
Privacy for Distributed Databases via (Un)linkable

Pseudonyms�

Jan Camenisch Anja Lehmann

IBM Research { Zurich
fjca,anjg@zurich.ibm.com

Abstract

When data maintained in a decentralized fashion needs to be synchronized or ex-
changed between di�erent databases, related data sets usually get associated with a
unique identi�er. While this approach facilitates cross-domain data exchange, it also
comes with inherent drawbacks in terms of controllability. As data records can eas-
ily be linked, no central authority can limit or control the information ow. Worse,
when records contain sensitive personal data, as is for instance the case in national
social security systems, such linkability poses a massive security and privacy threat.
An alternative approach is to use domain-speci�c pseudonyms, where only a central
authority knows the cross-domain relation between the pseudonyms. However, current
solutions require the central authority to be a fully trusted party, as otherwise it can
provide false conversions and exploit the data it learns from the requests. We propose
an (un)linkable pseudonym system that overcomes those limitations, and enables con-
trolled yet privacy-friendly exchange of distributed data. We prove our protocol secure
in the UC framework and provide an e�cient instantiation based on discrete-logarithm
related assumptions.

1 Introduction

When data is collected and maintained on a large scale, that data often does not reside
in a single database but is distributed over several databases and organisations, each being
responsible for a particular aspect in the overall system. To still allow for collaborative
operations and data exchange among the di�erent entities, related data is then indexed with
an identi�er that is unique in the entire system.

An important example of such a distributed setting is a state-controlled social security
system maintaining various sets of personal data. Therein users can interact with di�erent
entities, such as di�erent health care providers, public and private pension funds, or tax
authorities. All these entities can act autonomously in their respective domains and keep
individual records for the users they interact with. In certain scenarios, the di�erent entities
also have to exchange data about particular users. For instance, assume a health care provider
o�ers special discounts for people with low income and tax authorities store information about
users' salaries. Then, to verify whether a user is eligible for a discount, the health care system
together with the tax authority should be able to check if the user satis�es the criteria.

Global Identi�ers. Currently, the probably most prominent approach to enable such de-
centralized data management is to use unique global identi�ers among all entities. In the
context of social security systems, this is for instance implemented in the US, Sweden, and
Belgium. Here, each citizen gets assigned a unique and nation-wide social security number.
The advantage of this approach is that it naturally allows all entities within the system to

�This is the full version of the paper (Un)linkable Pseudonyms for Governmental Databases, which ap-

peared at ACM CCS 2015.

1

correlate their individually maintained records. However, having such a unique identi�er for
each user is also a signi�cant privacy threat: When data is lost or stolen, also any adversary
obtaining the data can use the unique identi�er to link all the di�erent data sets together.
Also, interactions of users with di�erent entities become easily traceable.

Thus, the impact of security breaches is rather severe, which in turn, makes the data
maintained by the individual entities a lucrative target for data thieves. In addition, as
all entities can trivially link their records, the data exchange can hardly be controlled and
authorized. However, in particular in the case of a social security system, a certain control to
supervise and, if necessary, limit the data ow is usually desired. For instance in the Belgium
system currently a central authority called \crossroads bank for social security" (CBSS) [15],
serves as hub for all data exchange. Whenever social and private entities want to exchange
data based on the global identi�cation number, they have to request explicit authorization
from the CBSS, as enforced by national law. From a privacy point of view, though, this added
controllability makes the system even worse, as now a central authority learns which requests
are made for which user. In a social security system, those requests can reveal quite sensitive
information itself. For instance, in the example outlined above, the central authority would
learn from the requests which persons su�er from health issues and probably have low or no
income, even if it has no access to the health and tax records itself. Also in terms of security
it still assumes that all entities behave honestly and do not correlate their records without
approval of the central authority.

Pseudonyms & Controlled Conversion. Having such a central authority actually al-
lows for a more privacy-friendly solution. Namely, a central authority (that we call con-
verter) could derive and distribute entity-speci�c identi�ers (aka pseudonyms), in a way that
pseudonyms known by di�erent entities can only be linked with the help of the converter.
Thus, it would then even be technically enforced that di�erent entities have to request per-
mission from the converter, as without its help they would not be able to connect their
records anymore. Of course, the latter argument only holds if the data sets maintained by
the entities do not contain other unique identifying information which allows linkage without
using the pseudonyms.

Such a pseudonymous identi�cation system clearly improves the controllability of the
data exchanges and also avoids imposing a unique identi�er that makes the user traceable
by default. Both are signi�cant advantages compared with the solution where only a single
global identi�er is used throughout the entire system. However, as now the converter is
indeed required in every request it yields a powerful entity that still must be trusted to not
exploit the information it gathers.

Existing Solutions. In existing solutions, the need to fully trust the converter seems in
fact inherent. A similar pseudonymous framework using a central converter is for instance
described by Galindo and Verheul [23]. Therein, the converter computes a pseudonym nymi;A

based on main identi�er uid i and for server SA, as nymi;A = Enc(kA; uid i), where Enc is a
blockcipher and kA a symmetric key that the converter has chosen for SA, but is only known to
the converter. When an entity SA then wishes to request some data for nymi;A from another
entity SB , it sends the pseudonym to the converter. The converter then decrypts nymi;A to
obtain uid i and derives the local pseudonym nymi;B by computing nymi;B = Enc(kB ; uid i)
for the key kB it had chosen for SB . Thus, here the converter is necessarily modeled as a
trusted third party, as it always learns the generated pseudonyms, the underlying uid i and
also has full control over the translations it provides (i.e., a corrupt converter could transform
pseudonyms arbitrarily).

Another example is the Austrian eID system [14], which is one of the few eID solutions
that allows one to derive entity-speci�c pseudonyms from the unique social security number.
However, it currently only supports that unlinkable pseudonyms are created by the users
themselves, but it does not consider a central authority that can provide a conversion service
on a large scale. It is easy to imagine though, how such a converter could be realized.
Roughly, a pseudonym nymi;A is computed as H(Enc(k; uid i)jjSA), i.e., the encrypted main

2

user identi�er uid i and the identi�er of the respective entity SA are concatenated and the
hash value of both yields the pseudonym. Here, the key k is a global key that is used for
all pseudonyms, but is again only known to the converter. In order to enable conversions
between pseudonyms, the converter could simply keep a table with the related hash values
and then perform the conversion based on looking up the corresponding value.

Hereby, the trust requirements for the converter can actually be reduced if one con-
siders pseudonym generation and conversion as two di�erent tasks. Then, only the entity
responsible for pseudonym generation would have to know the key k under which the user
identi�ers are encrypted, whereas the converter merely keeps the hash table with the related
pseudonyms. The converter would then only know which pseudonyms belong together, but
cannot determine for which particular user they are standing for. Thus, also during con-
version, a malicious converter does not learn the particular user for which a conversion is
requested anymore, but only his pseudonym.

However, the converter can still link all requests that are made for the same (unknown)
user. As each query usually leaks some context information itself, being able to link all that
information together might still allow the converter to fully identify the concrete user behind
a pseudonym. For instance, regular queries for the same pseudonym to the pension fund
might indicate that the person behind the pseudonym is older than 60 years, and queries to
entities that are associated with a certain region such as local municipalities further reveal
the place that person might live in.

Via the comparable CBSS authority in Belgium, several hundreds of million messages are
exchanged every year, with a peak of 806 million messages in 2009. Using those values as a ref-
erence for the social security use case, one has to assume that a converter learning \only" the
requests and their relation would still obtain a signi�cant amount of context data. How con-
text information and meta data can be leveraged to fully de-anonymize pseudonymized data
sets, was recently impressively demonstrated for \anonymized" credit card transactions [17]
and in the Netix and AOL incidents [27, 5].

Thus, from a privacy and a security perspective it is clearly desirable to minimize the
information a converter can collect as much as possible. This means, the converter should
not even learn which requests relate to which pseudonyms.

Other Related Work. There exists a line of work on reversible pseudonymization of
data records, in particular in the eHealth context, aiming at de-sensitizing patient records
[1, 28, 16, 20, 30]. The main focus in these works is to derive pseudonyms from unique
patient identi�ers, such that the pseudonyms do not reveal any information about the pa-
tient anymore, yet allow de-anonymization by a trusted party (or a combination of several
semi-trusted parties). However, in all solutions, pseudonym generation must be repetitively
unambiguous to preserve the correlation between all pseudonymized records. Consequently,
data exchange is trivial and does not require a converter. Thus, pseudonyms are linkable by
default, whereas our approach is the opposite: pseudonyms should be unlinkable by default,
yet preserve the correlation which allows to re-establish the linkage only if necessary via a
(potentially untrusted) converter.

Our Contribution. In this paper we tackle the challenge of enabling privacy-friendly yet
controlled data exchange in a decentralized system. That is, we propose an (un)linkable
pseudonym system where a converter serves as central hub to ensure controllability. The
converter establishes individual pseudonyms for each server derived from a unique main
identi�er that every user has, but without learning the derived pseudonyms. The converter
is still the only authority that can link di�erent pseudonyms together, but it does not learn
the particular user or pseudonym for which such a translation is requested. The converter
can not even tell if two data exchanges were done for the same pseudonym or for two di�erent
ones. Thus, the only information the converter still learns is that a server SA wants to access
data from a server SB . We consider this to be the right amount of information to balance
control and privacy. For instance for the use case of a social security system, it might be
allowed that the health care provider can request data from the tax authority but should not

3

be able to access the criminal records of its registered users. Thus, there is no need to learn
for which particular user a request is made, or whether several requests belong together.
In our system, the converter is able to provide such access control but does not learn any
additional information from the queries.

We start by formally de�ning the functional and security properties such an (un)linkable
pseudonym system should ideally provide. Our security de�nition is formulated in the Univer-
sal Composability (UC) framework, and thus comes with strong guarantees when composed
with other UC secure protocols. We then describe our system using generic building blocks.

The idea of our solution is to build pseudonyms by adding several layers of randomness to
the unique user identi�er, such that they allow for consistent (and blind) conversions yet hide
the contained identi�er towards the servers. Roughly, to generate a pseudonym nymi;A for
a user uid i on server SA, the converter �rst applies a veri�able PRF on uid i and then raises
the derived value to a secret exponent that it assigns for each server. The trick thereby is
that those secret keys are known only to the converter, but are never revealed to the servers.

Now, consider the blind conversion procedure. It can of course be realized with a generic
multiparty protocol, where the �rst server SA inputs the pseudonym to be converted and
the converter inputs all its secret keys, and the output of the second server SB would be
the converted pseudonym, provided that the input by SA was a indeed a valid pseudonym.
However, such a computation would be rather ine�cient. We therefore aim to construct a
speci�c protocol that achieves this e�ciently.

We propose a blind conversion protocol that performs the conversion on encrypted
pseudonyms, using a homomorphic encryption scheme. To transform a pseudonym from
one server to another, the converter then exponentiates the encrypted pseudonym with the
quotient of the secret keys of the two servers. The challenge is to make that entire process
veri�able, ensuring that the conversion is done in a consistent way but without harming the
privacy properties.

To ensure controllability in the sense that a server can only request conversions for
pseudonyms it legitimately obtained via the converter, we also make use of a novel build-
ing block which we call dual-mode signatures. Those allow to obtain signatures on encrypted
messages, which can then be \decrypted" to a signature on the underlying plaintext message.
We also provide a concrete construction for those signatures based on the recent signature
scheme by Abe et al. [2], which might be of independent interest. Our dual-mode signatures
can be seen as a spezialised variant of commuting signatures [22], and therefore allow for
more e�cient schemes.

Finally, we prove that our protocol realizes our ideal functionality based on the security
of the building blocks. We also provide concrete instantiations for all generic building blocks
used in our construction which already come with optimizations and enhance the e�ciency of
our solution. When instantiated with the suggested primitives, our protocol is secure based
on discrete-logarithm related assumptions.

2 Security De�nition

In this section we �rst informally discuss the main entities and procedures in our (un)linkable
pseudonym system and then de�ne the desired security properties by describing how an ideal
functionality would handle that task.

For the sake of simplicity, we will speak about user identi�er uid i, whenever we mean a
unique identi�er to which several distributed data sets should be related. However, it should
not be misunderstood that our system is restricted to user data, as it can handle arbitrary
related data sets distributed over several servers. The main entities in our system are a
converter X and a set of servers S = fSA;SB ; : : : g.

The converter X is the central authority that blindly derives and converts the (un)linkable
pseudonyms. More precisely, for a user identi�er uid i and server identi�er SA, the converter
can establish the server-speci�c pseudonym nymi;A. However, this must be done in a way
that only SA is privy of the resulted nymi;A.

4

All generated pseudonyms can also be veri�ed by the servers. In particular, if a server
SA does know the underlying uid i, and the converter allows for veri�cation, it can check that
nymi;A is indeed derived from uid i. This is crucial to allow for a secure migration from an
existing indexing system based on unique uid i's to our pseudonymous system. However, such
a veri�cation must be explicitly allowed by the converter. Without his approval, a server
even when knowing some uid i could not verify whether it belongs to a certain pseudonym
nymi;A or not.

A server SA can then maintain data for some user uid i who is known to him as nymi;A. If
SA wants to access some data for the same underlying user from another server SB , it must
initiate a conversion request via the converter. The converter is the only entity that can
transform a pseudonym nymi;A into nymi;B . However, X executes the conversion function
in a blind manner, i.e., without learning nymi;A;nymi;B , the underlying uid i or even if two
requests are made for the same pseudonym or not. If a conversion is granted by X , only SB
will learn the converted pseudonym nymi;B . The subsequent data exchange between SA and
SB can be handled using the query identi�er qid that is used in the request and is mapped
to nymi;A on SA's and to nymi;B on SB 's domain.

Again, all actions by the converter must be veri�able, i.e., a server SB can be assured that
it receives the correctly translated pseudonym nymi;B , but without learning the pseudonym
nymi;A it was derived from. Also, a server SA can only trigger conversions for pseudonyms
nymi;A that it either directly received from X or has obtained via conversion responses.

Apart from all the privacy features it is of course crucial that pseudonyms are generated
and converted in a consistent way. More precisely, the generated pseudonyms nymi;A must
be unique for each server domain SA and the conversion must be transitive and consistent
with the pseudonym generation. For the sake of clarity, we also provide a more algorithmic
de�nition of the guaranteed consistency features in Appendix A.

