
Inference and Record-Injection Attacks on Searchable
Encrypted Relational Databases

Mohamed Ahmed Abdelraheem, Tobias Andersson and Christian Gehrmann

{mohamed.abdelraheem, tobias.andersson, chrisg}@sics.se

SICS Swedish ICT AB

Abstract. We point out the risks of providing security to relational databases via search-
able encryption schemes by mounting a novel inference attack exploiting the structure of
relational databases together with the leakage of searchable encryption schemes. We discuss
some techniques to reduce the effectiveness of inference attacks against searchable encryption
schemes. Moreover, we show that record-injection attacks mounted on relational databases
have worse consequences than their file-injection counterparts on unstructured databases
which have been recently proposed at USENIX 2016.

1 Introduction

One of the practical solutions for searching on encrypted data is provided by searchable symmet-
ric encryption (SSE) schemes. The very first such scheme was proposed by Song et al. in [25].
Later, Curtmoula et al.’s [14] introduced two security notions for SSE schemes, namely, the non-
adaptive semantic security definition and the adaptive semantic security definition. Subsequent
SSE schemes [10,9,8] are all based on Curtmoula et al.’s security model. The price of the efficiency
offered by searchable symmetric encryption schemes comes at the cost of leaking the frequency of
each keyword after it has been queried. This makes them vulnerable to frequency attacks.

Beside SSE schemes, there are several practical solutions proposed to execute SQL queries on
an encrypted database. Recently, Popa et al. proposed CryptDB as a solution to protect confi-
dentiality for applications using SQL databases [24]. CryptDB uses column-level encryption to
encrypt the database tables. CryptDB uses a trusted proxy server to communicate between the
client application and the cloud server. The proxy server translates the SQL queries in plaintext
format to an encrypted format to enable the cloud server in executing the SQL on the encrypted
tables. To enable equality searches, CryptDB uses deterministic encryption [4]. Order preserving
encryption [2,5] is used to enable range and comparison queries on encrypted data. This is the
weakest encryption scheme used in CryptDB whose design concept is based on the trade-off be-
tween functionality and confidentiality. Recently, Naveed et al. [23] mounted frequency attacks
that recovered the plaintext from CryptDB’s columns protected by deterministic encryption and
order preserving encryption schemes.

Another line of research in preserving database privacy is achieved by distributing and frag-
menting the database table across two or more servers [1,11,13]. The fragmentation technique
employed in all the previous schemes is vertical fragmentation where the tables’ columns are par-
titioned across the servers. Privacy in [1] is provided under the assumption that the two cloud
servers are unable to communicate directly with each other while the privacy in [11,13] is achieved
without such assumption. The idea here is to use encryption as little as possible. In general, frag-
mentation is preferred over encryption to break the associations among the attributes. In [12],
privacy is preserved by using fragmentation only and no encryption is employed. This comes at
the cost of saving sensitive data in the clear at the data owner, i.e. the client. All these privacy
constraints schemes are efficient but at the cost of having plaintext fields and only encrypting sen-
sitive data makes them vulnerable to be attacked by an adversary with background information
about the database. Also adding or modifying a record reveals the relation among the fragments
to a passive adversary monitoring the fragments.

1

Comparing the above methods for searching on encrypted data in terms of security, one can see
that SSE schemes offer better security than deterministic or order preserving encryption schemes
since they do not leak the frequency of a keyword before querying it. They also provide better
security than the data fragmentation method via privacy constraints [11] since they encrypt all
the plaintext data and they can also securely manage a dynamic database [8].

However, still SSE schemes suffer from leaking the access pattern of queries which make them
vulnerable to inference attacks as demonstrated by Islam et al. [17] and Cash et al. [7]. In this
paper, we propose a novel inference attack targeting searchable encrypted relational databases
(i.e. SSE is employed to protect the relational database and at the same time make it searchable)
and study the effect of these inference attacks as well as the recent file-injection attacks [27] on
relational databases. We also propose a suitable inference control to safeguard relational databases
secured via SSE schemes from being completely recovered by strong adversaries with background
knowledge about the relational database.

Our Contribution. We show the severe consequences of inference attacks [17,7] as well as in-
jection attacks [27] on a relational database secured via an SSE scheme. We propose a novel
inference attack on SSE schemes that exploits the structure of relational databases besides the
access pattern’s leakage inherent in SSE schemes. Moreover, we show that record-injection attacks
are a serious threat for SSE schemes that are not forward secure. Furthermore, we propose the use
of privacy constraints [1,11,13] to distribute the encrypted index of an SSE scheme into several
fragments or servers to reduce the effectiveness of frequency attacks exploiting the access pattern
leakage [17,7] which is inherent in SSE schemes.

Related Work. Query recovery attacks exploiting the access pattern leakage of SSE schemes were
proposed by Islam et al. [17] and later improved by Cash et al. [7]. By exploiting the structure of
relational databases, our new attack requires lesser background information about the relational
database under attack compared to full database knowledge required by Cash et al. and Islam
et al. Moreover, we empirically emphasize the obvious observation that the query recovery at-
tacks in [17,7] might lead to complete record-recovery attacks when the dataset under attack is a
relational database. Furthermore, the padding countermeasure against query recovery attacks pro-
posed in [17,7] does not fully prevent the generalized Count attack proposed in [7] (cf. Section 5).
Therefore, in this work, we propose the use of privacy constraints as an additional countermeasure
that should be used together with padding to reduce the effectiveness of frequency attacks. Note
that the privacy constraints as defined in [1,11,13] were mainly used to depart completely from
the use of encryption or to use encryption as less as possible. However, in this paper, we propose
using them to strengthen the security of SSE schemes against frequency attacks.

Naveed et al. [23] proposed a number of attacks targeting relational database columns encrypted
using deterministic encryption [4] or order preserving encryption algorithms [2,5] in CryptDB [24]
where encrypted values belonging to the same column whose name is encrypted are collected to-
gether as one set or more precisely one column vector. While seems similar, their column finder
procedure is different than our attribute recovery attack in SSE schemes. Their column finder
procedure takes as input the set of encrypted values (i.e. column vector of encrypted values) be-
longing to the same unknown column whose name is encrypted. It recovers the encrypted name
by matching the number of distinct encrypted values with each column’s cardinality defined in
the set of plaintext columns (i.e. a column name and its possible values are known) belonging to
the attacker’s auxiliary or background data. Their procedure relies mainly on the attributes’ (i.e.
columns) cardinalities. In contrast, our attack described in Algorithm 1 takes as input all the ob-
served encrypted queries in an SSE scheme. Then using the access pattern leakage inherent in SSE
schemes in addition to basic background data about the number of records and attributes’ cardi-
nalities, it divides the observed encrypted queries into different classes where each class contains
a set of encrypted queries belonging to the same attribute. Thus, each class or set of encrypted
queries found by our attack is actually the input used by Naveed et al’s column finder procedure.

