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Abstract. We study the security of Oblivious Random Access Machines
(ORAM) in the quantum world. First we introduce a new formal treat-
ment of ORAMs, which is at the same time elegant and simpler than
the known formalization by Goldreich and Ostrovsky. Then we define
and analyze the notion of post-quantum security for ORAMs, i.e., classi-
cal ORAMs resistant against quantum adversaries. We show that merely
switching to post-quantum secure encryption in a classically secure ORAM
construction does not generally yield a post-quantum secure ORAM con-
struction. On the other hand, we provide a post-quantum secure con-
struction based on a modification of Path-ORAM, the most efficient
general ORAM construction, introduced by Stefanov et al.
Furthermore, we initiate the study of Quantum ORAMs (QORAMs),
that is, ORAM constructions meant to be executed between quantum
parties acting on arbitrary quantum data. We address many problems
arising when formalizing Quantum ORAMs, and we provide a secure
construction (based on Path-ORAM and a quantum encryption scheme
introduced by Alagic et al.) which has the interesting property of making
read and write operations inherently equivalent. In so doing, we develop a
novel technique of quantum extractability which is of independent inter-
est. We believe that QORAMs represent a natural and interesting step
in the direction of achieving privacy in future scenarios where quantum
computing is ubiquitous.

Keywords: Quantum security, Privacy Enhancing Technologies, Oblivious RAM,
Path-ORAM

1 Introduction

Since the introduction of Shor’s quantum algorithm [40] for solving the dis-
crete logarithm and factoring problems, it has become clear that once scalable
quantum computers become available, many of today’s most widely used crypto-
graphic tools will become obsolete. In response to the threat of potential future



quantum adversaries, new cryptographical constructions [25, 7, 4] have been
proposed, that are based on mathematical problems which are believed to be
quantum-hard [32, 35, 13].

Although encryption schemes are an important building block for many of the
existing cryptographic tools, more complex architectures are built by combining
various cryptographic primitives. In such cases, it is natural to ask if merely re-
placing the underlying primitives with their quantum-secure counterparts would
yield quantum-secure architectures. Various recent works [2, 12, 48] have found
a negative answer to such question: not only this is not the case for many known
constructions, but also whole families of security proofs can be identified, which
do not hold in a quantum setting.

Under this light, an interesting direction is the problem of building a quantum-
secure Oblivious Random Access Machine (ORAM). Oblivious RAM was intro-
duced in the early ’90s by Goldreich and Ostrovsky in [20] as a mean of soft-
ware protection. It has since received an increasing deal of attention from the
cryptographic community and has been used as building block for many appli-
cations that include secure processors [33], storage volumes hiding [9], oblivious
storage [21] and privacy preserving health records [34]. With ongoing constant
improvements in the research towards a functional quantum computer, it is there-
fore reasonable to wonder if and under which conditions such privacy enhancing
technologies and architectures would still remain secure in a quantum world.

A major obstacle to tackle this problem is given by the fact that the ORAM
definition given by Goldreich and Ostrovsky is rather involved. Although this
is usually a good thing, given the level of formalism required in modern cryp-
tography, and especially for such high-level functionalities such as ORAM, the
drawback is an increased difficulty met when analyzing the security of a given
construction. In the field of provable security in particular, this has shown to
be detrimental for the efforts of the community to analyze even the most basic
ORAM constructions. In other words, the complex formalism given in the origi-
nal formulation makes very hard to prove a certain ORAM secure; in fact, all the
existing proofs we are aware of [46, 38, 47, 43, 39, 42] are rather ‘sketchy’, and
do not fully respect that formalism anyway. We believe this to be a substantial
problem: When excessive formalism stands on the way that leads to a useful
treatment of the theory for real-world applications, it is probably necessary to
find a compromise between excessive and insufficient formalism. Especially in
the field of security, this approach is often the best solution.

1.1 Our Results

In this paper, we provide many contributions to the study of ORAM security,
both in the classical and in the quantum world.

First of all, we develop and present a new formal model for describing ORAMs,
simpler than the one originally proposed by Goldreich and Ostrovsky (their def-
inition spans through a multitude of pages), yet elegant and elastic enough to
cover most of the existing interesting constructions in a rigorous way. In particu-
lar, we model the parties involved in an ORAM protocol as BPP circuits, defining
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carefully the meaning of database, data request, and communication transcript
in terms of circuit registers.

Then we define a novel, game-based security model for ORAMs, which is very
flexible and at least as strong as all the other models proposed to date. We start
by defining access patterns, which are the adversarial views produced during an
execution of data requests. Our adaptive indistinguishability notion states that,
for any computationally bounded adversary, it should be difficult to distinguish
between the execution of different data requests by looking at the resulting access
patterns, even by allowing the adaptive execution of polynomially many learning
queries. To our knowledge, this is the first time that these notions are defined
in a homogeneous framework that allows for a formal treatment of any ORAM
construction, without going to formal extremes that make it useless in practice.

Our new model allows us to argue about the extension of ORAM security
to the quantum setting in a straightforward manner. To our knowledge, this is
the first work where the quantum security of ORAMs is analyzed. In line with
most of the existing ORAM security scenarios, we consider honest-but-curious
adversaries, which are able to interact classically with the scheme, but can per-
form local quantum computation. Our model therefore falls in the category of
so-called ‘post-quantum’ security [8].

In particular, as every ORAM scheme uses some sort of encryption in order
to protect the privacy of the storage, it is interesting to relate the security of an
ORAM construction to the security of the encryption scheme it uses. Because
ORAM constructions can rely on many other different primitives in addition to
encryption schemes, it is not reasonable to expect that post-quantum security
can be achieved by merely switching to underlying post-quantum encryption.
As a counterexample, we show that Path-ORAM [43], the most efficient general
ORAM construction, can be attacked by a polynomially bounded quantum ad-
versary by exploiting the weakness of a not-carefully-chosen PRNG, even if the
underlying encryption primitive is post-quantum secure.

On the other hand, we show that Path-ORAM, if instantiated using both
a post-quantum secure encryption scheme and a post-quantum secure PRNG,
indeed achieves security against quantum adversaries. This result is important
from a practical perspective, as it shows an easy way to build efficient post-
quantum ORAMs in a completely black-box way.

Furthermore, we go beyond the post-quantum model of security by initiating
the study of Quantum ORAMs (QORAMs), that is, ORAM constructions meant
to be executed between quantum parties acting on arbitrary quantum data.
We motivate this study by noting that, once quantum computers start being
available, it would be natural to expect that many parties involved in an ORAM
protocol would need to act on quantum data, i.e., qubits. This motivation is
further strengthened by the practical consideration that the first commercially
available quantum computers would be very expensive, and server-client models
are likely to appear, where computationally limited quantum clients will interact
with more powerful quantum servers.
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This scenario presents many unique challenges that have no counterpart in
the classical setting. One outstanding problem in quantum reductions is to define
a notion of ‘honest-but-curious’ adversary, or in general ‘soundness-preserving’
adversary. As measuring an unknown quantum state disturbs it with high prob-
ability, and because of the No-Cloning Theorem, it is usually impossible to give
a notion of ‘read-only’ for quantum channels. Therefore, in all those applications
where the quantum adversary is allowed to extract information from a physical
system which is part of the protocol in exam, one has often to go to great lengths
in order to show that the resulting disturbance is tolerable for the protocol it-
self. This is usually done in many different, ad-hoc, and often complex ways,
depending on the scenario [10, 12, 11, 3].

In our work we formalize this problem by introducing the notion of a safe
extractor. This can be seen as a ‘subroutine’ of the adversary, which extracts
some amount of quantum information from a certain quantum register, but such
that its action on the register is ‘computationally undetectable’. We believe this
very general technique to be of independent interest, and applicable to many
other scenarios.

Thanks to the flexibility and rigor of our new formalism developed for classi-
cal ORAMs, we can then define QORAMs in a precise way, and we give a sound
treatment of their security. Finally, we provide a QORAM construction, based on
Path-ORAM and a quantum encryption scheme introduced in [1], which has the
interesting property of making read and write operations inherently equivalent.

1.2 Related Work

Oblivious RAM was introduced in the ’90s by Goldreich and Ostrovsky in their
seminal work [20] as a means to protect software from piracy. Since then, ORAM
has received a lot of attention from the cryptographic community [22, 38, 46,
42, 45, 39, 43, 18, 17], and the constructions proposed are becoming more and
more efficient.

An ORAM can be thought of in a client-server model, where the client out-
sources to a server data blocks of fixed size, and wants to access them afterwards
in a way that does not reveal which blocks have been accessed. In [20] Goldre-
ich and Ostrovsky propose a construction, where the client’s data is stored in
a pyramid-like structure. The heavy communication cost of such a construction
left much space for further improvements in the original scheme, which were
made by subsequent works like [38, 46]. In [29], privacy leakage were identified
in most of the solutions proposed so far, and countermeasures were proposed.

The ORAM landscape changed radically after the introduction of tree-based
ORAMs, by Shi et al. [42]. In these solutions the client’s data blocks are stored
in a binary tree and every block is randomly associated with a leaf of the data
structure. Perhaps the most intuitive approach in tree-based ORAM contructions
was proposed by Stefanov et. al. in their Path-ORAM solution [43]. Recently
Garg et. al. [17], used Path-ORAM to further improve on the communicational
complexity of ORAM protocols.
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In a concurrent and independent work, Garg et al. [17] proposed a new model
for describing ORAMs in a formal way. Although their model is a definitive
improvement to the current ORAM landscape, still it omits some details which
are important when analyzing the security of ORAMs in a quantum world. In
particular, we show their security model to be equivalent to ours. However,
their model is simulation-based (ours is game-based), and furthermore it does
not allow to argue about the relation between the post-quantum security of an
ORAM construction and that of its underlying building blocks. Moreover, their
definition of ORAM could not be easily adapted to define Quantum ORAMs.

2 Preliminaries

In the rest of this paper we will use the term ‘classical’ for ‘non-quantum’, n ∈ N
as the security parameter, and ⊥ as a special symbol denoting an error or lack
of meaningful information. BPP stands for ‘bounded probabilistic polynomial
time’, and by ‘algorithm’ we mean a uniform family of circuits; therefore ‘BPP
algorithm’ stands for ‘uniform family of poly-sized Boolean circuits with ran-
domness’. Given a security game, or experiment, the output 1 denotes success
(winning condition), while 0 denotes failure (loss condition). For the definitions
of secret-key encryption scheme (SKE) E = (KeyGen,Enc,Dec), classical indis-
tinguishability of ciphertexts game GameINDA,E(n), and Discrete Logarithm Problem
(DLP), we point the reader to [19]. We only recall here the standard definition
of IND-CPA security for symmetric-key encryption schemes.

