
Algebraic Attack Efficiency versus S-box
Representation

Hossein Arabnezhad-Khanoki1, Babak Sadeghiyan1, and Josef Pieprzyk2,3

1 Department of Computer Engineering & Information Technology, Amirkabir
University of Technology, Tehran, Iran
{arabnezhad,basadegh}@aut.ac.ir

2 School of Electrical Engineering and Computer Science, Queensland University of
Technology, Brisbane, QLD 4000, Australia

josef.pieprzyk@qut.edu.au
3 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Abstract. Algebraic analysis of block ciphers aims at finding the secret
key by solving a collection of polynomial equations that describe the in-
ternal structure of a cipher for chosen observations of plaintext/ciphertext
pairs. Although algebraic attacks are already accepted as a standard test
for block and stream ciphers, there is a lack of understanding of the im-
pact of algebraic representation of the cipher on efficiency of solving the
resulting collection of equations. The work investigates different S-box
representations and their effect on complexity of algebraic attacks. In
particular, we observe that a S-box representation defined in the work
as Forward-Backward (FWBW) leads to a collection of equations that
can be solved efficiently. We show that the SR(10, 2, 1, 4) cipher can be
broken using standard algebra software Singular and FGb. This is the
best result achieved so far. The effect of description of S-boxes for some
light-weight block ciphers is investigated. Our study and experiments
confirms a counter-intuitive conclusion that algebraic attacks work best
for the FWBW S-box representation. This contradicts a common belief
that algebraic attacks are more efficient for quadratic S-box representa-
tion.

1 Introduction

The winner of the AES competition was the Rijndael block cipher [15]. Soon af-
ter the announcement, NIST approved it as a new advanced encryption standard
(AES). An elegant and simple algebraic structure of AES gives a strong moti-
vation towards development of new cryptanalysis techniques. These techniques
first describe a block cipher as a system of relations and then the system of
relations is solved. One of such approaches was given by Courtois and Pieprzyk
[12], where an extended sparse linearization (XSL) is used to solve the system
of relations. The AES block cipher is described by a system of polynomial equa-
tions over F2 and the XSL algorithm is used to recover the secret key. It was
estimated that the XSL attack would be able to break AES slightly faster than
the exhaustive search.



The XSL attack turns out to be too optimistic [9,10]. Note that the system
of relations described the AES block cipher with 128-bit keys consists of 8000
nonlinear relations in 1600 variables. It is impossible to verify experimentally the
claimed complexity of the XSL attack. Cid et al. [8] propose a family of scalable
versions of AES to study and experiment with cryptanalysis of AES. The authors
of [8] report results of experiments, where cryptanalysis is performed for 4-bit
and 8-bit versions of an round-reduced AES using the Gröbner basis algorithm
F4 [20]. To our knowledge, best algebraic cryptanalysis results for this family of
ciphers is reported in [7].

Another interesting approach in solving systems of polynomial equations over
F2 is application of SAT-solvers. Courtois et all. [11] used this approach to
analyse DES. The DES relations written in algebraic normal form (ANF) have
to be translated into conjunctive normal form (CNF) and then given to a SAT-
solver.

In general algebraic attacks progress in two following steps:

1. finding a system of relations that describe the block cipher, where an adver-
sary can observe plaintext and ciphertext pairs. The unknowns are bits/bytes
of secret key,

2. solving the obtained system of relations using appropriate algorithm (XSL
or SAT solvers).

There exists virtually infinite ways to algebraically describe a block cipher. An
adversary would like to form these algebraic relations in such a way that they can
be solved as fast as possible. AES-like block ciphers apply the Shannon’s concept
of SP networks. Each iteration applies nonlinear S-box operations and linear
diffusion. S-box transformations are directly responsible for algebraic degree of
relations and a suspected rapid growth of algebraic degree of concatenations of
consecutive iterations.

In this work, we investigate two algorithms for solving algebraic relations,
namely, Gröbner basis algorithms and SAT-solvers. Our study and theoretical
results are verified experimentally on (small-scale) variants of the AES family
(SR) presented by Cid at al. in [8]. In particular, we investigate the impact of
algebraic descriptions of S-boxes on efficiency of algebraic attacks. We consider
relation describing S-boxes as a generating set for the ideal determined by the
variety of the S-box. We show that a representation of the SR S-box by a system
of relations (polynomials) for both the S-box and its inverse gives the best results.
In particular, using this representation, we are able to solve system of equations
for SR(10, 2, 1, 4) with computer algebra softwares Singular [16] and FGb [18],
where SR(n, r, c, e) is a AES variant with n rounds, r is the number of rows,
c - the number of columns and e is the size of the word in bits. The analysis
reported in [8,7] uses the F4 algorithm [20] and Singular. However, it fails for
the number of rounds n ≥ 5. We also give an algorithm for finding very sparse
system of relations representing the SR S-box. Interestingly enough, application
of the sparse quadratic system in our cryptanalysis gives worse results. We are
able to solve system of polynomial relations for SR(10, 2, 2, 4) in 2.77 seconds
on the average using CryptoMiniSat [25]. This result is better than the one

2



reported in [4]. We also study lightweight block ciphers LBlock [28], PRESENT
[2] and MIBS [22] and analyse their strength against algebraic attacks with
proposed description of S-boxes.

Contributions: The main contributions of the work are as follows:

(a) developing a framework that allows us to find different representations of
S-boxes. This includes a new algorithm for generating sparse polynomial
systems,

(b) finding a counter-intuitive example of algebraic analysis, where sparse quadratic
relations for 4-bit S-boxes give worse results when either the Gröbner basis
algorithm or the SAT-solver is used to solve them,

(c) showing that using both forward-backward polynomial relations for S-boxes
allows us to break 5-round version of the PRESENT cipher using the Gröbner
basis tools,

(d) presenting the first algebraic cryptanalysis of 6 rounds of the MIBS cipher.

The paper is organized as follows. In Section 2, we present algebraic back-
ground for computation of Gröbner basis over finite fields. In Section 3, we
discuss algebraic attacks based on SAT-solvers. Then, in Section 4, we present
basic concepts related to the description of S-boxes by a system of polynomials.
We also give an algorithm that allows us to find a sparse system of polynomial
relations describing S-boxes. In Section 5, we review the small-scale variants of
AES and published results. Our experiments are presented in Section 6. We give
conclusions and future research directions in Section 7.

2 Preliminaries

We adopt notations and definitions from [14]. A polynomial is defined over a
field K. The set of all polynomials in variables x1, x2, . . . , xn with coefficients
in K is denoted by K[x1, x2, . . . , xn]. In algebraic cryptanalysis, a block cipher
is described by polynomial relations over F2. The polynomials describing the
cipher reflect the behaviour of the cipher as long as the secret key is fixed. Their
solution should pinpoint the secret key. Solutions form an algebraic object called
variety, which is defined as follows.

