ N · k · ||y||∞
3. ||x||c2 ≤

√
m · ||x||2 and ||y||c2 ≤

√
m · k · ||y||2

The Ring-SIS Problem. Letting q be an arbitrary prime integer, we define
Rq = Z[X]/〈Φm(X), q〉. The algebraic properties of this ring depend upon the
splitting of the ideal 〈q〉 in R. The powerful Z-basis of R, and its reduction
mod qR, are both Zq-bases of Rq. Naturally, for any x ∈ R the powerful-basis
coefficients of x mod qR are just the coefficients of x, all reduced modulo q. Con-
versely, to obtain the distinguished R-representative of any x ∈ Rq, we simply
lift the Zq-coefficients with respect to the powerful basis to their distinguished
Z-representatives.

We can now define the Ring-SIS problem, using the canonical embedding to
measure the norm of the solution (the choice of which yields tighter connections
to worst-case problems on ideal lattices in the ring [PR07]).

Definition 2. Let m, q ∈ N+ with q a prime not dividing m, and let R,Rq be de-
fined as above. For a bound u ∈ R and a parameter k ∈ N+, the (inhomogeneous)
Ring-SIS problem is: given uniformly random and independent a1, . . . , ak, t ∈ Rq,
find x ∈ Rk such that

||x||c2 ≤ u and
∑k

i=1
ai · x[i] = t.

Normal Distributions. The continuous normal distribution over Rd centered
at v ∈ Rd with standard deviation σ has probability density function

ρdv,σ(x) =
1√
2πσ

· exp

(
−||x− v||22

2σ2

)
In our zero-knowledge proofs we will use a discrete version. The discrete

normal distribution over Rk centered at v ∈ Rk with standard deviation σ is
given by the distribution function (for all x ∈ Rk)

N k
v,σ(x) = ρk·Nv,σ (x)/ρk·Nσ (Rk),

where the norm is || · ||2 (relative to the powerful basis) and where we omit the
subscript v when it is zero. As we will use specific properties of these distributions
only in the proofs in the appendix, we refer the reader to Appendix C for more
information.

6

3 Short and Invertible Elements

Our commitment scheme and its zero-knowledge proofs rely on specific properties
of Rq. In the construction we will need to make use of an (exponentially) large
set of elements a ∈ R that are short, but invertible as a ∈ Rq.

Definition 3 (Commitment-friendly Set). Let R,Rq be defined as before,
and let B,B be the powerful bases of R,Rq. The set D ⊆ B is called commitment-
friendly if every non-trivial Fq-combination of its corresponding elements in B
is invertible in Rq.

The constructions in this section will be presented without proofs, which are
deferred to Appendix A. We give an explicit subset of the canonical basis which
is commitment-friendly. Let ordm(q) be the multiplicative order of q mod m.

Lemma 1. Let m = m1 · · ·m` be the unique factorization of m into prime
powers, let moreover d1 = ordm1

(q) and di = ordm1···mi(q)/ ordm1···mi−1
(q). Let

ζmi be the mi-th primitive root of unity in the algebraic closure Q. Consider the
set

E = {1, ζ1, . . . , ζd1−11 } ⊗ · · · ⊗ {1, ζ`, . . . , ζd`−1` }.

Then E is commitment-friendly and has maximal size.

Using the powerful basis we are able to tightly control the canonical norms
of ring elements and products of them. But for technical reasons, we also need
to bound the || · ||∞-norm on products in R in some cases. We define a special
set D′ ⊂ D, that we call multiplication-friendly. To ease readability, for elements
x, y ∈ R that respectively are integer combinations of the basis subsets D,D′

we write x ∈ D, y ∈ D′ (but note that still D,D′ ⊆ B). Moreover, define SD,β
to be the set of those x ∈ D such that ||x||∞ ≤ β.

Definition 4. Let R,Rq be defined as before. Let D ⊆ B be a commitment-
friendly set. Then D′ ⊂ D is called (s, t)-multiplication-friendly if for all x, y ∈
D′ and z ∈ R:

1. If ||x||∞ ≤ r1, ||z||cp ≤ r2 then ||x · z||cp ≤ s · r1 · r2 for any `p-norm.

2. If ||x||∞ ≤ r1, ||y||∞ ≤ r2 then ||x · y||2 ≤ t · r1 · r2.

Intuitively, a set D′ is multiplication-friendly if we can give a tight upper bound
on the norm of the product of its elements, both for the canonical and the
coefficient norm. The latter is generally complicated, as it involves reductions
modulo Φm(X) in Rq.

Proposition 1. E′ = {1, ζ1, . . . , ζ
b d1−1

2 c
1 } ⊗ · · · ⊗ {1, ζ`, . . . , ζ

b d`−1

2 c
` }

is (|E|/2, |E|1.5/2)-multiplication-friendly.

7

4 The Commitment Scheme

In this section, we will present our commitment scheme and prove its security.
On a very high level it is related to a previous scheme due to Damg̊ard et
al. [DPP93] which can be based on any collision intractable hash function h.
To commit to a bit string x, one chooses a random (sufficiently long) string
r, and the commitment is defined as (h(r), φ, φ(r) ⊕ x), where φ is a universal
hash function. By collision intractability, the committer cannot change his mind
about r and hence not about x either. It is hiding by the randomness extraction
property of φ: if r is long enough compared to h(r), then φ(r) is essentially
uniform and masks x.

The “Ring-SIS function” (see Definition 2) for key a ∈ Rkq sends a short

vector r ∈ Rk to a · r ∈ Rq. This can be thought of as a collision intractable
function for the right parameters [PR06,LM06,PR07]. In addition, the same type
of function can also be used as a randomness extractor by choosing suitable
parameters. The intuition behind our scheme is therefore to instantiate the idea
from [DPP93] using instances of the Ring-SIS function over Rq for both h and φ.

However, in contrast to standard instantiations of [DPP93], both functions
are defined over the same polynomial ring and this gives the scheme some nice
algebraic properties. It turns out that we can use these for constructing efficient
zero-knowledge protocols for the scheme, based on the commitment-friendly and
multiplication-friendly sets from the previous section.

Parameter Explanation

λ, κ Computational/statistical security parameter

R The ring over which we define the norms of vectors

Rq The ring over which we do most of the computations

m Order of the root of unity used to define Rq, R

q Prime modulus defining Rq
N Degree of Φm, N = ϕ(m)

k Dimension (over Rq) for the Ring-SIS problem

D The commitment-friendly set of R

D′ The multiplication-friendly set of R, used to open commitments

s, t Parameters of the (s, t)-multiplication-friendly set D′

β Norm bound for honest prover’s randomness in `∞-norm

D Distribution of honest prover’s randomness for commitments

SD,β Set of all elements x ∈ D ⊆ R with `∞-norm at most β

A Public matrix from R2×k
q

Fig. 1. Overview of Parameters and Notation.

8

4.1 Efficient Ring-SIS Commitments

We now describe the commitment scheme we propose in its most general form. It
borrows an idea from [BKLP15] for relaxing the condition for a valid opening of a
commitment to achieve a better soundness error probability of the Σ-protocols.
Fig. 1 gives an overview of the parameters and variables.

CKeyGen: The public commitment key is the specification of a ring Rq with
the commitment-friendly set D from Definition 3 and a (s, t)-multiplication-
friendly set D′ as defined in Definition 4, a uniformly random matrix A ∈
R2×k
q and a constant β such that 16 · s · t ·k ·m · log(k ·N) ·β3 < q/2. Finally,

define the distribution D which outputs a v ∈ SkD′,β uniformly at random.

Commit: To commit to a message x ∈ Rq, draw a r
$← D and compute

Com(x; r) := Ar +
(
0
x

)
.

Open: A valid opening of a commitment c is a 3-tuple: x ∈ Rq, r ∈ Rk and
f ∈ SD′,2·β . The verifier checks that

Ar +
(

0
fx

)
= fc,

and that ||r||c2 ≤ 4 · t · k ·m · log(k ·N) · β2.

We will often omit the choice of randomness and write C(x) or C(x; r) instead of
Com(x; r). Note that an honest committer can always open by letting f = 1, and
would always have its value of r be shorter than 4 · t ·k ·m · log(k ·N) ·β2, namely
it would have || · ||c2-norm at most

√
km · β. We only allow for these relaxed

conditions in order to get soundness and zero-knowledge for the protocols we
propose in Section 5: we will only be able to guarantee that a dishonest prover
can open his values using f-values that are (possibly) not 1, and r-values of norm
larger than β. This is fine, as long as the scheme is still binding under the relaxed
condition, as indeed we show below.

The commitment scheme can be extended to allow committing to vectors x ∈
Rdq for fixed d. Appendix B shows the necessary modifications of the commitment
scheme and proofs for the hiding and binding property.

4.2 Security

We will now prove the security guarantees of our commitment scheme. The first
lemma shows that breaking the binding property implies one can solve the Ring-
SIS problem over Rq. The second lemma shows that the commitment scheme is
statistically hiding.

Lemma 2 (Binding Property). From a commitment c and correct openings
r, f, r′, f ′ to two different messages x, x′, one can efficiently compute a solution
with norm 16 · s · t · k ·m · log(kN) · β3 to the Ring-SIS problem instance defined
by the top row of A.

9

Proof. Let c and x, r, f and x′, r′, f ′ be as assumed in the lemma. Then

A(f ′r) +
(

0
ff ′x

)
= ff ′c = A(fr′) +

(
0

ff ′x′
)

and so

A(f ′r − fr′) =
(0
ff ′(x−x′)

)
.

Since x−x′ 6= 0 and the actions of both f, f ′ are invertible, we have ff ′(x−x′) 6=
0. Then it must be that also f ′r − fr′ 6= 0 since otherwise the above equation
would be false. Hence we have found a solution f ′r−fr′ to the Ring-SIS instance
defined by the top row of A. By Definition 4, we can bound ||f ′r − fr′||c∞ ≤
2 · ||f ′r||c2 as

||f ′r − fr′||c2 ≤ 2s · (2 · β) · (4t · k ·m · log(k ·N) · β2). ut

In the proof of the hiding property we need that the multiplication with the
matrix A is a universal hash function. Computing Ar consists of evaluating
functions of the form fa(r) = 〈a, r〉.

Proposition 2. The function

fa(r) : Rkq × SkD′,β → Rq

(a, r) 7→ 〈a, r〉

is a universal hash function.