Definition 1 (IND-CPA). A SKE E = (KeyGen,Enc,Dec) has indistinguishable
ciphertexts under chosen plaintext attack (or, it is IND-CPA-secure) iff for any
BPP algorithm A with oracle access to Enc:∣∣∣∣Pr

[
GameINDAEnc,E(n) = 1

]
− 1

2

∣∣∣∣ ≤ negl(n).

Intuitively, a SKE is IND-CPA-secure if no computationally bounded ad-
versary can reliably distinguish between the encryption of two plaintexts of his
choice even if allowed to adaptively learn polynomially many other encryptions.

2.1 Quantum Security Models

We refer to [37] for commonly used notation and quantum information-theoretic
concepts. BQP stands for ‘bounded probabilistic quantum polynomial time’;
therefore ‘BQP algorithm’ stands for ‘uniform family of poly-sized quantum
circuits’. We will denote by Hd a Hilbert space of dimension 2d. We will denote
pure states with ket notation, e.g., |ϕ〉, while mixed states will be denoted by
lowercase Greek letters, e.g. ρ. The set of positive, trace-preserving bounded
operators on H (that is, the set of all possible mixed states on H) will be denoted
by D (H), while ‖.‖Tr is the trace norm, and ‖.‖� is the diamond norm. The
computational base for a Hilbert space Hd is the set of orthonormal vectors
denoted by { | 0 . . . 00〉, | 0 . . . 01〉, . . . , | 1 . . . 11〉 }.
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Post-Quantum Security for Encryption

We first recall the notion of post-quantum security [8]. The idea is to define, for a
given cryptographic primitive, notions of security which are supposed to remain
meaningful even in a world where quantum computers have been introduced
and are available to the adversary. That is, post-quantum security is about the
security of classical primitives after (hence ‘post-’) quantum computing becomes
available. The model considered is where an adversary can interact classically
(i.e., ‘in a normal way’) with the given primitive, or oracle, but additionally has
access to a quantum computing device for performing extra computation not
normally available to classical adversaries. It is important to notice that in the
last few years many new scenarios have been proposed, where this ‘canonical’ way
of interpreting post-quantum security has been challenged, by giving additional
power and resources to the quantum adversary, see for example [10, 27, 36, 12,
11, 16, 26, 3, 48, 30, 31, 15]. In this work however, given the security model
traditionally used in the study of ORAMs, we will only consider post-quantum
security as in the canonical meaning. We recall here what it means for a classic
SKE to be post-quantum secure in this sense.

Definition 2 (pq-IND-CPA). A SKE E = (KeyGen,Enc,Dec) has post-quantum
indistinguishable ciphertexts under chosen plaintext attack (or, it is pq-IND-
CPA-secure) iff for any BQP algorithm A with oracle access to Enc:∣∣∣∣Pr

[
GameINDAEnc,E(n) = 1

]
− 1

2

∣∣∣∣ ≤ negl(n).

Quantum Encryption

In this work we also consider quantum primitives [14], that is, cryptographic
functionalities meant to be natively realized through a quantum computer, by
acting on quantum information (qubits). Here the oracles themselves are usually
not classical, but defined as operations O : D (H) → D (H) acting directly on
qubits.

We recall here the definition of symmetric-key quantum encryption scheme
(QSKE) from [1].

Definition 3 (QSKE). A quantum symmetric-key encryption scheme (QSKE)
EQ with m-qubit plaintexts and c-qubits ciphertexts is a tuple (Q.KeyGen, Q.Enc, Q.Dec)
of BQP algorithms:

1. (key generation) Q.KeyGen : 1n 7→ k ∈ K
2. (encryption) Q.Enc : K ×X → Y
3. (decryption) Q.Dec : K × Y → X

such that ‖Q.Dec ◦Q.Enc− IX ‖� ≤ negl(n) for all k ∈ Supp (Q.Gen(1n)), where
K = {0, 1}poly(n) is the key space, X ⊂ D (Hm) is the plainstate space, Y ⊂
D (Hc) is the cipherstate space, I is the identity operator, and Q.Dec, Q.Enc
must be intended acting with the same (classical) key k.
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Also in [1], security definitions for such QSKEs are given. Here we only
consider the following.

Definition 4 (GameQ-INDA,EQ(n)). Let EQ = (Q.KeyGen, Q.Enc, Q.Dec) be a QSKE,

and A (the Adversary) a BQP algorithm. The indistinguishability of quantum
ciphertexts game GameQ-INDA,EQ(n) proceeds as follows:

1. ρ0, ρ1, σ ← A(1n) (σ is an internal memory state used by the adversary);

2. k ← Q.Gen(1n), b
$←− {0, 1};

3. ψ ← Q.Enck(ρb), while ρ1−b is traced out;
4. b′ ← A(ψ, σ).

A wins the game iff b = b′.

Definition 5 (Q-IND-CPA). A QSKE EQ = (Q.KeyGen, Q.Enc, Q.Dec) has in-
distinguishable quantum ciphertexts under chosen quantum plaintext attack (or,
it is Q-IND-CPA-secure) iff for any BQP algorithm A with quantum oracle ac-
cess to Q.Enc: ∣∣∣∣Pr

[
GameQ-INDAQ.Enc,EQ(n) = 1

]
− 1

2

∣∣∣∣ ≤ negl(n).

2.2 Pseudorandom Number Generators

In this section we briefly recall security notions for pseudorandom number gen-
erators.

Definition 6 (PRNG, pq-PRNG). Let ` be a polynomial such that `(n) ≥ n+
1 ∀n ∈ N. A pseudorandom number generator, or PRNG (resp., post-quantum
pseudorandom number generator, or pq-PRNG) with expansion factor `(.) is a
deterministic polynomial-time algorithm G = G` such that:

1. given as input a bitstring s of length n, (the seed), outputs a bitstring G(s)
of length `(n); and

2. for any BPP (resp., BQP) algorithm D:

|Pr [D(r) = 1]− Pr [D(G(s)) = 1]| ≤ negl(n),

where r
$←− {0, 1}`(n), s $←− {0, 1}n, and the probabilities are over the choice

of r and s, and the randomness of D.

Clearly, a pq-PRNG it is also a PRNG. However, the opposite is not believed
to hold, as the following example shows.

Lemma 7. Under the DLP hardness assumption, there exists a PRNG G∗ which
is quantumly predictable. I.e., there exists a non-negligible function ν and a BQP
algorithm D which, on input n sequential values output by G∗ on any random
seed, predicts the (n+ 1)-th value output by G∗ with probability at least ν(n).

The proof of the above lemma can be found in Appendix A.1.

7



3 The New ORAM Model

In this section we recall the concept of classical Oblivious Random Access Ma-
chine (ORAM), and we define and analyze security models against classical and
quantum adversaries. Defining ORAMs in a fully formal way is a delicate and
strenuous task [20]. Therefore, in the following we will introduce a simplified
model which covers all existing ORAM constructions without delving too much
into the fine print - but still retaining a reasonable level of formalism - and
which has the advantage of being much easier to treat. We believe our model
will prove to be a valuable tool in the formal analysis of existing ORAM con-
structions, which is an aspect too often overlooked.

Informally, an ORAM is an interactive protocol between two parties: a client
C and a server S, which we model as two BPP Turing machines (or, in our case,
uniform families of circuits) sharing a communication tape (circuit register) Ξ. In
this scenario, a computationally limited C wants to outsource a database (DB)
to the more powerful S. Moreover, C wants to perform operations on the DB
(by interactively communicating with S) in such a way that S, or any other
honest-but-curious adversary A having read-only access to Ξ and S’s internal
memory, cannot determine the nature of such operations. The security notion of
an ORAM protocol is hence a particular notion of privacy.

More formally: we define blocks, the basic storage units used in an ORAM
construction. A block is an area of memory (circuit register) storing a B-bit
value, for a fixed parameter B ∈ N which depends on C’s and S’s architectures.
A database (DB) of size N ∈ N is an area of S’s memory which stores an array
(block1, . . . , blockN ) of such blocks. As we assume this database to reside on
the server’s side, we will denote it as S.DB. Notice that the precise way this
array of blocks is represented in the database is unspecified, and left to the
exact implementation of the ORAM scheme taken into account. For example, in
PathORAM, the server’s database S.DB stores blocks in a binary tree structure.
We will abuse notation and write that S.DB(i) = block if block is the i-th
component of S.DB, and that block ∈ S.DB if block is stored at some position
in the database S.DB.

Next we define data units as the basic units of data that the client wants
to access, read, or write. Formally, a data unit is a D-bit value for a fixed
parameter D ≤ B which depends on C’s and S’s architectures. Every block
encodes (usually in an encrypted form) a data unit, plus possibly additional
auxiliary information such as a block identifier, checksum, or hash value. Since
every block can encode a single data unit, at any given time t it is defined a
function Datat : S.DB → {0, 1}D. With abuse of notation, we will denote by
Data(block) the data unit encoded in the block block at a certain time. The
client C can operate on the database through data requests.

Definition 8 (Data Request). A data request to a database S.DB of size N is
a tuple dr = (op, i, data), where op ∈ {read,write}, i ∈ {1, . . . , N}, and data ∈
{0, 1}D is a data unit (data can also be ⊥ if op = read).
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Finally, we define the meaning of a communication transcript during an ex-
ecution of an ORAM protocol. Since this also depends on the exact implemen-
tation of the ORAM scheme, we will use the following definition.

Definition 9 (Communication Transcript). A communication transcript comt
at time t is the content of the communication channel Ξ at time t of the protocol’s
execution.

Notice that the above defines the communication transcript as a function
of time, but since an ORAM is a multi-round interactive protocol we will just
consider com as a discrete function of the round 1, 2, . . . of the protocol.

We are now ready to give a definition of ORAM. We assume that a server’s
database is always initialized empty (usually with randomized encryptions of 0
elements as blocks), and it is left up to the client the task of ‘populating’ the
database with appropriate write operations.