The recently proposed file-injection attack by Zhang et al. at USENIX 2016 [27] recovers
only the set of keywords in an encrypted document (and not the actual plaintext document) and
could be prevented by limiting the content of each injected file. However, in this paper, we show

2

that record-injection attacks while being similar to file-injection attacks, they have more severe
consequences represented in an almost full record recovery or reconstruction attack on a relational
database. Moreover, record-injection attacks cannot be simply prevented by limiting the content
of an injected record as done to prevent file-injection attacks [27] since that would hinder the
addition of new complete records to the relational database.

The recent generic attacks [19] proposed at CCS 2016 target any secure database systems
supporting range queries but leaking the access pattern without any prior knowledge about the
dataset under attack. Moreover, their generic attacks target even secure encrypted search methods
supporting range queries leaking communication volume such as fully homomorphic encryption or
ORAM schemes. However, their attacks only target systems supporting range queries and they
require the attacker to gather at least N4 queries (N is the domain size) to mount the attack
successfully. Our work targets only relational databases protected by SSE schemes.

Organization of the paper. Section 2 gives a brief overview of SSE schemes and the frequency
attacks on them. In Section 3, we point out the security risks of using SSE schemes in relational
databases by proposing a new frequency attack exploiting the properties of relational databases.
In Section 4, we revisit the file-injection attacks in the context of relational databases. In Section 5,
we propose the use of privacy constraints as an inference control and countermeasure to reduce
the risk of frequency attacks.

2 Background

In this Section, we define SSE schemes and explain their leakage. We also explain the frequency
attacks exploiting the leakage of SSE schemes.

2.1 SSE Schemes

Let DB denotes a database of n documents and m unique keywords. Let ID = (idi)
n
i=1 denotes the

set of all document identifiers in DB and let W = (wj)
m
j=1 denotes the set of all unique keywords in

DB. Let |W| denote the number of keywords in the database. The database can be represented as an
inverted index where each keyword is associated with a list of identifiers, i.e. DB = (wi,DB(wi))

m
i=1

where DB(wi) denotes the set of documents’ identifiers containing the keyword wi. Let |DB(wi)|
denote size of DB(wi).

Definition. An SSE scheme takes as inputs the plaintext index DB = (wi,DB(wi))
m
i=1 together

with the client’s secret keys and outputs an encrypted and frequency-hiding database index
EINDEX where a keyword w is transformed into a token t using a deterministic encryption al-
gorithm and its corresponding document identifiers are encrypted using a randomized algorithm.
The SSE scheme also encrypts the original documents using a randomized encryption algorithm
and stores in an encrypted database EDB indexed by the document identifiers. Both the en-
crypted index EINDEX and the encrypted database EDB are sent to the cloud server. To search
for a keyword w, the client generates its token t and sends it to the server which retrieves the
corresponding encrypted document identifiers from EINDEX and decrypts them and consequently
sends the corresponding encrypted documents from EDB to the client.

Leakage Profile. An SSE scheme leaks the access pattern: the result of the query or the document
IDs corresponding to the queried keyword wi, {DB(wi) : wi ∈W}, and also leaks the search pattern:
the fact that whether two searches are the same or not.

Attack Model. All recent SSE schemes follow the adaptive security definition proposed by
Curtmoula et al. [14] where security is achieved against an honest-but-curious server is a passive
adversary following the protocol but curious to use the leakage profile to learn about the encrypted
queries and the encrypted documents.

3

Attacks on SSE Schemes. Two passive attacks against SSE schemes exploiting the access pat-
tern leakage have been proposed recently by Islam et al. [17] and later developed by Cash et al. [7].
These passive attacks are frequency attacks mounted by an honest-but-curious server who knows
all or a significant number of the client’s plaintext documents. Another class of attacks outlined
by Cash et al. [7] are the chosen-document attack and the chosen query attacks. Both attacks
are mounted by an active adversary who is somehow able to deceive the client into including her
own chosen-document into the documents set and into choosing her favorite queries respectively.
Recently Zhang et al. [27] presented a concrete description of a chosen-document attack (file-
injection) where the attacker is able to recover all the queries without any prior knowledge about
the client’s dataset under attack.

2.2 Frequency Attacks

Frequency attacks are mounted on SSE schemes to recover the plaintext of encrypted keywords
involved on previous queries issued by the client and observed by the attacker. This kind of attack
is called query recovery and was proposed by Islam, Kuzu, and Kantarcioglu (IKK) in [17]. Their
attack, known in the literature as the IKK attack, targets the strongest kinds of SSE schemes which
are those proved to be secure under the adaptive security definition. The IKK attack models the
problem of recovering the unknown keywords as an optimization problem solved using a simulated
annealing algorithm. Recently, Cash et al. improved the IKK by proposing another frequency
attack, called the Count attack, that is simpler and more efficient than the IKK attack [7]. Both
attacks require a complete knowledge about the dataset under attack. The attacker knows at least
the frequency of each keyword also knows the co-occurrence between any two keyword. We denote
the frequency knowledge by KF and the co-occurrence knowledge by KO. Next, we briefly describe
the IKK attack and the Count attack.

The IKK Attack. The IKK attack assumes that the attacker knows the entire document set in
plaintext and the goal is to recover the queries issued on the encrypted document set which is, of
course, unknown to the attacker. The IKK attack can be briefly described as follows: assume that
the number of unique keywords indexed by an SSE scheme is m. The attacker constructs an m×m
matrix M where its entry M [i, j] holds the probability of having the ith unique keyword and jth
unique keyword together in any random document in the database D indexed by the SSE scheme
under consideration. The matrix M represents the background knowledge of the attacker about
the encrypted database. The percentage of success of the attack depends on the accuracy of this
background matrix M . From an l observed queries (encrypted keywords), the attacker calculates

another l× l matrix Q where the entry Q[i, j] =
|Ri∩Rj |

n where Ri is the result set of the ith query
Qi (or encrypted keyword) and Rj is the result set of the jth query Qj (or encrypted keyword)
and n is the number of documents in the database D. Now if the Euclidean squared distance
(Q[i, j]−M [s, t])2 is close to zero, then the attacker might know with high probability that the ith
and the jth queries (encrypted keywords) correspond to the plaintexts keywords corresponding to
the sth and tth entry of the background knowledge matrix M . Therefore, the attack model is to
find the best mapping, (i, j)→ (s, t), that minimizes the following summation carried over all the l
observed queries:

∑
Qi,Qj∈Q(Q[i, j]−M [s, t])2. The minimization is done under constraints which

are set from the subset of known queries S ⊂ Q and the attackers goal is to assign the unknown
queries q ∈ (Q− S) to their corresponding keywords in the background knowledge represented by
the matrix M . A simulated annealing algorithm is used to solve the above optimization problem.

The Count Attack. Similar to the IKK attack, Cash et al. proposed the count attack which does
not only use a background knowledge matrix M representing the co-occurrence probabilities of
the keywords in plaintext but also a background knowledge about the frequency of each individual
keyword w in the database D, say count(w). This simple additional knowledge improves signifi-
cantly the effectiveness of query recovery attacks and it does not use any numerical optimization
technique. Obviously, assuming that the attacker background knowledge consists of all plaintext

4

document set, then any keyword w with unique frequency will be easily retrieved when queried as
its result set count(q) will match the attacker’s background knowledge count(w).

