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Abstract. Recently, Hofheinz, Jager, Khurana, Sahai, Waters and Zhandry
[9] proposed a new primitive called universal samplers that allows obliv-
ious sampling from arbitrary distributions, and showed how to con-
struct universal samplers using indistinguishability obfuscation (iO) in
the ROM.

One important limitation for applying universal samplers in practice is
that the constructions are built upon indistinguishability obfuscation.
The costs of using current iO constructions is prohibitively large. We ask
is whether the cost of a (universal) sampling could be paid by one party
and then shared (soundly) with all other users? We address this question
by introducing the notion of universal samplers with verification. Our
notion follows the general path of [9], but has additional semantics that
allows for validation of a sample.

In this work we define and give a construction for universal samplers
with verification. Our verification procedure is simple and built upon
one-time signatures, making verification of a sample much faster than
computing it. Security is proved under the sub exponential hardness of
indistinguishability obfuscation, puncturable pseudorandom functions,
and one-time signatures.

1 Introduction

The Random Oracle Model (ROM), introduced by Bellare and Rogaway [3], is
a widely used heuristic in cryptography. In the random oracle model a hash
function H is modeled as an oracle that when sampled with an input x will
output a sample of a fresh random string u. This functionality has been applied
in numerous cryptographic applications that have leveraged features of the model
such programmability and rewinding. However, one significant limitation of the
model is that it can only be used to sample from random strings, whereas in
many applications we would like the ability of (obliviously) sample from arbitrary
distributions. 3

? Supported by NSF CNS-1228599 and CNS-1414082, DARPA SafeWare, Microsoft
Faculty Fellowship, and Packard Foundation Fellowship.

3 One could define the random oracle model to provide samples from arbitrary distri-
butions on arbitrary sets. However, such a model no longer heuristically corresponds
to real world hash functions.



Recently, Hofheinz, Jager, Khurana, Sahai, Waters and Zhandry [9], ad-
dressed this problem. They proposed a new primitive called universal samplers
that allows oblivious sampling from arbitrary distributions, and showed how to
construct universal samplers using indistinguishability obfuscation (iO) in the
ROM.

Hofheinz et al. argued that universal samplers can give way to a powerful
notion of universal setup. Several cryptographic schemes require the use of a
trusted setup to generate common parameters. For example, in an elliptic curve-
based public key scheme we might want to generate a common set of curve
parameters for everyone to use. However, each such cryptographic scheme pro-
posed will require its users to agree on some trusted user or process for setting up
the parameters for the specific scheme. In practice the cost of executing such a
setup for every single instance can be quite onerous and might serve as a barrier
to adoption. In particular, the effort to get everyone to agree on an authority or
gather an acceptable set of parties together to jointly perform (via multiparty
computation) the setup process can be difficult. Such “human overhead” is dif-
ficult to measure in terms of traditional computational metrics. Using universal
parameters, however, one can service several schemes with one universal trusted
setup. Here the trusted setup party (or parties) will create a universal sampler.
Then if any particular scheme has a setup algorithm described by circuit d,
its users can simply universally sample from the distribution d to get a set of
parameters for that particular scheme.

In addition to the application of universal setup described above, Hofheinz
et al. provided that several applications of universal samplers, non-interactive
key exchange and broadcast encryption. Subsequent works [11, 10] used universal
parameters to construct universal signature aggregators and constrained pseu-
dorandom functions respectively.

The costs of using universal samplers One important limitation for applying uni-
versal samplers in practice is that the constructions are built upon indistinguisha-
bility obfuscation. The costs of using current iO constructions is prohibitively
large. Even so we might hope that efforts toward moving the performance of iO
to practice [1, 17, 2] will follow the path of other cryptographic primitives such as
multiparty computation and ORAM. Such primitives were once considered way
too expensive to even consider, however, sustained algorithmic and engineering
efforts (see for example the references in [12]) have gotten reduced the costs
by several orders of magnitude and gotten them to the point where many inter-
esting programs or computations can be executed. A central concern though is
that even if we assume that the performance costs of obfuscation follow a simi-
lar trajectory to other works that the costs will still remain significantly above
“traditional” cryptographic primitives such as encryption, signing, etc. that have
costs imperceptible to a human.

In the context of universal samplers and a trusted universal setup, it might be
acceptable for a well funded party to invest the computation needed to determine
a parameter needed for a given scheme, but not acceptable to assume that every
single party using the scheme is willing to pay such a high cost.
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We ask whether the cost of a (universal) sampling could be paid by one
party and then shared (soundly) with all other users. Returning to our elliptic
curve example, one could imagine that NIST would run a universal sampler for
a particular setup scheme to obtain a set of curve parameters p. Could NIST
then share the parameters p with all other users in a manner that convinced
them that they were sampled correctly, but where the cost of verification was
much smaller than repeating the sampling? We restate this question in terms of
universal samplers:

Is it possible to construct a universal sampler that allows for fast verification
(that is, verification that uses only traditional cryptography)?

We address this question by introducing the notion of universal samplers
with verification. Our notion follows the general path of [9], but has additional
semantics that allows for validation of a sample. In our system the Setup outputs
a Universal Sampler parameter U as before, but also outputs a verification key
VK. 4

The sampling algorithm Sample as in [9] will maps the sampler parameters
U and input circuit d(·) to an element p sampled from d, but also output a
certificate σ which can be thought of as a signature on p. Finally, we include an
additional algorithm, Check, that takes VK, σ, and the input circuit, and checks
whether these are consistent.

We can see now that there are two paths to obtaining a sample from the dis-
tribution d. One can call Sample(U, d) and obtain p. Or one can let another party
perform this step and receive p, σ and validate this by calling Check(VK, d, p, σ).

We require two security properties. The first is the prior indistinguishability
of real world and ideal world given in [9]. The second property we require is that
it should be computationally infeasible for any poly-time adversary A to produce
a triple d∗, p∗, σ∗ such that Check(VK, d∗, p∗, σ∗) = 1 and Sample(U, d∗) 6= p∗.
Intuitively, it should be hard to produce a signature that convokes a third party
of the “wrong” output.

The first thing we observe is that any standard universal sampler scheme
implies one with verification, but in an uninteresting way. To do this we can
simply let VK = U and have the Check algorithm run Sample(U, d) itself. This
will clearly result in a secure universal sampler with verification if the base
universal sampler is secure, but not result in any of the savings that motivated
our discussion above.

For this reason any scheme of interest must have a verification algorithm
Check that is significantly more efficient than running Sample. Ideally, the cost
will be close to that of “traditional” cryptographic primitives. We choose not to
formalize this final requirement.

4 As in [9] there is a single trusted setup process that runs Setup to produces the
sampler parameters. It is then expected to erase the random coins it used. Also as
noted by [9] one could employ multi-party computation to distribute this initial
setup task among multiple parties.
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Our technical approach We begin our technical exposition by describing what we
call prefix-restricted signature scheme. This is specialized signature scheme that
will we use to sign samples output from our universal sampler. A prefix-restricted
signature scheme is over a message spaceM1×M2 and differs from an ordinary
signature scheme in the following ways:

– A secret key can either be a “master secret key” or admit a “punctured”
form at a message (m∗1,m

∗
2) capable of signing any message (m1,m2) such

that (a) m1 6= m∗1 or (b) (m1,m2) = (m∗1,m
∗
2).

– In our security game an attacker selectively gives (m∗1,m
∗
2) and receives back

a corresponding punctured signing key. No signing queries are allowed. The
attacker should be unable to provide a signature on any message (m1,m2)
where m1 = m∗1 and m2 6= m∗2.

– The scheme is deterministic, even with respect to the master and punctured
keys. Moreover, signatures produced by punctured keys (on messages for
which this is possible) must be equal to those produced by unpunctured
keys on the same messages.

This notion shares a similar flavor to earlier related concepts such as con-
strained signature[5]. It is actually the last property of matching signature out-
puts between all key types that is critical for our use and the most tricky to
satisfy. Looking ahead, the reason we will need this is to be able to argue that
two programs are equivalent when we switch from using a master key to a punc-
tured key in an experiment.

While achieving some form of signature delegation has been considered in
other works and transforming a standard signature scheme to a deterministic
one can be done by a straightforward application of a PRF [8], forcing such
a constrained signature key to output the same signatures as a master key is
somewhat more tricky.

We construct a prefix-restricted signature scheme from a deterministic one-
time signature scheme (on arbitrary length messages) and a puncturable pseudo
random function [4, 6, 13, 15]. Briefly recall that a puncturable PRF is a PRF
when one can create a punctured key that allows a keyed function F (K, ·) to be
evaluated at all but a small number of points.