Definition 1 ([14]). Given a field K and a positive integer n, we define the
n-dimensional Affine Space over K to be the set

Kn = {(a1, . . . , an) : a1, . . . , an ∈ K}

Definition 2 ([14]). Let K be a field, and let f1, . . . , fs be polynomials in
K[x1, . . . , xn]. Then we set

V(f1, . . . , fs) = {(a1, . . . , an) ∈ Kn : fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ s}

where V(f1, . . . , fs) is called the Affine Variety defined by f1, . . . , fs.

3



Note that V(f1, . . . , fs), is the set of all common solutions to the polynomi-
als f1, . . . , fs as well. Another related mathematical object is ideal. An ideal is
defined as follows.

Definition 3 ([14]). A subset I ⊂ K[x1, ..., xn] is an ideal if it satisfies:

1. 0 ∈ I.
2. If f, g ∈ I, then f + g ∈ I.
3. If f ∈ I and h ∈ K[x1, ..., xn], then h · f ∈ I.

We can form an ideal for any set of polynomials in K[x1, ..., xn].

Definition 4 ([14]). Let f1, . . . , fs be polynomials in K[x1, . . . , xn]. Then we
set

〈f1, . . . , fs〉 =

{
s∑

i=1

hi · fi : ∀h1, . . . , hs ∈ K[x1, . . . , xn]

}

Lemma 1 ([14]). If f1, . . . , fs ∈ K[x1, . . . , xn], then 〈f1, . . . , fs〉 is an ideal of
K[x1, . . . , xn]. We call 〈f1, . . . , fs〉 the ideal generated by f1, . . . , fs.

Hilbert Basis Theorem states that any ideal in K[x1, ..., xn] can be generated by
a finite set of polynomials. The following two definitions explain the relation of
ideal and variety.

Definition 5 ([14]). Let I ⊂ K[x1, ..., xn] be an ideal. We denote by V(I) the
set

V(I) = {(a1, . . . , an) ∈ Kn : f(a1, . . . , an) = 0 for all f ∈ I}

Please note that V(I) is the variety defined by ideal I.

Definition 6 ([14]). Let V ⊂ Kn be an affine variety. Then ideal of V will
be denoted by I(V ) the set

I(V ) = {f ∈ K[x1, ..., xn] : f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V }

There are some decision problems related to ideal and variety that are answered
by computation of Gröbner Basis of an ideal. They are:

– Ideal Membership: whether a polynomial f belongs to an ideal I?
– Ideal Equality: whether two ideals I1 and I2 are equal?

In 1965, Buchberger introduced the concept of Gröbner basis and proposed an
algorithm for computation of Gröbner basis for a set of polynomials [5]. To
compute Gröbner basis, we set an ordering over monomials that appear in poly-
nomials. Three normal ordering are: Lexicographic (lex), Degree Lexicographic
(deglex)and Degree Reverse Lexicographic (degrevlex). In lex, monomials are
ordered based on lexicographic order of variables. In deglex and degrevlex,
which are degree based orders, at first monomials are ordered based on their
degree and then, for each degree, monomials are ordered based on lex or its
reverse order.

4



Definition 7 ([14]). Fix a monomial order. A finite subset G = {g1, . . . , gt} of
an ideal I is said to be a Gröbner basis (or standard basis) if

〈LT (g1), . . . , LT (gt)〉 = 〈LT (I)〉

In the above definition, LT (gi) denotes the leading term of gi, and LT (I) denotes
the set of the leading terms of elements of I, and 〈LT (I)〉 denotes the ideal
generated by the leading terms of elements of I.

Gröbner basis allows us to answer ideal membership problem by reducing
(dividing) polynomial f modulo (by) G, where G is the Gröbner basis of I. If it
reduces to zero or does not have a remainder, then f ∈ I.

Definition 8 ([14]). A reduced Gröbner basis for a polynomial ideal I is a
Gröbner basis G for I such that:

1. LC(p) = 1 for all p ∈ G, where LC is the coefficient of the leading term of
p.

2. For all p ∈ G, no monomial of p lies in 〈LT (G− {p})〉
The main property of reduced Gröbner basis is stated in the following proposition
of [14].

Proposition 1 ([14]). Let I 6= {0} be a polynomial ideal. Then, for a given
monomial ordering, I has a unique reduced Gröbner basis.

The uniqueness of a reduced Gröbner basis allows us to answer the ideal equality
problem. To check whether ideals generated by two set of polynomials F and G
are equal, we first compute the reduced Gröbner basis for each one, i.e. for F
and G. Then if the two bases are equal, we conclude that F and G generate the
same ideal.

Computation of Gröbner basis can be used to solve a system of polynomial
relations. The following theorem explains how this can be done when relations
are defined over F2.

Proposition 2 ([21]). A Gröbner basis G of ideal I in F2[x1, . . . , xn], where
I =

〈
f1, . . . , fm, x2

1 − x1, . . . , x
2
n − xn

〉
, describes all the solutions of V(I) in F2.

Particular useful cases are:

– V(I) = ∅ iff G = 〈1〉.
– V(I) has exactly one solution iff G = 〈x1 − a1, . . . , xn − an〉 where ai ∈ F2.

Then (a1, . . . , an) is the solution in F2 of the algebaric system.

The first algorithm for computation of Gröbner basis was proposed by Buch-
berger [6], which is easy to implement but not efficient. Faugere [20] proposed
F4 algorithm, which uses linear algebra to do the reduction. A highly optimized
version of algorithm F4 is implemented in FGb [18]. SlimGB [3] is a variant of
Buchberger algorithm. Polynomials are prioritized according to the numbers of
their monomials. The computation of Gröbner basis is done recursively where
an intermediate basis is replaced by polynomials with smaller numbers of mono-
mials. SlimGB is implemented in the Singular computer algebra software[16].
There is also an implementation of SlimGB with highly optimized data struc-
tures for representing Boolean polynomials. It is available as PolyBoRi library
in C++ [4].

5



3 SAT-Solvers

Polynomial relations can be solved using SAT-Solvers. However, as ciphers are
usually described using polynomials written in ANF, the ANF polynomials need
to be converted to a single CNF formula. Having the cipher description written
in CNF, we can apply a SAT-Solver. A solution (if exists) is an assignment to
the variables, for which the CNF formula is true. Courtois et al. [1] propose a
method to convert ANF polynomials into a single CNF. The method is used by
the authors of [11] to translate Data Encryption Standard (DES) relations into
a CNF formula. Next a SAT-Solver is applied to find a solution. This analysis
allows to break DES if the number of rounds is no bigger than 6. Our investi-
gations show that the relations describing a block cipher have an impact on the
time needed to solve an instance. Hence, there is an interesting research ques-
tion: how to algebraically describe a cipher as being converted to a single CNF
formula, so finding solution is as fast as possible?