The unique counts approach will retrieve all the keywords with unique frequency which can be
significant in some databases. Keywords with non-unique frequency are recovered by comparing the
frequency of the elements of the query co-occurrence matrix with the frequency of the elements of
the co-occurrence background matrix. Assume that (q′, t) is a known query where t is the keyword
and q′ is the queried keyword (encrypted keyword). Assume that we want to recover the query
q which has a non-unique frequency. Now, If Q[q, q′] and M [s, t] are equal, then the keyword ‘s’
is probably the plaintext of the query ‘q’. Experiments in [7] show that the co-occurrence testing
phase can successfully recover almost all the queries. At the end of Section 3.1, we show that our
attribute attack could resolve some queries unresolved by the Count attack.

3 On the use of SSE to secure relational databases

The frequency attacks on adaptively secure SSE schemes are only query recovery attacks that only
recover the plaintexts of the keywords associated with a document or a record but do not translate
to partial document recovery which is the case for some searchable schemes with higher leakage
as shown in [7] (such schemes are not secure under adaptive security definition [14]).

Traditionally, SSE schemes are designed to protect a set of unstructured documents. However,
they could also be used to provide privacy for relational databases where each record is treated as
a separate document and each (attributei, value) is treated as a keyword as done in [9,8]. Now, one
can see that frequency attacks will probably lead to a partial or full record recovery since query
recovery directly translates to partial record recovery in this case. This is because recovering a
keyword means recovering its attribute and its value. To recover a record with identity idi, one
has to look for all (or part of) the keywords corresponding to the record with identity idi. Thus if
all the encrypted queries are recovered using, for example, the above Count attack. Then, one can
fully reconstruct some target records by creating a forward index from the access pattern leakage
of the observed encrypted queries and replacing each encrypted query with its corresponding
plaintext obtained before through the Count attack. We see this as a real obvious threat which
makes relational databases secured via SSE schemes at risk (c.f. Section 3.2).

Moreover, the structure of relational databases would enable an attack on them without re-
sorting to the co-occurrence knowledge KO. In the following, we describe a new attack called
“Attribute Recovery” targeting relational databases protected by SSE schemes. The attack recov-
ers the attribute names of queries, hence the name “Attribute Recovery” under the assumption
that the attacker knows only the number of records and attribute names A together with their
cardinalities. We define this as the attacker’s basic background knowledge KB.

Moreover, our attack could also recover the attribute value of a given attribute name ‘a’ under
the assumption that the attacker has frequency knowledge KF . Similar to the Cash et al.’s Count
attack, the knowledge of frequency values |DB(w)| enables us to recover the keywords w whose
frequency value |DB(w)| is unique. Similar to the Count attack, we also use the observed co-
occurrence knowledge between any two observed queries which can be computed from the access
pattern leakage of the two queries. However, the Count attack resolves the queries with non-unique
frequency values using co-occurrence knowledge KO about the dataset whereas our attack resolves
such queries by exploiting the properties of relational databases. This is a clear advantage over
Cash et al.’s Count attack when it comes to attacking relational datasets since it does not require
any co-occurrence knowledge between plaintext keywords as done by Cash et al. [7] and Islam at
al. [17].

3.1 Attribute Recovery Attack

We make use of the following simple observation about the co-occurrence of observed queries
on searchable encrypted relational datasets. We assume that the attacker has basic background

5

knowledge KB about the relational database under attack (i.e. the number of records n and the car-
dinality of each attribute and its possible values). Some notable SSE schemes such as [10,26,22,18]
already leak the number of documents or records n.

Observation 1. The co-occurrence between any two keywords or observed queries with similar
attributes is zero.

Our attribute recovery attack is based on the proposition below which follows immediately from
Observation 1 and the fact that the total frequency of all possible values of an attribute a in
an encrypted relational database EDB equals the number of records in the encrypted relational
database EDB under the assumption that no padding countermeasure has been done to prevent
frequency attacks.

Proposition 1. Let t = {t1, · · · , tl} be the tokens set of observed queries. Let |ti| denote the result
size of query token ti. Let CO be the observed co-occurrence matrix. Let n be number of records in
an encrypted index EDB. Let a be an attribute in the EDB whose cardinality |a| is unique. Then
there exists a subset s ⊆ t where

∑
ti∈s |ti| = n, |s| = |a| and ∀ti, tj ∈ s , CO[ti, tj] = 0.

One can see that the above proposition can be used to develop an algorithm that distinguishes
between observed queries. Such distinguisher can be mounted by a weak attacker who observes
only the access pattern leakage of queries and has no prior knowledge other than the number of
records, attribute names and their cardinalties. Assuming that an attacker observes all the possible
|W| queries and that all attributes have unique cardinalities, a distinguisher algorithm separating
and dividing all the queries according to their attribute name can succeed with probability one.
However, an attacker does not need to collect all the possible |W| queries to mount his attack.
If the attacker’s observed queries contain all the possible values of an attribute a with unique
cardinality, then observed queries whose attribute name is “a” will be recovered with probability
one. Algorithm 1 takes a set of observed query tokens t = {t1, ..., tl} and the attacker’s basic
background knowledge KB. It divides these tokens according to their attribute name into different
sets where each set Ga represents the tokens whose attribute name is ‘a’.

Discussion about Algorithm 1. One way to look at Algorithm 1, is to consider the co-
occurrence matrix as the adjacency matrix of a weighted graph GCo whose nodes are the queries
and any two nodes are connected by an edge whose weight is the co-occurrence value between
the two connected nodes (i.e. zero co-occurrence means no edge or edge with weight zero). This
allows us to consider the elements of the list L[ctr] created in Algorithm 1 as nodes in another
smaller weighed graph GL[ctr] whose adjacent matrix is a submatrix of the co-occurrence matrix
(i.e. adjacent matrix of the bigger graph GCo containing all queries). Now rather than looking at
the subsets of L[ctr] (Note that the first element L[ctr, 1] should be included in all subsets) whose
size is equivalent to a given cardinality |a|, one can look at the independent sets of the graph
GL[ctr] corresponding to the list L[ctr] whose size is equivalent to |a| with the additional condition
that the total sum of the frequency of each node (i.e. query) equals the total number of records n.
This is the known independent set NP-Complete problem with an additional filtering condition.

Another way to look at Algorithm 1 is to consider that Step 7 and Step 8 form the known
k-SUM problem (i.e. Given A = {a1, · · · , as} and a target sum t. Is there any subset of indices

{i1, · · · , ik} such that
∑k

j=1 aij = t ?) with an additional condition that the co-occurrence between
any two elements in the subset is zero. The k-Sum problem is a parameterized version of the
subset sum problem which is a known NP-complete problem. The brute force algorithm for the
k-SUM problem takes O(sk) where s is the size of the given set. There are simple algorithms

solving this problem in O(s
k
2 log s) when k is even and O(s

k+1
2) when k is odd [3,15,16]. However,

employing the co-occurrence condition might reduce the above complexity times but this needs
further investigation. Obviously, Algorithm 1 performs well when k is small (i.e. the attribute
cardinality is small). When the target sum t is not very large (i.e. number of records n is not very
large), one can use the known dynamic programming technique to solve the subset sum problem
in pseudo-polynomial time O(st) [20].

