
Externally Verifiable Oblivious RAM

Joshua Gancher∗ Adam Groce† Alex Ledger‡

Abstract

We present the idea of externally verifiable oblivious RAM (ORAM). Our goal is to allow
a client and server carrying out an ORAM protocol to have disputes adjudicated by a third
party, allowing for the enforcement of penalties against an unreliable or malicious server. We
give a security definition that guarantees protection not only against a malicious server but
also against a client making false accusations. We then give modifications of the Path ORAM
[15] and Ring ORAM [9] protocols that meet this security definition. These protocols both
have the same asymptotic runtimes as the semi-honest original versions and require the external
verifier to be involved only when the client or server deviates from the protocol. Finally, we
implement externally verified ORAM, along with an automated cryptocurrency contract to use
as the external verifier.

1 Introduction

Oblivious RAM (ORAM) protocols allow clients to store data on an untrusted server and to access
it as if it was stored locally. The protocols guarantee that the server learns nothing about the
client’s data or access pattern, seeing only the amount of data and how frequently it is accessed.
Originally proposed by Goldreich and Ostrovsky [5, 6, 8], in recent years a series of exciting results
(e.g., [15, 9, 4, 16]) has drastically increased the efficiency with which ORAM can be achieved.

These results prove security in one of two models. The first is the semi-honest model, where
the server is assumed to behave according to the specified protocol. Given this honest behavior,
the security claim requires that no information about the client data or access pattern can be
inferred by the server. The second model is that of malicious security, in which these guarantees
must hold even if the server deviates from the prescribed protocol. Malicious security is certainly
a stronger model, and it is probably more realistic in most settings. It has generally been achieved
by first creating a semi-honest protocol and then adding verification procedures that will detect
any deviation from the protocol that the server attempts to make.

Here we propose externally verifiable ORAM. In the standard proposed use of ORAM protocols,
a client pays a server to provide storage in the cloud. If a malicious-secure ORAM protocol is used,
the client gets complete assurance that their data and access patterns remain private. However, if
server misbehavior is detected, the client has no redress other than to abort the protocol. Given that
server misbehavior in this setting might often be aimed not at violating client privacy but instead
at reducing costs by failing to store certain data (or by storing it unreliably, without necessary

∗Cornell University. Work done partly at Reed College. Email: jrg358@cornell.edu
†Reed College. Email: agroce@reed.edu
‡MIT Lincoln Laboratory. Work done while at Reed College. Email: alex.ledger@ll.mit.edu

1

backups and safeguards), it may be very important that a client can show to a third party that the
server has failed. Externally verifiable ORAM provides that capability.

Because one of the primary concerns is data loss, it is important to guarantee that the client
can be compensated in the case of non-response from the server. Because it is impossible to prove
non-response after the fact, the external verifier must participate in the protocol. Fortunately, we
can minimize this burden — in our protocols, the verifier does not participate in honest executions.
The verifier is only contacted when one party detects that the other has deviated from the protocol,
at which point the protocol enters a second phase in which messages are routed through the verifier
who is then able to confirm non-response.

We present three scenarios to illustrate how externally verifiable ORAM might be used.

Scenario 1 Client signs a contract with Server for remote storage at a given price. A penalty is
specified, to be paid if Server becomes unable or unwilling to answer read/write queries correctly.
If that does happen, Client goes to Judge and claims Server is not providing the specified data, at
which point Server must respond with the requested data or is forced to pay the penalty.

This is the most straightforward use of our protocol. A standard government court probably
does not have the technical capability (or willingness) to serve as Judge in this scenario, since that
requires real-time participation in the protocol. The contract would have to include an agreement
to resolve disputes through arbitration and specify an arbitrator capable of this technical operation,
but binding arbitration agreements are not unusual.

Scenario 2 Client purchases storage from Company, a large and trusted corporation. Company
does not store Client’s data directly, instead subcontracting with Server, who happens to have
unused disk space at the moment. This allows administrators with spare capacity to put that
capacity to work easily and reduces wasted resources. Client interacts directly with Server, but
Company acts as a guarantor of Server’s reliability, moderating disputes and penalizing Server if
data is not reliably available to Client when requested.

Finding a way to use otherwise idle computational resources is potentially very useful, but it
is hard to establish a functioning market in these services when the providers are small and have
no reputation for reliability. Here an established company with a valuable reputation to protect
serves as a guaranteed enforcer of reliability. This company can also serve to coordinate the many
providers. If one administrator needs to reclaim their previously idle resources, the company can
facilitate the transfer of the remote database to another server without disruption of the client’s
service.

Scenario 3 Client and Server reach an agreement as in Scenario 1. Instead of signing a legal
contract, they create this “contract” as an automated entity in a cryptocurrency protocol like
Ethereum that allows for automated execution of contracts. (See [17] for more information.) This
contract serves the role of Judge above, automatically mediating disputes between Client and Server
and penalizing Server where appropriate using currency held in escrow.

This is perhaps the most interesting scenario. It essentially circumvents the requirement of a
third party. While technically many more than three parties are now involved (due to the nature
of the cryptocurrency protocol), in practice this interaction can be carried out by any two parties
on their own. The security guarantees of the cryptocurrency protocol ensure the community of
cryptocurrency users will execute the automated contract as specified.

This community-as-verifier entity is potentially more trustworthy than any individual real world
party could ever be. It is also easier to initialize than any real world contract, since no legal

2

agreements are required. However, using an automated contract as the verifier is not without
downsides. While a legal arbitrator has the authority to force payment of a penalty from the
dishonest party’s general property, a cryptocurrency contract can only force payment by holding
currency in escrow. Also, as can be seen in our implementation, carrying out this computation is
much slower and more expensive when done by an automated contract than when done by a single
trusted party. Nevertheless, we think this idea is ideal for some situations and that these downsides
can be reduced with future research.

1.1 Our contributions

Security definition In this paper we formalize externally verifiable ORAM (EVORAM), the
functionality that is needed for a protocol to be used in the above scenarios. This is difficult because
one of the server misbehaviors that we want to protect against is non-response. There is no way a
client can prove to the verifier that they did not receive a response to a given message. To solve
this problem, we divide our desired functionality into two phases. In Phase 1, the client interacts
directly with the server, attempting to carry out a given operation. If the server fails to respond
or responds incorrectly, the client can proceed to Phase 2, where communication is routed through
the verifier, who can therefore confirm nonresponse. This means that full security is guaranteed,
but the verifier does not participate during honest executions of the protocol.

Modified Path ORAM We then modify the Path ORAM protocol [15] to achieve this defi-
nition. Our modifications are reasonably straightforward, using standard techniques like Merkle
trees, signatures, and counters to guarantee accuracy and freshness. We present this first as a
simple example of what is needed to guarantee external verifiability. Even though the tools we
use are standard, there are several subtle technical details that must be handled carefully. Our
construction maintains the efficiency of Path ORAM.

Modified Ring ORAM We then present an EVORAM modification of Ring ORAM. While
Path ORAM requires O(log n) communication per access (where n is the database size), Ring
ORAM requires only O(1) communication per access in online communication, with other commu-
nication deferred to flexibly-scheduled offline operations, and we want to maintain this efficiency
in the externally verifiable construction. Ring ORAM also uses a more complex underlying data
structure. These two concerns collectively mean that while we can use (mostly) the same basic
tools, the construction is significantly more complicated. Here too we maintain the asymptotic
running time of the original protocols. (The one exception is that we require more communication
in our version of Ring ORAM only when a deviation from the protocol occurs and the verifier needs
to be involved. Since in practice resort to the verifier is primarily a deterrent, rather than part of
normal operation, we think this downside is minimal.)

Malicious-secure Ring ORAM As a stepping stone to our EVORAM construction, we present
what we believe is the first modification of Ring ORAM that provably achieves malicious security
with no efficiency loss.

Stronger security guarantees We show that our constructions have useful security properties
beyond what is required of the EVORAM definition. In particular, Scenario 3 requires that security
be maintained with a semi-honest verifier, and this is the case in our protocols. Similarly, we show
that if the verifier is malicious and collaborating with the server, the EVORAM security guarantee

3

is lost, but the original ORAM guarantee is still maintained, meaning that trust in the verifier can
be limited. This is most important in a setting like Scenario 2.

Implementations Finally, we provide two implementations of our modified Path ORAM proto-
col. The first is a standard implementation for three parties. It achieves EVORAM with only 2%
to 5% increased bandwidth overhead compared to Path ORAM. Our second implementation uses
an Ethereum contract as the verifier, allowing two parties to sign and execute an enforced contract
for storage without an external arbitrator. In this implementation regular accesses are just as fast
as in the previous implementation, but the verification that occurs when one party misbehaves
is significantly slower and has a small monetary cost associated with it. All implementations are
released under open-source licenses.

We believe that the additional functionality in our definition, as well as the demonstrated practical-
ity of achieving it, go a long way towards making ORAM protocols useful in a variety of real-world
situations.

1.2 Outline of the Paper

Section 2 discusses prior work on ORAM protocols and notions analogous to externally verifiable
security in other contexts. Section 3 presents our definition of externally verifiable ORAM and
discusses some of the subtleties involved in choosing the definition. Sections 4 and 5 are on Path
and Ring ORAM, respectively. These sections begin with a brief overview of the original semi-
honest protocol, explain how that protocol can be made secure in the malicious setting, then
finally show how to modify the protocol to achieve our externally verifiable functionality. Section
6 describes our implementation of externally verifiable Path ORAM. We discuss future directions
for this work in Section 7.

2 Background

Oblivious RAM seeks to allow a client to outsource storage to an untrusted server. This can trivially
be done by encrypting the data, but that requires that the client download the entire database for
decryption every time they wish to access the data. The database can instead be divided into
blocks, with each block encrypted separately under the client’s key. While this greatly increases
efficiency, since only a single block need be downloaded for each access, the server now knows which
block is requested/changed with each client interaction, and that access pattern can disclose private
information, either about what computation the client is performing or about the contents of the
data itself. ORAM protocols ensure complete privacy for the client by hiding both the contents of
the data and the access pattern.

Goldreich and Ostrovsky [5, 6, 8] first proposed ORAM and gave a protocol that achieved
security. However, their protocol resulted in a factor of O(

√
n) increase in the required bandwidth

compared to unsecure access, where n is the database size. A series of works improved on this
construction. A major milestone was the proposal by Shi et al. to structure the ORAM storage as
a binary tree [12]. That basic innovation inspired a string of ever-more-efficient protocols in recent
years. (For example, see [15, 9, 4, 16].)

