
Pinocchio-Based Adaptive zk-SNARKs and
Secure/Correct Adaptive Function Evaluation

Meilof Veeningen, meilof.veeningen@philips.com

Philips Research, Eindhoven, The Netherlands

Abstract. Pinocchio is a practical zk-SNARK that allows a prover to
perform cryptographically verifiable computations with verification effort
sometimes less than performing the computation itself. A recent proposal
showed how to make Pinocchio adaptive (or “hash-and-prove”), i.e., to
enable proofs with respect to computation-independent commitments.
This enables computations to be chosen after the commitments have
been produced, and for data to be shared in different computations in a
flexible way. Unfortunately, this proposal is not zero-knowledge. In par-
ticular, it cannot be combined with Trinocchio, a system in which Pinoc-
chio is outsourced to three workers that do not learn the inputs thanks
to multi-party computation (MPC). In this paper, we show how to make
Pinocchio adaptive in a zero-knowledge way; apply it to make Trinoc-
chio work on computation-independent commitments; present tooling to
easily program fleible verifiable computations (with or without MPC);
and use it to build a prototype in a medical research case study.

1 Introduction

Recent advances in SNARKs (Succinct Arguments of Knowledge) are making it
more and more feasible to outsource computations to the cloud while obtaining
cryptographic guarantees about the correctness of their outputs. In particular,
the Pinocchio system [GGPR13,PHGR13] managed to achieve for the first time
for a practical computation a verification time of a computation proof that was
actualy faster than performing the computation itself.

In Pinocchio, proofs are verified with respect to plaintext inputs and outputs
of the verifier; but in many cases, it is useful to have computation proofs that
also refer to committed data, e.g., provided by a third party. Ideally, such proofs
should be adaptive, i.e., the multiple different computations can be performed on
the same commitment, that are chosen after the data has been committed to; and
zero-knowledge, i.e., the commitments and proofs should reveal no information
about the committed data. This latter property allows proofs on sensitive data,
and it allows extensions like Trinocchio [SVdV15] that additionally hide this
sensitive data from provers by multi-party computation.

Although several approaches are known from the literature, no really satis-
factory practical adaptive zk-SNARK exists. The recent “hash first” proposal
[FFG+16] shows how to make Pinocchio adaptive at low overhead, but is un-
fortunately not zero-knowledge. On the other hand, Pinocchio’s successor Gep-
petto [CFH+15] is zero-knowledge but not adaptive: multiple computations can

be performed on the same data but they need to be known before committing.
The asymptotically best known SNARKS combining the two properties have
Θ(n log n) non-cryptographic and Θ(n) cryptographic work for the prover, a
Θ(n)-sized CRS, and constant-time verification (where n is the size of the com-
putation), but with a large practical overhead: [Lip16] because it relies on the
impractical subset-sum language; other constructions (e.g., [CFH+15,FFG+16])
because they rely on including hash evaluation in the computation1. Finally,
[BBFR15] enables Pinocchio proofs on authenticated data with prover complex-
ity as above, but verification time is linear in the number of committed inputs.

In this work, we give a new Pinocchio-based adaptive zk-SNARK that solves
the above problems. We match the best asymptotic performance (i.e., Θ(n log n)
non-cryptographic work and Θ(n) cryptographic work for the prover; a Θ(n)-size
CRS and constant-time verification); but obtain the first practical solution by
adding only minor overhead to “plain” Pinocchio (instead of relying on expensive
approaches such as subset-sum or bootstrapping).

As additional contributions, we apply our zk-SNARK in the Trinocchio set-
ting, and present tooling to easily perform verifiable computations. Trinocchio
[SVdV15] achieves privacy-preserving outsourcing to untrusted workers by com-
bining the privacy guarantees of multi-party computation with the correctness
guarantees of the Pinocchio zk-SNARK. With our adaptive zk-SNARK, com-
putation can be chosen after the inputs were provided and more complex func-
tionalities can be achieved by using the output of one computation as input of
another. We also improve the generality of [SVdV15] by proving security for
any suitable MPC protocol and adaptive zk-SNARK. Our tooling consists of a
Python frontend and a C++ backend. The frontend allows easy programming
of verifiable computations (with libraries for zero testing, oblivious indexing and
fixed-point computations), and execution either directly (for normal outsourcing
sccenarios) or with MPC (for privacy-preserving outsourcing). The backend pro-
vides key generation, proving, and verification functionality for both scenarios.

2 Pinocchio/Trinocchio: zk-SNARKs from QAPs

In this section, we discuss the Pinocchio zk-SNARK [PHGR13], and the Trinoc-
chio system [SVdV15] that uses multi-party computation to build Pinocchio
proofs in a privacy-preserving way.

2.1 Modelling Computations as Quadratic Arithmetic Programs

The basic formalism used in Pinocchio to model computation is the quadratic
arithmetic program (QAP). A QAP over a field F is a triple (V,W,Y) ∈ (Fd×k)3,
where d is called the degree of the QAP and k is called the size. A vector x ∈ Fk
is said to be a solution to the QAP if (V ·x)× (W ·x) = Y ·x, where × denotes

1 In practice, computing the hash is complex itself. It can be avoided with bootstrap-
ping [Lip16], giving slightly worse asymptotics and again a large practical overhead

the pairwise product and · denotes normal matrix-vector multiplication. A QAP
Q is said to compute function f : Fi → Fj if b = f(a) if and only if there exists a
witness w such that (a; b;w) is a solution to Q. For example, consider the QAP

V =

(
1 1 0 0
1 1 0 0

)
, W =

(
1 1 0 0
0 0 1 0

)
, Y =

(
0 0 0 1
0 0 1 0

)
.

Intuitively, the first row of this QAP represents equation (x1+x2)·(x1+x2) = x4
in variables (x1, x2, x3, x4) whereas the second row represents equation (x1+x2)·
x3 = x3. Note that x3 = (x1 + x2)3 if and only if there exists x4 satisfying the
two equations, so this QAP computes function f : (x1, x2) 7→ x3.2

Fixing d distinct, public ω1, . . . , ωd ∈ F, then a QAP can equivalently be
described by a collection of interpolating polynomials in these points. Namely,
let {vi(x)} be the unique polynomials of degree < d such that vi(ωj) = Vj,i,
and similarly for {wi(x)}, {yi(x)}. Then {vi(x), wi(x), yi(x)} is an equivalent
description of the QAP. Defining t(x) = (x−ω1) · . . . · (x−ωd) ∈ F[x], note that
x1, . . . ,xn is a solution to Q if and only if, for all j, (

∑
i xi · vi(ωj)) · (

∑
i xi ·

wi(ωj)) = (
∑
i xi ·yi(ωj)), or equivalently, if t(x) divides p(x) := (

∑
i xi ·vi(x)) ·

(
∑
i xi · wi(x))− (

∑
i xi · yi(x)) ∈ F[x].

2.2 Pinocchio: A zk-SNARK from QAPs

Pinocchio is a “zero-knowledge succinct argument of knowledge” (zk-SNARK)
[GGPR13] based on QAPs. A zk-SNARK consists of a key generation algorithm,
that generates an evaluation key and a verification key; a prover algorithm, that
uses the evaluation key to produce a proof; and a verification algorithm, that
uses the verification to verify this proof. In Pinocchio the prover proves that, for
given v, it knows witness w such that (v;w) is a solution to a given QAP Q.

The key material of Pinocchio contains discrete logarithm groups G1,G2,G3

of order |F| and a pairing e : G1 × G2 → G3 for which the (4d + 4)-PDH, d-
PKE and (8d + 8)-SDH assumptions [PHGR13] hold, with d the degree of the
QAP. Fix random, secret s, αv, αw, αy, β, rv, rw, ry(x) := rvrw. Given generators
g1 ∈ G1, g2 ∈ G2 and f ∈ F[x], let us write 〈f〉1 for f(s) ·g1 and 〈f〉2 for f(s) ·g2.

The central idea of Pinocchio is to prove satisfaction of all QAP equations
using evaluations of the interpolating polynomials in a secret point. Namely, the
prover computes quotient polynomial h = p/t and basically provides evaluations
“in the exponent” of h,

∑
i xi · vi,

∑
i xi · wi,

∑
i xi · yi in the point s that is

unknown to him, that can then be verified using the pairing. Precisely, the prover
algorithm, given solution x = (v;w) to the QAP, generates random δv, δw, δy;
computes coefficients h of the polynomial (

∑
i xi ·vi(x)+δvt(x))·(

∑
i xi ·wi(x)+

δwt(x)) − (
∑
i xi · yi(x) + δyt(x))/t(x) (with δ· terms added to make the proof

2 In Pinocchio, the linear terms corresponding to V, W, Y can also contain constant
values. This is achieved by assigning special meaning to a “constant” wire with value
1. We do not formalize this separately, instead leaving it up to the user to include a
special variable and an equation xi · xi = xi that forces this variable to be one.

zero-knowledge), and outputs (all
∑
i over witness indices |v|+ 1, . . . , |x|):

〈V 〉1 =
∑
i xi〈rvvi〉1 + δv〈rvt〉1, 〈αvV 〉2 =

∑
i xi〈αvrvvi〉2 + δv〈αvrvt〉2,

〈W 〉2 =
∑
i xi〈rwwi〉2 + δw〈rwt〉2, 〈αwW 〉1 =

∑
i xi〈αwrwwi〉1 + δw〈αwrwt〉1,

〈Y 〉1 =
∑
i xi〈ryyi〉1 + δy〈ryt〉1, 〈αyY 〉2 =

∑
i xi〈αyryyi〉2 + δy〈αyryt〉2.

〈Z〉1 =
∑
i xi〈rvβvi + rwβwi + ryβyi〉1 + δv〈rvβt〉1 + δw〈rwβt〉1 + δy〈ryβt〉1,

〈H〉1 =
∑d
j=0 hj〈xj〉1.

The evaluation key consists of all 〈·〉1, 〈·〉2 items used in the formulas above.3

The verification algorithm, given statement v, extends 〈V 〉1, 〈W 〉1, 〈Y 〉1
to include also the input/output wires (

∑
i over I/O wire indices 1, . . . , |v|):

〈V +〉1 = 〈V 〉1 +
∑
i xi〈rvvi〉1, 〈W+〉2 = 〈W 〉2 +

∑
i xi〈rwwi〉2, 〈Y +〉1 = 〈Y 〉1 +∑

i xi〈ryyi〉1. Then, it checks (the verification key are the needed 〈·〉1, 〈·〉2 items):

e(〈V 〉1, 〈αv〉2) = e(〈1〉1, 〈αvV 〉2); (V)

e(〈αw〉1, 〈W 〉2) = e(〈αwW 〉1, 〈1〉2); (W)

e(〈Y 〉1, 〈αy〉2) = e(〈1〉1, 〈αyY 〉2); (Y)

e(〈V 〉1 + 〈Y 〉1, 〈β〉2) · e(〈β〉1, 〈W 〉2) = e(〈Z〉1, 〈1〉2); (Z)

e(〈V +〉1, 〈W+〉2) · e(〈Y +〉1, 〈1〉2)−1 = e(〈H〉1, 〈ryt〉2). (H)

At a high level, checks (V), (W), (Y) guarantee that the proof is a proof of
knowledge of the witness w; check (Z) guarantees that the same witness w
was used for 〈V 〉1, 〈W 〉2, 〈Y 〉1; and check (Z) guarantees that indeed, p(x) =
h(x) · t(x) holds, which implies a solution to the QAP.

2.3 Trinocchio: Distributed Proving and Multiple Inputters

In [SVdV15], Trinocchio is proposed: a Pinocchio-based system for “passively
secure n-party public verifiable computation”. In such a system, mutually dis-
trusting clients can outsource a computation to a set of n workers that do not
learn the data they are computing on, but cannot produce a false computation
result (even if all corrupted). In Trinocchio, at a high level, clients sends secret
shares of of their inputs a to the workers, who use multi-party computation to
compute secret shares of output b, QAP witnessw, and QAP proof π. The clients
reconstruct their outputs and verify the QAP proof to check its correctness.