4 S-box Description

Modern block ciphers are designed to be implemented efficiently in both hard-
ware and software. This is done using the well-known design principle based on
Shannon’s SP networks. The crux of the design is a single round, which consists
of nonlinear layer of S-boxes and a linear layer that provides a fast diffusion. A
round key is normally XORed at the beginning of the round. The single round is
called Round Function and the round keys are produced by Key Schedule Algo-
rithm. There is a fine balance between efficiency and security of a block cipher.
A small number of rounds gives a fast cipher but its security may not achieve
the expected level (normally determined by the length of the secret key). A large
number of rounds is likely to give a very secure but slow cipher.

S-boxes are the only nonlinear components of block ciphers. Normally S-
boxes translate input bits into output bits. A notable exception is DES S-boxes
that translate 6-bit inputs into 4-bit outputs. Designing of cryptographically
strong S-boxes is an important part of Cryptography. Again because of efficiency
aspect, small S-boxes look more attractive (especially if they are implemented as
lookup tables). Note however that any permutation 2× 2 S-box is linear/affine.
In practice, permutation n× n S-boxes are used, if 2 < n ≤ 8.

Forward (FW) Equations

Permutation n× n S-boxes translate n binary input variables x0, . . . , xn−1 into
n binary outputs y0, . . . , yn−1. For example, the permutation 4 × 4 S-box from

6



SR(n, 2, 1, 4) [8] can be described with 4 equations of degree 3 as follows:

f0 : y0 + x0x1x2 + x0x1x3 + x0x2x3 + x0x2 + x0x3 + x0+
x1x2x3 + x1x3 + x1 + x3

f1 : y1 + x0x1x3 + x0x2x3 + x1x2x3 + x1x2 + x1 + x2x3 + x3 + 1
f2 : y2 + x0x1x2 + x0x1 + x0x2x3 + x0 + x1x2 + x1x3+

x2x3 + x2 + x3 + 1
f3 : y3 + x0x1x2 + x0x1x3 + x0x1 + x0x3 + x0 + x2x3 + x3

(1)

We call polynomials in Equation (1) FW equations.

Backward (BW) Equations

Permutation S-boxes have their inverse permutations. We can derive a collection
of equations that expresses the relation between output and input bits. We call
them Backward equations or BW equations for short. For the permutation 4× 4
S-box from SR(n, 2, 1, 4) [8], we get the following relations:

w0 : x0 + y0y1 + y0y2y3 + y0 + y1y2y3 + y1y2 + y2y3 + y2 + y3
w1 : x1 + y0y1y3 + y0y1 + y0y2y3 + y0y2 + y0 + y1y2y3 + y1y3 + y1 + 1
w2 : x2 + y0y1y2 + y0y2y3 + y0y3 + y1y2y3 + y2 + 1
w3 : x3 + y0y1y2 + y0y1y3 + y0y1 + y1y2y3 + y1y2 + y1 + y2y3 + y2 + 1

(2)

We call polynomials in Equation (2) BW equations.

Multivariate Quadratic (MQ) Equations

It is expected that the degree and sparsity of S-box equations have an effect
on time needed to solve the system of equations for the whole cipher. Courtois
et al. [12] observes that the AES S-box has a very compact and low degree
representation for Multivariate Quadratic equations. For the permutation 4× 4
S-box from SR(n, 2, 1, 4) [8], we can get 21 polynomial equations of degree 2.

7



They are:

g0 : x2x3 + y1y2 + y0x1 + y0x0 + y2 + y1 + y0 + 1
g1 : x1x3 + y0x2 + y0x1 + y0y3 + y0y2 + x0 + y3 + y1 + y0 + 1
g2 : x1x2 + y1y2 + y0x2 + y0x0 + y0y1 + x1 + y2
g3 : x0x3 + y0x1 + y0x0 + y0y1 + x3 + x2 + x1 + x0 + y2 + 1
g4 : x0x2 + y1y2 + y0y2 + x3 + y3 + y2 + y1 + y0 + 1
g5 : x0x1 + y0x2 + y0x0 + y0y2 + x2 + x0 + y2 + y0 + 1
g6 : y3x3 + y0x1 + y0y3 + y0y1 + x3 + x2 + x1 + x0 + y2 + 1
g7 : y3x2 + y1y2 + y0x2 + y0x1 + y0x0 + y0y3 + y0y2 + x0 + y2 + y0
g8 : y3x1 + y0x1 + y0x0 + y0y3 + y0y1 + x2 + y3 + y2 + y0 + 1
g9 : y3x0 + y0x2 + y0x1 + x3 + x0 + y1 + 1
g10 : y2x3 + y1y2 + y0x1 + y0y2 + y0y1 + x0 + y3 + y2 + y0
g11 : y2x2 + y0x2 + y0x0 + y0y3 + y0y1 + x2 + y2 + 1
g12 : y2x1 + y1y2 + y0x2 + y0y3 + y0y2 + y2 + y0
g13 : y2x0 + y1y2 + y0y3 + y0y2 + x2 + 1
g14 : y2y3 + y1y2 + y0x2 + y0x1 + y0y1 + x2 + x0 + y3 + 1
g15 : y1x3 + y0x2 + y0x0 + x3 + x0 + y3 + y1 + y0 + 1
g16 : y1x2 + y1y2 + y0x0 + y0y2 + y0y1 + x3 + x2 + x0 + y3 + y2
g17 : y1x1 + y0x2 + y0y3 + y0y1 + x1 + y1 + 1
g18 : y1x0 + y0x1 + y0y3 + y0y1 + x3 + x2 + x1 + x0 + y3 + y2 + 1
g19 : y1y3 + y0x2 + y0x0 + y0y3 + y0y2+

x3 + x2 + x1 + x0 + y3 + y2 + 1
g20 : y0x3 + y0x0 + y0y3 + y0y1 + x3 + x0 + y3 + y1 + y0 + 1

(3)

4.1 New Algorithm for Sparse Polynomial Equations

Consider Equation (1). The polynomials defined there form a variety V =
V(f0, f1, f2, f3), which is

V = {(x0, x1, x2, x3, y0, y1, y2, y3) : fi(x0, x1, x2, x3, y0, y1, y2, y3) = 0 for 0 ≤ i ≤ 3}

If the ideal IS = I(V ) is radical, then IS would be the set of all polynomials that
describe a relation between input bits and output bits of an S-box. A radical
ideal is defined as follows.

Definition 9 ([14]). An ideal I is radical if fm ∈ I for some integer m ≥ 1
implies that f ∈ I.

Naturally, radical of an ideal can be defined as follows:

Definition 10 ([14]). Let I ⊂ K[x1, . . . , xn] be an ideal.The radical of I is
denoted by

√
I, is the set:

√
I = {f : fm ∈ I for some integer m ≥ 1}

Main property of a radical ideal generated by 〈f1, . . . , fs〉, is [14]:

I(V(f1, . . . , fs)) = 〈f1, . . . , fs〉

We need further theorems that are given below.