Let the length of the first message piece, M1, be n and let mi be the i-bit
prefix of m and mi be the i-bit prefix of m with bit i flipped. To sign a message
m = (m1,m2). We will first create a Naor-Yung [14] style certificate tree of
length n. To create a signature on m for each i = 1 to n we first generate a
two verify and signing key pairs (one as the 0 key and the other as the 1 key).
We denote the keys output in step i as (SKmi ,VKmi)← KeyGen1(1λ;F (K,mi))
and (SKmi ,VKmi) ← KeyGen1(1λ;F (K,mi)). Importantly, notice that instead
of sampling these keys randomly we replace the setup random coins with the
output of F (K,mi) and F (K,mi). Next we create a signature chain by letting
σi be the signature on (VKmi−1|0, (VKmi−1|1) with key SKmi . Finally, at the
bottom of the tree we sign the whole message m using the final key SKmi .
Verification is done by verifying the chain and then the signature on the final
message.
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A punctured key for (m∗1,m
∗
2) can be created by giving out (SKmi for i ∈

[1, n], a puncturable PRF key that is punctured as all prefixes of m∗1, a signature
on (m∗1,m

∗
2), and the signature certificates along the path. The fact that the

one-time signatures are deterministic coupled with the deterministic process for
generating one-time keys allows for corresponding signatures from the master
and punctured keys to be the same.

The main construction Now that we have this tool in place we can get back to
our universal sampler construction. As mentioned in the work of [9], when using
indistinguishability obfuscation in the random oracle model, the hash function(s)
modeled as a random oracle must be outside the obfuscated circuit(s). Our
approach for doing so is different from that of [9], and a remarkable feature of our
scheme is its simplicity. The sampler setup algorithm will first generate a prefix
restricted signature scheme verification and signing key pair. Next the universal
sampler parameters are created as the obfuscation of a program that takes two
inputs x, d and outputs p = d(r), where r is computed using a puncturable PRF
on input x||d. The program also outputs a signature σ (using the signing key) on
(x||d, p) using a prefix-restricted signature scheme. The sampler parameters, U ,
are the obfuscated program and the verification key VK of the universal sampler
is the verification key of the prefix restricted signature.

To sample from a distribution d, one computes x = H(d) and runs the
sampler output on inputs x, d. Finally, the verification algorithm is used to check
that p was the correct output sample for a circuit d when given a prefix restricted
signature σ. The verification algorithm first computes x = H(d). Then, it simply
checks that the signature σ verifies on the message m = (m1,m2) = (x||d, p).

We can now examine the overhead of verification in our sampler which is
simply the prefix restricted signature verification on (x||d, p). The cost of per-
forming this will be ` one-time signature verifications where ` is the bit length of
x||d. In our construction the bit length of x will be roughly the size of the output
size of samples plus a security parameter and the bit length of d corresponds to
the string describing the circuit. While the time to verify these ` one time sig-
natures is significantly longer than a standard signature scheme, the verification
time will be much shorter than running the obfuscated program. Moreover, we
would expect it to remain so even as improvements in obfuscation move towards
making it realizable.

Proving security The security of our universal sampler with verification is based
on subexponential hardness of the underlying building blocks of indistinguisha-
bility obfuscation, puncturable pseudorandom functions, and prefix restricted
signatures. In addition, the random oracle heuristic is used to prove security.

Let’s start by looking at verification security. At a high level our proof pro-
ceeds at as a sequence of games. Assume there exists a PPT attacker A that
makes at most q (unique) queries to the random oracle and produces a forgery
σ∗ of an output p∗ on d∗. Our proof starts by guessing both value of d∗ and
which random oracle query i ∈ [q] corresponds to d∗. The reduction will abort
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if the guess is incorrect. It is this complexity leveraging step of guessing over all
possible d∗ values that requires the use of sub exponential hardness.

Next, suppose that the actual output of the Sample algorithm on input d is out
and let H(d∗) = x∗). We change the sampler parameters U to be an obfuscation
of a program that uses a restricted key that cannot sign a message (m1 =
x∗||d∗,m2) if m2 6= out. This transition is indistinguishable to the attacker by
indistinguishability obfuscation. For this proof step to go through it is critical the
signatures produced from the master key and punctured keys are deterministic
and consistent so that the corresponding programs are equivalent. Finally, the
proof can be completed by invoking the hardness of breaking the prefix restricted
signature.

We now turn to the proof of proving existing definition from [9] of the indis-
tinguishability of real world and ideal. Our proof proceeds in a similar manner
to theirs in that we switch from generating samples from the obfuscated pro-
gram to receiving them via “delayed backdoor programming” from the random
oracle. One important difference is that our main obfuscated program computes
the output of samples directly, whereas the main program of Hofheinz et al.
produces a one-time sampler program, which is then itself invoked to produce
the actual sample.

In doing things directly we benefit from a more direct construction at the
expense of applying complexity leveraging. Our proof will proceeds as a hybrid
that programs the outputs of the random oracle one at a time. At each step our
reduction must guess the input to the random oracle. Thus, if D is the number
of possible circuits, we get a loss of D · q in the reduction. (We emphasize that
we avoid a loss of Dq which could not be overcome with complexity leveraging.)
Again, this loss is balanced out by the use of sub exponential hardness. We also
made our proof steps more modular than those in [9]. One tool in doing so
is the introduction of a tool we call a puncturable pseudorandom deterministic
encryption scheme.

Other applications of fast verification In addition, to the application of estab-
lishing a set of common parameters for a cryptographic scheme [9] give mutliple
other applications of universal samplers. Here we sketch how some of these can
benefit if the sampler has fast verification.

In the Identity-Based Encryption scheme given in [9] a user performs an
encryption to an identity Id by first running Sample(U, dID) where d is a circuit
that samples and outputs a fresh public key pkID. This key is then used to
encrypt to the identity. Consider a scenario where more than one party wishes
to perform an IBE encryption to the same identity. Using a sampler with fast
verification a single party can perform the work of computing pkID and then
share this with all other parties (sparing the rest of them from performing the
computation). The other parties will be convinced of the authenticity via the
certificate and verification procedure.

Another possibility is that instead of multiple parties wishing to perform the
computation, there could be a single party running on a machine that has a un-
trusted procesing environment that is coupled witha trusted, but more expensive
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environment. Here it would make sense for the untrusted enviorment to perform
the sampling and pass on the answer to the more trusted environment to do the
rest of the Identity-Based Encryption.

In general these motivational examples will transcend to other applications
of universal samplers ranging from non-interactive key exchange [9] to new con-
structions of constrained PRFs [10]. In particular, adding the fast verification
property helps in any mutliparty scenario where multiple (untrusting) parties
want to share the output of a call to a sample algorithm. Or where a single
party can move the Sample algorithm to an untrusted environment.

1.1 Organization

In Section 2, we introduce some notations and preliminaries. Next, we define
our primitive - universal sampler with verification in Section 3. To construct a
selectively secure universal sampler with (fast) verification, we require the notion
of prefix-restricted signature schemes defined in Section 4. For the construction,
we also require the notion of puncturable pseudorandom deterministic encryption
scheme defined in Section 5. Finally, in Section 6, we present our fast verification
universal sampler scheme.

2 Preliminaries

2.1 Notations

For integers `ckt, `inp, `out, let C[`ckt, `inp, `out] be the set of circuits that have
size at most `ckt bits, take `inp bits as input and output `out bits.

2.2 Puncturable Pseudorandom Functions

The notion of constrained PRFs was introduced in the concurrent works of [4,
6, 13]. Punctured PRFs, first termed by [15] are a special class of constrained
PRFs.

A PRF F : K × X → Y is a puncturable pseudorandom function if there is
an additional key space Kp and three polynomial time algorithms F.setup, F.eval
and F.puncture as follows:

– F.setup(1λ) is a randomized algorithm that takes the security parameter λ
as input and outputs a description of the key space K, the punctured key
space Kp and the PRF F .

– F.puncture(K,x) is a randomized algorithm that takes as input a PRF key
K ∈ K and x ∈ X , and outputs a key K{x} ∈ Kp.

– F.eval(K{x}, x′) is a deterministic algorithm that takes as input a punc-
tured key K{x} ∈ Kp and x′ ∈ X . Let K ∈ K, x ∈ X and K{x} ←
F.puncture(K,x). For correctness, we need the following property:

F.eval(K{x}, x′) =

{
F (K,x′) if x 6= x′

⊥ otherwise
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We will now recall the selective security game for puncturable PRFs. The
following definition is equivalent to the one in [15]. Consider a challenger C and
adversary A. The security game between C and A consists of two phases.

Challenge Phase: The adversary A sends its challenge string x∗. The chal-
lenger chooses a uniformly random PRF key K ← K. Next, it chooses a bit
b ∈ {0, 1} and a uniformly random string y ← Y. It computes K{x∗} ←
F.puncture(K,x∗). If b = 0, the challenger outputs K{x∗} and (F (K,x∗), y).
Else, the challenger outputs K{x∗} and (y, F (K,x∗)).

Guess: A outputs a guess b′ of b.

A wins the security game if b = b′. The advantage of A in the security game
against F is defined as AdvFA = Pr[b = b′]− 1/2.

Definition 1. The PRF F is a selectively secure puncturable PRF if for all
probabilistic polynomial time adversaries A AdvFA(λ) is negligible in λ.