Of particular interest to this work are Path ORAM [15] and Ring ORAM [9]. Path ORAM was
an early and simple example of the binary tree framework in use, and it decreased the required
overhead to O(log n). Ring ORAM improved on the efficiency of Path ORAM, allowing for O(1)

4

blowup in online bandwidth. (Total bandwidth required is still O(log n), but most communication
happens in the background between accesses.) Other works have increased efficiency further, but
these two protocols are the ones we adapt to create externally verifiable ORAM protocols. We
leave creating externally verifiable versions of more recent protocols to later work.

The idea of externally verifiable ORAM is new in this paper. Previous work has introduced
the idea of verifiable oblivious storage [1]. (Here “oblivious storage” is used to mean an ORAM
protocol where the server can perform computation, rather than simply storing data. We do not
make that distinction in this work and refer to such protocols as ORAM protocols.) The verifiability
in question though refers only to the ability of the client to verify the server’s honesty. It would
not, for example, allow for the enforcement of a contract promising storage, since a malicious client
could falsely claim server misbehavior, and a verifier would be unable to adjudicate the claim.

Externally verifiable security definitions do exist in other areas of research. For example, Stadler
introduced publicly verifiable secret sharing, where parties outside of the secret sharing protocol
can confirm that it has been carried out correctly [14]. There is also a line of work on optimistically
fair exchange (e.g., [2] and [3]), which adds the same sort of external verifiability to protocols for
exchanging digital goods. We suspect that the advent of smart contracts could be applicable to
some of these works. Care must be taken, however, since the third parties considered in optimistic
fair exchange are in general allowed to maintain secret state.

In the setting of outsourced storage, Shah, Swaminathan, and Baker [11] also give a similar
functionality. They show a way that outsourced storage can be “audited,” allowing an external
arbitrator to confirm whether or not the server has lost some of the client’s data. The motivation
here is identical to ours. However, this was not built on top of ORAM’s privacy protection — while
data privacy was ensured against the auditor, the server itself had full access to the data and access
pattern.

3 Externally Verifiable ORAM

We now present our definition of externally verifiable ORAM. Our goal here is to allow the external
verifier V to arbitrate disputes, verifying that the server S is or is not properly carrying out
the operations requested by the client C. We want to protect against a malicious server who is
attempting to misbehave, either by altering data or simply by hiding the fact that some data has
been lost. We also want to protect against a malicious client who attempts to falsely claim server
misbehavior. We assume the verifier is trusted. (We present the definition with a fully honest
verifier. In reality we could weaken the definition to allow for a semi-honest verifier, and we discuss
this alteration later.) We are at the moment concerned with security in the standard model; proving
universal composability for our scheme is left to further work.

Because we are worried about a server that simply loses data and becomes unable to answer
queries, we must allow a server to be punished for simple lack of response to client requests.
However, in a two-party protocol the client can never prove after the fact that the server stopped
responding.1 One obvious solution is to route communication through the verifier, who can confirm
that the client’s request was sent and that the server did not respond. This, however, requires the

1To see this formally, consider a client C who has transcript t of a successful protocol execution, and client C′
who has transcript t′ of a protocol execution that was identical up to a point where the server stopped responding.
Because t′ is computable given t, any “proof” of server misbehavior that C′ could present to V (which must be a
function of just t′) can also be forged by C and is therefore unconvincing.

5

verifier to participate in every access. Instead, we divide our protocol into two phases. In the first,
the client sends requests directly to the server. During honest interaction, this first phase is all
that occurs, and read/write operations are performed as expected. However, if the client detects
unexpected behavior (including nonresponse) from the server, they can continue to Phase 2 of the
protocol, which asks the verifier to mediate the operation. During this phase, the verifier can detect
cheating from either party.

We formalize this desired behavior through the functionality in Figure 1. During the first
phase of the ideal functionality, C submits a database operation and C and S submit vrfyC and
vrfyS respectively. These are booleans specifying whether to involve the verifier in the operation’s
execution. Sending no for these values corresponds to honest behavior during Phase 1 of a protocol
execution, and under honest behavior the access terminates successfully at that point. Either player
has the power to deviate in Phase 1, which then forces the protocol to Phase 2, where they can again
either behave honestly or deviate (represented by the failC and failS values in the functionality).
If they deviate, the access ends unsuccessfully, and the cheating party is known by the verifier V.
If both parties behave honestly at this phase, the verifier learns only that an access has occurred.

The details of this functionality have been chosen very carefully, and we note that some seem-
ingly equivalent choices actually introduce problems when one attempts to create secure protocols.
For example, we considered a definition where the client had the option to use or not use the verifier
on each access, essentially splitting Phase 1 and Phase 2 into two separate access calls, allowing the
client to repeat a call with the verifier included any time the initial access failed. However, such a
definition causes problems. We find that in order to construct secure protocols, one must structure
the definition so that an honest client always must proceed to Phase 2 when Phase 1 fails. Failure
to do so opens the client up to privacy-violating attacks.

We then require, through a standard simulation-based definition, that an externally verifiable
ORAM protocol provide this functionality. We limit ourselves, though, to security against malicious
clients or servers, and we require security for a party to hold only when it behaves honestly. In
the ideal functionality, honest behavior by C means sending vrfyC = failC = no (and similarly for
honest S).

Ideal World In this world a client C and server S (and a verifier V, always assumed to be honest)
interact with the functionality F and with an environment Z. V, being honest, always forwards
any output received from F to Z unchanged. At the end of all poly(λ) accesses (where λ is the
security parameter), Z outputs a bit. Define the random variable IdealC,S,Z(λ) to be this bit.

Real World In this world C, S and V communicate directly with each other and with the
environment Z. V always behaves as specified by the protocol and forwards all output to Z. At
the end of all accesses, Z outputs a bit. Define the random variable RealC,S,Z(λ) to be this bit.

Definition 1 Fix a protocol Π. We say that the honest client Ĉ is the one that carries out exactly
the operations that Z requests and reports its output to Z. In the real world Ĉ always runs the
protocol as specified. In the ideal world Ĉ always sends vrfyC = failC = no. In both worlds, Ĉ
forwards all output (and nothing else) to Z. Similarly, the honest server Ŝ carries out the protocol
honestly in the real world, always sends vrfyS = failS = no in the ideal world, and reports its
output to Z.

We say an externally verifiable ORAM scheme is secure against a malicious server if for all
probabilistic polynomial-time real world servers S, there exists an ideal world simulator SimS , such
that for all non-uniform, polynomial-time environments Z, there exists a negligible function negl

6

Functionality F

Setup:
Upon receiving the database D from the client, notify S that the setup operation has
occurred and the size of the database |D|. If S returns ok, send ok to C. If S returns abort,
send abort to C. The below steps are only valid if S sends ok.

Upon receiving an access (op, ind , data, vrfyC) from C:
Notify S that an access is occurring.

Upon receiving vrfyS from S:
If vrfyC = vrfyS = no, then process the requested operation (op, ind , data) on behalf of C,
and send C the requested data. At this point, the access is completed.

Otherwise, send vrfy to C and S.

Upon receiving failC from C:
If failC = yes, send ⊥ to C, and send cheatC to V. At this point, the access is completed.

Upon receiving failS from S:
If failS = yes, then send ⊥ to C, and send cheatS to V. At this point, the access is completed.

Otherwise, process the requested operation (op, ind , data) on behalf of C, and send C the
requested data. Send success to V. At this point, the access is completed.

Figure 1: The externally verifiable ORAM functionality F . vrfy, ok, and other similarly-formatted
terms represent arbitrary agreed-upon constants meant to convey particular messages.

such that
|Pr[RealĈ,S,Z(λ) = 1]− Pr[IdealĈ,SimS ,Z(λ) = 1]| ≤ negl(λ).

Similarly, we say it is secure against a malicious client if for all probabilistic polynomial-time
real world clients C, there exists an ideal world simulator SimC , such that for all non-uniform,
polynomial-time environments Z, there exists a function negl such that

|Pr[RealC,Ŝ,Z(λ) = 1]− Pr[IdealSimC ,Ŝ,Z(λ) = 1]| ≤ negl(λ).

We say the scheme is secure if it is secure against both a malicious client and a malicious server. ♦

4 Path ORAM

In Section 4.1, we give an overview of semi-honest Path ORAM. Section 4.2 presents the mod-
ification for malicious security, while Section 4.3 gives our construction for externally verifiable
security. In Section 4.4 we discuss some security properties our construction satisfies beyond the
given definition. Section 4.5 presents a proof for the security of our construction.

4.1 Semi-honest Path ORAM

Semi-honest Path ORAM is a simple ORAM protocol in which data on the server is stored in
a binary tree, called the ORAM tree [15]. Each node of this tree is called a bucket, which is a
collection of Z blocks. The client must also hold a small number of blocks locally in the stash.

An invariant must hold such that each block is mapped to a uniformly random leaf node of the
ORAM tree, and blocks not in the stash must reside on the path in the ORAM tree corresponding

7

to their leaf node. This mapping of blocks to leaf nodes is held in a structure called the position
map. The path associated to a block B refers to the unique path on the ORAM tree which starts
at the root node and ends at the leaf node associated to B, according to the position map. The
position map can either be held in full by the client, or can be stored recursively in another Path
ORAM instance.

When a block is read from the server, the client requests all blocks along the path associated to
the desired block. Then, the requested block is remapped to another uniformly random leaf, and
the entire path is rewritten back to the server from the stash, subject to the invariant.

Since to read or write a block in Path ORAM requires communicating all blocks along a path,
Path ORAM has O(log n) bandwidth blowup, where n is the database size.

4.2 Malicious-Secure Path ORAM

Stefanov et al. extend semi-honest Path ORAM to provide integrity for every access when inter-
acting with an untrusted server [15]. They achieve integrity by extending the role of the ORAM
tree to also function as a Merkle tree, using a collision resistant hash function H. Each bucket of
the ORAM tree also stores

H(b1|| . . . ||bZ ||h1||h2),

where b1, . . . , bZ are the blocks stored in the bucket, and h1 and h2 are the hashes of the left and
right child. If the node is a leaf node, h1 = h2 = 0. We call this an augmented Merkle tree, to
indicate that each node of the tree holds data, and not only the leaf nodes.

With this construction, the client only stores the hash held at the root of the Merkle tree. When
reading a path from the server, the server also sends the appropriate hashes so that the client can
recompute the root of the Merkle tree using their downloaded data. We call this collection of hashes
a Merkle proof. For Path ORAM, a Merkle proof for a path consists of the hashes of sibling buckets
along that path. We use ReconstructRoot(P,MP) to denote the root recomputed using the data P
along a path and the corresponding Merkle proof, MP.