The crucial observation of [SVdV15] is that, if Pinocchio is combined with the
right multi-party computation protocols, the above construction is very efficient.
Computing the vector h of coefficients of the quotient polynomial is an arithmetic
circuit of multiplicative depth one. Such a circuit can be evaluated on Shamir-
shared inputs without any communication, giving additive secret shares of the
result. Moreover, computing the proof (〈V 〉1, . . . , 〈H〉1) is a linear operation
on the secret shares of the inputs, outputs, witness, and h-coefficients. As a

3 We use 〈αvV 〉2 etc. instead of 〈αvV 〉1 from [SVdV15], so that we can rely on the
asymmetric q-PKE assumption from [DFGK14] (which [SVdV15] did not spell out).

consequence, if the outsourced computation is performed based on Shamir secret
sharing, then a Pinocchio proof can be produced for that computation without
any additional communication between the workers.

3 Adaptive zk-SNARKs based on Pinocchio

In this section, we extend Pinocchio to allow proofs with respect to computation-
independent commitments, turning it into an adaptive zk-SNARK. We now sum-
marize the basic definitions, adapted from [Lip16] and detailed in Appendix B.

In our setting, an adaptive zk-SNARK is based on an extractable trapdoor
commitment family (G0,Gc,C). This is a family of commitment schemes with
different keys based on one CRS. Here, (crs, td) ← G0(1κ) outputs a system-
wide CRS and a trapdoor; (ck, ctd)← Gc(crs) outputs a commitment key and a
trapdoor; and c ← Cck(m; r) outputs a commitment with the given key. These
commitments are computationally binding (no adversary can open a commit-
ment to two different values); trapdoor (a trapdoor allows arbitrary opening of
commitments); perfect hiding (commitments are statistically independent from
the underlying message); and extractable (the committed value can be extracted
from an algorithm producing a correct commitment).

Given such a commitment scheme family, an adaptive zk-SNARK (G,P,V)
allows a prover to prove knowledge of a witness w such that (v1, . . . ,vn;w) sat-
isfies a given relation R (e.g., it is a solution to a QAP), where vi are committed
to by ui = Cck(vi; ri). Here, (crsp; crsv; tdp) ← G(crs; {cki}) outputs evaluation
and verification keys and a trapdoor; π ← P(crs; {cki}; crsp;u;v; r;w) outputs
a proof; and 0/1← V(crs; {cki}; crsv;u;π) verifies the proof. The scheme should
be perfectly complete (it normally returns a verifying proof); an argument of
knowledge (the commitment openings and a valid witness can be extracted from
an adversary returning commitments and a verifying proof); witness indistin-
guishable (proofs statistically hide the commitment openings and witness), and
perfectly composable zero knowledge (proofs can be simulated using the com-
mitments and trapdoor). (This definition and our constructions do not include
plain, non-committed input/output as in Pinocchio, but this is easy to add.)

3.1 A Pinocchio-Based Adaptive zk-SNARK

We obtain our Pinocchio-based adaptive zk-SNARK by generalizing the role of
the 〈Z〉1 element of the Pinocchio proof. Recall that in Pinocchio, proof elements
〈V 〉1, 〈W 〉1, and 〈Y 〉1 are essentially weighted sums

∑
j xj〈vj〉1,

∑
j xj〈wj〉2,∑

j xj〈yj〉1 over elements 〈vj〉1, 〈wj〉2, 〈yj〉1 from the CRS, with the weights
given by the witness part of the QAP’s solution vector x. The 〈Z〉1 element
ensures that these weighted sums all use the same witness. This is done by
forcing the prover to come up essentially with β · (〈V 〉1 + 〈W 〉2 + 〈Y 〉1) given
only elements 〈β · (vj + wj + yj)〉1 in which vj , wj , and yj occur together. In
earlier works [CFH+15,SVdV15], it was noted that a Pinocchio proof can refer
to multiple “blocks” (〈Vi〉1, 〈Wi〉2, 〈Yi〉1, 〈Zi〉1). Each block contains the values

Extractable Trapdoor Commitment Scheme Family (G01,Gc1,C1):

– G01: Fix G1,G2,G3 and random s. Return crs = ({〈xi〉1, 〈xi〉2}i=0,...,d), td = s.
– Gc1: Pick random α. Return ck = (〈1〉1, 〈α〉2, 〈x〉1, 〈αx〉2, . . . , 〈xd〉1, 〈αxd〉2)
– C1: Return (r〈1〉1 + v1〈x〉1 + v2〈x2〉1 + . . . , r〈α〉2 + v1〈αx〉2 + v2〈αx2〉2 + . . .)

Key generation G1: Fix a QAP of degree at most d, and let vj(x), wj(x), yj(x) be
as in Pinocchio. Fix random, secret αv, αw, αy, β, rv, rw. Let ry = rvrw. Let zj(x) =
xj +rvvj +rwwj +ryyj if j ≤W and zj(x) = rvvj +rwwj +ryyj otherwise. Evaluation
key (i = 1, . . . , n, j = 1, . . . , d):

〈xj〉1, 〈rvvj〉1, 〈rvt〉1, 〈αvrvvj〉2, 〈αvrvt〉2〈rwwj〉1, 〈rwt〉1, 〈αwrwwj〉1, 〈αwrwt〉1〈ryyj〉1,
〈ryt〉1, 〈αyryyj〉2, 〈αyryt〉2〈βiz(i−1)d+j〉1, 〈βiznd+j〉1, 〈βi〉1, 〈βirvt〉1, 〈βirwt〉1, 〈βiryt〉1

Verification key (i = 1, . . . , n): (〈αv〉2, 〈αw〉1, 〈αy〉2, 〈βi〉2, 〈βi〉1, 〈ryt〉2).

Proof generation P1: Let ui = C1
cki

(vi; ri), and let w be the witness such that
(v1, . . . ,vn;w) is a solution to the QAP. Generate random δv,i, δw,i, δy,i. Compute
h as the coefficients of polynomial ((

∑
j xj · vj(x) + δv · t(x)) · (

∑
j xj · wj(x) + δw ·

t(x))− (
∑

j xj · yj(x) + δy · t(x)))/t(x). Return (i = 1, . . . , n; [·] means only if i = 1):

〈Vi〉1 =
∑d

j=1 vi,j〈rvv(i−1)d+j〉1
[
+
∑N

j=1 wj〈rvvnd+j〉1
]

+ δv,i〈rvt〉1, 〈αvVi〉2 = . . .

〈Wi〉1 =
∑d

j=1 vi,j〈rww(i−1)d+j〉1
[
+
∑N

j=1 wj〈rwwnd+j〉1
]

+ δw,i〈rwt〉1, 〈αwWi〉1 = .

〈Yi〉1 =
∑d

j=1 vi,j〈ryy(i−1)d+j〉1
[
+
∑N

j=1 wj〈ryynd+j〉1
]

+ δy,i〈ryt〉1, 〈αyYi〉2 = . . .

〈Zi〉1 =
∑d

j=1 vi,j〈βiz(i−1)d+j〉1
[
+
∑N

j=1 wj〈βiznd+j〉1
]

+ ri〈βi〉1 + δv,i〈βirvt〉1

〈H〉1 =
∑

j hj〈xj〉1. + δw,i〈βirwt〉1 + δy,i〈βiryt〉1

Proof verification V1: Letting cki = (. . . , 〈αi〉2), ui = (〈Ci〉1, 〈αiCi〉2), check that:

e(〈Ci〉1, 〈αi〉2) = e(〈1〉1, 〈αiCi〉2); e(〈Vi〉1, 〈αv〉2) = e(〈αvVi〉1, 〈1〉2); (C,V)

e(〈αw〉1, 〈Wi〉2) = e(〈1〉1, 〈αwWi〉2); e(〈Yi〉1, 〈αy〉2) = e(〈1〉1, 〈αyYi〉2); (W,Y)

e(〈Vi〉1 + 〈Yi〉1 + 〈Ci〉1, 〈βi〉2) · e(〈βi〉1, 〈Wi〉2) = e(〈Zi〉1, 〈1〉2); (Z)

e(〈V 〉1, 〈W 〉2) · e(〈Y 〉1, 〈1〉2)−1 = e(〈H〉1, 〈ryt〉2). (H)

(where 〈V 〉1 = 〈V1〉1 + . . .+ 〈Vn〉1, 〈W 〉2 = 〈W1〉2 + . . .+ 〈Wn〉2, 〈Y 〉1 = 〈Y1〉1 + . . .)

Fig. 1. Pinocchio-Based Adaptive zk-SNARK (G1,P1,V1)

of a number of variables of the QAP solution, which is enforced by providing
〈zj〉1 = 〈βi · (vj + wj + yj)〉1 elements only for the indices j of those variables.

Our core idea is use external commitments of the form
∑
k vk · 〈xk〉1 (that

can be re-used across Pinocchio computations) and link the kth component
of this commitment to the jth variable of the block using a modified 〈zj〉1 =
〈βi · (xk + vj + wj + yj)〉1. We use one block per external commitment that the
proof refers to. The witness (which is not committed to externally) is included in

the first block, with the normal Pinocchio element 〈zj〉1 = 〈β1 · (vj + wj + yj)〉1
just checking internal consistency as usual. The verification procedure changes
slightly: 〈V 〉1 is no longer extended to 〈V +〉1 to include public I/O (which we
do not have); instead, the (Z) check ensures consistency with the corresponding
commitment, for which there is a new correctness check (C).

The precise construction is shown in Figure 1. This construction contains
details on how to add randomness to make the proof zero-knowledge; and it
shows how additional 〈αi·〉1 elements are added to make sure the computation-
independent commitment is an extractable trapdoor commitment scheme (as
shown in [Gro10,Lip16]). In Appendix C, we show that:

Theorem 1. Under the (4d+ 3)-PDH, d-PKE, and (8d+ 6)-SDH assumptions
(Appendix A), where d is the maximal degree of the QAPs used, (G1,P1,V1) is
an adaptive zk-SNARK.

3.2 Smaller Proofs and Comparison to Geppetto/“Hash First”

We now present two optimization that decrease the size of the above zk-SNARK,
and compare the concrete efficiency of our three proposals to two related pro-
posals from the literature. Note that, in the above construction, seven Pinocchio
proof elements 〈V 〉1, 〈αvV 〉2, 〈W 〉2, 〈αwW 〉1, 〈Y 〉1, 〈αyY 〉2, 〈Z〉1 are repeated
for each input commitment. We show present two different (but, unfortunately,
mutually incompatible) ways in which this can be avoided.

In our first optimization, inspired by a similar proposal to reduce verification
work in Pinocchio ([CFH+15], later corrected by [Par15]), we decrease proof size
and verification time at the expense of needing a larger-degree QAP. Namely,
suppose that all variables in a given commitment occur only in the right-hand
side of QAP equations. In this case, vj(x) = wj(x) = 0 for all j, so proof
elements 〈Vi〉1, 〈αvVi〉2, 〈Wi〉2, 〈αwWi〉1, 〈Yi〉1, 〈αyYi〉2 contain only randomness
and, setting δv,j = δw,j = 0, can be omitted. As a consequence, the marginal
costs per commitment used decrease from 7 to 3; the (V) and (W) verification
steps can be skipped and the (Z) step simplified. To guarantee that a committed
variable a only occurs in the right-hand of equations, we can introducing a
witness b and equation 0 · 0 = a − b, slightly increasing the overall QAP size
and degree. (This cannot be done for the first commitment since 〈V1〉1, . . . also
contain the witness, which occur in the left-hand side of equations as well.)