2.1 Ideal Functionality

We now formally de�ne such an (un)linkable pseudonym system with blind conversion by
describing an ideal functionality in the Universal Composability (UC) framework [13], which
is a general framework for analyzing the security of cryptographic protocols. Roughly, a
protocol is said to securely realize a certain ideal functionality F , if an environment can
not distinguish whether it is interacting with the real protocol or with F and a simulator.
A protocol that is proven to be secure in the UC framework then enjoys strong security
guarantees even under arbitrary composition with other (UC secure) protocols. At the end
of the section we will also discuss how the aforementioned (informal) properties are enforced
by our functionality.

In this paper, we assume static corruptions, meaning that the adversary decides upfront
which parties are corrupt and makes this information known to the functionality. The UC
framework allows us to focus our analysis on a single protocol instance with a globally unique
session identi�er sid . Here we use session identi�ers of the form sid = (sid 0;X ;S;U;N), for
some converter and server identi�ers X ;S = fSA;SB ; : : : g and a unique string sid 0 2 f0; 1g�.
Further, it must hold that jNj � jUj, where U denotes the space of user identi�ers and
N the pseudonym space. We also assume unique query identi�ers qid = (qid 0;SA;SB) for
each conversion request, containing the identities of the communicating servers SA and SB .
Those unique session and query identi�ers can be established, e.g., by exchanging random
nonces between all involved parties and using the concatenation of all nonces as sid 0 and qid 0

respectively.
The de�nition of our ideal functionality Fnym is presented in detail in Figure 1. For

simplicity, we refer to Fnym as F from now on. We also use the following writing conventions
in order to reduce repetitive notation:

� At each invocation, F checks that sid has the form sid = (sid 0;X ;S;U;N), with jNj � jUj.
When we say that F receives input from or provides output to SA or X , we mean the
particular X or SA 2 S speci�ed in the sid and qid respectively.

5

1. Pseudonym Generation. On input of (NYMGEN; sid ; uid i;SA; anon) from converter X :
� If X is honest, only proceed if uid i 2 U, where U is taken from sid .

� If X is corrupt, also proceed if uid i =2 U, but only if anon = 1.

� Send (NYMGEN; sid ;SA) to A and wait for (NYMGEN; sid ;SA;nym
�
i;A) from A.

� If a pseudonym record (nym; sid ; uid i;SA;nymi;A) for uid i;SA exists, retrieve nymi;A,
otherwise create a new record where nymi;A is determined as follows:
{ if X or SA are honest, set nymi;A

$ N,

{ if X and SA are corrupt, and no other pseudonym record for nym�
i;A;SA exists, set

nymi;A nym�
i;A. Abort otherwise.

� If anon = 1, output (NYMGEN; sid ;nymi;A;?) to SA and output
(NYMGEN; sid ;nymi;A; uid i) otherwise.

2. Assign UID. On input of (ASSIGN; sid ; uid i; uid
0
i) from adversary A:

� Proceed only if X is corrupt, uid i =2 U and uid 0i 2 U.

� If no pseudonym record for uid 0i exists yet, replace the current \dummy" uid i with the
\real" uid 0i in all records (nym; sid ; uid i;SA;nymi;A), abort otherwise.

� Send (ASSIGN; sid) to A.

3. Conversion Request. On input of (CONVERT; sid ; qid ;nymi;A;SB) from server SA:
� Proceed only if a record (nym; sid ; uid i;SA;nymi;A) for nymi;A;SA exists.

� Send (CONVERT; sid ; qid) to A and wait for response (CONVERT; sid ; qid) from A.

� Create a conversion record (convert; sid ; qid ; uid i;SA;SB), where uid i is taken from the
pseudonym record for nymi;A;SA.

� Output (CONVERT; sid ; qid ;SA;SB) to X .

4. Conversion Response. On input of (PROCEED; sid ; qid) from converter X :
� Proceed only if a conversion record (convert; sid ; qid ; uid i;SA;SB) for qid exists.

� Send (PROCEED; sid ; qid) to A and wait for (PROCEED; sid ; qid ;nym�
i;B) from A.

� If a pseudonym record (nym; sid ; uid i;SB ;nymi;B) for uid i;SB exists, retrieve nymi;B ,
otherwise create a new record where nymi;B is determined as follows:
{ if X or SB are honest, set nymi;B

$ N,

{ if X and SB are corrupt, and no other pseudonym record for nym�
i;B ;SB exists, set

nymi;B nym�
i;B . Abort otherwise.

� Output (CONVERTED; sid ; qid ;SA;nymi;B) to SB .

Figure 1: Ideal Functionality Fnym with sid = (sid 0;X ;S;U;N)

� For the CONVERT and PROCEED interfaces, F checks that qid = (qid 0;SA;SB) and only
considers the �rst message for each pair (sid ; qid). Subsequent messages for the same
(sid ; qid) are ignored.

� When we say that F outputs a message to a party, this happens directly, i.e, the adversary
neither sees the message nor can delay it.

� When we say that F sends a message m to A and waits for m0 from A, we mean that F
chooses a unique execution identi�er, saves the local variables and other relevant informa-
tion for the current interface invocation, and sends m together with the identi�er to A.
When A then invokes a dedicated resume interface with a message m0 and an execution
identi�er, F looks up the information associated to the identi�er and continues processing
the request for input m0.

� When we say that F proceeds only under a certain condition, we implicitly assume that a
failure message is sent to the caller whenever that condition is not ful�lled.

We now describe the behaviour of all interfaces also in a somewhat informal manner to
clarify the security properties that our functionality provides.

Pseudonym Generation. The NYMGEN interface allows a converter X to trigger the gen-
eration of a pseudonym nymi;A for user uid i and server SA. If no pseudonym for that combi-
nation of uid i;SA exists in F , a new one is created. Thereby, if X or SA are honest, the new
pseudonym is chosen at random from N. (In Figure 1 this is denoted by nymi;A

$ N.) Only

6

if both the converter and the server are corrupt, the adversary can provide the pseudonym
nym�

i;A. All generated pseudonyms are stored within F as (nym; sid ; uid i;SA;nymi;A), i.e,
the records also include the underlying uid i.

The generated pseudonym nymi;A is then output directly to SA. Thus, while the converter
is the crucial entity to establish a server-speci�c pseudonym, it does not learn the pseudonym
itself. The converter can additionally specify whether the server output shall consist solely of
the pseudonym, or come in a veri�able manner. Veri�able means that the server SA receives
a pseudonym nymi;A together with an underlying uid i, assuring that nymi;A indeed belongs
to uid i. Such veri�cation is indicated with the ag anon = 0, whereas anon = 1 will hide
the uid i from SA. The reason to include the option anon = 0 and thus the \leakage" of uid i
is that a server might already know and use the uid i and thus should be able to verify to
which particular user a new pseudonym belongs to (and ideally delete the uid i afterwards).
Allowing this non-privacy-friendly option might appear counter-intuitive at a �rst glance.
However, without having the possibility to verify whether a pseudonym indeed belongs to
certain uid i, the pseudonyms would have not much meaning. Thus, we consider the option
anon = 0 crucial for bootstrapping such a system, but of course it should be used with care.
We discuss further interesting strategies for pseudonym provisioning in Section 6.

When X is corrupt, we also allow the generation of pseudonyms without assigning a
proper uid i 2 U yet. Instead, the pseudonyms are stored for a \dummy" identi�er uid i =2 U.
However, such unassigned pseudonyms are only allowed as long as X does not wish to provide
a veri�able pseudonym, i.e., where anon = 1.

Assign UID. The ASSIGN interface is only available when the converter is corrupt. It
allows the adversary to replace a \dummy" identi�er uid i =2 U in all records with a proper
uid 0i 2 U, if uid 0i is not used in any other pseudonym record. After a pseudonym got a
assigned a \proper" identi�er uid 0i, the converter can now also distribute the pseudonyms for
uid 0i in a veri�able manner via the NYMGEN interface.

This reects that, as long as no honest server has veri�ed the connection of a pseudonym
to a particular user identi�er, all F can guarantee is that pseudonyms that were derived
from each other, all belong together (including transitive relations). However, the relation
to a particular uid might still be unassigned. Only when the converter provides a veri�able
pseudonym nymi;A, i.e., it links a pseudonym to its underlying uid , this connection between
nymi;A and uid i becomes known, and must be guaranteed by the ideal functionality from
then on. Which is exactly what this interface does.

Conversion Request. The CONVERT interface allows a server SA to initiate a conversion
for some pseudonym nymi;A towards another server SB , and associated with query identi�er
qid . The request will only be processed if nymi;A is registered within F . To ask for the
converter's approval, X is then noti�ed about the request. However, X only learns that SA
wants to run a conversion towards SB , but nothing else, in particular not the pseudonym
nymi;A the request was initiated for.

Conversion Response. The PROCEED interface allows a converter to blindly complete a
conversion request towards SB . The converted pseudonym nymi;B is either retrieved from an
existing record using the internal knowledge of the underlying uid i of the requested nymi;A,
or generated from scratch and stored together with uid i in F . Again, as long as not both
X and SB are corrupt, the new pseudonym is a random value in N. Finally, SB (and only
SB) receives the converted pseudonym nymi;B . As F performs the conversion based on the
underlying uid i, the desired consistency properties are naturally guaranteed.

Discussion. Overall, our ideal functionality de�ned in Figure 1 guarantees the following
security and privacy properties even in the presence of corrupted entities.

Security against corrupt SA;SB: The pseudonyms received by the servers do not leak
any information about the underlying user identi�er uid i, and can only be established

7

via the converter. That is, even if a server SA is corrupt and knows a user identi�er
uid i, it cannot predict the server-local pseudonym nymi;A himself. This is enforced by F
as it generates pseudonyms only when requested or allowed (in a conversion) by X and
produces pseudonyms that are merely random values in N.

Further, for pseudonyms nymi;A and nymi;B held by two corrupt servers SA and SB , the
servers cannot tell { without the help of the converter { whether they belong to the same
uid i or not (of course only if the servers do not both know the underlying uid i from a
veri�able pseudonym as otherwise linkage is trivial). This follows again from the random-
ness of the pseudonyms. If only one server SA or SB is corrupt, then the corrupt server
cannot use a conversion to learn any information about the corresponding pseudonym of
the other honest server { even if the converter is corrupt too: our functionality does not
give any output to SA, and SB only receives (qid ;nymi;B), but not the initial nymi;A.

Security against corrupt X : If the converter is corrupt, it can trigger pseudonyms for
uid i's and servers SA of its choice, however X can not determine or predict the pseudonym
values whenever they are generated for an honest server (neither via pseudonym generation
nor conversion). This is guaranteed by our de�nition as F generates new pseudonyms as
random values in N and outputs them directly to the respective server, i.e, without the
adversary seeing them.

Further, in a conversion request between two honest servers SA and SB , a corrupt converter
does not learn any information about the pseudonym nymi;A or nymi;B , or even whether
two request where made for the same pseudonym or not. This follows clearly from F , as
the only information X gets is that SA requested a conversion towards SB . If the converter
and one of the servers is corrupt, the adversary can of course learn the pseudonym of the
corrupted server. If even both SA;SB are corrupt, then the adversary obviously learns all
involved pseudonyms, but this is unavoidable.

Our functionality also guarantees consistency in the presence of a corrupt converter. That
is, even when generated or converted by a corrupt X , honest servers are ensured that
pseudonym generation is injective, conversion is transitive and both procedures generate
consistent pseudonyms. This is naturally enforced by our functionality as F is aware of the
underlying uid i and uses that knowledge to ensure consistent conversions and generates a
unique pseudonym for each (uid i;SA) combination.

3 Building Blocks

Here, we introduce the building blocks for our construction. Apart from standard proof
protocols, (veri�able) pseudorandom functions and homomorphic encryption we also need a
new primitive which we call dual-mode signatures. We provide a formal de�nition for those
signature schemes and also detail an instantiation based on the structure-preserving signature
scheme by Abe et al. [2].

3.1 Bilinear Maps

Let G, ~G and Gt be groups of prime order q . A map e : G� ~G! Gt must satisfy bilinearity,
i.e., e(gx; ~gy) = e(g; ~g)xy; non-degeneracy, i.e., for all generators g 2 G and ~g 2 ~G, e(g; ~g)
generates Gt; and e�ciency, i.e., there exists an e�cient algorithm G(1�) that outputs the
bilinear group (q ;G; ~G;Gt; e; g; ~g) and an e�cient algorithm to compute e(a; b) for any a 2 G,
b 2 ~G. If G = ~G the map is symmetric and otherwise asymmetric.

3.2 Proof Protocols

When referring to zero-knowledge proofs of knowledge of discrete logarithms and statements
about them, we will follow the notation introduced by Camenisch and Stadler [12] and
formally de�ned by Camenisch, Kiayias, and Yung [9].

8

For instance, PKf(a; b; c) : y = gahb ^ ~y = ~ga~hcg denotes a \Zero-knowledge Proof of
Knowledge of integers a, b and c such that y = gahb and ~y = ~ga~hc holds," where y; g; h; ~y; ~g
and ~h are elements of some groups G = hgi = hhi and ~G = h~gi = h~hi. Given a protocol in
this notation, it is straightforward to derive an actual protocol implementing the proof [9].
SPK denotes a signature proof of knowledge, that is a non-interactive transformation of a
proof with the Fiat-Shamir heuristic [21].

Often we use a more abstract notation for proofs, e.g., by NIZKf(w) : statement(w)g
we denote any zero-knowledge proof protocol of knowledge of a witness w such that the
statement(w) is true. The idea is that when we use SPK we have the concrete realization
in mind whereas with NIZK we mean any non-interactive zero-knowledge proof. Some-
times we need witnesses to be online-extractable, which we make explicit by denoting with
NIZKf(w1; w2) : statement(w1; w2)g the proof of witnesses w1 and w2, where w1 can be
extracted.

3.3 (Veri�able) Pseudorandom Functions

To generate pseudonyms and verify their correct generation, we require a pseudorandom
function PRF that allows for a proof that it was correctly computed. Informally, a pseudo-
random function PRF(x; i) with key generation (x; y) $ PRFKGen(1�) is veri�able if it allows
for an e�cient proof that a value z is a proper PRF output for input i and secret key x:
�z

$ NIZKf(x) : z = PRF(x; i)g(i; z).
Dodis and Yampolskiy [18] have proposed such a function, PRFG(x; i) = g1=(x+i), which

works in a cyclic group G = hgi of order q . The pseudorandomness of which is based on the
q-Decisional Di�e-Hellman Inversion problem [8]. The algorithms for it are as follows (here
we deviate from their algorithms in the way we de�ne the proof as we require that the proof
algorithm be zero-knowledge).