Definition 10 (ORAM). Let Ñ ∈ N,M ≥ D and E = (KeyGen,Enc,Dec) be
a secret-key encryption scheme mapping M -bit plaintexts to B-bit ciphertexts.
An ORAM ORAME with parameters (D, Ñ, E) is a pair of two-party interactive
randomized algorithms, (ORAM.Init, ORAM.Access), such that:

– ORAM.Init(n,N)→ (C,S) in the following way:

1. n is the security parameter, N < Ñ ;
2. k ← KeyGen(1n) is generated by C;
3. S includes a database S.DB = (block1, . . . , blockN );

– ORAM.Access(C,S, dr)→ (C′,S ′, com) in the following way:
1. C issues a data request dr;
2. C and S communicate through Ξ and produce the communication’s tran-

script com;

One might wonder why it is necessary to explicitly condition the definition
of an ORAM in respect to a symmetric-key encryption scheme E . It is actually
possible to use different primitives, such as public-key encryption or functional
encryption, but most of the known ORAM constructions work well with just
a simple primitive such as symmetric-key encryption. One might also wonder
why the definition does not depend on other cryptographic primitives, such as
PRNGs or hash functions. The reason is that not all ORAM constructions use
such primitives, for example the ‘trivial’ ORAM scheme [20] (which consists
in just transferring the whole encrypted database from S to C and back at
every data request) does not use anything else than a symmetric-key encryption
scheme E . We leave the extension of our model to the general case as a possibility
for future work. On the other hand, notice that encryption of the database is
a minimal requirement for security, as we will see, therefore it makes sense to
explicitly specify the scheme E in the notation.

An ORAM must satisfy soundness and security. We are going to define secu-
rity in Section 3.1. Regarding soundness, the exact specification depends on the
particular ORAM construction considered. A simplified, game-based definition
of soundness (‘correctness’) can be found in [17], but it is difficult to adapt to
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our model (which is more aimed at studying ORAM security), while a general
definition (that can be found in [20]) is rather involved, and goes outside the
scope of this work. The meaning of the soundness property is that the ORAM
protocol ‘should work’, i.e., after any execution of ORAM.Init or ORAM.Access the
two parties C and S must be left in such a state that allows them to continue
the protocol in the next round. Despite the generality of this statement, in our
model minimal soundness conditions can be identified, which must hold for any
ORAM construction.

Definition 11 (Minimal ORAM Soundness Conditions). An ORAM construc-
tion ORAME has minimal soundness if the following hold:

1. for any (n,N), if (C,S) ← ORAM.Init(n,N), then the secret key k from
Def. 10 must be accessible by C;

2. for any dr = (op, i, data), if (C′,S ′, com)← ORAM.Access(C,S, dr), then:
(a) if the secret key k is accessible by C, then k is also accessible by C’;
(b) if op = read and S.DB(i) = block, then Data(block) must be accessible

by C’;
(c) if op = write and S ′.DB(i) = block, then Data(block) = data.

By ‘accessible’ we mean the following: an element x is accessible by a circuit
M , if M can simulate the constant oracle Ox(.) 7→ x. In particular, since we
only deal with poly-time algorithms, this simulation must be poly-time. The
reason of this definition is that we want to express the fact that a certain data
is available to a certain algorithm, but the way this is implemented can depend
on the particular ORAM construction. For example, we could require that data
is stored somewhere in the circuit’s registers, but it could also be the case that
the data is stored on some other auxiliary register, or that it is stored in an
encrypted form, and the decryption key itself is stored somewhere else. We do
not care about the specific case, as long as the circuit has an efficient way to
retrieve and operate on that data when needed. This is the intuition behind the
use of an oracle. Moreover, in Definition 11, notice that conditions 1 and 2a do
not say anything about S having access to the key k or not: This is a property
of security, not soundness, as we will see in Section 3.1.

An ORAM scheme ORAM can have additional soundness conditions, depending
on the particular construction. Moreover, C (resp., S) can of course perform
additional computations, and be modified during the execution of the protocol
to C’ (resp., S’) not only through ORAM.Access calls, but also between consecutive
calls of ORAM.Access. The only requirement is that all the soundness conditions
(the minimal ones above as well as the special ones) must always be satisfied.
When this happens, we say that C’ is a sound evolution of C and that S’ is a
sound evolution of S.

3.1 Classical and Post-Quantum Security

We now look at the security model for ORAMs against classical and quan-
tum adversaries. Traditionally, the threat model in this case is defined by an
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honest-but-curious adversary A. This means that A is some entity who wants
to compromise C’s privacy by having access to the communication channel Ξ
and S’s internal memory, but who is not allowed to modify the content of the
channel against the protocol, i.e., soundness must be preserved. In general, one
does not lose generality by assuming that S itself is the adversary: S must be-
have ‘honestly’ (in the sense that he follows the protocol, in particular related to
the protocol’s soundness), but at the same time he will use all the information
he can get through the interaction with C in order to compromise C’s privacy.
In particular, this also implies that S cannot know the key k generated during
ORAM.Init, as noted above.

Formally, this model is defined in terms of access patterns, which are the
adversarial views during an execution of data requests in ORAM.Access. Security
requires that the adversary’s view over a certain run of the protocol does not
leak any information about the data requests executed by C. This formulation
reminds of the definition of semantic security for encryption schemes [19]. As in
that case, equivalent but easier-to-deal-with formulations can be given in terms
of computational indistinguishability of access patterns 4. In this work, we will
consider an adaptive, game-based indistinguishability notion stating that for
any two data requests, no computationally bounded adversary with knowledge
of the access pattern of the client executing one of the two can distinguish
which one was executed. Next, we show that this novel definition is equivalent to
the simulation-based notion given in [17], which states that no computationally
bounded adversary can distinguish between the interaction with a real client and
the interaction with a simulator that produces bogus transcripts.

More formally: when a data request is executed, we assume that the honest-
but-curious adversary A records all the communication between C and S, plus
the changes in S’s internal status. Without loss of generality, as we assume that
A and S coincide, we assume that the only meaningful changes in respect to
A only happen in the database area, S.DB, between the beginning and the end
of an ORAM.Access execution. The communications are polynomially bounded
and, for simplicity, we assume that the channel Ξ does not erase symbols, i.e.,
it is write-once. Hence, the adversarial view is composed of the communication
transcript, and the server’s database before and after the execution of the data
request. We :make call this adversarial view, the access pattern of the execution.

Definition 12 (Access Pattern). Given ORAM client and server C and S, and
a data request dr, the access pattern ap(dr) is the tuple (S.DB, com,S ′.DB), where
(C′,S ′, com)← ORAM.Access(C,S, dr).

Next, we define formally a classical (resp. quantum) ORAM adversary.

Definition 13 (Classical and Quantum ORAM Adversary). A classical (resp.
quantum) ORAM adversary A is a BPP (resp. BQP) algorithm which has com-
plete control of S, as long as the ORAM’s soundness is preserved.

4 The stronger notion of statistical indistinguishability of access patterns can also be
given, but we will not address it in this work.
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Notice that we only take into account computationally bounded adversaries.
We define the security of an ORAM through the following indistinguishability
game.

Definition 14 (GameAP-IND-CQAA,ORAM (n)). Let ORAM = (ORAM.Init, ORAM.Access) be
an ORAM construction, n a security parameter and A an ORAM adverary.
The computational indistinguishability of access patterns game under adaptive
chosen query attack GameAP-IND-CQAA,ORAM (n) proceeds as follows:

1. A chooses N ≤ Ñ ;
2. (C,S)← ORAM.Init(n,N);
3. first CQA learning phase: for i = 1, . . . , q1 ∈ N, A repeats (adaptively) the

following:

(a) A chooses a data request dri;
(b) C executes ORAM.Access on dri;
(c) A receives ap(dri);

4. challenge phase: A chooses two data request dr0 and dr1;

5. C flips a random secret bit b
$←− {0, 1} and executes ORAM.Access on drb;

6. A receives ap(drb);
7. second CQA learning phase: for j = 1, . . . , q2 ∈ N, A repeats (adaptively)

the following:

(a) A chooses a data request drj;
(b) C executes ORAM.Access on drj;
(c) A receives ap(drj);

8. A outputs a bit b′.

A wins the game iff b = b′.

Notice that, since A is polynomially bounded, q1 and q2 are at most polyno-
mials in n. We are now ready to define the classical and post-quantum security
notions that we will use in the rest of the paper.

Definition 15 ((Post-Quantum) Access Pattern Indistinguishability Under Adap-
tive Chosen Query Attack). An ORAM construction ORAM has computationally
indistinguishable access patterns under adaptive chosen query attack (or, it is
AP-IND-CQA-secure) iff for any classical ORAM adversary A:∣∣∣∣Pr

[
GameAP-IND-CQAA,ORAM (n) = 1

]
− 1

2

∣∣∣∣ ≤ negl(n).

Furthermore, ORAM has post-quantum computationally indistinguishable access
patterns under adaptive chosen query attack (or, it is pq-AP-IND-CQA-secure)
iff the above also holds for any quantum ORAM adversary.

Clearly, if an ORAM is pq-AP-IND-CQA-secure, then it is also AP-IND-
CQA-secure. The converse does not hold (under standard hardness assumptions)
as we will see.
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3.2 Advantages of our Security Model

Traditionally, in the ORAM literature, security has been considered in terms
of indistinguishability of access patterns, as we do in this work, but in a non-
adaptive fashion. That is, the adversary chooses two different data requests tu-
ples of the same length, and has to distinguish between the access patterns
produced by the client executing one of the two, chosen at random. Our model
has the advantage that it also considers adversaries who play this game changing
adaptively their sequences of data requests.

In a concurrent and independent work [17], Garg et al. introduced another,
simulation-based security definition. Their definition states that for any ORAM
adversary, it must be computationally hard to distinguish between the access
pattern distributions produced by a real client and by a simulator producing
bogus transcripts, even if the adversary is allowed to choose adaptively the data
requests to be executed by the real client. The original definition in [17] does not
take into account quantum adversaries, but can be easily extended in that sense.
Readapting this definition to our detailed formalism, we obtain the following.

Definition 16 (Access Pattern Simulability Under Adaptive Chosen Query At-
tack). An ORAM construction ORAM has simulable access patterns under adap-
tive chosen query attack (or, it is AP-SIM-CQA-secure) iff for any classical
ORAM adversary A the following two distributions are computationally indis-
tinguishable:

1. ap(dr← A);

2. ap(dr
$←− { ‘read’,‘write’ } × { 1, . . . , N } × {0, 1}D).

We show in Appendix A.2 that the two models are actually equivalent.

Theorem 17. An ORAM construction ORAM is AP-SIM-CQA secure iff it is
AP-IND-CQA secure.

The idea of the proof is to go through a hybrid argument in the same way
that shows IND-CPA security for encryption schemes to be equivalent to Real-
or-Random security (see for example [5]).

