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Abstract. A chameleon-hash function is a hash function that involves a
trapdoor the knowledge of which allows one to find arbitrary collisions
in the domain of the function. In this paper, we introduce the notion of
chameleon-hash functions with ephemeral trapdoors. Such hash functions
feature additional, i.e., ephemeral, trapdoors which are chosen by the
party computing a hash value. The holder of the main trapdoor is then
unable to find a second pre-image of a hash value unless also provided
with the ephemeral trapdoor used to compute the hash value. We present
a formal security model for this new primitive as well as provably secure
instantiations. The first instantiation is a generic black-box construction
from any secure chameleon-hash function. We further provide three direct
constructions based on standard assumptions. Our new primitive has
some appealing use-cases, including a solution to the long-standing open
problem of invisible sanitizable signatures, which we also present.

1 Introduction

Chameleon-hash functions, also called trapdoor-hash functions, are hash functions
that feature a trapdoor that allows one to find arbitrary collisions in the domain
of the functions. However, chameleon-hash functions are collision resistant as
long as the corresponding trapdoor (or secret key) is not known. More precisely,
a party who is privy of the trapdoor is able to find arbitrary collisions in the
domain of the function. Example instantiations include trapdoor-commitment,
and equivocal commitment schemes.

One prominent application of this primitive are chameleon signatures [KR00].
Here, the intended recipient—who knows the trapdoor—of a signature σ for
‡ Supported by EU ERC PERCY, grant agreement n◦32131.
‖ Supported by EU H2020 project Prismacloud, grant agreement n◦644962.
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a message m can equivocate it to another message m′ of his choice. This, in
turn, means that a signature σ cannot be used to convince any other party of
the authenticity of m, as the intended recipient could have “signed” arbitrary
messages on its own. Many other applications appear in the literature, some of
which we discuss in the related work section. However, all current constructions
are “all-or-nothing” in that a party who computes a hash with respect to some
public key cannot prevent the trapdoor holder from finding collisions. This can
be too limiting for some use-cases.

Contribution. We introduce a new primitive dubbed chameleon-hash functions
with ephemeral trapdoors. In a nutshell, this primitive requires that a collision
in the hash function can be computed only when two secrets are known, i.e.,
the main trapdoor, and an ephemeral one. The main trapdoor is the secret
key corresponding to the chameleon-hash function public key, while the second,
ephemeral, trapdoor is generated by the party computing the hash value. The
latter party can then decide whether the holder of the long-term secret key
shall be able to equivocate the hash by providing or withholding the second
trapdoor information. We present a formal security model for this new primitive.
Furthermore, we present stronger definitions for existing chameleon-hash functions
not considered before, including the new notion of uniqueness, and show how to
construct chameleon-hash functions being secure in this stronger model. These
new notions may also be useful in other scenarios.

Additionally, we provide four provably secure constructions for chameleon-
hash functions with ephemeral trapdoors. The first is bootstrapped, while the
three direct constructions are built on RSA-like and the DL assumption. Our new
primitive has some interesting applications, including the first provably secure
instantiation of invisible sanitizable signatures, which we also present. Additional
applications of our new primitive may include revocable signatures [HKY15],
but also simulatable equivocable commitments [Fis01]. However, in contrast to
equivocable commitments, we want that parties can actually equivocate, not only
a simulator. Therefore, we chose to call this primitive a chameleon-hash function
rather than a commitment. Note, the primitive is different from “double-trapdoor
chameleon-hash functions” [BCG07,CRFG08,LZCS16], where knowing one out
of two secrets is enough to produce collisions.

Related Work and State-of-the-Art. Chameleon-hash functions were in-
troduced by Krawczyk and Rabin [KR00], and are based on some first ideas
given by Brassard et al. [BCC88]. Later, they have been ported to the identity-
based setting (ID-based chameleon-hash functions), where the holder of a master
secret key can extract new secret keys for each identity [AdM04a, BDD+11,
CTZD10,RMS07,ZSnS03]. These were mainly used to tackle the key-exposure
problem [AdM04b,KR00]. Key exposure means that seeing a single collision in the
hash allows to find further collisions by extracting the corresponding trapdoor.
This problem was then directly solved by the introduction of “key-exposure
free” chameleon-hash functions [AdM04b,GLW09,GWX07,RMS07], which pro-
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hibit extracting the (master) secret key. This allows for the partial re-use of
generated key material. Brzuska et al. then proposed a formal framework for
tag-based chameleon-hashes secure under random-tagging attacks, i.e., random
identities [BFF+09].

Beside this “plain” usage of the aforementioned primitive, chameleon-hash
functions also proved useful in other areas such as on/offline signatures [CZSM07,
EGM96,ST01], (tightly) secure signature schemes [BKKP15,HW09,Moh10], but
also sanitizable signature schemes [ACdMT05, BFF+09, GQZ11] and identity-
based encryption schemes [Zha07]. Moreover they are useful in context of trapdoor-
commitments, direct anonymous attestation, Σ-protocols, and distributed hash-
ing [ADK10,BR14,BCC88,Fis01].

Additional related work is discussed when presenting the application of our
new primitive.

2 Preliminaries

Let us give our notation, the required assumptions, building blocks, and the
extended framework for chameleon-hashes (without ephemeral trapdoors) first.

Notation. λ ∈ N denotes our security parameter. All algorithms implicitly take
1λ as an additional input. We write a ← A(x) if a is assigned the output of
algorithm A with input x. An algorithm is efficient if it runs in probabilistic
polynomial time (ppt) in the length of its input. For the remainder of this paper,
all algorithms are ppt if not explicitly mentioned otherwise. Most algorithms
may return a special error symbol ⊥ /∈ {0, 1}∗, denoting an exception. If S is a
set, we write a← S to denote that a is chosen uniformly at random from S. For
a message m = (m[1],m[2], . . . ,m[`]), we call m[i] a block, while ` ∈ N denotes
the number of blocks in a message m. For a list we require that we have an
injective, and efficiently reversible encoding, mapping the list to {0, 1}∗. In the
definitions we speak of a general message space M to be as generic as possible.
For our instantiations, however, we let the message spaceM be {0, 1}∗ to reduce
unhelpful boilerplate notation. A function ν : N→ R≥0 is negligible, if it vanishes
faster than every inverse polynomial, i.e., ∀k ∈ N, ∃n0 ∈ N such that ν(n) ≤ n−k,
∀n > n0. For certain security properties we require that values only have one
canonical representation, e.g., a “4” is not the same as a “04”, even if written as
elements of N for brevity. Finally, for a group G we use G∗ to denote G \ {1G}.

2.1 Assumptions

Discrete Logarithm Assumption. Let (G, g, q) ← GGen(1λ) be a group
generator for a multiplicatively written group G of prime-order q with log2 q = λ,
generated by g, i.e., 〈g〉 = G. The discrete-logarithm problem (DLP) associated
to GGen is to find x when given G, g, q, and gx with x← Zq. The DL assumption
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now states that the DLP is hard, i.e., that for every ppt adversary A, there exists
a negligible function ν such that:

Pr[(G, g, q)← GGen(1λ), x← Zq, x′ ← A(G, g, q, gx) : x = x′] ≤ ν(λ).

We sometimes sample from Z∗q instead of Zq. This changes the view of an adversary
only negligibly, and is thus not made explicit.

2.2 Building Blocks

Collision-Resistant Hash Function Families. A family {HkR}k∈K of hash-
functions HkR : {0, 1}∗ → R indexed by key k ∈ K is collision-resistant if for any
ppt adversary A there exists a negligible function ν such that:

Pr[k ← K, (v, v′)← A(k) : HkR(v) = HkR(v′) ∧ v 6= v′] ≤ ν(λ).

Public-Key Encryption Schemes. Public-key encryption allows to encrypt
a message m using a given public key pk so that the resulting ciphertext can be
decrypted using the corresponding secret key sk. More formally:

Definition 1 (Public-Key Encryption Schemes). A public-key encryption
scheme Π is a triple (KGenenc,Enc,Dec) of ppt algorithms such that:

KGenenc. The algorithm KGenenc on input security parameter λ outputs the private
and public keys of the scheme: (skenc, pkenc)← KGenenc(1λ).

Enc. The algorithm Enc gets as input the public key pkenc, and the message
m ∈M and outputs a ciphertext c: c← Enc(pkenc,m).

Dec. The algorithm Dec on input a private key skenc and a ciphertext c outputs
a message m ∈M∪ {⊥}: m← Dec(skenc, c).

Definition 2 (Secure Public-Key Encryption Schemes). We call a public-
key encryption scheme Π IND-T secure, if it is correct, and IND-T-secure with
T ∈ {CPA,CCA2}.

The formal security definitions are given in App. A.

Non-Interactive Proof Systems. Let L be an NP-language with associated
witness relation R, i.e., L = {x | ∃w : R(x,w) = 1}. Throughout this paper, we
use the Camenisch-Stadler notation [CS97] to express the statements proven
in non-interactive, simulation-sound extractable, zero-knowledge (as defined
below). In particular, we write π ← NIZKPoK{(w) : R(x,w) = 1} to denote the
computation of a non-interactive, simulation-sound extractable, zero-knowledge
proof, where all values not in the parentheses are assumed to be public. For
example, let L be defined by the following NP-relation for a group (G, g, q)←
GGen(1λ):

((g, h, y, z), (a, b)) ∈ R ⇐⇒ y = ga ∧ z = gbha.
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Then, we write π ← NIZKPoK{(a, b) : y = ga ∧ z = gbha} to denote the
corresponding proof of knowledge of witness (a, b) ∈ Z2

q with respect to the
statement (g, h, y, z) ∈ G4. Additionally, we use {false, true} ← Verify(x, π) to
denote the corresponding verification algorithm and crs← Gen(1λ) to denote the
crs generation algorithm. We do not make the crs explicit and, for proof systems
where a crs is required, we assume it to be an implicit input to all algorithms.

Definition 3. We call a NIZKPoK secure, if it is complete, simulation-sound
extractable, and zero-knowledge.

The corresponding definitions can be found in App. A.

Chameleon-Hashes. Let us formally define a “standard” chameleon-hash. The
framework is based upon the work done by Ateniese et al. and Brzuska et
al. [AMVA16,BFF+09], but adapted to fit our notation. Additionally, we provide
some extended security definitions.

Definition 4. A chameleon-hash CH consists of five algorithms (CParGen,CKGen,
CHash,CHashCheck,Adapt), such that:

CParGen. The algorithm CParGen on input security parameter λ outputs public
parameters of the scheme: ppch ← CParGen(1λ). For brevity, we assume that
ppch is implicit input to all other algorithms.

CKGen. The algorithm CKGen given the public parameters ppch outputs the private
and public keys of the scheme: (skch, pkch)← CKGen(ppch).

CHash. The algorithm CHash gets as input the public key pkch, and a mes-
sage m to hash. It outputs a hash h, and some randomness r: (h, r) ←
CHash(pkch,m).6

CHashCheck. The deterministic algorithm CHashCheck gets as input the pub-
lic key pkch, a message m, randomness r, and a hash h. It outputs a
decision d ∈ {false, true} indicating whether the hash h is valid: d ←
CHashCheck(pkch,m, r, h).

Adapt. The algorithm Adapt on input of secret key skch, the old message m, the
old randomness r, hash h, and a new message m′ outputs new randomness
r′: r′ ← Adapt(skch,m,m

′, r, h).

Correctness. For a CH we require the correctness property to hold. In par-
ticular, we require that for all λ ∈ N, for all ppch ← CParGen(1λ), for all
(skch, pkch) ← CKGen(ppch), for all m ∈ M, for all (h, r) ← CHash(pkch,m), for
all m′ ∈ M, we have for all for all r′ ← Adapt(skch,m,m

′, r, h), that true =
CHashCheck(pkch,m, r, h) = CHashCheck(pkch,m

′, r′, h). This definition captures
perfect correctness. The randomness is drawn by CHash, and not outside. This
was done to capture “private-coin” constructions [AMVA16].

6 The randomness r is also sometimes called “check value” [AMVA16].

5



Experiment IndistinguishabilityCH
A (λ)

ppch ← CParGen(1λ)
(skch, pkch)← CKGen(ppch)
b← {0, 1}
a← AHashOrAdapt(skch,·,·,·,b),Adapt(skch,·,·,·,·)(pkch)

where oracle HashOrAdapt on input skch,m,m
′, b:

(h, r)← CHash(pkch,m
′)

(h′, r′)← CHash(pkch,m)
r′′ ← Adapt(skch,m,m

′, r′, h′)
If r = ⊥ ∨ r′′ = ⊥, return ⊥
if b = 0:

return (h, r)
if b = 1:

return (h′, r′′)
return 1, if a = b
return 0

Fig. 1. Indistinguishability

Indistinguishability. Indistinguishability requires that the randomnesses r does
not reveal if it was obtained through CHash or Adapt. The messages are chosen
by the adversary. We relax the perfect indistinguishability definition of Brzuska
et al. [BFF+09] to a computational version, which is enough for most use-cases,
including ours.

Note that we need to return ⊥ in the HashOrAdapt oracle, as the adversary
may try to enter a message m /∈ M, even if M = {0, 1}∗, which makes the
algorithm output ⊥. If we would not do this, the adversary could trivially decide
indistinguishability. For similar reasons these checks are also included in other
definitions.

Definition 5 (Indistinguishability). A chameleon-hash CH is indistinguish-
able, if for any efficient adversary A there exists a negligible function ν such that∣∣∣Pr[IndistinguishabilityCH

A (λ) = 1]− 1
2

∣∣∣ ≤ ν(λ) . The corresponding experiment is
depicted in Fig. 1.

Collision Resistance. Collision resistance says, that even if an adversary has
access to an adapt oracle, it cannot find any collisions for messages other than
the ones queried to the adapt oracle. Note, this is an even stronger definition
than key-exposure freeness [AdM04b]: key-exposure freeness only requires that
one cannot find a collision for some new “tag”, i.e., for some auxiliary value for
which the adversary has never seen a collision.

Definition 6 (Collision-Resistance). A chameleon-hash CH is collision-res-
istant, if for any efficient adversary A there exists a negligible function ν such
that Pr[CollResCH

A (1λ) = 1] ≤ ν(λ). The corresponding experiment is depicted in
Fig. 2.
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Experiment CollResCH
A (λ)

ppch ← CParGen(1λ)
(skch, pkch)← CKGen(ppch)
Q ← ∅
(m∗, r∗,m′∗, r′∗, h∗)← AAdapt′(skch,·,·,·,·)(pkch)

where oracle Adapt′ on input skch,m,m
′, r, h:

Return ⊥, if CHashCheck(pkch,m, r, h) 6= true
r′ ← Adapt(skch,m,m

′, r, h)
If r′ = ⊥, return ⊥
Q ← Q∪ {m,m′}
return r′

return 1, if CHashCheck(pkch,m
∗, r∗, h∗) = CHashCheck(pkch,m

′∗, r′∗, h∗) = true ∧
m′∗ /∈ Q ∧ m∗ 6= m′∗

return 0

Fig. 2. Collision Resistance

Experiment UniquenessCH
A (λ)

ppch ← CParGen(1λ)
(pk∗,m∗, r∗, r′∗, h∗)← A(ppch)
return 1, if CHashCheck(pk∗,m∗, r∗, h∗) = CHashCheck(pk∗,m∗, r′∗, h∗) = true
∧ r∗ 6= r′∗

return 0

Fig. 3. Uniqueness

Uniqueness. Uniqueness requires that it is hard to come up with two different
randomness values for the same message m∗ such that the hashes are equal, for
the same adversarially chosen pk∗.

Definition 7 (Uniqueness). A chameleon-hash CH is unique, if for any effi-
cient adversary A there exists a negligible function ν such that Pr[UniquenessCH

A (
1λ) = 1] ≤ ν(λ). The corresponding experiment is depicted in Fig. 3.

Definition 8 (Secure Chameleon-Hashes). We call a chameleon-hash CH
secure, if it is correct, indistinguishable, and collision-resistant.

We do not consider uniqueness as a fundamental security property, as it depends
on the concrete use-case whether this notion is required.

In Appendix D.1, we show how to construct such a unique chameleon-hash,
based on the ideas by Brzuska et al. [BFF+09].

3 Chameleon-Hashes with Ephemeral Trapdoors

As already mentioned, a chameleon-hash with ephemeral trapdoor (CHET) allows
to prevent the holder of the trapdoor skch from finding collisions, as long as no
additional ephemeral trapdoor etd is known. This additional ephemeral trapdoor
is chosen freshly for each new hash, and providing, or withholding, this trapdoor
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thus allows to decide upon each hash computation if finding a collision is possible
for the holder of the long-term trapdoor. Hence, we need to introduce a new
framework given next, which is also accompanied by suitable security definitions.

Definition 9 (Chameleon-Hashes with Ephemeral Trapdoors). A cham-
eleon-hash with ephemeral trapdoors CHET is a tuple of five algorithms (CParGen,
CKGen,CHash,CHashCheck,Adapt), such that:

CParGen. The algorithm CParGen on input security parameter λ outputs the
public parameters: ppch ← CParGen(1λ). For simplicity, we assume that ppch
is an implicit input to all other algorithms.

CKGen. The algorithm CKGen given the public parameters ppch outputs the long-
term private and public keys of the scheme: (skch, pkch)← CKGen(ppch).

CHash. The algorithm CHash gets as input the public key pkch, and a message
m to hash. It outputs a hash h, randomness r, and the trapdoor information:
(h, r, etd)← CHash(pkch,m).

CHashCheck. The deterministic algorithm CHashCheck gets as input the public
key pkch, a message m, a hash h, and randomness r. It outputs a decision
bit d ∈ {false, true}, indicating whether the given hash is correct: d ←
CHashCheck(pkch,m, r

′, h).
Adapt. The algorithm Adapt gets as input skch, the old message m, the old

randomness r, the new message m′, the hash h, and the trapdoor information
etd and outputs new randomness r′: r′ ← Adapt(skch,m,m

′, r, h, etd).

Correctness. For each CHET we require the correctness properties to hold. In
particular, we require that for all security parameters λ ∈ N, for all ppch ←
CParGen(1λ), for all (skch, pkch) ← CKGen(ppch), for all m ∈ M, for all (h, r,
etd) ← CHash(pkch,m), we have CHashCheck(pkch,m, r, h) = true, and ad-
ditionally for all m′ ∈ M, for all r′ ← Adapt(skch,m,m

′, r, h, etd), we have
CHashCheck(pkch,m

′, r′, h) = true. This definition captures perfect correctness.
We also require some security guarantees, which we introduce next.

Indistinguishability. Indistinguishability requires that the randomnesses r does
not reveal if it was obtained through CHash or Adapt. In other words, an outsider
cannot decide whether a message is the original one or not.

Definition 10 (Indistinguishability). A chameleon-hash with ephemeral trap-
door CHET is indistinguishable, if for any efficient adversary A there exists a
negligible function ν such that

∣∣∣Pr[IndistinguishabilityCHET
A (λ) = 1]− 1

2

∣∣∣ ≤ ν(λ) .
The corresponding experiment is depicted in Fig. 4.