The key generation PRFKGenG(1
�) generates a random secret key x 2 Zq with cor-

responding public key y gx. The proof �z of correct computation of the PRF, i.e.,
z = PRFG(logg y; i), does not need to be online extractable in our construction, and thus is

as follows: �z
$ SPKf(x) : y = gx ^ g=zi = zxg(y; g; i; z):

We will also need a standard (i.e., non-veri�able) pseudorandom permutation, which con-
sists of a key generation k $ PRPKGenG(1

�), a function z PRPG(k; i) and its e�ciently
computable inverse i PRP�1

G
(k; z). For simplicity, we assume PRPG to work in a group G

as well.

3.4 Homomorphic Encryption Schemes

We require an encryption scheme (EncKGenG;EncG;DecG) that is semantically secure and
that has a cyclic group G as message space. It consists of a key generation algorithm
(epk ; esk) $ EncKGenG(1

�), where � is a security parameter, an encryption algorithm
C $ EncG(epk ;m), with m 2 G, and a decryption algorithm m DecG(esk ; C). Some-
times we will make the randomness used in the encryption process explicit, in which case
we will write C EncG(epk ;m; r), where r encodes all the randomness, i.e., EncG(�; �; �) is a
deterministic algorithm.

We require further that the encryption scheme has an appropriate homomorphic property,
namely that there is an e�cient operation � on ciphertexts such that, if C1 2 EncG(epk ;m1)
and C2 2 EncG(epk ;m2), then C1 � C2 2 EncG(epk ;m1 �m2). We will also use exponents to
denote the repeated application of �, e.g., C2 to denote C � C.

ElGamal Encryption (with a CRS Trapdoor). We use the ElGamal encryption
scheme, which is homomorphic and chosen plaintext secure. The semantic security is su�-
cient for our construction, as the parties always prove to each other that they formed the
ciphertexts correctly. Let (G; g; q) be system parameters available as CRS such that the DDH
problem is hard w.r.t. � , i.e., q is a � -bit prime.

9

EncKGenG(1
�) : Pick random �x from Zq , compute �y g�x, and output esk �x and epk �y.

EncG(epk ;m) : To encrypt a message m 2 G under epk = �y, pick r $ Zq and output the
ciphertext (C1; C2) (�yr; grm).

DecG(esk ; C) : On input the secret key esk = �x and a ciphertext C = (C1; C2) 2 G
2, output

m0 C2 � C
�1=�x
1 .

In our concrete instantiation we will use a variation of ElGamal encryption with a CRS
trapdoor, which allows to make proofs for correct ciphertexts e�ciently online extractable.
That is, we assume that the CRS additionally contains a public key ŷ. For encryption,
each ciphertext gets extended with an element C0 ŷr, which will be ignored in normal
decryption. In our security proof of the overall scheme, the simulator will be privy to x̂ =

logg ŷ as it can set the CRS appropriately and thus is able to decrypt as m0 C2 � C
�1=x̂
0 .

3.5 Signature Schemes

We require two di�erent kinds of signature schemes: One signature scheme is needed for
server SA to sign a request to the converter so that later a server SB can verify that what
it gets from the converter stems indeed from server SA. For this, any standard signature
scheme (SigKGen; Sign;Vf) is su�cient. Such as scheme consists of a key generation algorithm
(spk ; ssk) $ SigKGen(1�), a signing algorithm � $ Sign(ssk ;m), with m 2 f0; 1g�, and a
signature veri�cation algorithm f0; 1g Vf(spk ; �;m). The security de�nitions are standard
and we thus do not repeat them here.

The second signature scheme we require is for the converter to sign pseudonyms. This
scheme needs to support the signing of plain pseudonyms as well as encrypted pseudonyms.
Also it needs to allow for (e�cient) proofs of knowledge of a signature on a pseudonym that
is encrypted. Commuting signatures [22] would �t our bill here. However, because of their
generality, their use would make our construction much less e�cient than what we present.
The reason for that is that almost all inputs and outputs in the construction come with non-
interactive proofs that they are well de�ned. As the de�nitions for commuting signatures
also include these proofs, we cannot use (a subset of) these either. Blazy et al. [7] de�ne
signature schemes that can sign (randomizable) ciphertexts. Such schemes are a special case
of commuting signatures and much closer to what we need. However, the security de�nition
they give requires that the keys for the encryption scheme be honestly generated and the
decryption key be available in the security game. This means that when using such a scheme
in a construction, the decryption keys need to be extractable from adversarial parties and
correct key generation enforced, which would lead to less e�cient schemes. We therefore
need to provide our own de�nition that does not su�er from the drawbacks discussed. We
call this a dual-mode signature scheme as it allows one to sign messages in the plain as well
as when they are contained in an encryption.

Finally, we point out that the dual-mode signatures are similar to blind signature schemes,
where the signer also signs \encrypted" messages. Now the typical security de�nition for blind
signatures requires only that an adversary be not able to produce more signatures than he ran
signing protocols with the signer. That kind of de�nition would not be good enough for us
{ for our construction we need to be sure that the signer indeed only signs the message that
is contained in the encryption. Further, the setting for which we will use those dual-mode
signatures would not be realizable by blind signatures: in our protocol a server SA encrypts
a message under a public key of a server SB , the converter then signs a derivation of the
ciphertext, and SB �nally decrypts the signature.

Dual-Mode Signature Schemes. A dual-mode signature scheme consists of the al-
gorithms (SigKGenG; SignG;EncSignG;DecSignG;VfG) and also uses an encryption scheme
(EncKGenG;EncG;DecG) that has the group G as message space. In particular, the algorithms
working with encrypted messages or signatures also get the keys (epk ; esk) $ EncKGenG(1

�)
of the encryption scheme as input.

10

SigKGenG(1
�) : On input the security parameter and being parameterized by G, this algo-

rithm outputs a public veri�cation key spk and secret signing key ssk .

SignG(ssk ;m) : On input a signing key ssk and a message m 2 G outputs a signature �.

EncSignG(ssk ; epk ; C) : On input a signing key ssk , a public encryption key epk , and cipher-
text C = EncG(epk ;m), outputs an \encrypted" signature � of C.

DecSignG(esk ; spk ; �) : On input an \encrypted" signature �, secret decryption key esk and
public veri�cation key spk , outputs a standard signature �.

VfG(spk ; �;m) : On input a public veri�cation key spk ; signature � and message m, outputs
1 if the signature is valid and 0 otherwise.

For correctness, we require that for all (spk ; ssk) $ SigKGenG(1
�), all (epk ; esk) $

EncKGenG(1
�), all m 2 G, and all random choices in SignG(�; �), in EncG(�; �), and

EncSignG(�; �; �), we have that VfG(spk ; SignG(ssk ;m);m) = 1 and VfG(spk ;DecSignG(esk ; spk ;
EncSignG(ssk ; epk ;EncG(epk ;m)));m) = 1

In terms of security, we extend the standard unforgeability de�nition to allow the ad-
versary to also get signatures on encrypted messages. Thereby, the oracle OEncSign will only
sign correctly computed ciphertexts, which is modeled by providing an additional encryption
oracle OEnc and only sign ciphertexts that were generated via OEnc. When using the scheme,
this can easily be enforced by asking the signature requester for a proof of correct ciphertext
computation, and, indeed, in our construction such a proof is needed for other reasons as
well. Note that we do not require that the \encrypted" signature output by EncSignG does
not leak any information about the signature contained in it.

Experiment ExpDMSIG-forge
A;DMSIG;EncG

(G; �):

(spk ; ssk) $ SigKGen(1�)
L ;; C ;
(m�; ��) $ AOSign(ssk ;�);OEnc(�;�);OEncSign(ssk ;�;�)(spk)
where OSign on input (mi):
add mi to the list of queried messages L L [mi

return � $ SignG(ssk ;mi)
where OEnc on input (epk i;mi):
run Ci

$ EncG(epk i;mi) and add (epk i; Ci;mi) to C
return Ci

where OEncSign on input (epk i; Ci):
retrieve (epk i; Ci;mi) from C, abort if it doesn't exist;
add mi to the list of queried messages L L [mi

return � $ EncSignG(ssk ; epk i; Ci)
return 1 if VfG(spk ; �

�;m�) = 1 and m� =2 L

Figure 2: Unforgeability experiment for dual-mode signatures

Definition 3.1 (Unforgeability of Dual-Mode Signatures). We say a dual-mode
signature scheme is unforgeable if for any e�cient algorithm A the probability that the ex-
periment given in Figure 2 returns 1 is negligible (as a function of �).

AGOT+ (Dual-Mode) Signature Scheme. To instantiate the building block of dual-
mode signatures we will use an extension of the structure-preserving signature scheme by
Abe et al. [2], which we denote as AGOT+ scheme. First, we recall the original AGOT
scheme (SigKGenG; SignG;VfG) slightly adapted to our notation, and then we describe how to
instantiate the additional algorithms EncSignG and DecSignG with respect to a homomorphic
encryption scheme (EncKGenG;EncG;DecG).

AGOT assumes the availability of system parameters crs = (q;G; ~G;Gt; e; g; ~g; x) consist-
ing of (q;G; ~G;Gt; e; g; ~g)

$ G(1�) and an additional random group element x $ G. That
is, the key generation is split in two parts, one that generates the public parameters and one
that generates the public and secret keys for the signer. For our construction, the former

11

part will also generate the group G that will also be the message space of the encryption
scheme. Thus, SigKGenG becomes that second part of the AGOT key generation, abusing
notation, we give it the public parameters as input instead of the security parameter � . For
all other algorithms, we assume that the public parameters, in particular the group G, are
given as implicit input.

SigKGenG(q;G;
~G;Gt; e; g; ~g; x) : Choose a random v $ Zq , compute y ~gv, and return

spk = y and ssk = v.

SignG(ssk ;m) : On input a message m 2 G and key ssk = v, choose a random u $ Z�q , and
output the signature � = (r; s; t; w) including the randomization token w where:

r ~gu; s (mv � x)1=u; t (sv � g)1=u; w g1=u:

VfG(spk ; �;m) : Parse � = (r; s; t; w0) and spk = y and accept if and only if
m; s; t 2 G; r 2 ~G; and

e(s; r) = e(m; y) � e(x; ~g); e(t; r) = e(s; y) � e(g; ~g):

Note that for notational simplicity, we consider w part of the signature, i.e., � = (r; s; t; w),
but that the veri�cation equation does not perform any check on w. As pointed out by Abe
et al., a signature � = (r; s; t) can be randomized using the randomization token w to obtain
a signature �0 = (r0; s0; t0) by picking a random u0 $ Z�q and computing

r0 ru
0

; s0 s1=u
0

; t0 (tw(u0�1))1=u
02

:

This randomization feature is useful to e�ciently prove knowledge of a signature on an
encrypted message, which is needed in our protocol. We show in Appendix B.1 how such a
proof for the AGOT scheme can be constructed.

Now, we present the additional algorithms that allow to obtain signatures on encrypted
messages M1.

EncSignG(ssk ; epk ;M) : On input a secret key ssk = v and a proper encryption M =
EncG(epk ;m) of a message m 2 G under epk , choose a random u $ Z�q , and output
the (partially) encrypted signature �� = (r; S; T; w):

r ~gu; S (Mv � EncG(epk ; x))
1=u; T (Sv � EncG(epk ; g))

1=u; w g1=u:

DecSignG(esk ; spk ; �) : Parse � = (r; S; T; w), compute s DecG(esk ; S), t DecG(esk ; T)
and output � = (r; s; t; w).

It is not hard to see that � = (r; s DecG(esk ; S); t DecG(esk ; T); w) is a valid
signature on m DecG(esk ;M), and that the distribution of these values is the same as
when m was signed directly. More formally, we prove that the AGOT scheme extended with
the above algorithms EncSignG;DecSignG yields an unforgeable dual-mode signature scheme.
The proof is given in Appendix B.3.

Theorem 3.2 (Unforgeability of AGOT+) If the AGOT signature scheme
(SigKGenG; SignG;VfG) is an unforgeable signature scheme then, together with the al-
gorithms EncSignG;DecSignG described above, the AGOT+ scheme (SigKGenG;SignG;
EncSignG;DecSignG;VfG) is an unforgeable dual-mode signature scheme.

For our construction, we also require the signer to prove that it computed the signature
on an encrypted message correctly. In Appendix B.2 we describe how such a proof can be
done. (Intuitively, one would think that one could just decrypt and then verify whether the
result is a valid signature. However, we cannot do this in the security proof of our pseudonym
scheme where we reduce to the security of the homomorphic encryption scheme, as then we
don't have a decryption oracle.)

1In the AGOT+ scheme, we write M to denote the encryption of a message m, instead of C. Likewise,

capital letters S; T denote the encrypted versions of the values s; t that would be computed in a standard

AGOT signature.

12

4 Our Protocol

In this section we present our protocols for an (un)linkable pseudonym system. We �rst give
a high-level idea and then explain the detailed construction.

Roughly, the computation of pseudonyms is done in several layers, each adding random-
ness to the process such that the �nal pseudonym nymi;A is indistinguishable from a random
value (if not both X and SA are corrupt) as required by our ideal functionality. At the same
time, the pseudonyms must still have some (hidden) structure, which allows the consistent
transformation of pseudonyms by the converter.

The main idea is to let the converter �rst derive a pseudorandom \core identi�er" zi
PRFG(xX ; uid i) from uid i and for secret key xX . From the unique core identi�er zi, the
converter then derives its pseudonym contribution using a secret exponent xA that it chooses
for each server SA 2 S, but never reveals to them.

For the blind conversion, we use homomorphic encryption so that the �rst server SA can
encrypt the pseudonym for the second server SB hand this encryption to the converter, who,
using the homomorphic properties of the encryption scheme, raises the encrypted pseudonym
to the quotient of the two servers' secret keys, thereby transforming the encrypted pseudonym.