Our second proposal is a modified zk-SNARK that also reduces the marginal
cost per commitment from 7 to 3, but gives more efficient verification when us-
ing many commitments. The core idea is to first concatenate all commitments
u1, . . . ,un into one “intermediate” commitment u′, and then use the original
zk-SNARK with respect to u′. More precisely, we build intermediate commit-
ment u′1 with the first `1 values of u1; u′2 with `1 zeros followed by the first `2
values of u2; etcetera. Then, u′ =

∑
i u
′
i is a commitment to the first `1, . . . , `n

values of the respective commitments u1, . . . ,un. To avoid ambiguity between
normal and intermediate commitments, normal commitments include a random

Construction Comm. Proof size Prover computation Verif comp
Size non-crypt. op. crypt. op.

Geppetto 3 gr. el. 8 gr. el. Θ(D logD) Θ(D) 4n+ 12 pair.
Hash First+Pinocchio 2 gr. el. 9n+1 gr. el. Θ(d log d) Θ(d) 13n+ 3 pair.
Hash First+Pinocchio* 2 gr. el. 5n+5 gr. el. Θ(d′ log d′) Θ(d′) 8n+ 8 pair.
Our zk-SNARK I 2 gr. el. 7n+1 gr. el. Θ(d log d) Θ(d) 11n+ 3 pair.
Our zk-SNARK I* 2 gr. el. 3n+5 gr. el. Θ(d′ log d′) Θ(d′) 7n+ 7 pair.
Our zk-SNARK II 2 gr. el. 3n+8 gr. el. Θ(d log d) Θ(d) 6n+ 12 pair.

Table 1. Comparison between Pinocchio-based SNARKs (n: number of commitments;
d is QAP degree; d′ ≤ d is QAP degree with optimization; D ≥ d is fixed QAP degree)

factor rc, i.e. (r〈rc〉1 +
∑
i vi〈rcxi〉1, r〈αrc〉2 + . . .) and intermediate commit-

ments are as above4. Proving correspondence between normal and intermediate
commitments is done similarly to the (Z) check above: we generate random βi
and give 〈β′i · (rcxj + x`1+...+`i−1+j〉1 to the prover, who needs to produce proof

element 〈Z ′i〉1 such that 〈Z ′i〉1 = (〈Ci〉1 + 〈C ′i〉1)β
′
i , which he can only do if 〈C ′i〉1

is formed correctly. Details and the security proof appear in Appendix C.

In Table 1, we provide a detailed comparison of our zk-SNARKs with two
similar constructions: the Geppetto protocol due to [CFH+15] (which is also zero-
knowledge but not adaptive); and the “hash first” approach applied to Pinocchio
[FFG+16] (which is adaptive but not zero-knowledge). Geppetto is Protocol 2
from [CFH+15]. We assume QAP witnesses of O(d). In Geppetto, a fixed set of
QAPs of degree di are combined into one large “MultiQAP” of degree D slightly
larger than max di. As a consequence, if both small and large computations need
to be applied on the same data, then the small computations take over the much
worse performance of the large computations. For Hash First+Pinocchio, we
took the extractable scheme XPE since the Geppetto and our construction are
extractable as well. To make it work on multiple commitments (which is de-
scribed for neither Hash First nor Pinocchio), we assume natural generalizations
of Hash First and of Pinocchio along the lines of [CFH+15,SVdV15]. Our first
optimization can be applied to this construction; we mark the result with a star
and write d′ ≥ d for the increased degree due to the use of this optimization.
Finally, we show our zk-SNARK without and with the first optimization; and
our second zk-SNARK construction (to which the optimization does not apply).

In conclusion, Geppetto is the most efficient construction, but apart from not
being adaptive, it also requires all computations to be fixed and of the same size,
making it inefficient for small computations when they are combined with large
ones. Our construction outperforms Hash First+Pinocchio, essentially adding
zero knowledge for free; which variant is best depends on n and d′−d. Note that
Hash First allows using the same commitment in different zk-SNARK schemes;
our scheme only allows this for zk-SNARKs based on the kind of polynomial
commitments used in Pinocchio.

4 Hence this construction can only handle input sof combined size at most d.

Secure adaptive function evaluation

– Honest data owners send inputs xi to
trusted party

– Adversary sends inputs xi of cor-
rupted data owners to trusted party
(active adversary may modify them)

– Client sends function f , input x to
trusted party (active: may modify)

– Trusted party computes y =
f(x1, . . . ,xm,x) (where y1 = . . . = ⊥
if any xi = ⊥)

– Trusted party sends y to client, f to
adversary

– Client outputs received value (if hon-
est) or ⊥ (if corrupted); adversary
chooses own output

Correct adaptive function evaluation

– Honest data owners send inputs xi to
trusted party

– Adversary sends inputs xi of cor-
rupted data owners to trusted party
(active adversary may modify them)

– Client sends function f , input x to
trusted party (active: may modify)

– Trusted party computes y =
f(x1, . . . ,xm,x) (where y1 = . . . = ⊥
if any xi = ⊥)

– Trusted party sends x1,. . .,xm,x,f to
adversary, receives r

– Trusted party sends y to client, or ⊥
if r = ⊥

– Client outputs received value (if hon-
est) or ⊥ (if corrupted); adversary
chooses own output

Fig. 2. Ideal-world executions of secure (left) and correct (right) adaptive function
evaluation. The highlighted text indicates where the two differ.

4 Secure and Correct Adaptive Function Evaluation

We now show how our zk-SNARK can be used to perform “adaptive function
evaluation”: privacy-preserving verifiable computation on committed data. We
present a construction based on multi-party computation and any adaptive zk-
SNARK; we then show that our adaptive zk-SNARK gives a particularly efficient
instantiation. This generalizes Trinocchio [SVdV15], which is not adaptive and
tied to the particular Pinocchio zk-SNARK and a particular MPC protocol.

4.1 Security model

We consider a setting in which multiple mutually distrusting data owners want
to allow privacy-preserving outsourced computations on their joint data. A client
can choose a computation to be performed by a set of workers. The input data
is sensitive, so the workers should not learn what data they are computing on;
but the client wants to be guaranteed the computation result is correct. We
demand correctness regardless of which data owners and/or workers are actively
corrupted; and privacy when up to a maximum number of workers are passively
corrupted. This scenario is motivated by settings where the data owners together
choose the computation infrastructure (so they feel active corruption is unlikely)
but need to convince an external client (e.g. a medical reviewer) of correctness.

We model security using the ideal/real paradigm, i.e., by specifying an “ideal
world” in which the task at hand is carried out by an incorruptible trusted party,
and demanding that real-world executions give the same result as executions in

Protocol Adaptive Trinocchio

(Data provider has ai ∈ Fd; client has ac ∈ Fd′ , function f : (Fd)n × Fd′ → Fd−d′ .)

1. The trusted party generates a system-wide CRS crs of the trapdoor commitment
family, and commitment keys ck1, . . . , ckn, ckc for the data owner and client. This
material is distributed to all parties (formally, by a hybrid call to CommGen).

2. Each data owner computes commitment ci = Ccki(ai, ri) to its input ai ∈ Fd

using randomness ri, and publishes it on a bulletin board.
3. The data owners, workers, and client use the MPC protocol to do the following:

– Each data owner provides input ai and randomness ri
– For each i, compute c′i = Ccki(JaiK, JriK); if ci 6= c′i then abort

4. The client provides function f to the trusted party. The trusted party determines
a QAP Q computing f and a function f ′ solving Q, and performs key generation
of the adaptive zk-SNARK (where one commitment combines the client’s input
and output). The client gets verification key crsv; the workers get Q, f ′, and the
corresponding evaluation key crsp (formally, by a hybrid call to CompGen).

5. The data owners, workers, and client continue with the MPC from step 3:
– Client: provide input ac

– Compute (JbK; JwK)← f ′(Ja1K; . . . ; JanK; JacK)
– Compute JccK← Cckc(JacK, JbK; JrcK) for random rc
– Compute JπK← P(crs, {cki}, . . . , ckn, ckc, crsp; c1, . . . , cn, JccK; Ja1K; . . . ; JanK;

JacK, JbK; Jr1K, . . . , JrnK, JrcK; JwK)
– Open outputs JbK, JrcK, JccK, JπK to the client

6. The client checks whether V(crs, ck1, . . . , ckn, ckc, crsv; c1, . . . , cn, cc;π) = 1 and
cc = Cckc(ac, b; rc) and if so, returns computation result b.

Fig. 3. The Adaptive Trinocchio protocol

this ideal world (analogously to [SVdV15]). “Secure adaptive function evalua-
tion” (Figure 2, left) guarantees privacy and correctness; we will realize this
ideal functionality if at most a threshold of workers are passively corrupted (but
all other parties can be actively corrupted). “Correct adaptive function eval-
uation” (Figure 2, right) guarantees only correctness; we will realize this ideal
functionality regardless of corruptions. In both models, data owners provide their
inputs independently from each other and (unlike Trinocchio) from the function
at hand; and corrupted inputters cannot fail selectively based on the input.

Definition 1. A protocol securely adaptively evaluates function f if it imple-
ments the ideal functionality shown in Figure 2, left, according to the execution
model from Appendix B.3 (Definition 8). A protocol correctly adaptively evalu-
ates function f if it implements the ideal funcitonality shown in Figure 2 (right).

4.2 General Construction

The high-level idea for obtaining secure and correct adaptive function evaluation
is quite simple. To achieve secure adaptive function evaluation, the workers com-

pute the function using multi-party computation (MPC), guaranteeing privacy
and correctness under certain conditions. However, when these conditions are
not met, we still want to achieve correct adaptive function evaluation, i.e., we
still want to ensure a correct computation result. To achieve this, the workers
also produce, using MPC, a zk-SNARK proof of correctness of the result.

In our particular construction, we guarantee secure adaptive function eval-
uation (i.e., with privacy) as long as up to t out of m workers are passively
corrupted. For this, we rely on a MPC protocol with the same privacy guar-
antees. More precisely, we require a MPC protocol in the outsourcing setting,
i.e., with separate inputters (in our case, the data owners and the client), re-
cipients (the client) and workers. The protocol needs to be reactive, so that the
data owners can provide their input before knowing the function to be com-
puted5; and secure if up to t out of m workers are passively corrupted, and any
number of data owners and clients are actively corrupted. As we show below,
the above requirements are met, e.g., by MPC protocols based on (t, n)-Shamir
secret sharing (e.g., [dH12]) between n = 2t+ 1 workers.

Our protocol is shown in Figure 3. It uses a MPC protocol with the above
properties, a trapdoor commitment family, and an adaptive zk-SNARK, instan-
tiated for the function to be computed. The protocol relies on a trusted party
that generates the key material of the zk-SNARK, but is otherwise not involved
in the computation. Each data owner has an input ai ∈ Fd and the client has an
input ac ∈ Fd′ and a function f : (Fd)n ×Fd′ → Fd−d′ that it wants to compute
on the combined data. Internal variables of the MPC protocol are denoted J·K.

In step 1, the trusted party sets up the trapdoor commitment family, gen-
erating separate keys for data provider and the client. (This prevents parties
from copying each other’s input.) In step 2, each data provider publishes a
commitment to his input. In step 3, each data providers inputs its data and
the randomness used for the commitment to the MPC protocol. The workers
re-compute the commitments based on this opening and abort in case of a mis-
match. (This prevents calling P on mismatching inputs in which case it may not
be zero-knowledge.) In step 4, the client chooses the function f to be computed,
based on which the trusted party performs key generation. (By doing this af-
ter the data owners’ inputs, we prevent a selective failure attack from their
side.) In step 5, the computation is performed. Using MPC, the client’s output
and witness are computed; a commitment to the client’s I/O is produced, and
a zk-SNARK proof of correctness with respect to the commitments of the data
owners and client is built.6 The client learns the output, randomness for its com-
mitment, the commitment itself, and the proof. In step 6, the client re-computes
the commitment and verifies the proof; in case of success, it accepts the output.