6

Algorithm 1 Attribute Recovery Attack

Require: KB∨ Observed tokens t = {t1, ..., tl} and their results. |a| ≡ cardinality of a ∈ A and |ti| ≡
result size of query token ti.

Ensure: Recover the attribute name of observed queries.
1: Set R = {}. Compute the co-occurrence matrix CO for observed queries tokens t = {t1, ..., tl}.
2: For each ti, create a list Qi holding ti (Qi[1] = ti) and all other tokens tj ’s where CO[ti, tj] = 0.
3: Sort all the lists Qi according to their size in ascending order.
4: Add all the sorted lists Qi’s to a lists’ container L. . L[i, j] is the jth entry in the ith list L[i].
5: Choose an attribute a ∈ A where |a| is the minimum cardinality.
6: Set Ga ← {} and ctr = 1.
7: for all S ⊆ L[ctr] where |S| = |a| & L[ctr, 1] ∈ S do
8: if

∑
tu∈S |tu| = n & CO[tu, tv] = 0 ∀tu, tv ∈ S then

9: Ga ← S
10: R← R ∪Ga

11: L[ctr]← ∅
12: for all i do
13: if L[i, 1] ∈ Ga then
14: L[i]← ∅
15: else
16: L[i]← L[i]\Ga

17: A ← A\a
18: if A = ∅ then return R
19: else
20: goto Step 5

21: ctr = ctr + 1.
22: if ctr ≤ l then
23: goto Step 7.
24: else
25: print(“No valid subset found corresponding to the chosen attribute ”,a) and goto Step 5.

Now, one can ask, which approach (i.e. independent set algorithms or k-SUM algorithms or
dynamic programming of subset sum) is better to implement Step 7 and Step 8 in Algorithm 1.
The answer depends on the dataset under attack and the available queries. We have implemented
the dynamic programming algorithm for the subset problem where all the solutions are traced
back and the co-occurrence condition is evaluated after finding each solution. This is practical
when O(st) is pseudo-polynomial which means that the number of records t is not large and for
each cardinality there exists a constructed list L[ctr] whose size s is not large. As future work, we
leave investigating the other approaches, namely, the independent set problem with the additional
filtering condition (total sum of frequencies) and the k-SUM approach with the additional zero
co-occurrence filtering condition.

Recovering Attribute Values. Algorithm 1 might enable an attacker to recover the attribute
names of some queries without any knowledge except KB. Now with the basic knowledge KB, the
attacker knows the possible values of a given attribute name. Moreover, with the access pattern
leakage, the attacker knows the result set size (i.e. frequency) of each observed query. However, in
order to recover, without any prior knowledge such as those used in the Count attack KF and KO,
the attribute values of observed queries whose attribute names are recovered with Algorithm 1,
an attacker needs to know at least the rank-size or rank-frequency distribution 1 of the attribute
values. Assume that La is a sorted list containing the attribute values of an attribute named a
according to their rank-size in descending order.

1 The knowledge of the rank-size or rank-frequency distribution of a given attribute value does not
necessarily imply the knowledge of the frequency of each attribute value KF .

7

Now, one can see that by sorting the observed queries in descending order according to the
size of their results and adding the sorted observed queries to a list Lq, then La[Lq[ti]] will be
the attribute value of an observed query token ti whose attribute name is a. If all the result
sizes of queries in Lq are unique, then the above attack succeeds with probability one. Otherwise,
there would be an error whenever we have a tie between two or more queries in Lq. This is
a standard frequency attack similar to the one described by Naveed et al. [23] for attacking
columns of a relational database encrypted using deterministic encryption. However, our attack
targets relational databases encrypted using SSE schemes and firstly recovers the attribute name
of a given query through Algorithm 1 and then secondly recovers its value through a standard
frequency attack without any prior knowledge other than the rank-size of the attribute values of
the attribute names belonging to the dataset under attack.

A strong version of the above attack can be mounted if the attacker knows only the frequency
of each attribute value KF . Here the attacker first recovers the observed queries whose results are
unique using the standard frequency attack and second employs a variant of Algorithm 1 which we
describe in what follows. Note that our attacker’s goal is to recover the queries Q′ with non-unique
result size without resorting to any co-occurrence knowledge KO which is a clear advantage over
the Count attack.

The attack procedure starts by recovering the observed encrypted queries Q with unique result
size (i.e. |DB(w)| is unique) using the attacker’s background knowledge. Then, we divide the
recovered queries Q into subsets according to their attributes. We then use our knowledge about
the attributes of the dataset under attack. Let Ga be the subset of Q containing the recovered
queries of a discrete attribute ‘a’. We focus here on discrete attributes, non-discrete and variable
attributes can be recovered using a guess-and-determine attack where at each attempt a different
cardinality is guessed until the right one is determined. Now, we find the number of missing values
of the attribute a in Ga, say ma = |a| − |Ga|. If ma = 0, then we have already recovered all
queries whose attribute is ‘a’. Otherwise (ma > 0), we try to find the missing values from the set
of unresolved queries Q′. In order to do so, we create a list Q′

a and add to it each element in Q′

that has a zero co-occurrence with all the elements in Ga. Note that due to the zero co-occurrence
property between similar attributes, described in Observation 1, |Q′

a| would probably be less than
or equal to ma but it could also be larger than ma. We treat the three cases as follows.

1. If |Q′
a| = ma and the co-occurrence between any two queries in Q′

a is zero, then all the queries
in Q′

a probably have the same attribute which is probably ‘a’ similar to the elements of Ga

unless there are queries with attribute ‘a’ that have not yet been queried. This means that they
do not exist in the original unresolved queries set Q′ and at the same time there is another
attribute b where mb = ma and all the unresolved queries of the attribute ‘b’ have zero co-
occurrence with all the resolved and unresolved queries with attribute ‘a’. However, if the sum
of the queries’ result sizes totalFreq(Q′

a) (i.e.
∑

ti∈Q′
a
|ti| where |ti| is the result size of query

token ti) is equal to n minus the sum of the resolved queries with attribute a, totalFreq(Ga),
i.e. totalFreq(Q′

a) = n − totalFreq(Ga), then with high probability we are confident that the
attribute of the queries in Q′

a is ‘a’ unless totalFreq(Gb) = totalFreq(Ga). Thus, for a database
whose attributes’ cardinalities are unique, an attacker with background frequency knowledge
KF will be able to match between the frequency of the keywords in KF whose attribute is ‘a’
and the result size of the queries in Q′

a. In other words, the value of a query token ti ∈ Q′
a will

be equivalent to a keyword w ∈ KF whose frequency is the result size of the query token ti.

