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Abstract

We describe new cryptanalytic attacks on the candidate branching-program obfuscator proposed by
Garg, Gentry, Halevi, Raykova, Sahai and Waters (GGHRSW) using the GGH13 graded encoding, and its
variant using the GGH15 graded encoding as specified by Gentry, Gorbunov and Halevi. All our attacks
require very specific structure of the branching programs being obfuscated (which in particular must have
some input-partitioning property). Common to all our attacks are techniques to extract information about
the “multiplicative bundling” scalars that are used in the GGHRSW construction.

For the GGHRSW obfuscator over GGH13, we show how to recover the ideal generating the plaintext
space when the branching program has input partitioning. Combined with the information that we extract
about the “multiplicative bundling” scalars, this lets us extend the annihilation attack of Miles, Sahai and
Zhandry, to handle the GGHRSW block-randomization of the branching-program matrices. (We stress
that our attack does not break the candidate obfuscators of Miles et al. and Garg et al. (ePrint 2016/588,
2016/817), since their dual-input branching programs are inherently not partitionable.) Alternatively, once
we have the ideal we can solve the principle-ideal problem (PIP) in classical subexponential time or quan-
tum polynomial time, hence obtaining a total break.

For the GGH15 variant, we show how to use the left-kernel technique of Coron, Lee, Lepoint and
Tibouchi to recover ratios of the bundling scalars. Once we have the ratios of the scalar products, we can
use factoring and PIP solvers (in classical subexponential time or quantum polynomial time) to find the
scalars themselves, then run mixed-input attacks to break the obfuscation.
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1 Introduction

General-purpose code obfuscation is an amazingly powerful technique, letting one hide secrets in arbitrary
running software. The first plausible construction of a secure general-purpose obfuscation, described three
years ago by Garg, Gentry, Halevi, Raykova, Sahai and Waters [20] (hereafter GGHRSW), opened up a
new direction of research that transformed our thinking about what can and cannot be done in cryptography.
The GGHRSW constructions consists of a “core component” for obfuscating branching programs, and a
bootstrapping procedure that uses the core component — in conjunction with homomorphic encryption and
some proofs — to obfuscate arbitrary code (modeled as a binary circuit). Many different constructions were
proposed since then e.g., [11, 7, 34, 3, 24, 31, 6, 36, 5, 21, 10, 4, 28, 29], most of which only modify the “core
component” for branching programs, then use use the GGHRSW bootstrapping to obfuscate circuits.

All known obfuscation constructions rely crucially on the underlying tool of graded encoding schemes, for
which there are (essentially) only three candidate constructions: one due to Garg, Gentry and Halevi [19]
(GGH13), another due to Coron, Lepoint and Tibouchi [17] (CLT13), and the third due to Gentry, Gorbunov
and Halevi [23] (GGH15). However, the security properties of these encoding schemes are poorly understood,
and therefore the same holds for the obfuscation constructions that use them.

Known attacks. The original publications of GGH13, CLT13 and GGH15 survey several number theo-
retical and algebraic attacks. For the GGH13 encoding scheme — that relies on the difficulty of the NTRU
problem and the principle ideal problem (PIP) in certain number fields — we recently saw some advances in
attacking these underlying problem [2, 13, 8, 9, 18], that may affect the choice of parameters.

The most serious attacks on all three encoding schemes are the so-called “zeroing attacks”: when encodings
of zero are easy to find, some secrets can be extracted by linear algebraic techniques. The most devastating
zeroizing attack is found by Cheon, Han, Lee, Ryu and Stehlé [12] against CLT13 — when the encodings of
zero form certain combinations, one can extract all the secret parameters. To candidate obfuscators. These
attacks were extended by Coron et al., who described an attack on the branching-program obfuscator from
GGHRSW when instantiated using CLT13 encodings and used to obfuscate branching programs with certain
input-partitioning features [16, Section 3.4].

Applying zeroizing attacks to construction based on GGH13 and GGH15 appears somewhat harder, especially
in the context of obfuscation. Nonetheless, Miles, Sahai and Zhandry recently introduced “annihilation attack”
on many GGH13-based branching-program obfuscators, again for very specific types of branching programs
[32]. Interestingly, these attacks do not apply to the GGHRSW construction, due to the presence of some
random entries in the encoded matrices. Moreover, it was shown in [22, 33] that such random entries (in
conjunction with other techniques) provably eliminates all known variants of zeroizing attacks.

To the best of our knowledge, no polynomial time attacks (either classical or quantum) were known before
the current work on the GGHRSW obfuscator using GGH13 encoding, nor were there any attacks on any
GGH15-based branching-program obfuscators.

This work. We describe new attacks on the GGHRSW branching-program obfuscator, when using GGH13
and GGH15 encodings. The attacks that we describe in this work require the underlying branching programs
to satisfy some input-partitioning features, similar to the attack on the CLT variant [16, Section 3.4]. Roughly,
the indexes of the branching program can be partitioned into two or three consecutive intervals, each contains
“sufficiently many” input bits that do not appear in the other intervals.

A common thread in our attacks is that they focus on the “multiplicative bundling” scalars that are used in
the GGHRSW construction (as protection against “mixed-input attacks”). We show that some information
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about these scalars can be extracted using zeroing techniques, if the underlying branching program satisfy
certain input-partitioning features. We are not able to fully recover these scalars, and hence cannot quite
mount mixed-input attacks, but we can still use the extracted information in weaker attacks.

For the GGH13-based candidates, we first apply a variant of the Cheon et al. [12] and the Coron et al. attack
[15] to recover a basis of the ideal 〈g〉 — which defines the plaintext space — as well as some representa-
tives of the scalars, then use the recovered information in an extension of the annihilation attack from [32].
Alternatively, once we have a basis for 〈g〉 we can solve PIP (in classical subexponential time or quantum
polynomial time), resulting in a total break.

For the GGH15-based candidates, we recover some rational expressions in the bundling scalars using tech-
niques from [15] (among others), then we can use factoring and PIP solvers (in classical subexponential time
or quantum polynomial time) to recover the bundling scalars themselves from the rational expressions, then
mount mixed-input attacks.

We stress again that all our attacks rely crucially on the input-partitioning of the branching program (in order
to use the techniques of Cheon et al. or those of Coron et al.) In particular they do not seem to apply to
“dual input” branching programs as used in may branching-program obfuscators. On the other hand, the
“immunizations” against GGH13 annihilation attack [22, 33] do not prevent our new attack if the branching
programs are input-partitioning.1

2 Preliminaries

For a positive integer n, let [n] = {1, 2, ..., n}. Let Φn be the nth cyclotomic polynomial. The typical ring
used in the paper R := Z[x]/ 〈Φn(x)〉, and the fractional field of Rn: Kn := Q[x]/ 〈Φn(x)〉. Below we
denote matrices by boldface uppercase letter (e.g., A,B, . . .).

2.1 Matrix branching programs

We consider oblivious matrix branching programs (as usual in the obfuscation literature). Such a branching
program consists of a sequence of steps, where each step is associated with an index of some input bit and we
have two matrices associated with each step. To evaluate such a branching program over some input string,
we choose one of the two matrices from each step, depending on the value of the corresponding input bit, then
multiply all these matrices in order, and compare the result to the identity matrix.

Definition 2.1. A dimension-w, length-h branching program over `-bit inputs consists of an index-to-input
map and a sequence of pairs of 0-1 matrices,

B =
{
ι : [h]→ [`], {Bi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1}

}
.

This branching program is computing the function fB : {0, 1}` → {0, 1}, defined as

fB(x) =

{
0 if

∏
i∈[h] Bi,xι(i) = I

1 if
∏
i∈[h] Bi,xι(i) 6= I

where the matrix product is carried over some implicitly set ring that includes 0,1 (e.g., the ring Rn from
above).

1Of course these attacks do not contradict the idealized-model security proofs from [22, 33], as those proofs apply only to their
dual-input programs.
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2.1.1 Input partitioning

We say (somewhat informally) that a branching program B is input-partitioned if its set of steps can be
partitioned into two or more consecutive intervals [h] = H1||H2|| . . ., such that for each interval there are
“sufficiently many” input bits that control only steps in that interval and nowhere else. We sometime say that
B is 2-partitioned or 3-partitioned if it can be broken to 2 or 3 intervals, respectively, and the number of bits
that are unique to each interval will vary among the different attacks that we describe (and will typically be
poly-logarithmic).

When considering input-partitioned program B, we will often consider its evaluation on inputs that differ in
bits that only affect steps in one of the intervals. A simple (but important) observation that underlies most of
our techniques is the following:

Lemma 2.2. Let B be a branching program as per Definition 2.1 which is input-partitioned, [h] = H1||H2,
and let x, x′ ∈ {0, 1}` be two zeros of fB that differ only in bits that are mapped to steps in H1. Namely,
fB(x) = fB(x′) = 0, and for all i /∈ H1 we have xι(i) = x′ι(i). Then the product of the matrices corresponding
toH1 yields the same result in the evaluation of B on x and x′, that is

∏
i∈H1

Bi,xι(i) =
∏
i∈H1

Bi,x′
ι(i)

.

Similarly, if x, x′ are two zeros of fB that differ only in bits that are mapped to steps inH2, then
∏
i∈H2

Bi,xι(i) =∏
i∈H2

Bi,x′
ι(i)

.