Remark 1. Note the difference between this definition and the one in previous
works is in the challenge phase. Here, we require that the challenger output a
punctured PRF key and a pair (y0, y1) ∈ Y2. It chooses a bit b. If b = 0, then
y0 = F (K,x∗) and y1 is chosen uniformly at random. Else, y0 is chosen uniformly
at random and y1 = F (K,x∗).

Remark 2. This definition can be extended to handle multiple points being punc-
tured. More formally, we can define the notion of t-puncturable PRFs, where the
PRF key K can be punctured at t points. In the selective security game, the
adversary chooses the t puncture points, sends them to the challenger. The chal-
lenger outputs a key punctured at the t points, along with t output strings,
which are either PRF evaluations at the t points or uniformly random strings.

2.3 Indistinguishability Obfuscation

We recall the definition of indistinguishability obfuscation from [7, 15].

Definition 2. (Indistinguishability Obfuscation) Let C = {Cλ}λ∈N be a family
of polynomial-size circuits. Let iO be a uniform PPT algorithm that takes as
input the security parameter λ, a circuit C ∈ Cλ and outputs a circuit C ′. iO is
called an indistinguishability obfuscator for a circuit class {Cλ} if it satisfies the
following conditions:

– (Preserving Functionality) For all security parameters λ ∈ N, for all C ∈ Cλ,
for all inputs x, we have that C ′(x) = C(x) where C ′ ← iO(1λ, C).

– (Indistinguishability of Obfuscation) For any (not necessarily uniform) PPT
distinguisher B = (Samp,D), there exists a negligible function negl(·) such
that the following holds: if for all security parameters λ ∈ N, ∀x,C0(x) =
C1(x) : (C0;C1;σ)← Samp(1λ), then

|Pr[D(σ, iO(1λ, C0)) = 1 : (C0;C1;σ)← Samp(1λ)]−
Pr[D(σ, iO(1λ, C1)) = 1 : (C0;C1;σ)← Samp(1λ)]|
≤ negl(λ).
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In a recent work, [7] showed how indistinguishability obfuscators can be con-
structed for the circuit class P/poly. We remark that (Samp,D) are two algo-
rithms that pass state, which can be viewed equivalently as a single stateful
algorithm B. In our proofs we employ the latter approach, although here we
state the definition as it appears in prior work.

3 Universal Samplers with Verification

We will now define the syntax and security definitions for universal samplers
with verification. In this primitive, as in [9], there is an algorithm Setup which
outputs a sampler parameter U as well as a sampling algorithm Sample which
maps the sampler parameters and input circuit to an element sampled from
the desired distribution. We modify this definition so that Setup also outputs a
verification key VK, and Sample also outputs a ‘certificate’ σ asserting that the
sampler output matches the input circuit. An additional algorithm, Check, takes
VK, σ, and the input circuit, and checks whether these are consistent.

Syntax Let `ckt, `inp and `out be polynomials. An (`ckt, `inp, `out)-universal sam-
pler scheme consists of algorithms Setup, Sample and Check defined below.

– Setup(1λ) takes as input the security parameter λ and outputs the sampler
parameters U and a verification key VK.

– Sample(U, d) takes as input the universal sampler U and a circuit d ∈
C[`ckt(λ), `inp(λ), `out(λ)]. The output of the function is the induced param-
eters pd ∈ {0, 1}`out(λ) and a certificate σd.

– Check(VK, d, p, σ) takes as input the verification key VK, the circuit d ∈
C[`ckt(λ), `inp(λ), `out(λ)], p ∈ {0, 1}`out(λ) and a certificate σ. It outputs
either 0 or 1.

For simplicity of notation, we will drop the dependence of `ckt, `inp, `out on λ
when the context is clear.

Correctness For correctness, we require that any honestly generated output and
certificate must pass the verification. More formally, for all security parameters
λ, (U,VK)← Setup(1λ), circuit d ∈ C[`ckt, `inp, `out],

Check(VK, d,Sample(U, d)) = 1.

3.1 Security

For security, we require the primitive to satisfy the real vs ideal world defini-
tion from [9]. In addition to that, we also need to ensure that no adversary
can output ‘fake certificates’. This intuition is captured by the following un-
forgeability definitions. Informally, we require that any PPT adversary should
not be able to output a tuple (d∗, p∗, σ∗) such that Sample(U, d∗) 6= p∗ but
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Check(U, d∗, p∗, σ∗) = 1. For clarity of presentation, we chose to present the [9]
definitions for real vs ideal world indistinguishability in Appendix 3.2.

The security definition given here is an adaptive game in the random ora-
cle model. One could consider presenting the definition in the standard model.
However, as shown in [9], the simulation security definition must involve the
random oracle. As a result, we choose to have a random oracle based definition
for unforgeability as well.

Definition 3. An (`ckt, `inp, `out)-universal sampler scheme (Setup,Sample,Check)
is said to be a adaptively secure against forgeries if every PPT adversary A,
Pr[A wins in Expt] ≤ negl(λ), where Expt is defined as follows.

1. The challenger sends (U,VK)← Setup(1λ) to A.
2. A sends random oracle queries (RO, x). For each unique query, the challenger

chooses a uniformly random string y and outputs y. It also adds the tuple
(x, y) to its table.

3. A sends its output (p∗, σ∗) to the challenger.

A wins if Check(VK, d∗, p∗, σ∗) = 1 and Sample(U, d∗) 6= p∗.

3.2 Simulation Security - Real vs Ideal World Indistinguishability

In this part, we will recall the adaptive security definition for universal samplers
from [9]. As in [9], an admissible adversary is an interactive Turing Machine that
outputs one bit, with the following input/output behavior:

– A takes as input security parameter λ and sampler parameters U .
– A can send a random oracle query (RO, x), and receives the output of the

random oracle on input x.
– A can send a message of the form (params, d) where d ∈ C[`ckt, `inp, `out].

Upon sending this message,A is required to honestly compute pd = Sample(U, d),
making use of any additional random oracle queries, and A appends (d, pd)
to an auxiliary tape.

Let SimUGen and SimRO be PPT algorithms. Consider the following two ex-
periments:

RealA(1λ):

1. The random oracle RO is implemented by assigning random outputs to each
unique query made to RO.

2. U ← SetupRO(1λ).
3. A(1λ, U) is executed, where every message of the form (RO, x) receives the

response RO(x).
4. Upon termination of A, the output of the experiment is the final output of

the execution of A.

IdealASimUGen,SimRO(1λ):
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1. A truly random function F that maps `ckt bits to `inp bits is implemented by
assigning random `inp-bit outputs to each unique query made to F . Through-
out this experiment, a Samples Oracle O is implemented as follows: On input
d, where d ∈ C[`ckt, `inp, `out], O outputs d(F (d)).

2. (U, τ) ← SimUGen(1λ). Here, SimUGen can make arbitrary queries to the
Samples Oracle O.

3. A(1λ, U) and SimRO(τ) begin simultaneous execution.
- Whenever A sends a message of the form (RO, x), this is forwarded to
SimRO, which produces a response to be sent back to A.

- SimRO can make any number of queries to the Samples Oracle O.
- Finally, after A sends any message of the form (params, d), the auxiliary

tape of A is examined until an entry of the form (d, pd) is added to it. At
this point, if pd is not equal to d(F (d)), then experiment aborts, resulting
in an Honest Sample Violation.

4. Upon termination of A, the output of the experiment is the final output of
the execution of A.

Definition 4. A universal sampler scheme U = (Setup, Sample), parameterized
by polynomials `ckt, `inp and `out, is said to be adaptively secure in the random
oracle model if there exist PPT algorithms SimUGen and SimRO such that for
all PPT adversaries A, the following hold:

Pr[IdealASimUGen,SimRO(1λ) aborts ] = 05

and ∣∣∣Pr[RealA(1λ) = 1]− Pr[IdealASimUGen,SimRO(1λ) = 1]
∣∣∣ ≤ negl(λ).

4 Prefix-Restricted Signatures

In this section we describe a primitive, prefix-restricted signature schemes. These
are a form of constrained signature[5] which will be used as a building block in
the main construction. A prefix-restricted signature schemes is over a message
space M1 ×M2 and differs from an ordinary signature scheme in the following
ways:

– A secret key can either be a “master secret key” or admit a “punctured”
form at a message (m∗1,m

∗
2) capable of signing any message (m1,m2) such

that (a) m1 6= m∗1 or (b) (m1,m2) = (m∗1,m
∗
2).

– In our security game an attacker selectively gives (m∗1,m
∗
2) and receives back

a corresponding punctured signing key. No signing queries are allowed. The
attacker should be unable to provide a signature on any message (m1,m2)
where m1 = m∗1 and m2 6= m∗2.
Our security property does not allow the adversary to make signing queries
on any message; these are not needed for our purposes.