8



Theorem 1 ([14]). Let K be an algebraically closed field. If I is an ideal in
K[x1, . . . , xn], then

I(V(I)) =
√
I

Based on Hilbert’s Strong Nullstellensatz, if the ring K is an algebraic closed
field, set of all polynomials that vanishes on a variety is defined by radical of
ideal generated by set of polynomials. There is also a finite field version of Null-
stellensatz stated by Gao in [21]:

Theorem 2 ([21]). For an arbitrary finite field Fq, let J ⊆ Fq[x1, . . . , xn] be
an ideal, then

I(V(J)) = J + 〈xq
1 − x1, . . . x

q
n − xn〉

Polynomials of form xq
i − xi are called field polynomials. Let Q denotes the

ideal generated by field equations. Based on Theorem 2, the set of polynomials
describing S-box in F2[x0, x1, x2, x3, y0, y1, y2, y3], i.e. IS , can be generated as
follows:

IS = 〈f0, f1, f2, f3〉+ Q = 〈g0, g1, . . . , g20〉+ Q (4)

Therefore any set of polynomials that can generate ideal IS , can be considered
as a set of polynomials describing the S-box.

Sparse Multivariate Quadratic Equations (SMQ)

Polynomials h0, h1, h2, h3, h4, h5 given below plus field polynomials describe the
S-box of SR(n, 2, 1, 4).

h0 : y1y2 + y1y3 + x1x3 + x1 + x2x3 + x2 + x3 + 1
h1 : y0y3 + y2 + x0x2 + x0x3 + x1x2 + x1x3 + x2 + 1
h2 : y0y3 + y0 + y1y3 + y3 + x0x1 + x1 + x3

h3 : y0y1 + y2y3 + y3 + x0x3 + x1x2 + x3

h4 : y0y1 + y0 + y1y3 + y1 + x0x3 + x0 + x1x3 + 1
h5 : y0y1 + y0y2 + y1 + y2y3 + y3 + x0x1 + x2x3 + 1

(5)

Consider the polynomials from Equation (5). Note that all polynomials are of
degree 2 and interestingly enough all monomials of degree 2 are of the form xixj ,
yiyj . This collection is very sparse if you compare it to the collection given by
Equation (3), We call this collection sparse multivariate quadratic. The collection
defined by Equation (5) is generated by Algorithm 1 when the form of permitted
monomials is restricted to quadratic monomials (xixj and yiyj) and linear ones
(xi and yi).

Algorithm 1 runs through several iterations. The intermediate collection F
and its reduced Gröbner basis g is repeatedly updated. The algorithm iterates
over all polynomials in F2[x0, . . . , x3, y0, . . . , y3] that are linear combinations of
monomials from the set M . At each step, we check whether p belongs to ideal
IS . If p ∈ IS , we further check whether if p ∈ g. If p ∈ g, it means that
this polynomial can be generated by previously found polynomials in g and it
is discarded. Otherwise p is added to F and g is updated. At the end, some

9



Algorithm 1 Algorithm for generating S-box equations

Require: M : set of allowed monomials
Require: G: reduced Gröbner basis of IS
Ensure: F : collection of equations representing S-box

F ← ∅
g ← {0}
while g 6= G do

p← NextPoly(M)

if LM(p) 6∈ LM(F ) and p
G−→ 0 then

if p 6 g−→ 0 then
F ← F ∪ {p}
g ← reduced Gröbner basis of F

end if
end if

end while
F ← Sort(F )
for p ∈ F do

g ← Gröbner basis of F − {p}
if p −→ 0 then

F ← F − {p}
end if

end for
return F

polynomials remain in the set F that can be generated by other polynomials
in F . These polynomials can be removed from F . For example, we can sort
polynomials by the number of monomials in order to remove the longest ones
first. So far, we introduced four types of description of S-boxes. Our experiments
show that a combination of FW and BW descriptions of S-boxes allow to solve
polynomial equations for a cipher quicker. However, we have not been able to
develop a mathematical argument that this is true for all S-boxes and ciphers.

In the following two Sections, we give the results of experiments on SR block
cipher to verify our investigation.

5 SR Block Ciphers

The family of SR ciphers has been proposed by Cid et al. in [8]. It is a very useful
tool to study and experiment with different algebraic attacks. Because of scala-
bility, attacks can be tried for relatively weak versions of a AES-like block cipher
and then try to identify the limits after which the attack becomes infeasible. An
instance SR(n, r, c, s) of the family is defined by specific parameters (n, r, c, s),
where n is the number of rounds, r, c denotes the number of columns and rows
of the matrix that represent an intermediate state and s denotes S-box size in
bits. Additionally, two S-boxes are defined for 4-bit and 8-bit permutations. The
4-bit S-box is structurally similar to AES S-box. The 8-bit S-box is the same
AES S-box. For more details, we refer the readers to [8].

10



A summary of cryptanalysis results for SR(n, r, c, s) instances is given in
Table 1. The first column shows an instance of the SR cipher, the second column
gives the time complexity of best attack, the third points the algorithm used to
solve a collection of equations, the forth displays monomial ordering used and
the fifth refers to the work in which the results are published.

Table 1. Cryptanalysis of SR ciphers

Instance Time Tool Note Ref.

SR(10,1,1,4) 74.06 F4 degrevlex [8]

SR(10,2,2,4) 1193.19 PolyBoRi lex [4]

SR(10,2,2,4) 190.58 MiniSat [4]

SR(4,2,1,4) 0.63 PolyBoRi lex [4]

SR(10,2,1,4) 0.225 PolyBoRi lex [7]

SR(10,2,1,4) 10327.3 F4 [24]

SR(10,2,2,4) 1850.01 PolyBoRi lex [7]

We use a similar approach to the one used by Bulygin et al. [7]. However,
instead of the lex ordering, we apply the degrevlex ordering, where secret
key variables have lower order than other variables. The SR(n, 2, 1, 4) cipher is
described by the following equations:

sbox(p0 + k0,0, x0,0)
sbox(p1 + k0,1, x0,1)
sbox(L0(xi−1,0, xi−1,1) + ki,0, xi,0) for i = 1, . . . , n
sbox(L1(xi−1,0, xi−1,1) + ki,1, xi,1) for i = 1, . . . , n
c0 + L0(xn,0, xn,1) + kn,0
c1 + L1(xn,0, xn,1) + kn,1
sbox(ki,0, ki+1,0 + rci) for i = 0, . . . , n− 1
sbox(ki,1, ki+1,1 + rci) for i = 0, . . . , n− 1

(6)

In Equation (6), sbox() gives a collection of equations that defines input/output
relation of the S-box. Arguments of sbox() are vectors in the polynomial ring F2[].
The constant rci is added to the ith round of the cipher. Parameters p0 and p1
denote first and second nibble of the plaintext, xi denotes an intermediate vector
of variables for the ith round and xi,j denotes the j-th nibble of xi. L0() and
L1() denote multiplication of first and second rows of the MixColumn matrix.