Proof. For the first statement, let us denote B :=
∏
i∈H1

Bi,xι(i) , B
′ :=

∏
i∈H1

Bi,x′
ι(i)

, and C :=
∏
i∈H2

Bi,xι(i) =∏
i∈H2

Bi,x′
ι(i)

, where the last equality follows since xι(i) = x′ι(i) whenever i ∈ H2. Since fB(x) = fB(x′) =

0 then we know that B×C = B′ ×C = I, and therefore C must be invertible and B = B′ = C−1.

The proof of the “similarly” statement is analogous.

2.2 Overview of the GGHRSW branching-program obfuscator

We briefly review the candidate branching program obfuscator of Garg et al. [20] and its GGH15-based variant
from [23, Section 5.2]. The GGHRSW branching-program obfuscator applies several different randomization
steps to the underlying branching program, and then encodes the resulting randomized matrices, using either
GGH13 or GGH15.

We defer the description of the GGH13 and GGH15 encoding schemes themselves to the corresponding attack
sections, but just note that these schemes let us encode matrices in a way that still allow us to check whether
certain degree-h polynomial expressions in these matrices evaluate to zero.

We also recall that these constructions are supposed to implement indistinguishability obfuscation. In the
context of branching programs, this means that if two programs have the same length h and same input
mapping function ι : [h] → [`] and they compute the same function, then their obfuscations should be
indistinguishable. Correspondingly when attacking these constructions we need to show two such equivalent
programs for which we are able to distinguish the obfuscated versions.

Below we let B =
{
ι : [h]→ [`], {Bi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1}

}
be the branching program to be obfus-

cated. The obfuscation process consists of the following steps:

0. Dummy branch. The construction begins by introducing a “dummy branch”, which is just a length-h
branching program with the same input mapping function ι : [h] → [`], but consisting of only identity
matrices of the same dimension as the Bi,b’s. (In particular the “dummy branch” computes the all-zero
function.) We refer to the original branching program as the “functional branch”, and apply the same
randomization/encoding transformations to both branches.
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1. Random diagonal entries and bookends. Next every matrix in each of the branches (all are w × w 0-1
matrices) is embedded inside a higher-dimension randomized matrix. Specifically, for each i ∈ [h], b ∈
{0, 1} we consider the matrices

B̃i,b :=

[
Vi,b

Bi,b

]
and B̃′i,b :=

[
V′i,b

I

]
, (1)

where Vi,b and V′i,b are “random diagonal matrices.” In the original GGHRSW construction from
[20], these are 2(h + 3)-by-2(h + 3) diagonal matrices with the diagonal entries chosen uniformly
at random from the plaintext space, whereas in the GGH15-based variant from [23] they are diagonal
2-by-2 matrices with “random small entries” that are drawn from some Gaussian distribution over Rn.
Below we denote the dimension of these random matrices as 2m-by-2m (so we have m = h + 3 for
the original GGHRSW and m = 1 for the GGH15-based variant). The construction also chooses four
“bookend” vectors J,J′,L,L′ ∈ R2m+w, of the form:

J,J′ ∈
[
0m, $m, $w

]
, L,L′ ∈

[
$m, 0m, $w

]T (2)

where the $’s stand for uniformly random elements from the plaintext space for the original GGH13-
based construction, and for “small random” elements drawn from some Gaussian distribution for the
GGH15-based candidate.

2. Killian-style randomization and bundling scalars. Next the construction chooses invertible matrices of
appropriate dimensions {Ki,K

′
i ∈ R

(2m+w)×(2m+w)
n }i∈[h] and also scalars {αi,b, α′i,b}i∈[h],b∈{0,1}.

The scalars are chosen under the constraint that for any input bit j ∈ [`], we have∏
ι(i)=j

αi,0 =
∏
ι(i)=j

α′i,0 and
∏
ι(i)=j

αi,1 =
∏
ι(i)=j

α′i,1.

Below we sometime use the notations βj,b :=
∏
ι(i)=j αi,b =

∏
ι(i)=j α

′
i,b.

As before, here too the scalars and matrices are chosen at random from the plaintext space in the
GGH13-based construction, and drawn from an appropriate Gaussian distribution with small parameters
in the GGH15-based solution. Let us also denote K0 = K′0 = I.

3. Encoding. Denote the randomized matrices by

Si,b := αi,bK
−1
i−1B̃i,bKi and S′i,b := α′i,bK

′−1
i−1

˜B′i,bK
′
i. (3)

The obfuscation of the branching program B consists of encoding of all the matrices Si,b and S′i,b and
also of the bookends J,J′,L,L′.

To evaluate the obfuscated branching program on some input x, we use the operations and zero-test capabili-
ties of the underlying encoding scheme to check that J(

∏
i∈[h] Si,b)L− J′(

∏
i∈[h] S

′
i,b)L

′ = 0.

2.2.1 Branching program with input partitioning

Let X||Y||Z = [h] be a 3-partition of the branching program steps. In the attacks we use honest evaluation of
the branching program on many inputs of the form u(i,j,k) = x(i)y(j)z(k), where all the bits that only affect
steps in X are in the x(i) part, all the bits that only affect steps in Y are in the y(j) part, all the bits that only
affect steps in Z are in the z(k) part, and all the other bits are fixed. This notation does not mean that the bits

4



of x(i), y(j), z(k) appear in this order in u(i,j,k), but it does mean that u(i,j,k) and u(i′,j,k) can only differ in bits
that affect steps in X , and similarly u(i,j,k) and u(i,j′,k) only differ in bits that affect steps in Y and u(i,j,k) and
u(i,j,k′) only differ in bits that affect steps in Z .

For such an input u = xyz, we denote by Sx the plaintext product matrix of functional branch in the X
interval, by Sy the plaintext product matrix of functional branch in the the Y interval, and by Sz the plaintext
product matrix of the functional branch in the Z interval (including the bookends). Namely

Sx := J · (
∏
i∈X Si,uι(i)), Sy :=

∏
i∈Y Si,uι(i) , Sz := (

∏
i∈Z Si,uι(i)) · L,

S′x := J′ · (
∏
i∈X S′i,uι(i)), S′y :=

∏
i∈Y S′i,uι(i) , S′z := (

∏
i∈Z S′i,uι(i)) · L

′,
(4)

with products over the plaintext space (which is Rn/I for GGH13 and Rn for GGH15). In some cases we
only need 2-partition of the program, so we suppress the Sy, S′y parts.

When we have multiple inputs of the form u(i,j,k) = x(i)y(j)z(k) that are all zeros of the function, then by
Lemma 2.2 the parts of the plaintext matrices that come from the product of the branching program matrices
must be the same for the different x(i)’s (and similarly for the different y(j)’s and z(k)’s). We denote these
matrices simply by Bx, By, and Bz , independently of i, j, k. Namely we have:

Sx(i) = αx(i) J × diag(Ux(i) ,Vx(i) ,Bx)×Ky; S′
x(i)

= α′
x(i)

J′ × diag(U′
x(i)
,V′

x(i)
, I)×K′y

Sy(j) = αy(j)K
−1
y × diag(Uy(j) ,Vy(j) ,By)×Kz; S′

y(j)
= α′

y(j)
K′y
−1 × diag(U′

y(j)
,V′

y(j)
, I)×K′z;

Sz(k) = αz(k)K
−1
z × diag(Uz(k) ,Vz(k) ,Bz)× L; S′

z(k)
= α′

z(k)
K′z
−1 × diag(U′

z(k)
,V′

z(k)
, I)× L′

(5)
where the scalars αx(i) , αy(j) , etc. are just the product of all the αi,b’s in the corresponding (partial) branch.

Moreover, we observe that all the ratios of αx(i)/α
′
x(i)
, i = 1, 2, . . . (and similarly for the αy(j) and αz(k))

must also be equal.

Lemma 2.3. With the notations above, we have α′
x(1)

/αx(1) = α′
x(2)

/αx(2) = . . . and similarly α′
y(1)

/αy(1) =

α′
y(2)

/αy(2) = . . . and α′
z(1)

/αz(1) = α′
z(2)

/αz(2) = . . ..

Proof. To prove the statement for the αx(i)’s consider an input bit t ∈ [`] that affect some steps in X . That bit
either only affects steps in X or it affects steps in both X and in Y,Z . In the former case, by construction we
have

∏
ι(i′)=t αi′,b =

∏
ι(i′)=t α

′
i′,b (for b = 0, 1), so this input bit’s contribution to the ratio α′

x(i)
/αx(i) is 1

(for all i). In the latter case, this input bit has the same value (0 or 1) for all the inputs x(i), so it contributes
the same factor to the ratio α′

x(i)
/αx(i) for all i.

The proof for the αy(j) and αz(k) is the same.

3 Cryptanalysis of GGH13-based candidates

The GGH13 Encoding Scheme. The core secret parameter in the GGH13 encoding scheme is a small
g ∈ Rn (sampled from small Gaussian distribution), such that the inverse g−1 ∈ K is also small. Let
I = 〈g〉 = gRn be the ideal generated by g in Rn, the plaintext space of the GGH13 scheme is the quotient
ring Rn/I, and we typically choose g so that this plaintext space is isomorphic to some prime field Fp. Other
parameters of the scheme are an integer modulus q � p and the multi-linearity degree k (which are public),
and a random secret denominator z ∈ Rn/qRn (which is kept secret). Plaintext elements are encoded relative
to levels between 0 and k.

The encoding of s ∈ Rn/I at level 0 is a short representative of the coset of the ideal shifted by s, i.e.
c ∈ s + I, ‖c‖ � q. To encode on level i, compute c/zi (mod q). (There is also an “asymmetric mode” of
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GGH13, in which there are many different denominators zi.) The public zero-test parameter is pzt = η ·zk/g,
with ‖η‖ ≤ q1/2. 2 Additions and multiplications are simply adding and multiplying the encodings in
Rn/qRn, with the restrictions that correctness only holds when adding on the same level, or multiplying
below the maximum level k. To zero-test, multiply the (potential) top-level encoding c/zk by pzt (modulo q).
If c encodes zero then c ∈ I, hence c = c′ · g, and therefore c · pzt = ηc′, which is small since both η and c′

are much smaller than q.

