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Abstract. We present a generalized tweakable blockcipher HPH, which
is constructed from a public random permutation P and an almost-
XOR-universal (AXU) hash function H with a tweak and key schedule
(t1, t2,K) ∈ T × K, and defined as y = HPHK((t1, t2), x) = P (x ⊕
HK(t1)) ⊕HK(t2), where the key K is chosen from a key space K, the
tweak (t1, t2) is chosen from a tweak space T , x is a plaintext, and y is a
ciphertext. We prove that HPH is a secure strong tweakable pseudoran-
dom permutation (STPRP) by using H-coefficients technique. Then we
focus on the security of HPH against multi-key and related-key attacks.
We prove that HPH achieves multi-key-STPRP (MK-STPRP) security
and HPH with related-key-AXU hash functions achieves related-key-
STPRP (RK-STPRP) security, and derive a tight bound, respectively.
HPH can be extended to wide applications. It can be directly applied to
authentication and authenticated encryption modes. We appy HPH to
PMAC1 and OPP, provide two improved modes HPMAC and OPH, and
prove that they are single-key-secure, multi-key-secure, and related-key-
secure.

Keywords: Tweakable Even-Mansour, almost-XOR-universal hash func-
tions, HPH, multi-key attacks, related-key attacks, H-coefficients tech-
nique, authenticated encryption.

1 Introduction

A tweakable blockcipher (TBC) is a generalization of a traditional block cipher,
which adds a tweak as an extra public input on the basis of the usual inputs
(a plaintext and a key). Tweakable blockciphers (TBCs) with distinct tweaks
refer to distinct block ciphers, which makes that the cost of tweaks’ update is
lower than that of rekeys. The original application scenarios of TBCs focus on
storage encryptions, especially the disk sector encryption [21] (Each disk consists
of fixed-length sectors. The size of a sector is usually 512 bytes. In the disk sector
encryption, we need to encrypt a plaintext x under the sector location t ∈ T
and obtain the corresponding ciphertext y = EK(t, x), where K is a key and EK
is an encryption algorithm with a tweak space T . Moreover, the encryption with
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distinct sectors is mutual independent). Now TBCs have been extended to all the
modes of operation, such as encryption modes [27,22,1,38], authentication modes
[27,39,26], and authenticated encryption (AE) modes [27,39,17,24,1,20,9,8,34].

There exists three approaches to realize a tweakable blockcipher. The first
approach is based on a block cipher, such as [27,39,1,38,8,34]. The second
approach is based on a permutation, such as [13,16,29]. The third approach
is based on a keyed-function (hash function) [36,37].

Considering the security in the various applications, Mouha and Luykx [31]
described three attack settings: single-key, multi-key, and related-key settings. In
the single-key setting, an adversary has access to the encryption and decryption
oracles under a fixed key K chosen uniformly and randomly from the key space.
Most of previous papers considered the security in the single-key setting. In the
multi-key setting, an adversary has access to the encryption and decryption
oracles under many keys Ki (i ≥ 2) chosen independently and randomly
from the key space. Multi-key setting has many applications in the real-world
implementations. The multi-key setting can be seen as a generalization of the
multi-user [10] and broadcast [28] settings. There exists many related researches
in the multi-key, multi-user, and broadcast settings, such as [28,10,19,31,3,23]. In
the related-key attack setting, the key Ki satisfies the relationship Ki = ϕi(K),
where K is a key, and the related-key deriving (RKD) functions ϕi are chosen
by the adversary. Related-key attack (RKA) was firstly presented by Biham
et al. [5,6] for block ciphers [2,7,43] and then extended to other cryptographic
algorithms such as stream ciphers [11], permutation-based ciphers [15,29], hash
functions [44], MACs [35,4], AE schemes [18], etc. The above three attack settings
have become the important criterion in cipher designs.

The tweakable Even-Mansour cipher (TEM) [13] is a permutation-based
tweakable blockcipher, which is constructed from an n-bit public random
permutation P and an almost XOR-universal (AXU) family of hash functions
H = (HK)K∈K from some set T to {0, 1}n, and defined as

y = TEMK(t, x) = P (x⊕HK(t))⊕HK(t),

where K ∈ K is a key, t ∈ T is a tweak, x ∈ {0, 1}n is a plaintext, and y ∈
{0, 1}n is a ciphertext. The security of TEM in the single-key setting was proved
secure up to the birthday bound (this construction ensures security up to 2n/2

adversarial queries, in the random permutation model (RPM) for P : {0, 1}n →
{0, 1}n).

Follow on, Mennink [29] provided a pure-permutation-based tweakable
blockcipher XPX, which is a generalization of tweakable Even-Mansour cipher.
Assume thatK is a key randomly chosen from a key space K and (t11, t12, t21, t22)
is a tweak chosen from a valid tweak space T , XPX is defined as

y = XPXK((t11, t12, t21, t22), x) = P (x⊕∆1)⊕∆2,

where∆1 = t11K⊕t12P (K) and∆2 = t21K⊕t22P (K), x ∈ {0, 1}n is a plaintext,
and y ∈ {0, 1}n is a ciphertext. XPX with a valid tweak space T was proved
secure up to the birthday bound in the single-key and related-key settings.
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Let ∆1 = t11K ⊕ t12P (K) = fK(t1) and ∆2 = t21K ⊕ t22P (K) = gK(t2),
where t1 = (t11, t12) and t2 = (t21, t22), then we have

y = XPXK((t1, t2), x) = P (x⊕ fK(t1))⊕ gK(t2).

1.1 Our Contributions

In this paper, we are interest in generalizing XPX to the case where the maskings
are implemented using universal hash functions. Here we use a common universal
hash function H instead of two universal hash functions f and g. As XPX makes
two invocations to the underlying permutation for per-message encryption (the
best efficiency happens in this case that calling the underlying permutation only
once for per-message encryption) and universal hash functions can be efficiently
implemented, here we present a generalized tweakable blockcipher HPH, which is
constructed from a public random permutation P and an almost-XOR-universal
(AXU) family of hash functions H = {HK} with a tweak and key schedule
(t1, t2,K) ∈ T × K, and defined as

y = HPHK((t1, t2), x) = P (x⊕HK(t1))⊕HK(t2),

where the key K is chosen from a key space K, the tweak (t1, t2) is chosen from
a tweak space T , x is a plaintext, and y is a ciphertext.

This paper focuses on the security of HPH in the single-key, multi-key, and
related-key settings. Due to the weakness of almost-XOR-universal (AXU) hash
functions in the related-key setting, we use a family of related-key-almost-XOR-
universal (RKA-AXU) hash functions presented by Wang et al. [44]. We prove
that HPH is secure in the above three attack settings and derive a tight bound,
respectively. Our proofs use Patarin’s H-coefficients technique [33].

In the single-key setting, we prove that HPH with (ϵ, δ)-AXU-hash functions
achieves single-key strong tweakable pseudorandom permutation (STPRP)
security up to about 2DTδ + D(D − 1)ϵ queries in the random permutation
model. In the multi-key setting, a small number of plaintexts are encrypted under
multiple independent keys. HPH with (ϵ, δ)-AXU-hash functions achieves multi-
key-STPRP (MK-STPRP) security up to 2DTδ+(D−l+1)(D−l)ϵ+D2(1−1/l)δ
queries in the random permutation model. In the related-key setting, a small
number of plaintexts are encrypted under multiple related keys. HPH with (ϵ, δ)-
RKA-AXU-hash functions achieves related-key-STPRP (RK-STPRP) security
up to 2DTδ +D(D − 1)ϵ queries in the random permutation model. Here, D is
the complexity of construction queries (data complexity), T is the complexity of
internal permutation queries (time complexity), and l is the number of keys.

HPH is a strongly secure cryptosystem with a lighter key schedule and higher
key agility in the single-key, multi-key, and related-key attack settings. Our work
is of high practical relevance because of rekey requirements and the inevitability
of related keys in real-world implementations. HPH is very useful, not only
because of the simplicity of its design and proof, but also because of fast and
secure implementations. If the underlying (tweakable) block cipher is replaced
with HPH, then encryption, authentication, and authenticated encryption modes
may be designed more efficiently and more securely.
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1.2 Applications

HPH can be used to improve security guarantee for encryption, authentication,
and authenticated encryption modes. Mennink applied XPX to authenticated
encryption modes and message authentication code (MAC) in [29]. HPH is
a generalization of XPX, therefore HPH can be applied to these modes. In
this paper, we apply HPH to an authentication mode PMAC1 [39] and an
authenticated encryption mode OPP [20], present two new improved modes
HPMAC and OPH, and prove that they are single-key-secure, multi-key-secure,
and related-key-secure.

HPH is directly applied to authentication mode PMAC1 [39]. PMAC1
provide by Rogaway is a parallelizable message authentication code. They
presented the security of PMAC1 with a block cipher. The cost of the
implementation for block ciphers is higher than permutations. Therefore, we
replace the block cipher to a permutation, present a new simpler and faster
HPMAC mode, and prove that HPMAC achieves single-key-PRF security, multi-
key-PRF security, and related-key-PRF security.