The tricky part is to make this whole pseudonym generation and conversion process
veri�able and consistent, but without harming the unlinkability and blindness properties. In
particular, for pseudonym generation a server SA must be ensured that it receives correctly
formed pseudonyms. For conversion, SA needs to prove to the converter that it encrypted
a valid pseudonym, and the converter needs to prove to the server SB that it applied the
conversion correctly. This is achieved by a careful composition of nested encryption, dual-
mode signatures which allow signing of plain and encrypted messages, and zero-knowledge
proofs.

In the following we give the detailed description of our protocol and also provide some
intuition for the protocol design.

4.1 Detailed Description

We now describe our protocol assuming that a certi�cate authority functionality FCA, a se-
cure message transmission functionality FSMT (enabling authenticated and encrypted com-
munication), and a common reference string functionality FCRS are available to all parties.
For details of those functionalities we refer to [13]. FCRS provides all parties with the system
parameters, consisting of the security parameter � and a cyclic group G = hgi of order q
(which is a � -bit prime). In the description of the protocol, we assume that parties call
FCA to retrieve the necessary key material whenever they use a public key of another party.
Further, if any of the checks in the protocol fails, the protocol ends with a failure message.

Converter Setup:

(epkX ; eskX)
$ EncKGenG(1

�)
(xX ; yX)

$ PRFKGenG(1
�)

for each server SA 2 S:
(spkX ;A; sskX ;A)

$ SigKGenG(1
�)

choose a random xA
$ Zq and compute yA gxA

store skX (eskX ; xX ; fxA; sskX ;Ag8SA2S)
register pkX (epkX ; yX ; fyA; spkX ;Ag8SA2S) with FCA

Server Setup (by each server SA 2 S):

(epkA; eskA)
$ EncKGenG(1

�)
(spkA; sskA)

$ SigKGen(1�)
kA

$ PRPKGenG(1
�)

store skA (eskA; sskA; kA)
register pkA (spkA; epkA) with FCA

Figure 3: Setup of Converter and Servers

13

Setup. Before starting a new instance of our (un)linkable pseudonym system, we assume
that the converter and all servers use standard techniques [13, 4] to agree on a session identi�er
sid = (sid 0;X ;S;U;N) where sid 0 is a fresh and unique string, X and S = fSA;SB ; : : : g
denote the identities of the communicating parties, and U = Zq and N = G de�ne the
domain of user identi�ers and pseudonyms respectively. Then, whenever a new sid has been
agreed on, all speci�ed entities X and S generate their keys as described in Figure 3. For
simplicity, we assume that the converter setup is trusted and discuss in Section 5.6 how this
assumption can be relaxed .

Step1. Upon input (NYMGEN; sid ; uid i;SA; anon), converter X generates its pseudonym contri-
bution for user uid i on server SA:

a) Check that uid i 2 Zq, and if so compute xnymi;A PRFG(xX ; uid i)
xA and �nym SignG(sskX ;A;

xnymi;A):

b) Prove correctness of the pseudonym generation in the proof �nym :

if anon = 0 : �nym
$ NIZKf(xA; xX ; zi) : xnymi;A = zxAi ^ yA = gxA ^ zi = PRFG(xX ; uid i)g(sid)

if anon = 1 : �nym
$ NIZKf(xA; zi) : xnymi;A = zxAi ^ yA = gxA ^ zi 2 Gg(sid); and set uid i ?

c) Send (sid ; xnymi;A; �nym ; �nym ; uid i) via FSMT to SA, and end with no output.

Step2. Upon receiving (sid ; xnymi;A; �nym ; �nym ; uid i) from converter X , server SA veri�es input
and derives �nal pseudonym:

a) Verify that VfG(spkX ;A; �nym ; xnymi;A) = 1 and that �nym is correct w.r.t. yA and yX ; uid i (if uid i 6= ?).
b) Compute nymi;A PRPG(kA; xnymi;A) and store (sid ;nymi;A; �nym).

c) Output (NYMGEN; sid ;nymi;A; uid i).

Figure 4: Pseudonym Generation

Pseudonym Generation. A pseudonym nymi;A for main identi�er uid i and server SA is
jointly computed by the server and the converter X , as depicted in Figure 4. The generation is
initiated by the converter and starts by applying a pseudorandom function to uid i obtaining
a secret \core identi�er" zi PRFG(xX ; uid i). As xX is a secret key known only to the
converter, the servers are not privy of the mapping between uid i and zi. From the core
identi�er zi { which is the same for all servers in S { the converter then derives a server-
speci�c \inner pseudonym" xnymi;A zxAi for a secret conversion value xA that X chooses
internally for every server SA, but never reveals to them. By using a veri�able PRF and
proving correctness of the computation in �nym , the entire process of deriving the inner
pseudonym xnymi;A can be veri�ed by the server. If anon = 0, i.e., the pseudonym should
be veri�ably derived from a particular uid i that is also given to the server, the proof is done
w.r.t. that uid i, whereas for anon = 1, �nym only shows that the pseudonym was formed
correctly for some uid i. In the latter case, the proof actually shows that the pseudonym is
of the correct form xnymi;A = zxAi for some zi 2 G and also allows for extraction of zi as
this will be required in the security proof.

The inner pseudonym xnymi;A gets also accompanied with a server-speci�c signature �nym
generated by the converter (using a dedicated signing key for each server). This signature will
be crucial in a conversion request to ensure that only the server SA, for which the pseudonym
was intended for, can subsequently use it in a conversion. We use the dual-mode signature
for that purpose, as the converter needs to sign pseudonyms also in a blind way when they
are generated via a conversion request.

When receiving a correctly signed and derived xnymi;A, the server SA then adds the �nal
pseudonym layer by applying a pseudorandom permutation to xnymi;A for secret key kA
as nymi;A PRPG(kA; xnymi;A). This ensures that the server's output nymi;A cannot be
linked to xnymi;A or uid i by a corrupt converter.

14

ConversionRequest : The server SA requests a conversion of pseudonym nymi;A towards server SB .

Step1. Upon input (CONVERT; sid ; qid ;nymi;A;SB), Server SA computes and sends request:

a) Retrieve (sid ;nymi;A; �nym) for nymi;A and abort if no such record exists.

b) Compute xnymi;A PRP�1
G
(kA;nymi;A), C

$ EncG(epkX ;EncG(epkB ; xnymi;A)), and �C Sign(sskA;
(sid ; qid ; C)).

c) Prove knowledge of a converter's signature �nym on the underlying xnymi;A and under key spkX ;A:

�A
$ NIZKf(xnymi;A; �nym) : VfG(spkX ;A; �nym ; xnymi;A) = 1 ^

C = EncG(epkX ;EncG(epkB ; xnymi;A))g(sid ; qid):

d) Send (sid ; qid ; C; �A; �C ;SB) via FSMT to X and end with no output.

Step2. Upon receiving (sid ; qid ; C; �A; �C ;SB) from SA, X veri�es request and asks for permis-
sion to proceed:

a) Verify that Vf(spkA; �C ; (sid ; qid ; C)) = 1 and �A is correct w.r.t. spkX ;A and the received ciphertext C.

b) Store (convert; sid ; qid ; C; �A; �C ;SA;SB) and output (CONVERT; sid ; qid ;SA;SB)

ConversionResponse : The converter X and server SB blindly convert the encrypted pseudonym into nymi;B .

Step1. Upon input (PROCEED; sid ; qid), X blindly derives the encrypted pseudonym xnymi;B:

a) Retrieve the conversion record (convert; sid ; qid ; C; �A; �C ;SA;SB) for qid , abort if no such record exists.

b) Compute C 0 DecG(eskX ; C) and C 00 $ (C 0 � EncG(epkB ; 1))
� where � xB=xA (mod q) :

c) Sign the encrypted pseudonym using the secret key sskX ;B for SB as �nym
$ EncSignG(sskX ;B ; epkB ; C

00).

d) Prove correctness of the computation of C 00 and �nym in �X :

�X
$ NIZKf(�; C 0; sskX ;B ; eskX) : �nym = EncSignG(sskX ;B ; epkB ; C

00) ^

C 0 = DecG(eskX ; C) ^ C 00 = (C 0 � EncG(epkB ; 1))
� ^ y�A = yBg(sid ; qid):

e) Send (sid ; qid ; C; C 00; �C ; �nym; �A; �X ; SA) via FSMT to SB .

Step2. Upon receiving (sid ; qid ; C; C 00; �C ; �nym; �A; �X ; SA) from X , SB derives its local
pseudonym nymi;B:

a) Verify that Vf(spkA; �C ; (sid ; qid ; C)) = 1, �A is correct w.r.t. spkX ;A; C and �X is correct w.r.t. C 00.

b) Compute xnymi;B DecG(eskB ; C
00) and �nym DecSignG(eskB ; spkX ;B ; �nym).

c) Derive the �nal pseudonym as nymi;B PRPG(kB ; xnymi;B).

d) Store (sid ;nymi;B ; �nym) and end with output (CONVERTED; sid ; qid ;SA;nymi;B).

Figure 5: Conversion Request and Response Protocol

Conversion Request. When a server SA wishes to convert a pseudonym nymi;A towards
a server SB , it sends a conversion request to X , as described in Figure 5. Each request also
comes with a unique query identi�er qid (which can be established through the same standard
techniques as sid). To achieve blindness of the request towards X , the server encrypts the
unwrapped inner pseudonym xnymi;A under SB 's public key. We also add a second layer
of encryption using X 's public key. This nested encryption is necessary to allow X to later
prove correctness of a conversion towards the target server SB , but without SB learning the
value xnymi;A. The signature �C of SA on the nested encryption serves the same purpose.
Both, the signature and proof are thereby bound to the query identi�er qid , such that a
corrupt X cannot reuse the values in a di�erent session.

Finally, we also want to ensure that SA can only trigger conversions of correct pseudonyms
that \belong" to the server. Therefore, SA has to prove in �A that the ciphertext sent in the
request contains a pseudonym xnymi;A that is signed under the correct key of the converter
(but without revealing the signature).

When the converter X receives such a request, it �rst veri�es the signature �C and proof

15

�A. If both are valid, X asks the environment whether it shall proceed. This is the hook to
some external procedure which decides if the conversion from SA to SB shall be granted or
not.

Conversion Response. If the converter gets the approval to proceed, X and SB complete
the conversion as depicted in Figure 5. First, X uses the homomorphic property of the
encryption scheme and raises the encrypted pseudonym to the quotient xB=xA of the two
servers' secret conversion keys, thereby blindly transforming the encrypted inner pseudonym
into xnymi;B . The converter also re-randomizes the ciphertext by multiplying an encryption
of \1" which is crucial for proo�ng unlinkability. To allow SB to subsequently use the obtained
pseudonym, the converter also \blindly" signs the encrypted xnymi;B with the dual-mode
signature scheme. For ensuring consistency of a conversion (even in the presence of a corrupt
converter), X proves correctness of the transformation in �X . The converter then sends the
encrypted inner pseudonym xnymi;B as C 00 with encrypted signature �nym to SB , and also
forwards the received tuple (C; �C ; �A).

When SB receives a conversion request, it �rst checks that �C ; �A are valid, ensuring
that the request indeed was triggered by SA for query qid and for the pseudonym contained
in C. When SB also veri�ed the correctness of the conversion via �X , it decrypts xnymi;B

and corresponding signature �nym . The �nal pseudonym nymi;B is again derived using the
PRPG. It stores the pseudonym and signature, and outputs nymi;B together with the query
identi�er qid .

4.2 Security and E�ciency

We now show that our protocol described above securely realizes the ideal functionality Fnym
de�ned in Section 2. The proof is given in Appendix C.

Theorem 4.1 The (un)linkable pseudonym system described in Section 4 securely imple-
ments the ideal functionality Fnym de�ned in Section 2 in the (FCA;FCRS;FSMT) hybrid-
model, provided that

{ (EncKGenG;EncG;DecG) is a semantically secure homomorphic encryption scheme,

{ (SigKGenG;SignG;EncSignG;DecSignG;VfG) is an unforgeable dual-mode signature
scheme (as de�ned in Def. 3.1),

{ (SigKGen; Sign;Vf) is an unforgeable signature scheme,

{ (PRFKGenG;PRFG) is a secure and veri�able pseudorandom function,

{ (PRPKGenG;PRPG) is a secure pseudorandom permutation,

{ the proof system used for NIZK is zero-knowledge, simulation-sound and online-extractable
(for the underlined values), and

{ the DDH-assumption holds in group G.

When instantiated with the ElGamal encryption scheme for (EncKGenG;EncG;DecG), with
Schnorr signatures [31, 29] for (SigKGen; Sign;Vf), with the AGOT+ dual-mode signature
scheme for (SigKGenG; SignG;EncSignG;DecSignG;VfG), with the Dodis-Yampolskiy-PRF [18]
for (PRFKGenG;PRFG), and with the proof-protocols and \lazy" PRPG described in Section 5,
then by the security of the underlying building blocks we have the following corollary:

Corollary 4.1 The (un)linkable pseudonym system described in Section 4 and instantiated
as described above, securely realizes Fnym in the (FCA;FCRS;FSMT)-hybrid model under
the Symmetric eXternal Decision Di�e-Hellman (SXDH) assumption [3], the q-Decisional
Di�e-Hellman Inversion assumption [8], and the unforgeability of the AGOT scheme (which
holds in the generic group model).

16

E�ciency. With the primitives instantiated as stated above, we obtain the following e�-
ciency �gures, where expG denotes an exponentiation in group G and pair stands for a pairing
computation. Many of these exponentiations can be merged into multi-base exponentiations
which allows to substantially optimize the computational complexity.

Active Security Converter X Server (SA or SB)

PseudonymGeneration : 10(+1)exp
G
+ 1 exp~G SA : 4(+1)exp

G
+ 4 pair

ConversionRequest : 7 exp
G
+ 4 exp

Gt
+ 8 pair SA : 8 exp

G
+ 4 exp

Gt
+ 8 pair

ConversionResponse : 34 exp
G
+ 2 exp~G SB : 30 exp

G
+ 5 exp

Gt
+ 8 pair

HbC-Version (Sec. 4.3) Converter X Server (SA or SB)

PseudonymGeneration : 6 exp
G
+ 1 exp~G SA : |

ConversionRequest : 3 exp
G
+ 4 exp

Gt
+ 8 pair SA : 5 exp

G
+ 4 exp

Gt
+ 8 pair

ConversionResponse : 23 exp
G
+ 2 exp~G SB : 3 exp

G

4.3 Honest-but-Curious Converter

Our protocol achieves very strong security against active attacks, tolerating even a fully
corrupt converter. One might argue though that a converter in our system is at most of
the honest-but-curious type, i.e., the converter will always perform the protocol correctly
but might aim at exploiting the information it sees or loose its data. Then, it will be
su�cient to consider a weaker model where the converter will either be non-corrupted or of
such honest-but-curious type. Regarding servers, considering active attacks is less debatable,
however. Indeed, our pseudonym system can be used by a multitude of servers, possibly
from private and public domains, and thus security should hold against servers that behave
entirely malicious (as in our notion).