Attacking the GGH13-based obfuscator When using GGH13 as the underlying encoding scheme in the
GGHRSW obfuscator, we denote the encoding of the plaintext matrices Si,b, S′i,b by

Ci,b = (Si,b + g ·Ei,b)/z, and C′i,b = (S′i,b + g ·E′i,b)/z.

We also denote the encoding of the bookends by

J̃ = (J + g ·EJ)/z, L̃ = (L + g ·EL)/z, J̃′ = (J′ + g ·E′J ′)/z, and L̃′ = (L′ + g ·E′L′)/z,

where all the calculations are modulo q.

We first recover the ideal 〈g〉 adapting the zeroing attack techniques of Cheon, Han, Lee, Ryu and Stehlé
[12] and Coron, Lee, Lepoint and Tibouchi [15]. This part requires 2-partitioning of the branching program.
Once obtained a basis of 〈g〉, sub-exponential time classical algorithms [8] and polynomial-time quantum
algorithms [9] are known to recover a short generator of 〈g〉 [18], thus breaking GGH13 completely [19,
Section 6.3.3].

Alternatively, using a basis of 〈g〉 we can proceed with the zeroing attack modulo 〈g〉 to recover (some
representation of) products of the bundling scalars. Then we can execute a simplified variant of the annihi-
lation attack by Miles, Sahai and Zhandry [32]. This yeild a classical polynomial time attack, and requires
3-partitioning of the branching program.

We now proceed to describe the attack in more details.

3.1 Step I: recovering 〈g〉

LetX||Y||Z = [h] be a 3-partition of the branching program steps and we use the same notation as in Eqn. (4).
We also denote by Cx,Cy,Cz and C′x,C

′
y,C

′
z for the encoded matrices. Namely

Cx := J̃ · (
∏
i∈X Ci,uι(i)), Cy :=

∏
i∈Y Ci,uι(i) , Cz := (

∏
i∈Z Ci,uι(i)) · L̃,

C′x := J̃′ · (
∏
i∈X C′i,uι(i)), C′y :=

∏
i∈Y C′i,uι(i) , C′z := (

∏
i∈Z C′i,uι(i)) · L̃

′,

with products over Rn/qRn. As before, when we only need 2-partition we ignore the Cy’s. With these
notations, for any u = xyz we can multiply, subtract, and zero-test to get

w := pzt(CxCyCz −C′xC
′
yC
′
z) (6)

=
η

g
· [Sx + gEx,−(S′x + gE′x)]

[
Sy + gEy, 0

0, S′y + gE′y

] [
Sz + gEz

S′z + gE′z

]
(mod q)

(or the without the middle matrix if we only use 2-partitioning). Moreover, if u is a zero of the function then
the final zero-tested value is an encoding of zero, and hence Eqn. (6) holds not only modulo q but also over
the base ring Rn.

2The scalar η is denoted h in [19], but we are already using h for the length of the branching program.
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Obtaining a basis of 〈g〉. Our first task is to recover (a basis for) the plaintext-space ideal I = 〈g〉. To
that end, we will construct two matrices M,N which are both full rank over Rn (whp), but such that the
determinant of M (over Rn) is divisible by a higher power of g than the determinant of N. Computing
M × N−1 over the field of fractions Kn and multiplying by the common denominator, we get an integral
matrix whose determinant is divisible by g. Repeating this process many times and taking the common
denominator of all the resulting determinants we obtain whp a basis for the ideal 〈g〉.
Let X||Z = [h] be a 2-partition of the branching program steps, where we have sufficiently many input bits
that only affect steps in the X interval and sufficiently many other input bits that only affect steps in the Z
interval. (Denote these input bits by Jx, Jz ⊂ [`], respectively.) Moreover, we can fix all the remaining input
bits in such a way that for sufficiently many choices x(i) ∈ {0, 1}|Jx|, z(j) ∈ {0, 1}|Jz | we get an input which
is a zero of the function.

Finally, we assume that there are two distinguished input bits j1, j2 ∈ Jx that we can set arbitrarily. Namely,
for all the other choices of input bits as above, we can set these two bits to 00,01,10, and 11 and all four
combinations will yield a zero of the function.

With these assumptions, let us denote by w(i,j)
00 the zero-tested value which was obtained by honest evaluation

of the obfuscated program on the input x(i)
00z

(j) with the two distinguished bits set to 00, and similarly w(i,j)
01 ,

w
(i,j)
10 , w(i,j)

11 with these bits set to 01, 10, 11, respectively. Note that:

• For every fixed i, j, the four inputs whose evaluation yields the scalars w(i,j)
00 , w(i,j)

01 , w(i,j)
10 , and w(i,j)

11

differ only in the values of the distinguished input bit;

• For every a ∈ {00, 01, 10, 11} and every fixed j, the inputs whose evaluation yields the different
{w(i,j)

a }i only differ in bits that affect the X interval of steps (but not the distinguished j1, j2); and

• For every a ∈ {00, 01, 10, 11} and every fixed i, the inputs whose evaluation yields the different
{w(i,j)

a }j only differ in bits that affect the Z interval of steps.

Using Eqn. (6), we have for all i, j and a ∈ {00, 01, 10, 11},

w(i,j)
a := pzt

(
C
x
(i)
a

Cz(j) −C′
x
(i)
a

C′
z(j)

)
(7)

=
η

g
·
[
(S

x
(i)
a

+ gE
x
(i)
a

)(Sz(j) + gEz(j))− (S′
x
(i)
a

+ gE′
x
(i)
a

)(S′
z(j)

+ gE′
z(j)

)
]

=
η

g
·
[
S
x
(i)
a

+ gE
x
(i)
a
, − (S′

x
(i)
a

+ gE′
x
(i)
a

)
] [Sz(j) + gEz(j)

S′
z(j)

+ gE′
z(j)

]
with Eqn. (7) holding over the base ringRn. Fixing a ∈ {00, 01, 10, 11} and letting i, j range over sufficiently
many inputs, we get the matrices

Wa := [w(i,j)
a ]i,j = XaZ

:=
η

g

 . . .
S
x
(i)
a

+ gE
x
(i)
a
,−(S′

x
(i)
a

+ gE′
x
(i)
a

)

. . .

[. . . , Sz(j) + gEz(j) , . . .
S′
z(j)

+ gE′
z(j)

,

] (8)

Specifically we choose as many different x(i)’s and z(j)’s to make Xa and Z square matrices (of dimension
2ρ, where ρ = 2m+ w).
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The two matrices M,N that we consider in this part of the attack are

M =

[
W00 W01

W10 W11

]
=
η

g
·
[
X00 X01

X10 X11

]
×
[
Z

Z

]
, N =

[
W00 0

0 W11

]
=
η

g
·
[
X00 0

0 X11

]
×
[
Z

Z

]
(9)

These matrices will have full rank over the base ring Rn whp due to the “random” error matrices E in the X’s
and Z. However, we show now that whp the determinant of M is divisible by a higher power of g than that of
N.

To see that, recall that the matrices Sx from Eqn. (8) are the plaintext matrices of the GGHRSW constructions
as per Eqn. (5), and in particular they include the scalars βj1,b, βj2,b for the two distinguished input bits j1, j2.
To keep the notations readable, below we use βb := βj1,b and β′b = βj2,b. Specifically for any index i we have

S
x
(i)
00

= β0β
′
0 · γ(i) · J × diag(U

(i)
00 ,V

(i)
00 ,Bx)×Ky

= β0β
′
0 · γ(i) ·

[
0, v

(i)
00 , b

]
×Ky (mod I)

S′
x
(i)
00

= δ · β0β
′
0 · γ(i) · J′ × diag(U′

(i)
00 ,V

′(i)
00 , I)×K′y

= δ · β0β
′
0 · γ(i) ·

[
0, v′

(i)
00 , b′

]
×K′y (mod I),

(10)

and similarly for S
x
(i)
01

, S
x
(i)
10

, S
x
(i)
11

. Above we use δ := α
x
(i)
στ
/α′

x
(i)
στ

(which by Lemma 2.3 is independent of i

or the two bits σ, τ ), and γ(i) is some scalar that depends on i but not on these two bits.

For any two bits σ, τ , each row i of Xστ (modulo I) is of the form [S
x
(i)
στ
| − S′

x
(i)
στ

], so we can write

Xστ = βσβ
′
τ ·X + ∆στ (mod I) (11)

for some fixed matrix X independent of σ, τ , and where ∆στ has only few non-zero columns (i.e., the ones
corresponding to v

(i)
στ and v′(i)στ from Eqn. (10)), and we can fix w.l.o.g. the corresponding columns of X to

zero. Denoting by n the number of non-zero columns in the ∆’s, we have

rank

(
β0β

′
0X + ∆00 β0β

′
1X + ∆01

β1β
′
0X + ∆10 β1β

′
1X + ∆11

)
≤ 2n+ rank

(
β0β

′
0X β0β

′
1X

β1β
′
0X β1β

′
1X

)
= 2n+ max{0, 2 · rank(X)− 1} (over Rn/I)

because β0β
′
0 · β1β

′
1 − β0β

′
1 · β1β

′
0 = 0. On the other hand,

rank

(
β0β

′
0X + ∆00 0

0 β1β
′
1X + ∆11

)
(whp)

= 2n+ 2 · rank(X) (over Rn/I).