HPH is directly applied to authenticated encryption mode OPP [20]. As
the tweak-based masking function of OPP [20] is based on the underlying
permutation, OPP [20] makes extra invocation to the underlying permutation for
per-message encryption. Therefore, we utilize a family of universal hash functions
to replace tweak-based masking function and present a new nonce-respecting
authenticated encryption mode OPH. In this paper, we prove that OPH achieves
single-key-AE security, multi-key-AE security, and related-key-AE security, and
derive provably security bounds.

Organizations of This Paper. Some preliminaries are presented in Section 2.
Three security models are presented in Section 3. HPH is presented in Section
4. Three security results of HPH are derived in Section 5. Section 6 present
a provably secure and HPH-based PMAC mode HPMAC. Section 7 present a
provably secure and HPH-based authenticated encryption mode OPH. Finally,
this paper ends up with a conclusion in Section 8.

2 Preliminaries

2.1 Notations

Let n be an integrity and {0, 1}n denote the set of all strings whose lengths are

n-bit. If X is a finite set, then x
$← X is a value randomly chosen from X, and

|X| stands for the number of elements in X.
A tweakable blockcipher with key space K, tweak space T , and plaintext

space {0, 1}n is a function Ẽ : K × T × {0, 1}n → {0, 1}n such that for any key

K ∈ K and a tweak t ∈ T , ẼK(t, ·) = Ẽ(K, t, ·) is a permutation of {0, 1}n.
Similarity, its inverse is denoted by D̃K = Ẽ−1

K . Let Perm(n) be the set of all

permutations on {0, 1}n. Let P̃ erm(T , n) be the set of tweakable permutations,
i.e., the set of Perm(n) indexed with t ∈ T .
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An adversary is a probabilistic algorithm with access to certain oracles. Let
AO = 1 be the event that an adversary A outputs 1 after interacting with the
oracle O. Without loss of generality, we assume that the adversary doesn’t make
redundant queries, that is, i) it doesn’t repeat prior queries for each oracle, ii)

the adversary does not ask the decryption oracle D̃K after receiving a value in
response to an encryption query ẼK , and iii) the adversary does not ask the

encryption oracle ẼK after receiving a value in response to a decryption query
D̃K .

A related-key deriving (RKD) function is a map that takes a key K ∈ K as
an input and returns a related key ϕ(K) ∈ K. A RKD set Φ is a set of RKD
functions, which is formalized as Φ = {ϕ : K → K}. Two typical RKD sets are
enumerated as follows:

Φid = {ϕ : K → K};
Φ⊕ = {ϕ : K → K⊕ △ | △∈ K},

where K ∈ K. Throughout the paper we assume that membership in RKD sets
can be efficiently decided.

2.2 Universal Hash Functions

Definition 1 ((ϵ, δ)-AXU Hash Function Family [25]). Let H = {H : K×
D → R} be a family of hash functions. H is called an (ϵ, δ)-almost XOR universal
((ϵ, δ)-AXU) hash function, if the following two conditions hold:

1) For any element X ∈ D and any element Y ∈ R,

Pr[K
$← K : HK(X) = Y ] ≤ δ;

2) For any two distinct elements X,X ′ ∈ D and any element Y ∈ R,

Pr[K
$← K : HK(X)⊕HK(X ′) = Y ] ≤ ϵ.

Examples of AXU hash function families are presented as follows.
1) Let H1 = {HK(x) = K · x | K,x ∈ GF (2n)∗}. Then H1 is a (2−n, 2−n)-

AXU hash function family from {0, 1}n \ {0n} to {0, 1}n.
2) Let H2 = {HK(x1, x2, · · · , xt) = K · x1 + K2 · x2 + · · · + Kt · xt | K ∈

GF (2n)∗, xi ∈ GF (2n), 1 ≤ i ≤ t, (x1, x2, · · · , xt) ̸= (0, 0, · · · , 0)}. Then H2 is a
(t/2n, t/2n)-AXU hash function family from {0, 1}tn \ {0tn} to {0, 1}n.

3) Let H3 = {Hk1,k2,··· ,kt(x1, x2, · · · , xt) = k1 · x1 + k2 · x2 + · · · + kt ·
xt | ki ∈ GF (2n), xi ∈ GF (2n), 1 ≤ i ≤ t, (k1, k2, · · · , kt) ̸= (0, 0, · · · , 0), (x1, x2,
· · · , xt) ̸= (0, 0, · · · , 0)}. Then H3 is a (1/2n, 1/2n)-AXU hash function family
from {0, 1}tn \ {0tn} to {0, 1}n.

Definition 2 ((ϵ, δ)-RKA-AXU Hash Function Family [44]). Let H =
{H : K × D → R} be a family of hash functions. H is an (ϵ, δ)-related-key-
almost-XOR-universal ((ϵ, δ)-RKA-AXU) hash function for the RKD set Φ, if
the following two conditions hold:
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1) For any ϕ ∈ Φ,X ∈ D, and Y ∈ R,

Pr[K
$← K : Hϕ(K)(X) = Y ] ≤ δ;

2) For any ϕ, ϕ′ ∈ Φ,X,X ′ ∈ D, (ϕ,X) ̸= (ϕ′, X ′), and Y ∈ R,

Pr[K
$← K : Hϕ(K)(X)⊕Hϕ′(K)(X

′) = Y ] ≤ ϵ.

For any ϕ, ϕ′ ∈ Φ, ϕ ̸= ϕ′ means there exists a key K ∈ K such that ϕ(K) ̸=
ϕ′(K). If the RKD set Φid = {ϕ : K → K} is an identity transform, an (ϵ, δ)-
RKA-AXU hash function family is an (ϵ, δ)-AXU hash function family.

Restricting RKD Sets. Wang et al. [44] pointed out: “If we consider the
related-key attack (RKA) against these universal-hash-function-based (UHF-
based) schemes, some of them may not be secure, especially those using the key
of UHF as a part of the whole key of scheme, due to the weakness of UHF in
the RKA setting”. Therefore, Wang et al. provided a family of RKA-AXU hash
functions [44]. The RKA-AXU-hash function family depends on the choice of
RKD sets. For some RKD sets, the RKA-AXU-hash function family may not
exist. They pointed that a RKD set is restricted to both output unpredictable
and collision resistant in [44].

Instances. Wang et al. [44] constructed related-key almost universal hash
functions: one fixed-input-length (FIL) UHF named RH1 and two variable-input-
length (VIL) UHFs named RH2 and RH3. It is easy to obtain that RH1 and
RH2 are both (ϵ, δ)-RKA-AXU hash functions for the RKD set Φ⊕.

1) RH1: {0, 1}n×{0, 1}n → {0, 1}n, RH1K(M) = MK⊕K3 is (2/2n, 2/2n)-
RKA-AXU for the RKD set Φ⊕.

2) RH2: {0, 1}n × {0, 1}n → {0, 1}n, pad(M) = M ∥ 0i ∥ |M |

RH2K(M) =

{
Kl+2 ⊕ PolyK(pad(M)) l is odd

Kl+3 ⊕ PolyK(pad(M))K l is even

is ((lmax + 3)/2n, (lmax + 3)/2n)-RKA-AXU for the RKD set Φ⊕, where l =
⌈|M |/n⌉ + 1 is the number of blocks in pad(M), lmax is the maximum block
number of messages after padding, and Poly : {0, 1}n × {0, 1}nm → {0, 1}n is
defined as follows:

PolyK(X) = X1K
m ⊕ · · · ⊕XmK.

2.3 The H-Coefficients Technique

Patarin’s H-coefficients technique [33] is a vital tool widely used in the encryption
modes [16,12,13,15,29], authentication modes [14], and authenticated encryption
modes [8,17,34]. We briefly summarize this technique as follows.

Given a real world X and a ideal world Y , considering an information-
theoretic adversary A whose goal is to distinguish X from Y , then the advantage
of A is denoted as

Adv(A) = |Pr[AX = 1]− Pr[AY = 1]|.
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Without loss of generality, we can assume A is a deterministic adversary.
The interaction with X or Y is summarized in a transcript τ , which is a list of
queries and answers. Denote by DX the probability distribution of transcripts
when interacting with X, and by DY the probability distribution of transcripts
when interacting with Y .

A transcript τ is attainable if Pr[DY = τ ] > 0, meaning that it can occur
during interaction with Y . Let Γ be the set of attainable transcripts. The H-
coefficients lemma is presented as follows.

Lemma 1 (H-Coefficients Lemma). Fix a deterministic adversary A. Let
Γ = Γgood

∪
Γbad be a partition of the set of attainable transcripts. Assume that

there exists ε such that for any τ ∈ Γgood, one has

Pr[DX = τ ]

Pr[DY = τ ]
≥ 1− ε.

Then

Adv(A) ≤ ε+ Pr[DY ∈ Γbad].

3 Three Security Models of Encryption

3.1 Single-Key Security Model

Let Ẽ : K×T ×{0, 1}n → {0, 1}n be a tweakable blockcipher based on a random

permutation P
$← Perm(n). Let π̃

$← P̃ erm(T , n) be a random tweakable

permutation. The single-key security of Ẽ is formalized with a distinguisher

that has adaptive oracle access to either (ẼK ;P ) with K
$← K, (Real World X),

or (π̃;P ) with π̃
$← P̃ erm(T , n) (Ideal World Y ). In this paper, we consider the

adversary that has access to the encryption and decryption queries for X or Y .
The definition of single-key security is presented as follows.