5 The definition in [9] only requires this probability to be negligible in λ. However, the
construction actually achieves zero probability of Honest Sample Violation. Hence,
for the simplicity of our proof, we will use this definition
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– The scheme is deterministic, even with respect to punctured keys. That
is, signatures produced by punctured keys (on messages for which this is
possible) must be equal to those produced by unpunctured keys on the same
messages.

This last point is the most important, since this strong determinism is required
to obtain the functional equivalence required by indistinguishability obfuscation;
it is also the reason that we could not use an existing primitive.

4.1 Definition

Let M1 and M2 be two message spaces. We define a prefix-restricted signature
scheme for message space M1 ×M2 as a collection of five algorithms:

– Pre.Setup(1λ) is a randomized algorithm that takes as input the security
parameter λ and outputs a master signing key MSK and verification key
VK.

– Pre.Sign(MSK, (m1,m2)) is a deterministic algorithm that takes a master
signing key MSK and message pair (m1,m2), and outputs a signature σ.

– Pre.Verify(VK, (m1,m2), σ) is deterministic and takes a message pair (m1,m2),
verification key VK and signature σ, and outputs a bit.

– Pre.Restrict(MSK, (m∗1,m
∗
2)) (possibly randomized) takes a master signing

key MSK and message pair (m∗1,m
∗
2), and outputs a restricted key SK{m∗1,m∗2}.

– Pre.ResSign(SK{m∗1,m∗2}, (m1,m2)) is deterministic and takes a restricted
signing key SK{m∗1,m∗2}, a message pair (m1,m2), and outputs a signature
σ.

Correctness We define correctness by the following conditions:

1. For all (MSK,VK)← Pre.Setup(1λ) and message pairs (m1,m2) ∈M1×M2,

Pre.Verify(VK, (m1,m2),Pre.Sign(MSK, (m1,m2))) = 1.

2. For all (MSK,VK)← Pre.Setup(1λ), (m∗1,m
∗
2) ∈M1×M2, SK{m∗1,m∗2} ←

Pre.Restrict(MSK, (m∗1,m
∗
2)), and messages (m1,m2) ∈M1 ×M2 such that

either m1 6= m∗1 or (m1,m2) = (m∗1,m
∗
2),

Pre.Sign(MSK, (m1,m2)) = Pre.ResSign(SK{m∗1,m∗2}, (m1,m2)).

Security For security, we require that no polynomial time adversary can output
a forgery, even after receiving a restricted signing key.

Definition 5. A two message signature scheme is selectively secure if every
PPT adversary A has at most negligible advantage in the following security game:

1. A provides a message pair (m∗1,m
∗
2).

2. The challenger generates the keys (MSK,VK)← Pre.Setup(1λ) and SK{m∗1,m∗2}
← Pre.Restrict(MSK, (m∗1,m

∗
2)) and sends the tuple (SK{m∗1,m∗2},VK) to A.

3. A replies with a message pair (m1,m2) such that m1 = m∗1 but m2 6= m∗2, and
signature σ and wins if it verifies; that is, Pre.Verify(VK, (m1,m2), σ) = 1.

We define A’s advantage to be Pr[A wins].

12



4.2 Construction

Next, we construct a restricted-prefix signature scheme from a secure punc-
turable PRF F and secure deterministic one-time signature scheme (KeyGen1,
Sign1, Verify1). Deterministic one-time signature schemes can be constructed
using one-way functions.

We consider m = (m1,m2) to be a single message; let N be the total
length |m| = |m1| + |m2| and n = |m1|. Our message space is thus {0, 1}N =
{0, 1}n × {0, 1}N−n. We further define ` to be the bit-length of the verification
keys produced by KeyGen1, and require the domain of F (K, ·) to be all bitstrings
of length at most n. Assume also that the message space of the one-time signa-
ture scheme is all bitstrings of length at most max{N, 2`+ 1}. Finally, ε denotes
the empty string.

For any message m and i ∈ {1, . . . , N} we define

mi = the i-bit prefix of m

mi = the i-bit prefix of m with bit i flipped

m[i] = the ith bit of m

m[i] = the opposite of the ith bit of m

Notice that with this notation, if m = (m1,m2) that m1 = mn.
Finally, we also define an operator switchb(x, y) as follows:

switchb(x, y) =

{
(x, y) if b = 0.

(y, x) otherwise

Our algorithms are defined as follows:

– Pre.Setup(1λ) first generates a puncturable PRF key K ← F.setup(1λ), then
(SKε,VKε)← KeyGen1(1λ;F (K, ε)).
The verification key is VKε; the secret key is (K,SKε).

– Pre.Sign((K,SKε),m) For each i from 1 to n compute

(SKmi ,VKmi) = KeyGen1(1λ;F (K,mi))

(SKmi ,VKmi) = KeyGen1(1λ;F (K,mi))

(VKi,VK′i) = switchm[i](VKmi ,VKmi)

σi = Sign(SKmi−1 , (VKi,VK′i))

Finally, compute
σ∗ = Sign(SKmn ,m)

and output
σ =

{
(VKi,VK′i, σi)

n
i=1, σ

∗}
– Pre.Verify(VKε,m, σ =

{
(VKi,VK′i, σi)

n
i=1, σ

∗}) checks that for each i from
0 to (n− 1), that

Verify1(VKi, σi+1, (VKi+1,VK′i+1)) = 1

13



Here we consider VK0 = VKε. We check also that

Verify1(VKn, σ
∗,m) = 1

We output 1 if the above checks passed; otherwise output 0.

– Pre.Restrict((K,SKε),m) computes, for each i from 1 to n,

(SKmi ,VKmi) = KeyGen1(1λ;F (K,mi))

(SKmi ,VKmi) = KeyGen1(1λ;F (K,mi))

(VKi,VK′i) = switchm[i](VKmi ,VKmi)

σi = Sign(SKmi−1 , (VKi,VK′i))

as well as

σ∗ = Sign(SKmn ,m)

It bundles these up into

σ =
{

(VKi,VK′i, σi)
n
i=1, σ

∗}
Next, it punctures the key K at {mi}ni=1 ∪ {ε} to obtain a punctured key
K ′. It outputs the punctured key as

SK{m} = {σ, {SKmi}ni=1,K
′}

– Pre.ResSign(SK{m∗},m) First, expand SK{m∗} as

SK{m∗} =
{
σ =

{
(VKi,VK′i, σ

∗
i )ni=1, σ

∗} , {SK′i}ni=1,K
′}

We have three cases:

• If m = m∗ output σ.

• Otherwise, if mn = mn
∗ but m 6= m∗ output ⊥.

• Otherwise, there is some least bit position i∗, 1 ≤ i∗ < n such that
m[i] 6= m∗[i]. For 1 ≤ i ≤ i∗ set (VKres

i ,VK′resi , σi) = (VKi,VK′i, σ
∗
i ). For

i∗ < i ≤ n compute

(SKmi ,VKmi) = KeyGen1(1λ;F (K ′,mi))

(SKmi ,VKmi) = KeyGen1(1λ;FK′(m
i))

(VKres
i ,VK′resi ) = switchm[i](VKmi ,VKmi)

σi = Sign(SKmi−1 , (VKres
i ,VK′resi ))

(Notice that since mi−1 6= mi−1
∗ for all i > i∗, we are not evaluating FK′

on any punctured points.) Finally compute σ∗ = Sign(SKmn ,m) and
output

σ =
{

(VKres
i ,VK′resi , σi)

n
i=1, σ

∗}
14



Correctness For correctness, we need to show that any signature computed using
the master signing key verifies, and any signature computed using the restricted
key on an unrestricted message is same as the signature computed using the
master signing key. The first property is immediate, and follows from the cor-
rectness of the one-time deterministic signature scheme.

To prove the second correctness condition, let m be any N bit message,
and let (K, SKε) be any master signing key output by Pre.Setup. The restricted
key SK{m} consists of a signature σ = {(VKj ,VK′j , σj)j≤n, σ

∗}, n secret keys

{SKmi}i≤n and a PRF key K ′ punctured at {ε ∪ {mi}}. The restricted secret
key SK{m} can be used to sign m and any message m̃ such that mn 6= m̃n.
Clearly, Pre.ResSign(SK{m},m) = Pre.Sign(SK,m) = σ.

Consider any message m̃ such that mn 6= m̃n. Let i ≤ n be the first index
such that m[i] 6= m̃[i], and let σ̃ = Sign(SK, m̃), σ̃res = ResSign(SK{m}, m̃),

where σ̃ = {(ṼKj , ṼK′j , σ̃j)j≤n, σ̃
∗} and σ̃res = {(ṼKres

j , ṼK′resj , σ̃res
j )j≤n, σ̃∗res}.

We need to show that σ̃ = σ̃res.