2. If |Q′
a| > ma, then there are

(|Q′
a|

ma

)
subsets of size ma. We add a subset S′ to the solution set

Sol(Ga) iff the co-occurrence between any two elements in S′ is zero and at the same time
the total sum of frequencies of its elements totalFreq(S′) equals to n− totalFreq(Ga). Now, if
|Sol(Ga)| = 1, then we could easily recover the missing values of the attribute a in case all the
queries tokens in S′ ∈ Sol(Ga) have different result sizes as shown in the first case using the
background frequency knowledge KF . If there some tokens in S′ with similar result sizes, then
we will only recover the queries in S′ with different result sizes and recover only the attribute
name (i.e. ‘a’) for queries in S′ with similar result sizes. If the solution set has more than
one solution, |Sol(Ga)| > 1 which is a rare scenario, then performing matching between the

8

frequency of keywords in KF and the result size of queries tokens in Q′
a will probably yield

one solution unless there are two different solutions in Sol(Ga) with similar result sizes.
3. If |Q′

a| < ma, then there are ma − |Q′
a| queries with attribute ‘a’ that have not yet been

queried. Now, the attacker can use his frequency knowledge KF to see whether all the values
of the attribute ‘a’ have different frequency values. In case they have different frequencies, then
the attacker can easily match between the frequency background knowledge and the result set
size of the queries of Q′

a and thus recover the attribute values of the queries in Q′
a. Otherwise,

the attacker will only manage to recover the attribute name but not its value for queries in
Q′

a with similar frequency values.

Combined Count Attack and Attribute Attack. One can also combine the Count attack
with our attribute attack in order to break the ties unresolved by the Count attack through the
co-occurrence knowledge KO but this will only break ties between any two queries with different
attribute names and similar frequency values. So the gain here depends on the database under
attack.

3.2 Experimental Results

We performed two experiments on a small relational database. The first experiment (Exp. I) shows
the practical viability of Algorithm 1 where the attacker has no knowledge beyond the observed
co-occurrence matrix computed from the SSE’s leakage and the basic knowledge KB. The second
experiment (Exp. II) shows that our attribute recovery attack can be used to recover also the values
if the attacker knows (or can guess) the frequency of the keywords in the dataset under attack
but not the joint frequency knowledge assumed by the Count attack. We also made a comparison
between our attack and the Count attack. Moreover, we confirm the obvious observation that
query recovery attacks via the Count attack on small or medium-sized relational dataset could
lead to complete records recoveries.

Data Set. We used the Adult dataset [21] to conduct our experiments. It consists of 32561 ≈ 215

rows (i.e. records) and 14 columns (i.e. attributes). Out of these 14 attributes eight are discrete
and six are non-discrete (variable or continuous). The Adult dataset has 498 distinct keywords.
However, most of these keywords belong to two non-discrete attributes, namely, capital-gain and
capital-loss. So for the sake of explaining the effectiveness of our attribute recovery attack on
discrete attributes and emphasizing our point that query recovery attacks on small datasets are
equivalent to record recovery attacks, we remove the capital-gain and capital-loss attributes from
the Adult dataset2. The resulting dataset contains only 287 distinct keywords from 12 different
attributes (8 discrete and 4 non-discrete). The eight attribute names are “sex” with its two values,
“race” with 5 possible values, “relationship” has 6 values, “marital-status” with 7 values, “work-
class” with 8 possible values, “occupation” with 14 possible values, “education” with 16 possible
values, and “native-country” with 41 possible values. In fact, only 2 non-discrete attributes namely
“age” and “hours-per-week” since “education-num” (this is also equivalent to the discrete attribute
“education”) and salary “class” have fixed values 16 and 2 respectively.

Query Generation. Our dataset is encrypted using a standard implementation of a basic SSE
scheme supporting single-keyword queries. The queries are chosen randomly and the query result
set and the access pattern leakage are recorded by our honest-but-curious attacker. Using this
observed-queries knowledge, our attacker can compute the co-occurrence value between any two
queries and thus the whole observed co-occurrence matrix. In Exp. I, we generated all the possible
queries whereas different numbers of queries are generated in Exp. II.

2 To look for a specific integer or floating-point variable attribute such as capital-gain or capital-loss,
range queries are usually used. In such scenarios, applying the attack proposed in [19] is preferable.

9

Attribute Recovery Attack (Exp. I). Here we assume that our attacker knows only the basic
knowledge KB about the relational dataset under attack beside to the observed co-occurrence
matrix Co computed from the leakage of the used SSE scheme (i.e. access pattern and in some
schemes the number of records n can also be leaked). Algorithm 1 is implemented using the known
dynamic programming procedure to solve the subset sum problem in each set L[ctr]. The time
complexity is O(215 · |L[ctr]|) where |L[ctr]| (averaged over all lists yields a value much less than
the total number of queries) beside the time taken to trace back all the possible solutions. The size
of the first five elements in the sorted list’s container L was below 20. All the discrete attributes
whose cardinality is unique have been recovered successfully. However, attributes with the same
cardianlity such as the “sex” and salary “class”, where each has 2 values, have been distinguished
from the other attributes but we can not tell which of the 2 values point to the “sex” attribute
and which point to the “class” attribute. Similarly, each of the “education” and “education-num”
attributes has 16 values3. However, all their values were in one list ranked at position 29 in the
sorted lists’ container and at the same time each value in each attribute has zero co-occurrence
with all the other values except one value. This make it impossible to separate the values of
each attribute as we did for the “sex” and “class” attributes. In fact, our dynamic programming
implementation of Algorithm 1 generated exactly 32678 = 215 solutions. The reason is that the
first element of each list is included in each solution but each of all the other 15 values has two
possibilities which gives us in total 215 solutions. In such scenarios Algorithm 1 fails completely
to recover the attribute name of a class of keywords.

Attribute and Value Recovery Attack (Exp. II). In addition to the basic knowledge KB and
the observed co-occurrence computed from the SSE’s leakage, our attacker knows the frequency
of each keyword KF but does not know the co-occurrence between any two keywords. So the
attacker first recovers queries with unique result size using his frequency knowledge KF and then
applies the attribute value recovery procedure (i.e. the three cases) outlined above to break the
ties between queries with similar result size. Figure 1 shows that the attacker managed to recover
more keywords with our attack compared to the standard unique-frequency attack. However, the
Count attack is clearly more effective than our attack since it assumes that the attacker has co-
occurrence knowledge KO about the dataset which we consider as a strong assumption that might
rarely hold in practice.

Record Recovery via Count Attack (Exp. II). The queries recovered during our second
experiment using the Count attack lead to complete record recovery as pointed above in Section 3.
Figure 1 shows that the Count attack recovered approximately 90-99% of the available queries
(regardless of the amount of available queries). Figure 2 shows that the average recovery per
record is dependent on the number of available queries, ranging between 30% and 100%. One might
argue that our keyword space is too small but this is often the case in a single relational database
table especially if it only holds discrete attributes or non-discrete attributes with small domain.
Therefore, we believe that this result shows that protecting small or moderate-size relational
databases via SSE schemes could be a risk.

4 Record-Injection Attacks

Zhang et al.’s non-adaptive file-injection binary attack [27] cannot be applied exactly here since
we are dealing with a structured text governed by a relational database rather than unstructured
text. Depending on the relational database under attack, there might be a large number of records
needed to be injected in order to recover all the possible encrypted queries if the database contains

3 There is one-to-one correspondence between education and education-num. If we know the value of
education, we can determine the value of education-num with probability 1. While it might be awkward
to include them in one database table, this serves as a good example to explain when Algorithm 1 can
fail.