Our security notion AP-IND-CQA is therefore at least as strong as all other
security notions for ORAM introduced to date, but it has the advantage of being
game-based (and hence easier to deal with in security reductions). Furthermore,
as we will see in Section 5.1, it translates more smoothly to a ‘fully quantum’
scenario, where the concepts of access patterns and oracle access have to be
phrased carefully.

3.3 PathORAM

As a first application of our new formalism (but also because we will make heavy
use of it through the rest of the paper), we recall here PathORAM, one of the
most efficient ORAM constructions proposed to date, introduced by Stefanov
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at al. in [43]. We only give a high-level explanation of PathORAM, and for
a thorough description of the construction, as well as a detailed proof of its
functionality, we refer to [41].

In PathORAM a client stores N blocks of bitsize B on a server, in a binary
tree structure of height T = dlog2Ne. Each node of the tree can store a constant
amount Z of blocks. Every block encodes (in an encrypted form, using a seman-
tically secure symmetric-key encryption scheme) a data unit of bitsize D, and
optionally additional information which is used to label the block for efficient
retrieval. There are many different ways one can implement this labeling of the
blocks. In our case we will use the simple approach of concatenating to the data
unit data a K-bit string encoding the block identifier i ∈ { 1, . . . , N }, that is,
blocks are of the form blocki = Enck(i‖datai). This system is very general,
and as we will see it has the advantage that it easily translates to the quantum
setting, unlike other approaches such as identifying blocks by using a hash table.
At the beginning, all the blocks in the tree are initialized in an ‘empty’ state,
which is defined by setting to 0 the identifying label - recall in fact that valid
block identifiers are 1, . . . , N only. Every block is mapped to a leaf of the tree,
and this mapping is recorded in a so-called position map by the client5. A read
(or write) operation for a block blocki is performed by the client, by down-
loading the path (tree branch) from the root of the tree to the leaf indicated
in the client’s position map, and blocki is randomly remapped to another leaf
in the position map. Then the client decrypts and re-encrypts (re-randomizing)
all the blocks in the downloaded path, and for every valid (non-empty) block
blockj found, the client checks its corresponding leaf in the position map, and
moves blockj (if there is enough available space) to the node in the path which
is closest to the leaf level and that belongs both to the downloaded path and
the path to the leaf of blockj given by the position map. If a block does not fit
anywhere in the downloaded path, then an extra storage, called ‘stash’ is used by
the client to store this overflowing block locally. The blocks found in the stash
are also examined during every read (or write) operation and checked if they
can be evicted from the stash and placed in the tree. Since the stash must be
stored locally, by the client, the stash’s size should be reasonably small; in fact,
in the paper’s full version [41], the authors show that for any access pattern, the
probability that the stash exceeds a size of O(logN) is negligible. The intuition
is to notice that the stash is only used if the tree root is full, but the average
action of a data request is to push only blocki toward the tree root, and push
many other blocks blockj toward the leaf level. In the following we will ignore
the use of the stash for simplicity.

More concretely, we give here a full description of PathORAM (which from
now on we denote as PathORAM) according to our new formalism.

5 Note that the size of the position map is linear in the number of blocks that the client
has, and thus cannot be stored locally by the client. The authors propose storing
the position map recursively to smaller PathORAMs following an idea from [42]. For
ease of exposition however (and without loss of generality), we will assume here that
the position map is stored locally.
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Definition 18 (PathORAM). For fixed parameters D, Ñ ∈ N, let K = dlog2Ñe,
Z ∈ N, M = D + K, B ≥ M . Let G be a PRNG as from Definition 6 out-
putting K-bit values, and E = (KeyGen,Enc,Dec) be a SKE with M -bit plain-
texts and B-bit ciphertexts. We define an ORAM construction called PathORAM =
PathORAME,G as follows:

– PathORAM.Init(n,N)→ (C,S) works in the following way:
1. C generates a secret key k ← KeyGen(1n);
2. set T = dlog2Ne (notice T ≤ K);
3. C initializes a lookup table (the position map) of the form ((1, r1), . . . , (N, rN )),

where ri are T -bit values generated by truncating the first K−T bits of
G’s output 6.

4. S.DB is stored in a binary tree of height T , with leaves Leaf0, . . . , Leaf2T−1,
and such that:
(a) each node of the tree stores up to Z blocks;
(b) every block of every node is initialized to Enck(0K‖0D).

– If dr = (op, i, data), then PathORAM.Access(C,S, dr) → (C′,S ′, com) works
in the following way:
1. S sends to C the path DPath from the root of the tree to Leafri ;
2. remap (i, ri) to (i, r′i) in the position map of C, where r′i is a fresh pseu-

dorandom T -bit value (generated by truncating the first K−T bits of G’s
output), obtaining C∗;

3. for every block block contained in DPath, C∗ does the following:
(a) C∗ decrypts Deck(block)→ (j‖dataj) ∈ {0, 1}M , where, j ∈ {0, 1}K , dataj ∈
{0, 1}D;

(b) if j = i, then:
A. if op = ‘read’, then C∗ reads dataj (C∗ is updated to C′, which

has access to dataj);
B. if op = ‘write’, then C sets dataj = data (i.e., block is updated,

so that Data(block) = data), and set C′ = C∗;
(c) C′ re-encrypts (re-randomizing) block;
(d) find in DPath the common parent node Node between Leafri and

Leafrj , closer to the leaf level;

(e) for every block block′ in Node, C′ does the following:
A. C′ decrypts block′, checks if it is an empty block, and re-encrypts

(re-randomizing) it;
B. if block′ was found to be empty, then swap block and block′;
C. if no empty block was found in Node, then set Node to be one

level up in the tree (i.e., Node’s parent) and repeat steps 3(e)A.
to 3(e)C. (if DPath contains no empty block, use the stash);

4. C′ sends back the updated tree branch, UPath, to S;
5. S updates S.DB with UPath, obtaining S ′;
6. produce com, which contains ri, DPath, UPath.

6 It is easy to see that the truncated bits of G are also pseudorandom, since otherwise
there would exist an algorithm that could distinguish between a random string and
G output, by simply truncating the K − T bits of both strings.
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In the above, the meaning of the parameters is as follows:

– n is the security parameter, used by the encryption scheme E .
– Ñ is the maximum number of blocks that the server’s architechture can

support (an upper bound to S’s tree storage).
– N is the maximum number of ‘real’ blocks that the client C wants to store

(so, N ≤ Ñ). Unlike Ñ thus, N can be dictated by the adversary in the
security game.

– K is the minimum number of bits that are needed to index all the ‘real’
blocks in the limit scenario where N = Ñ . Hence, K is also architecture-
dependant, and not chosen by A.

– Z is the maximum number of blocks that can be stored in every tree node.
Lower values reduce the amount of memory used by S to store the tree
(for a fixed N), but increase the risk of using large amounts of memory
by the client for the stash. This is a parameter of the particular PathORAM

implementation: as we do not care about performance here, we will leave Z
undefined, as any nonzero value works for us in theory.

– T is the minimum number of bits that are needed to index all the ‘real’ N
blocks (hence, T ≤ K). T also represents the minimal height of the tree
necessary to store all N blocks in the limit case where Z = 1.

– D is the bitsize of the data units used in the PathORAM implementation, and
it is hence architecture-dependant.

– M is the total bitsize of a data unit, plus the number of bits necessary
to address the block where this data unit is encoded, so also architecture-
dependant. The encryption scheme E must be able to work with M -bit plain-
texts.

– B is the size of a ciphertext produced by the encryption scheme E , and hence
the total size of a block. The size of S’s tree storage memory is thus at most
BÑ bits.

We are now ready to prove the (classical) security of PathORAM by using our
new security framework.

Theorem 19. Let E = (KeyGen,Enc,Dec) be an IND-CPA SKE according to
Definition 1, and let G be a PRNG as from Definition 6. Then, PathORAM in-
stantiated using E and G is an AP-IND-CPA secure ORAM.

Proof. By assumption, the outputs of G are indistinguishable from random.
Therefore, in the following analysis, we can replace G with a real source of
randomness, without loss of generality.

Suppose that there exists an adversary A and a non-negligible function ν,
such that

Pr
[
GameAP-IND-CQAA,PathORAM(n) = 1

]
=

1

2
+ ν(n).

We will use A in a black-box way to construct a BPP algorithm D, able to
break the IND-CPA security of E , against the assumption. The idea is to build
an algorithm D which simulates a PathORAM client C, playing the AP-IND-CQA
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game against A (without loss of generality, we assume that A itself simulates
the server S, otherwise S can be also simulated by D). Throughout the game,
D also stores a copy of the server’s database S.DB, in plaintext. This is allowed,
as S.DB is of size linear in N , and D is only simulating C, so she is not limited
by the storage constraints usually assumed in a normal ORAM client. Then D
will use the interaction with A to win the IND-CPA game for the scheme E .

More in detail: D executes A. A starts GameAP-IND-CQAA,PathORAM by choosing n and
N , and D simulates a PathORAM client C created during PathORAM.Init, by ini-
tializing his own position map (populated with random values), but without
generating a secret encryption key. Furthermore, D creates a tree memory struc-
ture of height T , with leaves indexed 0, . . . , 2T − 1, where every node stores Z
plaintexts of bitsize M , which are initialized to (0K‖0D) (the parameters are the
same as in Definition 18). This structure will be used by D to ‘mirror’ S.DB in
an unencrypted form throughout the execution of PathORAM.
D now starts GameINDDEnc,E(n) according to Definition 1, obtaining oracle access

to Enck for an unknown secret key k, and choosing as security parameter the
same n chosen by A. At this point, notice that D is able to perfectly simulate a
valid client C having access to the key k, in the following way:

– whenever C would download a branch of S.DB identified by leaf r, D does the
same (although the blocks in such branch will be ignored, as we will see);

– whenever C would decrypt a certain block in a downloaded branch, D will
simulate the decryption oracle Deck by fetching the plaintext (i‖data) found
at the corresponding position in the ‘mirrored’ tree;

– whenever C would swap two blocks in a downloaded branch, D will swap the
two plaintexts found at the corresponding positions in the ‘mirrored’ tree;

– whenever C would encrypt a plaintext (i‖data) to obtain a new encrypted
block, D will do so by using the encryption oracle Enck from the IND-CPA
game;

– whenever C would update his position map, or upload an updated branch to
S.DB, D will do so.

Given the above, it is clear that now whenever A asks for the execution of a
data request dr, D is able to simulate the correct communication transcript com
and a correctly formed updated branch UPath. Therefore, for every data request
during the first CQA phase, A always receives the correct access pattern.