If the root does not recompute to the correct value, the client can conclude the integrity of the
data has been violated. When rewriting the path, the client may use the same Merkle proof to
recompute the new Merkle tree root.

This addition to Path ORAM is intuitively secure with a malicious server, and is outlined in
Figure 2. If the position map is being stored recursively in another Path ORAM instance, the
above process would be carried out for every level in the recursion. Ren et al. show that it suffices
to only carry out the above process on the top level of recursion which holds data, and carry out
a simpler authentication scheme on the lower levels which hold the position map [10]. We do not
consider this extension here, but it is likely to be compatible with our externally verifiable version
of Path ORAM.

Malicious Secure Path ORAM requires an additional O(log n) hashes to be communicated for
each read due to the Merkle proof. Hence, adding integrity to Path ORAM does not affect the
asymptotic bandwidth blowup compared to unauthenticated Path ORAM.

4.3 Externally Verifiable Path ORAM

We adapt this malicious-secure variant of Path ORAM into a protocol that is secure in the externally
verifiable setting by using two standard tools. We require first that a counter be maintained that
increments after each access to guarantee freshness. During setup, the client sets the counter to

8

Malicious Secure Path ORAM
C S

r ← stored root

x← PositionMap[ind] x - P ← data in path x

�
P,MP MP← Merkle proof of data P

r′ ← ReconstructRoot(P,MP)
if r 6= r′, abort

P ′ ← new data for path P ′ - data in path x← P ′

stored root← ReconstructRoot(P ′,MP)

Figure 2: An honest execution of Malicious Secure Path ORAM.

Honestly Executed Externally Verifiable Path ORAM: Phase 1

C S

previous state = (rC , countC , σS) previous state = (rS , countS , σC)
x← PositionMap[ind]

x - P ← data in path x

�
P,MP MP← Merkle proof of data P

r′ ← ReconstructRoot(P,MP)
if rC 6= r′, abort and revert; proceed to Phase 2

P ′ ← new data for path
rC ← ReconstructRoot(P ′,MP)

countC ← countC + 1

σ′C ← SignC(rC ||countC)
P ′, σ′C - data in path x←P’

rS ← ReconstructRoot(P ′,MP)
countS ← countS + 1
If σ′C does not verify, abort and revert
σC ← σ′C

If σ′S does not verify, abort �
σ′S σ′S ← SignS(rS ||countS)

and revert; proceed to Phase 2
σS ← σ′S

Figure 3: An honest execution of Phase 1 of Externally Verifiable Path ORAM. The tuple
(rC , countC , σS) is acquired by the client from a previous access. Likewise, the server already
holds (rS , countS , σC). If either side chooses to abort, they “revert” their state, setting all values
back to their state at the start of the execution before proceeding to Phase 2.

9

zero and in addition to sending the initial database also sends a signature on the counter and the
root of the Merkle tree. The sever then responds with its own signature of the same values. After
each access the counter is incremented and new signatures are exchanged, signifying agreement on
the state of the database.

An access of externally verifiable Path ORAM consists of two phases. In Phase 1, the client
attempts to interface directly with the server, as in Figure 3. If the client aborts during this
operation, the client enters Phase 2. (If the server aborts during Phase 1, the client also aborts.)

In Phase 2, the client sends a request to the verifier to oversee the access, using the same access
tuple (op, ind , data) as in Phase 1. Phase 2 is similar to Phase 1, but each message is sent through
the verifier; this is detailed in Figure 4. At the end of Phase 2, the verifier will output either
cheatC , cheatS , or success.

In this specification (and all others in this paper), all steps must happen in order. The verifier
ignores any unexpected messages, and assumes any messages that are misformatted or not received
in some specified amount of time are incorrect and indicate cheating by the sender. An output of
cheatS favors the client (i.e., the server was detected to be cheating), while an output of cheatC
favors the server. Once the verifier reaches an output command, no further commands for that
access may occur; the verifier reverts to its initial state.

We assume that if the verifier outputs cheatS , the client is notified and aborts the protocol.
Similarly, if the verifier outputs cheatC , the server aborts the protocol. Thus, we do not analyze a
verified ORAM access that continues if the verifier outputs either of these messages.

Phase 2 We now formally define the client and server sides of Phase 2 of the protocol. This is
initiated by a request from the client to the verifier comes in the form of (rootC , countC , σS) where
rootC is the root hash of the Merkle tree, countC is the state counter, and σS is the digital signature
of the root and counter signed by the server. In particular, σS should equal SignS(rootC ||countC).
If the signature in this initial message is valid, the verifier will forward countC to the server.

The server responds analogously with (rootS , countS , σC). If countC is one below the server’s
current count, the server should roll the database back to its state before the previous access,
decrementing countS to match countC , before sending this message. If countC is more than one
step older than countS , the server should not decrement — sending a (properly signed) counter
that is more than one step ahead of the client’s counter is proof of client misbehavior.

Assuming the server sends back a matching counter value, the protocol now proceeds identically
to Phase 1. The only difference is that the client and server send messages to the verifier, which
then forwards them to the other party (after the correctness checks listed in Figure 4).

The ability of the server to roll back the database is perhaps the most subtle part of this protocol.
Because the server receives the new σC value before the client receives the new σS , the server could
fail to send the final message in Phase 1, and then have a signature on a one-higher count value
during Phase 2, meaning that the verifier must not see the client as cheating if its claimed count
value is one behind that of the server. However, this opens a possible attack — the client could run
Phase 2 with a counter outdated by one increment, to which the server could not respond properly.
To prevent this attack, the server must be able to roll back the database by one step. Since the
previous state of the database differs from the current state in only one path, the required extra
storage is O(log n), trivial compared to the overall size of the database.

Externally verifiable Path ORAM adds the exchange of a constant amount of hashes to every
ORAM access (compared to the malicious-secure variant), so the cost is minimal.

10

Verifier V

Upon receiving (rootC , countC , σS) from client:
If σS does not verify correctly, output cheatC . Otherwise, send (verify request, countC) to
server.

Upon receiving (rootS , countS , σC) from server:
If σC does not verify correctly, output cheatS . If countS ≥ countC + 2, output cheatC .
Otherwise if countC 6= countS , output cheatS .

Upon receiving x from client:
Forward x to server.

Upon receiving (Path P, Merkle proof MP) from server:
Use data P with MP to reconstruct root r∗. If r∗ 6= rootC , output cheatS . Verifier forwards
(P,MP) to client.

Upon receiving (Path P ′, (root′C , count
′
C , σ
′
C)) from client:

Use data P ′ with MP to reconstruct new root r′.

If σ′C does not verify correctly, output cheatC . If count′C 6= countC + 1, output cheatC . If
r′ 6= root′C , output cheatC .

Forward P ′ and (root′C , count
′
C , σ
′
C) to server.

Upon receiving (root′S , count
′
S , σ

′
S) from server:

If σ′S does not verify correctly, output cheatS . If count′S 6= count′C , output cheatS . If
r′ 6= root′S , output cheatS . Forward (root′S , count

′
S , σ

′
S) to client. Output success.

Figure 4: The externally verifiable Path ORAM verifier V.

See Section 4.5 for the proof that this protocol is secure.

4.4 Additional security properties

Two of the three scenarios we discussed at the beginning of this paper require slightly stronger
security guarantees than the standard definition we have given. These modifications are straight-
forward, and we discuss each below. While we present these discussions here, they apply not only
to the Path ORAM modification discussed above, but also to the Ring ORAM modification that
follows.

A semi-honest verifier In Scenario 3, where the verifier is implemented as an automated
cryptocurrency contract, the verifier is guaranteed to behavior correctly but the information it
sees is visible publicly and can be analyzed by those with malicious intent. That is, the verifier
is semi-honest. Our protocols remain secure when the verifier is only semi-honest, assuming we
alter the security definition slightly. Specifically, the verifier in our protocol sees the client and
server count variables, which let the verifier learn how many accesses have occurred since the
last verifier involvement. This is information that is not visible in the ideal world. The ideal
functionality must be modified so that the verifier sees the count of the operation whenever the
verifier is used. Then our protocols are secure with a semi-honest verifier (even if the verifier is
collaborating with a malicious client or server). This reduction in security is quite minor, since
ORAM protocols in general already leak the number of accesses. Security against a semi-honest
verifier with collaborating malicious client or server is exactly what is needed to allow the verifier

11

to be replaced by an automated cryptocurrency contract.

A malicious verifier In Scenario 2, Client relies on well-known Company to enforce a contract
that guarantees storage. Company can outsource this storage to Server. This allows administrators
of small systems with spare resources (but without the reputation to sell services directly) to act
as Server and put those resources to use. However, Client might not want to fully trust Company,
even if they are indeed more reliable than Server.

Fortunately, the trust needed in Company is minimal. One need not rely on Company for
privacy protection, only for ensuring reliability. In particular, even if Company and Server are both
malicious and are cooperating, Client still has the normal protection enjoyed under the standard
ORAM definition, meaning that data and access pattern privacy are maintained. Only the addi-
tional utility of our external verifiability property is lost. This can easily be seen simply by noting
that everything the server and verifier see in our protocols is either seen also in standard Path/Ring
ORAM or is a computable function of those values.

4.5 Proof of Security for Externally Verified Path ORAM

A complete proof of security would duplicate most of the proof of semi-honest security of Path
ORAM. We do not think reproducing that proof would be beneficial for the reader, so we instead
make reference to arguments made in that proof where they are required, and we refer the reader
to the original semi-honest proof [15] to see those details explained.

We split the proof into two cases: the first is the case of a malicious server, and the second is
the case of a malicious client.

Client-side security In this case, we prove that for all real world adversarial servers S there
exists an ideal world simulator SimS such that for all environments Z,

|Pr[RealĈ,S,Z(λ) = 1]− Pr[IdealĈ,SimS ,Z(λ) = 1]| ≤ negl(λ).

Before proving this result directly, we will display a hybrid in which all data and operations are
dummy:

Lemma 1. The view of the server S in the externally verifiable Path ORAM protocol with an
honest client is computationally indistinguishable from the view of the server in Game 3 below,
where the client performs dummy operations with dummy data.

Proof. In order to prove the above, we will show a sequence of hybrids.

Game 0 Game 0 is the real world scenario.

Game 1 In Game 1 the client stores and updates the database locally. After each access, if the
verifier does not output cheatC or cheatS (i.e., the access is successful) instead of decrypting the
desired ciphertext the client reads the corresponding plaintext from its local database.