From the definition of Pre.ResSign, it follows that for j ≤ i, (ṼKres
j , ṼK′resj , σ̃res

j ) =

(ṼKj , ṼK′j , σ̃j) for all j ≤ i. Similarly, from the definition of Pre.Sign, it fol-

lows that (ṼKj , ṼK′j , σ̃j) = (ṼKj , ṼK′j , σ̃j) for all j ≤ i (this is because for

j < i,mj = m̃j , and for j = i, (VKj ,VK′j) = (ṼKj , ṼKj)).
Finally, for all j > i, the punctured PRF key K ′ can be used to compute the

correct secret key/verification key pair, since m̃j 6= mj for all j > i. Therefore,
the signature components for j > i are same for both σ̃ and σ̃res. This concludes
our correctness proof.

Security We prove security of this construction in the following theorem.

Theorem 1. Assuming F is a selectively secure puncturable PRF and (Setup1,
KeyGen1, Sign1, Verify1) is a secure one time signature scheme, the prefix-restricted
signature scheme described above is secure against forgeries as described in Def-
inition 5.

Proof. To prove this theorem, we will first define a sequence of hybrid experi-
ments.

Hybrid Hyb0 This is identical to the security game for the prefix-restricted sig-
nature scheme.

1. A sends a message m∗ of length N .
2. The challenger chooses a puncturable PRF K ← F.setup(1λ).

Next, it computes (SKε,VKε) = Setup1(1λ;F (K, ε)).
3. It computes a signature σ for message m∗. Let SK0 = SKε. For i = 1 to n,

do the following:

(a) It computes the keys (SKm∗i ,VKm∗i) = Setup1(1λ;F (K,m∗i)), (SKm∗
i ,VKm∗

i)

= Setup1(1λ;F (K,m∗
i
)).
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(b) Next, it computes (VKi,VK′i) = switchm∗[i](VKm∗i ,VKm∗
i) and σi =

Sign1(SKm∗(i−1) , (VKi,VK′i)) for 1 ≤ i ≤ n.
(c) Finally, it signsm∗ using SKm∗n , that is, it computes σ∗ = Sign1(SKm∗n ,m

∗).
It sets σ = {(VKi,VK′i, σi)}, σ∗}.

4. It computes a punctured key K ′ ← F.puncture(K, {{m∗i}i≤n ∪ ε}) and sets
SK{m∗} = {σ, {SKm∗

i}i≤n,K ′}.
5. Finally, the challenger sends VKε,SK{m∗} to A.

6. A responds with a forgery σ̃ = {{(ṼKi, ṼK′i, σ̃i)}, σ̃∗} and wins if

(a) For all 1 ≤ i ≤ n, Verify1(ṼKi−1, (ṼKi, ṼK′i), σ̃i) = 1, where ṼK0 =
VKε.

(b) Verify1(ṼKn,m
∗, σ̃∗) = 1.

Hybrid Hyb1 In this experiment, the challenger chooses (SKm∗i ,VKm∗i) using
true randomness, instead of the pseudorandom string given by F (K,m∗i).

1. A sends a message m∗ of length N .
2. The challenger chooses a puncturable PRF K ← F.setup(1λ).

Next, it computes (SKε,VKε) = Setup1(1λ).
3. It computes a signature σ for message m∗. Let SK0 ← SKε. For i = 1 to n,

do the following:

(a) It computes the keys (SKm∗i ,VKm∗i)← Setup1(1λ), (SKm∗
i ,VKm∗

i) =

Setup1(1λ;F (K,m∗
i
)).

(b) Next, it computes (VKi,VK′i) = switchm∗[i](VKm∗i ,VKm∗
i) and σi =

Sign1(SKm∗(i−1) , (VKi,VK′i)) for 1 ≤ i ≤ n.
(c) Finally, it signsm∗ using SKm∗n , that is, it computes σ∗ = Sign1(SKm∗n ,m

∗).
It sets σ = {(VKi,VK′i, σi)}, σ∗}.

4. It computes a punctured key K ′ ← F.puncture(K, {{m∗i}i≤n ∪ ε}) and sets
SK{m∗} = {σ, {SKm∗

i}i≤n,K ′}.
5. Finally, the challenger sends VKε,SK{m∗} to A.

6. A responds with a forgery σ̃ = {{(ṼKi, ṼK′i, σ̃i)}, σ̃∗} and wins if

(a) For all 1 ≤ i ≤ n, Verify1(ṼKi−1, (ṼKi, ṼK′i), σ̃i) = 1, where ṼK0 =
VKε.

(b) Verify1(ṼKn,m
∗, σ̃∗) = 1.

Hybrid Hyb2 In the previous hybrid, the challenger sends VKε and n verification
keys VKm∗i for 1 ≤ i ≤ n as part of the signature σ. In the forgery, the adversary

sends n tuples (ṼKi, ṼK′i, σi). In this game, the challenger guesses the first i such

that VKm∗i 6= ṼKi. It chooses i← {1, . . . , n+ 1}, where i = n+ 1 indicates the

guess that VKm∗i = ṼKi for all i. The attacker wins if its forgery verifies and
this guess is correct.

1. A sends a message m∗ of length N .
2. The challenger first chooses i∗ ← {1, . . . , n+ 1}.
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3. It chooses a puncturable PRF K ← F.setup(1λ).
Next, it computes (SKε,VKε) = Setup1(1λ).

4. It computes a signature σ for message m∗. Let SK0 ← SKε. For i = 1 to n,
do the following:

(a) It computes the keys (SKm∗i ,VKm∗i)← Setup1(1λ), (SKm∗
i ,VKm∗

i) =

Setup1(1λ;F (K,m∗
i
)).

(b) Next, it computes (VKi,VK′i) = switchm∗[i](VKm∗i ,VKm∗
i) and σi =

Sign1(SKm∗(i−1) , (VKi,VK′i)) for 1 ≤ i ≤ n.
(c) Finally, it signsm∗ using SKm∗n , that is, it computes σ∗ = Sign1(SKm∗n ,m

∗).
It sets σ = {(VKi,VK′i, σi)}, σ∗}.

5. It computes a punctured key K ′ ← F.puncture(K, {{m∗i}i≤n ∪ ε}) and sets
SK{m∗} = {σ, {SKm∗

i}i≤n,K ′}.
6. Finally, the challenger sends VKε,SK{m∗} to A.

7. A responds with a forgery σ̃ = {{(ṼKi, ṼK′i, σ̃i)}, σ̃∗} and wins if

(a) For all i < i∗, VKm∗i = ṼKi and VKm∗i∗ 6= ṼKi∗ .

(b) For all 1 ≤ i ≤ n, Verify1(ṼKi−1, (ṼKi, ṼK′i), σ̃i) = 1, where ṼK0 =
VKε.

(c) Verify1(ṼKn,m
∗, σ̃∗) = 1.

Analysis We will now analyse the probability of an adversary’s success in each
of these hybrids. Let ProbiA denote the probability of adversary A winning in
hybrid Hybi.

Lemma 1. Assuming F is a selectively secure puncturable pseudorandom func-
tion, for any PPT adversary A, |Prob0A − Prob1A| ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A such that |Prob0A−Prob1A| = γ.
We will construct a PPT algorithm B that uses A to break the selective PPRF
security of F . B works as follows.

1. B receives message m∗ from A. B then requests the PPRF challenger for a
key punctured at the set {{m∗i}i≤n ∪ ε} along with the n + 1 evaluations
at (ε,m∗1, . . . ,m∗n). It receives a punctured key K ′ and the n + 1 strings
(y0, . . . , yn), where yi is either the PRF evaluation at m∗i or a uniformly
random string.

2. Using K ′, it computes the PRF evaluations at m∗
i

for all i ≤ n, that is, it

sets yi = F (K ′,m∗
i
).

3. B first computes (SKε,VKε) = KeyGen1(1λ; y0).
4. It then computes, for 1 ≤ i ≤ n, (SKm∗i ,VKm∗i) = KeyGen1(1λ; yi), (SKm∗

i ,VKm∗
i) =

KeyGen1(1λ; yi).
5. Next, it computes, for 1 ≤ i ≤ n, (VKi,VK′i) = switchm∗[i](VKm∗i ,VKm∗

i),
σi = Sign1(SKm∗i , (VKi,VK′i)) and σ∗ = Sign1(SKm∗n ,m). It sets σ =
{(VKi,VK′i, σi)i≤n, σ

∗}.
6. B sets the restricted key SK{m∗} = {σ, {SKm∗

i}i≤n,K ′} and sends SK{m∗},VKε

to A.
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7. Finally, A sends a forgery. If the forgery verifies, B sends b′ = 0, indicating
the evaluations y0, . . . , yn were pseudorandom; else it sends b′ = 1.

To analyse B’s advantage in the PPRF security game, let b denote the bit chosen
by challenger. Then Pr[b′ = 1|b = 0] = Prob0A and Pr[b′ = 1|b = 1] = Prob1A.
Therefore, if |Prob0A − Prob1A| is non-negligible, then so is B’s advantage in the
PPRF security game.

Claim 1 For any adversary A, Prob2A = Prob1A/(q + 1).

Proof. This follows directly from the description of the hybrid experiments Hyb1
and Hyb2. The challenger’s choice of i∗ is independent of A’s view. Therefore,
Pr[A wins in Hyb2] = Pr[i∗ is correct guess] Pr[A wins in Hyb1].