In Appendix D, we prove that:

5 Using non-reactive MPC requires is also possible, but then steps 3 and 4 of the
protocol need to be swapped. As a consequence, data owners can abort based on the
client’s choice of function, leading to a weaker form of correct function evaluation.

6 Equivalently, the workers can open cc and π and send them to the client in the plain.

Theorem 2. If the MPC protocol, trapdoor commitment family, and adaptive
zk-SNARK are secure, then “Adaptive Trinoccio” (Figure 3) correctly adaptively
evaluates f in the (CommGen,CompGen)-hybrid model. If at most one worker
is corrupted, then “Adaptive Trinoccio” securely adaptively evaluates f in the
(CommGen,CompGen)-hybrid model.

By sharing commitment between proofs, it is possible to flexibly perform
many variants of the same computation all based on the same key material. In
particular, as we show in the case study, this enables computations on arbitrary-
length data using the same key material (which was impossible in Trinocchio). It
is also easy to support multiple clients or multiple commitments per data owner.

4.3 Efficient Instantiation using Secret Sharing and our zk-SNARK

We now show that our zk-SNARKs and MPC based on Shamir secret sharing
give a particularly efficient instantiation of the above framework. The idea is the
same as for Trinocchio [SVdV15]: our zk-SNARK is essentially an arithmetic
circuit of multiplicative depth 1, so given a solution to the QAP it can be done
without any communication between the workers.

In more detail, we perform MPC based on Shamir secret sharing between the
m workers (e.g., [dH12]). This guarantees privacy as long as at most t workers
are passively corrupted, where m = 2t+ 1. Inputs are provided by the inputters
as an additive sharing between all workers: this way actively corrupted inputters
cannot provide an inconsistent sharing. The workers Shamir-share and sum up
the additive shares to obtain a Shamir sharing of the input. Outputs are provided
to recipients either as Shamir shares or as freshly randomized additive shares:
the latter allows producing our zk-SNARK proof without any communication.

Either of our zk-SNARK constructions can be used; we provide details for the
first one. Below, write J·K for Shamir sharing and [·] for additive sharing. (Note
that Shamir sharings can be converted locally to additive sharings at no cost.) In
step 3 of the protocol, to open c′i, the parties apply Ccki on their additive shares
of the input and randomness, add a random additive sharing of zero (which can
be generated non-interactively using pseudo-random zero sharing), and reveal
the result. In step 5, JbK; JwK are computed as Shamir secret shares. Next, [cc] is
computed as an additive sharing by applying Cckc on additive shares and adding
a random sharing of zero. Next, P1 is applied by performing the following steps:

– Generate δv,i, δw,i, δy,i by pseudo-random secret sharing.
– Compute [h] = ((

∑
jJxjK ·vj(x)+ JδvK · t(x)) · (

∑
jJxjK ·wj(x)+ JδwK · t(x))−

(
∑
jJxjK ·yj(x)+JδyK · t(x)))/t(x). Essentially this is done by performing the

computation straight on Shamir secret shares; because there is only layer of
multiplications of shares, this directly gives an additive sharing of the result.
Smart use of FFTs gives time complexity O(d · log d) [BSCG+13,SVdV15].

– All proof elements are now linear combinations of secret-shared data; com-
pute them by taking linear combinations of the (Shamir or additive) shares
and adding a random sharing of zero.

What remains is how to compute the solution of the QAP using multi-party
computation. Namely, in addition to computing the function result JbK, the MPC
also needs to compute witness JwK to the QAP. Actually, if the function to be
computed is described as an arithmetic circuit, this is very easy. Namely, in this
case, the witness for the natural QAP for the function is exactly the vector of
results of all intermediate multiplications; and these results are already available
as Shamir secret shares as a by-product of performing the MPC. Hence, in this
case, computing JwK in addition to JbK incurs no overhead.

If a custom MPC protocol for a particular subtask is used, then it is necessary
to devise specific QAP equations and an MPC protocol to compute their witness.
As an example, consider the MPC operation JbK ← Ja 6= 0K, i.e., b is assigned 1
if a 6= 0 and 0 if a = 0. For computing JbK, a fairly complex protocol is needed,
cf. [dH12]. However, proving that b is correct using a QAP is simple [PHGR13]:
introduce witnesses c := (a+ (1− b))−1, d := 1 and equations:

a · c = b a · (d− b) = 0 d · d = d.

Indeed, if a = 0 then the first equation implies that b = 0; if a 6= 0 then the
second and third equations imply that b = 1. In both cases, the given c is defined
and, combined with d = 1, makes all three equations hold. In our case study,
we show similarly how, for complex MPC protocols for fixed-point arithmetic,
simple QAPs proving correctness exist with easily computable witnesses.

5 Prototype and Distributed Medical Research Case

In this section, we present a proof-of-concept implementation of our second zk-
SNARK construction and our Adaptive Trinocchio protocol. Computations can
be specified at a high level using our Python frontend; executed either locally or
in a privacy-preserving way using multi-party computation; and then automat-
ically proven and verified to be correct by a C++ backend. We show how two
different computations can be performed on the same committed data coming
from multiple hospitals (with key material independent from the input length,
and optionally in a privacy-preserving way): aggregate survival statistics on two
patient populations, and the “logrank test”: a common statistical test whether
there is a statistically significant difference survival rate between the populations.

5.1 Prototype of our zk-SNARK and Adaptive Trinocchio

Our prototype is built on top of VIFF7, a Python implementation of MPC based
on Shamir secret sharing. In VIFF, computations on secret shares are specified
as normal computations by means of operator overloading, e.g., assigning c=a*b

induces a MPC multiplication protocol. We add a new runtime to VIFF that
also allows computations to be performed locally without MPC.

7 TUeVIFF, http://www.win.tue.nl/~berry/TUeVIFF/, based on http://viff.dk

Algorithm 1 Anonymized survival data computation

Require: Jd1K, Jn1K, Jd2K, Jn2K: block of survival data points for two populations
Ensure: (Jd′1K, Jn

′
1K, Jd

′
2K, Jn

′
2K) aggegated survival data for the block

1: function Summ(Jdi,1K, Jdi,2K, Jni,1K, Jni,2K)
2: return (

∑
iJd1,iK, Jn1,1K,

∑
iJd2,iK, Jn2,1K)

To support computation proofs, we developed the viffvc library that pro-
vides a new data type: VcShare, a wrapper around a secret share. Each VcShare

represents a linear combination of QAP variables. Addition and multiplication
by constants of VcShares is performed locally by manipulating the linear com-
bination. Constants v are represented as v · one, where witness one satisfies
one · one = one so one = 1. When two VcShares λ1x1 + . . . and µ1x1 + . . . are
multiplied, a local or MPC multiplication operation is performed on the underly-
ing data, and the result is a new VcShare xk wrapping the result as a new QAP
variable. QAP equation (λ1x1 + . . .) · (µ1x1 + . . .) = 1 ·xk is written to a file, and
the multiplication result xk or its secret share, when known, is written to an-
other file. Apart from multiplication, some additional operations are supported.
For the JbK ← Ja 6= 0K operation discussed in Section 4.3, the implementation
computes JbK and JcK = (JaK+(1− JbK))−1, and writes these secret shares/values
and the equations from Section 4.3 to the respective files. We also support secret
indexing (e.g., [dH12]), and fixed-pont computations as discussed below.

Computations are performed by this custom VIFF-based system together
with an implementation of our zk-SNARK. A first tool, qapgen, generates the
CRS for our trapdoor commitment scheme. A second tool, qapinput, builds a
commitment to a given input; and computes secret shares of these inputs that
are used for MPC computations. Then, our Python implementation is used to
compute the function, either locally or using multi-party computation. At the
end of this execution, there is one file with the QAP equations, and one file
with values/shares for each QAP variable. Our qapgenf tool uses the first file
to perform key generation of the QAP; this is done only once and for next
executions, previous key material is re-used. Our qapprove tool uses the second
file to generate the zk-SNARK proof (shares) to be received by the client. Finally,
a qapver tool verifies the proof based on the committed inputs and outputs.

5.2 Application to Medical Survival Analysis

We have applied our prototype to (adaptively) perform computations on survival
data about two patient populations. In medical research, survival data about a
population is a set of tuples (nj , dj), where nj is the number of patients still in
the study just before time j and dj is the number of deaths at time j. We assume
both populations are distributed among multiple hospitals, that each commit to
their contributions (dj,1, nj,1, dj,2, nj,2) to the two populations at each time.

Aggregate Survival Data Our first computation is to compute an aggregate ver-
sion of the survival data, where each block {dj,1, nj,1, dj,2, nj,2}25j=1 of 25 time

Algorithm 2 Logrank computation for each time step

Require: Jdi,1K, Jdi,2K, Jni,1K, Jni,2K survival data at time point i
Ensure: (JeiK

f , JviK
f , JdiK) contributions to

∑
j Ej,1,

∑
j Vj ,

∑
j dj,1 for test statistic

1: function Block(Jdi,1K, Jdi,2K, Jni,1K, Jni,2K)
2: JacK← Jdi,1K + Jdi,2K
3: JbdK← Jni,1K + Jni,2K
4: JfrcKf ← JacK/JbdK
5: JeiK

f ← JfrcKf · Jni,1K
6: JvnK← Jni,1K · Jni,2K · JacK · (JbdK− JacK)
7: JvdK← JbdK · JbdK · (JbdK− 1)
8: JviK

f ← JvnK/JvdK
9: return (JeiK

f , JviK
f , JdiK)

points is summarized as (
∑
j dj,1, n1,1,

∑
j dj,2, n1,2). The function Summ com-

puting this summary is shown in Algorithm 1. Function Summ translates into a
QAP on 26 commitments: as input, for each time point j, a commitment

∑
i ci,j

to the combined survival data (Jdi,1K, Jni,1K, Jdi,2K, Jni,2K) from the different
hospitals i at that time (using the fact that commitments are homomorphic); as
output, a commitment to (Jd′1K, Jn

′
1K, Jd

′
2K, Jn

′
2K).

Logrank test Our second computation is the so-called “Mantel-Haenzel logrank
test”, a statistical test to decide whether there is a significant difference in sur-
vival rate between the two populations (as implemented, e.g., in R’s survdiff

function). Given the survival data from two populations, define:

Ej,1 =
(dj,1 + dj,2) · nj,1

nj,1 + nj,2
; Vj =

nj,1nj,2(dj,1 + dj,2)(nj,1 + nj,2 − dj,1 − dj,2)

(nj,1 + nj,2)2 · (nj,1 + nj,2 − 1)
;

X =

∑
j Ej,1 −

∑
j dj,1∑

j Vj
.

The null hypothesis for the logrank test, i.e., the hypothesis that the two curves
represent the same underlying “survival function”, corresponds to X ∼ χ2

1. This
null hypothesis is rejected (i.e., the curves are different) if 1−cdf(X) > α, where
cdf is the cumulative density function of the χ2

1 distribution and, e.g., α = 0.05.
We use MPC to compute X, and then apply the cdf in the clear.