Proof. Due to the direct product structure of Rq, we can think of the function
fa(·) as a direct product of u functions defined over Fi = Fq[X]/〈fi(X)〉. Each
of these functions is universal since they compute the dot product over fields
and so they have collision probability 1/|Fi|. Now since fa is linear, a collision
occurs if and only if the function sends a non-zero input to 0. However, a non-
zero vector in r ∈ SkD′,β is also non-zero when reduced modulo any fi(X) due to
the invertibility of each value in D′. Hence a collision only occurs if one occurs
in each subfield, and so the collision probability is

∏
i 1/|Fi| = 1/|Rq|. ut

Lemma 3 (Hiding Property). Assume the distribution D and Rq, k are cho-
sen such that 1) the min-entropy of a vector drawn from D is at least 2 log(|Rq|)+
κ where κ is a (statistical) security parameter, and 2) the class of functions
{fa | a ∈ Rkq} where fa(r) = a · r is universal when mapping the support of D
to Rq. Then the scheme is statistically hiding.

Proof. Note that a commitment gives the adversary log(|Rq|) bits of information
on r, namely the dot product of r with the top row a0 of A. So even given this
dot-product we have log(|Rq|) + κ bits of randomness left in r. Let a1 be the
bottom row of A. Then from the assumptions and the left-over hash lemma, it
follows that fa1

(r) is statistically close to random, even given a0 · r and so the
scheme is indeed statistically hiding. ut

10

Instantiating the Scheme. We now instantiate the commitment scheme with
the commitment-friendly set E and the (|E|/2, |E|1.5/2)-multiplication-friendly
set E′. By Lemma 2 the scheme is binding as long as

||r||c2 ≤ 2 · |E|3/2 ·m · k · log(k ·N) · β2

and the reduction outputs a solution to the Ring-SIS instance with || · ||c2-norm
at most 4 · |E|5/2 ·m · k · log(k · N) · β3. This yields a Ring-SIS solution of size
O(N3.5 · log2(N)) in the canonical embedding.

To get an efficient scheme in practice, one would set m = O(λ) and q = O(λc)
for some constant c. We want to choose β = O(1) (which implies k = Θ(log λ)
to obtain a hash function with collisions) to get a bound as tight as possible. In
Appendix A.3 we show that one can achieve |E|, |E′| = Θ(λ), so the scheme will
be hiding according to Lemma 3 even for β of constant size:

Remark 2. Let |E′| = Ω(λ), then under the above conditions, the commitment
is hiding for β = O(1).

Proof. We choose N = O(λ) and r has entropy log |D| as the coefficients are
chosen uniformly at random. Therefore

|E′| · k · log β ≥ 3 ·N · log q > 2 ·N · log q + λ

and such a constant β exists. ut

5 Zero-Knowledge Proofs

In this section, we describe Σ-protocols that can be constructed for our com-
mitment scheme. The protocols use rejection sampling which was introduced
in the context of lattice-based constructions in [Lyu08,Lyu09,Lyu12]. Rejection
sampling allows to hide the randomness during the proof. The protocols use an
auxiliary commitment scheme Caux during the first round for technical reasons
- here we can use our own commitment scheme, but use the notation Caux to
make the presentation clearer.

Our protocols have slightly weaker properties than usually considered for Σ-
protocols, but this does not affect their usefulness in practice: we get statistical
honest verifier zero-knowledge rather than perfect, and we get computational
soundness rather than perfect, in the sense that a prover who can answer two
different challenges must either know the witness we want him to know, or he
can break the binding property of Caux. All protocols, except the one for proving
bounds (ΠBound), have soundness error 1/β|D

′|, which we show to be negligible
(for certain parameter sets) in Appendix A.3. In Appendix C.5 we discuss ways in
which we can make our protocols be zero-knowledge against a dishonest verifier7.

The communication complexity of the proofs is dominated by the size of
the prover’s last message, which will be O(kN log(q)) bits. A commitment is of

7 Note that this is not obvious (even using rewinding), when the challenge space is
large.

11

size O(N log(q)) bits and we in practice choose k = O(log(λ)), so running the
protocols adds very little asymptotic overhead.

In the commitment scheme, the prover chooses the randomness r from D,
while the challenger chooses d ∈ D′. T =

√
k · t · β2 then is the bound on the l2-

norm of d·r for d ∈ SD′,β , r ∈ SkD′,β . This bound can be obtained from Definition
4 as D′ is (s, t)-multiplication-friendly. We moreover set σ = T · log(kN) as the
variance used in sampling randomness in the protocols, and M = O(1) to be
some constant. We elaborate on this choice in Appendix C.

5.1 Proof for Opening a Commitment

Suppose the prover has published c = C(x; r) and claims to know a valid ope-
ning. Then consider the following protocol to prove this:

Protocol ΠOpen

1. The prover chooses µ
$← Rq and ρ

$← N k
σ , computes t = C(µ;ρ) and sends

caux = Caux(t) to the verifier.

2. The verifier sends a random challenge d
$← SD′,β .

3. The prover first checks that d ∈ SD′,β . He then computes z = µ+ dx, rz =

ρ + dr. The prover either aborts with probability 1 − min
(

1,
Nkσ (rz)

MNkdr,σ(rz)

)
.

or sends z, rz and opening information uaux for caux to the verifier.
4. The verifier checks that uaux is valid, that C(z; zr) = t + dc, and that
||rz||2 ≤ 2σ

√
kN .

We now look at the properties of this protocol. The proof can be found in
Appendix C.1.

Lemma 4. The protocol ΠOpen has the following properties:

– Completeness: The verifier accepts with overwhelming probability when ΠOpen

does not abort. The probability of abort is at most 1− 1−2−100

M .
– Special Soundness: Given a commitment c and a pair of transcripts for
ΠOpen (caux, d, (uaux, t, z, rz)), (caux, d

′, (u′aux, t
′, z′, r′z)) where d 6= d′, we

can extract either a witness for breaking the auxiliary commitment scheme,
or a valid opening (x, r, f) of c with ||r||2 ≤ 4σ

√
kN, ||f||∞ ≤ 2 · β.

– Honest-Verifier Zero-Knowledge: Transcripts of ΠOpen with an honest veri-
fier can be simulated with statistically indistinguishable distribution.

Proof for Opening to a Specific Message. The protocol ΠOpen demonstra-
tes that the prover knows how to open a commitment, without revealing either
the randomness or the message. An easy variant, which we will call ΠOpen-x, can
be used to show that the prover can open c to a specific message x: it is enough
to show that a commitment can be opened to 0, since one can use that protocol
on input c − C(x; 0). Now, to prove that a commitment can be opened to 0,
execute ΠOpen where µ = 0. As a result, z = 0 and the verifier checks that this
is indeed the case. It trivial to show completeness, special soundness and honest
verifier zero-knowledge for this protocol, and we leave this to the reader.

12

Proof for Linear Relation. Suppose that the prover has published two com-
mitments c1 = C(x1; r1), c2 = C(x2; r2) and claims that x2 = g(x1) for a linear
function g. The protocol ΠLin for proving this relation is similar to ΠOpen, but
the prover’s first message contains two commitments to vectors that are linearly
related by g. The protocol as well as its properties can be found in Appendix C.2.

Proof for Sum. Suppose that the prover has published three commitments
c1 = C(x1; r1), c2 = C(x2; r2), c3 = C(x3; r3) and claims that x3 = α1x1+α2x2
where α1, α2 ∈ Rq are public constants. The protocol ΠSum is similar to the
previous protocol. It’s specification and properties are in Appendix C.3.

Proving Bounds. Suppose that the prover has published a commitment c =
C(x; rx) and claims that the norm of x is small. The idea is to add a short
random value µ to x and check whether the sum is sufficiently short. We can only
allow for small challenges, i.e. we restrict the challenge space here to {0, 1}. The
protocol can be made efficient in an amortized sense using [BDLN16,CDXY17].
The protocol ΠBound and its properties can be found in Appendix C.4.

6 Actively Secure Threshold Protocols

In this section, we describe how to efficiently compile passively secure threshold
protocols for key generation and decryption into their actively secure counterpart
for n parties P = {P1, . . . , Pn}, out of which at most n−1 can be malicious (I ⊂
P denotes the corrupted parties). Our transformation is generic and applies to
schemes that are based on the (Ring-)LWE assumption. Due to space constraints,
we only present the key generation here, whereas the decryption protocol can be
found in Appendix D.

6.1 Defining Threshold Cryptosystems

We start with an abstract definition of the cryptosystems to which our solution
applies: let d, lc, lpk, lsk, ls, lr, ld, βs, ωs, βd, ωd ∈ N, βs, βd � q (we assume that
these parameters implicitly are functions of λ).

Let us make the simplifying assumption8 that lc, lpk, lsk, ls, lr, ld are multi-
ples of N . Let U`β be an algorithm that efficiently samples from F`q by choosing
each coordinate uniformly at random from [−β, β] (when representing each Fq-
element by its representative from (−q/2, q/2]).

The probabilistic encryption algorithm Enc maps a string m ∈ {0, 1}d to
an element c ∈ Flcq . Moreover, we define generic algorithms KG,Dec for key

generation and decryption. These depend on matrices F KG
a ∈ F(lpk+lsk)×ls

q for the

8 One might also use larger blocks for efficiency reasons, as our commitment scheme
supports to commit to Rq-vectors. See Appendix B for details.

13

key generation and F r ∈ Fld×lrq ,F c ∈ Fld×lcq for the decryption. These matrices9

are implicitly defined by a CRS and the ciphertext c. The decryption additionally
uses a publicly known algorithm

decode : Fldq → {0, 1}d ∪ {⊥}

that removes the noise in the ciphertext and differs depending on whether the
message is stored in the higher or lower bits of the ciphertext. We define the
key generation and decryption abstractly as being “mostly linear”, i.e. both
operations consist of multiplying a secret vector with a known public matrix,
plus eventually adding some noise. The algorithms KG and Dec are defined as
follows:

KG(1λ, n,F KG
a , s1, . . . , sn):

1. For i ∈ [n] compute (pki, ski) = F KG
a si.

2. Output (pk =
∑
i pki, pk1, . . . , pkn, sk1, . . . , skn).

Dec(F c, sk1, . . . , skn, e1, . . . , en):
1. For i ∈ [n] compute di = F rei + F cski.
2. Output (decode(

∑
i di),d1, . . . ,dn).

Definition 5 (Distributed Cryptosystem). The tuple of (probabilistic)
polynomial-time algorithms D = (KG,Enc,Dec) is a distributed cryptosystem if
there exist protocols ΠKG, ΠDec that securely implement FKGD (Fig. 2).