10

25% 50% 75% 100%
25%

50%

75%

100%

Percentage of available queries

A
v
e
ra

g
e

p
e
rc

e
n
ta

g
e

re
c
o
v
e
re

d

Count-Attack
Attribute-Recovery

Unique-Count

Fig. 1: Displays the query recovery for available queries with three different attacks, i.e. Unique-
Count, Attribute-Recovery and Count-Attack.

attributes whose values are variables (not discrete) with a big range. However, if the attacker is
concerned about a small subset of keywords. Then she can inject a number of records by focusing
on some attributes whose values are discrete with a small range. This will reduce the number of
injected records and will lead to query recovery and consequently partial record recovery without
any prior knowledge. In the following, we discuss how to estimate the minimum number of records
needed to be injected in order to completely recover an encrypted relational database. Our focus
here is on non-adaptive record injections as adaptive injection attacks need background knowledge
about the target encrypted database and they can be prevented by using a forward secure SSE
scheme. Similar to Zhang et al. [27], we assume that the attacker can identify the record ID of
each injected record. Let D be a relational database with n records and m attributes or columns
where each attribute is denoted by ai and its cardinality is denoted by |ai|, 1 ≤ i ≤ m. Assume
that the number of records need to be injected in D in order to cover the whole keyword space
|W| or a target subset of keywords S is l. Suppose that R = r1r2 · · · rl is the search result on the
injected records regarding an observed query q, where ri = 1 iff the ith injected record is part of
the result set of the query q, otherwise ri = 0. Clearly l ≥ |ai| for all i, otherwise the injected
records will not recover all the values of the attribute ai.

Assume that there are t attributes (ai1, · · · , ait) with the same cardinality d, then in order
to cover all the d · t values one can construct a bijective mapping from the attributes values to
the search result string by simply injecting d · t records in a certain way, as follows. Let the first
d records contain all the values of the 1st attribute and the other attributes belonging to S are
empty. Also, let the second d records contain all the values of the 2nd attribute and the other
attributes belonging to S are empty and so on until the last and tth d records containing all the
values of the tth attribute and the other attributes belonging to S are empty. Now one can see that
the search result on the injected files regarding any keyword in S will yield a binary string with
Hamming weight one where the location of the active bit i indicates that the keyword is located at
position i mod d (or last position if i mod d = 0) in the di/deth attribute. However, one can do
better by injecting much less number of records by gradually incrementing the number of records
l starting from l = d and checking whether it is possible to construct a bijective mapping between
attribute values and search results on injected records.

The following proposition enables us to estimate and come close to the number of injected
records. One can brute-force search for the smallest number l satisfying the inequality below

11

25% 50% 75% 100%
25%

50%

75%

100%

Percentage of available queries

A
v
e
ra

g
e

p
e
rc

e
n
ta

g
e

re
c
o
v
e
re

d

Fig. 2: Displays the average percentage of records recovered of the entire dataset given different
numbers of available queries.

l ≤ d · t ≤
(

l
l/d

)
in order to find the minimum number of injected records needed to uniquely

identify and recover all the queries.

Proposition 2. Let S be a subset of attributes of size t. Let all the attributes of S have the same
cardinality d. Then the number of injected records l needed to uniquely identify all the values of S
satisfies the inequality l ≤ d · t ≤

(
l

l/d

)
.

Proof. Assume that l/d is an integer. Clearly injecting d · t records would allow unique encodings
for the search results on the injected records. So l ≤ d · t. However, it is also possible to inject a
much smaller number of records l that is strictly smaller than d ·t and still uniquely identify all the
keywords. In order for such number of records to yield a unique search result on the injected records
for all the d · t keywords, we need to make sure that each keyword can be uniquely represented
by an l-bit string representing the search result on the injected records and has Hamming weight
equal to l/d. This can be done by constructing a bijective mapping between the keyword values
and the l-bit search result on the injected records. Replacing each occurrence of a keyword value in
a column in the injected records by ‘1’ and each non-occurrence by ‘0’ yields a binary string with
Hamming weight l/d equivalent to the search result of the keyword value on the injected records.
Consequently, we get a bijective mapping. Now, to enable the unique encoding of all possible d · t
keyword values, the number of l-bit strings

(
l

l/d

)
should be ≥ d · t since otherwise all the possible

keyword values will not be covered. ut

The corollary below follows from the above proposition and it gives a sufficient number of
records that need to be injected in order to obtain a unique search result on the injected records
for all possible keywords.

Corollary 1. Let S be a set of m attributes. Let amax be the maximum cardinality in the set S.
Then injecting 2 · amax records is enough to get a unique search result on the injected records as
long as m ≤ 2 · amax − 1.

Proof. If the number of injected records can uniquely hold the maximum number of possible
keywords amax ·m, then it will be able to uniquely hold any number of keywords less than amax ·
m. Therefore we assume that all the m attributes have cardinality amax. Then using the above
inequality where d = amax, t = m and l = 2amax, we find

amax ·m ≤
(

2amax

2

)
= 2a2max − amax

12

Thus, m ≤ 2amax − 1. ut

The following corollary gives the precise minimum number of injected records needed to cover all
the keyword space for some datasets whose maximum cardinality is more than or equal to the
double of the cardinality of other attributes.

Corollary 2. Let S be a set of m attributes. Let there be a single attribute with the maximum
cardinality in S, amax. If there is no any attribute b such that amax < 2|b|. Then injecting amax

records where each attribute c contains amax/|c| instances of each possible column value is the
minimum number needed to uniquely identify all the possible keyword values of S as long as m ≤
2|b|.

Proof. Similar to the proof of Corollary 1 except here we set t = m − 1 (excluding the attribute
column with maximum cardinality), l = 2 · |b| and d = |b| to get m ≤ 2 · |b|. Note that l = 2 · |b|
will cover all attributes except the ones with maximum cardinality amax. So we need to inject not
less than amax records to cover the keywords about the values of the attribute with the maximum
cardinality. Since amax > l then injecting amax is the exact number needed to cover all possible
keywords. ut

Following the above corollaries, the number of records will be in the interval [amax, c · amax] where
c ≥ 1 is a small constant. If we have an attribute a whose values are not discrete, then amax

might be large which makes it difficult to recover all the values of the the non-discrete attribute
a. However, one can reduce the number of injected records by predicting a small and dominant
subset of all the possible values of the non-discrete attribute a.

Discussion. It is clear that once an attacker is able to inject his own records then record-injection
will lead to query recovery and eventually could lead to full record recovery as pointed above in our
second experiment where we showed that the Count attack could lead to complete record recovery.
The above record injection attack works under the assumption that the attacker can identify the
record identifiers of the injected records. This assumption is also adopted by Zhang et al. [27].
If the client updates one record at a time, then the attacker will always be able to identify the
identifiers of the injected records. However, if the client does only batch updates, then the attacker
should inject records in a way such that each keyword has a unique number of appearances in all
the injected records.

The file-injection countermeasure proposed by Zhang et al. [27] which restricts the number of
keywords per document to a certain threshold T (e.g. T � |W|/2) cannot be applied here since a
relational database record has a certain number of keywords equivalent to its number of attributes
and any restriction would hinder the work of any application using the SSE-encrypted database.
So one needs to use a forward secure SSE scheme such as the one proposed in [6] in order to
protect relational databases against adaptive injection attacks. Note that a forward secure SSE
scheme does not provide protection against non-adaptive injection attacks. So additional system-
based or application-based countermeasures protecting the update process of the the encrypted
database from being attacked by an active adversary performing record-injection attacks need to
be employed.