For the server to distinguish Game 0 and Game 1, the server must either give the client incorrect
data and cause verification to succeed, or cause the output of the verifier to change compared to
Game 0. The server cannot do the former, by the security of the hash function and Merkle tree.
The server cannot do the latter, since the messages sent to the verifier do not change in this game.
Therefore, Game 0 and Game 1 are indistinguishable.

12

Game 2 In Game 2, instead of uploading the real database to the server during setup, the client
uploads a dummy database. The client still stores the real database locally. For each access, the
client requests a read with the same index as what the client would request on the real database.
While performing an access with the server, the client engages in the same verification procedure
over the dummy ciphertexts. If verification of the dummy database fails, the client correspondingly
aborts as if it was the real database.

First, note that the semi-honest ORAM scheme guarantees that reads are indistinguishable
from writes. Thus, for the server to distinguish Game 1 from Game 2, the server must distinguish
ciphertexts in Game 1 from Game 2, or distinguish hashes or signatures in Game 1 from Game 2,
or see different behavior from the verifier.

By the CPA security of symmetric-key encryption, none of these things can happen. If they
did, an adversary attacking the CPA security of the encryption scheme could simulate the entire
interaction, using an encryption oracle to encrypt on the client’s behalf, and use the server (or
verifier) behavior to distinguish encryptions of real data from encryptions of dummy data. (This
argument assumes that the signatures the client computes are computed with a different public key
than the encryptions.)

Game 3 Game 3 is the same as Game 2, except that the client always reads dummy index
ind′ = 0 from the server.

The same argument given for the semi-honest security of Path ORAM implies that the server
cannot distinguish the change in the client’s access pattern as a result of the choices of path x on
each step. Thus, we must only show that verification does not leak any access pattern. For Path
ORAM, each path is verified in the same way; siblings are requested, and reused to recompute the
new root hash. By the security of Merkle trees, if the server sends any hash incorrectly, the client
notices: if the client was running an unverified access, a verified access is requested. If the client
was running a verified access, then cheatS gets output by the verifier. Because the server already
knows the client will (or will not) detect misbehavior, the client’s actual detection and response
adds no additional information.

In Game 3, the server S stores a dummy database which is always accessed with a dummy
index. Given this hybrid, we construct an ideal world simulator SimS that internally simulates S,
V, and the modified client of Game 3. We assume, without loss of generality, that S sends its view
to the environment Z during setup and each access. (Any other message sent to Z is necessarily a
function of the view of S, so it suffices to prove verifiability if S sends its view.)

Simulation Upon receiving a notification that the client has sent a setup request to F with a
database of size |D|, SimS internally runs the setup procedure for an instance of Game 3 as above
with an honest client and server S with a dummy database of size |D|. If the internal client aborts,
SimS sends abort to F ; otherwise, SimS sends ok to F . Then, SimS sends the view of S to Z.

Upon receiving a notification that an access is occurring from F , SimS internally runs a dummy
access (read, 0,⊥) with S. If Phase 1 aborts, SimS sends vrfyS = yes; otherwise, SimS sends
vrfyS = no. If the access proceeds to Phase 2 and the verifier outputs cheatS , SimS sends failS = yes.
If the verifier outputs cheatC or success, SimS sends failS = no. At the end of each access, SimS
sends the view of S to Z.

We now need to show that the simulator SimS as defined above, internally running Game 3, is such
that the output bit of the environment is indistinguishable between the real world and ideal world.

13

Lemma 1 already showed that the view of S (including the outputs of V) is identical in Game 3
and the real world. Therefore SimS outputs a view that is indistinguishable from the real-world
view of S. It is also clear from the construction of the simulator that client output is the same in
both worlds. All that remains is to show that the output of V in the ideal world is indistinguishable
from that in the real world.

Note that by sending the appropriate values of vrfyS and failS , SimS can essentially choose the
output of V in the ideal world, guaranteeing that it matches the output of the simulated verifier
SimS is running internally. The only exception to this is if the simulated verifier outputs cheatC .
We must show this happens with negligible probability. There are three cases in which this output
might occur:

1. If σS does not verify correctly from the client.

2. If countS ≥ countC + 2; i.e., if the root sent by the client is much too old, compared to the
root sent by the server.

3. If the new signed root σ′C does not verify or the new count count′C is not one greater than
countC .

The first and third cases cannot occur, since the client here is honest. To limit the second case,
note that after each operation is complete, either one party has been found cheating (in which
case no additional operations will occur) or both parties now have signatures of matching counters.
Therefore each access starts with matching counters. As discussed earlier, the server could move
their counter one ahead of the client by not sending the final message in Phase 1, but the client will
never sign a counter that has been increased by more than one during a single operation, so this
cannot occur due to a signature actually received from the client. Therefore it must come from a
forged signature, which happens with negligible probability.

Thus, the simulation is successful, and we have security against a malicious server.

Server-side security In this case, we prove that for all real world adversarial clients C there
exists an ideal world client SimC such that for all server-side environments Z,

|Pr[RealC,Ŝ,Z(λ) = 1]− Pr[IdealSimC ,Ŝ,Z(λ) = 1]| ≤ negl(λ).

As above, we may assume without loss of generality that C sends its view to Z each access, since
any other message is a function of this view.

Simulation The ideal world simulator SimC runs the real world protocol between client C, an
honest server, and the verifier internally, always sending the simulated view of C to Z. When C
runs the setup protocol successfully with the server using database D, SimC sends D to F .

Any time the simulated C carries out an operation in the internal simulation, SimC carries out
an operation in the ideal world, always requesting a read of index 0. If the simulated operation
finishes without the involvement of the verifier, SimC sends vrfyC = no. Otherwise, vrfyC = yes and
then failC = yes only if the simulated verifier outputs cheatC .

We now need to show that the environment cannot distinguish the real world from the ideal world
with the above simulation. In the setup phase, the output of SimC is identical to the view of C,
and the server will output notification of the setup and |D| in both the real and ideal worlds if and
only if C successfully concludes the setup protocol. Thus, we can assume the simulated server and

14

C have successfully exchanged signed roots and counters. We then prove that a given access looks
identical in both worlds.

It is clear that in each access the view of C in the real world matches the output of SimC in
the ideal world, since SimC is simulated exactly the same real world interaction internally. It’s
also clear that the output of the server is the same in both worlds, since whenever the real world
server notifies Z that an access is occurring, SimC sends a message to F that causes the same thing
to happen in the ideal world. That means the only difference between worlds can come from the
output of the verifier.

Whenever the verifier would output cheatC or success in the real world, SimC sends vrfyC and
failC values that cause the same thing to happen in the ideal world. So we must show only that
an output of cheatS occurs with negligible probability in the real world (or, equivalently, in the
internal simulation of SimC). We consider each case where the verifier might decide on such an
output:

1. If σC on any root sent by the server does not verify correctly.

2. If countS is incorrect; i.e., if countS = countC + 1 or countS < countC .

3. If the Merkle proof for data P does not match the agreed upon root rootC .

4. If the new signed root σ′S from the server is not the correct value or if the new signature σS
does not verify correctly.

All cases but the second are impossible. The honest server will only send σC values that it received
from the client (and that verified correctly when received). The Merkle proof and new counter and
signature values will also always be correct. The second case requires a more nuanced examination.
If the countC value received from the client (through the verifier) is one less than the most recent
count the server has seen, the server will roll back the database to match that count value, meaning
that countS = countC + 1 can never occur. Furthermore, the server never signs a given count value
until after it has seen the same value signed by the client. As a result, countS < countC cannot
occur unless the client has forged a signature, which happens with negligible probability.

This completes the proof of security against a malicious client, and therefore the protocol is a
secure externally verified ORAM protocol.

5 Ring ORAM

We now present a construction for externally verifiable Ring ORAM. Section 5.1 gives an overview
of Ring ORAM. Our construction for malicious-secure Ring ORAM is presented in Section 5.2
and proven secure in Section 5.3. Section 5.4 extends this construction to the externally verifiable
setting with a high-level description, and Section 5.5 gives a very detailed description of the protocol.
Section 5.6 presents a proof of security.

5.1 Semi-honest Ring ORAM

Ring ORAM is an improvement of Path ORAM where instead of reading all blocks along a path
every access, a single block per bucket is read, along with a path of encrypted metadata [9]. In
addition to each bucket storing Z blocks, each bucket also stores S dummy blocks. Whole buckets

15

(meaning Z blocks out of the bucket) are still read and written in Ring ORAM, but much less
frequently than Path ORAM.

Ring ORAM preserves the same invariant as Path ORAM: each block is mapped to a leaf node,
and each block must be stored in a bucket along the path from the corresponding leaf node to the
root of the ORAM tree.

When the client reads a block, they first complete a metadata scan over the path in question.
They then decrypt the metadata and infer a set of offsets for each block along the path, where an
offset i specifies that the ith block of the bucket is requested. This operation is called ReadPath.
All of the blocks requested along the path, except the actual block that the client wants, are
dummy blocks. The client then decrypts all blocks downloaded and only keeps the real block.
Dummy blocks are each used only once; if a bucket along a path has been involved in more than S
ReadPath operations, that bucket is now “used up”. The number of ReadPath operations a bucket
has been involved in is that bucket’s count. At the end of ReadPath, all buckets with a count at
least S are read to the client’s stash, and rewritten from the stash. This rewriting operation is
called an EarlyReshuffle.

Each bucket contains metadata that specifies where the Z real blocks are (along with other
small pieces of metadata). The block size in Ring ORAM is set so that each block is larger than
the collection of metadata read during ReadPath. Because of this, Ring ORAM is not performant
for small block sizes.

Periodically, an eviction happens. In an eviction, a path is (deterministically) selected, and all
buckets along that path are read and rewritten. This operation is called EvictPath. The operation
to read an individual bucket to the client’s stash is called ReadBucket, and the operation to write
to an individual bucket is called WriteBucket.

Write operations are, in a sense, postponed. When a client wishes to write to a block, they
instead store the new data in their local stash (and access the corresponding path, as if a read
was occurring). Unless an EarlyReshuffle occurs, this data will not be written until an EvictPath
operation allows the relevant block to be updated. (EvictPath is set to happen often enough that
the size of the client’s stash is bounded.)

Ring ORAM with XOR The ReadPath operation may be further optimized by having the
server XOR all of the requested blocks together, and send the XORed value to the client. The client
can reconstruct the dummy blocks, and hence recover the single non-dummy block from the XORed
value. This construction gives a way to read a block securely where the only online communication
is a single block. Thus, the online communication of Ring ORAM with XOR is a constant multiple
of the block size. (Overall communication is still O(log n), but most can be performed offline.)
Using the XOR optimization requires the client to store randomness associated with each dummy
block, but this can, like other information, be stored recursively in another ORAM instance.