The parameters ωs, ωd in Fig. 2 allow the adversary in the malicious setting
to choose slightly larger values than in the semi-honest case. This is necessary
because ΠBound naturally comes with some tightness slack. Our above definition
captures the encryption schemes [BV11,BGV12] directly, but can also be adapted
to [FV12] with minor changes to the Dec procedure. Unfortunately it does not
directly apply to [HPS98] due to the structure of pk, but to the more efficient,
recently proposed Learning-with-Rounding scheme [CKLS16] due to Cheon et
al. In these cases FKGD can easily be implemented with passive security. For
security against active adversaries, one has to ensure that si, ei are bounded
as in FKGD. Moreover, pki, ski,di of the dishonest parties may depend on those
values of the honest parties or not be computed using F KG

a ,F r,F c at all.

6.2 Actively Secure Key Generation

The key generation protocol can informally be described as follows: in a first
step, all parties sample a value si that they commit to. They then prove in zero-
knowledge that this commitment indeed contains a short value. We moreover
let each party commit to the values pki, ski which can be computed from si and
let them prove that the commitments can indeed be obtained using the public
linear transform F KG

a using our zero-knowledge proofs. Finally we let the parties
open pki, so that they can then individually compute the public key.

9 We may also just sample F KG
a using a distributed coin-flipping protocol using our

commitment scheme.

14

Functionality FKGD

Key Generation:
1. Wait for each party Pi to input

(
KeyGen,F KG

a

)
.

2. For each Pi ∈ I, A inputs si. If si 6∈ Flsq or ||si||∞ > ωs · βs, then output
(Abort, Pi) to all honest parties and stop.

3. For each Pi ∈ P \ I sample si
$← U lsβs .

4. Compute (pk, pk1, . . . , pkn, sk1, . . . , skn)← KG(1λ, n,F KG
a , s1, . . . , sn).

5. Locally store (Keys, pk, sk1, . . . , skn) if no such pk has been stored before.
6. Output

(
pk, (pki)Pi∈P\I

)
to A and (pk, ski) to each honest Pi.

Decryption:
1. Wait for each party Pi to input (Decrypt, pk,F c).
2. Load (Keys, pk, sk1, . . . , skn). If no such entry can be found, abort.
3. For each Pi ∈ I A inputs ei. If ei 6∈ Flrq or ||ei||∞ > ωd · βd then output

(Abort, Pi) to all honest parties and stop.

4. For each i ∈ P \ I sample ei
$← U lrβd .

5. Compute (m,d1, . . . ,dn)← Dec(F c, sk1, . . . , skn, e1, . . . , en).
6. Output

(
m, (di)Pi∈P\I

)
to each dishonest Pi and m to each honest Pi.

Fig. 2. FKGD: Ideal functionality for distributed key generation.

Protocol ΠKG

1. Each Pi locally samples si
$← U lsβs .

2. Each Pi computes and broadcasts the commitments C(si), C(F pk
a si), C(F sk

a si).
3. Each Pi uses the following proofs towards all parties. Sample the challenge

using FRand:
(a) ΠBound on C(si) to show that ||si||∞ ≤ βs.
(b) ΠLin on C(si), C(F pk

a si) using F pk
a .

(c) ΠLin on C(si), C(F sk
a si) using F sk

a .
If one of the proofs fails then abort.

4. Denote with pki the committed value in C(F pk
a si). Each Pi proves to all parties

that C(F pk
a si) contains pki using ΠOpen-x. If one of the proofs fails, then abort.

5. If all proofs were correct, then output pk =
∑
i∈[n] pki.

Fig. 3. ΠKG: Protocol for actively secure key generation.

To ease notation, we can write F KG
a as F KG

a =
(
F pk>
a | F sk>

a

)>
where F pk

a ∈
Flpk×lsq ,F sk

a ∈ Flsk×lsq . Since we made the assumption that all matrix dimensions

are multiples of N , we can decompose F pk
a ,F

sk
a into submatrices of size N ×N .

Moreover, let r be a vector r = (r1| . . . |rk)> where each ri ∈ Rq, then C(r) is an
abbreviation for the list of commitments to each individual ri. This gives an in-
tuitive way to extend ΠOpen-x, ΠSum and ΠBound to longer vectors. We implicitly
assume that if we apply ΠLin to a matrix F and C(r), then the appropriate num-
ber of individual instances of ΠLin with the respective submatrices of F is being
used. Using this generalization, we can instantiate KG with active security as

15

shown in Fig. 3. We assume that there exists a coin-flipping functionality FRand

because the zero-knowledge protocols are only honest-verifier zero-knowledge.
The commitments C(ski) := C(F sk

a si) will be saved for later: we will use it
again in the distributed decryption.

Formally, one can show the following statement to establish security:

Theorem 1. The protocol ΠKG implements FKGD in the standalone setting with
security against static active adversaries corrupting up to n − 1 parties in the
FRand-hybrid model with auxiliary commitments and broadcast.

The proof can be found in Appendix D. Moreover, in Appendix E we show how
to achieve UC security for this protocol, as well as our decryption protocol.

Acknowledgments

We thank Nigel Smart for informing us about a bug in an earlier version of this
work.

References

AJL+12. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low com-
munication, computation and interaction via threshold FHE. In Advances
in Cryptology - EUROCRYPT 2012, pages 483–501, 2012.

Ajt96. Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing, pages
99–108. ACM, 1996.

BCK+14. Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyubashev-
sky, and Gregory Neven. Better zero-knowledge proofs for lattice encryption
and their application to group signatures. In Advances in Cryptology - ASI-
ACRYPT 2014, pages 551–572, 2014.

BDLN16. Carsten Baum, Ivan Damg̊ard, Kasper Larsen, and Michael Nielsen. How
to prove knowledge of small secrets. In Advances in Cryptology-CRYPTO
2016. Springer, 2016.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. In Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference, pages 309–325.
ACM, 2012.

BKLP15. Fabrice Benhamouda, Stephan Krenn, Vadim Lyubashevsky, and Krzysztof
Pietrzak. Efficient zero-knowledge proofs for commitments from learning
with errors over rings. In Computer Security - ESORICS 2015, pages 305–
325, 2015.

BKP13. Rikke Bendlin, Sara Krehbiel, and Chris Peikert. How to share a lattice
trapdoor: Threshold protocols for signatures and (H)IBE. In Applied Cryp-
tography and Network Security - 11th International Conference, ACNS 2013,
Banff, AB, Canada, June 25-28, 2013. Proceedings, pages 218–236, 2013.

16

Blu82. Manuel Blum. Coin flipping by telephone - A protocol for solving impossible
problems. In COMPCON’82, Digest of Papers, Twenty-Fourth IEEE Com-
puter Society International Conference, San Francisco, California, USA,
February 22-25, 1982, pages 133–137, 1982.

BRS02. John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme
security in the presence of key-dependent messages. In Selected Areas in
Cryptography, 9th Annual International Workshop, SAC 2002, St. John’s,
Newfoundland, Canada, August 15-16, 2002. Revised Papers, pages 62–75,
2002.

BV11. Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption
from ring-lwe and security for key dependent messages. In Advances in
Cryptology–CRYPTO 2011, pages 505–524. Springer, 2011.

CDXY17. Ronald Cramer, Ivan Damg̊ard, Chaoping Xing, and Chen Yuan. Amortized
complexity of zero-knowledge proofs revisited: Achieving linear soundness
slack. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part I,
pages 479–500, 2017.

CKLS16. Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yong Soo Song. Lizard:
Cut off the tail! // practical post-quantum public-key encryption from LWE
and LWR. Cryptology ePrint Archive, Report 2016/1126, 2016. http:

//eprint.iacr.org/2016/1126.

DF89. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Advances
in Cryptology - CRYPTO ’89, 9th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings,
pages 307–315, 1989.

DKL+13. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,
and Nigel P. Smart. Practical covertly secure MPC for dishonest majority
- or: Breaking the SPDZ limits. In Computer Security - ESORICS 2013 -
18th European Symposium on Research in Computer Security, Egham, UK,
September 9-13, 2013. Proceedings, pages 1–18, 2013.

DPP93. Ivan Damg̊ard, Torben P. Pedersen, and Birgit Pfitzmann. On the existence
of statistically hiding bit commitment schemes and fail-stop signatures. In
Advances in Cryptology - CRYPTO ’93, pages 250–265, 1993.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party Computation from Somewhat Homomorphic Encryption. In Procee-
dings of Crypto, pages 643–662, Springer Verlag 2012.

FV12. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomor-
phic encryption. IACR Cryptology ePrint Archive, 2012:144, 2012.

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 197–206, 2008.

HPS98. Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A ring-based
public key cryptosystem. In Algorithmic number theory, pages 267–288.
Springer, 1998.

JKPT12. Abhishek Jain, Stephan Krenn, Krzysztof Pietrzak, and Aris Tentes. Com-
mitments and efficient zero-knowledge proofs from learning parity with
noise. In Advances in Cryptology - ASIACRYPT 2012, pages 663–680, 2012.

17

http://eprint.iacr.org/2016/1126
http://eprint.iacr.org/2016/1126

KTX08. Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently se-
cure identification schemes based on the worst-case hardness of lattice pro-
blems. In Advances in Cryptology - ASIACRYPT 2008, 14th International
Conference on the Theory and Application of Cryptology and Information
Security, Melbourne, Australia, December 7-11, 2008. Proceedings, pages
372–389, 2008.

LM06. Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knap-
sacks are collision resistant. In Automata, Languages and Programming,
pages 144–155. Springer, 2006.

LN17. Vadim Lyubashevsky and Gregory Neven. One-shot verifiable encryption
from lattices. In Advances in Cryptology - EUROCRYPT 2017 - 36th An-
nual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings,
Part I, pages 293–323, 2017.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Advances in Cryptology - EUROCRYPT
2010, 29th Annual International Conference on the Theory and Applicati-
ons of Cryptographic Techniques, French Riviera, May 30 - June 3, 2010.
Proceedings, pages 1–23, 2010.

LPR13. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 35–54. Springer, 2013.

LS17. Vadim Lyubashevsky and Gregor Seiler. Partially splitting rings for faster
lattice-based zero-knowledge proofs. Cryptology ePrint Archive, Report
2017/523, 2017. http://eprint.iacr.org/2017/523.

LSS16. Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez. More efficient
constant-round multi-party computation from BMR and SHE. In Theory of
Cryptography - 14th International Conference, TCC 2016-B, Beijing, China,
October 31 - November 3, 2016, Proceedings, Part I, pages 554–581, 2016.