Since X has (at least) 2n zero columns (i.e., the non-zero columns in the ∆’s) but it is not the zero matrix
(even modulo I), then 2n+ max{0, 2 · rank(X)− 1} � 2n+ 2 · rank(X). Therefore (whp) the determinant

of η/g ·
[

X00 X01

X10 X11

]
is divisible by a higher power of g than that of η/g ·

[
X00 0

0 X11

]
.

This implies that also det(M) is divisible by a higher power of g than det(N). Computing MN−1 overK and
multiplying by the common denominator, we therefore get an integral matrix whose determinant is divisible
by g, as needed. Repeating this process several times with different distinguished indexes j1, j2, we can take
the GCD of all these determinants and get a basis for I whp.
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3.2 Step II: recovering some representatives of the bundling scalars

For this step we need the branching program to be 3-partitioned. Recall that Equ. (6) holds over R if the
input u = x(i)y(b)z(j) is a zero of the function. Let i, j ranging over 2ρ inputs, and for b ∈ {0, 1}, we get the
matrices:

Wb := XYbZ

:=
η

g

 . . .
Sx(i) + gEx(i) ,−(S′

x(i)
+ gE′

x(i)
)

. . .

[Sy(b) + gEy(b) , 0

0, S′
y(b)

+ gE′
y(b)

] [
. . . , Sz(j) + gEz(j) , . . .

S′
z(j)

+ gE′
z(j)

,

]
(12)

where X, Y1, Y0, Z ∈ R2ρ×2ρ are full-rank w.h.p. due to the contribution of E terms from different paths.

We then compute the characteristic polynomial χ of W1W
−1
0 ∈ K2ρ×2ρ, which is equal to the characteristic

polynomial of Y1Y
−1
0 . Considering Y1Y

−1
0 modulo I we have:

Y1Y
−1
0 =

[
Sy(1) + gEy(1) , 0

0, S′y(1) + gE′y(1)

] [
Sy(0) + gEy(0) , 0

0, S′y(0) + gE′y(0)

]−1

=

[
Sy(1) , 0

0, S′y(1)

] [
Sy(0) , 0

0, S′y(0)

]−1

(mod I) (13)

Expanding the “functional term” of Y1Y
−1
0 (mod I), i.e. Sy(1)S

−1
y(0)

, we have:

Sy(1)S
−1
y(0)

= αy(1)K
−1
x

Uy(1) , 0, 0

0, Vy(1) , 0

0, 0, By(1)

Kz ×

αy(0)K−1
x

Uy(0) , 0, 0

0, Vy(0) , 0

0, 0, By(0)

Kz

−1

=
αy(1)

αy(0)
·K−1

x

Uy(1)U
−1
y(0)

, 0, 0

0, Vy(1)V
−1
y(0)

, 0,

0, 0, By(1)B
−1
y(0)

Kx

(14)
By Lemma 2.2, By(1)B

−1
y(0)

= Iw×w, so αy(1)/αy(0) ∈ K is an eigenvalue of Sy(1)S
−1
y(0)

with multiplicity

at least the dimensions of the B’s (i.e., at least w). Similarly α′y(1)/α
′
y(0) is an eigenvalue of S′y(1)S

′−1
y(0)

of multiplicity at least w, and by Lemma 2.3 we have α′y(1)/α
′
y(0) = αy(1)/αy(0) . Hence αy(1)α

−1
y(0)

is the

eigenvalue of Y1Y
−1
0 (mod I) of multiplicity at least 2w.

Therefore, given a basis of I, we can solve the characteristic polynomial χW1W
−1
0

(mod I) and obtain

eigenvalues in K. The eigenvalue of multiplicity 2w is αy(1)α
−1
y(0)

.

3.3 Step III: Annihilation Attack

The annihilation attack introduced as described by Miles, Sahai and Zhandry [32] does not extend to break
GGH13-based branching program obfuscators with the padded random diagonal entries. We show that with
the knowledge of the ratios of scalars (even if their representations are big), this attack can be extended to
handle the random diagonal entries. We begin with a brief overview of the attack from [32].

Given many level-0 encodings {ci = si + ei · g}i, any degree-d expression in them can be written as

c = r0 + r1 · g1 + r2 · g2 + . . .+ rdg
d (mod q).
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If that expression is encoded at level d, then multiplying it by the zero-test parameter yields x = pzt · c/zd =
h(r0g

−1 + r1 + r2g + . . . rdg
d−1) (mod q) (which is small if r0 = 0 and likely large when r0 6= 0).

An annihilation attack consists of collecting and zero-testing many encodings with r0 = 0, getting the corre-
sponding x(1), x(2), . . ., then applying some carefully-selected polynomial to these x(i)’es and examining the
result. Specifically, Miles et al. observed that it is possible to check whether or not the terms that depends only
on the r1 values vanish in the resulting polynomial. They also observed that these r1 values can be expressed
as very structured expressions in the encoded secret and the error terms,

r1 = e1s2...sd + s1e2s3...sd + ...+ s1s2...ed.

Using these observation, Miles et al. described in [32] a particular polynomial in the x(i)’s that can be used to
distinguish the obfuscation of equivalent branching programs (under some contemporary obfuscators).

Introducing our running example. To help describe our attack, we show below how it can be used to
distinguish between GGHRSW obfuscation of two specific branching programs that compute the constant
zero function. For this attack we need the branching programs to be 3-partitioned into the intervalsX||Y||Z =
[h], and we need to have two distinguished input bit positions j1, j2 that only control steps in the Y interval
but not X or Z . In addition, we require that bit j1 controls at least two steps (denoted u,w) in the Y interval,
and that bit j2 controls (at least) one step in between u and w (denoted v). That is, we need u, v, w ∈ Y with
u < v < w, such that ι(u) = ι(w) = j1, ι(v) = j2, and jj does not control any steps before u or after w. As
before, we shorten our notations somewhat and denote the relevant products of the bundling constants by

β0 :=
∏

ι(i)=j1

αi,0, β1 :=
∏

ι(i)=j1

αi,1, β
′
0 :=

∏
ι(i)=j2

αi,0, β
′
1 :=

∏
ι(i)=j2

αi,1.

The two branching programs in our running example will have the identity matrix for both 0 and 1 in all the
steps except for the two steps u,w controlled by y1, and the zero matrices will be the identity also for these
two steps. For the 1 matrices in these two steps, in one program they too will be the identity, and in the other
program those two matrices are a permutation matrix and its inverse (denoted P,P−1). The two programs B
and B′ are illustrated in Example 3.1 below.

Example 3.1. Two programs that compute the constant-zero function:

B = 0 : I . . . I I I I I . . . I
1 : I . . . I I I I I . . . I

B′ = 0 : I . . . I I I I I . . . I
1 : I . . . I P I P−1 I . . . I

Steps : X u v w Z
input bits : ∗ . . . ∗ j1 j2 j1 ∗ . . . ∗

(15)

3.3.1 The Attack

Recall that the GGHRSW obfuscator embeds the branching-program matrices Bi,b (and the identity for the
dummy branch) into higher-dimension randomized matrices

B̃i,b :=

[
Vi,b

Bi,b

]
and B̃′i,b :=

[
V′i,b

I

]
,

10



where Vi,b,V
′
i,b are random diagonal matrices. The B̃’s are multiplied by the bundling scalars and Kilian

randomization matrices, and then encoded to get

Ci,b = αbiK
−1
i−1B̃i,bKi + g ·Ei,b = αbiK

−1
i−1(B̃i,b + g · Fi,b)Ki (mod q) (16)

where K−1
i−1 is the inverse of Ki−1 modulo 〈g〉, and Fi,b is the matrix satisfying αbiK

−1
i−1FKi = E (mod q).

(We ignore the denominator z in these notations, since it gets canceled when we apply zero-test.)

From Step II above we can obtain (some representatives of) the ratios β1/β0 and β′1/β
′
0. Namely, we can

compute four scalars ν0, ν1, γ00, γ11 ∈ R such that

ν1

ν0
=
β′1
β′0

(mod I), and
γ11

γ00
=
β1β

′
1

β0β′0
(mod I). (17)

(Note that we chose notations that resemble their meaning: The scalars ν0, ν1 relate to the step v in the
program, and γ00, γ11 relate to the product of all relevant steps in the y interval.)

Consider now some values x(i) ∈ {0, 1}|Jx| for the bits that control steps in the X interval, τ, σ for the two
distinguished bits that control steps in the Y interval, and z(j) ∈ {0, 1}|Jz | for the bits that control steps in the
Z interval (with all the other input bits fixed arbitrarily). Let u(i,j)

στ := x(i)στz(j) be the resulting input, which
we assume is a zero of the function. Also let Eval(u(i,j)

στ ) be the scalar obtained by evaluating the obfuscated
branching program on this input:

Eval(u) :=
η

g

J(
∏
k∈[h]

Ck,uι(k))L− J′(
∏
k∈[h]

C′k,uι(k))L
′


=

η

g

∏
k∈[h]

αk,uι(k)JL−
∏
k∈[h]

α′k,uι(k)J
′L′ + g · r1(u) + g2 · r2(u) + . . .

 (18)

where if u is a zero of the function then by construction we have
∏
k∈[h] αk,uι(k)JL−

∏
k∈[h] α

′
k,uι(k)J

′L′ = 0.