6 Experiments

6.1 Gröbner Basis Algorithms

We study an impact the S-box representation (FW, BW, MQ or SMQ - see
Section 4) has on the time needed to solve a collection of equations for the
whole cipher. We apply three software packages for computation of Gröbner

11



basis. We also experiment with CryptoMiniSat SAT-solver [25]. The tools are
employed through the SAGE computer algebra system, version 6.7-x86 64 [27].
Experiments are conducted on a desktop computer with 8 GB of RAM, clocked
by a Core i7 4770 processor and runningt a single core.

For the computation of Gröbner basis, we experiment with the SR(n, 2, 1, 4)
cipher. For each experiment run, we generate a collection of polynomial equa-
tions for 50 instances of cipher with randomly chosen plaintexts and keys. The
time needed to solve the 50 instances is used to calculate the average. Gröber
basis computation is done using the degrevlex monomial ordering, in which key
variables are the lowest in the order. Table 2 presents the average running time
in seconds for computing the Gröbner bases using software packages PolyBoRi,
Singular and FGb. FW, MQ, SMQ and FWBW denote the S-box represen-
tations defined by Equations (1), (3), (5) and combination Equations (1) and
(2), respectively. Nr stands for the number of cipher rounds. We set a time
limit of 1000 seconds for experiment runs. The numbers in parentheses show the
number of solved instances (out of 50). The entries with ⊥ indicate cases where
computation of Gröbner basis has failed due to memory/time limits.

Table 2. Average running time, in seconds, for computation of Gröbner basis

Nr
PolyBoRi Singular FGb

FW MQ FWBW FW MQ FWBW FW MQ FWBW

5 22.22 100.3 13.27 28.09 64.94 9.89 193.30 212.84 23.36

6 41.43 231.18 39.80 60.52 136.68 20.60 422.36 456.27 51.18

7 76.68(49) 320.58 52.58 129.82 338 40.01 717.76 791.79 61.63

8 100.16(49) 735.12 81.50 273.07 ⊥ 63.02 ⊥ ⊥ 111.71

9 169.59(44) ⊥ 155.01(47) 335.23(43) ⊥ 87.05 ⊥ ⊥ 151.71

10 294.60(44) ⊥ 240.40(47) ⊥ ⊥ 140.51 ⊥ ⊥ 245.69

When using the FGb tool, the collection of polynomials is interreduced be-
fore feeding into the tool. Our observations indicate that this leads to faster
computation of the Gröbner basis. We do not, however, notice any significant
impact on processing time when other tools are used.

We note that the S-box representation has a significant impact on the time
needed to solve a cipher instance. In particular, we make the following observa-
tions. If the S-box is represented as

– MQ polynomials, then collections of polynomials derived for SR(n, 2, 1, 4)
with n > 8 could not be solved by any of our software tools. Our experiments
suggest that for 4-bit S-box based block ciphers, it would be better to apply
an representation of S-boxes that is not quadratic. This finding is quite
counter-intuitive,

– FW polynomials, then best results for computation of Gröbner basis are
obtained using the PolyBoRi library. An advanced version of the SlimGB
algorithm that is optimized for manipulating Boolean polynomials, is used in

12



PolyBoRi. In general, PolyBoRi delivers a better performance compared
to the Singular implementation of SlimGB,

– FWBW polynomials, then computation of Gröbner basis by PolyBoRi
is greatly improved. However, when we used Singular, we observed an
improvement of both running time and memory requirements. This en-
ables us to solve instances of SR(10, 2, 1, 4) with minimal memory require-
ments. When using FGb, the results are not improved (when comparing to
PolyBoRi and Singular). Nevertheless, we are able to solve instances of
SR(10, 2, 1, 4). Note that Cid et al. in [8] managed to compute Gröber basis
of SR(3, 2, 1, 4) over F24 in 519.92 seconds using the F4 algorithm,

– SMQ polynomials, then computation of Gröbner basis (even for SR(5, 2, 1, 4))
consumes a lot of memory. In fact, we run out of memory during our experi-
ments and have failed to solve even a single instance. This fact suggests that
a description of S-box plays a significant role in solving instances of the SR
cipher. The choice of an algebraic tool seems to be less important.

The most time consuming part of Gröbner basis computation algorithms is the
reduction of a polynomial or multiple polynomials modulo an intermediate basis.
In order to reduce running time of this part, Gröbner basis algorithms deploy
pre-processing (such as Buchberger product criterion [6]) in order to detect poly-
nomials that reduce to zero.

The Singular implementation of SlimGB generates reports that detail pro-
gression of computations. A report gives the total number of reductions per-
formed and the number of pairs discarded during the computation of Gröbner
basis. Results for FW, MQ and FWBW representations of S-boxes for 50 in-
stances are reported in Table 3, where #NF denotes the average number of re-
ductions performed during computation, #PC and #EPC denote the number of
pairs that are discarded by product and extended product criterion, respectively
[3]. Note that for a chosen representation of S-boxes, the number of reductions

Table 3. Number of reductions and discarded pairs for Singular implementation of
SlimGB

Nr
FW MQ FWBW

#NF #PC #EPC #NF #PC #EPC #NF #PC #EPC

5 34067 11465777 5604 34450 33028673 1647 32910 2716905 380

6 54798 23636642 2190 56281 54698120 265 53366 4598950 373

7 76063 31766284 247 68576 83290081 944 66915 7134590 373

8 101663 53598159 158 ⊥ ⊥ ⊥ 87186 10419827 392

9 136532(44) 69533371 205 ⊥ ⊥ ⊥ 105166 14577310 33

10 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 135970 20078697 39

performed are of the same order. But in general, the FWBW representation
leads to a lesser reduction. Experiments seem to confirm the fact that an “ap-
propriate” representation of S-boxes has much bigger impact than the algebraic
tool used to solve an instance.

13



6.2 SAT Solvers

We also consider an effect of S-box representation on efficiency of solving a collec-
tion of polynomial equations using SAT-solvers. Cipher instances of SR(10, 2, 1, 4)
can be solved in less than a second. Next we consider instances of SR(n, 2, 2, 4),
where the number of rounds is not fixed. The collection of polynomials equations
describing the cipher is presented below:

sbox(p0 + k0,0, x0,0)
sbox(p1 + k0,1, x0,1)
sbox(p2 + k0,2, x0,2)
sbox(p3 + k0,3, x0,3)
wi,0 + L0(xi−1,0, xi−1,3) + ki,0 for i = 1, . . . , n
sbox(wi,0, xi,0) for i = 1, . . . , n
wi,1 + L1(xi−1,0, xi−1,3) + ki,1 for i = 1, . . . , n
sbox(wi,1, xi,1) for i = 1, . . . , n
wi,2 + L0(xi−1,2, xi−1,1) + ki,2 for i = 1, . . . , n
sbox(wi,2, xi,2) for i = 1, . . . , n
wi,3 + L1(xi−1,2, xi−1,1) + ki,3 for i = 1, . . . , n
sbox(wi,3, xi,3) for i = 1, . . . , n
c0 + L0(xn,0, xn,3) + kn,0
c1 + L1(xn,0, xn,3) + kn,1
c2 + L0(xn,2, xn,1) + kn,0
c3 + L1(xn,2, xn,1) + kn,1
ki,3 + ki+1,1 + ki+1,3

ki,2 + ki+1,0 + ki+1,2

sbox(ki,3, ki,0 + ki+1,0 + rci) for i = 0, . . . , n− 1
sbox(ki,2, ki,1 + ki+1,1) for i = 0, . . . , n− 1