Lyu08. Vadim Lyubashevsky. Lattice-based identification schemes secure under
active attacks. In Public Key Cryptography–PKC 2008, pages 162–179.
Springer, 2008.

Lyu09. Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and
factoring-based signatures. In Advances in Cryptology - ASIACRYPT 2009,
15th International Conference on the Theory and Application of Cryptology
and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings,
pages 598–616, 2009.

Lyu12. Vadim Lyubashevsky. Lattice signatures without trapdoors. In Advances in
Cryptology - EUROCRYPT 2012 - 31st Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Cambridge,
UK, April 15-19, 2012. Proceedings, pages 738–755, 2012.

Mic02. Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and ef-
ficient one-way functions from worst-case complexity assumptions. In 43rd
Symposium on Foundations of Computer Science (FOCS 2002), 16-19 No-
vember 2002, Vancouver, BC, Canada, Proceedings, pages 356–365, 2002.

Mic07. Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and
efficient one-way functions. Computational Complexity, 16(4):365–411, 2007.

PR06. Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from
worst-case assumptions on cyclic lattices. In Theory of Cryptography Con-
ference, pages 145–166. Springer, 2006.

18

http://eprint.iacr.org/2017/523

PR07. Chris Peikert and Alon Rosen. Lattices that admit logarithmic worst-case
to average-case connection factors, pages 478–487. 2007.

PRS17. Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorand-
omness of ring-lwe for any ring and modulus. IACR Cryptology ePrint
Archive, 2017.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In STOC, pages 84–93, 2005.

Was97. Lawrence C Washington. Introduction to cyclotomic fields, volume 83. Sprin-
ger Science & Business Media, 1997.

XXW13. Xiang Xie, Rui Xue, and Minqian Wang. Zero knowledge proofs from ring-
lwe. In Cryptology and Network Security - 12th International Conference,
CANS 2013, pages 57–73, 2013.

A Short and Invertible Elements, continued

In this appendix we will present proofs for the claims in Section 3. Moreover, we
present certain parameter sets for which our construction yields large sets E,E′.

A.1 The Commitment-friendly Set

In some cases, for example when Rq is a field, a commitment-friendly set as
defined in Definition 3 trivially exists. In order to prove Lemma 1 we will start
with a generic upper bound on the size of such a set D:

Remark 3. Let R,Rq be defined as before and D ⊆ B be a commitment-friendly
set, then |D| ≤ d where d = ordm(q).

Proof. DecomposeRq into a product of fields using the decomposition of Φm(X) =
f1(X) · · · ft(X) mod q with deg(fi) = d and t = N/d (see e.g. [Was97]). Then

Rq ' Fq[X]/〈f1(X)〉 × · · · × Fq[X]/〈ft(X)〉 ' (Fdq)× · · · × (Fdq)

For any set D = {r1, . . . , rs} we require that

∀ai ∈ Fq :

t∑
i=1

airi = 0 ⇔ a1 = a2 = · · · = as = 0.

Then s ≤ d, as each subfield of Rq can be written as a vector space of dimension
d - the elements must be independent in each Fq[X]/〈fi(X)〉 as we can otherwise
trivially construct an element that is 0 mod fi(X). ut

To identify the elements from the powerful basis B that we can choose, we
need the following, technical statement.

Proposition 3. Let m1,m2 ∈ N such that m2 is a prime power, m1 > 1 and
gcd(m1,m2) = 1. Moreover, let q be a prime, m = m1m2 and set

d = ordm(q), d1 = ordm1
(q), d2 = d/d1

19

Let ωm ∈ Fq be a primitive mth root of unity in the algebraic closure of Fq. Then
it must hold for the degree of the extension that

[Fq(ωm1
, ωm2

) : Fq(ωm1
)] = d2.

Proof. The field extension Fq(ωm)/Fq has degree d = [Fq(ωm) : Fq] = ordm(q) as
shown in e.g. [Was97]. As m1,m2 are coprime, ωm2

6∈ Fq(ωm1
). Hence adjoining

ωm2
leads to a real field extension. Moreover, Fq(ωm1

, ωm2
) ⊆ Fq(ωm) as we can

write both ωm1 , ωm2 as powers of ωm.
The homomorphism

φ : Fq(ωm1 , ωm2)→ Fq(ωm)

ai,jω
j
m1ω

i
m2
7→ ai,jω

d∗j/d1+i
m

is injective as d ∗ j/d1 + i takes all possible values from {0, .., d − 1} for j ∈
{0, ..., d1− 1}, i ∈ {0, .., d2− 1}, and by the size of Fq(ωm) it must therefore also
be surjective. ut

This can be used to establish the correctness of Lemma 1:

Proof (of Lemma 1). It is easy to see that |E| = d, which by Remark 3 is
maximal. It remains to show that this set indeed commitment-friendly. Consider
the tower of extensions

Fq ⊂ Fq(ωm1
) ⊂ F(ωm1

, ωm2
) ⊂ · · · ⊂ Fq(ωm1

, . . . , ωm`) ' Fq(ωm).

As shown in Proposition 3, each of these is a real extension of degree di =
ordm1···mi(q)/ ordm1···mi−1(q) which means that all powers {1, ζmi , ..., ζdi−1mi } are
linearly independent over F(ζm1

, ..., ζmi−1
). Moreover, we can locate F(ωm) in

Rq as it can be decomposed into copies of this field.
Fix the set {ζm1 , . . . , ζm`} ⊂ B as used in the powerful basis of Rq, and

consider the injective homomorphism

σ : Fq(ωm1
, . . . , ωm`)→ Rq∑

i∈[`]
ji∈{0,...,di−1}

aj1,...,j`ω
j1
m1
· · ·ωj`m` 7→

∑
i∈[`]

ji∈{0,...,di−1}

aj1,...,j`ζ
j1
m1
· · · ζj`m`

then the image of σ consists of exactly those Fq-combinations over E. By injecti-
vity, σ(Fq(ωm1

, . . . , ωm`) \ {0}) must be invertible. ut

A.2 The Multiplication-friendly Set

In Proposition 1 we gave an explicit construction for a multiplication-friendly
set, based on the commitment-friendly set E from Lemma 1. We now give a proof
for the claimed statement:

20

Proof (of Proposition 1). Let x ∈ SE′,β , z ∈ R such that ||z||cp ≤ γ. We have that

||x · y||cp ≤ ||x||c∞ · ||y||cp
≤ |E|/2 · ||x||∞ · ||y||cp
= |E|/2 · β · γ

because obtaining the canonical embedding consists of computing 〈x, r〉 where
at most |E′| ≤ |E|/2 elements of x are non-zero and ||r||∞ = 1.

We obtain each coefficient in the product of the second claim by multiplying
at most |E′| non-zero elements with each other, and thus after the multiplication
at most |E| elements are non-zero, as the result must be in E by construction. ut

There are other ways how to obtain a commitment-friendly and multiplication-
friendly set: for example, using m = 2τ and q = 3 mod 8 as in [BKLP15] one
can, considering that the power basis and the powerful basis coincide in this
case, choose all polynomials of small enough degree and instantiate our con-
struction this way. In this setting Rq decomposes into two large fields. In [LN17]
the authors observe that q = 5 mod 8 yields a similar result.

A.3 Properties of the Construction

In a computational setting we assume that m = O(λ). It is interesting to discuss
the size of E′,E in the best and worst case for Rq. Intuitively, one would hope
that |E′| = Θ(|E|). We will show that for some interesting cases, E is large and
the above intuition holds, while it is not true in general.

Worst case: In the worst case, one can set q = 1 mod m. Then |E| = |E′| = 1
as Rq totally decomposes.

Best case: Let m = pk or m = 2pk for an odd prime p and k > 0. In this
setting the group (Z/mZ)∗ is cyclic and therefore contains an element r of
order ϕ(m) = (p−1)pk. A prime q = r mod m must exist due to Dirichlet’s
Theorem. In this setting we have |E′| = |E| = Ω(λ). This is the other extreme
to the worst case, as Rq is now a field.

Two other interesting cases are if we set m = 2k or when m is the product
of a constant number of powers of safe primes.

Powers of Two. We may ask how big |E| can be in this setting, so what the
largest ord2k(q) can be. The value that can be achieved is called the Carmichael
Number10 χ(·), which is the smallest value χ(n) such that ∀q ∈ N+ : gcd(q, n) =
1 ⇒ qχ(n) mod n. For powers of two one has χ(2k) = ϕ(2k)/2 = 2k−2. We can
therefore assume the existence of a prime q that has order 2k−2 = O(λ) and
obtain that also |E| = |E′| = Ω(λ).

10 In the literature one denotes the Carmichael Number of n usually using λ(n).

21

Products of Safe Primes. Let m = mk1
1 · · ·m

k`
` with t = O(1). Assume that

∀i ∈ [t] : mi−1
2 6 | m. Moreover χ(m) = lcm(χ(mk1

1), . . . , χ(mk`
`)). But then

χ(m) = 2p1m
k1−1
1 · · · p`mk`

` = |E| = O(λ)

Let m1, . . . ,m` be in ascending order, then m1 would be the smallest safe prime.
One can easily check that in this case bdi−12 c ≥

di
4 . Since t = O(1) we yield

|E′| ≥ |E|/4` = Ω(λ).

B Extending the Commitment Scheme to Vectors

It was briefly mentioned in Section 4 that the commitment scheme can be ex-
tended to allow committing to vectors x ∈ Rdq (for constant d). We will describe
the modification in this appendix.

CKeyGen: Output the specification of a ring Rq with the commitment-friendly
set D from Definition 3 and a (s, t)-multiplication-friendly set D′ as defined

in Definition 4, a uniformly random matrix A ∈ R(d+1)×k
q and a constant β

such that 16 ·s ·t ·k ·m · log(k ·N) ·β3 < q/2 Finally, we define the distribution
D which outputs a vector v ∈ SkD′,β uniformly at random.

Commit: To commit to a message x ∈ Rdq , draw a r
$← D and compute

Com(x; r) := Ar +
(
0
x

)
.

Open: A valid opening of a commitment c is a 3-tuple: x ∈ Rdq , r ∈ Rk, and
f ∈ SD′,2·β . The verifier checks that

Ar +
(

0
fx

)
= fc,

and that ||r||c2 ≤ 4 · t · k ·m · log(k ·N) · β2.

The security properties of the extended commitment scheme remain similar:

Lemma 5 (Binding Property). From a commitment c and correct openings
r, f, r′, f ′ to two different messages x, x′, one can efficiently compute a solution
with 16 · s · t · k ·m · log(k ·N) · β3 to the Ring-SIS problem instance defined by
the top row of A.