In our attack, we choose many different x(i)’s and z(j)’s and for each i, j we compute

ai,j := Eval(x(i)11z(j)) · γ00 · ν1ν0 − Eval(x(i)10z(j)) · γ00 · ν1ν1

− Eval(x(i)01z(j)) · γ11 · ν0ν0 + Eval(x(i)00z(j)) · γ11 · ν0ν1,
(19)

where all the operations are carried out in the base ring R. Using sufficiently many x(i)’s and z(j)’s we get a
matrix A = [ai,j ]i,j , and we check if this matrix has full rank modulo I. We guess that the branching program
is B′ if A has full rank, and otherwise we guess that it is B.

3.4 Analysis

3.4.1 The Matrix H

We begin by considering the interval Y of the functional branch only. If Y consisted of only the steps u, v, w,
then for any two bits σ, τ ∈ {0, 1}, the matrix that we get in the functional branch when evaluating on input
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with uj1 = σ and uj2 = τ (namely Cστ :=
∏
i∈Y Ci,uι(i)) has the form

Cστ = βσβ
′
τ ·K−1

u−1(B̃u,σ + g · Fu,σ)

Ku×K−1
u︷ ︸︸ ︷

(I + g ·E′u)(B̃v,τ + g · Fv,τ )

Kv×K−1
v︷ ︸︸ ︷

(I + g ·E′v)(B̃w,σ + g · Fw,σ)Kw

= βσβ
′
τ ·K−1

u−1 ×
( :=B̃στY︷ ︸︸ ︷

B̃u,σB̃v,τ B̃w,σ

+g ·
(
B̃u,σB̃v,τ (

:=F̃w,σ︷ ︸︸ ︷
Fw,σ + E′vB̃w,σ) + B̃u,σ(

:=F̃v,τ︷ ︸︸ ︷
Fv,τ + E′uB̃v,τ )B̃w,σ +

:=F̃u,σ︷︸︸︷
Fu,σ B̃v,τ B̃w,σ

)
+g2 ·Eτ,σ

)
×Kw

= βσβ
′
τ ·K−1

u−1 ×
(
B̃στ
Y + g · F̃στ

Y + g2 ·Eτσ
Y
)
×Kw

(20)
with equality modulo q, where K,K−1’es are the Kilian randomization matrices, and Eτσ

Y is some error
matrix. (In the last line we have F̃στ

Y denoting the coefficient of g in the Y interval.) If there are more steps
in the interval Y then we get the same form, except the matrices B̃, F̃ are not single-step matrices but rather
a product of a few steps, and we have an extra scalar factor α′ (independent of the bits σ, τ ) that comes from
the bundling factors in the fixed steps in Y .

The g coefficient above is F̃στ
Y := B̃u,σB̃v,τ F̃w,σ + B̃u,σF̃v,τ B̃w,σ + F̃u,σB̃v,τ B̃w,σ, and let

H := F̃11
Y − F̃10

Y − F̃01
Y + F̃00

Y (21)

=
(
B̃u,1B̃v,1F̃w,1 + B̃u,1F̃v,1B̃w,1 + F̃u,1B̃v,1B̃w,1

)
−
(
B̃u,1B̃v,0F̃w,1 + B̃u,1F̃v,0B̃w,1 + F̃u,1B̃v,0B̃w,1

)
−
(
B̃u,0B̃v,1F̃w,0 + B̃u,0F̃v,1B̃w,0 + F̃u,0B̃v,1B̃w,0

)
+
(
B̃u,0B̃v,0F̃w,0 + B̃u,0F̃v,0B̃w,0 + F̃u,0B̃v,0B̃w,0

)
.

The crux of the analysis is to show that H has a block of zeros when evaluating the program B (that has the
identity matrices everywhere), but whp not when evaluating the branching program B′ (that has P and P−1).

When evaluating B, all the Bi,b matrices are the w×w identity I, which are then embedded in the lower-right
quadrant of the higher-dimension B̃i,b’s with the diagonal random Vb

i ’s in the upper-left quadrant. Below
we also use the notation Vστ

ii′ := Vσ
i × Vτ

i′ for the product of two of these diagonal matrices. We analyze
separately the terms B̃B̃F̃, B̃F̃B̃, and F̃B̃B̃, in order to establish that in this case the lower-right quadrant

of H (that correspond to these identity matrices) is 0, i.e. H ∈
[
∗ ∗
∗ 0w×w

]
.

(a) F̃1
uB̃

1
vB̃

1
w − F̃1

uB̃
0
vB̃

1
w − F̃0

uB̃
1
vB̃

0
w + F̃0

uB̃
0
vB̃

0
w

= F̃1
u ×

([
V11
vw 0
0 I

]
−
[
V01
vw 0
0 I

])
− F̃0

u ×
([

V10
vw 0
0 I

]
−
[
V00
vw 0
0 I

])
= F̃1

u ×
[
V11
vw −V01

vw 0
0 0

]
− F̃0

u ×
[
V10
vw −V00

vw 0
0 0

]
∈
[
∗(2m+w)×2m, 0(2m+w)×w] (22)

(b) B̃1
uB̃

1
vF̃

1
w − B̃1

uB̃
0
vF̃

1
w − B̃0

uB̃
1
vF̃

0
w + B̃0

uB̃
0
vF̃

0
w

=

[
V11
uv −V10

uv 0
0 0

]
× F̃1

w −
[
V01
uv −V00

uv 0
0 0

]
× F̃0

w ∈
[
∗2m×(2m+w)

0w×(2m+w)

]
(23)
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(c) The most interesting term is B̃1
uF̃

1
vB̃

1
w − B̃1

uF̃
0
vB̃

1
w − B̃0

uF̃
1
vB̃

0
w + B̃0

uF̃
0
vB̃

0
w

=

[
∗ ∗
∗ I F̃1

v(LR) I

]
−

[
∗ ∗
∗ I F̃0

v(LR) I

]
−

[
∗ ∗
∗ I F̃1

v(LR) I

]
+

[
∗ ∗
∗ I F̃0

v(LR) I

]
∈
[
∗2m×2m, ∗2m×w
∗w×2m, 0w×w

]
(24)

where the subscript F̃(LR) denotes the lower-right quadrant (of dimension w×w) in the corresponding
matrix.

Adding Equations (22), (24) and (23), we get H ∈
[
∗ ∗
∗ 0w×w

]
, as needed.

When evaluating B′, on the other hand the form of the terms B̃F̃B̃ changes: Instead of Eqn. (24), in the
lower-right quadrant we now get H(LR) = F̃1

v(LR)− F̃0
v(LR)−P(F̃1

v(LR)− F̃0
v(LR))P

−1, which is unlikely
to be the zero matrix.

The same analysis can be applied to the dummy branch, where we can define the matrix H′ in the same way.
In the dummy branch, however, the lower-right quadrant of H′ is always zero, in both B and B′ (since the
dummy branch always consists of identity matrices, regardless of what the program is).

3.4.2 The Matrix A

We now proceed to incorporate the X ,Z intervals (including the bookends) and analyze the matrix A =
[ai,j ]i,j . For any fixed i, j, let us denote the product of the X interval matrices in the two branches (including

the bookend) by α(i)
x · J(B̃

(i)
X + g · F̃(i)

X ) and α′(i)x · J′(B̃′
(i)
X + g · F̃′(i)X ), respectively. Similarly for the Z

interval we denote the products in the two branches by α(j)
z (B̃

(j)
Z + g · F̃(j)

Z )L and α′(j)z (B̃′
(j)
Z + g · F̃′(j)Z )L′,

respectively.

By construction — for the case where the Y interval includes just the steps u, v, w — we have α(i)
x α

(j)
z =

α′(i)x α
′(j)
z , and we denote this product by α(i,j). (In the more general case we have the same equality, except

it includes also the constants αy, α′y due to the fixed steps in the Y interval.) With these notations, we have

Eval
(
x(i)στz(j)

)
= α(i,j)βσβ

′
τ ·

η

g

(
J
(
B̃

(i)
X + g · F̃(i)

X
)(

B̃στ
Y + g · F̃στ

Y
)(

B̃
(j)
Z + g · F̃(j)

Z
)
L

− J′
(
B̃′

(i)
X + g · F̃′(i)X

)(
B̃′

στ
Y + g · F̃′στY

)(
B̃′

(j)
Z + g · F̃′(j)Z

)
L′
)

= α(i,j)βσβ
′
τ · η

(
J
(
B̃

(i)
X B̃στ

Y F̃
(j)
Z + B̃

(i)
X F̃στ

Y B̃
(j)
Z + F̃

(i)
X B̃στ

Y B̃
(j)
Z

)
L

− J′
(
B̃′

(i)
X B̃′

στ
Y F̃′

(j)
Z + B̃′

(i)
X F̃′

στ
Y B̃′

(j)
Z + F̃′

(i)
X B̃′

στ
Y B̃′

(j)
Z

)
L′
)

(mod I) (25)

where the last equality follows since x(i)στz(j) is a zero of the function, and hence the “free term” without
any factor of g is equal to zero. Using Eqn. (25) we can re-write ai,j as

ai,j = α(i,j)β1β
′
1η
(
· · ·
)
γ00ν1ν0 − α(i,j)β1β

′
0η
(
· · ·
)
γ00ν1ν1

− α(i,j)β0β
′
1η
(
· · ·
)
γ11ν0ν0 + α(i,j)β0β

′
0η
(
· · ·
)
γ11ν0ν1 (mod I)
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where the (· · · )’s refer to the parenthesized expression from Eqn. (25) relative to the appropriate bits σ, τ .
This is where we use the ratios that we recovered in Step II, by definition we have that