(7)

This collection is converted to CNF using the method proposed by Bard et al.
[1]. Resulting SAT instances are solved with the CryptoMiniSAT solver. The
obtained results are reported in Tables 4 and 5. In Table 5, #var denotes the
number of variables and #cls points the average number of clauses after con-
version to CNF. For the FW representation, instances of SR(10, 2, 2, 4) can

Table 4. Average running time of SAT-Solver, in seconds

Nr
CryptoMiniSAT

FW MQ FWBW SMQ

5 1.90 5.51 2.7 5.71

6 2.01 9.19 3.42 8.87

7 2.19 12.56 3.64 13.26

8 2.20 17.80 3.62 23.69

9 2.57 30.55 4.21 35.93

10 2.77 45.72 3.89 62.30

14



Table 5. Number of variable and average number of clauses for different descriptions
conversion

Nr
FW MQ FWBW SMQ

#var #cls #var #cls #var #cls #var #cls

5 256 1508 1228 4625 736 3919 708 2232

6 304 1810 1468 5451 876 4687 844 2641

7 352 2109 1708 6353 1016 5454 980 3091

8 400 2407 1948 7146 1156 6223 1116 3495

9 448 2708 2188 8050 1296 6991 1252 3957

10 496 3005 2428 8855 1436 7759 1388 4357

be solved in 2.77 seconds on average. This is a significant improvement com-
pared to the results reported by Bulygin et al. [7]. They were able to solve
SR(10, 2, 2, 4) instances in 1850.01 seconds using PolyBoRi and in 190 sec-
onds using MiniSat solver. The FWBW representation has improved efficiency
of Gröbner basis computations. Unfortunately, SAT-solvers are working less effi-
cient than for the FW representation. One can guess that this may be attributed
to an increase of the number of variables and clauses. For the MQ representa-
tion, solving SR(10, 2, 2, 4) takes on average 45.72 seconds. This is a much higher
time complexity than for both FW and FWBW representations. This suggests
that the MQ representation of S-boxes does not improve time complexity of
algorithms to solve SR ciphers for 4-bit S-boxes. For the SMQ representation,
solving instances of SR(10, 2, 2, 4) is most time consuming. Note that in contrast
to the MQ representation, SMQ needs significantly fewer variables and nearly
half of the clauses. This suggests that a compact representation of S-boxes does
not improve efficiency of solving instances of the SR cipher.

6.3 Lightweight Ciphers

We further study the impact of the S-box representation on efficiency of solving
round-reduced lightweight ciphers such as LBlock [28], PRESENT [2] and MIBS
[22]. The summary of best algebraic attack results published so far is given in
Table 6, where g denotes the number of guessed key bits and Data denotes the
number of plaintexts needed in the attack.

Courtois et al. [13] and Susil et al. [26] mount their attacks on the LBlock
cipher using the ElimLin algorithm [11]. Courtois et al. [13] choose plaintexts
at random. In contrast, Susil et al. [26] select plaintexts via a successful cube
attack [17]. This approach allows the authors to solve the cipher instances by
using the ElimLin algorithm and without guessing key bits.

Analysis of MIBS and PRESENT ciphers is given in [13] and [23]. In our
experiments, we choose the ith plaintext as the 64-bit representation of the
integer i. This is a similar strategy to the one applied by both Faugere et al. in
[19] and by Susil et al. in [26]. Unlike Susil et al. who applied cube attack first,
we choose plaintexts using a simple cube. The results obtained for the LBlock,
PRESENT and MIBS ciphers are presented in Tables 7, 8 and 9, respectively.

15



Table 6. Some previous algebraic attacks on LBlock, PRESENT and MIBS

Nr g RunTime Data note work

LBlock

8 32 907 s 6 KP ElimLin [13]

8 32 ⊥ 6 KP PolyBoRi [13]

8 0 Not Reported 8 CP ElimLin [26]

10 0 Not Reported 16 CP ElimLin [26]

PRESENT

5 35 1.845 h 16 KP ElimLin [23]

5 35 ⊥ 16 KP PolyBoRi [23]

MIBS

4 20 0.137 h 32 KP ElimLin [13]

4 20 ⊥ 32 KP PolyBoRi [13]

5 16 0.137 h 6 KP MiniSAT 2.0 [13]

5 16 ⊥ 6 KP PolyBoRi [13]

We use the following notations. The number of solved instances, the number
of instances solved by inter-reduction and the number of instances solved with
PolyBoRi are denoted by NS , NI , NG, respectively. The average running time
for inter-reduction and the average running time for computation of Gröbner
basis with PolyBoRi are denoted by TI and TG, respectively. RL stands for
the ratio of the average number of linear polynomials (with application of inter-
reduction) to the average number of polynomials (for instances were not solved
by inter-reduction). We apply inter-reduction at three levels. The first level of
inter-reduction is applied to each round for polynomials related to all plaintext-
ciphertext pairs. We call it RI, which is a short hand for round inter-reduction.
At the second level, we apply inter-reduction to polynomials related to first
Nr − 2 rounds of the cipher, which is denoted by PI, which stands for partial
inter-reduction. The third level of inter-reduction is applied to all polynomials
for all rounds. It is denoted by TI, which stands for total inter-reduction.

As in our earlier experiments with the SR cipher, we set the time limit for
computation of Gröbner basis to 1200 seconds. We note that we are getting better
results when we apply SlimGB. However, there is a downside – we are running
out of memory quicker. This is the reason why we have chosen PolyBoRi as
it provides an optimized data structure for memory efficient manipulation of
Boolean polynomials. We applied both FWBW and FW representations for the
LBlock S-box. We are able to break the cipher with 8 rounds, knowing 3 chosen
plaintext/ciphertext observations. This is a better result than described in [26],
where the attack needs 8 observations. The 9-round LBlock is broken with 4
observations. Using such a simple startegy for selection of plaintext/ciphertext
pairs, we are able to break the cipher with 10 rounds with 16 observations.
This is the same result as the one published by Susil et al in [26]. However,
we observe that if plaintexts are selected as a binary representation of 2i, i.e. a
binary string with a single non-zero bit, then the cipher is broken with the same
data complexity as the previously mentioned strategy.