Public Collision Resistance. Public collision resistance requires that, even if an
adversary has access to an Adapt oracle, it cannot find any collisions by itself.
Clearly, the collision must be fresh, i.e., must not be produced using the Adapt
oracle.
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Experiment IndistinguishabilityCHET
A (λ)

ppch ← CParGen(1λ)
(skch, pkch)← CKGen(ppch)
b← {0, 1}
a← AHashOrAdapt(skch,·,·,b),Adapt(skch,·,·,·,·,·)(pkch)

where oracle HashOrAdapt on input skch,m,m
′, b:

let (h, r, etd)← CHash(pkch,m
′)

let (h′, r′, etd′)← CHash(pkch,m)
let r′′ ← Adapt(skch,m,m

′, r′, h′, etd′)
if r′′ = ⊥ ∨ r′ = ⊥, return ⊥
if b = 0:

return (h, r, etd)
if b = 1:

return (h′, r′′, etd′)
return 1, if a = b
return 0

Fig. 4. Indistinguishability

Experiment PublicCollResCHET
A (λ)

ppch ← CParGen(1λ)
(skch, pkch)← CKGen(ppch)
Q ← ∅
(m∗, r∗,m′∗, r′∗, h∗)← AAdapt′(skch,·,·,·,·,·)(pkch)

where oracle Adapt′ on input skch,m,m
′, r, etd, h:

return ⊥, if CHashCheck(pkch,m, r, h) = false
r′ ← Adapt(skch,m,m

′, r, h, etd)
If r′ = ⊥, return ⊥
Q ← Q∪ {m,m′}
return r′

return 1, if CHashCheck(pkch,m
∗, r∗, h∗) = true ∧

CHashCheck(pkch,m
′∗, r′∗, h∗) = true ∧

m′∗ /∈ Q ∧ m∗ 6= m′∗

return 0

Fig. 5. Public Collision-Resistance

Definition 11 (Public Collision-Resistance). A chameleon-hash with ephe-
meral trapdoor CHET is publicly collision-resistant, if for any efficient adversary A
there exists a negligible function ν such that Pr[PublicCollResCHET

A (1λ) = 1] ≤ ν(λ).
The corresponding experiment is depicted in Fig. 5.

Private Collision-Resistance. Private collision resistance requires that even the
holder of the secret key skch cannot find collisions as long as etd is unknown. This
is formalized by a honest hashing oracle which does not return etd. Hence, A’s
goal is to return an actual collision on a non-adversarially generated hash h, for
which it does not know etd.

Definition 12 (Private Collision-Resistance). A chameleon-hash with ephe-
meral trapdoor CHET is privately collision-resistant, if for any efficient adversary
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Experiment PrivateCollResCHET
A (λ)

ppch ← CParGen(1λ)
Q ← ∅
(pk∗, state)← A(ppch)
(m∗, r∗,m′∗, r′∗, h∗)← ACHash′(pk∗,·)(state)

where oracle CHash′ on input pk∗,m:
(h, r, etd)← CHash(pk∗,m)
If h = ⊥, return ⊥
Q ← Q∪ {(h,m)}
return (h, r)

return 1, if CHashCheck(pk∗,m∗, r∗, h∗) = true ∧
CHashCheck(pk∗,m′∗, r′∗, h∗) = true ∧
(h∗,m∗) /∈ Q ∧ (h∗, ·) ∈ Q

return 0

Fig. 6. Private Collision-Resistance

Experiment UniquenessCHET
A (λ)

ppch ← CParGen(1λ)
(pk∗,m∗, r∗, r′∗, h∗)← A(ppch)
return 1, if CHashCheck(pk∗,m∗, r∗, h∗) = CHashCheck(pk∗,m∗, r′∗, h∗) = true ∧
r∗ 6= r′∗

return 0

Fig. 7. Uniqueness

A there exists a negligible function ν such that Pr[PrivateCollResCHET
A (1λ) = 1] ≤

ν(λ). The corresponding experiment is depicted in Fig. 6.

Uniqueness. Uniqueness requires that it is hard to come up with two different
randomness values for the same message m∗ and hash value h∗, where pk∗ is
adversarially chosen.

Definition 13 (Uniqueness). A chameleon-hash with ephemeral trapdoor CHET
is unique, if for any efficient adversary A there exists a negligible function ν
such that Pr[UniquenessCHET

A (1λ) = 1] ≤ ν(λ). The corresponding experiment is
depicted in Fig. 7.

Definition 14 (Secure Chameleon-Hashes with Ephemeral Trapdoors).
We call a chameleon-hash with ephemeral trapdoor CHET secure, if it is correct,
indistinguishable, publicly collision-resistant, and privately collision-resistant.

Note, we do not require that a secure CHET is unique, as it depends on the
use-case whether this strong security notion is required.

4 Constructions

Regarding constructions of CHET schemes, we first ask the natural question
whether CHETs can be built from existing primitives in a black-box way. Interest-
ingly, we can show how to elegantly “bootstrap” a CHET scheme in a black-box
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fashion from any existing secure (and unique) chameleon-hash. Since, however,
a secure chameleon-hash does not exist to date, we show how to construct it
in App. D.1, based on the ideas by Brzuska et al. [BFF+09]. If one does not
require uniqueness, one can, e.g., resort to the recent scheme given by Ateniese
et al. [AMVA16].

We then proceed in presenting three direct constructions, two based on the
DL assumption, and one based on an RSA-like assumption. While the DL-based
constructions are not unique, the construction from RSA-like assumptions even
achieves uniqueness. We however note that this strong security notion is not
required in all use-cases. For example, in our application scenario (cf. Section 5),
the CHETs do not need to be unique.

4.1 Black-Box Construction: Bootstrapping
We now present a black-box construction from any existing chameleon-hash.
Namely, we show how one can achieve our desired goals by combining two
instances of a secure chameleon-hash CH.

Construction 1 (Bootstrapped Construction) We omit obvious checks for
brevity. Let CHET be defined as:
CParGen. The algorithm CParGen does the following:

1. Return ppch ← CH.CParGen(1λ).
CKGen. The algorithm CKGen generates the key pair in the following way:

1. Return (sk1
ch, pk1

ch)← CH.CKGen(ppch).
CHash. To hash a message m, w.r.t. public key pk1

ch do:
1. Let (sk2

ch, pk2
ch)← CH.CKGen(ppch).

2. Let (h1, r1)← CH.CHash(pk1
ch,m).

3. Let (h2, r2)← CH.CHash(pk2
ch,m).

4. Return ((h1, h2, pk2
ch), (r1, r2), sk2

ch).
CHashCheck. To check whether a given hash h = (h1, h2, pk2

ch) is valid on input
pkch = pk1

ch, m, r = (r1, r2), do:
1. Let b1 ← CH.CHashCheck(pk1

ch,m, r1, h1).
2. Let b2 ← CH.CHashCheck(pk2

ch,m, r2, h2).
3. If b1 = false ∨ b2 = false, return false.
4. Return true.

Adapt. To find a collision w.r.t. m, m′, randomness r = (r1, r2), hash h =
(h1, h2, pk2

ch), etd = sk2
ch, and skch = sk1

ch do:
1. If false = CHashCheck(pkch,m, r, h), return ⊥.
2. Compute r′1 ← CH.Adapt(sk1

ch,m,m
′, r1, h1).

3. Compute r′2 ← CH.Adapt(sk2
ch,m,m

′, r2, h2).
4. Return (r′1, r′2).

The proof of the following theorem can be found in App. F.1.
Theorem 1. If CH is secure and unique, then the chameleon-hash with ephemeral
trapdoors CHET in Construction 1 is secure, and unique.
This construction is easy to understand and only uses standard primitives. The
question is now, if we can also directly construct CHET, which we answer to the
affirmative subsequently.
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4.2 A First Direct Construction

We now present a direct construction in groups where the DLP is hard using
some ideas related to Pedersen commitments [Ped91]. In a nutshell, the long-term
secret is the discrete logarithm x between two elements g and h (i.e., gx = h)
of the long-term public key, while the ephemeral trapdoor is the randomness
of the “commitment”. To prohibit that a seen collision allows to extract the
long-term secret key x, both trapdoors are hidden in a NIZKPoK. To make
the “commitment” equivocable, it is then again randomized. To avoid that the
holder of skch needs to store state, the randomness is encrypted to a public
key of a IND-CCA2 secure encryption scheme contained in pkch. Security then
directly follows from the DL assumption, IND-CCA2, the collision-resistance of
the used hash function, and the extractability property of the NIZKPoK system.
For brevity we assume that the NP-languages involved in the NIZKPoKs are
implicitly defined by the scheme. Note, this construction is not unique.

Construction 2 (CHET in Known-Order Groups) Let {HkZ∗q}k∈K denote a
family of collision-resistant hash functions HkZ∗q : {0, 1}∗ → Z∗q indexed by a key
k ∈ K and let CHET be as follows:

CParGen. The algorithm CParGen generates the public parameters in the following
way:
1. Let (G, g, p)← GGen(1λ).
2. Let k ← K for the hash function.
3. Let crs← Gen(1λ).7
4. Return ((G, g, q), k, crs).

CKGen. The algorithm CKGen generates the key pair in the following way:
1. Draw random x← Z∗q . Set h← gx.
2. Generate πpk ← NIZKPoK{(x) : h = gx}.
3. Let (skenc, pkenc)← Π.KGenenc(1λ).
4. Return ((x, skenc), (h, πpk, pkenc)).

CHash. To hash m w.r.t. pkch = (h, πpk, pkenc) do:
1. Return ⊥, if h /∈ G∗.
2. If πpk is not valid, return ⊥.
3. Draw random r ← Z∗q .
4. Draw random etd← Z∗q .
5. Let h′ ← getd.
6. Generate πt ← NIZKPoK{(etd) : h′ = getd)}.
7. Encrypt r, i.e., let C ← Π.Enc(pkenc, r).
8. Let a← HkZ∗q (m).
9. Let p← hr.

10. Generate πp ← NIZKPoK{(r) : p = hr}.
11. Let b← ph′a.
12. Return ((b, h′, πt), (p, C, πp), etd).

7 Actually we need one crs per language, but we do not make this explicit here.
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CHashCheck. To check whether a given hash (b, h′, πt) is valid on input pkch =
(h, πpk, pkenc),m, r = (p, C, πp), do:
1. Return false, if p /∈ G∗ ∨ h′ /∈ G∗.
2. If either πp, πt, or πpk are not valid, return ⊥.
3. Let a← HkZ∗q (m).
4. Return true, if b = ph′a.
5. Return false.

Adapt. To find a collision w.r.t. m, m′, (b, h′, πt), randomness (p, C, πp), and
trapdoor information etd, and skch = (x, skenc) do:
1. If false = CHashCheck(pkch,m, (p, C, πp), (b, h′, πt)), return ⊥.
2. Decrypt C, i.e., r ← Π.Dec(skenc, C). If r = ⊥, return ⊥.
3. If h′ 6= getd, return ⊥.
4. Let a← HkZ∗q (m).
5. Let a′ ← HkZ∗q (m′).
6. If p 6= gxr, return ⊥.
7. If a = a′, return (p, C, πp).
8. Let r′ ← rx+a·etd−a′·etd

x .
9. Let p′ ← hr

′ .
10. Encrypt r′, i.e., let C ′ ← Π.Enc(pkenc, r

′).
11. Generate π′p ← NIZKPoK{(r′) : p′ = hr

′}.
12. Return (p′, C ′, π′p).

Some of the checks can already be done in advance, e.g., at a PKI, which only
generates certificates, if the restrictions on each public key are fulfilled.

The proof of the following Theorem is given in App. F.3.

Theorem 2. If the DL assumption in G holds, HkZ∗|G| is collision-resistant, Π
is IND-CCA2 secure, and NIZKPoK is secure, then the chameleon-hash with
ephemeral trapdoors CHET in Construction 2 is secure.

Two further constructions, one based on the DL assumption in gap-groups, and
one based on RSA-like assumptions (in the random oracle model, which is also
unique), are given in App. E.

5 Application: Invisible Sanitizable Signatures

Informally, security of digital signatures requires that a signature σ on a message
m becomes invalid as soon as a single bit of m is altered [GMR88]. However,
there are many real-life use-cases in which a subsequent change to signed data by
a semi-trusted party without invalidating the signature is desired. As a simplified
example, consider a patient record which is signed by a medical doctor. The
accountant, which charges the insurance company, only requires knowledge of
the treatments and the patient’s insurance number. This protects the patient’s
privacy. In this constellation, having the data re-signed by the M.D. whenever
subsets of the record need to be forwarded to some party induces too much
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overhead to be practical in real scenarios or may even be impossible due to
availability constraints.

Sanitizable signature schemes (SSS) [ACdMT05] address these shortcomings.
They allow the signer to determine which blocks m[i] of a given message m =
(m[1],m[2], . . . ,m[i], . . . ,m[`]) are admissible. Any such admissible block can be
changed to a different bitstring m[i]′ ∈ {0, 1}∗, where i ∈ {1, 2, . . . , `}, by a semi-
trusted party named the sanitizer. This party is identified by a private/public
key pair and the sanitization process described before requires the private key.
In a nutshell, sanitization of a message m results in an altered message m′ =
(m[1]′,m[2]′, . . . ,m[i]′, . . . ,m[`]′), where m[i] = m[i]′ for every non-admissible
block, and also a signature σ′, which verifies under the original public key. Thus,
authenticity of the message is still ensured. In the prior example, for the server
storing the data it is possible to already black-out the sensitive parts of a signed
document without any additional communication with the M.D. and in particular
without access to the signing key of the M.D.

Real-world applications of SSSs include the already mentioned privacy-
preserving handling of patient data, secure routing, privacy-preserving document
disclosure, credentials, and blank signatures [ACdMT05,BFLS10,BPS12,BPS13,
CL13,DHS14,HS13].

Our Contribution. We introduce the notion of invisible SSSs. This strong
privacy notion requires that a third party not holding any secret keys cannot
decide whether a specific block is admissible, i.e., can be sanitized. This has
already been discussed by Ateniese et al. [ACdMT05] in the first work on
sanitizable signatures, but they neither provide a formal framework nor a provably
secure construction. However, we identify some use-cases where such a notion
is important, and we close this gap by introducing a new framework for SSSs,
along with an extended security model. Moreover, we propose a construction
being provably secure in our framework. Our construction paradigm is based on
IND-CPA secure encryption schemes, standard, yet unique, chameleon-hashes,
and strongly unforgeable signature schemes. These can be considered standard
tools nowadays. We pair those with a chameleon-hash with ephemeral trapdoors.

Motivation. At PKC ’09, Brzuska et al. formalized the most common security
model of SSSs [BFF+09]. For our work, the most important property they are
addressing is “weak transparency”. It means that although a third party sees
which blocks of a message are admissible, it cannot decide whether some block
has already been sanitized by a sanitizer. More precisely, their formalization
explicitly requires that the third party is always able to decide whether a given
block in a message is admissible. However, as this may invade privacy, having a
construction which hides this additional information is useful as well. To address
this problem the notion of “strong transparency” has been informally proposed
in the original work by Ateniese et al. [ACdMT05].
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Examples. To make the usefulness of such a stronger privacy property more
visible, consider the following two application scenarios.

In the first scenario, we consider that a document is the output of a workflow
that requires several—potentially heavy—computations to become ready. We
assume that the output of each workflow step could be produced by one party
alone, but could also be outsourced. However, if the party decides to outsource the
production of certain parts of the document it wants the potential involvement of
other parties to stay hidden, e.g., the potential and actual outsourcing might be
considered a trade secret. In order to regain some control that all tasks are done
only by authorized subordinates, the document—containing template parts—is
signed with a sanitizable signature. Such an approach, i.e., to use SSS for workflow
control, was proposed in [DHPS15].

The second one is motivated by an ongoing legal debate in Germany.8 Consider
a school class where a pupil suffers from dyslexia9 and thus can apply for additional
help to compensate the illness. One way to compensate this is to consider spelling
mistakes less when giving grades. Assume that only the school’s principal shall
decide to what extent a certain grade shall be improved. Of course, this shall
only be possible for pupils who are actually handicapped. For the pupil with
dyslexia, e.g., known to the teacher of the class in question, the grade is marked
as sanitizable by the principal. The legal debate in Germany is about an outsider,
e.g., future employer, who should not be able to decide that grades had the
potential to be altered and of course also not see for which pupils the grades
have been altered to preserve their privacy. To achieve this, standard sanitizable
signature schemes are clearly not enough, as they do not guarantee that an
outsider cannot derive which blocks are potentially sanitizable, i.e., which pupil
is actually handicapped. We offer a solution to this problem, where an outsider
cannot decide which block is admissible, i.e., can be altered.

State-of-the-Art. SSSs have been introduced by Ateniese et al. [ACdMT05].
Brzuska et al. formalized most of the current security properties [BFF+09]. These
have been later extended for (strong) unlinkability [BFLS10,BPS13,FKM+16] and
non-interactive public accountability [BPS12,BPS13]. Some properties discussed
by Brzuska et al. [BFF+09] have then been refined by Gong et al. [GQZ11].
Namely, they also consider the admissible blocks in the security games, while
still requiring that these are visible to everyone. Recently, Krenn et al. further
refined the security properties to also account for the signatures, not only the
message [KSS15].10 We use the aforementioned results as our starting point for
the extended definitions.

8 See for example the ruling from the German Federal Administrative Court (BVerwG)
29.07.2015, Az.: 6 C 33.14, 6 C 35.14.

9 A disorder involving difficulty in learning to read or interpret words, letters and other
symbols.

10 We want to stress that Krenn et al. [KSS15] also introduce “strong transparency”,
which is not related to the definition given by Ateniese et al. [ACdMT05].
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Also, several extensions such as limiting the sanitizer to signer-chosen val-
ues [CJ10,DS15,KL06,PSP11], trapdoor SSSs (which allow to add new sanitizers
after signature generation by the signer) [CLM08,YSL10], multi-sanitizer and
-signer environments for SSSs [BFLS09,BPS13,CJL12], and sanitization of signed
and encrypted data [FF15] have been considered. SSSs have also been used as
a tool to make other primitives accountable [PS15], and to build other primi-
tives [BHPS16,dMPPS14]. Also, SSSs and data-structures being more complex
than lists have been considered [PSP11]. Our results carry over to the aforemen-
tioned extended settings with only minor additional adjustments. Implementations
of SSSs have also been presented [BPS12,BPS13,dMPPS13,PPS+13].

Of course, computing on signed messages is a broad field. We can therefore
only give a small overview. Decent and comprehensive overviews of other related
primitives, however, have already been published [ABC+12,BBD+10,DDH+15,
GGOT15,GOT15].

5.1 Additional Building Blocks

We assume that the reader is familiar with digital signatures, PRGs, and PRFs,
and only introduce the notation used in the following. A PRF consists of a
key generation algorithm KGenprf and an evaluation algorithm Evalprf ; similarly,
a PRG consists of an evaluation algorithm Evalprg. Finally, a digital signature
scheme Σ consists of a key generation algorithm KGensig, a signing algorithm
Sign, and a verification algorithm Verify. For formal definitions and the required
security notions, cf. App. A.