Eventually, at the challenge query, A produces two data requests dr0 and
dr1, and demands the execution of one of them. For a ∈ {0, 1}, let dra =
(opa, ia, dataa) be the two data requests and let ma ∈ {0, 1}M be formed as
follows:

– if opa = ‘write’, then set ma = (ia‖dataa);
– else, set ma = (ia‖dataia), where dataia is retrieved by looking for identifier
ia in the mirrored tree.

Now, it could happen that m0 = m1. For example, it might be that the two
data requests are of the form (‘write’, i, data) and (‘read’, i, data′) resp., but
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blocki already encodes data. If this happens we say that the challenge query is
non-meaningful. It is easy to see that two data requests from a non-meaningful
challenge query will produce the same statistical distributions of communication
transcripts 7 and updated paths, because their effect on the database is equiv-
alent. Therefore, since A distinguishes the two resulting access patterns with
non-negligible probability by assumption, it is clear that the challenge query
must be meaningful, i.e. m0 6= m1.

At this point D executes the challenge IND query using m0,m1 as plaintexts,
and receiving back an encryption c ← Enck(mb) for a secret bit b. D will also

generate a random bit b∗
$←− {0, 1} (a ‘guess’), and will answer A’s challenge

query by simulating the execution of drb
∗

as in the CQA phase, but injecting
c as an updated block with identifier ib

∗
during the execution of drb

∗
. Then D

keeps simulating C during the second CQA phase as before, and waits until A
outputs a bit b̂. Finally: if b̂ = b∗, then D outputs b∗ in the IND-CPA game,
otherwise D outputs a new random bit.

Now, notice the following. In the case that D’s guess was correct, i.e. b = b∗,
it means that c was the right ciphertext at the right place, so that A has received
a correctly formed access pattern. This means that A correctly guesses b̂ = b∗

with probability at least 1
2 + ν(n), by assumption. In that case, also D wins, so:

Pr
[
GameIND-CPAD,E (n) = 1

∣∣b = b∗
]
≥ 1

2
+ ν. (1)

On the other hand, if b 6= b∗ we cannot say anything on A’s success probability,
because now A has a malformed access pattern. But we can say that, even if A
fails, D still succeeds with probability 1

2 .

Pr
[
GameIND-CPAD,E (n) = 1

∣∣b 6= b∗
]
≥ 1

2
. (2)

Thus, combining 1 and 2, the reduction’s overall success probability is:

Pr
[
GameIND-CPAD,E (n) = 1

]
≥ 1

2
+
ν

2

which concludes the proof.

We stress how this is the first full formal proof of PathORAM’s security, its
simplicity made possible by the new security model we introduced.

4 Post-Quantum ORAMs

In this section we study the post-quantum security of classical ORAMs. First of
all, we show that the extension of a classically secure ORAM to its post-quantum
secure counterpart is not trivial. To this end, we examine PathORAM and we show

7 Notice how this is not true anymore if the values in the position map are not totally
random. Therefore, this step fails if the PRNG used is not secure.
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that merely substituting the underlying encryption scheme with a post-quantum
secure one does not generally yield a pq-AP-IND-CQA ORAM. The idea is to
exploit the weakness of other components of the ORAM construction under
examination (in this case, the PRNG used). This is mostly a theoretical result,
since it has to be somewhat expected that post-quantum security can only be
achieved by hardening all the underlying components, not only the encryption
scheme.

Then, we show that building post-quantum secure ORAMs is possible. We
do it in a black-box way by showing that PathORAM, instantiated with a post-
quantum secure SKE and a post-quantum secure PRNG, achieves post-quantum
security. This is important from an application perspective, because it shows
that efficient and post-quantum secure ORAMs can indeed be obtained in a
straightforward way.

4.1 The Impossibility Result

In order to show that one cannot in general obtain post-quantum secure ORAMs
by just using a post-quantum SKE in a black-box way, we provide the following
counterexample.

Theorem 20. Let E = (KeyGen,Enc,Dec) be a pq-IND-CPA SKE according to
Definition 2, and let G∗ be the PRNG from Lemma 7. Let PathORAM∗ be the
ORAM obtained by instantiating the PathORAM construction from Definition 18
using E and G∗, i.e., PathORAM∗ = PathORAME,G∗ . Then, under the DLP hard-
ness assumption, PathORAM∗ is AP-IND-CQA secure, but not pq-AP-IND-CQA
secure.

At the light of Theorem 19 and Definition 15, in order to prove Theorem 20
we only need the following lemma.

Lemma 21. There exist a QPT algorithm A and a non-negligible function ν
such that A wins the game GameAP-IND-CQAA,PathORAM∗(n) with probability at least 1

2 + ν(n).

Proof. We start by making a key observation concerning the access patterns
produced in PathORAM. Let dr = (op, i, data) be a data request sent by C. By
only examining the communication transcript com resulting from the execution
of this data request, one can see which path (branch of the tree) S sent to C,
thus learning the leaf ri to which i was mapped to, even without knowing i itself.
In normal circumstances, this is of no use to an adversary, because this value
ri becomes immediately obsolete, being replaced by a new fresh value r′i output
by the PRNG in the position map. But it will be important in our attack as we
will see.

Let D be the BQP algorithm (the ‘PRNG predictor’) of Lemma 7. We build
the adversary A with oracle access to D.

First of all A chooses n,N ≤ Ñ and starts the AP-IND-CQA game by
calling PathORAM∗.Init(n,N). For his attack, A fixes an arbitrary identifier i ∈
{ 1, . . . , N }, and an arbitrary data unit data ∈ {0, 1}D.
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During the first CQA learning phase, A asks C to execute n + 1 consecu-
tive data requests of the form (‘write’, i, data). A records the resulting access
patterns from all these queries, ap1, . . . , apn+1, which include the communica-
tion transcripts com1, . . . , comn+1 and then, by the observation made before, a

‘history’ (r
(0)
i , . . . , r

(n)
i ) of the past mappings of block i at the beginning of the

execution of every data request from 1 to (n+ 1). These mappings, in turn, are
n+ 1 outputs of G∗.

Discarding r
(0)
i (which was the only one produced during PathORAM∗.Init,

and hence nothing can be said about the order in which it was output8), we can

say that (r
(1)
i , . . . , r

(n)
i ) is an ordered sequence of n output values of G∗. Using

the algorithm D, our adversary A thus computes the next output r
(n+1)
i of G∗

(which coincides with the current, secret leaf mapping of block i in the position
map) with non-negligible probability ν.

Then A executes his challenge query by using data requests (dr0, dr1) with
dr0 = (‘write’, i, data), and dr1 = (‘write’, j, data) for j 6= i, and records the
resulting access pattern apn+2 = ap(drb) (where b is the secret bit to be guessed).
At this point, the adversary looks at this last communication transcript comn+2

and, by the observation made at the beginning of the proof, checks whether the

path sent during this last data request was the one leading to leaf r
(n+1)
i , or

some other leaf r′ instead. In the former case, A guesses b = 0, otherwise b = 1.
Notice that (provided D was successful) this guess is always correct, except in

the case that: dr1 was chosen (probability 1/2) and the initial mapping of blockj

(which is r
(0)
j = r′), coincides with r

(n+1)
i . The latter event can only happen at

most with probability ε negligible in the bitsize of G∗’s output, and hence in the
security parameter n (it is easy to see that this is a minimum requirement for
any classically secure PRNG as G∗ is). Thus:

Pr
[
GameAP-IND-CQAA,PathORAM∗(n) = 1

∣∣∣D succeeds
]
≥ 1− ε

2
. (3)

On the other hand, if D fails (which happens with probability (1 − ν) at

most) and predicts a wrong value r∗ instead of r
(n+1)
i , the above strategy does

not always fail. In fact, it only fails if dr0 is chosen (probability 1/2), or dr1 is

chosen (probability 1/2) and the initial mapping of blockj (which is r
(0)
j = r′),

coincides with r∗ (which happens with probability at most ε for the same reasons
as above). Hence:

Pr
[
GameAP-IND-CQAA,PathORAM∗(n) = 0

∣∣∣D fails
]
≤ 1

2
(1 + ε) . (4)

Thus, combining 3 and 4, the adversary’s overall success probability is:

Pr
[
GameAP-IND-CQAA,PathORAM∗(n) = 1

]
= Pr [A wins] Pr [D succeeds]+(1− Pr [A loses] Pr [D fails])

8 It is not clear whether the quantum attack from [24] works if the outputs of the
PRNG are not sequential.
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≥ ν
(

1− ε

2

)
+

(
1− (1− ν)

1

2
(1 + ε)

)
≥ 1

2
+

3

2
ν − 1

2
ε

which concludes the proof, because ε is negligible, while ν is not.

Theorem 20 in particular shows a separation between classical and post-
quantum security for ORAMs.

Corollary 22. Under the classical DLP hardness assumption, there exist ORAMs
which are AP-IND-CQA secure but not pq-AP-IND-CQA secure.

4.2 Construction of a Post-Quantum ORAM

A careful examination of PathORAM’s construction details reveals that an im-
portant role in the security is played by the pseudorandom number generator
used to map a block to a leaf during every access. As we have just shown, a
PRNG which is not post-quantum secure is enough to break PathORAM’s secu-
rity in a quantum setting. It is natural then to wonder whether the attack on
PathORAM can be avoided by using a post-quantum secure PRNG, in addition
to a post-quantum secure encryption scheme, when instantiating PathORAM. In
this section, we give a positive answer to such question.

Theorem 23. Let E be a pq-IND-CPA SKE according to Definition 1, and let
G be a pq-PRNG as from Definition 6. Then, PathORAM instantiated using E and
G is a pq-AP-IND-CPA secure ORAM.

Proof. The proof follows step-by-step the proof of Theorem 19. In fact this time,
since G is a pq-PRNG by assumption, the new output values used to update the
position map in PathORAM are indistinguishable from random (and therefore, in
particular, unpredictable) even for QPT adversaries. As G has an internal state
which is completely unrelated to E ’s internal randomness, the security arguments
at every step in the proof of Theorem 19 remain unchanged. Therefore, any QPT
adversary who can distinguish the execution of two data request sequences with
probability non-negligibly better than guessing, can be turned into a success-
ful adversary against the pq-IND-CPA security of E , or against the pq-PRNG,
against the security assumptions.