5.2 Malicious-Secure Ring ORAM

As a step on the way to externally verifiable ORAM, we contribute what we believe to be the
first malicious-secure variant of Ring ORAM that does not reduce the asymptotic efficiency of the
protocol.

In order to provide correctness, authenticity, and freshness, we use an authenticated encryption
scheme AE. Each block stored on the server (both real and dummy) is stored as AE.Enc(ci||pi||bi),
where bi is the block data, ci is a freshness counter incremented each time bi is written, and pi is

16

a position index, an encoding of the position in the ORAM tree of the block (i.e., B||O, where B
is the bucket’s unique identifier and O is the offset in the bucket).

The freshness counters for all blocks are stored on the client side in a data structure we call
the FreshnessMap, which maps a block to a counter. When the client reads a block that decrypts
successfully, the block is verified for correctness by checking that the read ci agrees with the counter
stored in the PositionMap, and that the read pi corresponds to the correct position in the ORAM
tree. The client is guaranteed authenticity by the block decrypting successfully.

Metadata for Ring ORAM also needs to be authenticated. For metadata, an augmented Merkle
tree may be used in the same way as malicious-secure Path ORAM. We call this the metadata tree,
or MT . Each internal node of MT is equal to H(Mi||h`||hr), where Mi is the encrypted metadata
in the ith bucket, and h` and hr are the left and right children hashes of MT , respectively. The
leaf nodes of MT are equal to H(Mi). The client stores the current root rM of the metadata tree.

Whenever the client begins a Ring ORAM operation (ReadPath, EarlyReshuffle, or EvictPath),
the client first requests from the server a path PM of metadata. The server sends PM along with
a Merkle proof MPM consisting of all sibling hashes for PM . The client then locally reconstructs
the metadata root r′ using PM and MPM ; if r′ 6= rM , the client aborts.

Each operation proceeds as follows:

1. The client requests a path PM from MT, according to the ORAM access desired. In return,
the server sends PM along with a Merkle proof MPM . Using the client’s previously stored
root rM of MT , if ReconstructRoot(PM ,MPM) 6= rM , the client aborts.

2. The client runs the corresponding Ring ORAM operation. Each time block bi is written to
the server, ci is incremented by one. If at any point a block contains an incorrect ci or pi, or
decryption fails, the client aborts.

3. At the end of the access, the client sends an updated path of metadata P ′M to the server
according to the metadata changed in the previous step; the client in turn updates its stored
root rM .

The above described scheme is malicious-secure. Additionally, this construction is compatible
with Ring ORAM with XOR: the client can store locally all information needed to compute an
authenticated encryption of a dummy block, so that they can recover a real block encrypted with
authentication from an XORed path. We give a proof of malicious security in Section 5.3.

As a speedup, the above scheme can be modified so that metadata is also verified using au-
thenticated encryption in a manner similar to the ORAM data. (We use the Merkle tree in this
construction in order to lead into externally verifiable Ring ORAM.)

Efficiency Overall, the additions above do not increase the space or communication complexity
compared to semi-honest Ring ORAM.

Server storage increases only by a small constant amount (ci, pi, and the constant overhead for
authenticated encryption) for each block.2 Client storage is expanded to hold the freshness counters
for each block. This additional per-block data can be stored recursively on the server similar to
the Position Map, resulting in a constant blowup in client storage [15]. If the client uses the XOR

2Technically, ci grows with O(logQ), where Q is an upper bound on the number of rewrites on any given block.
With a practical block size (say, a few kilobytes), the space required for each ci will be dominated by the size of each
block.

17

technique, then they also need to store the randomness associated with each dummy block. This
data may also be stored recursively.

Communication is increased by a Merkle proof MPM for metadata communicated with each
Ring ORAM operation. The size of this Merkle proof is dominated by the size of the path of
metadata PM required in the semi-honest Ring ORAM protocol.

5.3 Proof of Security for Malicious-Secure Ring ORAM

Here we prove that the Ring ORAM variant from Section 5.2 achieves malicious security. We
borrow the simulation-based definition of secure ORAM with a malicious server from [4]. This
definition, in contrast with the definition of externally verifiable ORAM, considers only client-side
security, so only the server is allowed to arbitrarily deviate from the protocol.

Ideal world Here, F is an ideal functionality that locally stores the database, which interfaces
with the client C and server S.

Setup An environment Z gives a database D to C, who forwards D to F . Then, F tells S the size
of the database |D|. Then, S gives ok or abort to F , who forwards ok or ⊥ to C accordingly.
If C receives ⊥, the execution ends.

Access Each time step, the environment Z gives C a command (op, ind, data), and C forwards it
to F . F then notifies S that an operation is happening. In response, S sends either ok or
abort to F . If S gave ok, F fulfills the request from C and sends C any requested data. If S
gave abort, F gives ⊥ to C. C then forwards this data to Z.

After the setup procedure and each access, S may send a message to Z.

Once all poly(λ) accesses have been completed, Z outputs a bit. Define the random variable
IdealF ,S,Z(λ) to be this output.

Real world In the real world, the environment Z gives C a database D. C runs the setup
procedure with the real world server S. If the setup protocol aborts, the execution ends. At each
time step, Z gives C the tuple (op, ind, data), who runs the corresponding access with S. The client
then forwards any data received, or ⊥ if the protocol aborted, to Z. After the setup procedure and
each access, S may send a message to Z.

After all access have been completed, Z outputs a bit. Define the random variable RealΠ,S,Z(λ)
to be the final bit output by Z in the real world scenario.

Definition 2 A protocol Π is malicious-secure if for all real world servers S, there exists an ideal
world simulator SimS such that for all environments Z, there exists a negligible function negl such
that

|Pr[RealΠ,S,Z(λ) = 1]− Pr[IdealF ,SimS ,Z(λ) = 1]| ≤ negl(λ).

♦

Having defined security, we now proceed with the proof. We give a simulator and then use a
hybrid argument to show that the real and ideal worlds are indistinguishable.

The simulator The simulator is analogous to the above one for Path ORAM, but for a real
world instance of Ring ORAM using dummy data.

18

The simulator SimS runs the real world protocol locally between client C and server S. When
the functionality F notifies SimS that a setup operation is occurring with database size |D|, SimS
runs the real world setup protocol between C and S with a dummy database of size |D|. If the
setup protocol aborts, SimS sends abort to F ; otherwise, SimS sends ok to F .

When F notifies SimS that an access is occurring, SimS runs an access between C and S
with dummy index ind′ = 0. This access includes a ReadPath operation and any EvictPath or
EarlyReshuffle operations that will are required after the ReadPath has been performed. If the
client aborts, the simulator sends abort to F . Otherwise, it sends ok.

Game 0 Game 0 is the real world scenario.

Game 1 In Game 1, the client stores the database locally, including metadata. If verification
succeeds after each access, instead of decrypting the desired ciphertext or metadata, the client reads
the corresponding plaintext from its local database.

To distinguish Game 0 and Game 1, the server must give the client incorrect data (or metadata)
and cause verification to succeed. The server is unable to do so, by the security of authenticated
encryption and Merkle trees. (The client stores the updated freshness counter and knows the
position index, so blocks cannot be rearranged. The server would have to forge a valid encryption
or find a collision in the hash underlying the Merkle tree.) Therefore, Game 0 and Game 1 are
indistinguishable.

Game 2 In Game 2, instead of uploading the real database to the server, the client uploads
a dummy database. The client still stores the real database locally. For each access, the client
requests a read with the same index as what the client would request on the real database. After
completing an access with the server, the client engages in the same verification procedure; that is,
the client verifies the dummy database.

First, note that reads are indistinguishable from writes by the same argument that applies in
the semi-honest ORAM case. By the CPA security of symmetric-key encryption, the server cannot
tell dummy data from real data. Since all Merkle tree hashes are functions only of ciphertexts,
they cannot add any more information. Thus, Game 1 and Game 2 are indistinguishable.

Game 3 Game 3 is the same as Game 2, except that the client always accesses dummy index
ind′ = 0 from the server.

Again, the argument from the semi-honest case applies, unless the verification steps give the
server additional information. However, the client verifies successful decryption of every block read
every access, and any change by the server will result in an abort (unless an encryption was forged)
so the server knows ahead of time how the client will behave. Thus, no information new information
is gained from this behavior, and Game 2 and Game 3 are indistinguishable.

Game 3 is equivalent to the ideal world, so the present construction is malicious secure.

XOR Technique Using the XOR technique, instead of sending log(n) blocks for every ReadPath
access, the server sends the XOR of all of these blocks. All but one of these blocks are dummy
blocks, so the client may recompute the desired encrypted blocks. The client may then abort as
usual if the recomputed block does not decrypt successfully.

Game 0 is still indistinguishable from Game 1, since this does not enable the server to forge
any encryption it couldn’t before; any computation that the server could do here, the server could
have done in the original ReadPath protocol. Also, Game 1 is still visibly indistinguishable from
Game 2.

19

To show that Game 2 is indistinguishable from Game 3, we need to show that the decision for
the client to abort during ReadPath using XOR does not leak any more information than during
ReadPath without XOR. First, note that once a block is involved in a ReadPath operation, that
block is now invalidated; thus, we do not need to consider multiple ReadPath operations that
involve overlapping sets of blocks.

If the server alters an odd number of blocks at bit position i during a ReadPath operation, then
the corresponding bit will be flipped, and corresponding decryption will fail. Similarly, if the server
alters an even number of blocks at bit position i, then the decryption will succeed. Thus, whether
or not the client aborts is purely a function of how many bits are flipped at each position. This
means that the server already knows whether the client will abort, meaning the server can infer
nothing about the access pattern from the client’s behavior.

Thus, the server cannot gain any information using the XOR technique, so Game 2 is indistin-
guishable from Game 3. Using the same simulator, we see that the construction is malicious secure
with the XOR technique.

5.4 Externally Verifiable Ring ORAM

Figure 5: The relevant data structures for externally verifiable Ring ORAM. All client-side storage
except for the signed Merkle tree roots may be stored recursively.