Our implementation consists of two different functions: a function Block
(Algorithm 2) that computes (Ej,1, Vj , dj,1) given the survival data at point
j; and a function Fin that, given

∑
Ej,1,

∑
Vj , and

∑
dj,1 computes X (Al-

gorithm 3). As above, function Block is applied to commitment
∑
i ci,j to

the combined survival data from different hospitals at a particular time, giv-
ing output commitment c′j . Function Fin is applied to commitment

∑
j c
′
j to

(
∑
Ej,1,

∑
Vj ,
∑
dj,1), again using the fact that commitments are homomor-

phic; outputting a commitment to X that is output to the client.
Algorithms 2 and 3 use fixed-point numbers JxKf , representing value x · 2−k

where we use precision k = 20. We use the fixed-point multiplication JcKf ←

Algorithm 3 Logrank final computation

Require: JesK, JvsK, JdsK: summed-up values required to compute X
Ensure: JchiKf test statistic comparing two curves; supposedly chi ∼ χ2

1

1: function Fin(JesK, JvsK, JdsK)
2: JdsKf ← JdsK� PRECISION
3: JdmiKf ← JdsKf − JvsKf

4: Jchi0Kf ← JdmiKf/JvsKf

5: JchiKf ← Jchi0Kf · JdmiKf
6: return JchiKf

Aggregate

Computation (function): 0.0s (w/o MPC) / 0.1s (w/ MPC)
Computation (function+witness): 0.0s (w/o MPC) / 0.1s (w/ MPC)

BS=1 BS=25 BS=175
QAP degree: 3 QAP degree: 3 QAP degree: 57
Prover: 0.3s/0.4s Prover: 0.1s/0.1s Prover: 0.0s/0.0s
Verifier: 1.2s/1.5s Verifier: 0.2s/0.2s Verifier: 0.0s/0.0s

Logrank

Computation (function): 0.2s (w/o MPC) / 190.5s (w/ MPC)
Computation (function+witness): 0.6s (w/o MPC) / 235.2s (w/ MPC)

BS=1 BS=25 BS=175
QAP deg (block): 173 QAP deg (block): 4304 QAP deg (block): 30104
QAP deg (fin): 85 QAP deg (fin): 85 QAP deg (fin): 85
Prover: 13.9s/78.5s Prover: 16.2s/81.0s Prover: 9.8s/73.5s
Verifier: 3.9s/4.9s Verifier: 0.2s/0.3s Verifier: 0.0s/0.0s

Table 2. Performance: computation/proving/verification; with/without MPC

JaKf ·JbKf and division JcKf ← JaK/JbK, JcKf ← JaKf/JbKf protocols due to [dH12].
To prove that JcKf ← JaKf · JbKf is correct, note that we need to show that
c − a · b ∈ [−2k, 2k], or equivalently, that α := c − a · b + 2k ≥ 0 and β :=
2k− (c−a · b) ≥ 0. We prove this by computing, using MPC, bit decompositions
[dH12] α = α0 +α1 · 2 + . . .+αk · 2k and β = β0 +β1 · 2 + . . .+βk · 2k (indeed, α
and β are ≤ k + 1 bits long); these αi, βi are the witnesses to QAP equations:

∀i : αi · (1− αi) = 0 c− a · b+ 2k = α0 + α1 · 2 + . . .+ αk · 2k

∀i : βi · (1− βi) = 0 β = 2k − (c− a · b) = β0 + β1 · 2 + . . .+ βk · 2k.

Similarly, note that JcKf ← JaKf/JbKf is correct if and only if a·2k−b·c ∈ [−a, a],
i.e., γ := d + c · 2k − d · e ≥ 0 and δ := d + d · e − c · 2k ≥ 0. If a has bitlength
at most K (i.e., the represented number has absolute value ≤ 2K−k), then γ
and δ have at most K + 1 bits. As above, we prove correctness by determining
(K+ 1)-length bit decompositions of γ and δ and proving them correct. Proving
correctness of JcKf ← JaK/JbK is analogous.

Performance Table 2 shows the performance of our proof-of-concept implemen-
tation for computing aggregate survival data and the logrank test (on a modern
laptop). As input, we used the “btrial” data set included in R’s “kmsurv” pack-
age (on which we indeed repdocue R’s survdiff result) of 175 data points. Apart

from having one data point per commitment, we also experiment with having
a “block size” of 25 or 175 data points. For the logrank test, we use one QAP
per block; larger blocks mean less work for the verifier (since there are fewer
proofs) but, in theory, more work for the prover (since the proving algorthm
is superlinear in the QAP size). For aggregation, we use one QAP per 25 data
points or per commitment, whichever is more.

We time the performance of running the computation, producing the proof,
and verifying it, with or without MPC. As expected, MPC induces a large over-
head for the computation, especially for the logrank test (due to the many fixed-
point computations). MPC also incurs an overhead for proving: this is because
of the many exponentiations with |F|-sized secret shares rather than small wit-
nesses. Note that proving is faster than computing with MPC: the underlying
operations are slower [SVdV15], but the QAP proof is in effect on a verification
circuit that is smaller than the circuit of the computation itself [dHSV16]. Prov-
ing is faster for block size 175 than block size 25, which is unexpected; this may
be because our FFT subroutine rounds up QAP degrees to the nearest power of
two, which is favourable in the 175-sized case but not in the 25-sized case. As
expected, verification is faster for larger block sizes. (The overhead of MPC here
is due to recombing the proof shares into one overall proof.)

6 Conclusion

In this work, we have given the first practical Pinocchio-based adaptive zk-
SNARK; applied it in the privacy-presering outsourcing setting; and presented
a proof-of-concept implementation. We mention a few promising directions for
follow-ups. First, aside from providing a non-adaptive zk-SNARK, Geppetto also
introduces the interesting idea of proof bootstrapping, where the verification pro-
cedure of the zk-SNARK itself can be performed by means of a verifiable com-
putation, so multiple related proofs can be verified in constant time. Applying
this technique in our setting should combine our flexibility with their constant-
time verification. Second, it is interesting to see if, apart from secret sharing plus
our SNARK, there are other appealing instantiations of our privacy-preserving
outsourcing framework. Finally, the combination of MPC and verifiable compu-
tation raises the question of constructing efficient QAPs for specific operations
and building efficient MPC protocols for computing their witnesses. We have
presented zero testing and fixed-point computations as examples, but the same
idea is applicable to many other operations as well. More generally, extending
our zk-SNARK prototype with more basic operations, and improving its user-
friendliness, would help bring the techniques closer to practice.

References

[BBFR15] M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk. ADSNARK: Nearly
Practical and Privacy-Preserving Proofs on Authenticated Data. In 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015, pages 271–286, 2015.

[BSCG+13] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs
for C: Verifying Program Executions Succinctly and in Zero Knowledge.
In Proceedings of CRYPTO. 2013.

[Can98] R. Canetti. Security and Composition of Multi-party Cryptographic Pro-
tocols. Journal of Cryptology, 13:2000, 1998.

[CFH+15] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter, M. Naehrig,
B. Parno, and S. Zahur. Geppetto: Versatile Verifiable Computation. In
2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015, pages 253–270, 2015.

[DFGK14] G. Danezis, C. Fournet, J. Groth, and M. Kohlweiss. Square Span Pro-
grams with Applications to Succinct NIZK Arguments. In Advances in
Cryptology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshi-
ung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, pages
532–550, 2014.

[dH12] S. de Hoogh. Design of large scale applications of secure multiparty com-
putation: secure linear programming. PhD thesis, Eindhoven University of
Technology, 2012.

[dHSV16] S. de Hoogh, B. Schoenmakers, and M. Veeningen. Certificate Validation
in Secure Computation and Its Use in Verifiable Linear Programming. In
Progress in Cryptology - AFRICACRYPT 2016 - 8th International Confer-
ence on Cryptology in Africa, Fes, Morocco, April 13-15, 2016, Proceedings,
pages 265–284, 2016.

[FFG+16] D. Fiore, C. Fournet, E. Ghosh, M. Kohlweiss, O. Ohrimenko, and
B. Parno. Hash First, Argue Later: Adaptive Verifiable Computations on
Outsourced Data. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-28,
2016, pages 1304–1316, 2016.

[GGPR13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic Span
Programs and Succinct NIZKs without PCPs. In Proceedings of EURO-
CRYPT. 2013.

[Gro10] J. Groth. Short Pairing-Based Non-interactive Zero-Knowledge Argu-
ments. In Advances in Cryptology - ASIACRYPT 2010 - 16th International
Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 5-9, 2010. Proceedings, pages 321–340, 2010.

[Lip16] H. Lipmaa. Prover-Efficient Commit-and-Prove Zero-Knowledge SNARKs.
In Progress in Cryptology - AFRICACRYPT 2016 - 8th International Con-
ference on Cryptology in Africa, Fes, Morocco, April 13-15, 2016, Proceed-
ings, pages 185–206, 2016.

[Par15] B. Parno. A Note on the Unsoundness of vnTinyRAM’s SNARK. Cryptol-
ogy ePrint Archive, Report 2015/437, 2015. http://eprint.iacr.org/.

[PHGR13] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly Prac-
tical Verifiable Computation. In Security and Privacy, 2013 IEEE Sympo-
sium on, pages 238–252, 2013.

[SVdV15] B. Schoenmakers, M. Veeningen, and N. de Vreede. Trinocchio: Privacy-
Friendly Outsourcing by Distributed Verifiable Computation. Cryptology
ePrint Archive, Report 2015/480, 2015. http://eprint.iacr.org/.

A Cryptographic Assumptions

In this section, we outline the cryptographic assumptions on which our protocols
are based. We use the formulations from [DFGK14]: they are generalizations of
the definitions from [PHGR13] to the asymmetric pairing setting that we use.

Suppose (p,G,G′,GT , e)← G(1κ) outputs three multiplicative cyclic groups
of prime order p, and an efficient bilinear map e : G×G′ → GT , where, for any
generators g ∈ G, g′ ∈ G′, e(g, g′) 6= 1 and e(ga, g′b) = e(g, g′)ab. Then:

Definition 2. The q-power Diffie Hellman (q-PDH) assumption holds for G if,
for any NUPPT adversary A we have:

Pr[(p,G,G′,GT , e)← G(1κ); g ∈R G∗; g′ ∈R G′∗; s ∈R Z∗p;

y ← A(p,G,G′,GT , e, {gs
i

, g′s
i

}i=1,...,q,q+2,...,2q) : y = gs
q+1

] ≈κ 0.

Definition 3. The q-power knowledge of exponent (q-PKE) assumption holds
for G and a class Z of auxiliary input generators if, for every NUPPT auxiliary
input generator Z ∈ Z and any NUPPT adversary A there exists a NUPPT
extractor EA such that:

Pr[crs := (p,G,G′,GT , e)← G(1κ); g ∈R G∗; s ∈R Z∗p; z ← Z(crs, g, . . . , gs
q

);

g′ ∈R G′∗; (c, c′||a0, . . . , aq)← (A||EA)(crs, {gs
i

, g′s
i

}i=0,...,q, z) :

e(c, g′) = e(g, c′) ∧ c 6=
∏q
i=0 g

ais
i

1] ≈κ 0.

Here, (a||b) ← (A||EA)(c) denotes running both algorithms on the same in-
puts and random tape, and assigning their results to a respectively b. For certain
auxiliary input generators, the q-PKE assumption does not hold, so we have to
conjecture that our auxiliary input generators are “benign”, cf. [DFGK14].

Definition 4. The q-target group strong Diffie Hellman (q-SDH) assumption
holds for G if, for any NUPPT adversary A,

Pr[crs := (p,G,G′,GT , e)← G(1κ); g ∈R G∗; g′ ∈R G′∗; s ∈R Zp
(r, Y)← A(crs, {gs

i

, g′s
i

}i=0,...,q) : r ∈ Zp \ {s} ∧ Y = e(g, g′)
1

s−r] ≈κ 0.

B Definitions

B.1 Extractable Trapdoor Commitment Family

We first define an extractable trapdoor commitment family. This definition is
a straightforward generalisation of the standard notion of an extractable trap-
door commitment scheme (e.g., [Lip16]), in which we explicitly capture multiple
commitment keys generated from the same CRS.

Definition 5. Let (G0,Gc,C) be a scheme where (crs, td) ← G0(1κ) outputs a
system-wide CRS and a trapdoor; (ck, ctd)← Gc(crs) outputs a commitment key
and a trapdoor; and c ← Cck(m; r) outputs a commitment with the given key.
Such a scheme is called an extractable trapdoor commitment family if:

– (Computationally binding) For every NUPPT committer A,

Pr[(crs, ·)← G0(1κ); (ck, ·)← Gc(crs); (v; r; v′; r′)← A(crs; ck) :

Cck(v; r) = Cck(v
′; r′)] ≈ 0.