β1β
′
1 · γ00ν1ν0 = β1β

′
0 · γ00ν1ν1 = β0β

′
1 · γ11ν0ν0 = β0β

′
0 · γ11ν0ν1 (mod I),

so the four terms above (with i, j fixed) all have the same scalar multiple. Moreover that scalar is bilinear in
i, j, so we just fold it into the matrices corresponding to x(i), z(j) and ignore it from now on. Thus we can
further re-write the expression for ai,j as

ai,j = J

(
B̃

(i)
X

(
B̃11
Y − B̃10

Y − B̃01
Y + B̃00

Y

)
F̃

(j)
Z + B̃

(i)
X

=H︷ ︸︸ ︷(
F̃11
Y − F̃10

Y − F̃01
Y + F̃00

Y

)
B̃

(j)
Z

+ F̃
(i)
X

(
B̃11
Y − B̃10

Y − B̃01
Y + B̃00

Y

)
B̃

(j)
Z

)
L

−J′
(

B̃′
(i)
X

(
B̃′

11
Y − B̃′

10
Y − B̃′

01
Y + B̃′

00
Y

)
F̃′

(j)
Z + B̃′

(i)
X

=H′︷ ︸︸ ︷(
F̃′

11
Y − F̃′

10
Y − F̃′

01
Y + F̃′

00
Y

)
B̃′

(j)
Z

+ F̃′
(i)
X

(
B̃′

11
Y − B̃′

10
Y − B̃′

01
Y + B̃′

00
Y

)
B̃′

(j)
Z

)
L′

(mod I)

Next, we denote:

B̃∆
Y := B̃11

Y − B̃10
Y − B̃01

Y + B̃00
Y , B̃′

∆
Y := B̃′

11
Y − B̃′

10
Y − B̃′

01
Y + B̃′

00
Y

xi := JB̃
(i)
X , zj := B̃

(j)
Z L, x′i := J′B̃′

(i)
X , z′j := B̃′

(j)
Z L′,

ei := JF̃
(i)
X , fj := F̃

(j)
Z L, e′i := J′F̃′

(i)
X , f ′j := F̃′

(j)
Z L′

and so we can write

ai,j = xiB̃
∆
Y fj + xiHzj + eiB̃

∆
Y zj︸ ︷︷ ︸

:=di,j

− x′iB̃
′∆
Y f ′j + x′iH

′z′j + e′iB̃
′∆
Y z′j︸ ︷︷ ︸

:=d′i,j

(mod I). (26)

Denoting D = [di,j ]i,j and D′ = [d′i,j ]i,j , we have A = D−D′, and so the rank of A is at most rank(D) +
rank(D′). Recalling the structure of the various components again, we note that they contain many zeros. In
particular for the program B we have xi,x

′
i ∈ (0m ∗m ∗w), zj , z

′
j ∈ (∗m 0m ∗w)t, and also

B̃∆
Y , B̃′

∆
Y ∈

 ∗m×m, 0m×m, 0m×w

0m×m, ∗m×m, 0m×w

0w×m, 0w×m, 0w×w

 , H,H′ ∈

 ∗m×m, ∗m×m, ∗m×w∗m×m, ∗m×m, ∗m×w
∗w×m, ∗w×m, 0w×w

 ,

and for B′ we have almost the same thing except that H can be arbitrary. Our goal is to detect this difference
in the form of H given sufficiently many ai,j’s. Let us analyze first only the term from the functional branch,
D = [di,j ]i,j , where we pick ζ ≥ 2m+ 1 different i’s and j’s.

D = XB̃∆
YF + XHZ + EB̃∆

YZ

=
[
0 X2 X3

] B̃1,1 0 0

0 B̃2,2 0
0 0 0

F1

F2

F3

+
[
0 X2 X3

] H1,1 H1,2 H1,3

H2,1 H2,2 H2,3

H3,1 H3,2 0

Z1

0
Z3


+
[
E1 E2 E3

] B̃1,1 0 0

0 B̃2,2 0
0 0 0

Z1

0
Z3


(27)
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where {B̃k,`,Hk,`}k,`∈[3] are blocks of B̃∆
Y , H with dimensions [m|m|w] × [m|m|w]. {Xk,Ek}k∈[3] are

blocks of X, E with dimensions ζ× [m|m|w]. {Z`,F`}`∈[3] are blocks of Z, F with dimensions [m|m|w]×ζ.

Observe that many of the blocks in Eqn. (27) do not contribute to the result, since they are only multiplied by
zeros in the adjacent matrices. For example, E3 in the last term above does not contribute to the evaluation
since the entries in the 3rd blocked rows of B̃∆

Y are all zeros. We can therefore treat these blocks as if they
were zeros themselves, so we get

D =
[
0 X2 0

] 0 0 0

0 B̃2,2 0
0 0 0

 0
F2

0

+
[
0 X2 X3

]  0 0 0
H2,1 0 H2,3

H3,1 0 0

Z1

0
Z3


+
[
E1 0 0

] B̃1,1 0 0
0 0 0
0 0 0

Z1

0
0

 (28)

From there we get

D = X2B̃2,2F2 +
[
X2H2,1 + X3H3,1 0 X2H2,3

] Z1

0
Z3

+ E1B̃1,1Z1

= X2B̃2,2F2 + (X2H2,1 + X3H3,1)Z1 + X2H2,3Z3 + E1B̃1,1Z1

= X2(B̃2,2F2 + H2,3Z3) + (X2H2,1 + X3H3,1 + E1B̃1,1)Z1

(29)

The ranks of block matrices X2 and Z1 are upper-bounded by m, which means D is the sum of two matrices
of rank m, therefore the maximum rank is 2m.

For B′, the rank of D is 2m + 1 whp. To see the difference in the analysis, in Eqn. (28) the potential H3,3

block is non-zero, so whp D is not decomposable to the sum of 2 matrices of rank m like for B.

The analysis of D′ for both B and B′ is analogous to the analysis of D in B, i.e. in both cases the rank of D′

is at most 2m. So we are able to distinguish B and B′ by obtaining A = [ai,j ]i,j from picking ζ ≥ 4m + 1
different i’s and j’s, and computing the rank of A.

3.5 Discussions of Recent Immunizations

Recently two immunizations are proposed [22, 33] against the annihilation attack. We observe that the two
immunizations do not stop the attack if the branching program is input-partitioning. The observation does not
contradict the proofs of security in the weakened idealized model from [22, 33], since they require dual-input
branching programs (which are not input-partitioning).

Below we briefly describe the two immunizations. The common feature of the two immunizations is to pad
random 2m-by-2m matrices instead of entries on the diagonal (i.e. change the matrices Vi,b and V′i,b in
Eqn. (1) from diagonal to fully random), so as to explicitly [22] or implicitly [33] encode a pseudorandom
function in the noises. The difference lies in how to instantiate the paradigm. In the immunization proposed
by Miles, Sahai and Zhandry [33], the bookend vectors are changed to

J,J′ ∈
[
02m, $w

]
, L,L′ ∈

[
$2m, $w

]T (30)

These changes do not affect the algorithms and analyses in Steps I and II. In Step III, the analysis of the matrix
H in Eqn. (21) remains the same. The analysis of the rank of D in Eqn. (27) changes slightly. For program B
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in Example 3.1,

D = XB̃∆
YF + XHZ + EB̃∆

YZ

=
[
0 X2

] [B̃1,1 0
0 0

] [
F1

F2

]
+
[
0 X2

] [H1,1 H1,2

H2,1 0

] [
Z1

Z2

]
+
[
E1 E2

] [B̃1,1 0
0 0

] [
Z1

Z2

]
= 0 + X2H2,1Z1 + E1B̃1,1Z1 = (X2H2,1 + E1B̃1,1)Z1

(31)

where {B̃k,`,Hk,`}k,`∈[2] are blocks of B̃∆
Y , H with dimensions [2m|w]× [2m|w]. {Xk,Ek}k∈[2] are blocks

of X, E with dimensions ζ× [2m|w]. {Z`,F`}`∈[2] are blocks of Z, F with dimensions [2m|w]×ζ. The rank
of D is thus upper-bounded by 2m. For program B′, the potential non-zero H2,2 contributes to an additional
term X2H2,2Z2. So the same algorithm from Section 3.3 distinguishes B and B′.
More changes are made in the immunization proposed by Garg, Mukherjee and Srinivasan [22]. The plaintext
space is set to be R/J where J =

〈
g2
〉
. The encoding of s ∈ R/J is a short representative of the coset

s+ J. The zero-test parameter remains the same: pzt = ηzκ/g. The bookend vectors are changed to

J,J′ :=
[
g · J1,J2

]
,
[
g · J′1,J′2

]
∈
[
g · $2m, $w

]
, L,L′ :=

[
L1,L2

]T
,
[
L′1,L

′
2

]T ∈ [$2m, $w
]T
. (32)

where J2L2 = J′2L
′
2.

An honest evaluation analogous to Eqn. (18) can be expressed as

Eval(u) :=
η

g

J(
∏
k∈[h]

Ck,uι(k))L− J′(
∏
k∈[h]

C′k,uι(k))L
′


=

η

g

∏
k∈[h]

αk,uι(k)J2L2 −
∏
k∈[h]

α′k,uι(k)J
′
2L
′
2 + g · r1(u) + g2 · r2(u) + g3 · r3(u) + . . .