5 Countermeasures Against Attacks on SSE Schemes

Countermeasures against frequency attacks must be used in order to reduce the effectiveness of
the frequency attacks demonstrated above. A well known technique is padding which is proposed
in [17,7] as a potential countermeasure to reduce the effectiveness of frequency attacks. Basically,
during the setup of the encrypted database, the client adds dummy document or record IDs to each
keyword in the index order to hide the actual frequency of the keyword. Also, the client adds an
encrypted dummy document corresponding to each dummy ID added in the index. Later, during
search, the client filters out the dummy documents. Experiments in [7], show that a padding level

13

that increases the index size by 15% for a real world sample dataset and 30% for another real
world sample dataset, does not affect the success rate of the generalized Count attack [7] which
is a slight improvement of the above described Count attack that basically does not depend on
the keywords with unique frequency which will not exist in a padded SSE scheme but it initially
guesses these keywords. The detection of a wrong guess is done during the co-occurrence testing
phase which does equality matches in a window or a range of a fixed size to nullify the noise
coming from the dummy documents causing false co-occurrences. Thus, the generalized Count
attack presented in [7] suggests that padding alone does not reduce the effectiveness of frequency
attacks as matches in a range can be done through the observed co-occurrence matrix.

Countermeasure Against the Attribute Recovery Attack. The above padding countermea-
sure which hides the actual size of each query prevents our attribute recovery attack. However,
depending on the padding level, a variant of the attribute recovery attack that does not look
for the exact number of records could still work. So another countermeasure is needed such as
requiring a unified cardinality for some or all attributes to prevent distinguishing attributes with
unique cardinality. This can be done by adding dummy values for each attribute together with
their corresponding dummy record identifiers in order to have at least two attributes with similar
cardinalities. As shown in Exp. I, attributes with similar cardinality are difficult to distinguish
from each other using only the basic knowledge KB. Also requiring the minimum cardinality to be
large would increase the time complexity of Algorithm 1 and thus make our attack impractical.
Moreover, an SSE scheme leaking the number of records n should not be used unless dummy
records are added before encrypting the index in order to hide the actual number of records n.
All these countermeasures prevent our attack at the expense of storage and time efficiency of SSE
schemes.

Countermeasure Against the Count Attack. Beside reducing the effectiveness of the key-
word count leakage by padding, one might think of reducing the effectiveness of the keyword
co-occurrence leakage by having the observed co-occurrence of some keywords to be zero. One
can see that if qi and qj are distributed in different fragments according to a defined privacy
constraints, then Q[qi, qj] will be zero when each query is executed in only one fragment and
fragments are not allowed to interact together to evaluate queries. Now an equality match or a
window equality match with the background matrix M [si, tj] as done in [7] will never happen
which will significantly reduce the effectiveness of the Count attack. This can be done by applying
vertical fragmentation to a relational database table according to a pre-defined set of privacy con-
straints on its columns. The aim behind the privacy constraints is hiding the association among
the attributes which means that there should be no joint appearance of the attributes in the
privacy constraints [1,11,13]. For example, consider the above defined Adult dataset. The privacy
constraint c1 = {sex,occupation} prevents the “sex” column and “occupation” column from being
together in one fragment. Another example, consider the relation of the following attributes about
patients in a hospital: Name, Date of Birth (DOB), Disease, Medical Doctor (MD), and ZIP. Now
one can define the following privacy constraints c1 = {Name, DOB}, c2 = {Name, Disease}, c3
= {Name, ZIP}, c4 = {Name, MD}, c5 = {DOB, ZIP, Disease} and c6 = {DOB, ZIP, MD}.
Now a privacy constraint prevents some columns from being together, so the privacy constraint
c1 = {Name,DoB} prevents the Name column or attribute from being together in one fragment
with the DoB column since they might reveal together more information about a specific person
if frequency attacks are applied on an SSE scheme protecting the fragment.

We note that the privacy constraints should be used to produce the minimal amount of frag-
ments possible using the heuristic algorithm proposed in [11]. For instance, a valid minimal frag-
mentation for the relation and privacy constraints defined above is the following F ={F1={Name},
F2 = {DoB,ZIP}, F3 ={Disease,MD}}. After applying the fragmentation, we need to ensure that
each query is executed in only one fragment in order to prevent an attacker monitoring all the frag-
ments (or collaborative honest-but-curious fragment servers) from gaining any information about
the correlation of the records between any two fragments which will obviously break the pre-defined

14

the privacy constraints set by the data owner. Moreover, we need to have different record IDs for
the same record at each fragment in order to achieve security against an attacker monitoring all
fragments (or collaborative honest-but-curious fragment servers) and also apply random shuffling
for the fragment’s records. After that, we can apply the same SSE scheme in each fragment using
a different key. This ensures that applying frequency attacks on each fragment is not effective
since the encrypted attributes within each fragment does not provide sufficient information if they
are recovered. Note that the generalized Count attack is effective in each fragment and it could
probably recover entire records in each fragment. However, the fragments are defined according
to the privacy constraints which means that the recovered records are unlinkable and thus will
not reveal useful information. If all fragments are recovered, the attacker will not be able to link
or combine them and find the original record before fragmentation since each fragment is shuffled
differently and each fragment’s record has a different record ID for the same original record.

Security Gain From Privacy Constraints. Vertical fragmentation using privacy constraints
prevents full record recovery but the fragmented SSE scheme will still leak the access pattern inside
each fragment as well as leaking the attribute of the keywords in each fragment. The access pattern
leakage can be reduced by padding and the attribute leakage can also be reduced if one can pad
dummy values in order to have the same cardinality for the fragment’s attributes. We performed
an experiment to show the amount of security gained when we employ vertical fragmentation
via privacy constraints. In this experiment, the dataset is split into three different fragments. All
fragments are protected using the same SSE scheme but each fragment has its own secret keys
and has its own encrypted index. No interaction between the fragments are allowed during an
execution of a query. We applied the Count attack on each fragment. Figure 3 shows the results of
this experiment. Each of the first and third fragments contain few attributes, so when all possible
queries in each fragment are queried, we are able to recover all the queries using the Count attack
and thus consequently recover all the records in each fragment. However, an attacker cannot recover
the same record distributed between the two fragments since each fragment is shuffled differently
and keywords belonging to the same record are fragmented into two records with different IDs.
One can see that in the second fragment which contains 7 attributes, we have only recovered
approximately less than 75% of each record in the second fragment and thus around 43.75% of
each record in the original dataset before fragmentation. This is a clear advantage compared to
the record recovery attacks shown in Figure 2 which recovers almost 100% of each record when
all the possible queries are available.