– (Perfectly hiding) Letting (crs, ·) ← G0(1κ); (ck, ·) ← Gc(crs), for all v, v′,
Cck(v; r) and Cck(v

′; r′) are identically distributed given random r, r′

– (Trapdoor) There exists a NUPPT algorithm T such that if (crs, td) ←
G0(1κ); (ck; ctd)← Gc(crs); (u; t)← T (crs; td; ck; ck); r ← T (t;u; v), then u
is distributed identically to real commitments and Cck(v; r) = u.

– (Extractable) For every NUPPT committer A, there exists a NUPPT extrac-
tor EA such that

Pr[(crs; ·)← G0(1κ); (ck; ·)← Gc(crs); (u||v; r)← (A||EA)(crs; ck) :

u ∈ Range(Cck) ∧ u 6= Cck(v; r)] ≈ 0.

B.2 Adaptive zk-SNARK

Given a relation R and a number of commitment keys ck1, . . . , ckn from the
same commitment family, we define:

Rck1,...,ckn := {(u;v, r,w) : ui = Ccki(vi; ri) ∧ (v;w) ∈ R}.

Intuitively, an adaptive zk-SNARK is a zk-SNARK for relation Rck1,...,ckn .

Definition 6. An adaptive zk-SNARK for extractable trapdoor commitment fam-
ily (G0,Gc,C) and relation R is a scheme (G,P,V) where:

– (crsp; crsv; tdp)← G(crs; {cki}), given a CRS and commitment keys, outputs
evaluation and verification keys, and a trapdoor;

– π ← P(crs; {cki}; crsp;u;v; r;w), given a CRS; commitment keys; an evalu-
ation key; commitments; openings; and a witness, outputs a proof;

– 0/1← V(crs; {cki}; crsv;u;π), given a CRS; commitment keys; a verification
key; commentments; and a proof, verifies the proof,

satisfying the following properties:

– Perfect completeness:

Pr[(crs; ·)← G0(1κ);∀i : (cki; ·)← Gc(crs); (crsp; crsv; ·)← G(crs; {cki});
(u;v; r;w)← R{cki} :

V(crs; {cki}; crsv;u;P(crs; {cki}; crsp;u;v; r;w)) = 1] = 1.

– Argument of knowledge: for every NUPPT A there exists NUPPT extractor
EA such that, for every auxiliary information aux ∈ {0, 1}poly(κ):

Pr[(crs; td)← G0(1κ);∀i : (cki; ctdi)← Gc(crs); (crsp; crsv; tdp)← G(crs; {cki});
(u;π||v; r;w)← (A||EA)(crs; {cki}; crsp; aux|| . . . ; td; ctd1; . . . ; ctdn; tdp) :

(u;v; r;w) /∈ R{cki} ∧ V(crs; {cki}; crsv;u;π) = 1] ≈κ 0.

Here, (A||EA)(·|| . . . ; ·′) is parallel execution as above; EA has extra input ·′.
– Witness indistinguishability: if (crs; ·) ← G0(1κ); ∀i : (cki; ·) ← Gc(crs);

(crsp; crsv; ·) ← G(crs, {cki}) and (u;v, r,w), (u;v′, r′,w′) ∈ R{cki} with
r, r′ ∈R R, then, as probability distributions,

P(crs; {cki}; crsp;u;v; r;w) ≈κ P(crs; {cki}; crsp;u;v′; r′;w′).

– Perfectly composable zero knowledge: there exists a PPT simulator S such
that, for all stateful NUPPT adversaries A,

Pr[(crs, ·)← G0(1κ);∀i : (cki, ·)← Gc(crs); (crsp, crsv, ·)← G(crs, {cki}),
(u;v; r;w)← A(crs, {cki}, crsp);π ← P(crs, {cki}, crsp;u;v; r;w) :

(u,v, r,w) ∈ R{cki} ∧ A(π) = 1] =

Pr[(crs, td)← G0(1κ);∀i : (cki, ctdi)← Gc(crs); (crsp, crsv, tdp)← G(crs, {cki}),
(u;v; r;w)← A(crs, {cki}, crsp);π ← S(crs, {cki}, crsp;u; td, {ctdi}, tdp) :

(u,v, r,w) ∈ R{cki} ∧ A(π) = 1]

Our definition differs from the one in [Lip16] on a few minor points:

– We generalize the definition to use a commitment family instead of a commit-
ment scheme. This is because, in Adaptive Trinocchio, we need every party
to provide inputs using a different commitment key to ensure that inputs
are chosen independently. (Note that this is a generalization of the original
definition. Alternatively, as in [SVdV15], an additional input commitment
round could be used. In this case, the generalization is not needed.)

– In our definition, we have included a witness that is not committed to us-
ing the computation-independent commitment scheme. As a consequence,
the witness does not have to be committed to, which makes the solution
slightly more efficient. Again, this generalization could be avoided by letting
Adaptive Trinocchio produce an additional commitment to the witness.

– In our definition, the extractor gets access to the trapdoor. Also, we guaran-
tee statistical witness indistinguishability as opposed to perfect witness indis-
tinguishability. Both are needed because of the use of Pinocchio [GGPR13].

B.3 Execution Model for Adaptive Function Evaluation

In this section, we provide more details on the ideal-world execution model for
the ideal functionalities from Figure 2, and the real-world execution model for the

protocol from Figure 3. Our execution model is based on Canetti’s traditional
standalone execution model [Can98], of which we now give an overview. We
assume static, non-uniform probabilistic polynomial time (NUPPT) adversaries.

A distribution ensemble X = {X(λ, a)}λ∈N,a∈D is an infinite sequence of
probability distributions, indexed over a security parameter λ and inputs a from
a given domain D.

Definition 7 (Computational indistinguishability ([Can98])). Let δ : N→
{0, 1}. We say that distribution ensembles X and Y have computational distance
at most δ if for every algorithm D that is probabilistic polynomial-time in its first
input, for all sufficiently large λ, all a and all auxiliary information w ∈ {0, 1}∗
we have: ∣∣Prob(D(1λ, a, w, x) = 1)− Prob(D(1λ, a, w, y) = 1)

∣∣ < δ(λ),

where x is chosen from distribution X(λ, a), y is chosen from distribution Y (λ, a),
and the probabilities are taken over the choices of x, y, and the random choices
of D. If ensembles X and Y have computational distance at most λ−c for all
c > 0 then we say that X and Y are computationally indistinguishable.

At a high level, a protocol is said to “implement” an ideal functionality
if real-life executions of the protocol and ideal-world executions of the ideal
functionality are computationally indistinguishable.

In the real-life model, parties Pi perform protocol π together with adver-
sary A. Parties are NUPPT Turing machines that receive input xi. The ad-
versary is a NUPPT machine that receives as input the identities of the cor-
rupted parties and their inputs; an auxiliary input; and a value λ for the secu-
rity parameter. Computation takes place in a fully connected, ideally authen-
ticated, synchronous network with rushing. Moreover, we assume access to a
secure bulletin board, i.e., with guaranteed and authenticated delivery. The ad-
versary sees all communication of passively corrupted parties and controls all
communication of actively corrupted parties. In the (g1, . . . , gk)-hybrid model,
parties have access to an incorruptible trusted party that evaluates the func-
tions g1, . . . , gk. At the end of the computation, uncorrupted parties output
whatever is specified in the protocol, corrupted parties output ⊥, and the adver-
sary outputs an arbitrary function over its view. We write (y1, . . . , ym, a) =
Execπ,A(λ;x1, . . . , xm; z) for the random variable consisting of the outputs
yi of parties Pi and output a of the adversary, and Execπ,A for the distri-
bution ensemble {Execπ,A(λ;x1, . . . , xm; z)λ∈N;x1,...,xm,z∈{0,1}∗ . When working

in the (g1, . . . , gk)-hybrid model, we write Exec
(g1,...,gk)
π,A (λ;x1, . . . , xm; z) and

Exec
(g1,...,gk)
π,A , respectively.

In the ideal-world model, parties Pi and adversary S interact with an in-
corruptible trusted party. As above, Pi and adversary A are NUPPT machines;
Pi have input xi and the adversary has input the identities of the corrupted
parties and their inputs; an auxiliary input; and the security parameter λ. The
ideal process then proceeds as indicated by the ideal functionality F . We write

(y1, . . . , ym, a) = IdealF,S(λ;x1, . . . , xm; z) for the random variable consisting
of the outputs yi of parties Pi and output a of the adversary, and IdealF,A for
the distribution ensemble {IdealF,A(λ;x1, . . . , xm; z)λ∈N;x1,...,xm,z∈{0,1}∗ .

Definition 8. Protocol π implements ideal functionality F (in the (g1, . . . , gl)-
hybrid model) if for every NUPPT adversary A there exists a NUPPT simu-

lator S such that the distribution ensembles Execπ,A (resp. Exec
(g1,...,gl)
π,A) and

IdealF,S are computationally indistinguishable.

C Security Proofs for our zk-SNARKs

We now prove that the constructions from Section 3 are adaptive zk-SNARKs.

Proof (of Theorem 1). We show each of the properties in turn:

Perfect completeness By inspection.

Argument of knowledge Our proof follows the structure of [PHGR13]. Let A be
a NUPPT algorithm. We construct extractor EA as follows. Suppose A returns
a verifying proof, consisting of a sequence of tuples:

(〈Ci〉1, 〈αiCi〉2, 〈Vi〉1, 〈αvVi〉2, 〈Wi〉2, 〈αwWi〉1, 〈Yi〉1, 〈αyYi〉2, 〈Zi〉1

and a proof element 〈H〉1.
Extractor EA runs the extractor of the commitment family (i.e., the d-PKE

extractor) to obtain, for each i, openings vi, ri of commitment 〈Ci〉1, 〈αiCi〉2.
(Indeed, set-up of the extractable commitment scheme family is exactly ths set-
up of the d-PKE assumption; and key generation of the commitment scheme
family and zk-SNARK together form the auxiliary input generator.) Note that,
letting ci(x) := ri + vi,1x+ . . .+ vi,dx

d, we have 〈Ci〉1 = 〈ci(x)〉1.
At the same time, we can use the d-PKE extractor to extract polynomi-

als vi(x), wi(x), and yi(x) of degree at most d such that 〈Vi〉1 = 〈rv · vi(x)〉1,
〈Wi〉2 = 〈rw · wi(x)〉2, 〈Yi〉1 = 〈ry · yi(x)〉1. (E.g., for 〈Vi〉1, the q-PKE set-up
generates 〈rv〉1 and random s; the auxiliary input generator uses this to perform
set-up and key generation of the commitment famly, and key generation not in-
volving 〈rvxi〉1; the d-PKE adversary uses {〈rvxi〉1, 〈αvrvxi〉2} to generate the
appropriate evauation key elements, runs A, and returns 〈Vi〉1, 〈αvVi〉2.)