Lemma 6 (Hiding Property). Assume the distribution D and that Rq, k
are chosen such that 1) the min-entropy of a vector drawn from D is at least
(d + 1) · log(|Rq|) + κ where κ is a (statistical) security parameter, and 2) the
class of functions {fa | a ∈ Rkq} where fa(r) = a · r is universal when mapping
the support of D to Rq. Then the scheme is statistically hiding.

The proofs of the binding and hiding property follow by the same arguments as
for Lemma 2 and Lemma 3.

22

C Proofs for Zero-Knowledge Proofs

In this appendix we will provide a proof for Lemma 4, as well as protocols and
proofs for other applications as outlined in Section 5. To ease understanding of
these proofs, we first repeat two core results from [Lyu12] that will be useful in
our context.

We adapt the tail-bound from [Lyu12, Lemma 4.4] as

Remark 4. For any K > 0,

Pr[||z||2 > Kσ
√
kN | z $← N k

σ] < KkN · exp

(
kN

2
(1−K2)

)
.

Moreover, the rejection sampling theorem from [Lyu12, Theorem 4.6] can be
expressed in our setting as follows:

Lemma 7. Let V ⊆ Rk such that all elements have || · ||2-norm less than T ,
σ ∈ R such that σ = ω(T

√
log(kN)) and h : V → R be a probability distribution.

Then there exists a M = O(1) such that the distribution of the following two
algorithms A,S is within statistical distance 2−ω(log(kN))/M .

A:
1. v

$← h
2. z

$← N k
v,σ

3. Output (z, v) with probability min
(
Nkσ (z)

MNkv,σ(z)
, 1
)

S:
1. v

$← h
2. z

$← N k
σ

3. Output (z, v) with prob. 1/M

The probability that A outputs something is at least
1− 2ω(log(kN))

M
.

As mentioned in [Lyu12], by setting σ = αT one obtains

M = exp
(
12/α+ 1/(2α2)

)
such that the statistical distance of the output of A,S is at most 2−100/M while
A outputs a result with probability at least (1−2−100)/M . In practice one would
choose kN � 128, but already for kN = 128 one obtains that M ≈ 4.5, and it
just decreases for larger choices.

In ΠOpen as well as the other protocols, we set K = 2. This choice is suffi-
cient for Remark 4 as we surely have N = Ω(λ), so the tail-bound holds with
probability that is overwhelming in λ.

C.1 Proof for Opening a Commitment

Proof (of Lemma 4).

23

Completeness: An honest prover can clearly answer correctly for any challenge d
and by Lemma 7, the abort probability of the sender for our choice of parameters

is at most 1 − 1−2−100

M . For the receiver, by Remark 4 the bound on ||rz||2 is

2σ ·
√
kN except with negligible probability.

Special Soundness: We first note that if t 6= t′ in the input information, this
breaks binding for the auxiliary scheme (of course one expects that this occurs
with negligible probability). Otherwise t = t′, and one can compute the message
contained in c as x = f−1(z − z′) where f = d − d′ and is indeed invertible as
f ∈ SD′,β \ {0}. We set the randomness to be r = rz − r′z.

This works since if we subtract the two equations the verifier would check in
the two transcripts, we obtain

(d− d′)c = A(rz − r′z) +
(

0
z−z′

)
,

which by definition of f and rµ can be rewritten to

fc = Ar +
(

0
fx

)
.

So the opening information we obtain is x, f, r.

Honest-Verifier Zero-Knowledge: The simulator first decides to simulate an
aborting conversation with probability 1/M . In this case, the simulator just
outputs Caux(t) for an arbitrary value t of the same length as a basic commit-
ment.

Otherwise, to simulate an accepting conversation, draw a random d from
SD′,β and a random rz from N k

σ . Finally, set t = C(z; rz) − dc, and commit
to t using the auxiliary commitment scheme. As for correctness of the output
distribution, note that aborting and non-aborting conversations occur with the
correct probability. The aborting conversations have statistically indistinguisha-
ble distribution by the statistical hiding of the auxiliary commitment scheme.
The non-aborting ones are statistically indistinguishable as the simulator simply
acts as S as in Lemma 7. ut

C.2 Proof of Linear Relation

Protocol ΠLin

1. The prover computes commitments t1 = C(µ1;ρ1), t2 = C(µ2;ρ2) where µ1

is chosen uniformly from Rq, and ρ1,ρ2 are sampled from N k
σ . Furthermore,

set µ2 = g(µ1). The prover then sends the commitments caux,1 = Caux(t1),
caux,2 = Caux(t2) to the verifier.

2. The verifier sends a random challenge d ∈ SD′,β .
3. The prover first checks that d is a valid challenge. The prover’s goal is to open
t1 + dc1 to z1 = µ1 + dx1 and rz1 = ρ1 + dr1, and t2 + dc2 to z2 = µ2 + dx2
and rz2 = ρ2 + dr2. The protocol is aborted with probability

1−min

(
1,

N k
σ (rz1)

MN k
dr1,σ

(rz1)
+

N k
σ (rz2)

MN k
dr2,σ

(rz2)

)
.

24

Otherwise, the prover sends to the verifier z1, rz1 , z2, rz2 , and opening
information uaux,1 and uaux,2 for the commitments caux,1 and caux,2.

4. The verifier checks that uaux,1, uaux,2 are valid, that C(z1; rz1) = t1+dc1 and

C(z2; rz2) = t2 + dc2, that g(z1) = z2, and that ||rz1 ||2, ||rz2 ||2 ≤ 2σ
√
kN .

Lemma 8. The protocol ΠLin has the following properties:

– Completeness: The verifier accepts an interaction with an honest prover with
overwhelming probability when the protocol does not abort. The probability of

abort is at most 1− 2 1−2−100

M .
– Special Soundness: On input two commitments c1, c2 and a pair of trans-

cripts ((caux,1, caux,2), d, (uaux,1, uaux,2, t1, t2, z1, z2, rz1 , rz2)),
((caux,1, caux,2), d′, (u′aux,1, u

′
aux,2, t

′
1, t
′
2, z
′
1, z
′
2, r
′
z1 , r

′
z2)) where d 6= d′, we

can extract either a witness for breaking the auxiliary commitment scheme,
or valid openings of c1 and c2.

– Honest-Verifier Zero-Knowledge: Executions of protocol ΠLin with an honest
verifier can be simulated with statistically indistinguishable distribution.

Proof. An honest prover can clearly answer with both values correctly for any
challenge d and by Lemma 7, the abort probability of the sender for our choice of

parameters is at most 1− 2 1−2−100

M as both values are computed independently.
For the receiver, by Remark 4 one can again give a bound on the || · ||2-norms
on the returned values rz1 , rz2 as in the proof of Lemma 4.

The proof of special soundness is similar to that of Lemma 4: if we cannot
break the auxiliary commitment scheme, then by the same argument, we can
assume that t1 = t′1 and t2 = t′2. In this case, one can compute the messages
contained in c1 as x1 = f−1z1 − z′1 and in c2 as x2 = f−1z2 − z′2, where f =
d − d′ and f is again invertible. Then set the randomness r1 = rz1 − r′z2 and
r2 = rz2 − r′z2 .

For honest-verifier zero-knowledge, note that the probability pabort that an
abort occurs in the protocol is independent of the prover’s secret. Therefore, on
input c1, c2, the simulator first decides to simulate an aborting conversation with
probability pabort. In this case, the simulator just outputs Caux(s) and Caux(t)
for arbitrary values s and t of the same length as a basic commitment.

Otherwise, to simulate an accepting conversation, draw a random d from
SD′,β , a random z1, and rz1 , rz2 from N k

σ . Set z2 = g(z1). Finally, set t1 =
C(z1; rz1) − dc1 and t2 = C(z2; rz2) − dc2, and commit to t1 and t2 using the
auxiliary commitment scheme. As for correctness of output distribution, note
that aborting and non-aborting conversations occur with the correct probabili-
ties. The aborting conversations have statistically indistinguishable distribution
by hiding of the auxiliary scheme. Indistinguishability of the non-aborting con-
versations follows by the same argument as in the proof of Lemma 4. ut

C.3 Proof of Sum

Protocol ΠSum

25

1. The prover draws uniform µ1, µ2 from Rq and ρi (i ∈ {1, 2, 3}) from N k
σ ,

and sets µ3 = α1µ1 + α2µ2. He then computes ti = C(µi;ρi) and caux,i =
Caux(ti) (i ∈ {1, 2, 3}). Finally, the prover sends caux,i to the verifier.

2. The verifier sends a random challenge d ∈ SD′,β .
3. The prover first checks that d is a valid challenge. The prover’s goal is then

to open ti + dci to zi = µi + dxi and rzi = ρi + dri. The protocol is aborted
with probability

1−min

(
1,

N k
σ (rz1)

MN k
dr,σ(rz1)

+
N k
σ (rz2)

MN k
dr,σ(rz2)

+
N k
σ (rz3)

MN k
dr,σ(rz3)

)
.

Otherwise, the prover sends to the verifier zi, rzi , and opening information
uaux,i for the commitments caux,i.

4. The verifier checks that uaux,i are valid, that C(zi; rzi) = ti + dci, that

z3 = α1z1 + α2z2, and that ||rzi ||2 ≤ 2σ
√
kN for i ∈ {1, 2, 3}.

Lemma 9. The protocol ΠSum has the following properties:

– Correctness: The verifier accepts an interaction with an honest prover with
overwhelming probability when the protocol does not abort. The probability of

abort is at most 1− 3 1−2−100

M .
– Special Soundness: On input α1, α2, three commitments c1, c2, c3 and a

pair of transcripts ((caux,i)i∈{1,2,3}, d, (uaux,i, ti, zi, rzi)i∈{1,2,3}),
((caux,i)i∈{1,2,3}, d

′, (u′aux,i, t
′
i, z
′
i, r
′
zi)i∈{1,2,3}) where d 6= d′, we can extract

either a witness for breaking the auxiliary commitment scheme, or valid ope-
nings of c1, c2, c3.

– Honest-Verifier Zero-Knowledge: Executions of protocol ΠSum with an honest
verifier can be simulated with statistically indistinguishable distribution.

Proof. As argued above, the output of the honest prover for every challenge will
be accepted by an honest verifier except with probability negligible in λ, while

the abort probability is at most 1− 3 1−2−100

M .
The proof of special soundness is similar to that of Lemma 4: if we cannot

break the auxiliary commitment scheme, then by the same argument, we can
assume that ti = t′i. In this case, one can compute the messages contained in
ci as xi = f−1(zi − z′i), where f = d − d′ and f is again invertible. Then set the
randomness ri = rzi − r′zi .