5 Quantum ORAM

In this section we initiate the study of quantum ORAMs (QORAM), that is,
ORAM constructions operating on quantum data. This new cryptographic prim-
itive that we define considers the same scenario as in the ORAM case, but where
all the parties have quantum computing and communication capabilities. In this
respect, QORAM are not an example of post-quantum security, but belong to
the more general area of quantum security [14], as in the case of QKD [6] or
quantum bit commitments [44].
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In our QORAM model, the client C and the server S are both BQP algo-
rithms, sharing a quantum communication channel (quantum register) Ψ . Since
such a quantum channel can also be used to share classical information, we as-
sume without loss of generality that A and S also share a classical channel Ξ.
In the following, if not otherwise stated, we will always assume that all the clas-
sical communication between A and S happens through Ξ, and all the quantum
communication happens through Ψ . In this scenario, a computationally limited
C wants to outsource a quantum database (QDB) to the more powerful S, and
perform operations on the QDB in a secure way, as in the ORAM case.

We have first to define what it means to have a ‘quantum database’. In our
case, this will be a structure of quantum blocks. A quantum block is a B-qubit
quantum state ψ ∈ D (HB) for a fixed parameter B ∈ N which depends on C’s
and S’s architectures. A quantum database (QDB) of size N ∈ N is a quantum
register of S which stores N quantum blocks. It is important to notice that
we impose no restriction on the nature of the states stored in the quantum
blocks, i.e., these states could be mixed or entangled, amongst them or with
states stored in other, external registers. But in the following, for simplicity, we
abuse notation and denote such multipartite system with a tuple of quantum
blocks (ψ1, . . . , ψN ). Since we assume this quantum register to reside on the
server’s side, we will denote it as S.QDB. As in the ORAM case, the precise
way this system of quantum blocks is represented in the quantum database is
unspecified, and left to the exact implementation of the QORAM scheme taken
into account. As usual, we will abuse notation and write that S.QDB(i) = ψ if
ψ is the state obtained by tracing out all but the i-th subsystem of S.QDB, and
that ψ ∈ S.QDB if S.QDB(i) = ψ for some i ∈ N.

A quantum block encodes (usually in an encrypted form) a quantum data
unit, which is another quantum state representing the information that the client
actually wants to access or modify, and possibly additional (quantum or classical)
auxiliary information. Formally, a quantum data unit is a quantum state ϕ ∈
D (HD) of D qubits, where D ≤ B depends on C’s and S’s architecture. As
before, no assumption is made about the nature of these quantum states. Every
quantum block can encode a single quantum data unit, therefore at any given
time t it is defined a function QDatat : S.QDB→ D (HD). With abuse of notation,
we will denote by QData(ψ) the quantum data unit encoded in the block ψ at
a certain time. The client C can operate on the quantum database through
quantum data requests.

Definition 24 (Quantum Data Request). A quantum data request to a database
S.QDB is a tuple of the form qdr = (op, i, ϕ), where op ∈ {read,write}, i ∈
{1, . . . , N}, and ϕ ∈ D (HD) is a quantum data unit.

Finally, we define the meaning of a quantum communication transcript during
an execution of a QORAM protocol. As in the ORAM case, we will use the
following definition.
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Definition 25 (Quantum Communication Transcript). A quantum communi-
cation transcript qcom at time t is the content of the communication registers
(Ξ,Ψ) at time t of the protocol’s execution.

As in the ORAM case, in the following we will consider qcom as a discrete
function of the round 1, 2, . . . of the protocol. Notice the following difference from
the classical case: as this time C and S are also allowed to exchange quantum data
through Ψ , it might not be possible for an adversary to obtain a full transcript
of qcom without disturbing the protocol. We will address this issue in the next
section about security.

From now on, B and D will be fixed constants (the quantum block size,
and quantum data unit size, resp.) As in the classical case, we assume that a
server’s QDB is always initialized empty (that is, with randomized encryptions
of |0 . . . 0〉 elements as data), and it is left up to the client the task of ‘populating’
the database. We are now ready to define a QORAM as follows.

Definition 26 (QORAM). Let Ñ ∈ N,M ≥ D, and EQ = (Q.KeyGen, Q.Enc, Q.Dec)
be a QSKE scheme according to Definition 3, mapping M -qubit plaintext states to
B-qubit ciphertext states. A QORAM QORAMEQ with parameters (D, Ñ, EQ) is a
pair of two-party interactive quantum algorithms, which we denote by (QORAM.Init, QORAM.Access),
such that:

– QORAM.Init(n,N)→ (C,S) in the following way:

1. n is the security parameter, N < Ñ ;
2. k ← Q.KeyGen(1n) is generated by C;
3. S includes a QDB S.QDB = (ψ1, . . . , ψN ).

– QORAM.Access(C,S, qdr)→ (C′,S ′, qcom) in the following way:
1. C issues a quantum data request qdr;
2. C and S communicate via (Ξ,Ψ) and produce the quantum communica-

tion transcript qcom.

The same considerations about soundness hold as in the classical case, with
the following exception. In the case of quantum data we say that an element
ϕ ∈ D (H) is accessible by a quantum circuit M if M can simulate one single in-
vocation of the quantum oracle Oϕ(|0 . . . 0〉〈0 . . . 0|) 7→ ϕ, where |0 . . . 0〉〈0 . . . 0| ∈
D (H). This limitation is needed because requiring unlimited access to the oracle
can be used to clone the given state, which is forbidden by the No-Cloning The-
orem. Multiple calls to Oϕ can be allowed for certain states, i.e., if M himself
knows how to build ϕ from scratch, but in the general case it is sufficient to
require one single call to such oracle in order to define accessibility of a quantum
state. The same considerations for the efficiency of the oracle simulation hold
here as in the classical case.

5.1 QORAM Security

We now look at the security model for QORAMs. As in the classical model,
security will be given in terms of adaptive access pattern indistinguishability.
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Our threat model considers a quantum adversary A, which we identify as S
himself, and who wants to compromise C’s privacy by having access to the com-
munication channel (Ξ,Ψ) and S’s internal memory, but who is not allowed to
modify the content of the channel against the protocol. Without loss of general-
ity, we assume that the only meaningful changes in respect to A only happen in
the database area S.QDB between the beginning and the end of a QORAM.Access
execution.

As it often happens in the quantum world, there is a caveat here: it is unclear
what a ‘honest-but-curious’ quantum adversary is. In fact, the problem is even
more general: we do not have a notion of ‘read-only’ for quantum channels, as
the mere act of observing the data in transit through Ψ can destroy such data.

For example, suppose that a quantum state ϕ is sent through Ψ . Because
of the No-Cloning Theorem, S cannot store a local copy of ϕ; at the same
time, measuring ϕ in transit through Ψ without any knowledge of such state,
would disturb it with high probability. Therefore, it seems hard to justify the
inclusion of the state ϕ in the adversarial view (the quantum access pattern) in
the quantum model for a honest-but-curious adversary.

Nevertheless, we think it is important to allow the adversary A to know
some information about the quantum state ϕ. There are many reasons for this
choice. First of all, remember that we are defining QORAMs in a very abstract
and general way, and the exact details of how the communication and storage
of quantum information works is left to the particular QORAM construction.
For example, there might be constructions which only use quantum states from
a finite, fixed set of orthogonal states, or which only use subsets of quantum
states admitting efficient classical representations (and encoding them in a clas-
sical way during the communication). Moreover, as the adversary A is usually
allowed to choose the initial state of the quantum database, as in the classical
model, it might be possible that he has access to some side-information which
allows him to know something about the content of the database or the data
transferred in a sound way, e.g. by applying some quantum operation or partial
measurement which does not disturb the state too much. As we need to cover all
these possibilities, we find the option of not including the quantum data in the
access pattern too restrictive. On the other hand, the adversary A should not
be able to modify too much (from C’s point of view) any quantum state, as this
would go beyond the notion of honest-but-curious adversary usually considered
in the ORAM scenario.

We will solve this issue by introducing a safe extractor. The intuition behind
this novel technique is to allow our adversary to extract any kind of (quantum)
information he wants from a certain physical system, as long as such extraction
is hardly noticeable by any other party. In this case we say that the action of the
adversary on the physical system is computationally undetectable.

Definition 27 (Safe Extractor). Let ϕA be the state contained in a quantum
register A. A safe extractor for A in the state ϕA is a BQP algorithm χ with
additional classical input x of size polynomial in n, acting on A and outputting
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a quantum state ψ of qubit size polynomial in n, and such that the action of χ
on ϕA is computationally undetectable.

Here, computationally undetectable means that no QPT algorithm can reli-
ably distinguish whether a quantum operation takes place or not by just looking
at the processed quantum state, even in presence of auxiliary information such
as, e.g., additional entangled registers. More formally:

Definition 28 (Computational Undetectability of Quantum Action). Let L,A,B
be quantum registers of size polynomial in n, and ϕA a quantum state on A. A
quantum algorithm Λ acting on L and A has computationally undetectable ac-
tion on ϕA iff for any bipartite quantum state ϕAB such that (ϕAB)A = ϕA, and
for any BQP algorithm D acting on A and B and outputting 0 or 1:∣∣Pr [D (ϕAB) = 1]− Pr

[
D
(
(Λ⊗ IB) (|0〉 〈0|L ⊗ ϕAB)

AB

)
= 1
]∣∣ ≤ negl(n).

Notice that Definition 27 depends on the state contained in the quantum reg-
ister considered. That is, χ might be a safe extractor for a given quantum register
if that register is in a certain state, but not in a different one. Of course one could
define χ to be a safe extractor for a register tout court if it is a safe extractor for
any state of that register according to Definition 27, but this would considerably
reduce the power of the adversary. Instead, this definition allows the adversary to
use χ adaptively, only at certain points of his execution, when he is guaranteed
that the action of χ on the current state of the QORAM will be computationally
undetectable. The additional classic input to χ serves a useful purpose here, as it
can be seen as a way for the adversary to communicate instructions to χ about
how to perform the extraction in a safe way (for example, A might encode a
certain measurement basis through this classical input.) With abuse of notation,
and without loss of generality, we will write ψ ← χ(qcom,S.QDB) to denote that
χ performs the following:

– as a classical input, χ gets the classical part of a quantum communication
transcript qcom (that is, the content of the classical channel Ξ) and addi-
tional classical information by A;

– χ acts on the quantum registers Ψ and S.QDB;
– finally, χ produces a quantum output ψ.

More specifically, we define a QORAM adversary as follows.

Definition 29 (QORAM Adversary). A QORAM adversary is a BQP algorithm
Aχ with quantum oracle access to χ, where:

– A has complete control of S, as long as the QORAM’s soundness is pre-
served;

– χ is a safe extractor for the joint register (S.QDB, Ψ) for any of its states at
any moment during the execution of A.