We now describe how to make Ring ORAM secure in the externally verifiable setting. We note
first that simply using the same techniques used for Path ORAM would result in O(log n) online
bandwidth, removing the advantage that Ring ORAM (with XOR) offers in the first place. (This
is because reading a block would require receiving a Merkle proof of that block’s authenticity.) We
instead use two separate types of overlapping authentication. The first is a set of Merkle trees: we
use an augmented Merkle tree MT for the metadata tree, a (standard) Merkle tree BT for each
bucket, and an augmented Merkle tree OT for the overall ORAM tree, where the “data” in each
node is the root of the corresponding bucket tree. Combined with these Merkle trees, we also store
in each block a counter and position index as we did in the malicious-secure variant. Each block is
encrypted using authenticated encryption, as above. The data structures used for verifiable Ring
ORAM are outlined in Figure 5.

The Merkle tree authentication and the authentication from authenticated encryption are used
at different times. Metadata is always verified using the MT Merkle tree. When ReadPath is
run, the resulting block is verified by successful decryption. For EarlyReshuffle and EvictPath
operations, the OT Merkle tree (and the bucket trees) are used to verify data. The Merkle trees

20

are updated whenever the data they authenticate is changed. Because successful decryption cannot
be confirmed by the verifier, Phase 2 must revert to using the Merkle tree authentication process.
This means that Phase 2 is a O(log n)-communication operation. This is unfortunate, but given
that the existence of Phase 2 is really just a deterrent — honest parties would never conduct this
operation (and even malicious parties have no incentive to force Phase 2) — we believe this is a
minor concern.3

We now outline the construction of externally verifiable Ring ORAM in more detail. Below we
present high-level descriptions of exactly what changes need to be made to the semi-honest Ring
ORAM operations. Full step-by-step descriptions of an honest execution of each operation is in
Section 5.5.

Phase 1 Modifications here use authenticated encryption to authenticate blocks during Read-
Path and Merkle trees for all other authentication. Counters and signatures for current values of
the roots of OT and MT must be maintained. Specific details are stated below. We assume without
explicit statement that any time one party receives a signature, block to decrypt, or Merkle proof,
it is verified and if verification fails the receiving party aborts.

1. At the beginning of each operation, the client requests a metadata path PM and receives
both PM and a Merkle proof MPM of its correctness. At the end of the operation, the client
sends the new path data to update MT as well as a signed copy of the new root, along with
an (incremented) counter. The server responds with a signature of its own on the root and
counter. (Note that this happens in all operations, meaning that the counters for MT and
OT will not in general be equal.)

2. In the ReadPath operation, the client verifies the received block by checking successful de-
cryption. (If not using the XOR variant, this is done for all blocks along the path.)

3. In EvictPath and EarlyReshuffle operations, the client receives data from particular blocks
and a Merkle proof that those blocks are correct. (This proof includes a Merkle proof that a
given bucket tree root is correct, followed by a Merkle proof that that root is correct based on
the shared root of OT .) The client then writes new information to these blocks, recomputes
the root of OT , increments its counter, and sends a signature of both to the server, who
responds with a signature of their own.

Phase 2 This phase always consists of an EvictPath operation, moderated by the verifier. Ear-
lyReshuffle and ReadPath can be conducted as part of EvictPath — they simply leave most data
unchanged. The verifier independently confirms all signatures and outputs cheating messages if
any do not verify correctly. More specifically:

1. Client submits signed roots and counters for OT and MT . Server responds with matching
roots and counters. As with Path ORAM, the verifier accepts if the roots match, and the
server is expected to be able to roll back OT , MT or both by one counter value. If the roots
don’t match, the verifier outputs a cheat message as in the Path ORAM variant.

3One might be tempted to use signatures from both client and server on each block to avoid the O(logn) efficiency
for Phase 2, but this does not work. In particular, during Phase 2 the client must be sent the entire path anyway,
in order to hide what block is requested. The XOR technique cannot be used because the verifier does not have the
randomness needed to reconstruct the dummy blocks (and could not verify its accuracy if the client shared it).

21

Verifier V

Upon receiving (rootT,C , countT,C , σT,S) for T ∈ {O,M} from client:
If σT,S does not verify correctly using the corresponding root and counter for either T ∈
O,M , output cheatC . Otherwise, send (verify request, countC) to server.

Upon receiving (rootT,S , countT,S , σT,C) for T ∈ {O,M} from server:
For T ∈ {O,M}: If σT,C does not verify correctly using the corresponding root and counter,
output cheatS . If countT,S ≥ countT,C + 2, output cheatC . Otherwise if countT,C 6=
countT,S , output cheatS .

Upon receiving x from client:
Forward x to server.

Upon receiving (Path PT , Merkle proof MPT) for T ∈ {O,M} from server:
For T ∈ {O,M}: Use data PT with MPT to reconstruct root r∗T . If r∗ 6= rootT,C , output
cheatS .

If the above succeeds for T ∈ {O,M}, verifier forwards (PM ,MPM , PO,MPO) to client.

Upon receiving (Path P ′T , (root′T,C , count
′
T,C , σ

′
T,C)) for T ∈ {O,M} from client:

For T ∈ {O,M}: Use data P ′T with MPT to reconstruct new root r′T . If σ′T,C does not
verify correctly, output cheatC . If count′T,C 6= countT,C +1, output cheatC . If r′T 6= root′T,C ,
output cheatC .

If the above succeeds for T ∈ {O,M}, forward P ′T and (root′T,C , count
′
T,C , σ

′
T,C) for T ∈

{O,M} to server.

Upon receiving (root′T,S , count
′
T,S , σ

′
T,S) for T ∈ {O,M} from server:

For T ∈ {O,M}: If σ′T,S does not verify correctly, output cheatS . If count′T,S 6= count′T,C ,
output cheatS . If r′T 6= root′T,S , output cheatS .

If the above succeeds for T ∈ {O,M}, forward (root′T,S , count
′
T,S , σ

′
T,S) for T ∈ {O,M} to

client.

Output success.

Figure 6: The externally verifiable Ring ORAM verifier V. root, count, and σ variables refer to
the roots of the Merkle trees, the corresponding counters, and the signatures thereof. Each variable
has two subscripts, the first (O or M) indicating which tree the variable corresponds to, and the
second (C or S) denoting the party that computed the value.

2. A path PO of data and path PM of metadata is forwarded from the server to the client through
the verifier, along with Merkle proofs MPO and MPM for these data.

3. Client uses PO and PM to call EvictPath as in semi-honest Ring ORAM, in order to obtain
rewritten paths P ′O and P ′M . Client uses the above Merkle proofs to compute new roots r′O
and r′M for the two Merkle trees.

4. Client sends new data P ′O and P ′M to verifier, along with client’s signature of the new Merkle
tree roots.

5. Server responds with server’s signatures of new Merkle tree roots.

The corresponding verifier can be seen in Figure 6.

Analysis Our additions to malicious Ring ORAM to make it externally verifiable do not cause

22

any asymptotic overhead during honest execution. A Merkle proof for values in MT is only sent
when a path from MT is being read as well, so this is a constant-factor increase. Similarly, Merkle
proofs for values in OT are only sent when a path from OT is being sent. Counters, signatures,
and the blowup from authenticated encryption are constant-size additional values. Phase 2 is the
only potentially longer operation, causing O(log n) communication. This would only be done given
malicious behavior (or hardware failure).

5.5 Detailed Description of Externally Verifiable Ring ORAM

In case the previous section was not sufficiently concret, below we present detailed descriptions of
the honest execution of Phase 1 for each operation of Ring ORAM. We use DB to represent the
data stored in bucket B, and we use countO and countM to represent the counters associated with
the roots of OT and MT respectively.

ReadPath During ReadPath, the client downloads, modifies, and re-uploads metadata along a
path. The client then requests specific block offsets within each bucket along a path. The server
sends the client the relevant data blocks, potentially XORed together. Data blocks received during
this operation are verified by checking successful decryption.

Note that the metadata tree is modified, while the ORAM tree is not. Thus, the counter countM
for the metadata tree may be greater than the counter countO for the ORAM tree.

1. Client requests metadata path PM , and server responds with PM and Merkle proof MPM .

2. Using previously stored root rM , if ReconstructRoot(PM ,MPM) 6= rM , client aborts.

3. Client runs ReadPath, and requests blocks Bi from server. During this process, client modifies
metadata to obtain P ′M , according to the Ring ORAM protocol.

4. If using the XOR technique, client receives an XORed path of blocks B∗. Client reconstructs
block B, by using reconstructed dummy blocks. Otherwise, client receives a path of blocks
Bi.

5. Client verifies each Bi (or B) using position indices, stored freshness counters, and by checking
successful decryption. If any block fails to verify, the client aborts.

6. Client constructs new metadata root r′M from P ′M and MPM .

7. Client sends server signed metadata root (r′M , count
′
M , SignC(r

′
M ||count′M)), with updated

counter count′M = countM + 1. Server responds with (r′M , count
′
M , SignS(r′M ||count′M)). If

the server’s signature or counter is incorrect, the client aborts. If the client’s signature or
counter is incorrect, the server aborts, which causes the client to abort.

EvictPath During EvictPath, the client calls ReadBucket along an entire path of buckets. Then,
the client calls WriteBucket along that same path. Metadata is operated on throughout.

1. Client requests metadata path PM , and server responds with PM and Merkle proof MPM .
(The selection of path is specified by the Ring ORAM protocol.)

2. Using previously stored root rM , if ReconstructRoot(PM ,MPM) 6= rM , client aborts.

23

3. For each bucket in path P (root to leaf),

(a) Using metadata, client requests Z blocks from bucket B. Server sends back the requested
Z blocks {bj}, and S hashes {hk} of the other blocks.

(b) Client forms hashes of received blocks {bj}, and combines these hashes with received
hashes {hk} to form a collection of Z + S block hashes DB.

(c) Client uses leaf hashes DB to construct bucket root rB.

4. Server sends client Merkle proof MPO for the ORAM tree.

5. Using previously stored root rO and bucket roots {rB} from above, if ReconstructRoot({rB},MPO) 6=
rO, client aborts.

6. For each bucket B in path P (leaf to root),

(a) Client sends Z+S blocks to server in bucket B. Client hashes these blocks to form D′B.

(b) Client uses leaf hashes D′B to construct bucket root r′B.

7. Client reconstructs new ORAM tree root r′O using MPO and the bucket roots {r′B}.

8. Client sends server signed ORAM tree root (r′O, count
′
O,SignC(r

′
O||count′O)), with updated

counter count′O = countO + 1. Server responds with (r′O, count
′
O,SignS(r′O||count′O)). If the

server’s signature or counter is incorrect, the client aborts. If the client’s signature or counter
is incorrect, the server aborts, which causes the client to abort.

9. Throughout the above steps, metadata is modified to eventually obtain P ′M . Client recon-
structs new metadata tree root r′M using P ′M and MPM .