16



Table 7. Our results on LBlock

Nr Data Type NS NI TI NG TG RL

8 3

FWBW-TI 50 49 2.67 1 0.9 0.49
FWBW-RI 50 - 0.28 50 1.32 0.07
FWBW-PI 50 - 1.31 50 0.92 0.27

FW-TI 50 - 1.39 50 2.77 0.51
FW-RI 50 - 0.14 50 3.26 0.13
FW-PI 50 - 0.65 50 2.76 0.43

9 4

FWBW-TI 50 15 7.09 35 8.41 0.35
FWBW-RI 50 - 0.49 50 10.18 0.07
FWBW-PI 50 - 3.7 50 10.22 0.29

FW-TI 50 - 2.68 50 37.82 0.47
FW-RI 50 - 0.22 50 24.24 0.14
FW-PI 50 - 1.49 50 28.66 0.46

10 16

FWBW-TI 46 10 821.53 36 355.75 0.43
FWBW-RI 46 - 5.74 46 442.17 0.1
FWBW-PI 46 - 72.32 46 275.56 0.38

FW-TI 38 - 66.89 38 456.28 0.58
FW-RI 42 - 1.99 42 588.46 0.18
FW-PI 42 - 37.94 42 501.48 0.56

Many instances can be solved with TI only. But as the number of chosen
plaintext/ciphertext observations increases, the average time of inter-reduction
of polynomials increases dramatically. For RI, required time for inter-reduction
is negligible although the running time for computation of Gröbner basis slightly
increases. Thus, when comparing TI and RI, RI seems to be a better choice for
the LBlock cipher. Note, however, that for 8 and 10 rounds of LBlock, PI gives
better results than RI.

For cryptanalysis of 10 rounds of LBlock cipher with 16 chosen plaintext/ciphertext
pairs and FWBW-TI, the inter-reduction takes 821.53 seconds on average. For
FWBW-PI, it takes 72.32 seconds on average. This confirms that most of time
taken by TI is spent for inter-reduction of the last two round polynomials. For
10 rounds of LBlock, the best results are produced using FWBW-PI.

Consider Table 8 for PRESENT. The FWBW representation leads to a suc-
cessful attack on the 5-round cipher with only 8 chosen plaintext/ciphertext pairs
and no key guessing. This is a better result than the one reported by Sepehrdad
et al in [23], which needs 16 plaintext/ciphertext pairs and a guess of 35 key
bits. For the 5-round PRESENT and FW-TI, we have solved 21 instances with
the average time of 701.61 seconds. Changing the setting to FWBW-RI, the in-
stances have been solved in 21.1 seconds on average. This fact again confirms an
advantage of the FWBW S-box representation. For PRESENT cipher, PI does
not give any improvement over RI. Similarly to LBlock, most of TI is spent for
inter-reduction of polynomials in the last two rounds.

Consider MIBS cipher. For the FWBW representation of S-Boxes, we have
done no experiments as TI consumes more than an hour. Note that the aim of
our experiments is to compare different S-Box representations and their impact

17



Table 8. Our results on PRESENT

Nr Data Type NS NI TI NG TG RL

4 4

FWBW-TI 48 42 3.84 6 12.47 0.79
FWBW-RI 48 - 1.05 48 2.34 0.20
FWBW-PI 49 - 1.31 49 3.49 0.31

FW-TI 49 4 2.84 45 11.31 0.66
FW-RI 49 - 0.37 49 4.57 0.34
FW-PI 49 - 0.56 49 3.61 0.48

5 8

FWBW-TI 50 15 59.38 35 19.89 0.48
FWBW-RI 50 - 5.01 50 21.1 0.18
FWBW-PI 50 - 8.91 50 31.21 0.35

FW-TI 21 - 10.86 21 701.61 0.53
FW-RI 14 - 1.57 14 647.87 0.31
FW-PI 20 - 4.02 20 541.15 0.53

Table 9. Our results on MIBS

Nr Data Type NS NI TI NG TG RL

4 4

FWBW-PI 50 - 1.2 50 1.19 0.53
FWBW-RI 50 - 0.58 50 10.36 0.44

FW-TI 50 - 18.89 50 0.28 0.89
FW-RI 50 - 0.37 50 4.06 0.62
FW-PI 50 - 0.75 50 0.93 0.70

5 5

FWBW-PI 50 - 5.05 50 3.5 0.53
FWBW-RI - - 1.01 - - 0.43

FW-TI 3 - 338.43 - 675.79 0.73
FW-RI 4 - 0.53 4 1096.8 0.61
FW-PI 5 - 4.54 5 716.1 0.71

6 12 FWBW-PI 50 - 200.05 50 45.39 0.56

18



on cryptanalysis efficiency. For 4-round MIBS, both FWBW and FW lead to
an attack that needs 4 plaintext/ciphertext pairs only. This outperforms the
previous result by Courtois et al. [13], which needs 32 plaintext/ciphertext pairs
and a guess of 20 key bits. The run time of attack is reduced to 2.39 seconds for
FWBW-PI and to 1.68 seconds for FW-PI (on average). For 5 and 6 rounds and
for FWBW-PI, MIBS is broken knowing 5 and 12 plaintext/ciphertext pairs,
respectively. According to our best knowledge, this is the first attack on 6-round
MIBS.

7 Conclusion

We study the effect of S-box representation on the efficiency of algebraic analysis
of block ciphers. In general, algebraic analysis takes two stages. In the first
stage, a cipher is described by a collection of polynomials. In the second stage,
the collection is solved using an “appropriate” algorithm. For AES-like block
ciphers, the strength of encryption relies on cryptographic properties of S-boxes
(such as non-linearity, avalanche criterium, algebraic degree to name a few).

Our study shows that S-box representation has a significant impact on effi-
ciency of algebraic attacks. In particular, the FWBW representation seems to be
most effective as confirmed by our numerous experiments. We have managed to
break the SR(10, 2, 1, 4) cipher using the computer algebra softwares Singular
and FGb.
The following list gives suggestions as to future/open research directions:

– Generalization of our study for 8-bit S-boxes. A related problem is the choice
of the field GF (2n), which can selected to represent S-box polynomials.

– Investigation of S-box polynomial representations. One would hope to dis-
cover “ideal” representations (or perhaps the ideal one), which maximise the
efficiency of algebraic attacks. This would give a better understanding of
algebraic properties of ideal representations and perhaps make a connection
between S-box representations and their cryptographic properties.

– Extension of experiments done in the work. It would be very beneficial to
cover a wide range of ciphers to generalise our findings. Another possible
extension is to use more computational resources (a large network of PCs or
supercomputers) to determine limits of algebraic analysis.