Next, the extractor computes r′v := rv(s
d+1)−1, r′w := rw(s2d+2)−1, r′y :=

ry(s3d+2)−1, and determines Pi(x) = ci(x) + r′vx
d+1vi(x) + r′wx

2d+2wi(x) +
r′yx

3d+3yi(x). In the QAP solution, let W + 1, . . . ,W +N be the indices of the

witness. Let pj(x) = r′vx
d+1vj(x) + r′wx

2d+2wj(x) + r′yx
3d+3yj(x). The extractor

finds w1, . . . ,wN , δv,1, δw,1, δy,1 such that

P1(x) =r1 +
∑d
j=1 v1,j · (xj + pj(x)) +

∑N
j=1wjpW+j(x)+

δv,1r
′
vx
d+1t+ δw,1r

′
wx

2d+2t+ δy,1r
′
yx

3d+3t,

otherwise it fails. For all other i, the extractor finds δv,i, δw,i, δy,i such that

Pi(x) = ri +
∑d
j=1 vi,j · (xj + p(i−1)d+j(x)),

otherwise it fails. Finally, the extractor returns v1, . . . ,vn; r1, . . . , rn;w.
We need to show that, if A produces a verifying proof, the extractor fails

only with negligible probability and the returned values are in R.
So suppose the extractor fails, i.e., it cannot write polynomial Pi(x) as the

linear combination specified above, with nonneglible probability. We construct
an adversary B for the (4d+ 3)-PDH assumption as follows. B receives a (4d+
3)-PDH challenge, i.e., values {〈xi〉1, 〈xi〉2}i=0,1,...,4d+3,4d+5,...,8d+6. B performs
G0,Gc as usual using {〈xi〉1, 〈xi〉2}i=0,...,d. For G, rather than picking rv, rw
at random, it picks r′v, r

′
w, r
′
y = r′vr

′
w at random and defines rv(x) = r′vx

d+1,

rw(x) = r′wx
2d+2, ry(x) = r′yx

3d+3 implicitly. Instead of generating βi at random,
it generates it as follows. Let P be the collection of polynomials that Pi should
be a linear combination of. That is, for i = 1, take polynomials 1, xj + pj(x),
pW+j(x), r′vx

d+1t(x), r′wx
2d+2t(x), and r′yx

3d+3t(x); for other j, take 1, xj +

pj(x), r′vx
d+1t(x), r′wx

2d+2t(x), and r′yx
3d+3t(x). Choose polynomial β′i(x) of

degree ≤ 4d+ 3 uniformly at random such that, for every p(x) ∈ P, β′i(x) · p(x)
has zero coefficient at 4d+ 4. Let βi = β′i(s). Observe that, by construction, the
PDH adversary can generate all needed terms without ever knowing s.

Now, B performs the argument of knowledge experiment with extractor EA.
Using the d-PKE extractor, it obtains polynomial Pi(x) satisfying the (Z)-check,
so 〈P (x) · β′i(x)〉1 = 〈Zi〉1, but with nonneglible probability, Pi /∈ span(P). In
looking at how B selected β′i(x) = β0 + β1x+ . . .+ β4d+3x4d+3, observe that for
every nonconstant p ∈ P, the zeroness requirement on the (4d+4)th cofficient of
β′i(x) induces a linear constraint on coefficients β1, . . . , β4d+3. LetB be the vector
space of β1, . . . , β4d+3 satisfying these constraints. A priori this vector space has
dimension 4d+ 3, and every linearly independent non-constant polynomial in P
reduces this dimension by one. Now consider the subspace B′ ⊂ B of vectors
β1, . . . , β4d+3 for which additionally Pi(x) · βi(x) has zero coefficient at 4d + 4.
Since Pi /∈ span(P), this induces a new constrant, so dimB′ = dimB − 1. Now,
a random polynomial β′i(x) can be chosen by choosing β0 uniformly random
from F and β = β1, . . . , β4d+3 uniformly random from B. Note that, from the
point of view of the A, every choice from B is equally likely. This is because
A only sees βi(s) which includes the uniformly random constant term β0. So,
the chance that β′i(x) lies in the set B′ defined by the adversary’s p(x) is equal
to the chance that any random b lies in B′, i.e., 1/|F|. So, with probability
1 − 1/|F|, the coefficient of Pi(x) · β′i(x) at 4d + 4 is nonzero. But in this case,
from 〈Zj〉1 = 〈Pi(x) · βi(x)〉1 and 〈xj〉1 (j 6= 4d + 4), B can compute 〈x4d+4〉1.
This contradicts the (4d+3)-PDH assumption, so in fact, the extractor fails only
with negligible probability.

It remains to show that the values returned by the extractor are in R. By
the properties of the PKE-extractor we know that v1, . . . ,vn, r1, . . . , rn correctly
open the given commitments; it remains to show that x := (v1; . . . ;vn;w) ∈ R.
Suppose this is not the case, then we build an adversary to the (8d + 6)-SDH

assumption as follows. Given a (8d+ 6)-SDH challenge {〈xi〉1, 〈xi〉2}i=0,1,...,8d+6

it uses this challenge to perform key generation (again generating rv, rw, ry im-
plicitly as polynomials), and with these keys performs the argument of knowl-
edge experiment. Suppose the experiment returns values such that x is not
in R. Let V ′(x) =

∑W+N
j=1 xi · vj(x) + (

∑
i δv,i) · t(x), W ′(x) =

∑W+N
j=1 xi ·

wj(x) + (
∑
i δw,i) · t(x), Y ′(x) =

∑W+N
j=1 xi · yj(x) + (

∑
i δy,i) · t(x). Since

x /∈ R, by definition of vj(x), wj(x), and yj(x), we have that t(x) does not
divide p(x) = V ′(x)W ′(x) − Y ′(x). Let (x − r) be a monomial dividing t(x)
but not p(x). The adversary uses the extended Euclidean algorithm to compute
d(x) = gcd(p(x), t(x)), a(x) of degree ≤ 2d− 1 and b(x) of degree ≤ d− 1 such
that a(x)t(x) + b(x)p(x) = d(x). Multiplying the left-hand side and right-hand
side by 1/((x− r)d(x)) and re-arranging, we have that

a(x) · t(x)

(x− r)d(x)
+ b(x) · t(x)

(x− r)d(x)
· p(x)

t(x)
=

1

x− r
.

Note that (x− r)d(x) dividies t(x), so t(x)/((x− r)d(x)) is a polynomial. Hence,

the adversary can evaluate 〈a(x) · t(x)
(x−r)d(x) 〉1 and hence e(g, g)a(s)·

t(s)
(s−r)d(s) . For

the same reason, the adversary can compute 〈b(x) · t(x)
(x−r)d(x) 〉1. Translated to

the present situation, the proof check (H) states that:

e(〈rvV ′(x)〉1, 〈rwW ′(x)〉2) = e(〈H〉1, 〈rvrwt〉2) · e(〈rvrwY ′(x)〉1, 〈1〉2).

By the properties of the pairing, this implies that grvV
′(s)·rwW ′(s)−rvrwY ′(s) =

〈H〉rvrwt(s)1 , so 〈H〉1 = g(V
′(s)W ′(s)−Y ′(s))t(s)−1

= 〈p(x)/t(x)〉1. Hence, the adver-

sary can also evaluate e(g, g)b(s)·
t(s)

(s−r)d(s)
· p(s)
t(s) . But then, as established above, the

adversary can evaluate e(g, g)
1

s−r . This contradicts the (8d+6)-SDH assumption,
so in fact the extractor returns values in R.

Perfectly composable zero-knowledgeness The existence and correctness of our
simulator S follow the analogous result from [GGPR13].

Suppose the simulator is given commitments ui = (〈Ci〉1, 〈αcCi〉2). The sim-
ulator generates, for each i, random δv,i, δw,i, δy,i, and sets 〈Vi〉1 = 〈rvδv,it〉1,
〈Wi〉2 = 〈rwδw,i〉2, 〈Yi〉1 = 〈ryδy,it〉1, which is statistically identical to the real
〈Vi〉1, 〈Wi〉2, 〈Yi〉1 as long as t(s) 6= 0. Note that verification relations (V)–(H)
now fix the remaining proof elements, and moreover, the simulator can gen-
erate remaining proof elements satisfying these relations. Namely, it computes
〈αvVi〉2 = 〈αvrvδv,it〉2, 〈αwWi〉1 = 〈αwrwδw,i〉1, 〈αyYi〉2 = 〈αyryδy,it〉2; 〈Zi〉1 =
〈βi · (rvδv,it+ rwδw,i + ryδy,it)〉1 + βi · 〈Ci〉1, and 〈H〉1 = 〈δv,iδw,i − δy,i〉1. One
verifies that these elements indeed satisfy the verification relations. Since 〈Vi〉1,
〈Wi〉2, 〈Yi〉1 are distributed as in the real proof and the other proof elements fol-
low from them (so also have the same distribution), the simulator has produced
a proof that is indistinguishable from real, as required.

Witness indistinguishability Follows from our proof for perfectly composable
zero-knowledgeness: both the left-hand side and the right-hand side of the equa-
tion are statistically indistinguishable from the simulated distribution. ut

Extractable Trapdoor Commitment Scheme Family (G02,Gc2,C2):

– G02: Fix G1,G2,G3 and random s, rc. Return crs = ({〈xi〉1, 〈xi〉2}i=0,...,d,
〈rc〉1, 〈rcx〉1, . . . , 〈rcxd〉1), td = (s, rc).

– Gc2: For α ∈R F, ck = (〈rc〉1, 〈rcx〉1, . . . , 〈rcxd〉1, 〈αrc〉2, 〈αrcx〉2, . . . , 〈αrcxd〉2)
– C2: Return (r〈rc〉1 + v1〈rcx〉1 + v2〈rcx2〉1 + . . . , r〈αrc〉2 + v1〈αrcx2〉2 + . . .)

Key generation G2: Generate random αc, let ckc = (〈1〉1, 〈αc〉2, 〈x〉1, 〈αcx〉2, . . . ,
. . . , 〈xd〉1, 〈αcx

d〉2). Generate (crsp, crsv, tdp) ← G1(crs; ckc). Generate random
β′1, . . . , β

′
n. Return evaluation key (i = 1, . . . , n, j = 1, . . . , `i):

(ckc, crsp, 〈β′irc〉1, 〈β′i〉1, 〈β′i · (rcx+ x`1+...+`i−1+j〉1)

and verification key (i = 1, . . . , n): (crsv, 〈αc〉2, 〈β′i〉2)

Proof generation P2: Let ui = Ccki(vi; ri) and let w be the witness such that v :=
(v1,1, . . . ,v1,`1 ; . . . ;v1,1, . . . ,v1,`n ;w) is a solution to the QAP. Generate random
r′1, . . . , r

′
n and build commitments and correspondence proofs (i = 1, . . . , n):

u′i = (r′i〈1〉1 +
∑`i

j=1 vi,j〈x`1+...+`i−1+j〉1, r′i〈αc〉2 +
∑`i

j=1 vi,j〈αcx
`1+...+`i−1+j〉2)

〈Z′i〉1 = (ri〈β′irc〉1 + r′i〈β′i〉1 +
∑`i

j=1 v2,j〈β′i · (rcx+ x`1+...+`i−1+j)〉1

Call P1 on (u′1 + . . .+ u′n;v; r′1 + . . .+ r′n;w) and return along with the u′i, 〈Z′i〉1.

Proof verification V2: Letting cki = (. . . , 〈αi〉2), ui = (〈Ci〉1, 〈αiCi〉2), u′i =
(〈C′i〉1, 〈αcC

′
i〉2) check that e(〈Ci〉1, 〈αi〉2 = e(〈1〉1, 〈αiCi〉1), e(〈C′i〉1, 〈αc〉2 =

e(〈1〉1, 〈αcC
′
i〉2), e(〈Ci〉1+〈C′i〉1, 〈β′i〉2) = e(〈Z′i〉1, 〈1〉2). Call V1 on the supplied proof

with respect to commitment u′1 + . . .+ u′n.

Fig. 4. Pinocchio-Based Adaptive zk-SNARK (G2,P2,V2)

In Figure 4 we give the details of zk-SNARK (G2,P2,V2), the second opti-
mization presented in from Section 3.2.

Theorem 3. Under the (4d+ 3)-PDH, d-PKE, and (8d+ 6)-SDH assumptions
(Section A), where d is the maximal degree of the QAPs used, (G2,P2,V2) is an
adaptive zk-SNARK.

Proof. We show each of the properties in turn:

Perfect completeness By inspection.