If one is willing to assume the weaker honest-but-curious adversary model for the con-
verter, one can easily derive a more light-weight version from our protocol. Roughly, all parts
where the converter proves correctness of its computations can be omitted. We now briey
sketch the necessary changes to our protocol and their impact on the e�ciency numbers.

Pseudonym Generation. In the pseudonym generation, the proof generation �nym by
the converter and the veri�cation of �nym and received signature �nym by the server SA can
be omitted. This reduces the complexity of the converter's part to 6expG + 1 exp~G and SA
has to perform no exponentiation or pairing anymore.

Conversion Request. The changes to the conversion protocol are slightly more complex.
When SA prepares its request, we can remove the outer encryption layer of C and omit
the signature �C . Both allowed X to forward SA's request in a blind yet veri�able manner
to SB . Relying on an honest-but-curious converter, this is not needed anymore. Overall,
the complexity in the conversion request decreases to 5 expG + 4 expGt + 8 pair for SA and
3 expG + 4 expGt + 8 pair for X .

Conversion Response. When the converter computes its conversion response, we can
omit the proof �X . Further, X does not have to forward the proof �A to SB as this was
needed in the security proof only when the converter was corrupt. Also the ciphertext C
needs no longer to be forwarded to SB and in fact should not be forwarded, as we just
changed C to be a direct encryption of nymi;A under S 0Bs key. Overall, the only values sent
from X to SB are now (sid ; qid ; C 00; �nym; SA). Consequently, also the part of the receiving
server SB gets more light-weight: it does neither have to verify �A, �X , or �C anymore. This
signi�cantly reduces the overall complexity of the response protocol to 23 expG + 1 exp~G for
X and 3 expG for SB .

17

5 Concrete Instantiations

In this section we describe how to instantiate the di�erent proofs used in our protocol,
assuming that the ElGamal encryption scheme [19] is used for (EncKGenG;EncG;DecG),
AGOT+ signatures (as de�ned in Section 3.5) for (SigKGenG; SignG;EncSignG;DecSignG;VfG)
and the Dodis-Yampolskiy [18] construction for the veri�able pseudorandom function
(PRFKGenG;PRFG). The concrete instantiations of the standard signature and the PRP
have no inuence on the proofs, as they don't appear in any of the proven statements. We
also describe some optimisations for computing the nested encryption C and derivation of
the ciphertext C 00 which enhance the e�ciency of our scheme.

5.1 System Parameters & CRS

As already pointed out in Section 4, the signature scheme and encryption scheme need to
be compatible with the algebraic group G, i.e., to sign and encrypt elements from G. For
the dual-mode signature we use the AGOT+ scheme which requires us to use bi-linear maps,
though. Indeed, to the best of our knowledge there seems to be no signature scheme to sign
group elements that allows for e�cient proofs of knowledge of a signature on a group element
which does not require bilinear maps.

Thus, we require that FCRS provides all parties instead of the single group G with three
groups G = hgi, ~G = h~gi, Gt of prime order q, and a bilinear map e : G � ~G ! Gt. Those
are generated as (q ;G; ~G;Gt; e; g; ~g)

$ G(1�). We require that the Decisional Di�e-Hellman
assumption holds for all the three groups (even in the presence of the bilinear map). This is
called the Symmetric eXternal Decision Di�e-Hellman (SXDH) assumption [3] and indeed
the absence of e�ciently computable maps between G and ~G seems to be a more natural
setting than the one where such maps exist.

For the system parameters of the AGOT(+) scheme also an additional random group
element x $ G is included in the CRS. Finally, to achieve online extractability for the NIZK
proofs, we require that the CRS further contains a random public key ŷ 2 G. In the security
proof, the simulator will choose a random x̂ 2 Zq and set ŷ gx̂, which allows to e�ciently
extract the necessary values as described in the preliminaries.

Overall, the CRS in our scheme then has the form crs = (q ;G; ~G;Gt; e; g; ~g; x; ŷ). The
converter's keys for the dual-mode signature have the form (spk = y; ssk = v), keys for the
ElGamal encryption are denoted as (epk = �y; esk = �x) and the converter's key for the PRF
is (xX ; yX).

5.2 Pseudonym Generation

In �nym a converter has to prove that it has generated its pseudonym contribution xnymi;A

correctly. If the pseudonym is not anonymous (anon = 0), it also includes a proof that the
core identi�er zi = PRFG(xX ; uid i) was computed correctly.

If the ag anon = 1, the proof

�nym $ NIZKf(xA; zi) : xnymi;A = zxAi ^ yA = gxA ^ zi 2 Gg(sid) :

is instantiated as follows: �rst compute an ElGamal encryption of zi under the CRS key as
Z = (Z1; Z2) (ŷr; zig

r) with a randomly chosen r $ Zq . Then compute the proof �0nym :

�0nym
$ SPKf(x0A; r) : Z1 = ŷr ^ Z2 = grxnym

x0A
i;A ^

g = y
x0A
A g(sid ; g; yA; xnymi;A; Z1; Z2)

and output �nym (Z; �0nym). For the analysis of this proof notice that zi = xnym
1=xA
i;A =

xnym
x0A
i;A, i.e., we use x

0
A = 1=xA instead of xA.

If the ag anon = 0, then the proof

18

�nym
$ NIZKf(xA; xX ; zi) : xnymi;A = zxAi ^ yA = gxA ^

zi = PRFG(xX ; uid i)g(sid) :

is instantiated as follows:

�nym
$ SPKf(x0A; x

0
X) : 1 = gx

0

X y
�x0A
X

^ g = y
x0A
A ^

g = (xnymuidi
i;A)x

0

Axnym
x0
X

i;Ag(sid ; g; yA; xnymi;A; yX ; uid i)

where yX is part of the converter's public key. Let us analyse the latter proof. The �rst
term established that x0X = x0AxX , the second one that x0A = 1=xA and the third term that
xnymi;A = (g1=(uidi+xX))xA = PRFG(xX ; uid i)

xA .

5.3 Conversion Request

In a conversion request, the server SA has to prove that it knows a converter's sig-
nature on the inner pseudonym xnymi;A, which it provided in double encrypted form
C = EncG(epkX ;EncG(epkB ; xnymi;A)).

We start with the description of how the double encryption C = EncG(epkX ;
EncG(epkB ; xnymi;A)) is instantiated. We already apply some optimizations and extend the
ciphertext such that it allows for the online extraction of the pseudonym and its signature
in the proof �A.

Let eskX = �xX and epkX = �yX be the encryption key pair of the converter and eskB = �xB
and epkB = �yB the key pair for server SB . Let ŷ be the public key in the CRS. Then C is
computed as an extended ElGamal encryption as

C := (C0; C1; C2; C3) (ŷr1+r2 ; �yr1B ; �yr2
X
; gr1+r2xnymi;A)

with r1; r2
$ Zq . Let (r; s; t; w) be the converter's signature on xnymi;A.

Then, the proof

�A
$ NIZKf(xnymi;A; �nym) : VfG(spkX ;A; �nym ; xnymi;A) = 1 ^

C = EncG(epkX ;EncG(epkB ; xnymi;A))g(sid ; qid):

is realized as follows: First the server SA randomizes the signature � = (r; s; t; w) for key
spkX ;A = yX ;A by picking a random u0 $ Z�q and computes �0 = (r0; s0; t0; w0) as

r0 ru
0

; s0 s1=u
0

; t0 (tw(u0�1))1=u
02

:

Then it computes the proof

�0A
$ SPKf(r1; r2; �1; �2) : C0 = ŷr1+r2 ^

C1 = �yr1B ^ C2 = �yr2
X
^ S1 = ŷ�1 ^ T1 = ŷ�2 ^

e(x; ~g)e(C3; yX ;A)=e(S2; r
0) = e(g; yX ;A)

r1+r2e(g; r0)��1 ^

e(g; ~g)e(S2; yX ;A)=e(T2; r
0) = e(g; yX ;A)

�1e(g; r0)��2

g(sid ; qid ; crs; C; r0; S; T; w; yX ;A; �yX ; �yB);

where S = (S1; S2) = (ŷ�1 ; g�1s0) and T = (T1; T2) = (ŷ�2 ; g�2t0) are (ordinary) ElGamal
encryptions under the CRS key that make this proof online extractable. It outputs �A =
(�0A; S; T; r

0). The analysis of this proof follows from the proof �M (which proves knowledge
of a AGOT signature on an encrypted message) given in Section B.1.

5.4 Conversion Response

Let us now detail the response that is produced by the converter X , and proves that it had
correctly computed a signature on the encrypted pseudonym.

19

Given the ciphertext C = (C0; C1; C2; C3), the converter computes C 0
2 C3=C

1=�xX
2 ,

C 00
2 (C 0

2
xB=xA)gr, and C 00

1 C
xB=xA
1 �yrB , with r $ Zq . Let � = xB=xA (mod q). Notice

that (C1; C
0
2) is an encryption of xnymi;A under �yB (provided SA computed C honestly) and

that we have C 00
2 = (C3=C

1=�xX
2)�gr. Thus, C 00 = (C 00

1 ; C
00
2) is an encryption of xnymi;B under

�yB .
Now, the converter computes the signature on the ciphertext (C 00

1 ; C
00
2) and for signing

key sskX ;B = vX ;B (with public key spkX ;B = yX ;B) . Choose a random u; �1; �2
$ Z�q , and

compute the (partially) encrypted signature �� = (r; S; T; w):

r ~gu; w g1=u

S1 C 00
1
vX ;B=u�y�1B ; S2 (C 00

2
vX ;Bx)1=ug�1 ;

T1 S
vX ;B=u
1 �y�2B ; T2 (S

vX ;B

2 g)1=ug�2 :

Output �� = (r; (S1; S2); (T1; T2); w), where (S1; S2) and (T1; T2) are encryptions under
SB 's public key �yB .

Then, the proof

�X
$ NIZKf(�; C 0; sskX ;B ; eskX) : �nym = EncSignG(sskX ;B ; epkB ; C

00) ^

C 0 = DecG(eskX ; C) ^ C 00 = (C 0 � EncG(epkB ; 1))
� ^ y�A = yBg(sid ; qid):

that X computed and signed (C 00
1 ; C

00
2) correctly and is as follows:

�X
$ SPKf(u0; v0; �1; �2;�; r; p) : ~g = ru

0

^ w = gu
0

^

1 = y�u
0

X ;B~g
v0 ^ S1 = C 00

1
v0
�y�1B ^ S2 = C 00

2
v0
xu

0

g�1 ^

T1 = Sv
0

1 �y�2B ^ T2 = Sv
0

2 gu
0

g�2 ^ yB = y�A ^

C 00
1 = C�

1 �yrB ^ C 00
2 = C�

3 Cp
2g

r ^ 1 = g��yp
X

g(sid ; qid ; crs; r; S; T; w;C 00
1 ; C

00
2 ; C; yX ;B ; �yX ; �yB) :

The last term establishes that p = ��=�xX . The last four terms show that the ciphertext
(C 00

1 ; C
00
2) was computed correctly from (C0; C1; C2; C3) whereas all other terms show that the

\encrypted" signature was computed correctly.

5.5 Simulation-Sound Zero-Knowledge Proofs

The most e�cient way to make the proof protocol concurrent zero-knowledge and simulation-
sound is by the Fiat-Shamir transformation [21]. In this case, we will have to resort to the
random-oracle model [6] for the security proof. To make the resulting non-interactive proofs
simulation-sound, it su�ces to let the prover include context information as an argument to
the random oracle in the Fiat-Shamir transformation, such as the system parameters, sid ,
qid , and the protocol step in which the statement is being proven, so that the proof is resistant
to a man-in-the-middle attack. In particular, notice that all the statements we require the
parties to prove to each other, are proofs of membership (i.e., that some computation was
done correctly) and not proofs of knowledge. Therefore, it is not necessary that the prover
can be re-wound to extract the witnesses.

We note, however, that there are alternative methods one could employ instead to make
�-protocols non-interactive that do not rely on the random oracle model (e.g., [26, 24, 10]).
Unfortunately, these methods come with some performance penalty.

5.6 On Realizations for the Trusted Setup

In our protocol we assumed that the setup phase where all keys are generated is trusted.
This is needed for our security proof to go through, as therein the simulator has to know
the secret keys used for the generation and conversion of the values xnymi;A. Thus, in fact,

20

we only need to ensure trusted setup for the keys (xX ; yX) and f(xA; yA)g8SA2S which are
generated by the converter. Given that the converter is the crucial authority in our system,
this seems to be a reasonable assumption (recall that the main goal was to protect against a
too curious converter, and the converter is still allowed to be fully corrupt in the pseudonym
generation and conversion, only the setup phase must be trusted).

However, if this setup assumption should be relaxed, one could extend the converter's
setup procedure such that he has to prove correctness of those keys. This can be done as
follows: For each conversion key pair (xA; yA) for server SA 2 S, the converter additionally
computes

�yA
$ NIZKf(xA) : yA = gxAg(sid ; yA):

For the key (xX ; yX) of the veri�able PRF we make use of its veri�able nature and let X
also compute z PRFG(xX ; 0) and

�yX
$ NIZKf(xX) : z = PRFG(xX ; 0)g(sid ; yX ; z):

Those proofs are then included in the converter's public key pkX and allow the simulator
to extract the secret keys. As here the values to be extracted are exponents, we can not use
the ElGamal encryption with a CRS trapdoor as for the other proofs, but would have to
apply a veri�able encryption scheme instead, e.g., [11].

Another solution to enforce trusted setup is to use distributed key-generation tech-
niques [25] for (xX ; yX) and all f(xA; yA)g8SA2S . That is, those keys are then jointly
generated by all servers and the converter, but still with only the converter obtaining the
keys. Then, as long as at least one honest server is involved, the simulator can set the keys
accordingly.