For honest-verifier zero-knowledge, first note that the probability pabort that
an abort occurs in the protocol is independent of the prover’s secret (cf. Lemma 4).
Therefore, on input ci, the simulator first decides to simulate an aborting conver-
sation with probability pabort. In this case, the simulator just outputs Caux(ti)
for arbitrary values ti of the same length as a basic commitment.

Otherwise, to simulate an accepting conversation, draw a random d from
SD′,β and random z1, z2, and rzi from N k

σ . Set z3 = α1z1 + α2z2. Finally, set
ti = C(zi; rzi)− dci, and commit to ti using the auxiliary commitment scheme.
As for correctness of output distribution, note that aborting and non-aborting
conversations occur with the correct probabilities. The aborting conversations

26

have statistically indistinguishable distribution by hiding of the auxiliary scheme.
Indistinguishability of the non-aborting conversations follows by the same argu-
ment as in the proof of Lemma 4. ut

C.4 Proving Bounds

Let βx be an upper bound on the norms of all possible x and βr an upper bound
on the norm of the possible µ, where βr ≥ γxNβx for γx > 0. In addition to the
rejection sampling to hide the randomness of the commitment, we now perform
an additional rejection sampling which hides the actual message and just proves
its size. But the bound on the message is defined in the `∞-norm and we use a
technique similar to [Lyu08,Lyu09].

Protocol ΠBound

1. The prover computes a commitment t = C(µ;ρ) for uniform µ ∈ R and ρ ∈
Rk from N k

σ , subject to ||µ||∞ ≤ βx(1 + γxN/2), and sends caux = Caux(t)
to the verifier.

2. The verifier sends a random challenge bit d ∈ {0, 1}.
3. The prover first checks that d is a valid challenge. The prover’s goal is then

to open t + dc to z = µ + dx and zr = ρ + dr. The protocol is aborted

with probability 1 −min(1,
Nkσ (rz)

MNkdr,σ(rz)
) or if ||z||∞ > γxNβx/2. Otherwise,

the prover sends to the verifier z, rz, and opening information uaux for the
commitment c.

4. The verifier checks that uaux is valid, that C(z; rz) = t + dc, that ||z||∞ ≤
(γxNβx/2), and that ||rz||2 ≤ 2σ

√
kN .

Lemma 10. The protocol ΠBound has the following properties:

– Correctness: The verifier accepts an interaction with an honest prover with
overwhelming probability when the protocol does not abort. The probability of

abort is at most 1− 1−2−100

M + 2/γx.
– Special soundness: On input commitment c and a pair of transcripts

(caux, d, (uaux, t, z, rz)), (caux, d
′, (u′aux, t

′, z′, r′z)) where d 6= d′, we can ex-
tract either a witness for breaking the auxiliary commitment scheme, or a
valid opening of c where the message x has norm at most γxNβx.

– Honest-verifier zero-knowledge: Executions of protocol ΠBound with an honest
verifier can be simulated with statistically indistinguishable distribution.

Proof. As argued above, the output of the honest prover for every challenge will
be accepted by an honest verifier except with probability negligible in λ, while

the abort probability due to the Gaussian sampling is at most 1− 1−2−100

M . For
the probability of aborting because the norm of the committed message is too
big, note that the challenge d is a bit in this case and hence has norm at most
1. The probability that a single coefficient of z will cause an abort is

2βx
2(1 + γxN/2)βx + 1

≤ 2

γxN

27

since z ∈ Rq and each coefficient of z has norm at most γxNβx. Hence by the
union bound, the probability that some coefficient of z or rz causes an abort is

at most 2/γx. This yields an overall abort probability pabort = 1− 1−2−100

M +2/γx.

The proof of special soundness is similar to that of Lemma 4: if we cannot
break the auxiliary commitment scheme, then by the same argument, we can
assume that t = t′. In this case, one can compute the message contained in
c as x = z − z′. Then set the randomness r = rz − r′z. Note that indeed,
||x||∞ ≤ γxNβx, ||r||∞ ≤ 2 · σ ·

√
kN as required.

For honest-verifier zero-knowledge, note that the probability pabort that an
abort occurs in the protocol is independent of the prover’s secret. Therefore,
on input c, the simulator first decides to simulate an aborting conversation
with probability pabort. In this case, the simulator just outputs Caux(t) for an
arbitrary value t of the same length as a basic commitment and then aborts.

Otherwise, to simulate an accepting conversation, draw a random d from
{0, 1} as well as random z and rz from N k

σ subject to ||z||∞ ≤ γxNβx/2. Finally,
set t = C(z; rz)−dc and commit to t using the auxiliary commitment scheme. By
the same argument as before, we obtain the correct distributions of z, rz except
with negligible probability (if the protocol aborts), and we stop the protocol
with the right probability since the events that the protocol would abort to hide
the values of z, rz are independent, therefore the union bound yields the correct
probability. ut

C.5 Achieving Zero-Knowledge for Dishonest Verifiers

One easy way to have our protocols be zero-knowledge against dishonest verifiers
is if a trusted source of random bits is available (which can be implemented via a
coin-flipping protocol). One gets the challenge from this source and then clearly
honest-verifier zero-knowledge is sufficient.

A different approach is possible if a trapdoor commitment scheme Ctrap is
available, where commitments in this scheme can be equivocated if the trapdoor
is known. Then we can transform each of our protocols to a new one that is
zero-knowledge: the prover commits to the first message a using Ctrap, gets
the challenge d, then opens Ctrap(a) and answers d. If the simulator knows
the trapdoor, it can make a fake commitment first. Once d arrives, it runs the
simulation and equivocates the initial commitment to the value of a that it
wants.

D More Distributed Key Generation and Decryption

In this appendix, we extend the results from Section 6: the security of the distri-
buted key generation will be proven and a protocol for actively secure threshold
decryption will be presented. To ease readability, we present a short list of all
parameters and their meaning in Fig. 4.

28

Parameter Explanation

Pi Party i

P Set of parties

I Set of corrupted parties

n Number of parties

A Adversary

d Dimension of the plaintext space {0, 1}d of the cryptosystem

ls Length of the randomness that goes into key generation

lc Length of a ciphertext

lpk, lsk Length of the public and private key

lr Length of the noise vector that protects the decryption key

ld Length of the decryption, before being decoded into a plaintext

βs, βd Maximal norm of randomness used in key generation

and the noise used in distributed decryption

ωs, ωd “Slack” in norm between honestly chosen vectors and guarantees

of ΠBound in key generation and decryption

U`β Uniform distribution for vectors of length ` and norm at most β

F KG
a ,F r,F c Matrices applied in key generation and decryption

Fig. 4. Parameters and Notation used in this Appendix.

D.1 Threshold Decryption

An actively secure version of Dec can be obtained using a similar compilation step
to the one that turned KG into ΠKG. The main difference lies in the computed
values and in the zero-knowledge proofs that are applied. We moreover use the
commitments C(ski) that were generated in ΠKG and are publicly known. This
allows each party to prove that it has applied F c to the correct key share. The
protocol can be found in Fig. 5.

D.2 Proof of Security of ΠKG, ΠDec

We now prove security for both protocols.

Theorem 2. The protocols ΠKG, ΠDec implement FKGD in the standalone set-
ting with security against static active adversaries corrupting up to n− 1 parties
in the FRand-hybrid model with auxiliary commitments and broadcast.

A simulator for the protocols is provided in Fig. 6. In the proof, we will argue

about the indistinguishability of certain distributions, where
c
≈ symbolizes that

two distributions are computationally indistinguishable. Similarly, we use
s
≈,

p
≈ if

the distributions are statistically close or perfectly indistinguishable.

29

Protocol ΠDec

The parties in P want to decrypt the ciphertext c. Pi has ski. The commitment
C(ski) is known to each Pj ∈ P.

1. Each Pi locally samples ei
$← U lrβd .

2. Each Pi derives F c from c and computes and broadcasts the commitments

C(F cski), C(ei), C(F rei), C(F cski + F rei).

3. Each Pi uses the following proofs towards all parties. Sample the challenge
using FRand:
(a) Prove using ΠBound about C(ei) that ||ei||∞ ≤ βd.
(b) Prove using ΠLin that C(F cski) is the linear transform of C(ski) when

applying F c and that C(F rei) can be obtained from C(ei) using F r.
(c) Prove using ΠSum that C(F cski + F rei) is the sum of C(F cski) and

C(F rei).
If one of the proofs fails then abort.

4. Each Pi broadcasts di and proves towards all parties that C(F cski + F rei)
opens as di using ΠOpen-x.

5. If all proofs were correct then output m← decode(
∑
i∈[n] di).

Fig. 5. ΠDec: Protocol for the actively secure decryption of a ciphertext.

Proof (of Theorem 2). We will first prove security of ΠKG by showing that
the distribution τΠ of protocol transcripts of ΠKG is indistinguishable from the
distribution τsim of outputs of SKGD using a sequence of hybrids.

Key generation. We start by defining τ1,KG to be the transcript of a simulator
that is the same as τsim except that it now aborts if the proofs in Steps (3)− (4)
of ΠKG are not correct, i.e. we do not specifically check the relations on the
extracted data anymore. Because ΠLin, ΠOpen-x are computationally sound we

get that τsim
c
≈ τ1,KG. Define τ2,KG to be the same as the simulator for τ1,KG

except that we now simulate the proofs in Step (3) of ΠKG. Because ΠBound, ΠLin

are statistical zero-knowledge, it follows that τ1,KG
s
≈ τ2,KG.

Now we start from the other side: define τ ′1,KG to be the same as τΠ except
that we replace the honest proofs in Steps (3)− (4) with simulations. Therefore

τΠ
s
≈ τ ′1,KG. Because we do now not need witnesses anymore, we can define τ ′2,KG

to be the same as τ ′1,KG except that the commitments in Step (2) are replaced
with those generated by SKGD. By the statistical hiding of the commitment

scheme, it holds that τ ′1,KG

s
≈ τ ′2,KG. Moreover, the distributions of τ2,KG and

τ ′2,KG are identical and the claim follows.