10. Client sends server signed metadata root (r′M , count
′
M ,SignC(r

′
M ||count′M)), with updated

counter count′M = countM + 1. Server responds with (r′M , count
′
M ,SignS(r′M ||count′M)). If

the server’s signature or counter is incorrect, the client aborts. If the client’s signature or
counter is incorrect, the server aborts, which causes the client to abort.

EarlyReshuffle During EarlyReshuffle, the client calls ReadBucket and WriteBucket on select
buckets along a path. This operation is similar to EvictPath, but not all buckets along the path will
be updated. Additionally, in EvictPath the operations were batched such that all ReadBucket oper-
ations happened before all WriteBucket operations. Here, ReadBucket and WriteBucket operations
alternate.

1. Client requests metadata path PM , and server responds with PM and Merkle proof MPM .
The selection of path is specified by the Ring ORAM protocol.

2. Using previously stored root rM , if ReconstructRoot(PM ,MPM) 6= rM , client aborts.

3. Along the entire path, server sends collection of bucket roots {rB}, with Merkle proof MPO.

4. Using previously stored root rO, if ReconstructRoot({rB},MPO) 6= rO, client aborts.

5. Using metadata from PM , client constructs list L of what buckets need to be updated accord-
ing to the Ring ORAM protocol. Client sends list L to server.

24

6. For each bucket B in L (ordered from root to leaf):

(a) Client calls ReadBucket and requests Z blocks from bucket B. Server sends back the
requested Z blocks {bj}, and S hashes {hk} of the other blocks.

(b) Client forms hashes of received blocks {bj}, and combines these hashes with received
hashes {hk} to form a collection of Z + S block hashes DB.

(c) Client uses leaf hashes DB to reconstruct bucket root r∗B. If r∗B 6= rB from above, client
aborts.

(d) Client modifies metadata in B and sends Z +S blocks to bucket B. Client hashes these
blocks to form D′B. (Client also modifies metadata in PM accordingly.)

(e) Client uses leaf hashes D′B to construct bucket root r′B.

7. For each bucket B not in L, let r′B = rB.

8. Client constructs new ORAM tree root r′O, using {r′B} and MPO.

9. Client sends server signed ORAM tree root (r′O, count
′
O, SignC(r

′
O||count′O)), with updated

counter count′O = countO + 1. Server responds with (r′O, count
′
O,SignS(r′O||count′O)). If the

server’s signature or counter is incorrect, the client aborts. If the client’s signature or counter
is incorrect, the server aborts, which causes the client to abort.

10. Throughout the above steps, metadata is modified to eventually obtain P ′M . Client recon-
structs new metadata tree root r′M using P ′M and MPM .

11. Client sends server signed metadata root (r′M , count
′
M ,SignC(r

′
M ||count′M)), with updated

counter count′M = countM + 1. Server responds with (r′M , count
′
M ,SignS(r′M ||count′M)). If

the server’s signature or counter is incorrect, the client aborts. If the client’s signature or
counter is incorrect, the server aborts, which causes the client to abort.

5.6 Proof of Security for Externally Verifiable Ring ORAM

This proof largely follows the same argument as was used for the externally verifiable version of
Path ORAM. We begin with a lemma that captures the part of the proof with the most additional
complexity, and then use this lemma to proceed through the proof as we did previously.

Lemma 2. If an operation ends successfully (i.e., in Phase 1 or in Phase 2 with the verifier
outputting success), with all but negligible probability any data received by the client is correct and
the client’s updated Merkle tree roots accurately reflect a tree where new data has been written as
expected.

Proof. This is immediate for the metadata tree, since it is an augmented Merkle tree interfaced
with in the same manner as in externally verifiable Path ORAM.

Recall that all data blocks are encrypted using authenticated encryption. During ReadPath,
data blocks are verified by checking successful decryption. For the client to not abort while reading
block Bi, decryption must succeed with the correct freshness counter and position index; i.e., the
block must be authentic, up-to-date, and in the correct position in the ORAM tree. The server
cannot forge this encryption with greater than negligible probability.

25

During EvictPath, the client uses the Merkle tree to authenticate data. If this does not cause
the client to abort, then with all but negligible probability each received bucket root rB is consistent
with the stored ORAM tree root rO, by the security of Merkle trees. In turn, with all but negligible
probability each bucket root rB is consistent with the received blocks and block hashes in that
bucket. If the received data and Merkle proof is correct, then it follows that the client’s updated
root is correct for the newly modified database.

EarlyReshuffle is similar, but the server also provides the client with bucket roots rB not included
in the list L of buckets to request. If the Merkle proof for the ORAM tree succeeds, these are
similarly consistent with the stored root rO with all but negligible probability.

Thus, if the Merkle proof succeeds, all received blocks, block hashes, and bucket roots are
confirmed to be correct with all but negligible probability, and all updates will then occur correctly.

Client-side security The proof for externally verifiable Ring ORAM is essentially the same as
for externally verifiable Path ORAM. We use the above two lemmas to show that the view of a
server is indistinguishable between the real world and scenario where all operations are dummy:

Lemma 3. The view of the server S in the externally verifiable Ring ORAM protocol with an
honest client is computationally indistinguishable from the view of the server in Game 3 below,
where the client performs dummy operations with dummy data.

Proof. As before, we use a hybrid argument.

Game 0 Game 0 is the real world scenario.

Game 1 In Game 1 the client stores and updates the database locally. After each access, if the
verifier does not output cheatC or cheatS (i.e., the access is successful) instead of decrypting the
desired ciphertext the client reads the corresponding plaintext from its local database.

For the server to distinguish Game 0 and Game 1, the server must either give the client incorrect
data and cause verification to succeed, or cause the output of the verifier to change. The server
cannot do the former; by Lemma 2, if the client does not abort from Phase 1, the client must have
the correct data with all but negligible probability. By the security of Merkle trees, if the verifier
does not output cheatC or cheatS during Phase 2, the verifier must have given the client the correct
data. The server cannot do the latter, since the interaction with the verifier does not change in
this game.

Therefore, Game 0 and Game 1 are indistinguishable.

Game 2 In Game 2, instead of uploading the real database to the server, the client uploads
a dummy database. The client still stores the real database locally. For each access, the client
requests a read with the same index as what the client would request on the real database. While
performing an access with the server, the client engages in the same verification procedure over the
dummy ciphertexts. If verification of the dummy database fails, the client correspondingly aborts
as if it was the real database.

First, note that the standard argument from the proof of security for semi-honest (or malicious)
Ring ORAM that reads are indistinguishable from writes still applies, with minor revision. If
ReadPath is the only operation called, the only additional information exchanges are Merkle tree
roots and their signatures, which reveal no information. If EvictPath or EarlyReshuffle is run, the

26

only additional information sent (compared to the malicious case) is the Merkle proof in tree OT
(essentially hashes of other blocks/buckets), which again reveals no additional information.

Thus, for the server to distinguish Game 1 from Game 2, the server must distinguish ciphertexts
in Game 1 from Game 2, or distinguish hashes or signatures in Game 1 from Game 2, or see different
behavior from the verifier. The same argument in Game 2 of Lemma 1 applies to show this is
impossible and therefore that Game 1 and Game 2 are indistinguishable.

Game 3 Game 3 is the same as Game 2, except that the client always reads dummy index
ind′ = 0 from the server.

Again, the argument from the semi-honest Ring ORAM security proof applies here. The same
additional information is added here as above (namely, using authenticated encryption, signed roots
of Merkle trees, and Merkle proofs), and this information is all a function only of the ciphertexts,
which the server can already see. It follows that Game 2 is indistinguishable from Game 3.

Given the above hybrid, we use the same simulator as in Section 4.5, but running the above
Game 3 instead. The Ring ORAM verifier behaves essentially the same as the Path ORAM verifier,
since both trees are being verified simultaneously. Because of this, the same argument from Section
4.5 holds here as well.

Server-side security The same simulator and basic argument as in the proof for server-side
verifiability for Path ORAM in Section 4.5 also applies here. Recall that in the proof for Path
ORAM, the simulator SimC internally runs a real world instance of the ORAM protocol between C,
an honest server, and the verifier; then, SimC outputs the correct messages to the ideal functionality
in order to imitate the same behavior with respect to the output of the verifier. For this proof,
SimC is the same as in Section 4.5, but running a real world instance of externally verifiable Ring
ORAM.

Specifically, SimC outputs vrfyC and failC in order to correspond with the internally-simulated
verifier’s output of success or cheatC . The result follows, then, as long as C cannot force the verifier
to output cheatS with non-negligible probability. The same analysis holds as in Section 4.5 to show
that this is impossible. The only modification is that the argument must be applied separately to
OT and MT .

6 Implementation

We implemented the externally verifiable Path ORAM protocol of Section 4.3 in two ways. First,
we implemented the client, server, and verifier protocols in C as would be used in Scenarios 1 or 2
described in our introduction. Second, as described in Scenario 3, we implemented an autonomous
Ethereum contract that could act as the verifier, allowing two parties to interact with enforced
penalties without the need for a third involved party acting as verifier. These implementations are
both available online under open-source licenses.4 We discuss the results of each implementation
below.

Standard Verifier Our first implementation, using a standard real-world party as the verifier,
requires roughly the same bandwidth as standard malicious-secure Path ORAM during regular
interactions. The only additional bandwidth needed is for our protocol’s added signatures (and a

4https://github.com/gancherj/evoram

27

couple control bytes specifying that this is a Phase 1 interaction). This additional bandwidth is
small and constant. We ran tests on databases of various sizes and find an overhead increase of
exactly 259B per database access, regardless of database size. In our limited experiments on small
databases, this ranged from 5.6% overhead (on a 262KB database) to 3.1% overhead (on a 134MB
database). Extrapolation to a 1TB database would give an overhead of under 2%. We expect
careful optimization could reduce this overhead somewhat.

A verified (Phase 2) interaction in this implementation requires exactly twice as much bandwidth
(assuming all connections have equal latency and bandwidth). The same data is transmitted —
the only change is that it is now transmitted from sender to verifier to receiver rather than directly
from sender to receiver. This allows for punishment of very minimal gaps in service. The verifier,
for example, can demand near-immediate responses from the server and penalize delays on a sliding
scale. A server that experiences some small downtime or traffic beyond capacity can be penalized
to a small extent,5 while a server that loses data entirely (i.e., doesn’t respond to a request correctly
even after a long time) can face a very harsh penalty.