Lemma 2. Assuming S1 = (KeyGen1,Sign1,Verify1) is a one-time secure deter-
ministic signature scheme, Prob2A is negligible in λ.

Proof. We will construct an algorithm B that breaks the one-time security of S1
with probability Prob2A. B is defined as follows.

1. B chooses i∗ ← {1, . . . , q + 1}. It receives verification key VK∗ from the S1
challenger.

2. A sends the challenge message m∗.
3. For all i 6= (i∗ − 1), it chooses (SKm∗i ,VKm∗i) ← KeyGen1(1λ) and sets

VKm∗i∗−1 = VK∗. It also computes (SKm∗
i ,VKm∗

i) = KeyGen1(1λ;F (K,m∗
i
)).

4. Next, it must compute signatures on the verification key pairs. For all i 6= i∗,
it computes σi = Sign1(SKm∗(i−1) , switchm∗[i](VKm∗i ,VKm∗

i)). For i = i∗, if
i∗ 6= n+1, it sends as signature query the tuple switchm∗[i∗](VKm∗i∗ ,VK

m∗
i∗ )

to the S1 challenger; if i∗ = n + 1, it sends m as the signature query. It re-
ceives σ∗ in response. Therefore, B can perfectly simulate the signature σ on
m∗.

5. To compute the restricted signing key, it computesK ′ ← F.puncture(K, {{m∗i} ∪ ε}).
It has all the required signing keys SKm∗

i . Therefore, it sends VKε and
SK{m∗} = {{SKm∗

i},K ′, σ}.
6. A finally sends a forgery. IfA wins in Hyb2, then it must send (ṼKi∗ , ṼKi∗) 6=

(VKm∗i∗ ,VK
m∗

i∗ ) but Verify1(VKm∗(i∗−1) , (ṼKi∗ , ṼKi∗)) = 1. Therefore B
sends (ṼKi∗ , ṼKi∗) as forgery to S1 challenger, and wins with the same
probability as A.

5 Pseudorandom Puncturable Deterministic Encryption
(PPDE)

In this section we describe another primitive, puedorandom puncturable deter-
ministic encryption schemes. This is a variation of puncturable deterministic
encryption as put forth by Waters[16].
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In this scheme, there is a setup algorithm PPDE.Setup which generates a key
K, as well as a deterministic encryption algorithm PPDE.Enc which takes the key
K and messagem. Since encryption is deterministic, the security property cannot
by IND-CPA; instead we introduce a “puncturing algorithm” PPDE.Puncture
which inputs a key K and message m and outputs a punctured key K{m}; the
security property is that the encryption of m appears uniformly random to an
adversary in possession of K{m}.

The actual construction uses techniques very similar to the “hidden trigger”
mechanism using puncturable PRF’s, as described in [15]; this is also used by
[16].

5.1 Definition

Let M be the message space. A pseudorandom puncturable deterministic en-
cryption scheme (or PPDE scheme) for M and ciphertext space CT ⊆ {0, 1}`
(for some polynomial `), is defined to be a collection of four algorithms.

– PPDE.Setup(1λ) takes the security parameter and generates a key K in
keyspace K. This algorithm is randomized.

– PPDE.Enc(K,m) takes a key K ∈ K and message m ∈ M and produces a
ciphertext ct ∈ CT . This algorithm is deterministic.

– PPDE.Dec(K, ct) takes a key K ∈ K and ciphertext ct ∈ CT and outputs
m ∈M∪ {⊥}. This algorithm is deterministic.

– PPDE.Puncture(K,m) takes a key K ∈ K and message m ∈ M and pro-
duces a punctured key K{m} ∈ K and y ∈ {0, 1}`. This algorithm may be
randomized.

Correctness A PPDE scheme is correct if it satisfies the following conditions.

1. Correct Decryption For all messages m and keys K ← K, we require

PPDE.Dec(K,PPDE.Enc(K,m)) = m.

2. Correct Decryption Using Punctured Key For all distinct messages
m, for all keys K ← K,

Pr

[
#{ct : Decrypt(K{m}, ct) 6= Decrypt(K, ct)} > 1

∣∣∣
(K{m}, y)← Puncture(K,m)

]
is less than negl(λ), where all probabilities are taken over the coins of
PPDE.Puncture.

3. For all messages m∗ ∈M and keys K ← K,{
y
∣∣∣ (K{m∗}, y)← PPDE.Puncture(K,m∗)

}
≈ U`

where U` denotes the uniform distribution over {0, 1}`.
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Definition 6. A PPDE scheme is selectively secure if no PPT algorithm A can
determine the bit b in the following game except with probability negligibly close
to 1

2 :

1. A chooses a message m∗ to send to the challenger.

2. The challenger chooses K ← PPDE.Setup(1λ) and computes (K{m∗}, y) ←
PPDE.Puncture(K,m∗) and ct = PPDE.Enc(K,m∗). Next, it chooses b ←
{0, 1}. If b = 0, it sends (K{m∗}, (ct, y)); otherwise it sends (K{m∗}, (y, ct)).

3. A outputs a guess b′ for b.

5.2 Construction

Next, we construct a secure PPDE scheme using a pair F1, F2 of selectively secure
puncturable PRFs. Here F1 : {0, 1}m → {0, 1}n and F2 : {0, 1}n → {0, 1}m,
where m and n are polynomials in the security parameter λ. Additionally, we
require F1 to be statistically injective.

Our keyspace K will be the product of the keyspaces of F1 and F2; the
message space M = {0, 1}m and ciphertext space is CT = {0, 1}m+n.

Our algorithms are defined as follows:

– PPDE.Setup(1λ) runs the setup algorithms for F1 and F2 to obtain keys K1,
K2 respectively. It outputs K = (K1,K2).

– PPDE.Enc((K1,K2),m) computes A = F1(K1,m) and outputs

ct = (A,F2(K2, A)⊕m)

– PPDE.Dec((K1,K2), (ct1, ct2)) computes the message m = F2(K2, ct1)⊕ct2.
It then checks that F1(K1,m) = ct1; if so it outputs m, otherwise it outputs
⊥.

– PPDE.Puncture((K1,K2),m) chooses y = (y1, y2) ∈ CT uniformly randomly.
It computes A = F1(K1,m), then punctures K1 at m to obtain K1{m} and
K2 at {A, y1} to produce K2{A, y1}. It outputs

K{m} = (K1{m},K2{A, y1}), y = (y1, y2).

Correctness We observe that as long as F1 is injective (which occurs except
with negligible probability in the coins of PPDE.Setup), decryption will be cor-
rect on all inputs using the punctured key. Here “correct” means: identical to
the behavior at the punctured key on all points except the encryption of the
punctured message, where the output is changed to ⊥. (If F1 were not injective,
the puncturing of K2 at the output of F1 may cause other PRF outputs to be
changed to ⊥, violating the requirement that the set of changed outputs have
size at most 1.)

Correctness of decryption using non-punctured keys is immediate.
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Security We argue security through a series of hybrids.

Theorem 2. Suppose that no PPT adversary has advantage greater than ε1 in
the selective security game against F1 or greater than ε2 in the selective security
game against F2. Then no PPT adversary has advantage greater than ε1 + ε2 in
the selective security game as defined in Definition 6.

Proof. Let A be an arbitrary PPT adversary. We start by defining a sequence
of hybrids.

Hyb0 This hybrid is identical to the original security game with b = 0.

1. A chooses a message m∗ to send to the challenger.
2. The challenger produces (K1,K2) = PPDE.Setup(1λ). He computes the

punctured key (K{m∗}, (y1, y2))← PPDE.Puncture((K1,K2),m∗) and sends
K{m∗} toA. He also computesA = F1(K1,m

∗) and sends ct = (A,F2(K2, A)⊕
m∗).

Hyb1 This hybrid is same as the previous one, except that A is replaced by y1.

1. A chooses a message m∗ to send to the challenger.
2. The challenger produces (K1,K2) = PPDE.Setup(1λ). He computes the

punctured key (K{m∗}, (y1, y2))← PPDE.Puncture((K1,K2),m∗) and sends
K{m∗} to A.
He sends ct = (y1, F2(K2, y1)⊕m∗) as the ciphertext.

Hyb2 This hybrid is the same as the previous one, except that F2(K2, A) is
replaced by y2. The ciphertext is now (y1, y2 ⊕m∗).

1. A chooses a message m∗ to send to the challenger.
2. The challenger produces (K1,K2) = PPDE.Setup(1λ). He computes the

punctured key (K{m∗}, (y1, y2))← PPDE.Puncture((K1,K2),m∗) and sends
K{m∗} to A.
He sends ct = (y1, y2 ⊕m∗) as the ciphertext.

We see that Hyb2 is the original security game with b = 1, except for the
presence of y2⊕m∗ in place of y2, which does not affect an attacker’s advantage.
We need only now to argue that these hybrids are indistinguishable.