Performance of SSE Schemes under Fragmentation. The drawback with the fragmentation
approach is the additional computational work in the use case of a multi-keyword query whose
keywords exist in different fragments. But this can be combated by the use of a fragmentation
algorithm which takes usage data into account [13]. This usage data is compiled in the form of
an affinity matrix. For each pair of attributes there exists an affinity value. This value defines the
frequency for which this specific pair of attributes exist in a multi-keyword query. This will allow
us to find a suitable minimal fragmentation providing efficient execution for multi-keyword queries
and the same time meeting the security demands set by the privacy constraints.

6 Conclusion

In this paper, we proposed a novel attack exploiting the structure of relational databases. Our
attack targets small relational databases and requires only the access pattern leakage inherent in
all SSE schemes beside basic information about the database under attack. We also showed that
our attack can be easily prevented by requiring some or all attributes to have the same cardinality
to hide the cardinality of each attribute. However, this will increase the size of stored encrypted
index and thus decreases efficiency.

Moreover, we showed that record-injection attacks also pose a real threat for searchable en-
crypted relational databases. Furthermore, we proposed the use of privacy constraints together

15

25% 50% 75% 100%
25%

50%

75%

100%

Percentage of available queries

A
v
e
ra

g
e

p
e
rc

e
n
ta

g
e

re
c
o
v
e
re

d

Frag 1
Frag 2
Frag 3

Fig. 3: Displays the result of the average percentage recovered per record for the fragmented
dataset. Frag. 1 includes “sex, marital-status and relationship”, which totals at approximately 5%
of the keyword space. Frag. 2 includes “age, work-class, education, education-num, occupation,
hours-per-week and salary class”, which totals at approximately 78% of the keyword space. Frag.
3 includes “native-country and race”, which totals at approximately 17% of the keyword space.
All queries are single keyword searches where for each experiment the queries are split between the
three fragments but not uniformly split as this depends on the distribution of attributes’ values
in each fragment.

with padding on top of any SSE scheme in order to reduce the effectiveness of the frequency
attacks proposed in [17,7]. Clearly, the privacy constraints would affect the performance of SSE
schemes. However, several optimizations similar to the ones proposed in [13] can be performed to
improve the performance.

Acknowledgments

We would like to thank Erik Zenner for helpful comments and suggestions on an earlier draft of
this paper. This work was supported by European Union’s Horizon 2020 research and innovation
programme under grant agreement No 644814, the PaaSword project within the ICT Programme
ICT- 07-2014: Advanced Cloud Infrastructures and Services.

References

1. Gagan Aggarwal, Mayank Bawa, Prasanna Ganesan, Hector Garcia-Molina, Krishnaram Kenthapadi,
Rajeev Motwani, Utkarsh Srivastava, Dilys Thomas, and Ying Xu. Two can keep a secret: A dis-
tributed architecture for secure database services. CIDR 2005, 2005.

2. Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order preserving encryption
for numeric data. In Proceedings of the 2004 ACM SIGMOD international conference on Management
of data, pages 563–574. ACM, 2004.

3. Nir Ailon and Bernard Chazelle. Lower bounds for linear degeneracy testing. Journal of the ACM
(JACM), 52(2):157–171, 2005.

4. Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and efficiently searchable
encryption. In Annual International Cryptology Conference, pages 535–552. Springer, 2007.

5. Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. Order-preserving encryption revisited:
Improved security analysis and alternative solutions. In Annual Cryptology Conference, pages 578–595.
Springer, 2011.

6. Raphael Bost. σoϕoς: Forward secure searchable encryption. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 1143–1154. ACM, 2016.

16

www.paasword.eu

7. David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks against
searchable encryption. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, pages 668–679. ACM, 2015.

8. David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla, Hugo Krawczyk, Marcel-Catalin
Rosu, and Michael Steiner. Dynamic searchable encryption in very-large databases: Data structures
and implementation. IACR Cryptology ePrint Archive, 2014:853, 2014.

9. David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin Roşu, and Michael
Steiner. Highly-scalable searchable symmetric encryption with support for boolean queries. In Ad-
vances in Cryptology–CRYPTO 2013, pages 353–373. Springer, 2013.

10. Melissa Chase and Seny Kamara. Structured encryption and controlled disclosure. In Advances in
Cryptology-ASIACRYPT 2010, pages 577–594. Springer, 2010.

11. Valentina Ciriani, Sabrina De Capitani Di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi,
and Pierangela Samarati. Fragmentation and encryption to enforce privacy in data storage. In
Computer Security–ESORICS 2007, pages 171–186. Springer, 2007.

12. Valentina Ciriani, Sabrina De Capitani Di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi,
and Pierangela Samarati. Keep a few: Outsourcing data while maintaining confidentiality. In Computer
Security–ESORICS 2009, pages 440–455. Springer, 2009.

13. Valentina Ciriani, Sabrina De Capitani Di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi,
and Pierangela Samarati. Combining fragmentation and encryption to protect privacy in data storage.
ACM Transactions on Information and System Security (TISSEC), 13(3):22, 2010.

14. Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In Proceedings of the 13th ACM conference on
Computer and communications security, pages 79–88. ACM, 2006.

15. Jeff Erickson. Lower bounds for linear satisfiability problems. In SODA, pages 388–395, 1995.
16. Omer Gold and Micha Sharir. Improved bounds for 3sum, k-sum, and linear degeneracy. CoRR,

abs/1512.05279, 2015.
17. Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern disclosure on

searchable encryption: Ramification, attack and mitigation. In NDSS, volume 20, page 12, 2012.
18. Seny Kamara and Charalampos Papamanthou. Parallel and dynamic searchable symmetric encryp-

tion. In International Conference on Financial Cryptography and Data Security, pages 258–274.
Springer, 2013.

19. Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. Generic attacks on secure out-
sourced databases. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 1329–1340. ACM, 2016.

20. Jon Kleinberg and Eva Tardos. Algorithm design. Pearson Education India, 2006.
21. Ronny Kohavi and Barry Becker. Adult data set. https://archive.ics.uci.edu/ml/machine-learning-

databases/adult/, 1996. [Last Accessed 2016-10-18].
22. Kaoru Kurosawa and Yasuhiro Ohtaki. Uc-secure searchable symmetric encryption. In International

Conference on Financial Cryptography and Data Security, pages 285–298. Springer, 2012.
23. Muhammad Naveed, Seny Kamara, and Charles V Wright. Inference attacks on property-preserving

encrypted databases. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, pages 644–655. ACM, 2015.

24. Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Balakrishnan. Cryptdb: protecting
confidentiality with encrypted query processing. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, pages 85–100. ACM, 2011.

25. Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for searches on en-
crypted data. In Security and Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE Symposium on,
pages 44–55. IEEE, 2000.

26. Peter van Liesdonk, Saeed Sedghi, Jeroen Doumen, Pieter Hartel, and Willem Jonker. Secure Data
Management: 7th VLDB Workshop, SDM 2010, Singapore, September 17, 2010. Proceedings, chapter
Computationally Efficient Searchable Symmetric Encryption, pages 87–100. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2010.

27. Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries are belong to
us: The power of file-injection attacks on searchable encryption. Cryptology ePrint Archive, Report
2016/172, 2016. http://eprint.iacr.org/2016/172.

17

http://eprint.iacr.org/2016/172

	Inference and Record-Injection Attacks on Searchable Encrypted Relational Databases