5.2 Our Framework for Sanitizable Signature Schemes

Subsequently, we introduce our framework for SSSs. Our definitions are based
on existing work [BFF+09,BPS12,BPS13,GQZ11,KSS15]. However, due to our
goals, we need to modify the current framework to account for the fact that
the admissible blocks are only visible to the sanitizer. We do not consider “non-
interactive public accountability” [BPS12,BPS13,HPS12], which allows a third
party to decide which party is accountable, as transparency is mutually exclusive
to this property, but is very easy to achieve, e.g., by signing the sanitizable
signature again [BPS12]. For the sake of completeness, the definitions which are
omitted in the following are provided in App. B.

Before we present the formal definition, we settle some notation. The variable
ADM contains the set of indices of the modifiable blocks, as well as the number
` of blocks in a message m. We write ADM(m) = true, if ADM is valid w.r.t.
m, i.e., ADM contains the correct ` and all indices are in m. For example, let
ADM = ({1, 2, 4}, 4). Then, m must contain four blocks, while all but the third
will be admissible. If we write mi ∈ ADM, we mean that mi is admissible. MOD
is a set containing pairs (i,m[i]′) for those blocks that shall be modified, meaning
that m[i] is replaced with m[i]′. We write MOD(ADM) = true, if MOD is valid
w.r.t. ADM, meaning that the indices to be modified are contained in ADM. To
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allow a compact presentation of our construction we write X̃n,m with n ≤ m for
the vector (Xn, Xn+1, Xn+2, . . . , Xm−1, Xm).

Definition 15 (Sanitizable Signatures). A sanitizable signature scheme SSS
consists of eight ppt algorithms (SSSParGen,KGensig,KGensan,Sign,Sanit,Verify,
Proof, Judge) such that

SSSParGen. The algorithm SSSParGen, on input security parameter λ, gener-
ates the public parameters: ppsss ← SSSParGen(1λ). We assume that ppsss is
implicitly input to all other algorithms.

KGensig. The algorithm KGensig takes the public parameters ppsss and returns
the signer’s private key and the corresponding public key: (pksig, sksig) ←
KGensig(ppsss).

KGensan. The algorithm KGensan takes the public parameters ppsss and returns
the sanitizer’s private key and the corresponding public key: (pksan, sksan)←
KGensan(ppsss).

Sign. The algorithm Sign takes as input a message m, sksig, pksan, as well as
a description ADM of the admissible blocks. If ADM(m) = false, this
algorithm returns ⊥. It outputs a signature σ ← Sign(m, sksig, pksan,ADM).

Sanit. The algorithm Sanit takes a message m, modification instruction MOD,
a signature σ, pksig, and sksan. It outputs m′ together with σ′: (m′, σ′) ←
Sanit(m,MOD, σ, pksig, sksan) where m′ ← MOD(m) is message m modified
according to the modification instruction MOD.

Verify. The algorithm Verify takes as input the signature σ for a message m w.r.t.
the public keys pksig and pksan and outputs a decision d ∈ {true, false}:
d← Verify(m,σ, pksig, pksan).

Proof. The algorithm Proof takes as input sksig, a message m, a signature σ,
a set of polynomially many additional message/signature pairs {(mi, σi)}
and pksan. It outputs a string π ∈ {0, 1}∗ which can be used by the Judge
to decide which party is accountable given a message/signature pair (m,σ):
π ← Proof(sksig,m, σ, {(mi, σi) | i ∈ N}, pksan).

Judge. The algorithm Judge takes as input a message m, a signature σ, pksig,
pksan, as well as a proof π. Note, this means that once a proof π is generated,
the accountable party can be derived by anyone for that message/signature
pair (m,σ). It outputs a decision d ∈ {Sig,San}, indicating whether the
message/signature pair has been created by the signer, or the sanitizer: d←
Judge(m,σ, pksig, pksan, π).

Correctness of Sanitizable Signature Schemes. We require the usual correctness
requirements to hold. In a nutshell, every signed and sanitized message/signature
pair should verify, while a honestly generated proof on a honestly generated
message/signature pair should point to the correct accountable party. We refer
to [BFF+09] for a formal definition, which straightforwardly extends to our
framework.
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5.3 Security of Sanitizable Signature Schemes

Next, we introduce our security model, where our definitions already incorporate
newer insights [BFF+09,BPS13,GQZ11,KSS15]. In particular, we mostly consider
the “strong” definitions by Krenn et al. [KSS15] as the new state-of-the-art. Due
to our goals, we also see the data-structure corresponding to the admissible
blocks, i.e., ADM, as an asset which needs protection, which addresses the work
done by Gong et al. [GQZ11]. All formal definitions can be found in App. B.

Unforgeability. No one should be able to generate any new signature not seen
before without having access to any private keys.

Immutability. Sanitizers must only be able to perform allowed modifications.
In particular, a sanitizer must not be able to modify non-admissible blocks.

Privacy. Similar to semantic security for encryption schemes, privacy captures
the inability of an attacker to derive any knowledge about sanitized parts.

Transparency. An attacker cannot tell whether a specific message/signature
pair has been sanitized or not.

Accountability. For signer-accountability, a signer should not be able to accuse
a sanitizer if the sanitizer is actually not responsible for a given message, and
vice versa for sanitizer-accountability.

5.4 Invisibility of SSSs

Next, we introduce the new property of invisibility. Basically, invisibility requires
that an outsider cannot decide which blocks of a given message are admissible.
With ADM0∩ADM1, we denote the intersection of the admissible blocks, ignoring
the length of the messages.

In a nutshell, the adversary can query an LoRADM oracle which either makes
ADM0 or ADM1 admissible in the final signature. Of course, the adversary
has to be restricted to ADM0 ∩ ADM1 for sanitization requests for signatures
originating from those created by LoRADM and their derivatives to avoid trivial
attacks. The sign oracle can be simulated by querying the LoRADM oracle with
ADM0 = ADM1. We stress that our invisibility definition is very strong, as it
also takes the signatures into account, much like the definitions given by Krenn et
al. [KSS15]. One can easily alter our definition to only account for the messages
in question, e.g., if one wants to avoid strongly unforgeable signatures, or even
allow re-randomizable signatures. An adjustment is straightforward.

Definition 16 (Invisibility). An SSS is invisible, if for any efficient adversary
A there exists a negligible function ν such that

∣∣∣Pr[InvisibilitySSS
A (λ) = 1]− 1

2

∣∣∣ ≤
ν(λ) , where the corresponding experiment is defined in Fig. 8.

It is obvious that invisibility is not implied by any other property. In a nutshell,
taking any secure SSS, it is sufficient to non-malleably append ADM to each block
m[i] to prevent invisibility. Clearly, all other properties of such a construction
are still preserved.
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Experiment InvisibilitySSS
A (λ)

ppsss ← SSSParGen(1λ)
(pksig, sksig)← KGensig(ppsss)
(pksan, pksan)← KGensan(ppsss)
b← {0, 1}
Q ← ∅
a← ASanit′(·,·,·,·,sksan),Proof(sksig,·,·,·,·),LoRADM(·,·,·,sksig,b)(pksig, pksan)

where oracle LoRADM on input of m,ADM0,ADM1, sksig, b:
return ⊥, if ADM0(m) 6= ADM1(m)
let σ ← Sign(m, sksig, pksan,ADMb)
let Q ← Q∪ {(m,σ,ADM0 ∩ADM1)}
return σ

where oracle Sanit′ on input of m,MOD, σ, pk′sig, sksan:
return ⊥, if pk′sig = pksig ∧ @(m,σ,ADM) ∈ Q : MOD(ADM) = true
let (m′, σ′)← Sanit(m,MOD, σ, pk′sig, sksan)
if pk′sig = pksig ∧ ∃(m,σ,ADM′) ∈ Q : MOD(ADM′) = true,

let Q ← Q∪ {(m′, σ′,ADM′)}
return (m′, σ′)

return 1, if a = b
return 0

Fig. 8. Invisibility

Definition 17 (Secure SSS). We call an SSS secure, if it is correct, private,
unforgeable, immutable, sanitizer-accountable, signer-accountable, and invisible.

We do neither consider non-interactive public accountability nor unlinkability
nor transparency as essential security requirements, as it depends on the concrete
use-case whether these properties are required.

5.5 Construction

We now introduce our construction and use the construction paradigm of Ateniese
et al. [ACdMT05], enriching it with several ideas of prior work [BFF+09,GQZ11,
dMPPS13]. The main idea is to hash each block using a chameleon-hash with
ephemeral trapdoors, and then sign the hashes. The main trick we introduce to
limit the sanitizer is that only those etdi are given to the sanitizer, for which
the respective block m[i] should be sanitizable. To hide whether a given block is
sanitizable, each etdi is encrypted; a sanitizable block contains the real etdi, while
a non-admissible block encrypts a 0, where 0 is assumed to be an invalid etd. For
simplicity, we require that the IND-CPA secure encryption scheme Π allows that
each possible etd, as well as 0, is in the message space M of Π, which can be
achieved using standard embedding and padding techniques, or using KEM/DEM
combinations [AGK08]. To achieve accountability, we generate additional “tags”
for a “standard” chameleon-hash (which binds everything together) in a special
way, namely we use PRFs and PRGs, which borrows ideas from the construction
given by Brzuska et al. [BFF+09].
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Construction 3 (Secure and Transparent SSS) The secure and transparent
SSS construction is as follows:

SSSParGen. To generate the public parameters, do the following steps:
1. Let ppch ← CHET.CParGen(1λ).
2. Let pp′ch ← CH.CParGen(1λ).
3. Return ppsss = (ppch, pp′ch).

KGensig. To generate the key pair for the signer, do the following steps:
1. Let (pks, sks)← Σ.KGensig(1λ).
2. Pick a key for a PRF, i.e., κ← PRF.KGenprf(1λ).
3. Return (pks, (κ, sks)).

KGensan. To generate the key pair for the sanitizer, do the following steps:
1. Let (pkch, skch)← CHET.CKGen(ppch).
2. Let (pk′ch, sk

′
ch)← CH.CKGen(pp′ch).

3. Let (pkenc, skenc)← Π.KGenenc(1λ).
4. Return ((pkch, pk′ch, pkenc), (skch, sk′ch, skenc)).

Sign. To generate a signature σ, on input of m = (m[1],m[2], . . . ,m[`]), sksig =
(κ, sks), pksan = (pkch, pk′ch, pkenc), and ADM do the following steps:
1. If ADM(m) 6= true, return ⊥.
2. Draw x0 ← {0, 1}λ.
3. Let x′0 ← PRF.Evalprf(κ, x0).
4. Let τ ← PRG.Evalprg(x′0).
5. For each i ∈ {1, 2, . . . , `} do:

(a) Set (hi, ri, etdi)← CHET.CHash(pkch, (i,m[i], pksig)).
(b) If block i is not admissible, let etdi ← 0.
(c) Compute ci ← Π.Enc(pkenc, etdi).

6. Set (h0, r0)← CH.CHash(pk′ch, (0,m, τ, `, h̃1,`, c̃1,`, r̃1,`, pksig)).
7. Set σ′ ← Σ.Sign(sks, (x0, h̃0,`, c̃1,`, pksan, pksig, `)).
8. Return σ = (σ′, x0, r̃0,`, τ, c̃1,`, h̃0,`).

Verify. To verify a signature σ = (σ′, x0, r̃0,`, τ, c̃1,`, etd0, h̃0,`), on input of m =
(m[1],m[2], . . . ,m[`]), w.r.t. to pksig = pks and pksan = (pkch, pk′ch, pkenc), do:
1. For each i ∈ {1, 2, . . . , `} do:

(a) Set bi ← CHET.CHashCheck(pkch, (i,m[i], pksig), ri, hi). If any bi =
false, return false.

2. Let b0 ← CH.CHashCheck(pk′ch, (0,m, τ, `, h̃1,`, c̃1,`, r̃1,`, pksig), r0, h0).
3. If b0 = false, return false.
4. Return d← Σ.Verify(pks, (x0, h̃0,`, c̃1,`, pksan, pksig, `), σ′).

Sanit. To sanitize a signature σ = (σ′, x0, r̃0,`, τ, c̃1,`, h̃0,`), on input of m =
(m[1],m[2], . . . ,m[`]), w.r.t. to pksig = pks, sksan = (skch, sk′ch, skenc), and
MOD do:
1. Verify the signature, i.e., run d ← SSS.Verify(m,σ, pksig, pksan). If d =

false, return ⊥.
2. Decrypt each ci for i ∈ {1, 2, . . . , `}, i.e., let etdi ← Π.Dec(skenc, ci). If

any decryption fails, return ⊥.
3. For each index i ∈ MOD check that etdi 6= 0. If not, return ⊥.
4. For each block m[i]′ ∈ MOD do:
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(a) Let r′i ← CHET.Adapt(skch, (i,m[i], pksig), (i,m[i]′, pksig), ri, etdi).
(b) If r′i = ⊥, return ⊥.

5. For each block m[i]′ /∈ MOD do:
(a) Let r′i ← ri.

6. Let m′ ← MOD(m).
7. Draw τ ′ ← {0, 1}2λ.
8. Let r′0 ← CH.Adapt(sk′ch, (0,m, τ, `, h̃1,`, c̃1,`, r̃1,`, pksig), (0,m′, τ ′, `, h̃1,`,

c̃1,`, r̃′1,`, pksig), r0, h0).
9. Return (m′, (σ′, x0, r̃′0,`, τ

′, c̃1,`, h̃0,`)).
Proof. To create a proof π, on input of m = (m[1],m[2], . . . ,m[`]), a signature

σ, w.r.t. to pksan and sksig, and {(mi, σi) | i ∈ N} do:
1. Return ⊥, if false = SSS.Verify(m,σ, pksig, pksan).
2. Verify each signature in the list, i.e., run di ← SSS.Verify(mi, σi, pksig,

pksan). If for any di = false, return ⊥.
3. Go through the list of (mi, σi) and find a (non-trivial) colliding tuple

of the chameleon-hash with (m,σ), i.e., h0 = h′0, where also true =
CH.CHashCheck(pk′ch, (0,m, τ, `, h̃1,`, c̃1,`, r̃1,`, pksig), r0, h0), and true =
CH.CHashCheck(pk′ch, (0,m′, τ ′, `, h̃′1,`, c̃′1,`, r̃′1,`, pksig), r′0, h′0) for some
different tag τ ′ or message m′. Let this signature/message pair be (σ′,m′) ∈
{(mi, σi) | i ∈ N}.

4. Return π = ((σ′,m′),PRF.Evalprf(κ, x0)), where x0 is contained in (σ,m).
Judge. To find the accountable party on input of m = (m[1],m[2], . . . ,m[`]), a

valid signature σ, w.r.t. to pksan, pksig, and a proof π do:
1. Check if π is of the form ((σ′,m′), v) with v ∈ {0, 1}λ. If not, return Sig.
2. Also return ⊥, if false = SSS.Verify(m′, σ′, pksig, pksan), or false =

SSS.Verify(m,σ, pksig, pksan).
3. Let τ ′′ ← PRG.Evalprg(v).
4. If τ ′ 6= τ ′′, return Sig.
5. If we have h0 = h′0, true = CH.CHashCheck(pkch, (0,m, τ, `, h̃1,`, c̃1,`,

pksig), r0, pksig, h0) = CH.CHashCheck(pk′ch, (0,m′, τ ′, `′, h̃′1,`′ , c̃′1,`′ , pksig),
r′0, pksig, h

′
0), c̃1,` = c̃′1,`′ , x0 = x′0, ` = `′, and h̃0,` = h̃′0,`′ , return San.

6. Return Sig.

Theorem 3. If Π is IND-CPA secure, Σ, PRF, PRG, CHET are secure, CH is
secure and unique, Construction 3 is a secure and transparent SSS.

Note, CHET is not required to be unique. We prove each property on its own.

Proof. Correctness follows by inspection.

Unforgeability. To prove that our scheme is unforgeable, we use a sequence of
games:

Game 0: The original unforgeability game.
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Game 1: As Game 0, but we abort if the adversary outputs a forgery (m∗, σ∗)
with σ∗ = (σ′∗, x∗0, r̃∗0,`∗ , τ̃∗, c̃∗1,`∗ , h̃∗0,`∗), where (σ′∗, (x0, h̃0,`, c̃1,`, pksan, pksig,
`)) was never obtained from the sign or sanitizing oracle. Let this event be
E1.

Transition - Game 0 → Game 1: Clearly, if (σ′∗, (x0, h̃0,`, c̃1,`, pksan, pksig, `)) was
never obtained by the challenger, this tuple breaks the strong unforgeability
of the underlying signature scheme. The reduction works as follows. We
obtain a challenge public key pkc from a strong unforgeability challenger
and embed it as pksig. For every required “inner” signature σ′, we use the
signing oracle provided by the challenger. Now, whenever E1 happens, we
can output σ′∗ together with the message protected by σ′∗ as a forgery to
the challenger. That is, E1 happens with exactly the same probability as a
forgery. Further, both games proceed identically, unless E1 happens. Taking
everything together yields |Pr[S0]− Pr[S1]| ≤ νunf-cma(λ).

Game 2: Among others, we now have established that the adversary can no
longer win by modifying pksig, and pksan. We proceed as in Game 1, but abort
if the adversary outputs a forgery (m∗, σ∗), where message m∗ or any of the
other values protected by the outer chameleon-hash were never returned by
the signer or the sanitizer oracle. Let this event be E2.

Transition - Game 1 → Game 2: The probability of the abort event E2 to hap-
pen is exactly the probability of the adversary breaking collision freeness for
the outer chameleon-hash. Namely, we already established that the adversary
cannot tamper with the inner signature and therefore the hash value h∗0 must
be from a previous oracle query. Now, assume that we obtain pk′ch from a
collision freeness challenger. If E2 happens, there must be a previous oracle
query with associated values (0,m, τ, `, h̃1,`, c̃1,`, r̃1,`, pksig) and r0 so that
h∗0 is a valid hash with respect to some those values and r0. Further, we
also have that (0,m, τ, `, h̃1,`, c̃1,`, r̃1,`, pksig) 6= (0,m∗, τ∗, `∗, h̃∗1,`∗ , c̃∗1,`∗ , r̃∗1,`∗ ,
pksig), and can thus output ((0,m∗, τ∗, `∗, h̃∗1,`∗ , c̃∗1,`∗ , r̃∗1,`∗ , pksig), r∗0 , (0,m, τ,
`, h̃1,`, c̃1,`, r̃1,`, pksig), r0, h

∗
0) as the collision. Thus, the probability that E2

happens is exactly the probability of a collision for the chameleon-hash. Both
games proceed identically, unless E2 happens. |Pr[S1]−Pr[S2]| ≤ νch-coll-res(λ)
follows.

Game 3: As Game 2, but we abort if the adversary outputs a forgery where only
the randomness r0 changed, i.e., we have previously generated a signature
with respect to r0 so that r0 6= r∗0 . Let this be event be E3.

Transition - Game 2 → Game 3: If the abort event E3 happens, the adversary
breaks uniqueness of the chameleon-hash. In particular we have values (0,
m∗, τ∗, `∗, h̃∗1,`∗ , c̃

∗
1,`∗ , r̃

∗
1,`∗ , pksig) in the forgery which also correspond to some

previous query, but r0 from the previous query is different from r∗0 . Obtaining
pp′ch from a uniqueness challenger thus shows that E3 happens with exactly
the same probability as the adversary breaks uniqueness of the chameleon
hash. Thus, we have that |Pr[S2]− Pr[S3]| ≤ νch-unique(λ).
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In the last game, the adversary can no longer win the unforgeability game;
this game is computationally indistinguishable from the original game, which
concludes the proof.