(33)

where if u is a zero of the function then
∏
k∈[h] αk,uι(k)J2L2−

∏
k∈[h] α

′
k,uι(k)J

′
2L
′
2 = 0. The immunization

changes the coefficient of g1 into r1 =
(
J1
∏
k∈[h] Vk,uι(k)L1 − J′1

∏
k∈[h] V

′
k,uι(k)L

′
1

)
, and pushes all

the information about the secrets up to the coefficients of higher order terms. This is the rationale of Garg,
Mukherjee and Srinivasan’s [22] immunization against annihilation attacks.

Still, for branching programs with input-partitioning, these immunizations do not affect the algorithms and the
analyses in Steps I and II, except that we obtain a basis of

〈
g2
〉

and (possibly big) representatives of scalars
α in the coset α +

〈
g2
〉
. In Step III, we analyze H and A modulo J instead of modulo I. The feature of

H remains the same. To A, the expression of each ai,j from Eqn. (26) shall be modified to (the following
expression still contains coefficients of g2 that will be removed later)

ai,j =
η

g

(
xiB̃

∆
Y zj + g2 ·

(
xiB̃

∆
Y fj + xiHzj + eiB̃

∆
Y zj

))
︸ ︷︷ ︸

:=di,j

− η

g

(
x′iB̃

′∆
Y z′j + g2

(
x′iB̃

′∆
Y f ′j + x′iH

′z′j + e′iB̃
′∆
Y z′j

))
︸ ︷︷ ︸

:=d′i,j

(mod J ).
(34)
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Examining the functional component D for B, with the same blocked dimensions as Eqn. (31):

D =
η

g

(
XB̃∆

YZ + g2 ·
(
XB̃∆

YF + XHZ + EB̃∆
YZ
))

=
η

g

[
gX1 X2

] [B̃1,1 0
0 0

] [
Z1

Z2

]
+ ηg

([
gX1 X2

] [B̃1,1 0
0 0

] [
F1

F2

]
+
[
gX1 X2

] [H1,1 H1,2

H2,1 0

] [
Z1

Z2

]
+
[
E1 E2

] [B̃1,1 0
0 0

] [
Z1

Z2

])
= ηX1B̃1,1Z1 + ηg(X2H2,1 + E1B̃1,1)Z1 + ηg2(. . .)

= η
(
X1B̃1,1 + g(X2H2,1 + E1B̃1,1)

)
Z1 (mod J ).

(35)
The rest of the analysis is analogous. The rank of A modulo J distinguishes B and B′.

4 Cryptanalysis of the GGH15 branching program obfuscator

4.1 The GGH15 Encoding Scheme

We use here notations similar to [26] for “GGH15 with safeguards”. The encoding scheme from [23] is
parametrized by a directed graph G = (V,E) (with a single sink) and some integer parameters k, n, r, q
(with r � k). Its plaintext space are matrices S ∈ Rk×k (whose entires must be much smaller than q),
and the encodings themselves are matrices D ∈ (Rn/qRn)r×r, and both plaintext and encoding matrices are
associated with edges (or paths) in the graph.

For each vertex u in the graph we choose a random matrix Au ∈ Rk×rn together with some trapdoor informa-
tion τu [1, 25, 30], and another random invertible matrix Pu ∈ (Rn/qRn)r×r. For the source s and sink t we
choose random small “bookend vectors” Js and Lt and publish the two transformed vectors J̃s := Js·As·P−1

s

(mod q) and L̃t := Pt · Lt, to be used for zero-testing.

To encode a matrix S ∈ Rk×k w.r.t. a path (u  v), sample a low-norm error matrix E ∈ Rk×rn , use the
trapdoor τu to sample a small solution D to AuD = SAv + E (mod q), and finally output the encoding
matrix C := PuDP−1

v mod q.

This scheme supports adding encoded matrices relative to the same path, and multiplying matrices relative to
consecutive paths (with the result being defined relative to the concatenation of the two paths). The encoding
invariant is that an encoding C of plaintext matrix S relative to the path u  v satisfies Au · (P−1

u CPv) =
SAv +E (mod q) where S,E and D := P−1

u CPv mod q all have norm much smaller than q. The encoding
scheme also supports a zero-test of encoding C relative to a path s  t, by checking that J̃sCL̃t is small,
which holds when S = 0 since J̃sCL̃t = JsAsP

−1
s ·C ·PtLt = Js(SAs + E)Lt = JsELt (mod q).

Consider two consecutive paths s  u and u  t and two encoding matrices C1,C2, encoding S1,S2

relative to these two paths, respectively. Then C1C2 is an encoding of S1,S2 relative to s t, which means
that As · (P−1

s C1C2Pt) = S1S2At + E′ (mod q), but we can say more about the structure of the resulting
noise E′. Specifically, it is not hard to verify that (after zero-testing) we have

J̃sC1C2L̃t = Js(S1S2At + S1E2 + E1D2︸ ︷︷ ︸
E′

)Lt = Js · [S1|E1]

[
S2At + E2

D2

]
· Lt (mod q), (36)

where Js,Lt are the bookend vectors, E1,E2 are the error matrices corresponding to the encoding C1,C2

respectively, and D2 = P−1
u C2Pt (all of which have low norm). Similarly, if we have three intervals s u,
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u  v and u  t and three encoing matrices C1,C2,C3 for S1,S2,S3 relative to these paths, respectively,
then

J̃sC1C2C3L̃t = Js · [S1,E1]

[
S2, E2

0, D2

] [
S3At + E3

D3

]
· Lt (mod q). (37)

4.1.1 The GGHRSW obfuscator over GGH15

When using the GGH15 encoding scheme in the context of the GGHRSW obfuscator, we use a simple graph
with two parallel chains leading to a sink.

One minor technical issue to reconcile is that the plaintext space of GGH15 consists of only k × k matrices,
while the GGHRSW construction needs to also encode the bookend vectors J,L,J′,L′. This is best handled
by combining these bookends with the GGH15 bookends Js,Lt from above. Namely we choose the bookends
as matrices rather than vectors (but still keep the same structure for the rows/columns of these matrices), and
then these matrices will be multiplied by the GGH15 bookends Js,Lt during zero-test, resulting in vectors
J,L,J′,L′ with the same structure as in Eqn. (2).

Another technical issue is that the GGH15 plaintext matrices must be small, whereas the GGHRSW construc-
tion requires that we multiply the plaintext matrices by the Kilian randomization matrices K,K−1. Gentry et
al. describe in [23, Section 5.2.1] a method for choosing “random matrices” where both K,K−1 are small,
but in fact a closer look at the error terms that we get reveals that the construction will still work even if only
K−1 was small but K was not (as long as as we set K0 = I). We stress that the structure of K plays no role
in our attacks, so in the rest of the manuscript we ignore this issue.

4.2 Overview of our Attacks on the GGH15-based obfuscator

The main ingredient in our attack on the GGH15-based branching-program obfuscator is a method to recover
some information about the scalars αi,b (and α′i,b) that are used in this construction. Specifically, we use a
zeroing technique adapted from the work of Coron, Lee, Lepoint and Tibouchi [15], to recover the ratios of
(the products of) these αi,b’s for some equivalent subbranches, as we describe in Section 4.3 below. (Setting up
the CLLT-style system of equations relies on the input-partitioning feature of underlying branching program.)

This step is completely algebraic, and hence the ratios that we recover do not give us a small representation
of these scalars. Namely, while we learn the ratio β/γ for some small β, γ (each of them is a product of some
α’s), we do not recover the small β, γ themselves.

One way to mount a full attack to the obfuscator is to directly use factoring and principle-ideal-problem
solvers to recover the αi,b’s from the known ratio β/γ. Once the bundling scalars αi,b are known, we can
mount any input-mixing attack to break the obfuscation. This yields a classical sub-exponential time or
quantum polynomial time attacks.

4.3 Step I: recovering ratios of the bundling scalars

Step I.1: Accumulating CLLT-style equations. Let X||Z = [h] be a 2-partition of the branching program
steps. Below we use honest evaluation of the branching program on many inputs of the form u(i,j) = x(i)z(j),
where all the bits that only affect steps in X are in the x(i) part, all the bits that only affect steps in Z are in
the z(j) part, and all the other bits are fixed. This notation does not mean that all the bits of x(i) must come
before all the bits of z(j) in u(i,j), but it does mean that u(i,j) and u(i,j′) can only differ in bits that affect steps
in Z , and similarly u(i,j) and u(i′,j) can only differ in bits that affect steps in X .
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For such an input u = xz, we denote by Sx the plaintext product matrix of functional branch in the the
X interval and by Sz the plaintext product matrix of the functional branch in the Z interval (including the
bookends), and similarly for encodings Cx,Cz and for the dummy branch. That is, we denote

Sx := J · (
∏
i∈X

Si,uι(i)), Sz := (
∏
i∈Z

Si,uι(i)) · L, S′x := J′ · (
∏
i∈X

S′i,uι(i)), S′z := (
∏
i∈Z

S′i,uι(i)) · L
′,

with products over Rn, and

Cx := J̃ · (
∏
i∈X

Ci,uι(i)), Cz := (
∏
i∈Z

Ci,uι(i)) · L̃, C′x := J̃′ · (
∏
i∈X

C′i,uι(i)), C′z := (
∏
i∈Z

C′i,uι(i)) · L̃′

with products over Rn/qRn. We also denote by Ex,Ez,E
′
x,E

′
z the error matrices in Cx,Cz,C

′
x,C

′
z and

Dx := CxPv, D′x := C′xPv′ , Dz := P−1
v Cz and D′z := P−1

v′ C′z

(where v, v′ are the vertices between X ,Z on the functional and dummy branches).