References

1. Bard, G.V., Courtois, N.T., Jefferson, C.: Efficient Methods for Conversion and
Solution of Sparse Systems of Low-Degree Multivariate Polynomials over GF(2)
via SAT-Solvers. Cryptology ePrint Archive, Report 2007/024 (2007), http://

eprint.iacr.org/2007/024

2. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher.
In: Cryptographic Hardware and Embedded Systems-CHES 2007, pp. 450–466.
Springer (2007)

19

http://eprint.iacr.org/2007/024
http://eprint.iacr.org/2007/024


3. Brickenstein, M.: Slimgb: Gröbner bases with slim polynomials. Revista Matemtica
Complutense 23(2), 453–466 (Dec 2009)

4. Brickenstein, M., Dreyer, A.: PolyBoRi: A framework for Gröbner-basis computa-
tions with Boolean polynomials. Journal of Symbolic Computation 44(9), 1326–
1345 (Sep 2009)

5. Buchberger, B.: Bruno Buchbergers PhD thesis 1965: An algorithm for finding the
basis elements of the residue class ring of a zero dimensional polynomial ideal.
Journal of Symbolic Computation 41(34), 475–511

6. Buchberger, B.: A Criterion for Detecting Unnecessary Reductions in the Con-
struction of Gröbner Bases. In: Proceedings of the International Symposiumon on
Symbolic and Algebraic Computation. pp. 3–21. EUROSAM ’79, Springer-Verlag

7. Bulygin, S., Brickenstein, M.: Obtaining and Solving Systems of Equations in Key
Variables Only for the Small Variants of AES. Mathematics in Computer Science
3(2), 185–200 (Apr 2010)

8. Cid, C., Murphy, S., Robshaw, M.J.B.: Small Scale Variants of the AES. In: Gilbert,
H., Handschuh, H. (eds.) Fast Software Encryption, pp. 145–162. No. 3557 in Lec-
ture Notes in Computer Science, Springer Berlin Heidelberg

9. Cid, C.: Some Algebraic Aspects of the Advanced Encryption Standard. In: Dob-
bertin, H., Rijmen, V., Sowa, A. (eds.) Advanced Encryption Standard AES, pp.
58–66. No. 3373 in Lecture Notes in Computer Science, Springer Berlin Heidelberg

10. Cid, C., Leurent, G.: An Analysis of the XSL Algorithm. In: Roy, B. (ed.) Advances
in Cryptology - ASIACRYPT 2005, pp. 333–352. No. 3788 in Lecture Notes in
Computer Science, Springer Berlin Heidelberg

11. Courtois, N.T., Bard, G.V.: Algebraic Cryptanalysis of the Data Encryption Stan-
dard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007, pp. 152–169. No.
4887 in Lecture Notes in Computer Science, Springer Berlin Heidelberg

12. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations. In: Zheng, Y. (ed.) Advances in Cryptology ASIACRYPT
2002, pp. 267–287. No. 2501 in Lecture Notes in Computer Science, Springer Berlin
Heidelberg

13. Courtois, N.T., Sepehrdad, P., Sušil, P., Vaudenay, S.: ElimLin Algorithm Revis-
ited. In: Canteaut, A. (ed.) Fast Software Encryption, pp. 306–325. No. 7549 in
Lecture Notes in Computer Science, Springer Berlin Heidelberg (Jan 2012)

14. Cox, D., Little, J., OShea, D.: Ideals, Varieties, and Algorithms. Undergraduate
Texts in Mathematics, Springer New York (2007)

15. Daemen, J., Rijmen, V.: AES proposal: Rijndael, in NIST AES Proposal (1998)
16. Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular 3-1-7 — A

computer algebra system for polynomial computations. http://www.singular.

uni-kl.de (2015)
17. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In:

Joux, A. (ed.) Advances in Cryptology - EUROCRYPT 2009, pp. 278–299. No.
5479 in Lecture Notes in Computer Science, Springer Berlin Heidelberg (Jan 2009)

18. Faugre, J.C.: FGb: A Library for Computing Gröbner Bases. In: Fukuda, K.,
van der Hoeven, J., Joswig, M., Takayama, N. (eds.) Mathematical Software ICMS
2010, pp. 84–87. No. 6327 in Lecture Notes in Computer Science, Springer Berlin
Heidelberg

19. Faugre, J.C., Perret, L.: Algebraic Cryptanalysis of Curry and Flurry Using Corre-
lated Messages. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Information Security
and Cryptology, pp. 266–277. No. 6151 in Lecture Notes in Computer Science,
Springer Berlin Heidelberg (Jan 2010)

20

http://www.singular.uni-kl.de
http://www.singular.uni-kl.de


20. Faugre, J.C.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139(13), 61–88 (Jun 1999)

21. Gao, S.: Counting Zeros over Finite Fields with Gröbner Bases. Master’s thesis,
Carnegie Mellon (2009), http://www.andrew.cmu.edu/user/avigad/Students/

gao_ms_thesis.pdf

22. Izadi, M., Sadeghiyan, B., Sadeghian, S.S., Arabnezhad Khanooki, H.: MIBS: A
New Lightweight Block Cipher. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) Cryp-
tology and Network Security, pp. 334–348. No. 5888 in Lecture Notes in Computer
Science, Springer Berlin Heidelberg (Jan 2009)

23. Jr, J.N., Sepehrdad, P., Zhang, B., Wang, M.: Linear (Hull) and Algebraic Crypt-
analysis of the Block Cipher PRESENT. In: Garay, J.A., Miyaji, A., Otsuka, A.
(eds.) Cryptology and Network Security, pp. 58–75. No. 5888 in Lecture Notes in
Computer Science, Springer Berlin Heidelberg (Dec 2009)

24. Miolane, C.: Block Cipher Analysis. Ph.D. thesis, Technical University of
Denmark (DTU) (2009), http://orbit.dtu.dk/services/downloadRegister/

5009704/thesis_cvm_v1.pdf

25. Soos, M.: SAT-solver cryptominisat, Version 2.9.0, January 20 2011
26. Sušil, P., Sepehrdad, P., Vaudenay, S.: On Selection of Samples in Algebraic Attacks

and a New Technique to Find Hidden Low Degree Equations. In: Susilo, W., Mu,
Y. (eds.) Information Security and Privacy, pp. 50–65. No. 8544 in Lecture Notes
in Computer Science, Springer International Publishing (Jan 2014)

27. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
6.7). http://www.sagemath.org

28. Wu, W., Zhang, L.: LBlock: A Lightweight Block Cipher. In: Lopez, J., Tsudik,
G. (eds.) Applied Cryptography and Network Security, pp. 327–344. No. 6715 in
Lecture Notes in Computer Science, Springer Berlin Heidelberg (Jan 2011)

21

http://www.andrew.cmu.edu/user/avigad/Students/gao_ms_thesis.pdf
http://www.andrew.cmu.edu/user/avigad/Students/gao_ms_thesis.pdf
http://orbit.dtu.dk/services/downloadRegister/5009704/thesis_cvm_v1.pdf
http://orbit.dtu.dk/services/downloadRegister/5009704/thesis_cvm_v1.pdf
http://www.sagemath.org

	Algebraic Attack Efficiency versus S-box Representation