Definition 3 (Single-Key Security). Let K
$← K and Ẽ be the tweakable

block cipher based on a random permutation P
$← Perm(n). Given an adver-

sary A, the single-key strong tweakable pseudorandom permutation (STPRP)
advantage of A is

Advstprp
Ẽ

(A) = |Pr[AẼ±
K ;P±

= 1]− Pr[Aπ̃±;P±
= 1]|,

where π̃ is uniformly drawn from P̃ erm(T , n) and the probabilities are taken
over the random choices of K,P, π̃.

For D,T ≥ 0, let

Advstprp
Ẽ

(D,T ) = maxAAdvstprp
Ẽ

(A)

denote the maximum advantage of all adversaries that makes D queries to the
construction Ẽ±

K (data complexity) and T queries to the primitive P± (time
complexity).
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3.2 Multi-Key Security Model

Let Ẽ : K×T ×{0, 1}n → {0, 1}n be a tweakable blockcipher based on a random

permutation P
$← Perm(n). Let π̃

$← P̃ erm(T , n) be a random tweakable
permutation. Let l denote the number of keys Ki under which the adversary
performs queries, that is, there is at least one query for every keyKi for 1 ≤ i ≤ l.
The multi-key-security of Ẽ is formalized with a distinguisher that has adaptive

oracle access to either (ẼK1
, ẼK2

, · · · , ẼKl
;P ) with Ki

$← K for i = 1, · · · , l,
(Real World X), or (π̃1, π̃2, · · · , π̃l;P ) with π̃i

$← P̃ erm(T , n), i = 1, · · · , l
(Ideal World Y ). In this paper, we consider the adversary that has access to
the encryption and decryption queries for X or Y . The definition of multi-key
security is presented as follows.

Definition 4 (Multi-Key Security). Let Ẽ be the tweakable block cipher

based on a random permutation P
$← Perm(n). Given an adversary A, the

multi-key STPRP (MK-STPRP) advantage of A with respect to l keys is

Advmk−stprp

Ẽ
(A) = |Pr[A

Ẽ±
K1

,Ẽ±
K2

,··· ,Ẽ±
Kl

;P±
= 1]− Pr[Aπ̃±

1 ,π̃±
2 ,··· ,π̃±

l ;P±
= 1]|,

where the keys K1, · · · ,Kl are independently and uniformly drawn from K,
tweakable permutations π̃1, π̃2, · · · , π̃l are independently and uniformly drawn

from P̃ erm(T , n), and the probabilities are taken over the random choices of
K1, · · · ,Kl, P , and π̃1, π̃2, · · · , π̃l.

For D,T ≥ 0, let

Advmk−stprp

Ẽ
(D,T ) = maxAAdvmk−stprp

Ẽ
(A)

denote the maximum advantage of all adversaries that makes D queries to the
construction (data complexity) and T queries to P± (time complexity).

3.3 Related-Key Security Model

Let Φ be a set of RKD functions. For a tweakable block cipher Ẽ : K × T ×
{0, 1}n → {0, 1}n, we define a related-key oracle RK[Ẽ] : K×Φ×T ×{0, 1}n →
{0, 1}n as

RK[Ẽ](K,ϕ, t, x) = RK[Ẽ]K(ϕ, t, x) = Ẽϕ(K)(t, x),

where K ∈ K is the key, ϕ ∈ Φ is a RKD function, t ∈ T is the tweak, and
x ∈ {0, 1}n is the plaintext.

Let ˜RKPerm(Φ, T , n) be the set of tweakable related-key permutations, i.e.,
the set of all families of permutations on {0, 1}n indexed with (ϕ, t) ∈ Φ× T .

The security of the tweakable blockcipher in the related-key setting is
formalized with a distinguisher which has access to (RK[Ẽ]K ;P ) with K ∈
K, ϕ ∈ Φ, and P

$← Perm(n) (Real World X), or (RK[π̃];P ) with RK[π̃]
$←

˜RKPerm(Φ, T , n) and P
$← Perm(n) (Ideal World Y ). In this paper, we

consider that an adversary is adaptive and can make encryption and decryption
queries to each oracle. We present a definition of related-key security as follows.
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Definition 5 (Related-Key Security). Let Φ be a RKD set, K
$← K be a

key, and Ẽ be a tweakable blockcipher based on a public random permutation

P
$← Perm(n). Given an adversary A, the related-key STPRP (RK-STPRP)

advantage of A with respect to Φ is

Advrk−stprp

Ẽ
(A) = |Pr[ARK[Ẽ]±K ;P±

= 1]− Pr[ARK[π̃]±;P±
= 1]|,

where RK[π̃]
$← ˜RKPerm(Φ, T , n), ϕ $← Φ, P

$← Perm(n), and the probabilities
are taken over the random choices of ϕ,K, P,RK[π̃].

For D,T ≥ 0, let

Advrk−stprp

Ẽ
(D,T ) = maxAAdvrk−stprp

Ẽ
(A)

denote the maximum advantage of all adversaries that makes D queries to the
construction (data complexity) and T queries to P± (time complexity).

4 HPH

Let K be a key space, T = D2 be a tweak space, and P be an n-bit public
random permutation. Let H = {H : K × D → {0, 1}n} be a family of almost-
XOR-universal (AXU) hash functions. Then we present a tweakable blockcipher
HPH: K × T × {0, 1}n → {0, 1}n, which is defined as

y = HPHK((t1, t2), x) = P (x⊕HK(t1))⊕HK(t2),

where H
$← H is an universal hash function, K ∈ K is a key, (t1, t2) ∈ T is a

tweak, x ∈ {0, 1}n is a plaintext, and y ∈ {0, 1}n is a ciphertext. As H is an
universal hash function, therefore 0 /∈ D and 0 /∈ T . The overview of HPH is
depicted in Fig. 1.

PÅ Å

  

Fig. 1. HPH: Generalized Tweakable Even-Mansour Cipher

HPH is a generalized tweakable Even-Mansour cipher. If HK(t1) = t11K ⊕
t12P (K) and HK(t2) = t21K⊕ t22P (K), where t1 = (t11, t12) and t2 = (t21, t22),
HPH meets the construction of XPX and inherits the security of XPX [29]. If
HK(t1) = HK(t2) = HK(t), where t1 = t2 = t, HPH degrades into TEM and
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inherits the security of TEM [13]. We use a non-linear universal hash function
family H in this paper.

If the underlying permutation is replaced with AES-128, HPH is a gener-
alization of the XEX construction [39]. The universal hash function H can be
implemented by four-round AES (AES4). AES4 is an excellent choice in certain
settings, such as restricted environments or devices with AES-NI.

5 Strong Security of HPH

In this section, we analyze the security of HPH in various security models and
prove that HPH achieves STPRP security, MK-STPRP security, and RK-STPRP
security.

5.1 Single-Key Security of HPH

Theorem 1 (Single-Key Security of HPH). Let H be an (ϵ, δ)-AXU hash
function and K be a key randomly chosen from K, then for all adversaries A
making at most D queries to HPH±

K (resp. π̃±) and at most T queries to P±,
we have

AdvstprpHPH(A) ≤ 2DTδ +D(D − 1)ϵ.

Our proof is similar to that of the tweakable Even-Mansour cipher in the
single-key setting [13]. The result of Theorem 1 is in fact a generalization of [13].
The proof uses Patarin’s H-coefficients technique [33].

As shown in Fig. 2, we consider an adversary A that has access to two

oracles (O1, O2). In the real world X, these are (HPH±
K ;P±) with K

$← K
and P

$← Perm(n), and in the ideal world Y , these are (π̃±;P±) with π̃
$←

P̃ erm(T , n) and P
$← Perm(n). Without loss of generality, we assume that A

is a deterministic adversary. It makes D queries to oracle O1, and T queries to
O2. Let m be the number of distinct tweaks, Dt be the number of queries for
the t-th tweak, 1 ≤ t ≤ m, using an arbitrary ordering of the tweaks. Then
D =

∑m
t=1 Dt.

The interaction of A with the oracles can be described by a transcript
τ = (K, τ1, τ2). We assume that the list of queries to O1 is defined by τ1 =
{(t11, t12, x1, y1), · · · , (tD1 , tD2 , xD, yD)}, where (t11, t

1
2), · · · , (tD1 , tD2 ) ∈ T , and to

O2 by τ2 = {(u1, v1), · · · , (uT , vT )}. We assume that A never makes repeated
queries, so that (ti1, t

i
2, x

i) ̸= (tj1, t
j
2, x

j), (ti1, t
i
2, y

i) ̸= (tj1, t
j
2, y

j), ui ̸= uj , and
vi ̸= vj for all i and j, where i ̸= j.

Let DX denote the probability distribution of transcripts in the real world
X, and DY denote the probability distribution of transcripts in the ideal world
Y . We say that a transcript τ is attainable if it can be obtained from interacting
with (π̃±;P±), that is to say Pr(DY = τ) > 0.
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Fig. 2. Single-Key Security of HPH. Left of dashed line: Real world X =

(HPH±
K ;P±) with K

$← K and P
$← Perm(n). Right of dashed line: Ideal world

Y = (π̃±;P±) with π̃
$← P̃ erm(T , n) and P

$← Perm(n). The goal ofA is to distinguish
the real world X from the ideal world Y . If the distinguishable advantage of A is
negligible, the scheme is STPRP-secure. The number of queries by the adversary A to
any of the first oracle is denoted by D, the number of queries to the last oracle by T .