Hyb0 to Hyb1 We claim that an attacker A which can distinguish between Hyb0
and Hyb1 with advantage ε can be used by a simulator B to win the selective
security game against F1 with advantage ε.
B acts as follows:

1. A sends a message m∗ to B, who gives it to the PRF challenger. The chal-
lenger replies with a punctured key K1(m∗) and a challenge pair (x1, x2)
consisting of F1(K1,m

∗) and a uniformly random element.
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2. B computes K2 = SetupF2
(1λ) and K2(x1, x2) = PunctureF2

(K2, {x1, x2}).
He sets K(m∗) = (K1(m∗),K2(x1, x2)), ct = (x1, F2(K2, x1)), and sends
these to A.

3. A outputs a guess b that he is in Hybb.

We see that if A is in Hyb0, this is exactly the case that the PRF challenger
set x1 = F1(K1,m

∗); Hyb1 is the case when x2 = F1(K1,m
∗). Thus A’s guess

can be translated into a guess for which of {x1, x2} is equal to F1(K1,m
∗) which

is correct exactly when A is, so that A’s advantage can be at most εF1
.

Hyb1 to Hyb2 We claim that an attacker A which can distinguish between Hyb1
and Hyb2 with advantage ε can be used by a simulator B to win the selective
security game against F2 with advantage ε.
B acts as follows:

1. A sends a message m∗ to B. B computes K1 = SetupF1
(1λ) and chooses

(y1, y2) uniformly at random. It computes A = F1(K1,m
∗) and submits

{y1, A} to the challenger as his selective challenge.
2. The challenger replies with a punctured key K2(A, y1) and a pair (x1, x2)

consisting of both F2(K2, A) and a uniformly random element. (In fact, the
challenger also provides a pair consisting of F2(K2, y1), but we do not need
this and ignore it.)

3. B sets K(m∗) = (K1(m∗),K2(A, y1)) and sends this to A. He also sends
ct = (A, x1 ⊕m∗).

4. A outputs a guess b that he is in Hybb+1.

We see that ifA is in Hyb1, this is exactly the case that the PRF challenger set
x1 = F2(K2, A); Hyb2 is exactly the case that the challenger set x2 = F2(K2, A).
We conclude that A’s advantage can be at most εF2

.

Conclusion Summing the attacker’s maximum advantage in distinguishing the
hybrids and winning in the game of Hyb2, we see that the maximum advantage
in the selective security game for the PPDE scheme is εF1

+ εF2
.

6 Signed Universal Samplers

In this section, we will describe our construction for a signed universal sampler
scheme. We will show that it is both simulation secure (as per Definitions 4) and
secure against forgeries (as per Definition 3).

A remarkable feature of our scheme is its simplicity. The sampler setup al-
gorithm will first generate a prefix restricted signature scheme verification and
signing key pair. Next the universal sampler parameters are created as the ob-
fuscation of a program that takes two inputs x, d and outputs p = d(r), where r
is computed using a puncturable PRF on input x||d. The program also outputs
a signature σ (using the signing key) on (x||d, p) using a prefix-restricted signa-
ture scheme. The sampler parameters, U , are the obfuscated program and the
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verification key VK of the universal sampler is the verification key of the prefix
restricted signature.

To sample from a distribution d, one computes x = H(d) and runs the
sampler output on inputs x, d. Finally, the verification algorithm is used to check
that p was the correct output sample for a circuit d when given a prefix restricted
signature σ. The verification algorithm first computes x = H(d). Then, it simply
checks that the signature σ verifies on the message m = (m1,m2) = (x||d, p).

Our Construction Let (Pre.Setup, Pre.Sign, Pre.Verify, Restrict,ResSign) be a
restructed-prefix signature scheme, F a puncturable PRF with algorithms F.setup,
F.puncture and F.eval, PPDE = (PPDE.Setup, PPDE.Enc, PPDE.Dec, PPDE.Puncture)
a puncturable deterministic encryption scheme with pseudorandom ciphertexts.

Our (`ckt, `rnd, `out)-signed universal sampler scheme consists of the following
algorithms.

- Setup(1λ) The setup algorithm first chooses a signing and verification key
for the restricted-prefix signature scheme; it computes (SKpre,VKpre) ←
Pre.Setup(1λ). Next, it chooses a puncturable PRF key KF ← F.setup(1λ)
and sets U to be an obfuscation of the program USampler6 defined in Figure
1; that is, U ← iO(USampler) and VK = VKpre. It outputs (U,VK).

USampler

Inputs x ∈ {0, 1}`1 , d ∈ {0, 1}`ckt .

Constants Puncturable PRF key KF , prefix-restricted signing key
SKpre.

Compute r = F (K, (x||d)).
Compute out = d(r).
Compute σ = Pre.Sign(SKpre, (x||d, out)).
Output (out, σ).

Fig. 1. Program USampler

- Sample(U, d) The sample generation algorithm computes x = H(d) and (pd, σ) =
U(x, d). It outputs (pd, σ).

- Verify(VK, d, pd, σ) The verification algorithm computes x = H(d) and then
outputs Pre.Verify(VK, (x||d, pd), σ).

6.1 Proof of Unforgeability

We will define a sequence of hybrids to show that the construction satisfies the
adaptive unforgeability definition.

6 Padded to be of the same size as the corresponding programs in the proof.
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Without loss of generality, let us assume the adversary A makes q unique
random oracle queries before submitting the forgery corresponding to one of the
queries.

Proof Intuition This proof is fairly straightforward. The challenger first guesses
the random oracle query which corresponds to the forgery. Let this query be
d∗. The challenger then modifies the obfuscated program USampler to use a
restricted signing key. Once the program has a restricted signing key, we can use
the security of our special signature scheme to argue that the adversary cannot
forge a signature corresponding to d∗.

Hybrid Hyb0 Hyb0 is the real security game between an adversary A and chal-
lenger.

1. Challenger computes universal samplers. It chooses KF ← F.setup(1λ),
(SKpre,VKpre)← Pre.Setup(1λ) and computes U ← iO(USampler{KF ,SKpre}).
It sends (U,VKpre) to A.

2. A sends q random oracle queries. For ith query di, the challenger chooses
uniformly random strings xi ← {0, 1}`1 , sets H1(di) = xi; it sends H1(di) to
A.

3. A finally sends the forgery (d∗, p∗, σ∗) and wins if

(a) d∗ = di for some i ∈ [q],
(b) Sample(U, d∗)1 6= p∗; that is, x∗ = H1(d∗), (out, σ) = U(x∗, d∗) and

out 6= p∗,
(c) Verify(VKpre, (x

∗||d∗, p∗), σ∗) = 1.

Hybrid Hyb1 In this experiment, the challenger guesses the random oracle query
which will correspond to the forgery. If this guess is incorrect, the challenger
aborts.

1. Challenger first chooses i∗ ← [q].

2. Challenger computes universal samplers. It chooses KF ← F.setup(1λ),
(SKpre,VKpre)← Pre.Setup(1λ) and computes U ← iO(USampler{KF ,SKpre}).
It sends (U,VKpre) to A.

3. A sends q random oracle queries. For ith query di, the challenger chooses
uniformly random strings xi ← {0, 1}`1 , sets H1(di) = xi; it sends H1(di) to
A.

4. A finally sends the forgery (d∗, p∗, σ∗) and wins if

(a) d∗ = di,
(b) Sample(U, d∗)1 6= p∗; that is, x∗ = H1(d∗), (out, σ) = U(x∗, d∗) and

out 6= p∗,
(c) Verify(VKpre, (x

∗||d∗, p∗), σ∗) = 1.
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Hybrid Hyb2 In this experiment, the challenger guesses the circuit sent as the
(i∗)th random oracle query. If this guess is incorrect, the challenger aborts.

1. Challenger first chooses i∗ ← [q].
2. Challenger chooses d′ ← {0, 1}`ckt , x′ ← {0, 1}`1 and

sets H1(d′) = x′.

3. Challenger computes universal samplers. It chooses KF ← F.setup(1λ),
(SKpre,VKpre)← Pre.Setup(1λ) and computes U ← iO(USampler{KF ,SKpre}).
It sends (U,VKpre) to A.

4. A sends q random oracle queries. For ith query di, if i 6= i∗, the challenger
chooses uniformly random strings xi ← {0, 1}`1 , sets H1(di) = xi; it sends
H1(di) to A.
If i = i∗ and di = d′, it sends x′ to A, else it aborts.

5. A finally sends the forgery (d∗, p∗, σ∗) and wins if
(a) d∗ = d′,
(b) (out, σ) = U(x′, d′) and out 6= p∗,
(c) Verify(VKpre, (x

′||d′, p∗), σ∗) = 1.

Hybrid Hyb3 In this experiment, the challenger outputs the obfuscation of USampler′

(defined in 2) instead of USampler. The only difference between USampler and
USampler′ is that USampler′ uses a restricted signing key.