5.7 Instantiating PRPG via Lazy Sampling

Our scheme makes use of a pseudorandom permutation PRPG to let each server derive its
�nal pseudonym nymi;A as nymi;A PRPG(kA; xnymi;A) and also re-obtain xnymi;A via

PRP�1
G

in a conversion request. However, we mainly introduced the PRPG for notational
convenience. In fact, it is su�cient to choose a random nymi;A

$ G whenever a fresh xnymi;A

is received, and to keep a list Lnym of the mapping (nymi;A; xnymi;A). Then, whenever
xnymi;A appears again, SA simply retrieves nymi;A from Lnym and vice-versa. Symmetric
encryption is an alternative as well, with proper mapping between G and the domain and
range of the symmetric cipher.

6 Conclusion and Extensions

We have presented a protocol that allows to maintain and exchange data in a decentralized
manner, based on pseudonyms which are per se unlinkable but can be transformed from
one server to another with the help of a central converter. Our protocol overcomes the
typical privacy bottleneck of such a system as it performs the pseudonym generation and
conversion only in a blind way. It also provides strong guarantees in terms of consistency
and controllability even if the converter is corrupt.

An interesting area for future work is to detail the di�erent approaches on how to securely
provision the pseudonyms. For instance, one possibility would be to combine our system
with privacy-enhancing credentials that contain the unique identi�er uid i and are given to
the users. That could allow a user to obtain a particular pseudonym contribution xnymi;A

from the converter, and later prove towards SA that she is indeed the correct \owner" of
xnymi;A.

Roughly, the idea would be to modify the pseudonym generation to output also a
commitment com to uid i, e.g., com = guidihr for the random opening information r. The
proof �nym (for anon = 1) that is generated by the converter to ensure correctness of the
pseudonym would be modi�ed accordingly to

21

�nym
$ NIZKf(xX ; xA; uid i; r) : zi = PRFG(xX ; uid i) ^

xnymi;A = zxAi ^ yA = gxA ^ com = guidihrg(sid ; com):

Then, a user could register with a server SA by providing xnymi;A, the proof �nym and then
prove to the server that she owns a credential with the same uid i that is contained in the
commitment com without revealing uid i.

Another interesting extension are audit capabilities. In a pseudonym system with a fully
trusted converter, the converter could keep a log �le of all server requests and allow the user
(or a trusted auditor) to monitor which entities correlated or exchanged his data. With the
blind conversions in our system, such a central audit is not immediately possible anymore.
It is an interesting open problem how to add such audit capabilities without harming the
privacy properties of our system.

In a similar vein, it would be desirable to combine our pseudonym system with policy
enforcement tools in a privacy-preserving manner. That is, allowing the user to specify which
data exchanges are permitted and enable the converter to blindly check whether a received
conversion request violates any user constraints.

Acknowledgements

This work was supported by the European Commission through the Seventh Framework
Programme, under grant agreements #321310 for the PERCY grant and #318424 for the
project FutureID.

References

[1] H. Aamot, C. D. Kohl, D. Richter, and P. Knaup-Gregori. Pseudonymization of patient
identi�ers for translational research. BMC Medical Informatics and Decision Making
13:75, 2013.

[2] M. Abe, J. Groth, M. Ohkubo, and M. Tibouchi. Uni�ed, minimal and selectively
randomizable structure-preserving signatures. TCC 2014, LNCS, 2014.

[3] G. Ateniese, J. Camenisch, S. Hohenberger, and B. de Medeiros. Practical group sig-
natures without random oracles. Cryptology ePrint Archive, Report 2005/385, 2005.
http://eprint.iacr.org/2005/385.

[4] B. Barak, Y. Lindell, and T. Rabin. Protocol initialization for the framework of universal
composability. Cryptology ePrint Archive, Report 2004/006, 2004. http://eprint.

iacr.org/2004/006.

[5] M. Barbaro and T. Zeller. A face is exposed for aol searcher no. 4417749. New York
Times, 2006. http://www.nytimes.com/2006/08/09/technology/09aol.html.

[6] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
e�cient protocols. In V. Ashby, editor, ACM CCS 93. ACM Press, Nov. 1993.

[7] O. Blazy, G. Fuchsbauer, D. Pointcheval, and D. Vergnaud. Signatures on randomizable
ciphertexts. PKC 2011

[8] D. Boneh and X. Boyen. E�cient selective-ID secure identity based encryption without
random oracles. EUROCRYPT 2004, 3027 of LNCS, 2004.

[9] J. Camenisch, A. Kiayias, and M. Yung. On the portability of generalized schnorr proofs.
EUROCRYPT 2009, 5479 of LNCS, 2009.

22

[10] J. Camenisch, S. Krenn, and V. Shoup. A framework for practical universally composable
zero-knowledge protocols. In D. H. Lee and X. Wang, editors, ASIACRYPT 2011, 7073
of LNCS, Dec. 2011.

[11] J. Camenisch and V. Shoup. Practical veri�able encryption and decryption of discrete
logarithms. CRYPTO 2003, 2729 of LNCS, 2003.

[12] J. Camenisch and M. Stadler. E�cient group signature schemes for large groups (ex-
tended abstract). CRYPTO'97, 1294 of LNCS, 1997.

[13] R. Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.org/
2000/067.

[14] Austrian Citizen Card. http://www.a-sit.at/de/dokumente_publikationen/flyer/
buergerkarte_en.php.

[15] Belgian Crossroads Bank for Social Security. http://www.ksz.fgov.be/.

[16] F. de Meyer, G. de Moor, and L. Reed-Fourquet. Privacy protection through
pseudonymisation in ehealth. Stud Health Technol Inform: 141, pp.111-118, 2008.

[17] Y.-A. de Montjoye, L. Radaelli, V. K. Singh, and A. Pentland. Unique in the shopping
mall: On the reidenti�ability of credit card metadata. Science 30: vol. 347 no. 6221 pp.
536-539, 2015.

[18] Y. Dodis and A. Yampolskiy. A veri�able random function with short proofs and keys.
PKC 2005, 3386 of LNCS, 2005.

[19] T. ElGamal. On computing logarithms over �nite �elds. CRYPTO'85, 218 of LNCS,
1986.

[20] B. Elger, J. Iavindrasana, L. Iacono, H. Muller, N. Roduit, P. Summers, and J. Wright.
Strategies for health data exchange for secondary, cross-institutional clinical research.
Comput Methods Programs Biomed: 99(3), pp. 230-251, 2010.

[21] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identi�cation and
signature problems. CRYPTO'86, 263 of LNCS, 1987.

[22] G. Fuchsbauer. Commuting signatures and veri�able encryption. EUROCRYPT 2011,
6632 of LNCS, 2011.

[23] D. Galindo and E. R. Verheul. Microdata sharing via pseudonymizatio. Joint UN-
ECE/Eurostat work session on statistical data con�dentiality, 2007.

[24] J. A. Garay, P. D. MacKenzie, and K. Yang. Strengthening zero-knowledge protocols
using signatures. EUROCRYPT 2003, 2656 of LNCS, 2003.

[25] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key generation
for discrete-log based cryptosystems. EUROCRYPT'99, 1592 of LNCS, 1999.

[26] P. D. MacKenzie and K. Yang. On simulation-sound trapdoor commitments. EURO-
CRYPT 2004, 3027 of LNCS, 2004.

[27] A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse datasets.
2008 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2008.

[28] T. Neubauer and J. Heurix. A methodology for the pseudonymization of medical data.
Int J Med Inform: 80(3), pp. 190-204, 2010.

[29] D. Pointcheval and J. Stern. Security proofs for signature schemes. EUROCRYPT'96,
1070 of LNCS, 1996.

23

[30] K. Pommerening, M. Reng, P. Debold, and S. Semler. Pseudonymization in medical
research - the generic data protection concept of the tmf. GMS Medizinische Informatik
1:17, 2005.

[31] C.-P. Schnorr. E�cient identi�cation and signatures for smart cards. CRYPTO'89, 435
of LNCS, 1990.

A Consistency of (Un)linkable Identi�ers

For the sake of simplicitly, we now also provide a more algorithmic de�nition of the consis-
tency properties guaranteed by our ideal functionality Fnym described in Section 2. Roughly,
an (un)linkable identi�er system must implement two functions NymGen and Convert. For
the generation of a pseudonym nymi;A for user uid i and server SA, the server and converter
jointly compute the function:

nymi;A NymGen(skX ; skA; uid i;SA);

where skX denotes the secret key of the converter X , and skA the secret key of the server
SA. As described in Section 2, the converter does not learn the produced nymi;A whereas
SA does not learn uid i (unless anon = 0).

For the conversion of a pseudonym nymi;A from server SA to a pseudonym nymi;B for
server SB , both servers and the converter X then jointly compute the function

nymi;B Convert(skX ; skA; skB ;nymi;A;SA;SB):

Here, the input nymi;A is only known to SA and the output nymi;B is only given to SB .
The consistency properties guaranteed by our ideal functionality are now as follows. We

denote with U the space of user identi�ers, and the pseudonym space with N.

NymGen is injective: For all skX ; skA, and all uid i; uid j 2 U where uid i 6= uid j ,
NymGen(skX ; skA; uid i;SA) 6= NymGen(skX ; skAuid j ;SA).

Convert is transitive: For all skX ; skA; skB ; skC and nymA 2 N, it holds that
if nymB Convert(skX ; skA; skB ;nymA;SA;SB) and nymC Convert(skX ;
skB ; skC ;nymB ;SB ;SC) then nymC = Convert(skX ; skA; skC ;nymA;SA;SC).

NymGen and Convert are consistent: For all skX ; skA; skB and uid 2 U it holds that
i) if nymA NymGen(skX ; skA; uid ;SA) and nymB Convert(skX ; skA; skB ;nymA;
SA;SB) then nymB = NymGen(skX ; skB ; uid ;SB). Likewise, ii) if nymA
NymGen(skX ; skA; uid ;SA) and nymB NymGen(skX ; skB ; uid ;SB) then nymB =
Convert(skX ; skA; skB ;nymA;SA;SB).

Instantiation of NymGen and Convert. Our protocol described in Section 4 implements
NymGen and Convert as follows. The pseudonym generation function, that is jointly computed
by X and SA, can be summarized as:

NymGen(skX ; skA; uid i;SA) = PRPG(kA;PRFG(xX ; uid i)
xA):

And the conversion function that is jointly computed by SA;SB and X is:

Convert(skX ; skA; skB ;nymi;A;SA;SB) = PRPG(kB ; (PRP
�1
G
(kA;nymi;A))

xB=xA):

It is easy to see that NymGen and Convert satisfy the consistency requirements stated
above. Again, consistency is enforced by our ideal functionality, and thus, the consistency
property of our scheme already follows from Theorem 4.1.

24

B Proofs for the AGOT+ Scheme

Here, we present the di�erent proofs we require from the AGOT(+) scheme. In Section B.1,
we explain how a signature owner can prove knowledge of signature on an encrypted message.
The signer's proof of a correct computation of a signature on an encrypted message is given
in Section B.2. Finally, we prove in Section B.3 that the AGOT+ scheme is an unforgeable
dual-mode signature scheme.

B.1 Proving Knowledge of a Signature on an Encrypted Message

Let M = EncG(epk ;m) be the encryption of a message m 2 G and let (r; t; s; w) be a freshly
randomized signature on m.

Now we want to prove knowledge of a signature on the encrypted message. Because
the signature can be freshly randomized, we can reveal a part of it, namely r as it is an
independent random value (the rest must not be revealed, it would leak information about
the message), which makes our task easier.

On a high level, we will have to prove the following:

�M
$ NIZKf(m; s; t; �) : M = EncG(epk ;m; �) ^ e(x; ~g) = e(s; r)=e(m; y) ^

e(g; ~g) = e(t; r)=e(s; y)g(e; x; g; ~g; y; r;M; epk) ;

where the concrete realization depends on the encryption scheme used.
When we use the ElGamal scheme with a CRS trapdoor, the proof will look as follows,

with M = (M0;M1;M2) = (ŷ�; �y�; g�m) for a random � $ Zq:

�M
$ SPKf(�; �1; �2; s; t) : M1 = �y� ^ M0 = ŷ� ^

S1 = ŷ�1 ^ T1 = ŷ�2 ^ e(x; ~g)e(M2; y)=e(S2; r) = e(g; y)�e(g; r)��1 ^

e(g; ~g)e(S2; y)=e(T2; r) = e(g; y)�1e(g; r)��2g(e; x; g; ~g; y; r;M; S; T; �y);

where S = (S1; S2) = (ŷ�1 ; g�1s) and T = (T1; T2) = (ŷ�2 ; g�2t) are (ordinary) ElGa-
mal encryptions under the CRS that make this proof online extractable. Let us ana-

lyze this proof. From the �rst proof term, it follows that that M
1=�
1 = �y�=� = g�,

where � = logg �y, and similarly from the following terms that M
1='
0 = ŷ�=' = g�,

S
1='
1 = ŷ�1=' = g�1 , T

1='
1 = ŷ�2=' = g�2 , where ' = logg ŷ. From the �fth proof

term e(x; ~g)e(M2; y)=e(S2; r) = e(g; y)�e(g; r)��1 we can derive that e(x; ~g)e(M2g
��; y) =

e(S2g
��1 ; r) and thus e(x; ~g)e(M2=M

1='
0 ; y) = e(S2=S

1='
1 ; r). From the last term the we

can similarly derive that e(g; ~g)e(S2=S
1='
1 ; y) = e(T2=T

1='
1 ; r). Therefore, it holds that

(r; S2=S
1='
1 ; T2=T

1='
1) is a valid AGOT signature on the message M2=M

1='
0 . That is, M

encrypts a message on which the prover knows a signature and the signature and the mes-
sage are extractable if the CRS is chosen so that ' is known to the extractor.

B.2 Proving Correctness of a Signature Computation

For our construction, we also require the signer to prove that she computed the signature on
an encrypted message correctly:

��
$ NIZKf(u0; v0; �1; �2) : ~g = ru

0

^ S = Mv0 � EncG(epk ; x; �1)
u0 ^

T = Sv
0

� EncG(epk ; g; �2)
u0 ^ w = gu

0

^

1 = y�v
0

~gu
0

g(e; x; g; ~g; y;M; r; S; T; w; epk) :

Let us analyse this proof. Recall that v = ssk = log~g y, thus the last term establishes that
v0 � vu0 mod q. Setting u = 1=u0, it follows that this proofs indeed shows that (r; S; T; w)
was computed correctly, given the homomorphic properties of the encryption scheme.