Decryption. We start similarly as in the ΠKG case: first, let τ1,Dec be a simulator
that does the same as SKGD, but aborts in Steps (3) − (4) only if one of the

proofs aborts. We obtain hat τsim
c
≈ τ1,Dec due to the computational binding

property. In particular, this means that in τ1,Dec the adversary must use the

30

Simulator SKGD

Key Generation:
1. Wait for A to input the set I of corrupted parties.
2. For each honest Pi ∈ P \ I choose si ← U lsβs .
3. For each honest Pi compute the commitments C(si), C(F pk

a si), C(F sk
a si)

and send them to all dishonest parties Pj .
4. For each honest party Pi perform the zero-knowledge proofs in Step (3) of

ΠKG honestly. Abort if the protocol aborts.
5. Rewind A for the proofs of ΠBound to extract sj for all dishonest parties.

Change the output of FRand to achieve extraction.
6. Also rewind A to extract the witnesses from ΠLin. If they do not match

with the extracted sj then abort.
7. Submit all the sj of the dishonest parties to FKGD and obtain pki.
8. During Step (4) open each C(F pk

a si) as pki by simulating ΠOpen-x. Therefore
fix the challenge in advance using FRand.

9. For all dishonest parties in Step (4) also abort if the extracted witness for
C(F pk

a sj) disagrees with the value pkj announced by Pj .

Distributed Decryption:
1. The set of dishonest parties I is the same as in ΠKG. Let ski := F sk

a si and
C(ski) = C(F sk

a si) be the same commitment as in the instance of ΠKG.

2. Sample ei
$← U lrβd for each honest Pi.

3. Compute the commitments C(F cski), C(ei), C(F rei) and C(F cski+F rei)
honestly for all honest Pi, then broadcast them.

4. Run Step (3) honestly with the correct inputs for the honest parties.
5. In Step (3) use rewinding for the dishonest parties to extract the witnesses

for ΠBound, ΠLin, ΠSum. If a witness is not compatible with skj then abort.
Also abort if the protocol aborts.

6. Rename the witnesses of the dishonest Pj from ΠSum as dj . Send these to
FKGD. Obtain di for all honest Pi from FKGD.

7. In Step (4) simulate the opening of C(F cski + F rei) using ΠOpen-x as di
by adjusting the output of FRand.

8. For all dishonest parties in Step (4) abort if they prove that the value inside
C(F cskj + F rej) is different from dj as extracted before.

Fig. 6. SKGD: Simulator for the protocols ΠKG, ΠDec.

correct decryption key and succeeds using another one only by breaking the
binding property of our scheme. We then define τ2,Dec to be the same as τ1,Dec,
just that the proofs in the simulation are now simulated by programming FRand

appropriately, which yields τ1,Dec
s
≈ τ2,Dec. Similarly as above, we define τ ′1,Dec to

be the same as τΠ where we now simulate the zero-knowledge proofs. This implies

τ ′1,Dec

s
≈ τΠ . But observe that we can then again replace the commitments C(ei),

C(F rei), C(F cski + F rei) generated in Step (2) with those that were used in
Step (3) of the Simulator SKGD. Due to the statistical hiding property of C(·),

31

it follows that τ ′1,Dec

s
≈ τ ′2,Dec. We now observe that τ ′2,Dec

p
≈ τ2,Dec due to their

construction, which concludes the proof. ut

Optimizing away some of the Proofs. In practice we can, with a careful
choice of parameters, avoid using the proof ΠSum: opening the sum C(a+ b; r1 +
r2) = C(a; r1) + C(b; r2) of two commitments C(a; r1), C(b; r2) leaks informa-
tion about the individual randomness r1, r2, of each commitment. This is why
we use ΠSum in the protocols to prove that a commitment opens to the sum of
two other commitments.

On the other hand, if we open C(a + b; r1 + r2) using ΠOpen-x then only
a+ b is revealed, which does neither leak any information about the randomness
of the sum nor of those of the individual terms. As an optimization one can
therefore avoid the use of ΠSum and simply add commitments directly, as long
as the number of terms is small enough such that the randomness does not grow
too large (which would break the binding of C(·)).

D.3 Threshold Protocols for other Lattice-based Primitives

One might hope that the above techniques can also be used to give more efficient
protocols for e.g. threshold signatures. There are (currently) two main appro-
aches for lattice signatures, namely Fiat-Shamir style protocols like [Lyu09] or
those that use a hash-and-sign approach such as [GPV08]. In the first case, such
signature schemes have a rejection-sampling step where a bit is chosen with a
certain abort probability that depends both on the signature and the secret ba-
sis, which is the signing key. This requires computation with very high precision.
For hash-and-sign type constructions, the signer has to sample a short lattice
vector using a trapdoor. It has been shown [BKP13] that this can actually be
done in a distributed way, but their approach requires that all parties sample
shares according to a Gaussian distribution. It is an interesting open question
how to perform this efficiently with active security. For both cases, we do not see
how our commitment scheme could be applied to solve the actual bottlenecks of
the threshold versions, and leave this as an open problem.

E Extending the Threshold Protocols

For all practical purposes, the protocols ΠKG, ΠDec from Section 6 and Appen-
dix D are not satisfactory. We will now improve them in multiple ways: in a first
step, an extension to achieve UC security will be discussed. Moreover, we show a
simple approach that allows to compute encryptions of powers of sk. This in turn
can be used in an alternative distributed decryption algorithm that uses opti-
mistic decryption. The protocols in this appendix are presented without proofs:
their actual security depends on details of the schemes and chosen parameters
which would complicate the presentation without yielding any new insights, and
the basic structure of the protocols follows those from Section 6.

32

E.1 Some Further Assumptions

The starting point is to make some further assumptions about D.Enc from De-
finition 5. In Section 6, we only assumed that such an algorithm exists, while
we now require that the encryption algorithm itself can be modeled in a similar
way as KG,Dec – namely, that it can be described in terms of linear operations.

Similarly to the message space Rq of C(·) we define the message space of
Enc as Rp for p� q (instead of {0, 1}d). By representing the coefficients of the
elements as integers from the interval (−p/2, p/2] we can naturally embed each
m ∈ Rp into FNq . In particular, for a small enough number of ring operations in

Rp we can simulate these operations on the embedding into FNq , namely, for as
long as the coefficients do not get too big and wrap around modulo q.

We assume that le, βe ∈ N, βe � q and N divides le. Similarly as before, le
is the length of the randomness vector and βe is the maximal norm of the rand-
omness used in Enc, that we will now also describe in terms of linear operations:
given a public key pk, we require that there exists a deterministic algorithm
to compute two matrices F pk

e ∈ Flc×leq ,Fme ∈ Flc×Nq which are independent of

the plaintext and the noise, such that Enc, on an input m ∈ Rp, e ∈ Fleq with
||e||∞ ≤ βe, performs the following operations:

Enc(F pk
e ,F

m
e ,m, e):

1. Consider the representation of m in FNq , which we denote m.

2. Compute c = F pk
e e+ Fme m.

3. Output c.

In a nutshell, the above algorithm allows us to encrypt values we committed
to inside the commitment without revealing the secret. A direct consequence
of the above representation is that, if we assume the embedding of m to be
homomorphic, that Decsk(Encpk(m1) + Encpk(m2)) = m1 + m2. Depending on
the relationship between p, q and βe, we may allow a number of such additions
before Dec yields an incorrect value.

An additional requirement is that, given a ciphertext c ∈ Flcq there exists

a deterministic algorithm to compute Fmc ∈ Flc×Nq ,fmc ∈ Flcq from c and in-
dependently of a ∈ Rp such that Decsk(c) · a = Decsk(F

m
c · a + fmc) given the

randomness in c is small enough. This a is a plaintext value, so we require that
the result be decryptable with a normal secret key. Observe that publicly revea-
ling a value Fmc ·a+fmc may leak information on a. We therefore drown the noise
by adding new encryptions Encpk(0) with noise bound βm in the protocol. The
details on the choice of all these parameters depend on the implementation of
the protocols and are not discussed any further here. Similarly as above, we will
require some additive homomorphism for a small number of additions of cipher-
texts obtained from multiplication with a constant. This property follows from
the linearity of the procedure for a suitable choice of parameters. An overview
over the parameters and notation in this appendix can be found in Fig. 7.

33

Parameter Explanation

le Length of randomness vector for encryption

βe Noise bound for randomness in encryption

p Modulus of plaintext space

Rp Plaintext space of D

F pk
e Matrix applied to randomness vector in encryption

Fm
e Matrix applied to message in encryption

Fm
c ,f

m
c Values used to multiply ciphertext c by a constant

βm Noise bound for rerandomization of products with a constant

pki, ski Public/private key pair of the party Pi

Fig. 7. Additional Parameters used in this Appendix.

E.2 Making the Protocols UC-secure

The proof of security crucially relies upon the simulator being able to extract
witnesses from the ZK proofs by rewinding. Unfortunately, such rewinding is
not possible within the UC framework. The standard workaround is to base the
security on the simulator having other means for obtaining these values (e.g.
having secret keys for some encryption scheme or a trapdoor for commitments).
One then claims that a distinguisher between those two worlds exists and this
distinguisher itself can then do rewinding (but will apparently not have access
to the secret information of the simulator). In our case it is obvious that such
a proof technique must fail, since we are not aware of trapdoors for our defined
commitment scheme.

To make ΠKG UC-secure, we use the strengthened definition for the cryp-
tosystem D = (KG,Enc,Dec) and make the additional (mild) setup assumption11

that each party Pi has a key pair (pki, ski) with publicly known pki.

The key generation protocol ΠKG,UC follows the same outline as ΠKG, with
the one crucial difference: the seed si is sampled by party Pi in a special proce-
dure ProEncCommit where it also generates an encryption [[si]] under its key pki.
Pi will publish the ciphertext and prove that it was computed correctly from si
and some chosen randomness e using our zero-knowledge proofs. The simulator
holds the keys ski of the dishonest parties, is able to decrypt each ciphertext
and can then send this value to FKGD as before. The protocol can be found in
Fig. 8. A similar transformation can also be applied to ΠDec and the remaining
protocols from this appendix.

11 Implicitly, in our protocol we further assume that lpk = lsk = N to be able to
encrypt public and private keys. This can easily be generalized, and we just make
this assumption to simplify the exposition.

34

Protocol ΠKG,UC

Procedure ProEncCommit(i):

1. Pi locally samples s
$← U lsβs as well as e

$← U leβe and computes F
pki
e e,Fm

e s.
2. Pi computes and broadcasts the commitments

C(s), C(e), C(F pki
e e), C(Fm

e s) and C(F pki
e e + Fm

e s)

as well as [[s]] = F
pki
e e + Fm

e s.
3. Each Pi uses the following proofs towards all parties. Sample the challenge

using FRand:
(a) ΠBound on C(s) to show that ||s||∞ ≤ βs.
(b) ΠBound on C(e) to show that ||e||∞ ≤ βe.
(c) ΠLin on C(e), C(F

pki
e e) using F

pki
e .