Definition 6. We say that a transcript τ = (K, τ1, τ2) is bad if two different
queries would result in the same input or output to P , when A interacting with
the real world. Put formally, τ is bad if one of the following conditions is satisfied:

Bad1: ∃(t1, t2, x, y) ∈ τ1 and (u, v) ∈ τ2 such that x ⊕ u = HK(t1), where
(t1, t2) ∈ T ;

Bad2: ∃(t1, t2, x, y) ∈ τ1 and (u, v) ∈ τ2 such that y ⊕ v = HK(t2), where
(t1, t2) ∈ T ;

Bad3: ∃(ti1, ti2, xi, yi) ̸= (tj1, t
j
2, x

j , yj) ∈ τ1 such that xi ⊕ xj = HK(ti1) ⊕
HK(tj1), where (ti1, t

i
2), (t

j
1, t

j
2) ∈ T and 1 ≤ i ̸= j ≤ D;

Bad4: ∃(ti1, ti2, xi, yi) ̸= (tj1, t
j
2, x

j , yj) ∈ τ1 such that yi ⊕ yj = HK(ti2) ⊕
HK(tj2), where (ti1, t

i
2), (t

j
1, t

j
2) ∈ T and 1 ≤ i ̸= j ≤ D.

Otherwise we say that τ is good. We denote Γgood (resp. Γbad) the set of good
(resp. bad) transcripts. Let Γ = Γgood ∪ Γbad be the set of attainable transcripts.

We firstly upper bound the probability of bad transcripts in the ideal world
Y by the following lemma.

Lemma 2. Let H be an (ϵ, δ)-AXU hash function, then

Pr[DY ∈ Γbad] ≤ 2DTδ +D(D − 1)ϵ.

Proof. Let τ = (K, τ1, τ2) be any attainable transcript. In the ideal world Y ,
the dummy key K is randomly chosen from K. We assume that an adversary A
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makes at most D construction queries and at most T primitive queries. Given
any (t1, t2, x, y) ∈ τ1 and (u, v) ∈ τ2, where (t1, t2) ∈ T , by the properties of the
(ϵ, δ)-AXU hash function H, we have

Pr[K
$← K : HK(t1) = x⊕ u ∨HK(t2) = y ⊕ v] ≤ 2δ.

It follows that,

Pr[Bad1 ∨Bad2] ≤ 2DTδ.

Fix any distinct queries (ti1, t
i
2, x

i, yi) ̸= (tj1, t
j
2, x

j , yj) ∈ τ1, where (t
i
1, t

i
2), (t

j
1,

tj2) ∈ T and 1 ≤ i ̸= j ≤ D. By the properties of the (ϵ, δ)-AXU hash function
H, we have

Pr[K
$← K : HK(ti1)⊕HK(tj1) = xi ⊕ xj ∨HK(ti2)⊕HK(tj2) = yi ⊕ yj ] ≤ 2ϵ.

It follows that,

Pr[Bad3 ∨Bad4] ≤
∑

1≤i ̸=j≤D

2ϵ = D(D − 1)ϵ.

Therefore,

Pr[DY ∈ Γbad] = Pr[
4∪

i=1

Badi]

≤ 2DTδ +D(D − 1)ϵ.

This completes the proof.

We then analyze good transcripts. For a good transcript, in the real world
X, all tuples in τ = (K, τ1, τ2) uniquely define an input-output pair of P , while
in the ideal world it is not.

Lemma 3. For any good transcript τ , one has

Pr[DX = τ ]

Pr[DY = τ ]
≥ 1.

Proof. Consider a good transcript τ ∈ Γgood. Denote by ΩX the set of all possible
oracles in the real world X and by ΩY the set of all possible oracles in the
ideal world Y . Let compX(τ) ⊆ ΩX and compY (τ) ⊆ ΩY be the set of oracles
compatible with transcript τ . According to the H-coefficients technique, we have

Pr[DX = τ ] = |compX(τ)|
|ΩX | , where |ΩX | = 2n!|K|.

Pr[DY = τ ] = |compY (τ)|
|ΩY | , where |ΩY | = (

∏
t 2

n!) · 2n!|K| and t ∈ T .
Firstly, we calculate |compX(τ)|. As τ ∈ Γgood, there are no two queries in τ

with the same input or output of the underlying permutation. Any query tuple in
τ therefore fixes exactly one input-output pair of the underlying oracle. Because
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τ consists of D+T query tuples, the number of possible oracles in the real world
X equals (2n −D − T )!.

By a similar reason, the number of possible oracles in the ideal world Y
equals

∏m
t=1(2

n −Dt)!(2
n − T )!, where D =

∑m
t=1 Dt. It follows that,

Pr[DX = τ ] =
(2n −D − T )!

2n!|K|

Pr[DY = τ ] =

∏m
t=1(2

n −Dt)!(2
n − T )!

(
∏

t 2
n!) · 2n!|K|

≤ (2n −D − T )!

2n!|K|
.

Therefore, we have Pr[DX=τ ]
Pr[DY =τ ] ≥ 1.

By Lemmas 1, 2, and 3, we have

AdvstprpHPH(A) ≤ 2DTδ +D(D − 1)ϵ.

5.2 Multi-Key Security of HPH

Theorem 2 (Multi-Key Security of HPH). Let H be an (ϵ, δ)-AXU hash
function and Ki be a key randomly chosen from K for i = 1, · · · , l, then for
all adversaries A making at most D queries to HPH±

K1
,HPH±

K2
, · · · ,HPH±

Kl

(resp. π̃±
1 , π̃

±
2 , · · · , π̃

±
l ) and at most T queries to P±, we have

Advmk−stprp
HPH (A) ≤ 2DTδ + (D − l + 1)(D − l)ϵ+D2(1− 1/l)δ.

Our proof is similar to that of the Even-Mansour cipher in the multi-key
setting [31], except that we need to consider the tweak and the properties of
hash functions in the multi-key setting. The result of Theorem 2 is in fact a
generalization of [31]. The proof uses Patarin’s H-coefficients technique [33].

We consider an adversary A that has access to l + 1 oracles (O1, · · · , Ol+1).

In the real world, these are (HPH±
K1

,HPH±
K2

, · · · ,HPH±
Kl

;P±) with Ki
$← K

for i = 1, · · · , l, P $← Perm(n), and in the ideal world, these are (π̃±
1 , π̃

±
2 , · · · ,

π̃±
l ;P

±) with π̃i
$← P̃ erm(T , n), i = 1, · · · , l and P

$← Perm(n) (See Fig. 3).
Without loss of generality, we assume that A is a deterministic adversary. It
makes Di queries to oracle Oi for i = 1, · · · , l, and T queries to Ol+1. Let

D =
∑l

i=1 Di. (Let m be the number of distinct tweaks, Dt be the number
of queries for the t-th tweak, 1 ≤ t ≤ m, using an arbitrary ordering of the
tweaks. Note that m may depend on the answers received from the oracles, yet
one always has D =

∑m
t=1 Dt.)

The interaction of A with the oracles can be described by a transcript
τ = (K1, · · · ,Kl, τ1, · · · , τl+1). We assume that the list of queries to Oi for
i = 1, · · · , l is defined by τi = {(t1i1, t1i2, x1

i , y
1
i ), · · · , (t

Di
i1 , tDi

i2 , xDi
i , yDi

i )}, where
(t1i1, t

1
i2), · · · , (tDi

i1 , tDi
i2 ) ∈ T , and to Ol+1 by τl+1 = {(u1, v1), · · · , (uT , vT )}.
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Fig. 3. Multi-Key Security of HPH. Left of dashed line: Real world X =

(HPH±
K1

, HPH±
K2

, · · · , HPH±
Kl

;P±) with Ki
$← K for i = 1, · · · , l, P $← Perm(n).

Right of dashed line: Ideal world Y = (π̃±
1 , π̃±

2 , · · · , π̃±
l ;P±) with π̃i

$←
P̃ erm(T , n), i = 1, · · · , l and P

$← Perm(n). The goal of A is to distinguish the real
world X from the ideal world Y . If the distinguishable advantage of A is negligible,
the scheme is multi-key-STPRP-secure. Although only one direction is shown, inverse
oracles can be accessed as well. The number of queries by the adversary A to any of
the first l oracles is denoted by D, the number of queries to the last oracle by T .

We assume that A never makes redundant queries, so that (tji1, t
j
i2, x

j
i ) ̸=

(tj
′

i1, t
j′

i2, x
j′

i ), (t
j
i1, t

j
i2, y

j
i ) ̸= (tj

′

i1, t
j′

i2, y
j′

i ), uj ̸= uj′ , and vj ̸= vj
′
for all i, j, j′

where j ̸= j′.

Let DX denote the probability distribution of transcripts in the real world
X, and DY denote the probability distribution of transcripts in the ideal world
Y . We say that a transcript τ is attainable if it can be obtained from interacting
with (π̃±

1 , π̃
±
2 , · · · , π̃

±
l ;P

±), that is to say Pr(DY = τ) > 0.