1. Challenger first chooses i∗ ← [q].
2. Challenger chooses d′ ← {0, 1}`ckt , x′ ← {0, 1}`1 and sets H1(d′) = x′.
3. Challenger computes universal samplers. It chooses KF ← F.setup(1λ),

(SKpre,VKpre)← Pre.Setup(1λ).
It computes r′ = F (KF , x

′||d′), out′ = d(r′).

It computes SK{(x′||d′, out′)} ← Restrict(SKpre, (x
′||d′, out′)).

It sets U ← iO(USampler′{KF ,SK{x′||d′, out′}}).
It sends (U,VKpre) to A.

4. A sends q random oracle queries. For ith query di, if i 6= i∗, the challenger
chooses uniformly random strings xi ← {0, 1}`1 , sets H1(di) = xi; it sends
H1(di) to A.
If i = i∗ and di = d′, it sends x′ to A, else it aborts.

5. A finally sends the forgery (d∗, p∗, σ∗) and wins if
(a) d∗ = d′,
(b) (out, σ) = U(x′, d′) and out 6= p∗,
(c) Verify(VKpre, (x

′||d′, p∗), σ∗) = 1.

Next, we need to analyse the adversary’s advantage in each of these games.
This analysis is included in the full version of our paper.

6.2 Proof of Simulation Security

Let us assume the adversary A queries the random oracle by sending a message
(RO, d) before sending a message (params, d). Without loss of generality, let
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USampler′

Inputs x ∈ {0, 1}`1 , d ∈ {0, 1}`ckt .

Constants Puncturable PRF key KF , prefix-restricted signing key
SK{(x′||d′, out′)}.

Compute r = F (K, (x||d)).
Compute out = d(r).
Compute σ = ResSign(SK{(x′||d′, out′)}, (x||d, out)).
Output (out, σ).

Fig. 2. Program USampler′

q be the number of queries made by A. We will define a sequence of hybrid
experiments, and then show that any PPT adversary cannot distinguish between
the hybrid experiments with advantage non-negligible in the security parameter
λ.

Proof Intuition First, we give a high level intuition of our proof strategy. The
main idea is to gradually change the random oracle query responses from uni-
formly random strings to more structured strings which will allow simulation.
First, the challenger modifies the program USampler in order to allow trapdoors.
The program, instead of computing r = F (KF , x||d) and p = d(r), first decrypts
the string x. It also has a string α hardwired. If the decryption is successful, and
the output message is (d̃, a,m) where d = d̃, PRG(a) = α, then the program
simply outputs m as the sampled parameter. Due to the security of PRG, we can
argue that the adversary cannot notice the difference. Now, the challenger can
modify the random oracle queries. For a query corresponding to circuit d, the
challenger outputs an encryption of (d, a, d(t)) where t is a uniformly random
string. This looks like a uniformly random string due to the property of PPDE
ciphertexts. However, note that the obfuscated program has the decryption key
hardwired. Using the techniques from punctured programming, we show how
to transform the random oracle responses from truly random strings to PPDE
encryptions.

Experiment Expt0 This experiment corresponds to the real world. The challenger
runs the universal sampler setup honestly to compute U , and sends it to the
adversary A. Next, for each random oracle query, it outputs a uniformly random
string.

1. Challenger computes universal samplers. It chooses KF ← F.setup(1λ),
(SKpre,VKpre)← Pre.Setup(1λ).
It computes U ← iO(USampler{KF ,SKpre}).
It sends (U,VKpre) to A.

2. A sends q random oracle queries. For jth query dj ,
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– The challenger chooses uniformly random strings xj ← {0, 1}`1 , sets
H1(dj) = xj ; it sends H1(dj) to A.

3. A finally sends a bit b.

The output of this experiment is b.

Experiment Expt1 In this experiment, the challenger outputs an obfuscation of
USampler-1 (defined in Figure 3) as the universal sampler program output during
setup. This new program has a PPDE key hardwired, and it uses this key to
decrypt the input string. If the decryption is successful (and some additional
checks are satisfied), the program outputs the decrypted string. Else, its output
is the same as in previous experiment.

1. Challenger computes universal samplers. It chooses KF ← F.setup(1λ),
(SKpre,VKpre)← Pre.Setup(1λ).
It chooses KPPDE and α← {0, 1}2λ.
It computes U ← iO(USampler-1{KF ,SKpre,KPPDE, α}) and sends (U,VKpre)
to A.

2. A sends q random oracle queries. For jth query dj ,

– The challenger chooses uniformly random strings xj ← {0, 1}`1 , sets
H1(dj) = xj ; it sends H1(dj) to A.

3. A finally sends a bit b.

USampler-1

Inputs x ∈ {0, 1}`1 , d ∈ {0, 1}`ckt .

Constants Puncturable PRF key KF ,
PPDE key KPPDE, α ∈ {0, 1}2λ, prefix-restricted signing key SKpre.

Compute m = PPDE.Dec(KPPDE, x). If m 6=⊥, let m = (d̃, a, y) ∈
{0, 1}λ × {0, 1}`out .
if m 6=⊥ and d̃ = d and α = PRG(a) then

Set out = y.
else

Compute r = F (K, (x||d)).
Compute out = d(r).

end if
Compute σ = Pre.Sign(SKpre, (x||d, out)).
Output (out, σ).

Fig. 3. Program USampler-1
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Experiment Expt2 In this experiment, the string α hardwired in the program is
a pseudorandom string, computed using PRG.

1. Challenger computes universal samplers. It chooses KF ← F.setup(1λ),
(SKpre,VKpre)← Pre.Setup(1λ).
It chooses a puncturable PPDE key KPPDE,
a← {0, 1}λ and sets α = PRG(a).
It computes U ← iO(USampler-1{KF ,SKpre,KPPDE, α}) and sends (U,VKpre)
to A.

2. A sends q random oracle queries. For jth query dj ,
– The challenger chooses uniformly random strings xj ← {0, 1}`1 , sets
H1(dj) = xj ; it sends H1(dj) to A.

3. A finally sends a bit b.

The output of this experiment is b

Next, we will have q hybrid experiments Expt2,i for 0 ≤ i ≤ q. In each
hybrid, the challenger changes the response to the random oracle queries. In-
stead of sending uniformly random strings, it sends encryptions computed using
PPDE.Enc(·, ·).

Experiment Expt2,i In this experiment, the challenger queries the Parameters
Oracle to compute the response for the first i random oracle queries. For the
remaining queries, it outputs a uniformly random string.

1. Challenger computes universal samplers. It chooses KF ← F.setup(1λ),
(SKpre,VKpre)← Pre.Setup(1λ).
It chooses a puncturable PPDE key KPPDE, a ← {0, 1}λ and sets α =
PRG(a).
It computes U ← iO(USampler-1{KF ,SKpre,KPPDE, α}) and sends (U,VKpre)
to A.

2. A sends q random oracle queries. For jth query dj ,

– if j ≤ i, the challenger queries the Parameter Oracle.
On input dj , it receives pj in response.

It sets H1(dj) = PPDE.Enc(KPPDE, pj) and sends H1(dj) to A.

– if j > i, the challenger chooses uniformly random strings xj ← {0, 1}`1 ,
sets H1(dj) = xj ; it sends H1(dj) to A.

3. A finally sends a bit b.

The output of this experiment is b.

Clearly, Expt2,0 is identical to experiment Expt2, while Expt2,q corresponds
to the ideal world. We now need to show that any PPT adversary has almost
identical advantage in each of the experiments described above. Due to space
constraints, the detailed analysis is included in the full version. Here, we give an
outline of the proof.
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In the first hybrid, the challenger replaces the program USampler with pro-
gram USampler-1. The only difference between these two programs is that USampler-1
first decrypts the input x using PPDE key. If the decryption is successful and
can be parsed as (d̃, a,m), then the program checks if d = d̃ and PRG(a) = α,
where α is a uniformly random string. As a result, this step is never executed,
and hence the two programs are identical. Therefore, using security of iO, the
hybrids are computationally indistinguishable.

Next, the challenger replaces α with a pseudorandom string. It chooses a
string a and sets α = PRG(a). This step is indistinguishable due to the security
of PRG.

Now, the first step of the program is “Decrypt x. If decryption is successful,
and outputs (d̃, a,m) and d = d̃ and PRG(a) = α, then output m”. This gives
the challenger a ‘trapdoor’. Now, the adversary sends encryption of (d, a, d(t)) as
the response for RO(d). To prove that the adversary cannot distinguish between
the encryptions and random strings, we define q hybrids. In the ith hybrid, the
first i responses are encryptions, while the remaining are random strings. We now
need to show that the ith and (i + 1)th hybrids are indistinguishable. For this,
the main idea is to first puncture the PPDE key, and then switch the random
RO responses to ciphertexts. However, to puncture the PPDE key, we will need
to know the ‘puncture point’ in advance, resulting in a subexponential security
loss. Here, note that the security loss is q · 2`ckt , not 2q`ckt . This allows us to use
complexity leveraging with subexponential security for iO, PRG and F .
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