Immutability. We prove immutability using a sequence of games.

Game 0: The immutability game.
Game 1: As Game 0, but we abort if the adversary outputs a forgery (m∗, σ∗)

with σ∗ = (σ′∗, x∗0, r̃∗0,`∗ , τ̃∗, c̃∗1,`∗ , h̃∗0,`∗) where (σ′∗, (x0, h̃0,`, c̃1,`, pksan, pksig,
`)) was never obtained from the sign oracle.

Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event.
Clearly, if (σ′∗, (x0, h̃0,`, c̃1,`, pksan, pksig, `)) was never obtained by the chal-
lenger, this tuple breaks the strong unforgeability of the underlying signature
scheme. The reduction works as follows. We obtain a challenge public key
pkc from a strong unforgeability challenger and embed it as pksig. For every
required “inner” signature σ′, we use the signing oracle provided by the
challenger. Now, whenever E1 happens, we can output σ′∗ together with the
message protected by σ′∗ as a forgery to the challenger. That is, E1 happens
with exactly the same probability as a forgery of the underlying signature
scheme. Further, both games proceed identically, unless E1 happens. Taking
everything together yields |Pr[S0]− Pr[S1]| ≤ νunf-cma(λ).

Game 2: As Game 1, but the challenger aborts, if the message m∗ is not
derivable from any returned signature. Note, we already know that tampering
with the signatures is not possible, and thus pksig, and pksan, are fixed. The
same is true for deleting or appending blocks, as ` is signed in every case.
Let this event be denoted E2.

Transition - Game 1 → Game 2: Now assume that E2 is non-negligible. We can
then construct an adversary B which breaks the private collision-resistance
of the underlying chameleon-hash with ephemeral trapdoors. Let the sig-
nature returned be σ∗ = (σ′∗, x∗0, r̃∗0,`∗ , τ̃∗, c̃∗1,`∗ , h̃∗0,`∗), while A’s public key
is pk∗. Due to prior game hops, we know that A cannot tamper with the
“inner” signatures. Thus, there must exists another signature σ = (σ′∗, x∗0,
r̃′
∗
0,`∗ , τ̃

′∗, c̃∗1,`∗ , h̃
∗
0,`∗) returned by the signing oracle. This, however, also

implies that there must exists an index i ∈ {1, 2, . . . , `∗}, for which we
have CHET.CHashCheck(pkch, (i,m∗[i], pksig), r∗i , h∗i ) = CHET.CHashCheck(
pkch, (i,m′∗[i], pksig), r′∗i , h∗i ) = true, where m∗[i] 6= m′∗[i] by assumption.
B proceeds as follows. Let qh be the number of “inner hashes” created.
Draw an index i ← {1, 2, . . . , qh}. For a query i 6= j, proceed as in the
algorithms. If i = j, however, B returns the current public key pkc for the
chameleon-hash with ephemeral trapdoors. This key is contained in pk∗san. B
then receives back control, and queries its CHash oracle with (i,m[i], pksig),
where i is the current index of the message m to be signed. Then, if
((i,m∗[i], pksig), r∗i , (i,m′∗[i], pksig), r′∗i , h∗i ) is the collision w.r.t. pkc, it can
directly return it. |Pr[S1]− Pr[S2]| ≤ qhνpriv-coll(λ) follows, as B has to guess
where the collision will take place.
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As each hop changes the view of the adversary only negligibly, immutability is
proven, as the adversary has no other way to break immutability in Game 2.

Privacy. We prove privacy; we use a sequence of games.

Game 0: The original privacy game.
Game 1: As Game 0, but we abort if the adversary queries a verifying message-

signature pair (m∗, σ∗) which was never returned by the signer or the sanitizer
oracle, and queries it to the sanitization or proof generation oracle.

Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event.
Clearly, whenever the adversary queries such a new pair, we can output
it to break the unforgeability of our scheme, as this tuple is fresh. However,
we have already proven that this can only happen with negligible probability.
|Pr[S0]− Pr[S1]| ≤ νsss-unf(λ) follows.

Game 2: As Game 1, but instead of hashing the blocks (i,mb[i], pksig) for the
inner chameleon-hashes using CHash, and then Adapt to (i,m[i], pksig), we
directly apply CHash to (i,m[i], pksig).

Transition - Game 1 → Game 2: Assume that the adversary can distinguish
this hop. We can then construct an B which wins the indistinguishability
game. B receives pkc as it’s own challenge, B embeds pkc as pkch, and
proceeds honestly with the exception that it uses the HashOrAdapt oracle to
generate the inner hashes. Then, whatever A outputs, is also output by B.
|Pr[S1]− Pr[S2]| ≤ νchet-ind(λ) follows.

Game 3: As Game 2, but instead of adapting (0,m, τ, `, h̃1,`, c̃1,`, r̃1,`, pksig) to
the new values, directly use CHash.

Transition - Game 2 → Game 3: Assume that the adversary can distinguish
this hop. We can then construct an B which wins the indistinguishability
game. B receives pk′c as it’s own challenge, B embeds pk′c as pk′ch, and
proceeds honestly with the exception that it uses the HashOrAdapt oracle to
generate the outer hashes. Then, whatever A outputs, is also output by B.
|Pr[S2]− Pr[S3]| ≤ νch-ind(λ) follows.

Clearly, we are now independent of the bit b. As each hop changes the view of
the adversary only negligibly, privacy is proven.

Transparency. We prove transparency by showing that the distributions of
sanitized and fresh signatures are indistinguishable. Note, the adversary is not
allowed to query Proof for values generated by Sanit/Sign.

Game 0: The original transparency game, where b = 0.
Game 1: As Game 0, but we abort if the adversary queries a valid message-

signature pair (m∗, σ∗) which was never returned by any of the calls to the
sanitization or signature generation oracle. Let us use E1 to refer to the abort
event.

Transition - Game 0 → Game 1: Clearly, whenever the adversary queries such
a new pair, we can output it to break the unforgeability of our scheme, as
this tuple is fresh. A reduction is straightforward. Thus, we have |Pr[S0]−
Pr[S1]| ≤ νsss-unf(λ).
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Game 2: As Game 1, but instead of computing x′0 ← PRF.Evalprf(λ, x0), we set
x′0 ← {0, 1}λ within every call to Sign in the Sanit/Sign oracle.

Transition - Game 1 → Game 2: A distinguisher between these two games str-
aightfowardly yields a distinguisher for the PRF. Thus, we have |Pr[S1] −
Pr[S2]| ≤ νind-prf(λ).

Game 3: As Game 2, but instead of computing τ ← PRG.Evalprg(x′0) , we set
τ ← {0, 1}2λ for every call to Sign within the Sanit/Sign oracle.

Transition - Game 2 → Game 3: A distinguisher between these two games yields
a distinguisher for the PRG using a standard hybrid argument. Thus, we have
|Pr[S2]− Pr[S3]| ≤ qsνind-prg(λ), where qs is the number of calls to the PRG.

Game 4: As Game 3, but we abort if a tag τ was drawn twice. Let this event
be E4.

Transition - Game 3 → Game 4: As the tags τ are drawn completely random,
event E4 only happens with probability q2

t

22λ , where qt is the number of drawn
tags. |Pr[S3]− Pr[S4]| ≤ q2

t

22λ follows.
Game 5: As Game 4, but instead of hash and then adapting the inner chameleon-

hashes, directly hash (i,m[i], pksig).
Transition - Game 4 → Game 5: Assume that the adversary can distinguish

this hop. We can then construct an B which wins the indistinguishability
game. In particular, the reduction works as follows. B receives pkc as it’s
own challenge, B embeds pkc as pkch, and proceeds honestly except that it
uses the HashOrAdapt oracle to generate the inner hashes. Then, whatever A
outputs, is also output by B. |Pr[S4]− Pr[S5]| ≤ νind-chet(λ) follows.

Game 6: As Game 5, but instead of hashing and then adapting the outer hash,
we directly hash the message, i.e., (0,m, τ, `, h̃1,`, c̃1,`, r̃1,`, pksig).

Transition - Game 5 → Game 6: Assume that the adversary can distinguish this
hop. We can then construct an B which wins the indistinguishability game. In
particular, the reduction works as follows. B receives pk′c as it’s own challenge,
embeds pk′c as pk′ch, and proceeds honestly with the exception that it uses the
HashOrAdapt oracle to generate the outer hashes. Then, whatever A outputs,
is also output by B. |Pr[S5]− Pr[S6]| ≤ νind-ch(λ) follows.

We are now in the case b = 1, while each hop changes the view of the adversary
only negligibly. This concludes the proof.

Signer-Accountability. We prove that our construction is signer-accountable by a
sequence of games.

Game 0: The original signer-accountability game.
Game 1: As Game 0, but we abort if the sanitization oracle draws a tag τ ′

which is in the range of the PRG. Let this event be E1.
Transition - Game 0 → Game 1: This hop is indistinguishable by a standard

statistical argument: at most 2λ values lie in the range of the PRG. |Pr[S0]−
Pr[S1]| ≤ qs2λ

22λ = qs
2λ follows, where qs is the number of sanitizing requests.

Note, this also means, that there exists no valid pre-image x0.
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Game 2: As Game 1, but we now abort, if a tag was drawn twice by the
sanitization oracles. Let this event be E2.

Transition - Game 1 → Game 2: As the tags are drawn uniformly from {0, 1}2λ,
this case only happens with negligible probability. |Pr[S1] − Pr[S2]| ≤ q2

s

22λ

follows, where qs is the number of sanitization oracle queries.
Game 3: As Game 2, but we now abort, if the adversary was able to find

(pk∗, π∗,m∗, σ∗) for some message m∗ with a τ∗ which was never returned
by the sanitization oracle. Let this event be E3.

Transition - Game 2 → Game 3: In the previous games we have already estab-
lished that the sanitizer oracle will never return a signature with respect
to a tag τ in the range of the PRG. Thus, if event E3 happens, we know
by the condition checked in step 4 of Judge that at least one of the tags
(either τ∗ in σ∗, or τπ in π∗) was chosen by the adversary, which, in further
consequence, implies a collision for CH. Namely, assume that E3 happens
with non-negligible probability. Then we embed the challenge public key pkc
in pk′ch, and use the provided adaption oracle to simulate the sanitizer ora-
cle. If E3 happens we can output ((0,m∗, τ∗, `∗, h̃∗1,`∗ , c̃∗1,`∗ , r̃∗1,`∗ , pk∗), r∗0 , (0,
m′∗, τ ′∗, `∗, h̃∗1,`∗ , c̃1,`, r̃

∗
1,`∗ , pk∗), r′∗0 , h∗0), as a valid collision. These values can

simply be compiled using π∗, m∗, and σ∗. |Pr[S2] − Pr[S3]| ≤ νch-coll-res(λ)
follows.

Game 4: As Game 3, but we now abort, if the adversary was able to find
(pk∗, π∗,m∗, σ∗) for a new message m∗ which was never returned by the
sanitization oracle. Let this event be E4.

Transition - Game 3 → Game 4: Assume that E4 happens with non-negligible
probability. In the previous games we have already established that the only
remaining possibility for the adversary is to re-use tags τ∗, τπ corresponding to
some query/response to the sanitizer oracle. Then, m∗ must be fresh, as it was
never returned by the sanitization oracle by assumption. Thus, ((0,m∗, τ∗,
`∗, h̃∗1,`∗ , c̃

∗
1,`∗ , r̃

∗
1,`∗ , pk∗), r∗0 , (0,m′∗, τ ′∗, `∗, h̃∗1,`∗ , c̃1,`, r̃

∗
1,`∗ , pk∗), r′∗0 , h∗0), is a

valid collision. These values can simply be compiled using π∗, m∗, and σ∗.
|Pr[S3]− Pr[S4]| ≤ νch-coll-res(λ) follows.

In the last game the adversary can no longer win; each hop only changes the
view negligibly. This concludes the proof.

Sanitizer-Accountability. We prove that our construction is sanitizer-accountable
by a sequence of games.

Game 0: The original sanitizer-accountability definition.
Game 1: As Game 0, but we abort if the adversary outputs a forgery (m∗, σ∗,

pk∗) with σ∗ = (σ′∗, x∗0, r̃∗0,`∗ , τ̃∗, c̃∗1,`∗ , h̃∗0,`∗) where (σ′∗, (x0, h̃0,`, c̃1,`, pk∗,
pksig, `)) was never obtained from the signing oracle.

Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event.
Clearly, if (σ′∗, (x0, h̃0,`, c̃1,`, pk∗, pksig, `)) was never obtained by the chal-
lenger, this tuple breaks the strong unforgeability of the underlying signature
scheme. The reduction works as follows. We obtain a challenge public key
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pkc from a strong unforgeability challenger and embed it as pksig. For every
required “inner” signature σ′, we use the signing oracle provided by the
challenger. Now, whenever E1 happens, we can output σ′∗ together with
the message protected by σ′∗ as a forgery to the challenger. That is, E1
happens with exactly the same probability as a forgery. Further, both games
proceed identically, unless E1 happens. Taking everything together yields
|Pr[S0]− Pr[S1]| ≤ νunf-cma(λ).

Game 2: As Game 1, but we abort if the adversary outputs a forgery where only
the randomness r0 changed, i.e., we have previously generated a signature
with respect to r0 so that r0 6= r∗0 . Let this event be E2.

Transition - Game 1 → Game 2: If the abort event E2 happens, the adversary
breaks uniqueness of the chameleon-hash. In particular we have values (0,
m∗, τ∗, `∗, h̃∗1,`∗ , c̃

∗
1,`∗ , r̃

∗
1,`∗ , pksig) in the forgery which also correspond to some

previous query, but r0 from the previous query is different from r∗0 . Obtaining
pp′ch from a uniqueness challenger thus shows that E2 happens with exactly
the same probability as the adversary breaks uniqueness of the chameleon
hash and we have that |Pr[S1]− Pr[S2]| ≤ νch-unique(λ).

In Game 2 the forgery is different from any query/answer tuple obtained using Sign
by definition. Due to the previous hops, the only remaining possibility is a collision
in the outer chameleon-hash, i.e., for h∗0 = h′∗0 we have CH.CHashCheck(pk′∗, (0,
m∗, τ∗, `∗, h̃∗1,`∗ , c̃

∗
1,`∗ , r̃

∗
1,`∗ , pksig), r∗0 , h∗0) = CH.CHashCheck(pk′∗, (0,m′∗, τ ′∗, `′∗,

h̃′∗1,`′∗ , c̃
′∗
1,`′∗ , r̃

′∗
1,`′∗ , pksig), r′∗0 , h′∗0 ) = true. In this case the Judge algorithm returns

San and Pr[S2] = 0 which concludes the proof.

Invisibility. We prove that our construction is invisible by a sequence of games.
The idea is to show that we can simulate the view of the adversary without giving
out any useful information at all.

Game 0: The original invisibility game, i.e., the challenger runs the experiment
as defined.

Game 1: As Game 0, but we abort if the adversary queries a valid message-
signature pair (m∗, σ∗) which was never returned by the signer or the sanitizer
oracle to the sanitization or proof generation oracle.

Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event.
Clearly, whenever the adversary outputs such a new pair, we can output it
to break unforgeability of our scheme, as this tuple is fresh. However, we
have already proven that this can only happen with negligible probability.
|Pr[S0]− Pr[S1]| ≤ νsss-unf(λ) follows.

Game 2: As Game 1, but we internally keep all etdi.
Transition - Game 1 → Game 2: This is only a conceptual change. |Pr[S1] −

Pr[S2]| = 0 follows.
Game 3: As Game 2, but we encrypt only zeroes instead of the real etdi in

LoRADM independent of whether block are admissible or not. Note, the
challenger still knows all etdi, and can thus still sanitize correctly.
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Transition - Game 2 → Game 3: A standard reduction, using hybrids, shows
that this hop is indistinguishable by the IND-CPA security of the encryption
scheme used. |Pr[S2]−Pr[S3]| ≤ qhνind-cpa(λ) follows, where qh is the number
of generated ciphertexts by LoRADM.11

At this point, the distribution is independent of the LoRADM oracle. Note, the
sanitization, and proof oracles, can be still be simulated without any restrictions,
as each etdi is known to the challenger. Thus, the view the adversary receives is
now completely independent of the bit b used in the invisibility definition. As
each hop only changes the view of the adversary negligibly, our construction is
thus proven to be invisible. ut

6 Conclusion

We have introduced the notion of chameleon-hashes with ephemeral trapdoors.
This primitive allows to prevent the holder of the trapdoor corresponding to
the long-term public key from finding collisions. Along with a comprehensive
security model we have presented four provably secure constructions. The first
one is bootstrapped from any chameleon-hash in a black-box fashion, while the
second direct scheme is based on RSA-like assumptions, and the other two on the
DL assumption. Applications of this new primitive include, but are not limited
to, the first provably secure construction of invisible sanitizable signatures. An
interesting open problem is the construction of sanitizable signatures which are
invisible and unlinkable at the same time.
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[HPS12] F. Höhne, H. C. Pöhls, and K. Samelin. Rechtsfolgen editierbarer signaturen.
Datenschutz und Datensicherheit, 36(7):485–491, 2012.

[HS13] C. Hanser and D. Slamanig. Blank digital signatures. In ASIACCS, pages
95 – 106, 2013.

[HW09] S. Hohenberger and B. Waters. Short and stateless signatures from the
RSA assumption. In CRYPTO, pages 654–670, 2009.

[KK12] S. A. Kakvi and E. Kiltz. Optimal security proofs for full domain hash,
revisited. In EUROCRYPT, pages 537–553, 2012.

[KL06] M. Klonowski and A. Lauks. Extended Sanitizable Signatures. In ICISC,
pages 343–355, 2006.

[KR00] H. Krawczyk and T. Rabin. Chameleon Hashing and Signatures. In NDSS,
pages 143–154, 2000.

[KSS15] S. Krenn, K. Samelin, and D. Sommer. Stronger security for sanitizable
signatures. In DPM, pages 100–117, 2015.

[LZCS16] R. W. F. Lai, T. Zhang, S. S. M. Chow, and D. Schröder. Efficient sanitizable
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[PPS+13] H. C. Pöhls, S. Peters, K. Samelin, J. Posegga, and H. de Meer. Malleable
signatures for resource constrained platforms. In WISTP, pages 18–33,
2013.
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Experiment IND-TΠA(λ)
(skenc, pkenc)← KGenenc(1λ)
b← {0, 1}
(m0,m1, stateA)← AO(pkenc)

where O ← Dec(skenc, ·) if T = CCA2 and O ← ∅ otherwise.
if m0 /∈M ∨ m1 /∈M, let c← ⊥
else, let c← Enc(pkenc,mb)
a← AO(c, stateA)

where O ← Dec′(skenc, ·) if T = CCA2 and O ← ∅ otherwise.
Dec′(skenc, ·) behaves as Dec, but returns ⊥ if queried with c.

return 1, if a = b
return 0

Fig. 9. IND-T security with T ∈ {CPA,CCA2}.
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A Security Definitions Building Blocks

A.1 Public-Key Encryption Schemes Π

Correctness. For a public-key encryption scheme Π we require the correct-
ness properties to hold. In particular, we require that for all λ ∈ N, for all
(skenc, pkenc)← KGenenc(1λ), for all m ∈M we have Dec(skenc,Enc(pkenc,m)) =
m. This definition captures perfect correctness.