We stress the fact that our safe extractor technique can be generalized to
many other scenarios. In fact, it expresses in a general way the intuition behind

25



a plethora of techniques which have been independently used in many other
works, see for example [10, 12, 11, 3]. Although specific applications might need
a refinement of the definition, we believe this new technique to be a very gen-
eral tool of independent interest, which can be useful in the study of different
quantum security reductions.

We are now able to define quantum access patterns, as the outputs of the safe
extractor before and after the execution of a quantum data request.

Definition 30 (Quantum Access Pattern). Given a QORAM client and server
C and S, a quantum data request qdr, and a QORAM adversary A = Aχ, the
quantum access pattern observed by A, denoted by qapA(qdr), is the pair of
quantum states (ψ,ψ′), where:

– ψ ← χ(qcom,S.QDB);
– (C′,S ′, qcom′)← QORAM.Access(C,S, qdr)
– ψ′ ← χ(qcom′,S ′.QDB).

Notice that, since the action of the safe extractor is computationally unde-
tectable, running it on two consecutive quantum data requests does not allow,
in any case, to clone unknown quantum states. We define the new security game
as follows.

Definition 31 (GameQAP-IND-CQAA,QORAM (n)). Let QORAM = (QORAM.Init, QORAM.Access)
be a QORAM construction, n a security parameter and A = Aχ a QORAM
adverary. The computational indistinguishability of quantum access patterns
game under adaptive chosen query attack GameQAP-IND-CQAA,QORAM (n) proceeds as follows:

1. A chooses N ≤ Ñ ;
2. (C,S)← QORAM.Init(n,N);
3. first CQA learning phase: for i = 1, . . . , q1 ∈ N, A repeats (adaptively) the

following:
(a) A chooses a quantum data request qdri;
(b) C executes QORAM.Access on qdri;
(c) A receives qapA(qdri);

4. challenge phase: A chooses two quantum data requests qdr0 and qdr1;

5. C flips a random secret bit b
$←− {0, 1} and executes QORAM.Access on qdrb;

6. A receives qapA(qdrb);
7. second CQA learning phase: for j = 1, . . . , q2 ∈ N, A repeats (adaptively)

the following:
(a) A chooses a quantum data request qdrj;
(b) C executes QORAM.Access on qdrj;
(c) A receives qapA(qdrj);

8. A outputs a bit b′.

A wins the game iff b = b′

We are now ready to define the security notion that we will use for QORAMs.
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Definition 32 (Quantum Access Pattern Indistinguishability Under Adaptive
Chosen Query Attack). A QORAM construction QORAM has computationally
indistinguishable quantum access patterns under adaptive chosen query attack
(or, it is QAP-IND-CQA-secure) iff for any QORAM adversary A:∣∣∣∣Pr

[
GameQAP-IND-CQAA,QORAM (n) = 1

]
− 1

2

∣∣∣∣ ≤ negl(n).

5.2 PathQORAM

In this section we describe the construction for a novel QAP-IND-CQA-secure
QORAM scheme, which we call PathQORAM, and which has the interesting prop-
erty that read and write operations are inherently equivalent. The idea is to
modify PathORAM with the quantum symmetric-key encryption scheme pro-
posed in [1], but we need some additional care for ensuring soundness. In fact,
we have the following problem. Suppose the client issues a quantum data request
for block i. This will be translated to a leaf in S’s quantum database, and the
resulting tree branch DPath will be sent to C. Now C knows that the data he
is looking for is encoded in one of DPath’s nodes, but he does not know which
one. Classically, C would proceed by decrypting and inspecting every node in
DPath until he finds what he is looking for, then he would perform some op-
eration on that element, before re-encrypting it again, and then complete the
re-randomization of DPath before re-sending the whole branch to S. This opera-
tion might be problematic in the quantum world though: inspecting an unknown
quantum state will destroy it with high probability. We have therefore to find a
way to signal C when he reaches the right node in the path without disturbing
the quantum data unit itself. The solution is to notice that, in our formaliza-
tion of PathORAM, the client stores the classical identifier i together with the
data unit in the block. In the quantum version PathQORAM, this identifier is still
classical, and of a fixed length K. Once a node in DPath is decrypted, it will be
transformed to |i〉 〈i|⊗ϕ. The first register can then be measured in the computa-
tional basis without being disturbed, and without disturbing the state ϕ (which
is not entangled with |i〉). So the trick for C is to find out when he is decrypting
the right element by only measuring the first K qubits of the decrypted block,
and only act on the quantum data unit when the right identifier is found. Notice
how other different approaches used classically to instantiate PathORAM, such
as identifying blocks by storing a local table with the hash values of the data
units, might not work so smoothly when translated to the quantum world.

More concretely, we give here a full description of PathQORAM (which from
now on we denote as PathQORAM) according to our new formalism. The meaning
of the parameters is as in Definition 18.

Definition 33 (PathQORAM). For fixed parameters D, Ñ ∈ N, let K = dlog2Ñe,
Z ∈ N, M = D+K, B ≥M . Let G be a pqPRNG as from Definition 6 outputting
K-bit values, and EQ = (Q.KeyGen, Q.Enc, Q.Dec) be a QSKE with plaintext
space D (HM ) and ciphertext space D (HB). We define a QORAM construction
called PathQORAM = PathQORAMEQ,G as follows:
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– PathQORAM.Init(n,N)→ (C,S) works in the following way:
1. C generates a secret key k ← Q.KeyGen(1n);
2. set T = dlog2Ne (notice T ≤ K);
3. C initializes a lookup table (the position map) of the form ((1, r1), . . . , (N, rN )),

where ri are T -bit values generated by truncating the first K−T bits of
G’s output9;

4. S.QDB is stored in a binary tree of height T , with leaves Leaf0, . . . , Leaf2T−1,
and such that:
(a) each node of the tree stores up to Z quantum blocks;
(b) every quantum block of every node is initialized toQ.Enck(|0M 〉 〈0M |).

– If qdr = (op, i, ϕ), then PathQORAM.Access(C,S, qdr)→ (C′,S ′, qcom) works
in the following way:
1. S sends to C the path DPath from the root of the tree to Leafri ;
2. remap (i, ri) to (i, r′i) in the position map of C, where r′i is a fresh value

output by G, obtaining C∗;
3. for every quantum block ψ contained in DPath, C∗ does the following:

(a) C∗ decrypts Q.Deck(ψ) → |j〉 〈j| ⊗ σ, where |j〉 ∈ HK , and σ ∈
D (HD);

(b) C∗ measures the first K qubits of the decrypted state in the compu-
tational basis, obtaining j;

(c) if j = i, then swap σ with ϕ (C∗ is updated to C′, which has access to
σ, and at the same time the block is updated so that QData(ψ) = ϕ);

(d) C′ re-encrypts (re-randomizing) ψ;
(e) find in DPath the common parent node Node between Leafri and

Leafrj , closer to the leaf level;

(f) for every quantum block ψ′ in Node, C′ does the following:
A. C′ decrypts ψ′, checks if it is an empty block (the first K qubits

decrypt to |0K〉 〈0K |), and re-encrypts (re-randomizing) it;
B. if ψ′ was found to be empty, then swap ψ and ψ′;
C. if no empty quantum block was found in Node, then set Node

to be one level up in the tree (i.e., Node’s parent) and repeat
steps 3(f)A. to 3(f)C. (if DPath contains no empty quantum
block, use the stash);

4. C′ sends back the updated tree branch, UPath, to S;
5. S updates S.QDB with UPath, obtaining S ′;
6. produce qcom, which contains ri, DPath, UPath.

Notice that the following interesting property holds: the operations of ‘write’
and ‘read’ have the same effect. Namely: since qubits from the server’s database
cannot be copied, and cannot be removed or added (otherwise this would com-
promise indistinguishability), the action of a read or write operation is simply to
swap a state in the database with a state in C’s memory. In fact, QORAM.Access
swaps ϕ known by C with σ stored in S. Also notice how qcom containing
DPath, UPath would imply a cloning of quantum states. This is just a formal

9 the pseudorandomness of these T bits follows from the same argument as in the
classical case, described in Def. 18
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artifice, because in the case of QORAMs as we defined them, qcom is only used
in respect to a safe extractor χ, which will only produce classical information.
For the soundness of the PathQORAM construction we have left unexplained the
use of a quantum stash. This is an area of quantum memory basically used as the
classical stash of PathORAM, but every time an element is ‘written’ in the stash,
it is actually ‘swapped’ with an empty block in the tree. The security of the
construction follows from the Q-IND-CPA security of the quantum encryption
scheme EQ, and from the security of the pqPRNG G.

Theorem 34. Let EQ be a Q-IND-CPA SKE according to Definition 5, and let
G be a pq-PRNG as from Definition 6. Then, PathQORAM instantiated using EQ
and G is a QAP-IND-CPA secure QORAM.

The proof can be found in Appendix A.3: it basically follows the steps of
the proof of Theorem 23, but with an additional tweak. In fact, the reduction
D cannot store a local unencrypted copy of the tree, but she can store a tree of
the (classical) unencrypted identifiers with the same mapping of S.QDB at any
time frame. When simulating C for a given quantum data request, D can hence
identify all the blocks in the downloaded path, but cannot re-randomize them.
She will work around this issue by replacing every time the encrypted blocks
with ‘artificial’ blocks obtained by encrypting (through the encryption oracle of
EQ) the ‘right’ identifier and a |0 . . . 0〉 data unit. The success probability of the
adversary A cannot be affected too much by this substitution, otherwise D could
use this fact to break the Q-IND-CPA of EQ.
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A Appendix: Additional Proofs

A.1 Proof of Lemma 7

Proof. The counterexample G∗ we use in this proof is the modular exponentiation
Blum-Micali generator [28], but many other similar variants work as well [24].
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This construction is based on exponentiation of a public generator g modulo a
public large prime p, and it is a classically secure PRNG under the assumption
that computing discrete logarithms is computationally hard. More specifically, if
si is the current state of the generator, one output bit is computed as a hardcore
predicate h(.) of the value si+1 = gsi mod p (where si+1 becomes the next state
of the generator). Thus, starting from a single secret seed s0, a pseudorandom
bitstring can be generated by applying iteratively the procedure.

However, there exists a quantum attack [24] (based on variants of both
Shor’s [40] and Grover’s [23] algorithms) which, given p, g and a sequence (r1, . . . , rn)
of values output by G∗, can recover the initial state s0 with non-negligible prob-
ability. This, in turns, allows to predict the whole sequence of outputs of G∗.