25

When we use the ElGamal scheme for the encryption scheme, we can simplify the en-
crypted signature process as well as the proof. Note that we use standard ElGamal here, i.e.,
without a CRS trapdoor as the proof does not have to be online extractable.

Let M = (M1;M2) = (�y�; g�m) be an encrypted message that we want to sign as follows.
Parse ssk = v, choose a random u; �1; �2

$ Z�q , and compute the (partially) encrypted
signature �� = (r; (S1; S2); (T1; T2); w):

r ~gu; S1 M
v=u
1 �y�1 ; S2 (Mv

2 x)
1=ug�1 ;

T1 S
v=u
1 �y�2 ; T2 (Sv2g)

1=ug�2 ; w g1=u:

The signer then outputs �� = (r; (S1; S2); (T1; T2); w) together with the proof �� which
looks as follows:

��
$ SPKf(u0; v0; �1; �2) : ~g = ru

0

^ S1 = Mv0

1 �y�1 ^

S2 = Mv0

2 xu
0

g�1 ^ T1 = Sv
0

1 �y�2 ^ T2 = Sv
0

2 gu
0

g�2 ^

w = gu
0

^ 1 = y�v
0

~gu
0

g(e; x; g; ~g; y;M; r; S; T; w; epk) :

B.3 Proof of Theorem 3.2

Here we prove that our extension af the AGOT signature scheme yields an unforgeable dual-
mode signature scheme. Let us call the AGOT scheme augmented with EncSignG;DecSignG;
the AGOT+ scheme.

Proof. A reduction of the AGOT+ scheme to the AGOT scheme is rather straightforward.
We are given access to an AGOT-sign oracle O0Sign and need to provide the 3 oracles of
the dual-mode unforgeabilty game, which are a signing oracle OSign, an encryption oracle
OEnc and an encrypted sign oracle OEncSign. This can be done as follows. Standard signing
queries m to the oracle OSign are forwarded to O0Sign and replied with the obtained answer.
Encryption queries (epk ;m) to OEnc are answered by M $ EncG(epk ;m), and encrypted
signing queries M to OEncSign are handled as follows. First, according to the de�nition, M is
only accepted if it was an output of OEnc, thus it is guaranteed that M is a proper encryption
and also we can look up the corresponding plaintext m. We submit m to O0Sign and get a
signature (r; s; t; w) and then answer the query with �� = (r;EncG(epk ; s);EncG(epk ; t); w).

It remains to argue that the adversary cannot distinguish between the real game and
our simulated oracles. This boils down to argue that the \encrypted" signature �� =
(r;EncG(epk ; s);EncG(epk ; t); w) as output by our oracle OEncSign has the same distribution
as if it was computed with EncSignG(ssk ; epk ;M). For r and w this is obviously the case. Let
us consider S and T . In the encrypted signing algorithm EncSignG, the value S is computed
as S (Mv �EncG(epk ; x))

1=u. Because of the homomorphic property of EncG and because
M is well formed, this corresponds to S = EncG(epk ; (m

vx)1=u), which is the encryption of
a signature value s with the correct distribution. Together with the fact that EncG(epk ; x)
is a fresh encryption that is not revealed, S is distributed as a fresh encryption of (mvx)1=u,
just as we do in the reduction. Note that this holds independent of the distribution of M .
A similar argument holds for T and therefore the output of the simulated oracle OEncSign on
input M has the same distribution as the one of EncSignG(ssk ; epk ;M). �

C Proof of Theorem 4.1

We now prove that our protocol described in Section 4 securely realizes the ideal functionality
Fnym de�ned in Section 2, as stated in Theorem 4.1.

Our proof consists of a sequence of games that a challenger runs with a real-world ad-
versary. The challenger plays the role of all honest parties, obtaining their inputs from and
passing their outputs to the environment. We gradually modify the protocol, such that in

26

our �nal game we can make the transition to let the challenger run internally the ideal func-
tionality Fnym and simulate all messages based merely on the information he can obtain from
Fnym.

C.1 Sequence of Games

We now describe each game hop and argue why the view of the environment does not signif-
icantly change.

Game 0: The challenger simply executes the real protocol for all honest parties, thereby
giving the environment the same view as in the real world.

Game 1: In a �rst game, we replace all messages that are sent between two honest parties via
FSMT by dummy messages. That is, instead of invoking FSMT on the real input, we merely
input 1`, where ` stands for the message length and can be determined from the security
parameter and the protocol description. The real protocol values are kept internally by the
challenger, and are used by all honest parties. Clearly, this step remains indistinguishable to
the environment by the property of FSMT.

Game 2: In this game we abort whenever we (as honest converter or honest server SB) receive
in a conversion request a valid signature �C from an honest server SA on some ciphertext
C which that server had never produced. Indistinguishability of this game trivially follows
from the unforgeability of the standard signature scheme (SigKGen; Sign;Vf).

Game 3a: We now change the way how an honest converter computes the conversion re-
sponse C 00 for a corrupt server SB . The goal is to make the response independent of the
received ciphertext C. In this Game 3a, we consider the case where the ciphertext C stems
from a corrupt server SA, whereas Game 3b deals with settings where SA is honest.

When an honest converter receives a ciphertext C EncG(epkX ;EncG(epkB ; xnymi;A))
from a corrupt server with corresponding proof �A, from now on does not decrypt C 0
DecG(eskX ; C) anymore to derive C 00. Instead, we extract the inner plaintext xnymi;A of C

from �A and compute the requested pseudonym as xnymi;B xnym
xB=xA
i;A where xB and xA

are the secret conversion values maintained by the converter. The �nal ciphertext C 00 is then
generated directly based on xnymi;B as C 00 EncG(epkB ; xnymi;B) and the corresponding
proof �X is simulated. Conditioned on C being indeed a proper nested encryption of a
xnymi;A, and due the fact that the computation of C 00 in the real protocol also includes a
randomization of the ciphertext C 0, the ciphertexts C 00 generated directly from xnymi;B have
the same distribution as when derived according to the protocol.

Thus, the indistinguishability of this game hop is guaranteed by the simulation soundness
and simulatability of the proof system.

Game 3b: We now do the same modi�cation to the generation of C 00 for requests com-
ing from honest servers. However, here we do not extract xnymi;A from �A. Instead,
we create an internal conversion record (convert; sid ; qid ; xnymi;A;SA;SB) whenever the re-
quest for some pseudonym nymi;A is initiated by an honest server SA. The converter then
simply retrieves xnymi;A from the record and computes C 00 EncG(epkB ; xnymi;B) and

xnymi;B xnym
xB=xA
i;A as above. Again, as the derivation of C 00 in the real protocol includes

a randomization of the ciphertext C 0 DecG(eskX ; C), this di�erent computation of C 00 is
indistinguishable to the environment.

Game 4: When an honest converter generates its pseudonym contribution xnymi;A for
identi�er uid i and server SA, it from now on also internally stores the tuple (nym; uid i;
SA; xnymi;A). We also create pseudonym records when a new pseudonym is generated in a
conversion request. That is, when the converter receives a conversion request (sid ; qid ; C; �A;

27

�C ;SB) it computes xnymi;B as described in the previous game, but now also creates a new
record (nym; uid i;SB ; xnymi;B), where uid i is taken from the nym record for xnymi;A. If no
record (nym; uid i;SA; xnymi;A) for the extracted xnymi;A exists, we abort. In other words,
we abort if the adversary tries to initiate a conversion request for a value which is not a
pseudonym the converter had generated before.

Indistinguishability of this game hop follows from the unforgeability of the converter's
dual-mode signature scheme as speci�ed in De�nition 3.1. More precisely, if the environment
can distinguish this game hop, we can derive an adversary B breaking the unforgeability of the
dual-mode signature as follows: when B receives a public key spk of the dual-mode signature
as input, it sets spkX ;B spk for some randomly chosen corrupt server SB 2 S. The other
setup values are generated according to the protocol. Then, any pseudonym request from SB
is answered by �rst computing xnymi;B PRFG(xX ; uid i)

xB and then obtaining �nym
OSign(xnymi;B) where OSign is the plaintext-signing oracle from the unforgeability game.
Similarly, for every pseudonym request (sid ; qid ; C; �A; �C ;SB) towards SB , B computes
xnymi;B based on the extracted xnymi;A and sends (epkB ; xnymi;B) to the encryption oracle
OEnc with epkB being the encryption key published by SB . The ciphertext output by OEnc

is then used as C 00 in the conversion response. The encrypted signature is obtained as
�nym OEncSign(epkB ; C

00). When B eventually receives a conversion request (sid ; qid ; C; �B ;
�C ;SC) from SB towards a server SC , it extracts xnymi;B ; �nym from proof �B . If no
pseudonym record (nym; uid i;SB ; xnymi;B) for xnymi;B exists, B outputs xnymi;B ; �nym as
its forgery. It is easy to see that the simulation of the converter's signature is perfect, and
thus indistinguishability of this game hop follows from the unforgeability of the converter's
dual-mode signature scheme (SigKGenG; SignG;EncSignG;DecSignG;VfG).

Game 5: From now on, an honest converter will not convert pseudonyms anymore but
rather use its internal records or create pseudonyms from scratch. That is, whenever getting
a conversion request for some xnymi;A (which we extract as before) the honest converter

no longer computes xnymi;B xnym
xB=xA
i;A . Instead it looks up the underlying uid i from

(nym; uid i;SA; xnymi;A) and takes xnymi;B from the corresponding (nym; uid i;SB ; xnymi;B)
record for uid i and the target server SB . If no such pseudonym record exists, a new record
is created with xnymi;B generated from scratch as xnymi;B PRFG(xX ; uid i)

xB . It is easy

to see that xnym
xB=xA
i;A = (PRFG(xX ; uid i)

xA)
xB=xA = PRFG(xX ; uid i)

xB and thus this game
does not change the environment's view.

Game 6: In this game we modify the computation of the pseudonyms, when done by an
honest converter, such that they become independent of the identi�er uid i. Normally, X com-
putes its pseudonym contribution for uid i and server SA as xnymi;A PRFG(xX ; uid i)

xA .
From now on, we will (via a series of hybrids) generate this inner pseudonym as xnymi;A
zxAi where zi gxi for a randomly chosen xi

$ Zq, and simulate the corresponding proof
�nym . Note that we do the replacement of PRFG(xX ; uid i) by a random zi only the �rst time a
pseudonym is requested for a particular uid i and then internally store the tuple (uid i; zi; xi).
For every further pseudonym based on uid i we then reuse the same zi. The reason to choose
zi gxi instead of zi

$ G is that we will make use of the discrete logarithm xi in the next
game in order to simulate pseudonyms without knowing a server's secret conversion key xA.

The indistinguishability of this game follows from the PRF-property of PRFG and the
zero-knowledge property of the proof system.

Game 7: We now take the next step and set the pseudonym contributions that are generated
by an honest converter to fully random values in G (again, via a hybrid argument, replacing
the pseudonyms for each combination of uid i and SA one by one). Thus, whenever the
converter is asked to generate a pseudonym for uid i and server SA, it returns xnymi;A

$ G

together with a correct signature �nym and simulated proof �nym . Note that the conversion
process is done solely based on internal records since Game 5, and thus, this modi�cation
has no impact on the conversion.

28

If an adversary can distinguish this game hop, we can derive an adversary that solves the
decisional Di�e-Hellman problem. Let (ga; gb; gc) denote a DDH challenge where the task is
to determine whether c = ab or not. Then, if the hybrid where we replace the pseudonym
xnymi;A for uid i and server SA can be distinguished by the environment, we set yA ga,

zi gb and xnymi;A = gc. Thus, if (ga; gb; gc) is indeed a DDH tuple, the pseudonym
is still computed as in the previous game, whereas for c 6= ab we would have replaced it
by a random value. Note that we still have su�cient information to correctly derive other
pseudonyms for SA and uid i. For every pseudonym xnymi;B based on the same uid i but a
di�erent server SB 6= SA, we compute xnymi;B = zxBi as before. For pseudonyms xnymj;A

that should be based on S 0As secret conversion key key xA, but for a di�erent uid j 6= uid i,
we set xnymj;A y

xj
A using the xj values stored for uid j since the last game.

Game 8: In this game we let an honest server not compute any real protocol values anymore
when doing a request via an honest converter. Again, this does not a�ect the conversion
process, as that is done solely based on internal records since Game 5. When the conversion
is done towards a corrupt server SB , we then mimic the values the converter is supposed
to forward from SA. That is, we derive C EncG(epkX ; 1) as a dummy encryption and
also fake the corresponding proof �A using the zero-knowledge simulator. However, we do
complement C with a correct signature �C Sign(sskA; (sid ; qid ; C)) using SA's signing key.
The zero-knowledge property of the proof scheme and the semantic security of the encryption
scheme (EncKGenG;EncG;DecG) ensure that this game hop has no signi�cant impact on the
environment's view. Note that we do not require CCA security here, as an honest converter
does not decrypt any ciphertexts C since Game 3 anymore. Further, since the proof �A is
also bound to the qid and includes a statement on the public key of SA, the adversary can
not reuse the dummy ciphertext and fake proof in a di�erent context.

Game 9: In the previous games we mainly changed the protocol for the setting where the
converter was honest. The current and following games now deal with protocol modi�cations
we do when the convert is corrupt. From now on we let an honest server SA whenever
having to output a new pseudonym nymi;A PRPG(kA; xnymi;A) output a random value
nymi;A

$ G instead. To ensure consistency, we keep a list Lnym of pairs (nymi;A; xnymi;A),
and answer consistently with the same random nymi;A whenever the server has to provide
an output for the same xnymi;A. Similarly, whenever a conversion for pseudonym nymi;A is

triggered we do not compute xnymi;A PRP�1
G
(kA;nymi;A) anymore but obtain xnymi;A

by looking up the corresponding nymi;A from Lnym. Indistinguishability of this game hop
follows from the pseudorandomness property of the PRPG.