Definition 7. We say that a transcript τ is bad if two different queries would
result in the same input or output to P , when A interacting with the real world.
Put formally, τ is bad if one of the following conditions is satisfied:

Bad1: ∃(tji1, t
j
i2, x

j
i , y

j
i ) ∈ τi and (uj′ , vj

′
) ∈ τl+1 such that xj

i⊕uj′ = HKi(t
j
i1),

where (tji1, t
j
i2) ∈ T , 1 ≤ i ≤ l, 1 ≤ j ≤ Di, and 1 ≤ j′ ≤ T ;

Bad2: ∃(tji1, t
j
i2, x

j
i , y

j
i ) ∈ τi and (uj′ , vj

′
) ∈ τl+1 such that yji⊕vj

′
= HKi(t

j
i2),

where (tji1, t
j
i2) ∈ T , 1 ≤ i ≤ l, 1 ≤ j ≤ Di, and 1 ≤ j′ ≤ T ;

Bad3: ∃(tji1, t
j
i2, x

j
i , y

j
i ) ̸= (tj

′

i1, t
j′

i2, x
j′

i , y
j′

i ) ∈ τi such that xj
i⊕x

j′

i = HKi(t
j
i1)⊕

HKi(t
j′

i1), where (tji1, t
j
i2), (t

j′

i1, t
j′

i2) ∈ T , 1 ≤ i ≤ l, and 1 ≤ j ̸= j′ ≤ Di;

Bad4: ∃(tji1, t
j
i2, x

j
i , y

j
i ) ̸= (tj

′

i1, t
j′

i2, x
j′

i , y
j′

i ) ∈ τi such that yji ⊕y
j′

i = HKi(t
j
i2)⊕

HKi(t
j′

i2), where (tji1, t
j
i2), (t

j′

i1, t
j′

i2) ∈ T , 1 ≤ i ≤ l, and 1 ≤ j ̸= j′ ≤ Di;
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Bad5: ∃(tji1, t
j
i2, x

j
i , y

j
i ) ∈ τi, (t

j′

i′1, t
j′

i′2, x
j′

i′ , y
j′

i′ ) ∈ τi′ , and (tji1, t
j
i2, x

j
i , y

j
i ) ̸=

(tj
′

i′1, t
j′

i′2, x
j′

i′ , y
j′

i′ ) such that xj
i ⊕xj′

i′ = HKi(t
j
i1)⊕HKi′ (t

j′

i′1), where (tji1, t
j
i2), (t

j′

i′1,

tj
′

i′2) ∈ T , 1 ≤ i ̸= i′ ≤ l, 1 ≤ j ≤ Di, and 1 ≤ j′ ≤ Di′ ;

Bad6: ∃(tji1, t
j
i2, x

j
i , y

j
i ) ∈ τi, (t

j′

i′1, t
j′

i′2, x
j′

i′ , y
j′

i′ ) ∈ τi′ , and (tji1, t
j
i2, x

j
i , y

j
i ) ̸=

(tj
′

i′1, t
j′

i′2, x
j′

i′ , y
j′

i′ ) such that yji ⊕yj
′

i′ = HKi(t
j
i2)⊕HKi′ (t

j′

i′2), where (tji1, t
j
i2), (t

j′

i′1,

tj
′

i′2) ∈ T , 1 ≤ i ̸= i′ ≤ l, 1 ≤ j ≤ Di, and 1 ≤ j′ ≤ Di′ .
Otherwise we say that τ is good. We denote Γgood (resp. Γbad) the set of good

(resp. bad) transcripts. Let Γ = Γgood ∪ Γbad be the set of attainable transcripts.

We firstly upper bound the probability of bad transcripts in the ideal world
Y by the following lemma.

Lemma 4. Let H be an (ϵ, δ)-AXU hash function and l be the number of keys,
then

Pr[DY ∈ Γbad] ≤ 2DTδ + (D − l + 1)(D − l)ϵ+D2(1− 1/l)δ.

Proof. In the ideal world Y , τ = (K1, · · · ,Kl, τ1, · · · , τl, τl+1) is an attainable
transcript generated independently of the dummy key Ki ∈ K for i = 1, · · · , l.
We assume that an adversary A makes at most D construction queries and at
most T primitive queries. For (tji1, t

j
i2, x

j
i , y

j
i ) ∈ τi and (uj′ , vj

′
) ∈ τl+1, where

(tji1, t
j
i2) ∈ T , 1 ≤ i ≤ l, 1 ≤ j ≤ Di, 1 ≤ j′ ≤ T , and D =

∑l
i=1 Di, by the

properties of the (ϵ, δ)-AXU hash function H, we have

Pr[Ki
$← K : HKi(t

j
i1) = xj

i ⊕ uj′ ∨HKi(t
j
i2) = yji ⊕ vj

′
] ≤ 2δ.

It follows that,

Pr[Bad1 ∨Bad2] ≤
l∑

i=1

Di∑
j=1

T∑
j′=1

2δ

=
l∑

i=1

2DiTδ = 2DTδ.

Fix any distinct queries (tji1, t
j
i2, x

j
i , y

j
i ) ̸= (tj

′

i1, t
j′

i2, x
j′

i , y
j′

i ) ∈ τi, where

(tji1, t
j
i2), (t

j′

i1, t
j′

i2) ∈ T , 1 ≤ i ≤ l, and 1 ≤ j ̸= j′ ≤ Di. By the properties
of the (ϵ, δ)-AXU hash function H, we have

Pr[Ki
$← K : HKi(t

j
i1)⊕HKi(t

j′

i1) = C1 ∨HKi(t
j
i2)⊕HKi(t

j′

i2) = C2] ≤ 2ϵ,

where C1 = xj
i ⊕ xj′

i and C2 = yji ⊕ yj
′

i .
It follows that,

Pr[Bad3 ∨Bad4] ≤
l∑

i=1

Di∑
j′ ̸=j=1

2ϵ

≤ 2

l∑
i=1

(
Di

2

)
ϵ.
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As there is at least one query for every key Ki, we consider the maximum
case: the adversary makes (D − l + 1) queries for some key, one query per key
for another l − 1 keys. Therefore, we have

Pr[Bad3 ∨Bad4] ≤ 2
l∑

i=1

(
Di

2

)
ϵ

≤ 2

(
D − l + 1

2

)
ϵ

= (D − l + 1)(D − l)ϵ.

Given any distinct queries (tji1, t
j
i2, x

j
i , y

j
i ) ∈ τi, (t

j′

i′1, t
j′

i′2, x
j′

i′ , y
j′

i′ ) ∈ τi′ , and

(tji1, t
j
i2, x

j
i , y

j
i ) ̸= (tj

′

i′1, t
j′

i′2, x
j′

i′ , y
j′

i′ ) such that xj
i ⊕ xj′

i′ = HKi(t
j
i1) ⊕ HKi′ (t

j′

i′1),

where (tji1, t
j
i2), (t

j′

i′1, t
j′

i′2) ∈ T , 1 ≤ i ̸= i′ ≤ l, 1 ≤ j ≤ Di, 1 ≤ j′ ≤ Di′ , and

D =
∑l

i=1 Di =
∑l

i′=1 Di′ .

As Ki and Ki′ are independently and randomly chosen from K, we can not
directly use the properties of the (ϵ, δ)-AXU hash function H. Therefore, we
firstly consider the following probability.

Pr[Ki,Ki′
$← K2 : HKi(t

j
i )⊕HKi′ (t

j′

i′ ) = C]

=
∑

ai,bi∈{0,1}n

Pr[ai ⊕ bi = C|HKi(t
j
i ) = ai,HKi′ (t

j′

i′ ) = bi]×

Pr[Ki,Ki′
$← K2 : HKi(t

j
i ) = ai,HKi′ (t

j′

i′ ) = bi]

≤
∑

ai∈{0,1}n

Pr[Ki,Ki′
$← K2 : HKi(t

j
i ) = ai,HKi′ (t

j′

i′ ) = C − ai]

≤
∑

ai∈{0,1}n

Pr[Ki
$← K : HKi(t

j
i ) = ai]× Pr[Ki′

$← K : HKi′ (t
j′

i′ ) = C − ai]

≤2nδ2 ≤ δ,

where C ∈ {0, 1}n is a constant and δ ≤ 2−n.

Then we have

Pr[Ki,Ki′
$← K2 : HKi(t

j
i1)⊕HKi′ (t

j′

i′1) = C1 ∨HKi(t
j
i2)⊕HKi′ (t

j′

i′2) = C2] ≤ 2δ,

where C1 = xj
i ⊕ xj′

i′ and C2 = yji ⊕ yj
′

i′ .
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It follow that,

Pr[Bad5 ∨Bad6] ≤2(
(
D

2

)
−

l∑
i=1

(
Di

2

)
)δ

=(D2 −D −
l∑

i=1

D2
i +

l∑
i=1

Di)δ (
l∑

i=1

Di = D)

=(D2 −
l∑

i=1

D2
i )δ (Cauchy Inequality :

l∑
i=1

D2
i ≥ D2/l)

≤D2(1− 1/l)δ.

Therefore,

Pr[DY ∈ Γbad] = Pr[
6∪

i=1

Badi]

≤ 2DTδ + (D − l + 1)(D − l)ϵ+D2(1− 1/l)δ.

This completes the proof.

We then analyze good transcripts. For a good transcript, in the real world
X, all tuples in (K1, · · · ,Kl, τ1, · · · , τl+1) uniquely define an input-output pair
of P , while in the ideal world it is not.

Lemma 5. For any good transcript τ , one has

Pr[DX = τ ]

Pr[DY = τ ]
≥ 1.