IND-T Security. IND-T Security with T ∈ {CPA,CCA2} requires that an
adversary A cannot decide which message is actually contained in a ciphertext c,
while in the case of CCA2 A receives full adaptive access to the decryption oracle.
We also require that the message space M implicitly defines an upper bound
on the message length, i.e., |m|. In other words, this means that the length is
implicitly hidden for all messages in M. From a practical viewpoint, this can be
implemented using suitable padding techniques.

Definition 18 (IND-T Security). An encryption scheme Π is IND-T secure
with T ∈ {CPA,CCA2}, if for any efficient adversary A there exists a negli-
gible function ν such that

∣∣∣Pr[IND-TΠA(1λ) = 1]− 1
2

∣∣∣ ≤ ν(λ). The corresponding
experiment is depicted in Fig. 9.

A.2 Pseudo-Random Functions PRF

Definition 19 (Pseudo-Random Functions (PRFs)). A pseudo-random func-
tion PRF consists of two algorithms (KGenprf ,Evalprf) such that:
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Experiment Pseudo-RandomnessPRF
A (λ)

κ← KGenprf(1λ)
b← {0, 1}
f ← Fλ

a← AEval′prf (κ,·)(1λ)
where oracle Eval′prf on input κ, x:

return ⊥, if x /∈ {0, 1}λ
if b = 0, return Evalprf(κ, x)
return f(x)

return 1, if a = b
return 0

Fig. 10. Pseudo-Randomness

KGenprf . The algorithm KGenprf on input security parameter λ outputs the secret
key of the PRF: κ← KGenprf(1λ).

Evalprf . The algorithm Evalprf gets as input the key κ, and the value x ∈ {0, 1}λ
to evaluate. It outputs the evaluated value v ← Evalprf(κ, x), v ∈ {0, 1}λ.

Pseudo-Randomness. We require that PRF is actually pseudo-random. In the
definition, let Fλ = {f : {0, 1}λ → {0, 1}λ} be the set of all functions mapping a
value x ∈ {0, 1}λ to a value v ∈ {0, 1}λ.

Definition 20 (Pseudo-Randomness). A pseudo-random function PRF is
pseudo-random, if for any efficient adversary A there exists a negligible function
ν such that

∣∣Pr[Pseudo-RandomnessPRF
A (1λ) = 1]− 1

2
∣∣ ≤ ν(λ). The corresponding

experiment is depicted in Fig. 10.

A.3 Pseudo-Random Generators PRG

We assume PRGs with a constant stretching factor of 2 below, as this is sufficient
for our setting.

Definition 21 (Pseudo-Random Number-Generators). A pseudo-random
number-generator PRG consists of one algorithm (Evalprg) such that:

Evalprg. The algorithm Evalprg gets as input the value x ∈ {0, 1}λ to evaluate. It
outputs the evaluated value v ← Evalprg(x), v ∈ {0, 1}2λ.

Pseudo-Randomness. We require that PRG is actually pseudo-random.

Definition 22 (Pseudo-Randomness). A pseudo-random number-generator
PRG is pseudo-random, if for any efficient adversary A there exists a negligible
function ν such that

∣∣Pr[Pseudo-RandomnessPRG
A (1λ) = 1] − 1

2
∣∣ ≤ ν(λ). The

corresponding experiment is depicted in Fig. 11.
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Experiment Pseudo-RandomnessPRG
A (λ)

b← {0, 1}
if b = 0, let v ← {0, 1}2λ

else, let x← {0, 1}λ, and v ← Evalprg(x)
a← A(1λ, v)
return 1, if a = b
return 0

Fig. 11. Pseudo-Randomness

A.4 Digital Signatures Σ

Definition 23 (Digital Signatures). A signature scheme Σ is a triple (KGensig,
Sign,Verify) of ppt algorithms such that:

KGensig. The algorithm KGensig on input security parameter λ outputs the public
and corresponding private key: (sks, pks)← KGensig(1λ).

Sign. The algorithm Sign gets as input the secret key sks, and the message m ∈M
and outputs a signature σ ← Sign(sks,m).

Verify. The algorithm Verify receives as input a public key pks a message m
and a signatures σ and outputs a decision bit d ∈ {false, true}: d ←
Verify(pks,m, σ).

Correctness. For a signature scheme Σ we require the correctness properties to
hold. In particular, we require that for all λ ∈ N, for all (sks, pks)← KGensig(1λ),
for all m ∈ M we have Verify(pks,m,Sign(sks,m)) = true. This definition
captures perfect correctness.

Definition 24 (Secure Digital Signatures). We call a signature scheme Σ
secure, if it is correct, unique, and strongly unforgeable.

A concrete instantiation satisfying Definition 24 is RSA-FDH, where the
signer also proves the well-formedness of the public key, i.e., that it defines a
permutation and is not lossy [KK12]. This can, e.g., be achieved by requiring
that the public exponent e is prime and greater than the modulus n, while a
verifier also has to check that σ ∈ Z∗n. See also Lemma 1 in App. F.2.

Strong Unforgeability. Now, we define strong unforgeability of digital signature
schemes, as given by An et al. [ADR02]. In a nutshell, we require that an
adversary A cannot (except with negligible probability) come up with any new
valid signature σ∗ for a message m∗. Moreover, the adversary A can adaptively
query for new signatures.

Definition 25 (Strong Unforgeability). A signature scheme Σ is strongly
unforgeable, if for any efficient adversary A there exists a negligible function ν
such that Pr[seUNF-CMAΣA(1λ) = 1] ≤ ν(λ). The corresponding experiment is
depicted in Fig. 12.
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Experiment seUNF-CMAΣA(λ)
(sks, pks)← KGensig(1λ)
Q ← ∅
(m∗, σ∗)← ASign′(sks,·)(pks)

where oracle Sign′ on input m:
let σ ← Sign(sks,m)
set Q ← Q∪ {(m,σ)}
return σ

return 1, if Verify(pks,m
∗, σ∗) = true ∧ (m∗, σ∗) /∈ Q

return 0

Fig. 12. Strong Unforgeability

Experiment Zero-KnowledgeNIZKPoK
A (λ)

b← {0, 1}
(crs, τ)← S1(1λ)
a← APb(·,·)(crs)

where oracle P0 on input (x,w):
return π ← {(w) : R(x,w) = 1}, if (x,w) ∈ L
return ⊥

and oracle P1 on input (x,w):
return π ← S2(crs, τ, x), if (x,w) ∈ L
return ⊥

return 1, if a = b
return 0

Fig. 13. Zero-Knowledge

A.5 Non-Interactive Proof Systems NIZKPoK

We now provide the formal definitions for the NIZKPoKs we need, derived from
Groth [Gro06].

Definition 26 (Completeness). A non-interactive proof system is complete,
if for all λ ∈ N, for all “suitable” L, for all crs← Gen(1λ, L), for all x ∈ L, for
all w such that R(x,w) = 1, for all π ← NIZKPoK{(w) : R(x,w)}, we have that
Verify(x, π) = true.

This captures perfect completeness.

Definition 27 (Zero-Knowledge). A non-interactive proof system is zero-
knowledge, if there exists an efficient simulator S = (S1,S2) such that for any
efficient adversary A there exists a negligible function ν such that:∣∣∣∣Pr[Zero-KnowledgeNIZKPoK

A (λ) = 1]− 1
2

∣∣∣∣ ≤ ν(λ) .

The corresponding experiment is depicted in Fig. 13.
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Experiment SimSoundExtNIZKPoK
A,E (λ)

(crs, τ, ξ)← S(1λ)
(x, π)← ASim(·)(crs)

where oracle Sim on input x:
obtain π ← S2(crs, τ, x)
set QSim ← QSim ∪ {(x, π)}

w ← E(crs, ξ, x, π)
return 1, if Verify(x, π) = true ∧ (x,w) /∈ R ∧ (x, π) /∈ QSim

return 0

Fig. 14. Simulation Sound Extractability

Experiment UnforgeabilitySSS
A (λ)

ppsss ← SSSParGen(1λ)
(pksig, sksig)← KGensig(ppsss)
(pksan, sksan)← KGensan(ppsss)
(m∗, σ∗)← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,·,·,·,·)(pksig, pksan)

for i = 1, 2, . . . , q let (mi, pksan,i,ADMi) and σi
index the queries/answers to/from Sign

for j = 1, 2, . . . , q′ let (mj , σj , pksig,j ,MODj) and (m′j , σ′j)
index the queries/answers to/from Sanit

return 1, if Verify(m∗, σ∗, pksig, pksan) = true ∧
∀i ∈ {1, 2, . . . , q} : (pksan,m

∗, σ∗) 6= (pksan,i,mi, σi) ∧
∀j ∈ {1, 2, . . . , q′} : (pksig,m

∗, σ∗) 6= (pksig,j ,m
′
j , σ
′
j)

return 0

Fig. 15. Unforgeability

Definition 28 (Simulation-Sound Extractability). A zero-knowledge non-
interactive proof system is simulation-sound extractable, if there exists an efficient
extractor E = (S, E) such that it holds that (crs, τ) ← S1(1λ) is identically
distributed as (crs, τ, ξ) ← E(1λ) when restricted to (crs, τ) and such that it
holds for any efficient adversary A there exists a negligible function ν such
that Pr[SimSoundExtNIZKPoK

A,E (λ) = 1] ≤ ν(λ) . The corresponding experiment is
depicted in Fig. 14.

B Additional Security Definitions for SSS

Unforgeability. This definition requires that an adversary A not having any secret
keys is not able to produce any valid signature σ∗ which it has not seen, even if
A has full oracle access.

Definition 29 (Unforgeability). An SSS is unforgeable, if for any ppt adver-
sary A there exists a negligible function ν such that Pr[UnforgeabilitySSS

A (λ) =
1] ≤ ν(λ) , where the corresponding experiment is defined in Figure 15.
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Experiment ImmutabilitySSS
A (λ)

ppsss ← SSSParGen(1λ)
(pksig, sksig)← KGensig(ppsss)
(m∗, σ∗, pk∗)← ASign(·,sksig,·,·),Proof(sksig,·,·,·,·)(pksig)

for i = 1, 2, . . . , q let (mi, pksan,i,ADMi) index the queries to Sign
return 1, if Verify(m∗, σ∗, pksig, pk∗) = true ∧

(∀i ∈ {1, 2, . . . , q} : pk∗ 6= pksan,i ∨
m∗ /∈ {MOD(mi) | MOD with MOD(ADMi) = true})

return 0

Fig. 16. Immutability

Experiment PrivacySSS
A (λ)

ppsss ← SSSParGen(1λ)
(pksig, sksig)← KGensig(ppsss)
(pksan, pksan)← KGensan(ppsss)
b← {0, 1}
a← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,·,·,·,·),LoRSanit(·,·,·,·,·,sksig,sksan,b)(pksig, pksan)

where oracle LoRSanit on input of m0,MOD0,m1,MOD1,ADM, sksig, sksan, b
return ⊥, if MOD0(m0) 6= MOD1(m1) ∨ ADM(m0) 6= ADM(m1)
let σ ← Sign(mb, sksig, pksan,ADM)
return (m′, σ′)← Sanit(mb,MODb, σ, pksig, sksan)

return 1, if a = b
return 0

Fig. 17. Privacy

Immutability. Clearly, a sanitizer should only be able to sanitize the admissible
blocks defined by ADM. This therefore also prohibits deleting or appending
blocks from a given message. Moreover, the adversary is given full oracle access,
while it is also allowed to generate the sanitizer key pair itself.

Definition 30 (Immutability). An SSS is immutable, if for any ppt adversary
A there exists a negligible function ν such that Pr[ImmutabilitySSS

A (λ) = 1] ≤ ν(λ) ,
where the corresponding experiment is defined in Figure 16.

Privacy. The notion of privacy is related to the indistinguishability of ciphertexts.
The adversary is allowed to input two messages with the same ADM which are
sanitized to the exact same message. Afterwards, the adversary has to decide
which message (left or right) was used to generate the sanitized one. The adversary
receives full adaptive oracle access.

Definition 31 (Privacy). An SSS is private, if for any ppt adversary A there
exists a negligible function ν such that

∣∣∣Pr[PrivacySSS
A (λ) = 1]− 1

2

∣∣∣ ≤ ν(λ) , where
the corresponding experiment is defined in Figure 17.

Transparency. Transparency guarantees that the accountable party of a message
m remains anonymous. This is important if discrimination may follow [ACdMT05,
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Experiment TransparencySSS
A (λ)

ppsss ← SSSParGen(1λ)
(pksig, sksig)← KGensig(ppsss)
(pksan, sksan)← KGensan(ppsss)
b← {0, 1}
Q ← ∅
a← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof′(sksig,·,·,·,·),Sanit/Sign(·,·,·,sksig,sksan,b)(pksig, pksan)

where oracle Proof′ on input of sksig,m, σ, {(mi, σi) | i ∈ N}, pk′san, b:
return ⊥, if pk′san = pksan ∧ (m,σ) ∈ Q
return Proof(sksig,m, σ, {(mi, σi) | i ∈ N}, pk′san)

where oracle Sanit/Sign on input of m,MOD,ADM, sksig, sksan, b:
σ ← Sign(m, sksig, pksan,ADM)
(m′, σ′)← Sanit(m,MOD, σ, pksig, sksan)
if b = 1:
σ′ ← Sign(m′, sksig, pksan,ADM)

If σ′ 6= ⊥, set Q ← Q∪ {(m′, σ′)}
return (m′, σ′)

return 1, if a = b
return 0

Fig. 18. (Proof-Restricted) Transparency

BFF+09]. In a nutshell, the adversary has to decide whether it sees a freshly
computed signature, or a sanitized one. The adversary has full (but proof-
restricted) adaptive oracle access. We require the proof-restriction to avoid trivial
attacks. Moreover, we have adjusted the definition to account for some subtleties
regarding the restrictions of the proof oracle, in the sense of Bellare et al. for
IND-CCA2 security [BHK15].

Definition 32 ((Proof-Restricted) Transparency). An SSS is proof-restricted
transparent, if for any ppt adversary A there exists a negligible function ν such that∣∣∣Pr[TransparencySSS

A (λ) = 1]− 1
2

∣∣∣ ≤ ν(λ) , where the corresponding experiment is
defined in Figure 18.

In this paper, we use “transparency”, even if we mean proof-restricted trans-
parency. Moreover, our construction actually achieves the stronger notion of
transparency, with the same arguments given by Brzuska et al. [BFLS10]. How-
ever, the proof-restricted version seems to be more natural.

Signer-Accountability. For signer-accountability, a signer should not be able
to blame a sanitizer if the sanitizer is actually not responsible for a given
message/signature pair never issued by the sanitizer. Hence, the adversary A
has to generate a proof π∗ which makes Judge to decide that the sanitizer is
accountable, if it is not for a message m∗ output by A. Here, the adversary gains
access to all oracles related to sanitizing. Note, this definition does not take the
signature into account.

Definition 33 (Signer-Accountability). An SSS is signer-accountable, if for
any ppt adversary A there exists a negligible function ν such that Pr[Sig-Acc-
ountabilitySSS

A (λ) = 1] ≤ ν(λ) , where the experiment is defined in Figure 19.
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Experiment Sig-AccountabilitySSS
A (λ)

ppsss ← SSSParGen(1λ)
(pksan, sksan)← KGensan(ppsss)
(pk∗, π∗,m∗, σ∗)← ASanit(·,·,·,·,sksan)(pksan)

for i = 1, 2, . . . , q let (m′i, σ′i) and (mi,MODi, σi, pksig,i)
index the answers/queries from/to Sanit

return 1, if Verify(m∗, σ∗, pk∗, pksan) = true ∧
∀i ∈ {1, 2, . . . , q} : (pk∗,m∗) 6= (pksig,i,m

′
i) ∧

Judge(m∗, σ∗, pk∗, pksan, π
∗) = San

return 0

Fig. 19. Signer Accountability

Experiment San-AccountabilitySSS
A (λ)

ppsss ← SSSParGen(1λ)
(pksig, sksig)← KGensig(ppsss)
(m∗, σ∗, pk∗)← ASign(·,sksig,·,·),Proof(sksig,·,·,·,·)(pksig)

for i = 1, 2, . . . , q let (mi,ADMi, pksan,i) and σi
index the queries/answers to/from Sign

π ← Proof(sksig,m
∗, σ∗, {(mi, σi) | 0 < i ≤ q}, pk∗)

return 1, if Verify(m∗, σ∗, pksig, pk∗) = true ∧
∀i ∈ {1, 2, . . . , q} : (pk∗,m∗, σ∗) 6= (pksan,i,mi, σi) ∧
Judge(m∗, σ∗, pksig, pk∗, π) = Sig

return 0

Fig. 20. Sanitizer Accountability

Sanitizer-Accountability. Sanitizer-accountability requires that the sanitizer can-
not blame the signer for a message/signature pair not created by the signer. In
particular, the adversary has to make Proof generate a proof π which makes
Judge decide that for a given (m∗, σ∗) generated by A the signer is accountable,
while it is not. Thus, the adversary A gains access to all signer-related oracles.

Definition 34 (Sanitizer-Accountability). An SSS is sanitizer-accountable,
if for any ppt adversary A there exists a negligible function ν such that Pr[San-Acc-
ountabilitySSS

A (λ) = 1] ≤ ν(λ) , where the experiment is defined in Figure 20.

We do not consider unlinkability [BFLS10,BPS13,FKM+16,LZCS16] in our con-
struction, as it seems to be very hard to achieve with the underlying construction
paradigm, but provide the definition for the sake of completeness.