Game 10: In this game, we now get rid of the decryption an honest server SB has to make
when receiving a conversion response from a corrupt converter. To this end, we �rst create
internal records for parts of the converter's secret keys, namely xX and fxAg8SA2S that
are generated in the trusted setup. Thus, here we need the setup assumption, such that
the simulator provide the keys to the converter and be privy of their secret keys. (When
realizing the trusted setup via additional proofs �yX ; f�yAg8SA2S, as described in Section 5.6
we would now extract the secret keys from those proofs.)

When an honest server SB then receives a conversion response (sid ; qid ; C; C 00; �C ;
�nym; �A; �X ; SA) from a corrupt converter for a request made by a server SA, it does not

decrypt C 00 anymore but derives xnymi;B by computing xnymi;B xnym
xB=xA
i;A using the ex-

tracted keys xB ; xA. If the request came from a corrupt server SA, then SB obtains xnymi;A

from �A. For requests coming from an honest server, we don't extract xnymi;A from �A. In-
stead we create an internal record (convert; sid ; qid ; xnymi;A;SA;SB) when SA initiates the
request and let SB simply look up the value xnymi;A from there.

We also don't let SB \decrypt" the signature �nym anymore. The server SB only veri�es
that the signature was correctly computed (which is proven in �X), but does not compute
�nym for the derived pseudonym xnymi;B . For any subsequent conversion request initiated

29

by SB that would require to prove knowledge of such a �nym we merely simulate the corre-
sponding part of the proof �B .

Overall, indistinguishability of this game hop follows from the zero-knowledge property
and simulation-soundness of the proof system.

Game 11: Here, we change the way a ciphertext C is formed whenever an honest server SA
is requesting a conversion towards an honest server SB via a corrupt converter X . Namely,
we replace the proper inner encryption EncG(epkB ; xnymi;A) contained in C by a dummy
encryption, i.e., we set C EncG(epkX ;EncG(epkB ; 1)) and fake the corresponding proof
�A using the zero-knowledge simulator. This is a legitimate modi�cation by the semantic
security of the encryption scheme (EncKGenG;EncG;DecG) (using a hybrid argument) and
the zero-knowledge property of the proof system. Note that in the reduction to the semantic
security of the encryption scheme we do not have a decryption oracle. However, in the last
two games, we already got rid of all the decryption an honest SB has to do.

Game 12: In our �nal game we make the transition from letting the challenger run the
\real" protocol (w.r.t. Game 11) to letting him interact with the ideal functionality F and
simulate all messages based solely on the information he can obtain from F . The description
of our simulator follows in Appendix C.2.

C.2 Simulator

We now complete our proof of Theorem 4.1 and show that we can construct a simulator sim
such that for any environment E and adversary A that controls a certain subset of the parties,
the view of the environment in the real world, when running the protocol (according toGame
11 from Section C.1) with the adversary, is indistinguishable from its view in the ideal world
where it interacts with the ideal functionality and the simulator (which corresponds to the
�nal game from Section C.1).

We split the description of the simulator into two main cases, depending on whether the
converter is corrupt or honest. In both cases, the behaviour in the subprotocols can further
branch depending on the respective setting of corrupt and honest parties. The simulator will
always play the role of all honest parties in the real protocol and store all records created
by an honest party, according to the real protocol. We denote by \SA" the simulation of an
honest server SA, and by \X" a simulated honest converter.

C.2.1 Honest Converter

Pseudonym Generation. When sim receives (NYMGEN; sid ;SA) from F , it branches the
simulation depending on SA being honest or corrupt:

for honest server SA: Here \X" merely simulates the communication to \SA", as it does
not know the pseudonym or identi�er \SA" is supposed to get. That is, \X" invokes FSMT
only on a dummy message of the right length. When received by \SA", the simulator
sends (NYMGEN; sid ;SA;?) to F which triggers the delivery of the pseudonym in the
ideal world.

for corrupt server SA: When SA is corrupt, the simulator immediately sends
(NYMGEN; sid ;SA;?) to F , receiving (NYMGEN; sid ;nymi;A; uid i) from the ideal func-
tionality. The honest converter \X" then signs the ideal pseudonym as �nym
Sign(sskX ;A;nymi;A) and simulates the proof �nym for anon = 1 if uid = ? and for
anon = 0 otherwise. Thus, whenever we have to simulate a protocol step, we use the
pseudonyms nymi;A we obtain from F as xnymi;A values in the protocol. The simulator
then internally stores (sid ;nymi;A;SA; �nym) and sends (sid ;nymi;A; �nym ; �nym ; uid i) via
FSMT to SA. Note that from now on, all pseudonyms nymi;A that are sent to the adversary
are generated by the ideal functionality and thus random values in G.

30

Pseudonym Conversion. The simulated honest converter now has to ensure that
pseudonyms are translated consistently in the real world, even though it has distributed
the random pseudonyms generated by the ideal functionality.

from honest to honest server: When the simulator receives (CONVERT; sid ;
qid ;SA;SB) from F , it simulates the conversion request between \SA" and \X" by
sending a dummy message via FSMT to \X". When \X" receives that message, sim
also triggers the delivery of the message (CONVERT; sid ; qid ;SA;SB) to X in the ideal
world. When the environment gave the ok to proceed, sim gets noti�ed with the
message (PROCEED; sid ; qid) and then simulates the conversion completion towards
\SB". Again, only a dummy message is sent via FSMT and when it arrives, sim sends
(PROCEED; sid ; qid ;?) to F which triggers the output to SB in the ideal world as well.

from honest to corrupt server: As above, the simulation starts when sim receives
(CONVERT; sid ; qid ;SA;SB) from F . \SA" then simulates the conversion request be-
tween \SA" and \X" as in the case above. As here the target server SB is cor-
rupt, sim immediately replies with (PROCEED; sid ; qid ;?) towards F when it receives
(PROCEED; sid ; qid) from the functionality. The simulator then obtains the pseudonym
(CONVERTED; sid ; qid ;SA;nymi;B) from F , which allows him to prepare a correct con-
version response towards SB . To this end, \X" computes C 00 $ EncG(epkB ;nymi;B),
�nym

$ EncSignG(sskX ;B ; epkB ; C
00) and simulates the proof �X . The values \X" is sup-

posed to forward from \SA" are set to C EncG(epkX ; 1), �C Sign(sskA; (sid ; qid ; C))
and �A is simulated. Finally, \X" sends (sid ; qid ; C; C 00; �C ; �nym; �A; �X ; SA) via FSMT
to SB and ends.

from corrupt to honest server: In this case, the simulation starts when the converter
\X" in the real world receives (sid ; qid ; C; �A; �C ;SB) from a corrupt server SA. If the
tuple is valid, \X" extracts xnymi;A from �A and sends (CONVERT; sid ; qid ; xnymi;A;SB)
to F (recall that we used the pseudonyms nymi;A provided by F as xnymi;A values in the
simulated protocol). When sim then receives (PROCEED; sid ; qid) from F , it simulates
the response to \SB" by sending a dummy message via FSMT to \SB". When \SB"
receives the message, the simulator also triggers the output in the ideal world by sending
(PROCEED; sid ; qid ;?) to F .

from corrupt to corrupt server: The simulation here is similar to the case above and
starts when \X" receives a message (sid ; qid ; C; �A; �C ;SB) from a corrupt server SA.
However, here \X" has to provide a correct looking and consistent conversion response to
the corrupt SB . That is, when sim receives (PROCEED; sid ; qid) from F it immediately re-
sponds with (PROCEED; sid ; qid ;?) which will trigger the output (CONVERTED; sid ; qid ;
SA;nymi;B) to sim. Having learned the target pseudonym nymi;B , the simulator now
computes a correct response in the real world as C 00 $ EncG(epkB ;nymi;B), �nym

$

EncSignG(sskX ;B ; epkB ; C
00) and simulates �X . The honest converter then sends those

values together with C; �A; �C received from SA to SB .

C.3 Corrupt Converter

Here most parts of the protocol are done by the corrupt converter, and the main task of the
simulator is to reect the learned information in the ideal functionality. Recall, that since
Game 10, the simulator internally stores the secret keys xX and fxAg8SA2S of the converter,
which stem from the trusted setup (or by extracting them for �yX ; f�yAg8SA2S which would
be contained in X 's public key if the trusted setup is realized with proofs for the correct keys
as described in Section 5.6).

Pseudonym Generation (for honest server SA). As the generation of pseudonyms is
initiated by the converter, our simulation starts when an honest server \SA" in the real world
receives (sid ;nymi;A; �nym ; �nym ; uid i) from the corrupt converter X . When \SA" outputs
(NYMGEN; sid ;nymi;A; uid i), the simulator has to ensure that a corresponding pseudonym

31

record is created in the ideal functionality as well. If the generation was done veri�ably,
i.e., the received tuple contains uid i 6= ?, sim �rst checks if the uid i belongs to a \dummy"
identi�er it has chosen before. That is, sim checks if there is a value zi 2 Ldummy such
that zi = PRFG(xX ; uid i). If that is the case, sim sends (ASSIGN; sid ; (\rid\jjzi); uid i) to F ,
ensuring that all pseudonyms that were previously linked to the dummy identi�er (\rid\jjzi)
are now linked to the correct value uid i. When this is done, sim also creates a pseudonym
for SA in F by sending (NYMGEN; sid ; uid i;SA; anon) to F where anon = 0 if the message
in the real world contained the underlying uid i.

In addition, we let sim also create corresponding pseudonym records in F for all corrupt
servers SB 2 S. For those records, the simulator can provide the pseudonym value nym�

i;B

since both X and SB are corrupt. We derive those values using the knowledge of the real-
world converter's secret key, which will allow us to ensure consistent simulation of conversion
requests later on.

Depending on whether the pseudonym nymi;A was provided anonymously or not, we will
either be able to link all pseudonyms to the correct uid i, or to a dummy { yet consistent {
identi�er (\rid\jjzi). The latter case occurs if we had received uid i = ?. In that case, we will
extract zi from �nym , add zi to our list of dummy identi�ers Ldummy and set uid i (\rid\jjzi)
for the following procedure.

If it is the �rst time that sim sees the uid i (either dummy, or real), it now creates the
pseudonym records for all corrupt servers. More precisely, for each corrupt SB 2 S, sim sends
(NYMGEN; sid ; uid i;SB ; 1) to F , and subsequently provides the pseudonym value nym�

i;B by
sending (NYMGEN; sid ;SB ;nym

�
i;B) to F . Thereby, nym�

i;B is computed as nym�
i;B zxBi

where zi is either taken from uid i = (\rid\jjzi) or computed as zi PRFG(xX ; uid i) if
uid i 6= (\rid\jjzi). That is, in the simulation we register the inner pseudonym values xnymi;B

for all corrupt servers as pseudonyms in the ideal functionality.

Pseudonym Conversion. Here the main part is done by the corrupt converter, thus in the
simulation we mainly have to ensure that an honest server can always send a correct looking
request to X and also reect the conversions done by the adversary in the ideal functionality.

from honest to honest server: We start the simulation when sim receives
(CONVERT; sid ; qid ;SA;SB) from the ideal functionality. First, \SA" computes
C $ EncG(epkX ;EncG(epkB ; 1)) and �C Sign(sskA; (sid ; qid ; C)) and fakes the corre-
sponding proof �A. \SA" then sends the request (sid ; qid ; C; �A; �C ;SB) via FSMT to X .
When \SB" receives a valid response (sid ; qid ; C; C 00; �C ; �nym�A; �X ; SA) from X , i.e.,
where �X is correct and �A; �C are the values sent by \SA", sim sends (PROCEED; sid ;
qid) to F and subsequently triggers the delivery of the converted pseudonym to the ideal
world server SB as well.

from corrupt to honest server: There is nothing to simulate in the real world here, we
only mimic the observed behaviour in the ideal world. First, when \SB" in the real word
receives a valid tuple (sid ; qid ; C; C 00; �C ; �nym ; �A; �X ; SA), i.e., where the signature and
both proofs are correct, it extracts xnymi;A from �A. If sim has not seen xnymi;A be-
fore, it quickly generates pseudonym records based on xnymi;A;SA in F , before starting
the conversion request. This is not done only for SA but for all corrupt servers again.
Thereby, sim does not know the underlying uid i, though. However, we use a similar
procedure as in the pseudonym generation described above and link the pseudonyms to

a dummy identi�er (\rid\jjzi) instead. Therefore, we �rst compute zi xnym
1=xA
i;A and

add zi to Ldummy. Then, for all corrupt servers SC 2 S (incl. SA) we send the mes-
sage (NYMGEN; sid ; (\rid\jjzi);SC ; 1) to F , followed by a call (NYMGEN; sid ;SC ;nym

�
i;C)

where nym�
i;C zxCi .

When this is done, we trigger a conversion request in the ideal world by sending
(CONVERT; sid ; qid ; xnymi;A;SB) to F followed by the input (PROCEED; sid ; qid). This
will result in the message (CONVERTED; sid ; qid ;SA;nymi;B) being delivered to the ideal
world server SB where nymi;B is a random pseudonym value.

32

As in the pseudonym generation described above we have ensured that whenever an honest
SB receives a new pseudonym nymi;B , all related pseudonyms for corrupted servers are
de�ned within F too.

from honest to corrupt server: Here sim starts when it receives a message (CONVERT;
sid ; qid ;SA;SB) from F . It then completes the pseudonym request towards the ideal
functionality to learn the converted pseudonym nymi;B of the corrupt server SB . Thus,
sim sends (PROCEED; sid ; qid) and (PROCEED; sid ; qid ;?) to F . That is, the simula-
tor doesn't actually specify the pseudonym nym�

i;B (which it could, since SB and X are
corrupt). However, this input would have been ignored anyway since we will have al-
ready ensured that nymi;B is de�ned within F . Recall, that we have generated related
pseudonym records for all corrupt servers, whenever a pseudonym for an honest server was
created. Thus, from the response (CONVERTED; sid ; qid ;SA;nymi;B) that sim gets from
F , we can now determine the corresponding inner pseudonym xnymi;A and start a correct
conversion in the real world. Namely, as we have generated nymi;B using the converter's

extracted keys, we can now compute xnymi;A nym
xA=xB
i;B . From that point, we now

run the normal procedure (according to Game 11) for \SA", meaning that C and �C are
generated honestly from xnymi;A whereas the proof �A is simulated.

Thus, we have shown how to construct a simulator that provides a view that is indistin-
guishable to the one described in Game 12, which concludes our proof.

�

33