Proof. Consider a good transcript τ ∈ Γgood. Denote by ΩX the set of all possible
oracles in the real world X and by ΩY the set of all possible oracles in the
ideal world Y . Let compX(τ) ⊆ ΩX and compY (τ) ⊆ ΩY be the set of oracles
compatible with transcript τ . According to the H-coefficients technique, we have

Pr[DX = τ ] = |compX(τ)|
|ΩX | , where |ΩX | = 2n!|K|l.

Pr[DY = τ ] = |compY (τ)|
|ΩY | , where |ΩY | = (

∏
t 2

n!)l · 2n!|K|l and t ∈ T .
Firstly, we calculate |compX(τ)|. As τ ∈ Γgood, there are no two queries in τ

with the same input or output of the underlying permutation. Any query tuple in
τ therefore fixes exactly one input-output pair of the underlying oracle. Because
τ consists of D+T query tuples, the number of possible oracles in the real world
X equals (2n −D − T )!.

For the analysis in the ideal world Y , we define

Dti = |{(ti1, ti2, xi, yi) ∈ τi|(ti1, ti2) ∈ T , xi, yi ∈ {0, 1}n, 1 ≤ i ≤ l}|.
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By a similar reason, the number of possible oracles in the ideal world Y
equals

∏
t

∏l
i=1(2

n −Dti)!(2
n − T )!, where D =

∑
t

∑l
i=1 Dti . It follows that,

Pr[DX = τ ] =
(2n −D − T )!

2n!|K|l

Pr[DY = τ ] =

∏
t

∏l
i=1(2

n −Dti)!(2
n − T )!

(
∏

t 2
n!)l · 2n!|K|l

≤ (2n −D − T )!

2n!|K|l
.

Therefore, we have Pr[DX=τ ]
Pr[DY =τ ] ≥ 1.

By Lemmas 1, 4, and 5, we have

Advmk−stprp
HPH (A) ≤ 2DTδ + (D − l + 1)(D − l)ϵ+D2(1− 1/l)δ.

The single-key security of HPH is a special case of the multi-key security
of HPH where l = 1. We prove that the security bound of HPH in multi-
key setting is a straightforward extension of the single-key setting. Therefore,
the bound that we derived for HPH in the multi-key setting is tight. If we
replace the public random permutation with an ideal block cipher with the same
characteristics (including block-size, AXU-hash functions, etc), we can obtain
the similar security.

5.3 Related-Key Security of HPH

Given a restricting RKD set Φ, letH be an (ϵ, δ)-RKA-AXU hash function family
defined in Definition 2, then the related-key oracle of HPH is written as

RK[HPH]K(ϕ, t1, t2, x) = HPHϕ(K)(t1, t2, x)

= P (x⊕Hϕ(K)(t1))⊕Hϕ(K)(t2),

where P is a n-bit public random permutation, H
$← H is a (ϵ, δ)-RKA-AXU

hash function, K ∈ K is a key, ϕ ∈ Φ is a RKD function, (t1, t2) ∈ T is a tweak,
and x ∈ {0, 1}n is a plaintext.

In this paper, we assume that an adversary makes two-directional queries to
each oracle and never makes redundant queries. The related-key security of HPH
is presented as follows.

Theorem 3 (Related-Key Security of HPH). Let Φ be a restricting RKD
set, ϕ ∈ Φ, (t1, t2) ∈ T be a tweak, K ∈ K be a key, and H be an (ϵ, δ)-RKA-
AXU hash function, then for all adversaries A making at most D queries to
RK[HPH]±K (resp. RK[π̃]±) and at most T queries to P±, the RK-STPRP
advantage of A with respect to Φ is

Advrk−stprp
HPH (A) ≤ 2DTδ +D(D − 1)ϵ.



Title Suppressed Due to Excessive Length 19

P

Å

Å

P P

 

 

A

 

Fig. 4. Related-Key Security of HPH. Left of dashed line: Real world X =

(RK[HPH]±K ;P±) with K
$← K, ϕ $← Φ, and P

$← Perm(n). Right of dashed line:

Ideal world Y = (RK[π̃]±;P±) with RK[π̃]
$← ˜RKPerm(Φ, T , n) and P

$← Perm(n).
The goal of A is to distinguish the real world from the ideal world. If the distinguishable
advantage of A is negligible, the scheme is related-key-STPRP secure. Although only
one direction is shown, inverse oracles can be accessed as well. The number of queries
by the adversary A to the first oracle is denoted by D, the number of queries to the
last oracle by T .

Our proof uses Patarin’s H-coefficients technique [33]. As shown in Fig. 4, we
consider an adversary A that has bidirectional access to two oracles (O1, O2).

In the real world X, these are (RK[HPH]±K ;P±) with K
$← K, ϕ $← Φ, and

P
$← Perm(n), and in the ideal world Y , these are (RK[π̃]±;P±) with RK[π̃]

$←
˜RKPerm(Φ, T , n) and P

$← Perm(n). Without loss of generality, we assume
that A is a deterministic adversary.

The interaction of A with the oracles can be described by a transcript
τ = (K, τ1, τ2). We assume that the list of queries to O1 is defined by τ1 =
{(ϕ1, t11, t

1
2, x

1, y1), · · · , (ϕD, tD1 , tD2 , xD, yD)}, where (ϕi, (ti1, t
i
2)) ∈ (Φ, T ) for

1 ≤ i ≤ D, and to O2 by τ2 = {(u1, v1), · · · , (uT , vT ). We assume the adversary
never makes duplicate queries, so that (ϕi, ti1, t

i
2, x

i) ̸= (ϕj , tj1, t
j
2, x

j), (ϕi, ti1, t
i
2,

yi) ̸= (ϕj , tj1, t
j
2, y

j), ui ̸= uj , vi ̸= vj for all i, j. Let DX be the probability
distribution of transcripts in the real world X and DY be the distribution of
transcripts in the ideal world Y . A transcript τ is attainable if Pr[DY = τ ] > 0,
meaning that it can occur during interaction with Y .

Definition 8. We say that a transcript τ is bad if two different queries would
result in the same input or output to P , when A interacting with the real world.
Put formally, τ is bad if one of the following conditions is set:

Bad1: ∃(ϕ, t1, t2, x, y) ∈ τ1 and (u, v) ∈ τ2 such that x⊕u = Hϕ(K)(t1), where
ϕ ∈ Φ, (t1, t2) ∈ T ;

Bad2: ∃(ϕ, t1, t2, x, y) ∈ τ1 and (u, v) ∈ τ2 such that y⊕v = Hϕ(K)(t2), where
ϕ ∈ Φ, (t1, t2) ∈ T ;
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Bad3: ∃(ϕ, t1, t2, x, y) ̸= (ϕ′, t′1, t
′
2, x

′, y′) ∈ τ1 such that x⊕ x′ = Hϕ(K)(t1)⊕
Hϕ′(K)(t

′
1), where ϕ, ϕ′ ∈ Φ, (t1, t2), (t

′
1, t

′
2) ∈ T ;

Bad4: ∃(ϕ, t1, t2, x, y) ̸= (ϕ′, t′1, t
′
2, x

′, y′) ∈ τ1 such that y⊕ y′ = Hϕ(K)(t2)⊕
Hϕ′(K)(t

′
2), where ϕ, ϕ′ ∈ Φ, (t1, t2), (t

′
1, t

′
2) ∈ T .

Otherwise we say that τ is good. We denote Γgood, resp. Γbad the set of good,
resp. bad transcripts, Γ = Γgood ∪ Γbad.

We firstly upper bound the probability of bad transcripts in the ideal world
Y by the following lemma.

Lemma 6. If H is (ϵ, δ)-RKA-AXU for the RKD set Φ and P is public random
permutation, then

Pr[DY ∈ Γbad] ≤ 2DTδ +D(D − 1)ϵ.

Proof. In the ideal world Y , τ = (K, τ1, τ2) is an attainable transcript generated
independently of the dummy key K ∈ K. We assume that an adversary A
makes at most D construction queries and at most T primitive queries. For any
(ϕ, t1, t2, x, y) ∈ τ1, where ϕ ∈ Φ, (t1, t2) ∈ T , and (u, v) ∈ τ2, by the properties
of the (ϵ, δ)-RKA-AXU hash function H, we have

Pr[K
$← K : Hϕ(K)(t1) = x⊕ u ∨Hϕ(K)(t2) = y ⊕ v] ≤ 2δ.

It follows that,

Pr[Bad1 ∨Bad2] ≤ 2DTδ.

Fix any distinct queries (ϕ, t1, t2, x, y) ̸= (ϕ′, t′1, t
′
2, x

′, y′) ∈ τ1, where ϕ, ϕ′ ∈
Φ, (t1, t2), (t

′
1, t

′
2) ∈ T . By the properties of the (ϵ, δ)-RKA-AXU hash function

H, we have

Pr[K
$← K : Hϕ(K)(t1)⊕Hϕ′(K)(t

′
1) = C1 ∨Hϕ(K)(t2)⊕Hϕ′(K)(t

′
2) = C2] ≤ 2ϵ,

where C1 = x⊕ x′ and C2 = y ⊕ y′.
It follows that,

Pr[Bad3 ∨Bad4] ≤
(
D

2

)
2ϵ = D(D − 1)ϵ.