A.2 Proof of Theorem 17

Proof. The proof closely follows the reduction for equivalent notions of IND-
CPA security found in [5]. As a first step, we rephrase Definition 16 in terms
of a security game – the two resulting definitions of AP-SIM-CQA security are
obviously equivalent.

Definition 35 (GameAP-SIM-CQAA,ORAM (n)). Let ORAM = (ORAM.Init, ORAM.Access) be
an ORAM construction, n a security parameter and A an ORAM adverary. The
computational simulability of access patterns game under adaptive chosen query
attack GameAP-SIM-CQAA,ORAM (n) proceeds as follows:

1. A chooses N ≤ Ñ ;
2. (C,S)← ORAM.Init(n,N);

3. C flips a secret random bit b
$←− {0, 1};

4. A repeats (adaptively) the following, for i = 1, . . . , q:
(a) A chooses a data request dri;
(b) if b = 0, then C sets dr := dri;

(c) else if b = 1, then C sets dr
$←− { ‘read’,‘write’ }×{ 1, . . . , N }×{0, 1}D;

(d) C executes ORAM.Access on dr;
(e) A receives ap(dri);

Finally, A outputs a bit b′, and wins the game iff b = b′.

Definition 36 ((Game-Based) Access Pattern Simulability Under Adaptive
Chosen Query Attack). An ORAM construction ORAM has simulable access pat-
terns under adaptive chosen query attack (or, it is AP-SIM-CQA-secure) iff for
any classical ORAM adversary A:∣∣∣∣Pr

[
GameAP-SIM-CQAA,ORAM (n) = 1

]
− 1

2

∣∣∣∣ ≤ negl(n).

Then, we prove Theorem 17 by double implication. Let ORAM be an ORAM
construction.

Lemma 37 (AP-SIM-CQA =⇒ AP-IND-CQA).
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Proof of Lemma 37. Let AIND be an ORAM adversary such that

Pr
[
GameAP-IND-CQAAIND,ORAM (n) = 1

]
=

1

2
+ ν(n),

for a non-negligible function ν. We will use AIND in a black-box way to construct
another ORAM adversary ASIM, able to break the AP-SIM-CQA security of
ORAM, against the assumption.

At the beginning, ASIM runs AIND, which starts GameAP-IND-CQAAIND,ORAM by choosing n

and N . At the same time, ASIM starts GameAP-SIM-CQAASIM,ORAM with the same parameters.

During the first IND learning phase, whenever AIND performs a CQA query
dri , ASIM responds to such a query by forwarding it to its SIM (Real-or-Random)
challenger, and then forwarding to AIND the related access pattern. When AIND

performs its challenge query of the form (dr0, dr1), ASIM flips a random bit

b∗
$←− {0, 1}, forwards apb

∗
to the SIM challenger, and then forwards to AIND

the related access pattern. Then, during the second IND learning phase, ASIM

behaves like in the first challenge phase, by forwarding the queries to its SIM
challenger and returning the access patterns to AIND. Finally, when AIND outputs
a bit b′, if b′ = b∗ then ASIM outputs 0, otherwise ASIM outputs a random bit.

The reduction works for the following reason: let’s assume that b = 0, i.e., the
SIM challenger was a honest ORAM client C. Then, during the whole reduction,
ASIM successfully simulated a real client for AIND, in an AP-IND-CQA game
where the secret bit was b∗. By assumption, AIND guesses correctly such bit with
probability at least 1

2 + ν(n). In that case, also ASIM wins, so:

Pr
[
GameAP-SIM-CQAASIM,ORAM (n) = 1

∣∣∣b = 0
]
≥ 1

2
+ ν. (5)

On the other hand, if b = 1 (i.e., the SIM challenger was simulating fake access
patterns) we cannot say anything on AIND’s success probability, because for the
whole time it has played in a malformed game. But we can say that, even if AIND

fails, ASIM still succeeds with probability ≥ 1
2 − ε for a negligible ε.

Pr
[
GameAP-SIM-CQAASIM,ORAM (n) = 1

∣∣∣b = 1
]
≥ 1

2
− ε. (6)

Thus, combining 5 and 6, the reduction’s overall success probability is:

Pr
[
GameAP-SIM-CQAASIM,ORAM (n) = 1

]
≥ 1

2
+
ν

2
− ε,

which concludes the proof.

Lemma 38 (AP-IND-CQA =⇒ AP-SIM-CQA).

Proof of Lemma 38. Let ASIM be an ORAM adversary such that

Pr
[
GameAP-SIM-CQAASIM,ORAM (n) = 1

]
≥ 1

2
+ ν(n),
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for a non-negligible function ν. We will use ASIM in a black-box way to construct
another ORAM adversary AIND, able to break the AP-IND-CQA security of
ORAM, against the assumption. The proof uses a hybrid argument on the number
q of queries performed by ASIM during GameAP-SIM-CQAASIM,ORAM .

More in detail: AIND runs ASIM, which starts GameAP-SIM-CQAASIM,ORAM by choosing n and

N . At the same time, AIND starts GameAP-IND-CQAAIND,ORAM with the same parameters, and

also chooses an index j
$←− { 1, . . . , q } uniformly at random. Whenever ASIM

performs a query with a data request dri, AIND does the following:

– for the first j − 1 queries, AIND executes dri using his own oracle in the first
CQA learning phase, and responds with ap(dri).

– At the j-th query, AIND does the following:

• samples at random dr∗
$←− { ‘read’,‘write’ } × { 1, . . . , N } × {0, 1}D;

• set dr0 := drj and dr1 := dr∗.
• performs his AP-IND-CQA challenge query (dr0, dr1), and responds to
ASIM with ap(drb).

– Starting from the (j + 1)-th query, AIND ignores ASIM’s data requests, and
always responds with access patterns produced by freshly generated random
data requests using his own oracle in the second CQA learning phase.

Finally, when ASIM outputs a bit b′, if b′ = 0 then AIND outputs 0, otherwise AIND

outputs a random bit. We show that:

Pr
[
GameAP-IND-CQAAIND,ORAM (n) = 1

]
≥ 1

2
+

ν

2q
.

The hybrid argument goes as follows. For i = 0, . . . , q consider a sequence of
intermediate hybrid games GameHYB-iASIM,ORAM, where GameHYB-iASIM,ORAM is defined as the

usual GameAP-SIM-CQAASIM,ORAM by executing through the SIM (Real-or-Random) oracle only

the first i data requests output by ASIM, and executing random data requests
afterwards. Notice that:

– GameHYB-qASIM,ORAM coincides with GameAP-SIM-CQAASIM,ORAM , and

– GameHYB-0ASIM,ORAM coincides with GameAP-SIM-CQAASIM,ORAM in the case that b = 1.

Moreover, the following hold:

– the output b′ of ASIM in the above reduction coincides with the output of
ASIM in GameHYB-(i+1)ASIM,ORAM if b = 0, while

– the output b′ of ASIM in the above reduction coincides with the output of
ASIM in GameHYB-iASIM,ORAM if b = 1.

At this point, as j was chosen uniformly at random in { 1, . . . , q }, we can write
the advantage of AIND in GameAP-IND-CQAAIND,ORAM (n) by use of the triangular inequality as
follows:

Pr
[
AIND outputs 1

∣∣b = 1
]
− Pr

[
AIND outputs 1

∣∣b = 0
]

=
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1

q

q−1∑
i=0

(
Pr
[
ASIM outputs 1 in GameHYB-iASIM,ORAM

]
− Pr

[
ASIM outputs 1 in GameHYB-(i+1)ASIM,ORAM

])
=

1

q

(
Pr
[
ASIM outputs 1 in GameHYB-0ASIM,ORAM

]
− Pr

[
ASIM outputs 1 in GameHYB-qASIM,ORAM

])
=

1

q

(
Pr
[
ASIM outputs 1 in GameHYB-0ASIM,ORAM

∣∣b = 1
]
− Pr

[
ASIM outputs 1 in GameHYB-qASIM,ORAM

])
≥

1

2q

[
advantage of ASIM in GameAP-SIM-CQAASIM,ORAM

]
=

ν

2q

which concludes the proof.

The combination of Lemma 37 and Lemma 38 concludes the proof.

A.3 Proof of Theorem 34

Proof. The proof follows step-by-step the proof of Theorem 19 with some impor-
tant differences. First of all, D cannot store a local mirrored tree of plaintexts of
the form (|i〉 〈i|⊗σ) because of the No-Cloning Theorem, so she cannot simulate
C perfectly. But she can store a mirrored tree which contains only the classical
identifiers i, at the right positions of every block throughout the execution of
the protocol.

At this point, D can simulate a decryption oracle for a certain block ψ in
a downloaded branch by fetching the cleartext identifier i found at the corre-
sponding position in the ‘mirrored’ tree, and creating a ‘simulated’ plaintext
of the form (|i〉 〈i| ⊗ |0D〉 〈0D|), i.e. replacing the ‘real’ quantum data unit σ
with a zero state. Since A never ‘sees’ a decrypted block, this substitution
is not immediately apparent to him. Moreover, whenever C would create a
block by encrypting ψ ← Q.Enck(|i〉 〈i| ⊗ σ), D can simulate this by doing
ψ ← Q.Enck(|i〉 〈i| ⊗ |0D〉 〈0D|). By the Q-IND-CPA security of EQ, A cannot
detect this substitution with probability more than negligible. Therefore, D can
still simulate C (with overwhelming, albeit not 100%, probability) at any data
request.

Another issue appears during the challenge phase, as this time the concept of
non-meaningful challenge must be redefined. For the same argument as above,
from A’s perspective it does not matter whether two data requests lead to two
‘different’ quantum data units σ0, σ1 (the analogue of data units data0, data1 in
the classical proof) or not. Therefore, D can ignore the quantum data units at all.
Moreover, as discussed in Section 5.2, in PathQORAM there is no difference between
‘read’ and ‘write’ operations. It follows, from the same argument as in the proof of
Theorem 19, that the two challenge quantum data requests qdr0, qdr1 must differ
on the identifiers i0, i1. D, will then play the Q-IND-CPA game with challenge
plaintexts ϕa = |ia〉 〈ia| ⊗ |0D〉 〈0D| for a ∈ {0, 1}, following the same strategy
as in the classical case (by guessing a bit, injecting the challenge ciphertext,
and observing A’s output) , with only a negligible loss in the success probability
because she is simulating fake plaintexts.
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