Unlinkability. Unlinkability prohibits an adversary to decide how a signature
was generated, i.e., from which signature a sanitized signature was derived. This
is the stronger definition by Brzuska et al. [BPS13], where even the signer can
be malicious. This game is similar to privacy with the same constraints. But in
contrast to the privacy game, the adversary can also input the signatures to be
used. It receives full oracle access, while the signing, and the proof oracles, can
be simulated by the adversary.
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Experiment UnlinkabilitySSS
A (λ)

ppsss ← SSSParGen(1λ)
(pksan, sksan)← KGensan(ppsss)
b← {0, 1}
a← ASanit(·,·,·,·,sksan),LoRSanit(·,·,·,·,·,·,·,sksan,b)(pksan)

where oracle LoRSanit on input of m0,MOD0, σ0,m1,MOD1, σ1, pksig, b:
return ⊥, if ADM0 6= ADM1 ∨ MOD0(m0) 6= MOD1(m1) ∨

MOD0(ADM0) 6= MOD1(ADM1) ∨
Verify(m0, σ0, pksig, pksan) 6= Verify(m1, σ1, pksig, pksan)
return (m′, σ′)← Sanit(mb,MODb, σb, pksig, sksan)

return 1, if a = b
return 0

Fig. 21. Unlinkability

Experiment PubaccountabilitySSS
A (λ)

ppsss ← SSSParGen(1λ)
(pksig, sksig)← KGensig(ppsss)
(pksan, sksan)← KGensan(ppsss)
(pk∗,m∗, σ∗)← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan)(pksig, pksan)

for i = 1, 2, . . . , q let (mi,ADMi, pksan,i) and σi
index the queries/answers to/from Sign

for j = 1, 2, . . . , q′ let (mj ,MODj , σj , pksig,j) and (m′j , σ′j)
index the queries/answers to/from Sanit

return 1, if Verify(m∗, σ∗, pksig, pk∗) = true ∧
∀i ∈ {1, 2, . . . , q} : (pk∗,m∗, σ∗) 6= (pksan,i,mi, σi) ∧
Judge(m∗, σ∗, pksig, pk∗,⊥) = Sig

return 1, if Verify(m∗, σ∗, pk∗, pksan) = true ∧
∀j ∈ {1, 2, . . . , q′} : (pk∗,m∗, σ∗) 6= (pksig,j ,m

′
j , σ
′
j) ∧

Judge(m∗, σ∗, pk∗, pksan,⊥) = San
return 0

Fig. 22. Public Accountability

Definition 35 (Unlinkability). An SSS is unlinkable, if for any efficient adver-
sary A there exists a negligible function ν such that

∣∣Pr[UnlinkabilitySSS
A (λ) = 1]−

1
2
∣∣ ≤ ν(λ) , where the corresponding experiment is defined in Figure 21.

Non-Interactive Public Accountability. Non-interactive public accountability
allows everyone to decide whether a sanitizer was involved. This is modeled by
requiring that Judge works with an empty proof, i.e., π = ⊥. Hence, no secret
keys are required to find the accountable party.

Definition 36 (Non-Interactive Public Accountability). An SSS is non-
interactive publicly accountable, if for any efficient adversary A there exists a
negligible function ν such that Pr[PubaccountabilitySSS

A (λ) = 1] ≤ ν(λ) , where the
corresponding experiment is defined in Figure 22.

40



C Additional Assumptions

RSA Problems and RSA Assumptions. Let (n, p, q, e, d)← RSAKGen(1λ) be an
instance generator which returns an RSA modulus n = pq, where p and q are
distinct primes, e > 1 an integer co-prime to ϕ(n), and de ≡ 1 mod ϕ(n). We
require that RSAKGen always outputs moduli with the same bit-length, based on
λ. The RSA problem associated to RSAKGen is, given n, e and y ← Z∗n to find an
x s.t. xe ≡ y mod n. Likewise, the RSA assumption associated to RSAKGen now
states that for every efficient adversary A, Pr[(n, p, q, e, d)← RSAKGen(1λ), y ←
Z∗n, x← A(n, e, y) : xe ≡ y mod n] ≤ ν(λ) for some negligible function ν.

The one-more RSA assumption associated to RSAKGen is provides an inver-
sion oracle I which inverts any element x ∈ Z∗n w.r.t. e, and a challenge oracle
C, which returns a random element yi ∈ Z∗n. The adversary wins, if when given
n and e it can invert more elements received by the challenge oracle than calls
to the inversion oracle. The corresponding assumption informally states that for
every efficient adversary A Pr[(n, p, q, e, d)← RSAKGen(1λ), X ← A(n, e)C(),I(·) :
more values returned by C are inverted than queries to I] ≤ ν(λ) for some neg-

ligible function ν [BNPS03].
We sometimes require that e is larger than any possible n w.r.t. λ (or even for

e > n3), and that it is prime. We write e > n as a shorthand notation. Re-stating
the assumptions with these conditions is straightforward. In this case, we also
require that e is drawn independently from p, q, or n (and d is then calculated
from e, and not vice versa). This can, e.g., be achieved by requiring that e is
drawn uniformly from [n + 1, . . . , 2n] ∩ {p | p is prime}, where n is the largest
RSA modulus possible w.r.t. to λ. We leave this to the concrete instantiation of
RSAKGen.

D Chameleon-Hashes Revisited

We first restate the construction by Brzuska et al. [BFF+09] which involves a tag
τ , and is secure under the standard RSA assumption in the random oracle model.
Note, one can even see τ as part of the randomness. We fit the presentation into
our framework

Construction 4 (Chameleon-Hash) Let Hn : {0, 1}∗ → Z∗n, n ∈ N, denote
a random oracle. Now, let CH := (CParGen,CKGen,CHash,CHashCheck,Adapt)
such that:

CParGen. The algorithm CParGen generates the public parameters in the following
way:
1. Return ∅.

CKGen. The algorithm CKGen generates the key pair in the following way:
1. Generate two primes p and q using RSAKGen(1λ), which also outputs e

co-prime to ϕ(n). Set skch ← (p, q). Let n← pq. Set pkch ← (n, e).
2. Return (pkch, skch).

CHash. To hash a message m, along with tag τ , w.r.t. pkch = (n, e) do:
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1. Draw r ← Z∗n.
2. Let g ← Hn(τ,m), and h← gre mod n.
3. Return (h, r).

CHashCheck. To check a hash h′ w.r.t. a message m, tag τ , pkch = (n, e), and
randomness r do:
1. Let g ← Hn(τ,m), and h← gre mod n.
2. Return true, if h = h′, and false otherwise.

Adapt. To find a collision w.r.t. m, m′, tag τ , randomness r, hash h, and skch
do:
1. Compute g ← Hn(τ,m), and h← gre mod n.
2. Draw τ ′ ← {0, 1}λ.
3. Compute g′ ← Hn(τ ′,m′) and r′ ← (h(g′−1))d mod n.
4. Return r′.

D.1 Our Modified Construction

We now present the modified construction, inspired by the ideas given by Brzuska
et al. [BFF+09]. It should be clear that indistinguishability still holds in this
setting, except that the modified construction achieves stronger collision-resistance
under a different assumption, and is unique, which we prove on its own.

Construction 5 (Modified Chameleon-Hash) Let Hn : {0, 1}∗ → Z∗n, n ∈
N, denote a random oracle. Now, let CH := (CParGen,CKGen,CHash,CHashCheck,
Adapt) such that:

CParGen. The algorithm CParGen generates the public parameters in the following
way:
1. Call RSAKGen with the restriction e > n, and e prime. Return e.

CKGen. The algorithm CKGen generates the key pair in the following way:
1. Generate p, q using RSAKGen(1λ).
2. Compute d such that ed ≡ 1 mod ϕ(n).
3. Let n = pq.
4. Return (pkch, skch) = (n, d).

CHash. To hash a message m w.r.t. pkch do:
1. Draw r ← Z∗n.
2. Let h← H(m)re mod n.
3. Return (h, r).

CHashCheck. To check a hash h′ w.r.t. a message m, randomness r, and pkch
do:
1. If r /∈ Z∗n, return false.
2. Let h← H(m)re mod n.
3. Return true, if h = h′, and false otherwise.

Adapt. To find a collision w.r.t. m, m′, randomness r, hash h, and skch do:
1. If CHashCheck(pkch,m, r, h) = false, return ⊥.
2. If m = m′, return r.
3. Let g ← H(m), and y ← gre.
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4. Let g′ ← H(m′).
5. Return r′ ← (y(g′−1))d mod n.

Theorem 4. If the one-more RSA-inversion assumption holds, then the above
construction is secure in the random oracle model.

Proof. We prove each property separately.

Indistinguishability. Indistinguishability is straight forward to see; the randomness
r is freshly drawn in the challenge oracle and RSA defines a permutation. The
proof is therefore omitted.

Collision-Resistance. We now prove that the above construction is collision-
resistant.

Game 0: This is the original collision-resistance game.
Game 1: As Game 0, but instead of using the e from the system parameters,

we embed the e received from a one-more RSA challenger as ppch. Note that
we can still determine d—and therefore honestly simulate all oracles—as we
do not use n from the challenger at this point and can thus freely choose it.

Transition - Game 0 → Game 1: This does not change the view of the adversary,
as the received e is distributed identically to the real game. |Pr[S0]−Pr[S1]| =
0 follows.

Game 2: As Game 1, but we now abort, if the adversary was able to generate
a collision (m∗, r∗,m′∗, r′∗, h∗). Let this event be denoted E2.

Transition - Game 1 → Game 2: Assume that event E2 does happen with non-
negligible probability. We can then build an adversary B which breaks the
one-more RSA-inversion assumption. Without loss of generality, we assume
that the adversary makes all the random oracle queries before outputting the
messages (otherwise, B does them). The adversary B proceeds as follows. In
the first step, the challenge nc is embedded in pkch. Clearly, as the distributions
are the same, this is only a conceptual change so far. In the second step,
for each new random oracle query mi, B asks its challenge oracle C to
provide a challenge ci ∈ Z∗n. This challenge is embedded as the response
to mi. It stores (mi, ci,⊥) in an internal table. This does not change the
view of the adversary either. However, it remains open how to simulate the
adaption oracle. Assume, for now, that m0 is supposed to be adapted to m1.
If m0 = m1, proceed as in the algorithm. If there is no tuple (m0, c0, z0),
with z0 6= ⊥, query the inversion oracle with c0 to receive z0. Update record
(m0, c0,⊥) to (m0, c0, z0). If there is no tuple (m1, c1, z1), with z1 6= ⊥,
query the inversion oracle with c1 to receive z1. Update record (m1, c1,⊥)
to (m1, c1, z1). Return r′ ← rz0(z1)−1 mod n. Then, at some point in time,
the adversary returns (m, r,m′, r′, h). We then know (by construction) that
Hn(m)re ≡ Hn(m′)r′e mod n. If there is no record for m and no record for m′,
query the inversion oracle for the root z of H(m), and update record (m, c,⊥)
to (m, c, z). Then, by definition of the security game, we know that m′ is
fresh, and there exists a record (m′, c′,⊥). We can then extract Hn(m′)d = z′
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by calculating H(m′)d ≡ r′−1zr mod n. As therefore the adversary A has
inverted more challenges than the inversion oracle was queried, B can return
the list {(ci, zi)} for each entry where (mi, ci, zi), zi 6= ⊥ exists, along with
(c′,Hn(m′)d). |Pr[S1]− Pr[S2]| ≤ νom-rsa(λ) follows.

As now the adversary has no other way to win its game, collision-resistance is
proven, as each hop only changes the view of the adversary negligibly.

Uniqueness. We now prove that the above construction is unique using a sequence
of games:

Game 0: The original uniqueness game.
Game 1: As game 0, but the challenger aborts, if the adversary finds randomness

r∗ 6= r′∗, a public key pk∗ = n, a message m∗, and a hash h∗ such that
CHashCheck(pk∗,m∗, r∗, h∗) = CHashCheck(pk∗,m∗, r′∗, h∗) = true. Let this
abort event be denoted E1.

Transition - Game 0 → Game 1: This cannot happen, as RSA (with the given
restrictions on e and r) defines a permutation, and random oracles behave
as functions, regardless of the choice of n. |Pr[S0]− Pr[S1]| = 0 follows. See
also Lemma 1.

This proves that our construction is unique.
ut

E Two Additional Direct Constructions

E.1 A Direct Construction From RSA-Like Assumptions

We extend the RSA-based chameleon-hash given in App. D.1 (which is itself based
on the construction given by Brzuska et al. [BFF+09], see App. D) using the
technique used for accumulators by Pöhls et al. [PPS+13]. In our construction, the
trapdoor is an additional RSA-modulus n′. Only if the factorization of n′ = p′q′,
contained in etd, and n = pq, which is the secret key skch, is known, a collision
can be produced. We assume that the bit-length of n and n′ is the same, which is
implicitly given by the security parameter λ. We note that the condition e > n3

implies that e > nn′, and thus gcd(ϕ(nn′), e) = 1, which makes our analysis
simpler (cf. Lemma 1 in App. F.2).

We do not explicitly check this in the algorithms.

Construction 6 (CHET from RSA-like Assumptions) Let Hn : {0, 1}∗ →
Z∗n, n ∈ N, denote a random oracle. Let CHET be defined as:

CParGen. The algorithm CParGen generates the public parameters in the following
way:
1. Call RSAKGen with the restriction e > n3, and e prime. Return e.

CKGen. The algorithm CKGen generates the key pair in the following way:
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1. Generate two primes p and q using RSAKGen(1λ). Set skch ← (p, q). Let
n← pq. Set pkch ← n.

2. Return (skch, pkch).
CHash. To hash a message m w.r.t. pkch = n do:

1. Generate two primes p′ and q′ using RSAKGen(1λ). Set etd ← (p′, q′),
and n′ ← p′q′.

2. If gcd(n, n′) 6= 1, go to 1.
3. Draw r ← Z∗nn′ .
4. Let g ← Hnn′(m), and h← gre mod nn′.
5. Return ((h, n′), r, etd).

CHashCheck. To check whether a given hash h is valid on input pkch = n, m,
and r, do:
1. Return ⊥, if r /∈ Z∗nn′ .
2. Let g ← Hnn′(m), and h′ ← gre mod nn′.
3. Return true, if h = (h′, n′).
4. Return false.

Adapt. To find a collision w.r.t. m, m′, randomness r, hash h, trapdoor infor-
mation etd, and skch do:
1. Check that n′ = p′q′, where p′ and q′ is taken from etd. If this is not the

case, return ⊥.
2. If CHashCheck(pkch,m, r, h) = false, return ⊥.
3. Compute d s.t. de ≡ 1 mod ϕ(nn′).
4. Let g ← Hnn′(m), and h← gre mod nn′.
5. Let g′ ← Hnn′(m′) and r′ ← (h(g′−1))d mod nn′.
6. Return r′.

Theorem 5. If the one-more RSA-inversion assumption, and the RSA assump-
tion hold, then the above construction is secure in the random-oracle model.

Proof. We need to prove that our construction is indistinguishable, unique,
publicly collision-resistant, and privately collision-resistant.

Indistinguishability. It is easy to see that the above construction is indistinguish-
able; all values are chosen uniformly at random and RSA defines a permutation.
See also Lemma 1.

Public Collision-Resistance. We now prove that the above construction is collision-
resistant.

Game 0: This is the original public collision-resistance game.
Game 1: As Game 0, but instead of using the e from the system parameters

(here, e > n3), we embed the e received from a one-more RSA challenger as
ppch. Note that we can still determine d—and therefore honestly simulate all
oracles—as we do not use n from the challenger at this point and can thus
freely choose it.

Transition - Game 0 → Game 1: This does not change the view of the adversary,
as the received e is distributed identically to the real game. |Pr[S0]−Pr[S1]| =
0 follows.
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Game 2: As Game 1, but we now abort, if the adversary was able to generate
a collision (m∗, r∗,m′∗, r′∗, h∗). Let this event be denoted E2.

Transition - Game 1 → Game 2: Assume that event E2 does happen with non-
negligible probability. We can then build an adversary B which breaks the
one-more RSA-inversion assumption. Without loss of generality, we assume
that the adversary makes all the random oracle queries before outputting
the messages (otherwise, B does them). The adversary B proceeds as follows.
In the first step, the challenge nc is embedded in pkch as n. Clearly, as the
distributions are the same, this is only a conceptual change so far. In the
second step, for each new random-oracle querymi toHnn′ , B asks its challenge
oracle C to provide a challenge ci ∈ Z∗n. However, it may happen that ci /∈ Z∗nn′
(note, we have a family of random-oracles!). In this case, request a new ci
from the challenge oracle till the condition holds.12 Draw ui ← Z∗nn′ and
record (mi, n

′, ci, ui,⊥). Embed ciuei mod nn′ as the random-oracle response
for mi. Note, this value is distributed perfectly uniformly in Z∗nn′ . However, it
remains open how to simulate the adaption oracle. Assume, for now, that m0
is supposed to be adapted to m1, while the second modulus is n′. If m0 = m1,
or n = n′, proceed as in the algorithm. If there is no tuple (m0, n

′, c0, u0, z0),
with z0 6= ⊥, query the inversion oracle with c0 to receive z0. Update record
(m0, n

′, c0, u0,⊥) to (m0, n
′, c0, u0, z0). If there is no tuple (m1, n

′, c1, u1, z1),
with z1 6= ⊥, query the inversion oracle with c1 to receive z1. Update record
(m1, n

′, c1, u1,⊥) to (m1, n
′, c1, u1, z1). Return r′ ← rz0u0(z1u1)−1 mod nn′.

Then, at some point in time, the adversary returns (m∗, r∗,m′∗, r′∗, h∗). We
then know (by construction) that Hnn′(m∗)r∗e ≡ Hnn′(m′∗)r′∗e mod nn′.
If there is no record for m∗ and no record for m′∗, query the inversion for
oracle for the root z∗ for Hnn′(m∗), and update record (m∗, n′, c∗, r∗,⊥) to
(m∗, n′, c∗, u∗, z∗). Then, by definition of the security game, we know that m′∗
is fresh, and there exists a record (m′∗, n′, c′∗, u′∗,⊥). We can then extract
Hnn′(m′∗)d by calculating Hnn′(m′∗)d ≡ r′∗−1z∗r∗ mod nn′, and extract the
root of c′∗ by multiplying it with u′∗−1 mod nn′, resulting in z′∗. As therefore
the adversary A has inverted more challenges than the inversion oracle was
queried, B can return the list {(ci, zi)} for each entry where (mi, n

′
i, ci, ri, zi),

zi 6= ⊥ exists, along with (c′∗, z′∗ mod n). |Pr[S1] − Pr[S2]| ≤ νom-rsa(λ)
follows.

As now the adversary has no other way to win its game, public collision-resistance
is proven, as each hop only changes the view of the adversary negligibly.

Private Collision-Resistance. We now prove that the above construction is
collision-resistant.

Game 0: This is the original private collision-resistance game.
12 Lemma 2 directly provides a polynomial bound on the expected number of needed

samples. To have a strictly polynomial-time B, we abort if we need p(λ) times more
samples than expected, for some fixed polynomial p. Clearly, this only happens with
at most negligible probability, and therefore does not significantly change the winning
probability in the following.
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Game 1: As Game 0, but instead of using the e from the system parameters
(here, e > n3), we embed the e received from a RSA challenger as ppch. Note
that we can still determine d—and therefore honestly simulate all oracles—as
we do not use n′ from the challenger at this point and can thus freely choose
it.

Transition - Game 0 → Game 1: This does not change the view of the adversary,
as the received e is distributed identically to the real game. |Pr[S0]−Pr[S1]| =
0 follows.

Game 2: As Game 1, but we now abort, if there are random-oracle collisions in
any random oracle. Let this event be E2.

Transition - Game 1 → Game 2: Event E2 cannot happen with non-negligible
probability due to the birthday-bound. |Pr[S1]−Pr[S2]| ≤ q2

h

2λ follows, where
qh is the number of random-oracle queries.

Game 3: We now abort, if the adversary was able to output a tuple (m∗, r∗,m′∗,
r′∗, h∗) which breaks the private collision-resistance of our construction. Let
this event be E3.