Therefore,

Pr[DY ∈ Γbad] = Pr[
4∪

i=1

Badi]

≤ 2DTδ +D(D − 1)ϵ.

This completes the proof.

We then analyze good transcripts.
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Lemma 7. For any good transcript τ , one has

Pr[DX = τ ]

Pr[DY = τ ]
≥ 1.

Proof. Consider a good transcript τ ∈ Γgood. Denote by ΩX the set of all possible
oracles in the real world X and by ΩY the set of all possible oracles in the
ideal world Y . Let compX(τ) ⊆ ΩX and compY (τ) ⊆ ΩY be the set of oracles
compatible with transcript τ . According to the H-coefficients technique, we have

Pr[DX = τ ] = |compX(τ)|
|ΩX | , where |ΩX | = 2n!|K|.

Pr[DY = τ ] = |compY (τ)|
|ΩY | , where |ΩY | =

∏
ϕ,t(2

n!)·2n!|K| and (ϕ, t) ∈ (Φ, T ).
Firstly, we calculate |compX(τ)|. As τ ∈ Γgood, there are no two queries in τ

with the same input or output of the underlying permutation. Any query tuple in
τ therefore fixes exactly one input-output pair of the underlying oracle. Because
τ consists of D+T query tuples, the number of possible oracles in the real world
X equals (2n −D − T )!.

For the analysis in the ideal world Y , we define

Dϕ,t = |{(ϕ, t, x, y) ∈ τ1|(ϕ, t) ∈ (Φ, T ), x, y ∈ {0, 1}n}|.

By a similar reason, the number of possible oracles in Y equals
∏

ϕ,t(2
n −

Dϕ,t)!(2
n − T )!, where

∑
ϕ,t Dϕ,t = D. It follows that,

Pr[DX = τ ] =
(2n −D − T )!

2n!|K|

Pr[DY = τ ] =

∏
ϕ,t(2

n −Dϕ,t)!(2
n − T )!∏

ϕ,t(2
n!) · 2n!|K|

≤ (2n −D − T )!

2n!|K|
.

Therefore, we have Pr[DX=τ ]
Pr[DY =τ ] ≥ 1.

By H-coefficients technique, we have

Advrk−stprp
HPH (A) ≤ 2DTδ +D(D − 1)ϵ.

The single-key security of HPH is also a special case of the related-key security
of HPH if a RKD set Φid = {ϕ : K → K} is an identity transform. Therefore,
the bound that we derived for HPH in the related-key setting is also tight. If
we replace the public random permutation with an ideal block cipher with the
same characteristics (including block-size, RKA-AXU-hash functions, etc), we
can obtain the similar security.

6 Application to Authentication

HPH can be used to improve security guarantee for authentication modes.
Mennink applied XPX to Chaskey’ (a modified version of Chaskey [32]), and
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proved that Chaskey’ is related-key secure in [29]. HPH is a generalization of
XPX, therefore HPH can be applied to Chaskey’. In this section, we apply HPH
to PMAC1, provide a new authentication mode HPMAC, and prove its security
against single-key, multi-key, and related-key attacks.

6.1 Three Security Models of Authentication

Authentication mode is a cryptographic scheme, which guarantees message
authenticity or integrity, such as [39,10,35,4,32,14,3]. Message authentication
codes (MACs) are the most typical authentication modes. In this part, we
consider a PRF security model for message authentication code (MAC). Let
F : K ×M → T be a MAC function based on a public random permutation

P
$← Perm(n), which inputs a key K ∈ K and a message M ∈M, and outputs

a tag T ∈ T . Let $ be the randomized version of FK , which returns fresh and
random answers to every query. We define the single-key-PRF security of F
based on P as

AdvprfF (A) = |Pr[AFK ;P±
= 1]− Pr[A$;P±

= 1]|,

where the probabilities are taken over the random selections of K,P , and $.
For q,D, T ≥ 0, we define by

AdvprfF (q,D, T ) = maxAAdvprfF (A)

the single-key PRF-security of F against any adversary that makes q queries
to the construction (D queries complexity) and T queries to the primitive P±

(time complexity).
Similarity, we generalize it to multi-key security and related-key security.
The multi-key-PRF security of F based on P is defined as

Advmk−prf
F (A) = |Pr[AFK1

,··· ,FKl
;P±

= 1]− Pr[A$1,··· ,$l;P±
= 1]|,

where the probabilities are taken over the random selections of K1 · · · ,Kl, P ,
and $1, · · · , $l.

For q,D, T ≥ 0, we define by

Advmk−prf
F (q,D, T ) = maxAAdvmk−prf

F (A)

the multi-key-PRF security of F against any adversary that makes q queries to
the construction (D queries complexity) and T queries to the primitive P± (time
complexity).

The related-key-PRF security of F based on P is defined as

Advrk−prf
F (A) = |Pr[ARK[F ]K ;P±

= 1]− Pr[ARK[$];P±
= 1]|,

where the probabilities are taken over the random selections of ϕ,K, P , and
RK[$].
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For q,D, T ≥ 0, we define by

Advrk−prf
F (q,D, T ) = maxAAdvrk−prf

F (A)

the related-key-PRF security of F against any adversary that makes q queries
to the construction (D queries complexity) and T queries to the primitive P±

(time complexity).

6.2 HPMAC: HPH-based Parallelizable MAC

We apply HPH to PMAC1 [39], present a new universal-hash-function-based and
permutation-based parallelizable MAC, called HPMAC, and prove its security
in the single-key, multi-key, and related-key settings. HPMAC inherits all
advantages of HMAC and PMAC1.

The overview of HPMAC is shown in Fig. 5. The authentication algorithm
of HPMAC is given in Fig. 6.
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M2
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Mm-1

P

...
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P
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HK(1)

HK(2)

HK(2)

HK(3)

HK(m-1)

HK(m)

HK(m)

...

HK(m)

HK(1)

T

HK(2m)

Fig. 5. HPH-based Parallelizable MAC: HPMAC

Next, we derive the single-key-PRF security, multi-key-PRF security, and
related-key-PRF security of HPMAC as follows.

Theorem 4. Let P ← Perm(n) and H be an (ϵ, δ)-AXU hash function. Then
the single-key-PRF advantage of HPMAC is

AdvprfHPMAC(q,D, T ) ≤ 2DTδ +D(D − 1)ϵ+D2/2n.
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Algorithm HPMACK(M):
Partition M into M1∥ · · · ∥Mm,
|Mi| = n, 1 ≤ i ≤ m− 1, 0 < |Mm| ≤ n
for i = 1 to m− 1

Yi ← P (Mi ⊕HK(i))⊕HK(i+ 1)
if |Mm| = n, then Σ = P (Mm ⊕HK(m)⊕ Y1 ⊕ · · · ⊕ Ym−1)⊕HK(1)

else Σ = P (Mm10∗ ⊕HK(m)⊕ Y1 ⊕ · · · ⊕ Ym−1)⊕HK(2m)
T = Σ[first τ bits]
return T

Fig. 6. HPH-based Parallelizable MAC: HPMAC

Proof. The provable security of HPMAC is similar to PMAC1 [39]. We replace

all HPH in HPMAC with a random tweakable permutation π̃ ← P̃ erm(T , n).
Then, by a hybrid argument, we have

AdvprfHPMAC(q,D, T ) ≤ AdvstprpHPH(D,T ) +AdvprfHPMAC[π̃](q,D, T ).

According to Theorem 15 of the full version of PMAC1 [39], we have

AdvprfHPMAC[π̃](q,D, T ) ≤ D2/2n.

It follows that, one has

AdvprfHPMAC(q,D, T ) ≤ AdvstprpHPH(D,T ) +D2/2n

≤ 2DTδ +D(D − 1)ϵ+D2/2n.

Theorem 5. Let P ← Perm(n), l be the number of keys, and H be an (ϵ, δ)-
AXU hash function. Then the multi-key-PRF advantage of HPMAC is

Advmk−prf
HPMAC(q,D, T ) ≤ 2DTδ +D(D − 1)ϵ+D2(1− 1

l
)δ +D2/2n.

Proof. We replace all HPH in HPMAC with a random multi-key tweakable

permutation π̃i ← P̃ erm(T , n), where 1 ≤ i ≤ l. Then

Advmk−prf
HPMAC(q,D, T ) ≤ Advmk−stprp

HPH (D,T ) +Advmk−prf
HPMAC[π̃1,··· ,π̃l]

(q,D, T ).

According to Theorem 15 of the full version of PMAC1 [39], we have

Advmk−prf
HPMAC[π̃1,··· ,π̃l]

(q,D, T ) ≤ D2/2n. It follows that, one has

Advmk−prf
HPMAC(q,D, T ) ≤ 2DTδ +D(D − 1)ϵ+D2(1− 1

l
)δ +D2/2n.

Theorem 6. Let P ← Perm(n) and H be an (ϵ, δ)-RKA-AXU hash function.
Then the related-key-PRF advantage of HPMAC is

Advrk−prf
HPMAC(q,D, T ) ≤ 2DTδ +D(D − 1)ϵ+D2/2n.
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Proof. We replace all HPH in HPMAC with a random related-key tweakable

permutation RK[π̃]← P̃ erm(Φ, T , n). Then

Advrk−prf
HPMAC(q,D, T ) ≤ Advrk−stprp

HPH (D,T ) +Advrk−prf
HPMAC[RK[π̃]](q,D, T ).