(d) ΠLin on C(s), C(Fm
e s) using Fm

e .

(e) ΠSum on C(F
pki
e e), C(Fm

e s), C(F
pki
e e + Fm

e s).

(f) ΠOpen-x on C(F
pki
e e + Fm

e s) to show that it opens to [[s]].
If any of the proofs fails, then abort.

4. Return C(s).

Key Generation:
1. Each Pi runs (si, C(si))← ProEncCommit(i).
2. Each Pi computes and broadcasts the commitments C(F pk

a si), C(F sk
a si).

3. Each Pi uses the following proofs towards all parties. Sample the challenge
using FRand:
(a) ΠLin on C(si), C(F pk

a si) using F pk
a .

(b) ΠLin on C(si), C(F sk
a si) using F sk

a .
If one of the proofs fails then abort.

4. Denote with pki the committed value in C(F pk
a si). Each Pi proves to all

parties that C(F pk
a si) contains pki using ΠOpen-x. If one of the proofs fails,

then abort.
5. If all proofs were correct, then output pk =

∑
i∈[n] pki.

Fig. 8. ΠKG,UC: Protocol for actively secure key generation with UC security.

E.3 Computing Powers of the Secret Key

We can moreover use the additional assumptions made on D to allow the com-
putation of powers of the key sk securely. It may first seem counter-intuitive
why one would want to compute such a value, but the reason lies in potential
homomorphic properties of D:

– The encryption scheme due to [BV11] has an inherent ciphertext growth
due to multiplications. The actual key that is used in decryption consists of
powers of the secret key. To allow distributed decryption, a sharing of such
a power of a secret key must be computed.

35

– The [BGV12] cryptosystem uses a key switching matrix to cope with the
ciphertext growth of [BV11], but this matrix is computed as an encryption
of sk2 (times some constant).

This task of computing a power of the secret key can be achieved using our
commitment scheme, its protocols and D. In a proof of security for our protocol,
one would have to make an additional assumption on D, namely that it is KDM-
secure [BRS02].

Here is how the protocol ΠKeySquared works on an intuitive level: first, observe
that there already are commitments to each ski from ΠKG. These commitments
can be used in a first step to compute an encryption c = Encpk(sk) of the secret
key under its public key. This is possible because we can encrypt values that
were contained in a commitment into correct ciphertexts, something which we
already did in ΠKG,UC. Therefore, Pi will encrypt ski and prove correctness of
the ciphertext. It is safe to reveal this encryption due to the KDM assumption
on the cryptosystem. After this is done, these ciphertexts can be added up to
obtain c.

Now observe that each share ski can be considered as a plaintext element,
so we can multiply them with c. This can be done if we compute the matrices
Fmc ,f

m
c which must exist by assumption on the cryptosystem. These matrices

are public and applied to each C(ski) individually, where each Pi knows the
correct value that opens the resulting commitment. Before opening it, each Pi
will rerandomize the resulting ciphertext such as to hide the share ski. The result
of the protocol as depicted in Fig. 9 is then an encryption of sk2 under pk.

E.4 An Alternative Solution to Distributed Decryption

We want to point out that an alternative approach for distributed decryption
can be based on optimistic decryption, where the zero-knowledge proofs for the
commitments are only executed in the case of a discovered decryption failure (to
uncover a dishonest party). During a regular protocol run we will rely on proofs
of plaintext knowledge for the ciphertexts which can be amortized using the
technique from [BDLN16,CDXY17]. The reliable decryption technique is similar
to [LSS16], but we moreover allow to identify the cheater.

The optimistic decryption requires that D is somewhat homomorphic. We
require that there exists an algorithm ⊗ that allows to multiply ciphertexts in
a way that allows decryption using D.Dec. Such an algorithm can be realized
using the output of ΠKeySquared.

Definition 6 (Multiplicative Property). A distributed cryptosystem D is
said to have the multiplicative property if there exists a deterministic poly(λ)-
time algorithm ⊗ such that

Pr

m 6= a · b
(pk, sk)← KG(1λ) ∧ a, b ∈ Rp ∧
ca ← Encpk(a) ∧ cb ← Encpk(b)∧
c← ca ⊗ cb ∧m← Decsk(c)

 ≤ negl(λ),

36

Protocol ΠKeySquared

We assume that a commitment C(ski) of each secret key share is available from
ΠKG and that ||ski||∞ < p.

1. Each Pi samples vi
$← U leβe and computes and broadcasts the commitments

C(vi), C(F pk
e vi), C(Fm

e ski), C(F pk
e vi+Fm

e ski) as well as [[ski]] = F pk
e vi+Fm

e ski.

2. Each Pi uses the following proofs towards all parties. Sample the challenge
using FRand:
(a) ΠBound on C(vi) to show that ||vi||∞ ≤ βe.
(b) ΠLin on C(ei), C(F pk

e vi) using F pk
e .

(c) ΠLin on C(ski), C(Fm
e ski) using Fm

e .
(d) ΠSum on C(F pk

e vi), C(Fm
e ski), C(F pk

e vi + Fm
e ski).

(e) ΠOpen-x on C(F pk
e vi + Fm

e ski) to show that it opens to [[ski]].
If one of the proofs fails then abort.

3. Each Pi locally computes [[sk]] =
∑n
j=1[[skj]] and Fm

c ,f
m
c from [[sk]].

4. Each Pi samples wi
$← U leβm and computes and broadcasts the commitments

C(wi), C(F pk
e wi), C(Fm

c ski + δ1i · fmc), C(Fm
c ski + δ1i · fmc + F pk

e wi),

as well as
[[sk · ski]] = Fm

c ski + δ1i · fmc + F pk
e wi

where δxy is the Kronecker Delta function.
5. Each Pi uses the following proofs towards all parties. Sample the challenge

using FRand:
(a) ΠBound on C(wi) to show that ||wi||∞ ≤ βm.
(b) ΠLin on C(wi), C(F pk

e wi) using F pk
e .

(c) ΠLin on C(ski), C(Fm
c ski+δ1i ·fmc) using the linear function g(x) = Fm

c x+
δ1i · fmc .

(d) ΠSum on C(F pk
e wi), C(Fm

c ski + δ1i · fmc), C(Fm
c ski + fmc + F pk

e wi).
(e) ΠOpen-x on C(Fm

c ski + δ1i · fmc +F pk
e wi) to show that it opens to [[sk · ski]].

If one of the proofs fails then abort.
6. Each Pi locally computes [[sk2]] =

∑n
j=1[[sk · skj]]. Output [[sk2]].

Fig. 9. ΠKeySquared: Protocol for actively secure generation of powers of secret keys.

where the randomness is taken over12 the choice of inputs for KG,Dec,Enc.

Similarly as for ΠKeySquared we will not prove the security of the protocol,
but give some intuition on how it works: to decrypt a ciphertext [[x]] the parties
first generate an encryption of a uniformly random value a. They then encode
x by computing the product [[b]] = [[x]] ⊗ [[a]]. Before decrypting all three cip-
hertexts unreliably, each Pi commits to the values F xski, e

x
i ,F re

x
i ,d

x
i that it

will use in Dec to decrypt [[x]], as well as those values used in the decryption

12 To ease of readability, we leave out the full specification of the inputs to KG,Dec but
simply assume that they are correct according to FKGD.

37

Protocol ΠDecAlt

A protocol to decrypt a ciphertext [[x]].

1. Each Pi samples ai
$← Rp uniformly at random and computes [[ai]]← Encpk(ai).

2. Each Pi broadcasts [[ai]] together with a proof of plaintext knowledge for Enc.
3. Each Pi locally computes [[a]] =

∑
i∈[n][[ai]] and [[b]]← [[x]]⊗ [[a]].

4. Each Pi locally samples randomness exi , e
a
i , e

b
i

$← U lrβd and computes F x as used
in Dec to decrypt [[x]] as well as F a for [[a]] and F b for [[b]]. Then set

dxi = F xski + F re
x
i and dai = F aski + F re

a
i and dbi = F bski + F re

b
i .

5. Each Pi broadcasts

C(F xski), C(F aski), C(F bski), C(exi), C(eai), C(ebi) as well as

C(F re
x
i), C(F re

a
i), C(F re

b
i), C(dxi), C(dai), C(dbi).

6. Each Pi generates auxiliary commitments to commit to dxi ,d
a
i ,d

b
i towards all

parties.
7. Each Pi opens the auxiliary commitments to dxi ,d

a
i ,d

b
i .

8. All parties check that

decode(
∑
i∈[n]

dxi) · decode(
∑
i∈[n]

dai) = decode(
∑
i∈[n]

dbi).

If yes, then they output x← decode(
∑
i∈[n] d

x
i) and terminate.

9. Otherwise, for each i ∈ [n] the parties do the following, where all parties abort
with Pi if a check fails:
(a) Pi proves using ΠBound that C(exi), C(eai), C(ebi) have∞-norm at most βd.
(b) Pi proves using ΠLin that C(F xski), C(F aski), C(F bski) are derived from

C(ski) using F x,F a,F b and that C(F re
x
i), C(F re

a
i), C(F re

b
i) are derived

from C(exi), C(eai), C(ebi) using F r.
(c) Pi runs ΠSum on the tuples

– (C(F xski), C(F re
x
i), C(dxi))

– (C(F aski), C(F re
a
i), C(dai))

– (C(F bski), C(F re
b
i), C(dbi)).

(d) Pi proves using ΠOpen-x that C(dxi), C(dai), C(dbi) open to dxi ,d
a
i ,d

b
i .

Fig. 10. ΠDecAlt: Alternative protocol for the decryption of ciphertexts.

of [[a]], [[b]]. Thereafter, the parties unreliably decrypt [[x]], [[a]], [[b]] by opening the
commitments to dxi ,d

a
i and dbi . All parties check that a · x = b.

If this equality holds, then we consider the result as correct. If, on the ot-
her hand, it does not hold, then each party proves in zero-knowledge that its
dxi ,d

a
i ,d

b
i were correctly generated (as in a correct decryption procedure) based

on the commitments that it provided. The protocol is presented in Fig. 10, where
Step (1) and Step (2) can be done ahead of decryption time.

38

	Efficient Commitments and Zero-Knowledge Protocols from Ring-SIS with Applications to Lattice-based Threshold Cryptosystems