Transition - Game 2 → Game 3: First, note that without loss of generality we
only need to consider such adversaries A that only make a single call to the
CHash′ oracle, as it can simulate all other calls (except for the h∗) internally.13

Assume now that Pr[E3] is non-negligible. We can then construct an ad-
versary B which breaks the one-more RSA assumption with non-negligible
probability. B simulates the CHash′ oracle by embedding the modulus it
received from its own RSA challenger as n′.14 For computing Hnn′(m),
it asks its own challenger for challenges in Z∗n′ until it receives a chal-
lenge c that also lies in Z∗nn′ (as before, this happens after a polynomial
number of steps by Lemma 2). It then chooses a random u ← Z∗nn′ , sets
Hnn′(m) = cue mod nn′, and computes its response as in the original algo-
rithm, i.e., it outputs ((Hnn′(m)re mod nn′, n′), r) for a random r. All other
queries to the Hnn′(mj) oracle are replied by vej for a fresh vj ← Z∗nn′ , and
the pairs (mj , vj) are stored internally. As before, we assume that A did
all the random oracle queries before it outputs its messages (otherwise, B
makes the necessary queries). Eventually, A outputs (m∗, r∗,m′∗, r′∗, h∗) with
CHashCheck(pk∗,m∗, r∗, h∗) = CHashCheck(pk∗,m′∗, r′∗, h∗) = true with h∗
as returned by B and m′∗ 6= m∗. B then looks up v∗ such thatHnn′(m∗) = v∗e.
By assumption it then holds that Hnn′(m∗)r∗e = Hnn′(m′∗)r′∗e, i.e., that
v∗er∗e = cuere mod nn′, or equivalently that c =

(
v∗r∗u−1r−1)e mod nn′. B

now outputs (c, x = v∗r∗u−1r−1 mod n′) and returns it to its one-more RSA
challenger. It is easy to see that c = xe mod n′ holds: c =

(
v∗r∗u−1r−1)e mod

13 Formally, in the following B honestly simulates all calls to CHash′, except for a
random query where it embeds the challenge; this causes a loss of 1/qh in the success
probability, where qh is the number of oracle queries made by A.

14 Note that the adversary already has access to the random oracles in its first phase,
i.e., before outputting pk∗. In the following, we assume that it never queried the
oracle for Hnn′(·) during this phase. Given the super-polynomial number of possible
values for n′, this only introduces a negligible loss in the following.
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nn′ means that c =
(
v∗r∗u−1r−1)e + knn′ for some integer k. Reducing by

n′ yields c =
(
v∗r∗u−1r−1)e mod n′. As B did not query the inversion or-

acle at all, it thus wins with a probability only polynomially smaller than
E3, contradicting the assumption that Pr[E3] is not negligible. The private
collision-resistance follows.

Note that the private collision resistance property actually already holds under
the standard RSA assumption (not the one-more RSA assumption), as B never
queries the inversion oracle. Formally, in the proof, it would abort when receiving
a c 6∈ Z∗nn′ , which—by Lemma 2—imposes a polynomial loss.

Uniqueness. We now prove that the above construction is unique using a sequence
of games:

Game 0: The original uniqueness game.
Game 1: As Game 0, but the challenger aborts, if the adversary finds random-

ness r∗ 6= r′∗, a public key pk∗ = n, a message m∗, and a hash h∗ such that
CHashCheck(pk∗,m∗, r∗, h∗) = CHashCheck(pk∗,m∗, r′∗, h∗) = true. Let this
abort event be denoted E1.

Transition - Game 0 → Game 1: This cannot happen, as RSA (with the given
restrictions on e and r) defines a permutation, and random-oracles behave
as functions, regardless of the choice of n. |Pr[S0]− Pr[S1]| = 0 follows. See
also Lemma 1.

This proves that our construction is unique. ut

E.2 A Construction in Gap-Groups

Next, we present our second direct construction in prime order groups equipped
with a bilinear map.

Bilinear Maps. Let G1, G2 and GT be three cyclic multiplicative groups with
prime order q, generated by gi, i.e. Gi = 〈gi〉 for i ∈ {1, 2, T}. Let e : G1 ×G2 →
GT be a bilinear map such that:

1. Bilinearity: ∀u ∈ G1,∀v ∈ G2 : ∀a, b ∈ Z∗q : e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: ∃u ∈ G1,∃v ∈ G2 : e(u, v) 6= 1, i.e., e(g1, g2) = gT .
3. Computability: There is an efficient algorithm that calculates the mapping e.

This construction is derived from the first construction. Essentially, the main idea
is to use a DDH oracle to check the correctness of the commitment. Moreover,
we require that the DL assumption holds in G2, i.e., for every PPT adversary A,
there exists a negligible function ν such that: Pr[(G1, G2, GT , e, g1, g2, gT , q)←
BGGen(1λ), x ← Zq, x′ ← A(G1, G2, GT , e, g1, g2, gT , q, g

x
2 ) : x = x′] ≤ ν(λ).

Clearly, this implies that DL is hard in GT . Subsequently, we present our con-
structions where we assume that the NP-languages involved in the proofs of
knowledge are implicitly defined by the scheme.
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Construction 7 (CHET in Gap-Groups) Let {HkZ∗q}k∈K denote a family of
collision-resistant hash functions HkZ∗q : {0, 1}∗ → Z∗q indexed by a key k ∈ K and
let CHET be defined as:

CParGen. The algorithm CParGen generates the public parameters in the following
way:
1. Let (G1, G2, GT , e, g1, g2, gT , q)← BGGen(1λ).
2. Let k ← K for the hash function.
3. Let crs← Gen(1λ).15

4. Return ((G1, G2, GT , e, g1, g2, gT , q), k, crs)
CKGen. The algorithm CKGen generates the key pair in the following way:

1. Draw random x← Z∗q . Set h← gx2 .
2. Generate πpk ← NIZKPoK{(x) : h = gx2}.
3. Let (skenc, pkenc)← KGenenc(1λ).
4. Return ((x, skenc), (h, πpk, pkenc)).

CHash. To hash m w.r.t. pkch = (h, πpk, pkenc) do:
1. If πpk is not valid, return ⊥.
2. Draw random r ← Z∗q .
3. Draw random etd← Z∗q .
4. Let h′ ← getd

2 .
5. Generate πt ← NIZKPoK{(etd) : h′ = getd

2 )}.
6. Encrypt r, i.e., let C ← Π.Enc(pkenc, r).
7. Let p← e(gr1, h).
8. Generate πp ← NIZKPoK{(r) : p = e(gr1, h)}.
9. Let a← HkZ∗q (m).

10. Let b← p · e(ga1 , h′).
11. Return ((b, h′, πt), (p, C, πp), etd).

CHashCheck. To check whether a given hash (b, h′, πt) is valid on input pkch =
(h, πpk, pkenc), m, (p, C, πp) do:
1. Return false, if p /∈ GT ∨ h′ /∈ G∗2.
2. If either πp, πt, or πpk are not valid, return ⊥.
3. Let a← HkZ∗q (m, τ).
4. Return true, if b = p · e(ga1 , h′).
5. Return false.

Adapt. To find a collision w.r.t. m, m′, randomness (p, C, πp), and trapdoor
information etd, and skch = (x, skenc) do:
1. If false = CHashCheck(pkch,m, (p, C, πp), (b, h′, πt)), return ⊥.
2. Return ⊥, if h′ 6= getd

2 .
3. Decrypt C, i.e., r ← Π.Dec(skenc, C). If r = ⊥, return ⊥.
4. If m = m′, return (p, C, πp).
5. Let a← HkZ∗q (m).
6. Let a′ ← HkZ∗q (m′).
7. If p 6= e(gr1, gx2 ), return ⊥.

15 Actually we need one crs per language, but we do not make this explicit here.
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8. If a = a′, return r = (p, C, πp).
9. Let r′ ← rx+a·etd−a′·etd

x .
10. Let p′ ← e(gr′1 , g

x
2 ).

11. Encrypt r′, i.e., let C ′ ← Π.Enc(pkenc, r
′).

12. Generate π′p ← NIZKPoK{(r′) : p′ = e(gr′1 , g
x
2 )}.

13. Return (p′, C ′, π′p).

Most of the checks can already be done in advance, e.g., at a PKI, which only
generates certificates, if the restrictions on each public key are fulfilled. Moreover,
we do not require that the correctness of the ciphertext is proven.

Theorem 6. If the DL assumption in G2 holds, HkZ∗|G2|
is collision-resistant, Π

is is IND-CCA2 secure, and NIZKPoK is secure, then the chameleon-hash with
ephemeral trapdoors CHET in Construction 7 is secure.

Proof. We need to prove that our construction is indistinguishable, publicly
collision-resistant, and privately collision-resistant.

Indistinguishability. Indistinguishability is trivial: as the adversary never sees
both the hash and the adapted hash at the same time, the distributions are
identical. The proof is therefore omitted.

Public Collision-Resistance. We prove public collision-resistance using a sequence
of games.

Game 0: The original public collision-resistance game.
Game 1: As Game 0, but upon setup we obtain (crs, τ)← S1(1κ) upon setup,

store τ and henceforth simulate all proofs using S2(crs, τ, ·).
Transition - Game 0 → Game 1: A distinguisher between Game 0 and Game 1

is a zero-knowledge distinguisher, i.e., |Pr[S0]− Pr[S1]| ≤ νzk(κ).
Game 2: As Game 1, but upon setup we obtain (crs, τ, ξ)← S(1κ), and addi-

tionally store ξ.
Transition - Game 1 → Game 2: Under simulation sound extractability, this

change is conceptual, i.e., Pr[S1] = Pr[S2].
Game 3: As Game 2, but we simulate the Adapt oracle as follows:

Adapt. To find a collision w.r.t.m,m′, randomness (p, C, πp), and trapdoor
information etd, and skch = (x, skenc) do:
1. If (p, C, ·) corresponds to a previous Adapt query, set AD = >

and AD = ⊥ otherwise. If only C corresponds to a previous
query, return ⊥.

2. If false = CHashCheck(pkch,m, (p, C, πp), (b, h′, πt)), return ⊥.
...

Transition - Game 2 → Game 3: This change is conceptual, i.e., Pr[S2] = Pr[S3]
(observe that C is unconditionally binding, and, thus, modifying p implies
that the check p = gxr which is performed within Adapt fails, and the oracle
would abort anyway).
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Game 4: As Game 3, but we further change the Adapt oracle as follows:

Adapt. To find a collision w.r.t.m,m′, randomness (p, C, πp), and trapdoor
information etd, and skch = (x, skenc) do:
1. If (p, C, ·) corresponds to a previous Adapt query, set AD = >

and AD = ⊥ otherwise. If only C corresponds to a previous query,
return ⊥.

...
3. If AD = ⊥, decrypt C, i.e., r ← Π.Dec(skenc, C). If r = ⊥, return
⊥.

...
7. If AD = ⊥, check if p 6= e(gr1, gx2 ), and return ⊥ if so.
...

Transition - Game 3 → Game 4: This change is conceptual, i.e., Pr[S3] = Pr[S4]
(the checks are only omitted if we know that they would not yield to an
abort).

Game 4: As Game 3, but we further change the Adapt oracle as follows:

Adapt. To find a collision w.r.t. m, m′, (b, h′, πt), randomness (p, C, πp),
and trapdoor information etd, and skch = (x, skenc) do:
1. If (p, C, ·) corresponds to a previous Adapt query, set AD = >

and AD = ⊥ otherwise. If only C corresponds to a previous query,
return ⊥.

...
3. If AD = ⊥, decrypt C, i.e., r ← Π.Dec(skenc, C). If r = ⊥, return
⊥.

...
7. If AD = ⊥, check if p 6= e(gr1, gx2 ), and return ⊥ if so.
8. If a = a′, return (p, C, πp).
9. NOP

10. Let p′ ← b
e(ga′ ,h′) .

11. C ′ ← Π.Enc(pkenc,⊥) .
12. Generate π′p ← S2(crs, τ, (p′, gx2 )).
...

Transition - Game 3 → Game 4: A distinguisher between Game 3 and Game 3
is an IND-CCA2 distinguisher for Π, i.e., |Pr[S3]− Pr[S4]| ≤ νc(κ).

Game 5: As Game 4, but we further modify Adapt so that it runs on an skch
where x is replaced by gx:

Adapt. To find a collision w.r.t. m, m′, (b, h′, πt), randomness (p, C, πp),
and trapdoor information etd, and skch = (gx2 , skenc) do:
...

Transition - Game 4 → Game 5: This change is conceptual, i.e., Pr[S4] = Pr[S5].
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Game 6: As Game 5, but for every query to Adapt, we store (p, C, πp) if πp
was not previously simulated within Adapt in R[(b, h′, πt)]← (p, C, πp). Now,
for every forgery either both r∗ or r′∗ are fresh, or one of them contains a
proof πp (resp. π′p) which we previously simulated in the Adapt oracle. If one
of them contains such a proof, we replace the respective randomness tuple
(p, C, πp) by R[h∗].

Transition - Game 5 → Game 6: This change is conceptual, i.e., Pr[S5] = Pr[S6].
Observe that the fact that a proof stems from a tuple returned by Adapt
implies that a query with a tuple (p, C, πp) where πp was not simulated must
once have happened. Further, the modified forgery is still a valid public
collision freeness forgery.

Game 7: As Game 6, but for the modified forgery we extract both r and r′ from
πp and π′p contained in r∗ = (p, C, πp) and r′∗ = (p′, C ′, π′p). If the extraction
fails, we abort.

Transition - Game 6 → Game 7: Both games proceed identically, unless we have
to abort, i.e, |Pr[S6]− Pr[S7]| ≤ 2 · νe(κ).16

Game 8: As Game 7, but for πt contained in h∗ we extract etd and abort if the
extraction fails.

Transition - Game 7 → Game 8: Both games proceed identically, unless we have
to abort, i.e., |Pr[S7]− Pr[S8]| ≤ νe(κ).

Game 9: As Game 9, but we obtain a DL-challenge (G1, G2, GT , e, g1, g2, gT , q,
gx2 ), perform the setup with respect to G1, G2, GT , e, g1, g2, gT , q) and embed
gx2 into skch.

Transition - Game 8 → Game 9: This change is conceptual, i.e., Pr[S8] = Pr[S9].

In Game 9, for every forgery (modified according to Game 6) we have that
h∗ = (b, h′, πt) contains b = grx+aetd

T = gr
′x+a′etd
T . Thus, we have rx + aetd =

r′x+ a′etd. Hence, x can easily be calculated, which is the solution to the DL-
challenge. This extraction is only possible, if a 6= a′. However, if this is not the
case we have a collision in the hash-function. Taking the union bound yields that
Pr[S9] = νDL(κ) + νCR(κ); all intermediate game changes are negligible, which
concludes the proof.

Private Collision-Resistance. Below we prove private collision resistance using a
sequence of games.

Game 0: The original private collision-resistance game.
Game 1: As Game 0, but upon setup we obtain (crs, τ)← S1(1κ) upon setup,

store τ and henceforth simulate all proofs using S2(crs, τ, ·).
Transition - Game 0 → Game 1: A distinguisher between Game 0 and Game 1

is a zero-knowledge distinguisher, i.e., |Pr[S0]− Pr[S1]| ≤ νzk(κ).
Game 2: As Game 1, but upon setup we obtain (crs, τ, ξ)← S(1κ), and addi-

tionally store ξ.
16 For simplicity we collapsed both extractions in a single game change. It is easy to

unroll them into two separate game changes.
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Transition - Game 1 → Game 2: Under simulation sound extractability, this
change is conceptual, i.e., Pr[S1] = Pr[S2].

Game 3: As Game 2, but we modify the CHash oracle so that it no longer draws
etd uniformly at random but directly draws h′ uniformly at random from G∗2.

CHash. To hash m w.r.t. pkch = (h, πpk, pkenc) do:
...
5. Let h′ ← G∗2 .
...

Game 4: As Game 3, but for every πp returned by CHash we record the value r
so that p = e(gr1, h) in R[p]← r.

Transition - Game 3 → Game 4: This change is conceptual, i.e., Pr[S3] = Pr[S4].
Game 5: As Game 4, but for pk∗ output by the adversary we extract x so that

gx2 = h. If the extraction fails, we abort.
Transition - Game 4 → Game 5: Both games proceed identically, unless we have

to abort, i.e, Pr[S4]− Pr[S5]| ≤ νe(κ).
Game 6: As Game 5, but we obtain a DL instance (G1, G2, GT , e, g1, g2, gT , q, g

t
2),

perform the setup with respect to (G1, G2, GT , e, g1, g2, gT , q) and further
modify Chash as follows:

CHash. To hash m w.r.t. pkch = (h, πpk, pkenc) do:
...
5. Let s← Z∗q , h′ ← (gt2)s .
...

Furthermore, we record S[h′]← s.
Transition - Game 5 → Game 6: This change is conceptual, i.e., Pr[S5] = Pr[S6].
Game 7: As Game 6, but if πp or π′p contained in r∗ = (p, C, πp) and r′∗ =

(p′, C ′, π′p) do not correspond to a CHash answer we obtain r and r′ using
the extractor and set R[p]← r or R[p′]← r′. If the extraction fails, we abort.

Transition - Game 6 → Game 7: Both games proceed identical unless we have
to abort, i.e., |Pr[S6]− Pr[S7]| ≤ 2 · νe(κ).17

Now, if the adversary A outputs (m∗, r∗,m′∗, r′∗, h∗) such that h∗ = p·e(ga1 , h′) =
p′ · e(ga′1 , h

′) in Game 6. By definition, we have that grx+ats
T = gr

′x+a′ts
T (Note,

gts = h′ in both cases, which, by definition, needs to be returned by the CHash
oracle, and thus s = S[h′] is known). It follows that we have rx+ats = r′x+a′ts.
As all variables but t are now known (the values for r and r′ can be obtained
from R), we have that t can be calculated and returned as DL solution unless
a = a′, which would however imply a collision for the hash function. Taking the
union bound, yields Pr[S7] ≤ νDL(κ) + νCR(κ); all intermediate game changes are
negligible, which concludes the proof.

ut
Note, we do require CCA2-security, as the adaption algorithm acts as a decryption
oracle. Moreover, we do not achieve uniqueness, as the holder of skch can always
derive new randomness, e.g., by re-encrypting r1.
17 For simplicity we collapsed both extractions in a single game change. It is easy to

unroll them into two separate game changes.
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F Security Proofs

F.1 Proof of Theorem 1

Proof. Correctness follows from inspection; the remaining properties are proven
below.

Indistinguishability. This follows by a simple argument. In particular, consider
the following sequence of games.

Game 0: The original indistinguishability game, where b = 0.
Game 1: As Game 0, but instead of calculating the hash h1 as in the game,

directly hash.
Transition - Game 0 → Game 1: Due to the indistinguishability of the chameleon

hashes, this hop only changes the view of the adversary negligibly, as the
tags are distributed exactly as in the prior hop. Assume that the adversary
can distinguish this hop. We can then construct an adversary B which breaks
the indistinguishability of the chameleon hashes. In particular, the reduc-
tion works as follows. B receives pkc as it’s own challenge, B embeds pkc as
pk1

ch, and proceeds as in the prior hop, with the exception that it uses the
HashOrAdapt oracle to generate the inner hashes. Then, whatever A outputs,
is also output by B. |Pr[S0]− Pr[S1]| ≤ νch-ind(λ) follows.

Game 2: As Game 1, but instead of calculating the hash h2 as in the game,
directly hash.