Argument of knowledge Suppose A returns commitments u1, . . . ,un, where ui =
(〈Ci〉1, 〈αiCi〉2), and verifying proof π = (〈C ′i〉1, 〈αcC ′i〉2, 〈Z ′i〉1, π′). Extractor EA
works as follows. Analogously to above, it uses the d-PKE extractor, it extracts
openings vi, ri to commitments ui (so 〈Ci〉1 = 〈rc · ci(x)〉1, where ci(x) = ri +
vi,1 ·x+ . . .). It also extracts openings v′i, r

′
i to intermediate commitments u′i =

(〈C ′i〉1, 〈αcC ′i〉2) (so 〈C ′i〉1 = 〈c′i(x)〉1, where c′i(x) = r′i + vi,1
′x+ . . .). Using the

extractor of the zk-SNARK from the preceding construction, it further obtains

opening v′, r′ of the intermediate commitment u′ := u′1+. . .+u′n and witness w.
(Note that G02 consists of performing setup G01 and generating additional CRS
elements based on its output.) If any v′i is incorrect, i.e., it does not consists of
`1+. . .+`i−1 zeros, followed by vi,1, . . . ,vi,`i , followed by zeros, it fails. If v′ is not
equal to v′1+. . .+v′n, it also fails. Otherwise it returns (v1, . . . ,vn; r1, . . . , rn;w).

We need to show that, if A produces a verifying proof, the extractor fails only
with negligible probability and the returned values are in R. By the argument of
knowledge property of the used zk-SNARK, we know that except with negligible
probability, v′, r′ correctly open u′, and (v′,w) are in the relation of the QAP.
By the properties of the d-PKE extractor, the returned v1, . . . ,vn; r1, . . . , rn are
also openings to the commitments u1, . . . ,un. Moreover, if the extractor does
not fail, v1, . . . ,vn and v′1 + . . . + v′n relate to each other in the way intended
by the computation, hence the returned values are in R. So we are only left to
show that the extractor fails with negligible probability.

First, suppose the extractor fails because v′ is not equal to v′1+. . .+v′n. Note
that (v′, r′) and (v′1 + . . .+ v′n, r

′
1 + · · ·+ r′n) are two different openings to com-

mitment u′. But this contradicts the binding property of the intermediate com-
mitment scheme. Indeed, given a (4d+ 3)-PDH challenge, we can run the above
extractor to obtain, with nonneglible probability, two openings to commitment
u′, from which by the argument of [Gro10] we can compute 〈x4d+3〉1, contra-
dicting the (4d+3)-PDH assumption. The other possibility is that the extractor
fails because any v′i was incorrectly formed. If this is the case, then we use this to
construct an adversary A to the (4d+3)-PDH assumption. Given a (4d+3)-PDH
challenge {〈xi〉1, 〈xi〉2}i=0,1,...,4d+3,4d+5,...,8d+6, A runs the above extractor, but
in doing so chooses β′i implicitly as a polynomial such that, for every polynomial
pj(x) := r′cx

d+1+j + x`1+...+`l−1+j , β′i(x) · pj(x) has zero coefficient at 4d + 4.
Since the extractor fails, by assumption the polynomial Pi(x) = rcci(x) + c′i(x)
does not lie in the span of the {pj(x)}. Following exactly the same reasoning as in
the proof for the argument of knowledge property of our previous construction,
with probability 1 − 1/F, this implies that Pi(x) · β′i(x) has nonzero coefficient
at 4d+ 4, enabling A to compute 〈x4d+4〉1 and contradict (4d+ 3)-PDH.

Perfectly composable zero-knowledgeness Our simulator samples random r′i, lets
〈C ′i〉1 = 〈r′i〉1, 〈αcC ′i〉2 = 〈αcr′i〉2, and 〈Zi〉1 = β′i · (〈Ci〉1 + 〈C ′i〉1), and then
uses the simulator for the above zk-SNARK with commitment (〈C ′1〉1 + . . . +
〈C ′n〉1, 〈αcC ′1〉2+. . .+〈αcC ′n〉2. These proofs clearly have the correct distribution.

Witness indistinguishability Follows from our proof for perfectly composable
zero-knowledgeleness: both the left-hand side and the right-hand side of the
equation are statistically indistinguishable from the simulate distribution. ut

D Security Proof for Adaptive Trinocchio

D.1 Correct Function Evaluation

Figure 5 shows the simulator used to prove that our protocol implements correct
function evaluation.

Simulator: Adaptive Trinocchio (“correct” case)

(Given NUPPT adversary A actively corrupting all workers and subset C ∩ I of
inputters I.)

1. Perform CRS and key generation of the commitment scheme, keeping trapdoors
crs, ctd1, . . . , ctdn, ctdo. Simulate step 1 of the protocol with respect to A by
sending this material.

2. Simulate step 2 of the protocol: provide trapdoor commitments ci for the hon-
est parties, and use the extractor of the commitment scheme family to extract
openings (ai, ri) of the provided commitments ci. Send these ai to the trusted
party, and get a1, . . . ,an,ac, f back.

3. Simulate step 3 of the protocol: using the trapdoors of the commitment scheme
family, compute randomness ri that opens the honest parties’ trapdoor commit-
ments ci to the received values ai. Simulate a regular execution of the MPC
protocol with respect to the adversary.

4. Simulate step 4 of the protocol: handle calls to CompGen by performing the key
generation of the adaptive zk-SNARK for QAP Q and keeping the trapdoor tdp.

5. Simulate step 5 of the protocol: take the algorithm that simulates a regular
execution of the MPC protocol with respect to the adversary and returns the
reconstructed computation result b, rc, cc, π for the client. Use the argument of
knowledge extractor of the adaptive zk-SNARK to extract a′

1; . . . ;a′
n;a′

c, b
′ and

the randomness, proof, and witness.
6. Simulate step 6 of the protocol: send > to the trusted party if: (1) the received

commitment cc matches the received opening b, rc and the received proof verifies;
(2) the values a′

1, ... and randomness extracted in the previous step match those
extracted in step 2, and a′

c, b
′, rc match the MPC result; (3) the commitments

and extracted values are in Rck1,...,ckn,ckc ; otherwise send ⊥.

Fig. 5. Simulator for Adaptive Trinocchio (“correct” case)

Proof (Theorem 2, “correct” case). We need to show that, for every NUPPT
adversary A, there exists a simulator S such that, for all inputs a1, . . . ,an,a
and functions f , real-world execution of the protocol in Figure 3 and ideal-
world execution of S give indistinguishable results. We claim that the simulator
in Figure 5 does the job. We show this by, starting from the the ideal-world
execution (i.e., the algorithm consisting of the code of the ideal-world trusted
party, honest parties, simulator and their orchestration), changing the execution
in indistiguishable steps until we arrive at the real-world execution (i.e., the
algorithm consisting of the code of the real-world trusted party, honest parties,
adversary, and their orchestration):

From Ideal to YAD1 In step 2, instead of using trapdoor commitments for the
honest parties’ inputs, we use the actual inputs given as argument to YAD1. In
step 4, we use the actual openings of these commitments.

Indistinguishability of Ideal and YAD1 Follows directly from the trapdoor prop-
erty of the commitment family.

From YAD1 to YAD2 If the computation has succeeded, instead of letting the
trusted party evaluate f and using that as the client’s output, use the result b
of the MPC protocol.

Indistinguishability of YAD1 and YAD2 The computation only succeeds if the
extracted values are inR and match the inputs a1, . . . ,an,ac to f . By definition
of R this implies that evaluation of f gives b.

From YAD2 to YAD3 In step 6, skip check (2).

Indistinguishability of YAD2 and YAD3 The only difference is if checks (1) and
(3) are satisfied, but check (2) is not, i.e., there is a mismatch in extracted
values. Supose ai 6= a′

i. We know that ci = Ccki(ai; ri) (because we extracted
those values earlier). However, we also know that (c1, . . . , cn, cc;a

′
1, . . . ,w

′) ∈
Rck1,...,ckn,ckc , so also ci = Ccki(ai

′; r′i). Note that in YAD3 we are not using the
commitment trapdoors anywhere. So YAD3 can be used to construct an adver-
sary that opens commitments in two different ways, contradicting the compu-
tational binding property of the commitment family. This is possible only with
negligible probability, proving indistinguishability in this case.

The cases ac 6= a′
c or b 6= b′ are analogous, except we know the openings not

because they were extracted but because they were output by the MPC protocol.

From YAD3 to Real In step 5, directly execute the MPC protocol instead of
using the zk-SNARK knowledge extractor. In step 6, skip check (3). Observe
that what is left is simply a regular execution of the protocol.

Indistinguishability of YAD3 and Real The only difference is if check (1) is satis-
fied but check (3) is not. The argument of knowledge property of the zk-SNARK
states that this probability is negligible. ut

D.2 Private Function Evaluation

Proof (Theorem 2, “private” case). Analogously to the above proof for correct
function evaluation, we claim that the simulator from Figure 6 gives indistin-
guishable results to a real protocol execution, and prove this via a sequence of
intermediate probability distributions:

From Ideal to YAD1 In step 2, for ci instead of using commitments to zero, we
use commitments to the actual inputs of the honest parties. (Note that we can
do this without changing anything else in the simulator; in particular, in step 3
the MPC simulator uses ci without requiring its opening.)

Indistinguishability of Ideal and YAD1 Follows directly from the perfect hiding
property of the commitment family.

Simulator: Adaptive Trinocchio (“private” case)

(Given NUPPT adversary A passively corrupting at most one worker, and actively
corrupting a subset of inputters and possibly the client.)

1. Perform CRS and key generation of the commitment scheme, keeping trapdoors
crs, ctd1, . . . , ctdn, ctdo. Simulate step 1 of the protocol with respect to A by
sending this material.

2. Simulate step 2 of the protocol: send commitments ci to zero on behalf of the
honest parties, keeping the randomness ri used. Obtain commitments ci provided
by the adversary on behalf of corrupted inputters.

3. Simulate step 3 of the protocol using the MPC simulator. For the c′i output on
behalf of the honest inputters, output ci. For the c′i output on behalf of the
corrupted inputters, output Ccki(a

′
i, r
′
i), where a′

i, r
′
i are the values input to the

MPC protocol by the inputter. Whenever ci 6= c′i, set a′
i = ⊥ and stop after this

step. Send a′
i of corrupted inputters to the trusted party.

4. Simulate step 4 of the protocol: if the client is corrupted, learn f from its call
to CompGen; otherwise, receive f from the ideal-world trusted party. Handle the
adversary’s calls to CompGen by performing key generation on this function f .

5. Simulate step 5 of the protocol. If the client is not corrupted, then the adversary
does not learn any outcome of the MPC, so no information is needed to perform
the simulation. If the client is corrupted, then get value a′

c input by the client from
the simulator. Send f,a′

c to the trusted party, and receive computation result b.
Generate random rc and compute cc = Cckc(a′

c, b; rc). Apply the zero-knowledge
simulator of the zk-SNARK on the CRS, commitment keys, c1, . . . , cn, cc, and
the trapdoors, to get a proof π. Simulate the remainder of the MPC such that
b, rc, cc, π is output to the corrupted client.

6. Simulate step 6 of the protocol: let a corrupted client handle its received result.

Fig. 6. Simulator for Adaptive Trinocchio (“private” case)

From YAD1 to YAD2 In step 5, instead of using the zk-SNARK simulator,
use P on the commitments c1, . . . , cn, cc, inputs a1, . . . ,an,a

′
c, b, randomness

r1, . . . , rn, rc, and witness w available from the MPC simulator.

Indistinguishability of YAD1 and YAD2 Follows directly by the perfectly com-
posable zero-knowledge property of the zk-SNARK.

Indistinguishability of YAD2 and Real Note that the only remaining difference
between the YAD2 and a real-world execution is that the MPC protocol is sim-
ulated in YAD2 and executed in Real. Both for the MPC execution in step 3
and in step 5, the output of the computation is the same: in step 3 it is the
commitments of the values provided by the honest and corrupted inputters; in
step 5, it is the computation result and proof based on those values and the
client’s input. Hence, by the security of the MPC protocol, the two distributions
are indistiguishable. ut