According to Theorem 15 of the full version of PMAC1 [39], we have

Advrk−prf
HPMAC[RK[π̃]](q,D, T ) ≤ D2/2n. It follows that, one has

Advrk−prf
HPMAC(q,D, T ) ≤ 2DTδ +D(D − 1)ϵ+D2/2n.

7 Application to Authenticated Encryption

HPH can be used to improve security guarantee for authenticated encryption
modes. Mennink applied XPX to authenticated encryption modes (such as
COPA [1], Minalper [41], and keyed-Sponge AE [30]) and proved that they are
all related-key secure in [29]. HPH is a generalization of XPX, therefore HPH
can be applied to these modes. In this section, we apply HPH to OPP [20],
provide a new nonce-respecting authenticated encryption mode OPH, and prove
its security against single-key, multi-key, and related-key attacks.

7.1 Three Security Models of Authenticated Encryption

Authenticated encryption (AE) mode is a cryptographic scheme, which provides
both privacy and authenticity. An authenticated encryption schemeΠ consists of
an encryption algorithm E : K×N ×M→ C×T and a decryption algorithm D:
K×N ×C ×T →M∪⊥. Some examples include [40,27,39,17,24,1,42,20,9,8,34].

Let Π = (E ,D) be an AE scheme based on a public random permutation

P
$← Perm(n). LetK be a key randomly chosen from K. Let $ be the randomized

version of EK , which returns fresh and random answers to every query. We define
the single-key-AE security of Π based on P as

AdvaeΠ (A) = |Pr[AEK ,DK ;P±
= 1]− Pr[A$,⊥;P±

= 1]|,

where ⊥ always returns failure and the probabilities are taken over the random
selections of K,P , and $.

Similarity, we generalize it to multi-key security and related-key security.
The multi-key-AE security of Π is defined as

Advmk−ae
Π (A) = |Pr[AEK1 ,DK1 ,··· ,EKl

,DKl
;P±

= 1]− Pr[A$1,⊥,··· ,$l,⊥;P±
= 1]|,

where ⊥ always returns failure and the probabilities are taken over the random
selections of K,P , and $1, · · · , $l.

The related-key-AE security of Π is defined as

Advrk−ae
Π (A) = |Pr[ARK[E]K ,RK[D]K ;P±

= 1]− Pr[ARK[$],⊥;P±
= 1]|,
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where ⊥ always returns failure and the probabilities are taken over the random
selections of K,P , and RK[$].

For q,D, T ≥ 0, we define by

AdvΠ(q,D, T ) = maxAAdvΠ(A)

the security of Π against any adversary that makes q queries to the construction
(D queries complexity) and T queries to the primitive P±.

7.2 OPH

We apply HPH to OPP [20], present a new nonce-respecting authenticated
encryption mode, called OPH (Offset public Permutation with universal Hash
functions mode), and prove its security. OPH inherits all advantages of OPP.

Offset Public Permutation (OPP) is a permutation-based nonce-respecting
authenticated encryption mode presented by Granger et al. [20]. It utilizes a
tweak-dependent masking function, which combines the advantages of word-
oriented LFSR-based and powering-up-based methods. As the tweak-based
masking function of OPP is based on the underlying primitive, OPP makes
extra invocation to the underlying permutation for per-message encryption.
While the masking function of OPH is generated by a family of universal hash
functions. Therefore the efficiency of OPH is better than OPP. If the underlying
permutation is replaced with AES-128, OPH is similar to OCB and the family of
AXU-hash functions can be efficiently implemented by four-round AES (AES4 is
an excellent choice in certain settings, such as restricted environments or devices
with AES-NI).

The overview of OPH is shown in Fig. 7. The encryption and decryption
algorithms of OPH are given in Fig. 8.
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Fig. 7. HPH-based authenticated encryption mode OPH

Next, we derive the single-key-AE security, multi-key-AE security, and
related-key-AE security of OPH as follows.
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/*Encryption Algorithm*/
Algorithm OPH.ENK (M):
Partition M into M1∥ · · · ∥Mm,
|Mi| = n, 1 ≤ i ≤ m− 1, 0 < |Mm| ≤ n
for i = 1 to m− 1

Xi ← HK(N, i)
Yi ← HK(N, i+ 1)
Ci ← P (Mi ⊕Xi)⊕ Yi

Xm ← HK(N,m)
Ym ← HK(N, 1)
S ← P (|Mm| ⊕Xm)⊕ Ym

Cm ← S[first |Mm| bits]⊕Mm

C ← C1C2 · · ·Cm

Xm+1 ← HK(N, 2m)
Ym+1 ← HK(N, 2m)
Cm+1 = P (

∑m
i=1 Mi ⊕Xm+1)⊕ Ym+1

T = Cm+1[first τ bits]
return C||T

/*Decryption Algorithm*/
Algorithm OPH.DN

K(C||T ):
Partition C into C1∥ · · · ∥Cm,
|Ci| = n, 1 ≤ i ≤ m− 1, 0 < |Cm| ≤ n
for i = 1 to m− 1

Xi ← HK(N, i)
Yi ← HK(N, i+ 1)
Mi ← P−1(Ci ⊕ Yi)⊕Xi

Xm ← HK(N,m)
Ym ← HK(N, 1)
S ← P (|Cm| ⊕Xm)⊕ Ym

Mm ← S[first |Cm| bits]⊕Cm

M ←M1M2 · · ·Mm

Xm+1 ← HK(N, 2m)
Ym+1 ← HK(N, 2m)
Cm+1 = P (

∑m
i=1 Mi ⊕Xm+1)⊕ Ym+1

T ′ = Cm+1[first τ bits]
if T ′ = T , return ⊤, else return M

Fig. 8. HPH-based authenticated encryption mode OPH.

Theorem 7. Let P ← Perm(n). Then, in the nonce-respecting setting, the
single-key-AE advantage of OPH is

AdvaeOPH(q,D, T ) ≤ 2DTδ +D(D − 1)ϵ+ 2n−τ/(2n − 1).

Proof. The provable security of OPH is similar to OPP [20]. We replace all HPH

in OPH with a random tweakable permutation π̃ ← P̃ erm(T , n). Then, using
hybrid argument, we have

AdvaeOPH(q,D, T ) ≤ AdvstprpHPH(D,T ) +AdvaeOPH[π̃](q,D, T ).

According to the AE security of OCB3 of Krovetz and Rogaway [24], we have

AdvaeOPH[π̃](q,D, T ) ≤ 2n−τ/(2n − 1).

To sum up, one has

AdvprfHPMAC(q,D, T ) ≤ AdvstprpHPH(D,T ) + 2n−τ/(2n − 1)

≤ 2DTδ +D(D − 1)ϵ+ 2n−τ/(2n − 1).

Theorem 8. Let P ← Perm(n) and l be the number of keys. Then, in the
nonce-respecting setting, the multi-key-AE advantage of OPH is

Advmk−ae
OPH (q,D, T ) ≤ 2DTδ +D(D − 1)ϵ+D2(1− 1

l
)δ +

l2n−τ

2n − 1
.



28 Authors Suppressed Due to Excessive Length

Theorem 9. Let P ← Perm(n). Then, in the nonce-respecting setting, the
related-key-AE advantage of OPH is

Advrk−ae
OPH (q,D, T ) ≤ 2DTδ +D(D − 1)ϵ+ 2n−τ/(2n − 1).

The proofs of Theorems 8 and 9 are similar to 7.

8 Conclusion

In this paper, we present a generalized tweakable blockcipher HPH, whose
maskings are implemented by using universal hash functions. In the single-
key setting, we prove that HPH achieves strong tweakable pseudorandom
permutation (STPRP) security in the random permutation model. Multi-key
and related-key settings occur frequently in real-world implementations, that is
to say, a plaintext may be encrypted under different keys. This paper focuses on
the security of HPH in the multi-key and related-key settings. The adversary can
perform chosen-plaintext and chosen-ciphertext attacks under a set of unknown
keys. In the multi-key setting, these keys are independently and randomly chosen
from the key space. We prove that HPH is MK-STPRP-secure. In the related-
key setting, the adversary can observe the operation of a cipher under several
different keys whose values are initially unknown, but where some mathematical
relationship connecting the keys is known to the adversary. HPH with (ϵ, δ)-
RKA-AXU-hash functions is RK-STPRP-secure up to 2DTδ+D(D−1)ϵ queries,
where D is the complexity of construction queries (data complexity) and T is
the complexity of internal permutation queries (time complexity).

HPH is a strongly secure cryptosystem with a lighter key schedule and higher
key agility in the single-key, multi-key, and related-key attack settings. It is very
useful, not only because of the simplicity of its design and proof (Patarin’s H-
coefficients technique), but also because of fast and secure implementations.

HPH can be used to improve security guarantee for encryption, authenti-
cation, and authenticated encryption modes. HPH can be applied to COPA
[1], Minalper [41], keyed-Sponge AE [30], Chaskey’ [29], etc. We apply HPH
to PMAC1 [39], present a new authentication mode HPMAC, and prove that
HPMAC achieves single-key-PRF security, multi-key-PRF security, and related-
key-PRF security. We apply HPH to OPP [20], present a new authenticated
encryption mode OPH, and prove that OPH is single-key-AE secure, multi-key-
AE secure, and related-key-AE secure.
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