Following Eqn. (36) above, the honest evaluation of branching program on input u = xz yields the element

w := CxCz −C′xC
′
z = [Sx,Ex,−S′x,−E′x]


SzAt + Ez

Dz

S′zAt + E′z
D′z

 (mod q). (38)

If u = xz is a zero of the function, then by construction we have SxSz = S′xS
′
z = βJL for some scalar β,

and in this case Eqn. (38) holds over the base ring Rn, not just modulo q.

We begin the attack by collecting many instances of Eqn. (38) for many x(i)’s and z(j)’s for which u(i,j) =
x(i)z(j) is a zero, and put the corresponding w elements in a matrix. This yields the matrix equation:

W := XZ :=


Sx(1) , Ex(1) , −S′

x(1)
, −E′

x(1)

. . . , . . . , . . . , . . .
Sx(i) , Ex(i) , −S′

x(i)
, −E′

x(i)

. . . , . . . , . . . , . . .
Sx(k) , Ex(k) , −S′

x(k)
, −E′

x(k)



. . . , Sz(j)At + Ez(j) , . . .
. . . , Dz(j) , . . .
. . . , S′

z(j)
At + E′

z(j)
, . . .

. . . , D′
z(j)

, . . .

 . (39)

Since all the inputs are zeros of the function, then Eqn. (39) holds not only modulo q but also over the base
ringRn. As discussed in [26, Section 5.2], the matrix Z is inherently non-full-rank when considered modulo q,
but will have full rank over Rn with high probability (since the Ez’s are random and the Dz’s are chosen at
random in some cosets after the Ez’s are fixed). Taking sufficiently many z(j)’s, we can therefore ensure that
the left kernel of Z is trivial, i.e., consisting of only the all-zero vector.3 On the other hand, by using enough
x(i)’s we can ensure that the left-kernel of W (and therefore of X) is non-trivial. The thrust of our attack will
consist of collecting many vectors in this left-kernel, and using them to recover information about (ratios of)
the αi,b’s.

Step I.2: Computing the left-kernel of W. The CLLT-type attack computes the left-kernel (abbreviated as
kernel in the rest of this paper) of W, i.e. vectors p over Rn s.t. pW = 0. Since Z has full rank, then such

3With typical parameters it is sufficient to use only four different z(j)’s for that purpose.
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vector p must also be in the kernel of X, so it is orthogonal to all its columns. In out attack we only use the
fact that these vectors p are orthogonal to the S’s parts of X, namely we denote

Q :=


Sx(1) , −S′x(1)
. . . , . . .
Sx(i) , −S′x(i)
. . . , . . .

Sx(k) , −S′
x(k)

 (40)

and use the fact that every vector in the kernel of X must be in particular also in the kernel of Q. We next
recall the structure of Sx(i) ,S

′
x(i) from Eqn. (3), namely we have

Sx(i) = αx(i)J× diag(ux(i) , vx(i) ,Bx(i))×Kz; S′
x(i)

= α′
x(i)

J′ × diag(u′
x(i)
, v′
x(i)
, I)×K′z (41)

where Bx(i) is the product of the branching-program matrices Bi,b over the interval X , ux(i) , vx(i) , u
′
x(i)
, v′
x(i)

are the random diagonal entries, αx(i) , α
′
x(i)

are the products of the α’s on both the functional and dummy
branches, and Kz,K

′
z are the Kilian randomization matrix at the beginning of the Z interval on the two

branches.

Importantly, since all the x(i)z(j)’s are zeros of the function, then by Lemma 2.2 all the Bx(i)’s must be equal.
We denote that matrix simply by B, namely we have Sx(i) = αx(i)J × diag(ux(i) , vx(i) ,B) ×Kz for all i.
Moreover, all the ratios of αx(i)/α

′
x(i)
, i ∈ [k] must also be equal due to Lemma 2.3, and below we denote

that ratio by δ.

We can therefore re-write Eqn. (5) as follows:

∀i ∈ [k], [Sx(i) ,−S′
x(i)

] (42)

= αx(i) [J× diag(ux(i) , vx(i) ,B)×Kz,−δJ′ × diag(u′
x(i)
, v′
x(i)
, I)×K′z]

= αx(i) ·
[

0, ṽx(i) , b︸ ︷︷ ︸
J×diag(u

x(i)
,v
x(i)

,B)

, 0, ṽ′x(i) , b′︸ ︷︷ ︸
J′×diag(u′

x(i)
,v′
x(i)

,I)

]
× K̃z︸︷︷︸

an invertible matrix

(recall that by design, the first columns of J and J′ are zero to erase the u and u′ terms on the diagonal).
The only x(i)-sensitive terms are αx(i) , ṽx(i) , and ṽ′x(i) , and thus the rank of Q is exactly 3. The Kernel of Q
therefore has dimension k − 3, and it is contained in the ((k − 1)-dimensional) space spanned by the vectors
[αx(2) ,−αx(1) , 0, . . . , 0], [αx(3) , 0,−αx(1) , . . . , 0], . . . [αx(k) , 0, 0, . . . ,−αx(1) ]. In other words, every vector
p = [p1, p2, . . . , pk] in this kernel must in particular satisfy the condition

∑
i piαx(i) = 0.

Of course, the kernel of X (which is the linear space that our attack can recover) is only a subspace of the ker-
nel of Q, and hence it has an even lower dimension. However, the difference in dimension between kernel(Q)
and kernel(X) is bounded by the dimensions of the error matrices Ex(i) ,E

′
x(i) , which is independent of the

number of x(i)’s. Namely, the number of columns in Ex(i) ,E
′
x(i) together is only 2r, hence the dimension of

kernel(X) is at least dim(kernel(Q))− 2r = k − 3− 2r, where k is the number of x(i)’s. If we have enough
zeros of the branching-program, then we can take k to be much much larger than 2r + 3.

Step I.3: Extracting the ratios. The kernel of W (or equivalently of X) is a subspace of dimension at least
k− (2r+ 3), all of which is orthogonal to the vector of αx(i)’s. However, we do not have enough equations to
recover the αx(i)’s themselves, since there are k of them and we only have k − (2r + 3) equations. Here we
take advantage of the fact that the αx(i)’s are not really k independent variables, rather each αx(i)’s is obtained
as a subset product of the αi,b’s that are used in the construction.
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Specifically, let Jx ⊂ [`] be set of input bits that only affect steps of the branching program in the interval X ,
and for any just input bit j ∈ Jx let us denote βj,0 =

∏
ι(i′)=j αi′,0 and βj,1 =

∏
ι(i′)=j αi′,1. Also, recalling

that all the input bits outside Jx are fixed, we denote by β0 the product of the αi′,b scalars that are used in all
the steps that are not controlled by bits in Jx. Then every αx(i) can be written as a subset product

αx(i) = β0 ·
∏
j,b

βj,b
e(i,j,b)

where the exponents e(i, j, b) are all in {0, 1}. This implies in particular that the number of αx(i) is at most
22|Jx|.

Consider now what happens if we take all the products of two equations from the kernel. This will give us a
set of at least (k−2r−3)2 equations in the product variables γi1,i2 = αx(i1) ·αx(i2) . But the γi1,i2 are perhaps
not all distinct: each of them can be written as a product γi1,i2 = β2

0 ·
∏
j,b βj,b

e(i1,i2,j,b) with the exponents in
{0, 1, 2}, so the total number of distinct γi1,i2 is at most 32|Jx| (which is smaller than (22|Jx|)2).

More generally, we can take products of upto c of our equations, and this will give us at least (k − 2r − 3)c

equations, but the number of variables will still be upper-bounded by (c + 1)2|Jx|. If for some constant c we
get (k− 2r− 3)c > (c+ 1)2|Jx|, then we have more equations than variables (which heuristically should still
be linearly independent4) and we can solve the system and recover all the products γi1,i2,...,ic .

For example, in the extreme case where every setting of the input bits in Jx yields a zero of the function,
we can collect as many as k = 2|Jx| equations from the kernel. If in addition |Jx| > 1 + log(2r + 3) then
k > 2 · (2r+ 3) and therefore k− 2r− 3 > k/2 = 2|Jx|−1. In this case taking c = 7 is sufficient to get more
equations than variables, since

(k − 2r − 3)c = (k − 2r − 3)7 > 27(|Jx|−1) > 26|Jx| = 82|Jx| = (c+ 1)2|Jx|

as needed. We note that in this extreme case, we can get more equations than variables already when multi-
plying pairs of equations (i.e. let c = 2) from the kernel if we are careful about which pairs to multiply.

Once we have all the γ’s, we can divide them by each other to get ratios of smaller products of the βj,b’s
from above (which are in turn products of the αi′,b’s from the construction). In particular we can get ratios
of individual β’s, of the form βj,b/βj′,b′ , but we cannot get any better granularity. In particular we cannot
separate the different αi′,b that are multiplied to form the βj,b’s.

4.4 Step II: attacking the obfuscator

If we have a quantum computer, or we are willing to run a classical subexponential-time attack, we can
implement a factoring oracle and a principal-ideal-problem solver (using [27, 35, 8, 9, 18]). Together, these
solvers make it easy to use the ratios βj,b/βj′,b′ from above in an attack on the obfuscator. Specifically, we
can use the factoring oracle to recover the ideals generated by the bundling scalars αi,b from the construction,
then the PIP-solver to find the small scalars αi,b themselves.

Once we have these αi,b’s, we can use them in mixed-input attacks on the obfuscator. Namely, in some steps
that are controlled by the j’th input bit we take the 0 matrix, and in some other steps we take the 1 matirx,
and this lets us (at least) check if these two matrices are the same.

4This heuristic argument is similar to the one used for the multi-variate Coppersmith attack [14].
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