Ethereum Verifier We also provide a second implementation that uses an automated cryp-
tocurrency contract to replace the third party verifier. We do this using Ethereum [17]. We stress
that Ethereum is a cutting-edge cryptocurrency that has shown automated contracts to be realistic,
but also that it is still in its early phases and is under active development. We view our results
here as a demonstration of what is possible, and we expect that our precise measurements will be
quickly out of date as the underlying cryptocurrency technology improves, whether that is through
the improvement of Ethereum or through the introduction of other cryptocurrencies.

The implementation of our verifier protocol as an Ethereum contract was straightforward. The
Ethereum project includes a language, Solidity, that is similar to ordinary scripting languages. All
blockchain-specific implementation details, such as how the contract interacts with the Ethereum
protocol, are abstracted away from the programmer; the structure of the smart contract closely
mirrors the abstract verifier in Figure 4. The corresponding client and server implementations
in C could also be written by a programmer lacking detailed knowledge of blockchain technology
or Ethereum. The data being passed to the contract had to be converted into a standard format
expected by Ethereum, but the actual “sending” of the data to the contract was handled using well-
developed, open-source libraries. The contract measures time by checking the current progress of the
blockchain, which proceeds at a stable pace. The contract cannot continue running autonomously;
it only responds to messages. Therefore the client must ping the contract when an unacceptable
amount of time has passed without a server response, at which point the contract checks the time
and then penalizes the server (and vice versa for penalizing the client).

The implementation was not without challenges. Ethereum is still in its earliest stages and has
a small user base. This meant that running times on public blockchains were highly variable, as
sometimes a message was not processed on the first block step after it was submitted. Because of
this, we ran our tests on a local simulation. (We also ran several experiments on the public testnet
and mainnet, and found consistent results.) Using this method allows us to measure gas usage
realistically, but does not allow us to measure timing data. The time complexity of each verified
access is dominated by the number of rounds and intrinsic properties of the blockchain instance
(such as average block time, and speed of the underlying gossip protocol). Given current blockchain

5The only practical floor on how small a disruption can be punished is the reliability of the network. Sometimes
network traffic is dropped and resent or otherwise delayed, and the time the verifier waits before declaring non-
response must be sufficient to avoid blaming these delays on the server.

28

parameters in Ethereum, this would be on the order of a small number of minutes, fast enough
to enforce a contract that penalizes the server for losing data, but not fast enough to penalize the
server for temporary failures of service quality.

The unverified (Phase 1) regular accesses do not depend on the verifier, and so are unchanged,
remaining as efficient as under the first implementation. Bandwidth required for a verified (Phase
2) access is also largely unchanged relative to the first implementation.

We focused on measuring the cost of using the contract in a Phase 2 disputed access. Here
one verified access costs the equivalent of roughly $0.33 on a 10TB database.6 Again, this seems
entirely reasonable for enforcing penalties for data loss, which we expect would be much greater
than $0.33, but too expensive to enforce small micropayments as penalties for faulty service. The
dependence on database size is O(log n), since gas cost is proportional to the length of the path
being sent. See Table 1 for complete results.

DB size Height Total Gas US Dollar equivalent

10MB 15 1077799 $0.18
1GB 22 1325838 $0.23
100GB 29 1632924 $0.29
10TB 35 1864503 $0.33

Table 1: Costs of external verification (Phase 2) using an Ethereum contract with varying database
size. Block size is 96B (encrypted), with 5 blocks per bucket. Cost is the average over two runs.
The US Dollar equivalent is relative to exchange rates as of November 28, 2016 ($8.74 per unit of
ether).

Height Encrypted Block Size Total Gas US Dollar equivalent

19 96 969879 $0.17
17 288 1221259 $0.21
15 1056 2145429 $0.38

Table 2: Costs of external verification (Phase 2) using an Ethereum contract with varying block
size. Database size is 100MB (unencrypted), with 5 blocks per bucket. All costs are the average of
two runs. The US Dollar equivalent is relative to exchange rates as of November 28, 2016 ($8.74
per unit of ether).

We also fix database size and measure the dependency of cost on block size. (This is important
because larger blocks are needed to enable recursive ORAM storage.) For block size b, we would
expect O(b log(n/b)) cost, and this is what we find. A 100MB database with 1KB block size gives
a verification cost of $0.38. See Table 2 for full results.

Of course, these measurements are of completed verified accesses where client and server both
honestly execute the protocol. In the event of nonresponse, the specified time must pass before
penalizing one party. A failed verified access might also be much cheaper, since less of the contract’s
code is being executed.

Ethereum enforces a gas limit on the total amount of computation that can be done in a
single block. Our verification costs are below this limit even for extremely large databases, but if

6The contract could be devised to charge this cost to the server, the client, or any combination of the two.

29

many transactions of this complexity were being run simultaneously, collisions in the same block
would cause degraded performance. However, in a scenario where Ethereum is used that widely its
protocol would trigger an increase in the gas limit. This is a general issue with the scalability of
blockchains; future iterations of Ethereum and similar platforms will undoubtedly work towards a
more scalable blockchain.

Furthermore, certain new security concerns are raised in the setting of smart contracts. For
example, nothing prevents a malicious client from carrying out a denial-of-service attack against
the server, and using this as a proof of the server’s non-response. Indeed, any escrow held by the
contract is simultaneously a bug bounty for the contract itself; c.f. the infamous DAO hack [13].
One must also carefully assign responsibility for the cost of verified accesses. For example, if the
server is responsible for the entire cost the client can force all transactions to Phase 2, imposing
high costs on the server. (Whether this is in the client’s interest depends on the setting.) While
crucial, we consider these kinds of attacks as a separate issue from protocol design.

Whether a cryptocurrency contract will become fast and cheap enough to penalize intermittent
server down time remains, we believe, an open question. Future externally verifiable ORAM proto-
cols might be more carefully optimized for use with a cryptocurrency contract, but we expect the
main avenue for improvement to be the underlying cryptocurrency technology. Order-of-magnitude
improvements to the time and cost required to execute contracts are entirely possible.

7 Conclusion and Future Work

We have proposed what we believe is a useful definition, strengthening the guarantees of ORAM
protocols in a way that allows for use in some practical situations that might have otherwise proven
challenging. We then gave protocol constructions and implementations that show this definition
can be achieved in reasonably efficient ways. However, much more remains to be done. Below, we
outline several of the directions we feel are most interesting.

More efficient protocols We show the feasibility of externally verifiable ORAM by finding
verifiable versions of the existing Path and Ring protocols. However, these are no longer the most
efficient protocols known. We would love to see protocols that matched the efficiency of more recent
standard ORAM constructions (e.g., [4, 16]).

Cryptocurrency improvements As mentioned above, we expect the state of the art in cryp-
tocurrencies to change in the coming future. As a result, an implementation of our verifiable ORAM
protocols over the next iteration of smart contract technology is likely to drastically improve the
usability and cost of our system, as well as the time it takes to perform a verified access.

Automated verifiers Finally, we expect that the advent of autonomous third parties trusted
for correctness (i.e., smart contracts) is likely to have interesting applications in other areas of
security and privacy. In particular, we believe their use here could possibly be adapted to replace
verifiers in optimistic fair exchange protocols and other related work. This can largely be enabled
by using zero knowledge proofs of knowledge in order to facilitate manipulation of private data
(see, for example, Hawk [7]).

30

References

[1] D. Apon, J. Katz, E. Shi, and A. Thiruvengadam. Verifiable oblivious storage. In Public-Key
Cryptography–PKC, pages 131–148. Springer, 2014.

[2] N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair exchange. In Pro-
ceedings of the 4th ACM conference on Computer and communications security, pages 7–17.
ACM, 1997.

[3] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signatures, pages
591–606. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

[4] S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi, and D. Wichs. Onion ORAM: A
constant bandwidth blowup oblivious RAM. In IACR Theory of Cryptography Conference–
TCC, pages 145–174. Springer, 2016.

[5] O. Goldreich. Towards a theory of software protection and simulation by oblivious RAMs. In
Symposium on Theory of Computing–STOC, pages 182–194. ACM, 1987.

[6] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs. J.
ACM, 43(3):431–473, May 1996.

[7] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The blockchain model
of cryptography and privacy-preserving smart contracts. University of Maryland and Cornell
University, 2015.

[8] R. Ostrovsky. Efficient computation on oblivious RAMs. In Symposium on Theory of
Computing–STOC, pages 514–523. ACM, 1990.

[9] L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. Van Dijk, and S. Devadas. Constants
count: practical improvements to oblivious RAM. In USENIX Security Symposium, pages
415–430, 2015.

[10] L. Ren, C. W. Fletcher, X. Yu, M. van Dijk, and S. Devadas. Integrity verification for
path oblivious-RAM. In High Performance Extreme Computing Conference–HPEC, pages
1–6. IEEE, 2013.

[11] M. A. Shah, R. Swaminathan, and M. Baker. Privacy-preserving audit and extraction of digital
contents. Technical report, HP Lab No. HPL-2008-32, 25 April, 2008.

[12] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious RAM with O((logN)3) worst-case
cost. In Advances in Cryptology–ASIACRYPT, pages 197–214. Springer, 2011.

[13] E. G. Sirer. Thoughts on the dao hack. http://hackingdistributed.com/2016/06/17/

thoughts-on-the-dao-hack/, 2016.

[14] M. Stadler. Publicly verifiable secret sharing. In Advances in CryptologyEUROCRYPT, pages
190–199. Springer, 1996.

[15] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas. Path ORAM:
An extremely simple oblivious RAM protocol. In Computer & Communications Security–CCS,
pages 299–310. ACM, 2013.

31

http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/
http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/

[16] X. Wang, H. Chan, and E. Shi. Circuit ORAM: On tightness of the Goldreich-Ostrovsky lower
bound. In Computer & Communications Security–CCS, pages 850–861. ACM, 2015.

[17] G. Wood. Ethereum: A secure decentralised generalised transaction ledger. Technical report,
Ethereum Project Yellow Paper, 2014.

32

	Introduction
	Our contributions
	Outline of the Paper

	Background
	Externally Verifiable ORAM
	Path ORAM
	Semi-honest Path ORAM
	Malicious-Secure Path ORAM
	Externally Verifiable Path ORAM
	Additional security properties
	Proof of Security for Externally Verified Path ORAM

	Ring ORAM
	Semi-honest Ring ORAM
	Malicious-Secure Ring ORAM
	Proof of Security for Malicious-Secure Ring ORAM
	Externally Verifiable Ring ORAM
	Detailed Description of Externally Verifiable Ring ORAM
	Proof of Security for Externally Verifiable Ring ORAM

	Implementation
	Conclusion and Future Work