Transition - Game 1 → Game 2: Due to the indistinguishability of the chameleon
hashes, this hop only changes the view of the adversary negligibly. Due to the
indistinguishability of the chameleon hashes, this hop only changes the view
of the adversary negligibly, as the tags are distributed exactly as in the prior
hop. Assume that the adversary can distinguish this hop. We can then con-
struct an adversary B which breaks the indistinguishability of the chameleon
hashes. In particular, the reduction works as follows. B receives pk′c as it’s own
challenge, B embeds pk′c as pk2

ch, and proceeds as in the prior hop, with the
exception that it uses the HashOrAdapt oracle to generate the inner hashes.
Then, whatever A outputs, is also output by B. |Pr[S1]−Pr[S2]| ≤ νch-ind(λ)
follows.

We are now in the case b = 1. As each hop changes the view only negligibly,
indistinguishability is proven. As each hop only changes the view of the adversary
negligibly, this proves that our construction is indistinguishable.

Public Collision-Resistance. Let A be an adversary which breaks the public-
collision resistance of our construction. We can then construct an adversary
B which uses A internally to break the collision-resistance of the underlying
chameleon hash. We do so by a sequence of games:

Game 0: The original public collision-resistance game.
Game 1: As Game 0, but we abort if the adversary A outputs a forgery

(m∗, r∗,m′∗, r′∗, h∗).
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Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event. A
distinguisher A for this hop can be turned into a forger B against the collision-
resistance of the underlying chameleon-hash. B proceeds as follows. It receives
pk1

ch as the challenge public key. It uses this key to initialize A. As the only
oracle B has to simulate is the Adapt-oracle, it proceeds as follows. On input
m∗,m′∗, r∗, etd∗, h∗, B first checks, if the hash verifies. If not, it returns ⊥.
Otherwise, B computes r′2 ← CH.Adapt(sk2∗

ch ,m
∗,m′∗, r∗). Adversary B then

queries its own adaption oracle to receive r′1, and gives (r′1, r′2) to A. At
some point, A returns (m∗, r∗,m′∗, r′∗, h∗). Via assumption, we know that
m∗, r∗ w.r.t. m′∗, r′∗ is “fresh”, i.e., has never been returned by the Adapt-
oracle. Thus, B can return (m∗, r∗1 ,m′∗, r′∗1 , h∗1) as its own forgery attempt.
|Pr[S0]− Pr[S1]| ≤ νch-coll(λ) follows.

As each game hop only changes the view of the adversary negligibly, and the
adversary has no way to forge a collision in Game 1, this proves that our
construction is unique.

Private Collision-Resistance. We use the following sequence of games to prove
the private collision-resistance of our construction.
Game 0: The original private collision-resistance game.
Game 1: As Game 0, but the challenger aborts, if the adversary A outputs a

valid forgery (m∗, r∗,m′∗, r′∗, h∗).
Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event. We

can reduce the security to the collision-resistance of the underlying chameleon-
hash. Moreover, let qh be the number of queries to the hashing oracle. We
can now construct an adversary B which uses A internally to break the
collision-resistance of the underlying chameleon hash. First, B receives pk2

ch
from its own challenger, and pk∗ from A. Then proceed as follows. Draw
i ← {1, 2, . . . , qh}. For each query j 6= i, let (pk2,i

ch , sk
2,i
ch ) ← CH.CKGen(1λ).

On input m, compute (h, r) ← CH.CHash(pk2,i
ch ,m). Otherwise, i.e., i = j,

on input m, compute (h, r) ← CH.CHash(pk2
ch,m). Next, let pk2,j

ch ← pk2
ch.

In both cases, B gives ((r′, r), (h, pk2,i
ch )) to A. At some point, A returns

(m∗, r∗,m′∗, r′∗, pk∗, h∗). As we know that h∗2 = h′∗2 , and m∗ must be fresh
by assumption, B can return (m∗, r∗2 ,m′∗, r′∗2 , h∗2) as its own forgery attempt,
if the hash returned is the one the challenge was embedded in. Thus, the
probability that B wins is the same as A, divided by qh, as B has to guess on
which query the adversaryA finds the collision. |Pr[S0]−Pr[S1]| ≤ qhνch-coll(λ)
follows.

As each game hop only changes the view of the adversary negligibly and the
adversary has no other way to forge a collision, this proves that our construction
is privately collision-resistant.

Uniqueness. Let A be an adversary which breaks the uniqueness of our construc-
tion. We can then construct an adversary B which uses A internally to break
the uniqueness of the underlying chameleon-hash. In particular, consider the
following sequence of games:
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Game 0: The original uniqueness game.
Game 1: As Game 0, but we abort if the adversary outputs a randomness r∗ 6=

r′∗, a public key pk∗, a message m, and a hash h∗ such that CHashCheck(pk∗,
m∗, r∗, h∗) = CHashCheck(pk∗,m∗, r′∗, h∗) = true.

Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event. We
reduce this case to the uniqueness of the underlying chameleon-hash. B
proceeds as follows. It initializes A with 1λ. At some point, A returns
(pk∗,m∗, r∗, r′∗, h∗). By construction, we know that r∗ is of the form (r∗1 , r∗2),
and that h∗ of the form (h∗1, h∗2, pk′∗), and r′∗ is of the form (r′∗1 , r′∗2 ), respec-
tively. Moreover, by assumption, we know that CH.CHashCheck(pk∗,m∗, r∗1 ,
h∗1) = CH.CHashCheck(pk∗,m∗, r′∗1 , h∗1) = true, but also that CH.CHash-
Check(pk′∗,m∗, r∗2 , h∗2) = CH.CHashCheck(pk′∗,m∗, r′∗2 , h∗2) = true. However,
we also know that r′∗1 6= r∗1 or r′∗2 6= r∗2 . Thus, B can return (pk∗,m∗, r∗1 , r′∗1 ),
if r∗1 6= r′∗1 , or (pk′∗,m∗, r∗2 , r′∗2 ), if r′∗2 6= r∗2 . |Pr[S0] − Pr[S1]| ≤ νch-unique(λ)
follows.

As each game hop only changes the view of the adversary negligibly, this proves
that our construction is unique. ut

F.2 Two Additional Lemmas

For our proofs, we need two auxiliary lemmas which we prove subsequently. The
first one is well-known, while the second one allows an approximation for our
reduction to succeed.

Lemma 1. Let n ≥ 2 be any arbitrary integer, and e > n be any prime. Then,
re ≡ r′e mod n implies r = r′, if r ∈ Z∗n, and r′ ∈ Z∗n.

Proof. Because of e > n ≥ ϕ(n) and e prime we have that gcd(e, ϕ(n)) =
1. Therefore, there exists d such that de ≡ 1 mod ϕ(n). We now have red ≡
r′ed mod n, and the claim follows as xϕ(n) ≡ 1 mod n for all x ∈ Z∗n. ut

Lemma 2. There exists a polynomial p(·) such that for every adversary A that
on input n outputs n′ of the same bit-length, it holds that:

Pr
[
y ∈ Z∗nn′ : (n, p, q, e, d)← RSAKGen(1λ), n′ ← A(n), y ← Z∗n

]
>

1
p(·) , (1)

i.e., the given probability is non-negligible.

Before proving the lemma, we recap the following fact:

Fact 1 (Th. 8.8.7 [BS96]) Let n ≥ 3 be an integer. It then holds that:

ϕ(n)
n
≥ 1
eγ log logn+ 3

log logn
,

where γ = 0.57721 . . . is the Euler-Mascheroni constant.
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Now note that this ratio is noticeable in λ for every number n output by an
efficient algorithm on input 1λ, as the bit-length of such an n is polynomially
bounded in λ, say by p(·), and thus n ≤ 2p(λ). Thus, the denominator of the
above ratio is bounded by O(log(p(λ))) and thus by O(λ).

Proof. First note that y ∈ Z∗nn′ if and only if y ∈ Z∗n and y ∈ Z∗n′ . The former
holds true by definition; we thus can replace Z∗nn′ by Z∗n′ in (1).

If n = n′ the sought probability is 1. Otherwise, note that replacing Z∗n by
Zn only changes the probability by a negligible amount, as for an RSA modulus
ϕ(n)/n is overwhelming. In the following we now denote the probability space
(i.e., (n, p, q, e, d) ← RSAKGen(1λ), n′ ← A(n), y ← Zn) by Ω. Furthermore,
ΩJmK denotes the same probability space except that y ← Zn is replaced by
y ← Zm.

Let n > n′. We then have:

Pr[y ∈ Z∗n′ : Ω] = Pr[y ∈ Z∗n′ ∧ 0 ≤ y < n′ : Ω] + Pr[y ∈ Z∗n′ ∧ n′ ≤ y < n : Ω]
≥ Pr[y ∈ Z∗n′ ∧ 0 ≤ y < n′ : Ω]
= Pr[y ∈ Z∗n′ |0 ≤ y < n′ : Ω] · Pr[0 ≤ y < n′ : Ω]

= Pr[y ∈ Z∗n′ : ΩJn′K] · n
′

n

≥ ϕ(n′)
n′
· 1

2 = 1
O(λ) .

For n < n′ we have that:

Pr[y ∈ Z∗n′ : Ω] = Pr[y ∈ Z∗n′ |0 ≤ y < n : ΩJn′K]
= Pr[y ∈ Z∗n′ ∧ 0 ≤ y < n : ΩJn′K] · Pr[0 ≤ y < n : ΩJn′K]

≥ Pr[y ∈ Z∗n′ : ΩJn′K] · n
n′

≥ ϕ(n′)
n′
· 1

2 = 1
O(λ) .

The claim of the lemma follows. ut

F.3 Proof of Theorem 2

For the following proof we assume that the reduction sets up the NIZKPoK-
parameters, but also the groups used in the protocol and the hashing-key k. This
is not made explicit.

Proof. As before, we only need to prove that our construction is indistinguishable,
publicly collision-resistant, and privately collision-resistant. Again, we prove each
property on its own.

Indistinguishability. Indistinguishability is trivial: as adversary never sees both
the hash and the adapted hash at the same time the distributions are equivalent.
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Public Collision-Resistance. We prove public collision-resistance using a sequence
of games.

Game 0: The original public collision-resistance game.
Game 1: As Game 0, but upon setup we obtain (crs, τ)← S1(1λ) upon setup,

store τ and henceforth simulate all proofs using S2(crs, τ, ·).
Transition - Game 0 → Game 1: A distinguisher between Game 0 and Game 1

is a zero-knowledge distinguisher, i.e., |Pr[S0]− Pr[S1]| ≤ νzk(λ).
Game 2: As Game 1, but upon setup we obtain (crs, τ, ξ)← S(1λ), and addi-

tionally store ξ.
Transition - Game 1 → Game 2: Under simulation sound extractability, this

change is conceptual, i.e., Pr[S1] = Pr[S2].
Game 3: As Game 2, but we simulate the Adapt oracle as follows:

Adapt. To find a collision w.r.t. m, m′, (b, h′, πt), randomness (p, C, πp),
and trapdoor information etd, and skch = (x, skenc) do:
1. If (p, C, ·) corresponds to a previous Adapt query, set AD = >

and AD = ⊥ otherwise. If only C corresponds to a previous
query, return ⊥.

2. If false = CHashCheck(pkch,m, (p, C, πp), (b, h′, πt)), return ⊥.
...

Transition - Game 2 → Game 3: This change is conceptual, i.e., Pr[S2] = Pr[S3]
(observe that C is unconditionally binding, and, thus, modifying p implies
that the check p = gxr which is performed within Adapt fails, and the oracle
would abort anyway).

Game 4: As Game 3, but we further change the Adapt oracle as follows:

Adapt. To find a collision w.r.t. m, m′, (b, h′, πt), randomness (p, C, πp),
and trapdoor information etd, and skch = (x, skenc) do:
1. If (p, C, ·) corresponds to a previous Adapt query, set AD = >

and AD = ⊥ otherwise. If only C corresponds to a previous query,
return ⊥.

...
3. If AD = ⊥, decrypt C, i.e., r ← Π.Dec(skenc, C). If r = ⊥, return
⊥.

...
7. If AD = ⊥, check if p 6= gxr, and return ⊥ if so.
...

Transition - Game 3 → Game 4: This change is conceptual, i.e., Pr[S3] = Pr[S4]
(the checks are only omitted if we know that they would not yield to an
abort).

Game 4: As Game 3, but we further change the Adapt oracle as follows:
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Adapt. To find a collision w.r.t. m, m′, (b, h′, πt), randomness (p, C, πp),
and trapdoor information etd, and skch = (x, skenc) do:
1. If (p, C, ·) corresponds to a previous Adapt query, set AD = >

and AD = ⊥ otherwise. If only C corresponds to a previous query,
return ⊥.

...
3. If AD = ⊥, decrypt C, i.e., r ← Π.Dec(skenc, C). If r = ⊥, return
⊥.

...
7. If AD = ⊥, check if p 6= gxr, and return ⊥ if so.
8. If a = a′, return (p, C, πp).
9. NOP

10. Let p′ ← b
ga′etd .

11. C ′ ← Π.Enc(pkenc,⊥) .
12. Generate π′p ← S2(crs, τ, (p′, h)).
...

Transition - Game 3 → Game 4: A distinguisher between Game 3 and Game 3
is an IND-CCA2 distinguisher for Π, i.e., |Pr[S3]− Pr[S4]| ≤ νc(λ).

Game 5: As Game 4, but we further modify Adapt so that it runs on an skch
where x is replaced by gx:

Adapt. To find a collision w.r.t. m, m′, (b, h′, πt), randomness (p, C, πp),
and trapdoor information etd, and skch = (gx , skenc) do:
...
7. If AD = ⊥, check if p 6= (gx )r, and return ⊥ if so.
...

Transition - Game 4 → Game 5: This change is conceptual, i.e., Pr[S4] = Pr[S5].
Game 6: As Game 5, but for every query to Adapt, we store (p, C, πp) if πp

was not previously simulated within Adapt in R[(b, h′, πt)]← (p, C, πp). Now,
for every forgery either both r∗ or r′∗ are fresh, or one of them contains a
proof πp (resp. π′p) which we previously simulated in the Adapt oracle. If one
of them contains such a proof, we replace the respective randomness tuple
(p, C, πp) by R[h∗].

Transition - Game 5 → Game 6: This change is conceptual, i.e., Pr[S5] = Pr[S6].
Observe that the fact that a proof stems from a tuple returned by Adapt
implies that a query with a tuple (p, C, πp) where πp was not simulated must
once have happened. Further, the modified forgery is still a valid public
collision freeness forgery.

Game 7: As Game 6, but for the modified forgery we extract both r and r′ from
πp and π′p contained in r∗ = (p, C, πp) and r′∗ = (p′, C ′, π′p). If the extraction
fails, we abort.
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Transition - Game 6 → Game 7: Both games proceed identically, unless we have
to abort, i.e, Pr[S6]− Pr[S7]| ≤ 2 · νe(λ).18

Game 8: As Game 7, but for πt contained in h∗ we extract etd and abort if the
extraction fails.

Transition - Game 7 → Game 8: Both games proceed identically, unless we have
to abort, i.e., |Pr[S7]− Pr[S8]| ≤ νe(λ).

Game 9: As Game 9, but we obtain a DL-challenge (G, g, q, gx), perform the
setup with respect to (G, g, p) and embed gx into skch.

Transition - Game 8 → Game 9: This change is conceptual, i.e., Pr[S8] = Pr[S9].

In Game 9, for every forgery (modified according to Game 6) we have that
h∗ = (b, h′, πt) contains b = grx+aetd = gr

′x+a′etd. Thus, we have rx + aetd =
r′x+ a′etd. Hence, x can easily be calculated, which is the solution to the DL-
challenge. This extraction is only possible, if a 6= a′. However, if this is not the
case we have a collision in the hash-function. Taking the union bound yields that
Pr[S9] = νDL(λ) + νCR(λ); all intermediate game changes are negligible, which
concludes the proof.

Private Collision-Resistance. Below we prove private collision resistance using a
sequence of games.

Game 0: The original private collision-resistance game.
Game 1: As Game 0, but upon setup we obtain (crs, τ)← S1(1λ) upon setup,

store τ and henceforth simulate all proofs using S2(crs, τ, ·).
Transition - Game 0 → Game 1: A distinguisher between Game 0 and Game 1

is a zero-knowledge distinguisher, i.e., |Pr[S0]− Pr[S1]| ≤ νzk(λ).
Game 2: As Game 1, but upon setup we obtain (crs, τ, ξ)← S(1λ), and addi-

tionally store ξ.
Transition - Game 1 → Game 2: Under simulation sound extractability, this

change is conceptual, i.e., Pr[S1] = Pr[S2].
Game 3: As Game 2, but we modify the CHash oracle so that it no longer draws

etd uniformly at random but directly draws h′ uniformly at random from G∗.

CHash. To hash m w.r.t. pkch = (h, πpk, pkenc) do:
...
5. Let h′ ← G∗ .
...

Game 4: As Game 3, but for every πp returned by CHash we record the value r
so that p = hr in R[p]← r.

Transition - Game 3 → Game 4: This change is conceptual, i.e., Pr[S3] = Pr[S4].
Game 5: As Game 4, but for pk∗ output by the adversary we extract x so that

gx = h. If the extraction fails, we abort.
Transition - Game 4 → Game 5: Both games proceed identically, unless we have

to abort, i.e, Pr[S4]− Pr[S5]| ≤ νe(λ).
18 For simplicity we collapsed both extractions in a single game change. It is easy to

unroll them into two separate game changes.
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Game 6: As Game 5, but we obtain a DL instance (G, g, q, gt), perform the
setup with respect to (G, g, q) and further modify CHash as follows:

CHash. To hash m w.r.t. pkch = (h, πpk, pkenc) do:
...
5. Let s← Z∗q , h′ ← (gt)s .
...

Furthermore, we record S[h′]← s.
Transition - Game 5 → Game 6: This change is conceptual, i.e., Pr[S5] = Pr[S6].
Game 7: As Game 6, but if πp or π′p contained in r∗ = (p, C, πp) and r′∗ =

(p′, C ′, π′p) do not correspond to a CHash answer we obtain r and r′ using
the extractor and set R[p]← r or R[p′]← r′. If the extraction fails, we abort.

Transition - Game 6 → Game 7: Both games proceed identical unless we have
to abort, i.e., |Pr[S6]− Pr[S7]| ≤ 2 · νe(λ).19

Now, if the adversary A outputs (m∗, r∗,m′∗, r′∗, h∗) such that h∗ = gxrh′a =
gxr
′
h′a
′ in Game 6. By definition, we have that grx+ats = gr

′x+a′ts (Note, gts = h′

in both cases, which, by definition, needs to be returned by the CHash oracle,
and thus s = S[h′] is known). It follows that we have rx+ ats = r′x+ a′ts. As all
variables but t are now known (the values for r and r′ can be obtained from R),
we have that t can be calculated and returned as DL solution unless a = a′, which
would however imply a collision for the hash function. Taking the union bound,
yields Pr[S7] ≤ νDL(λ) + νCR(λ); all intermediate game changes are negligible,
which concludes the proof.

ut

19 For simplicity we collapsed both extractions in a single game change. It is easy to
unroll them into two separate game changes.
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