
Inference and Record-Injection Attacks on Searchable
Encrypted Relational Databases

Mohamed Ahmed Abdelraheem, Tobias Andersson and Christian Gehrmann

{mohamed.abdelraheem, tobias.andersson, chrisg}@sics.se

RISE SICS AB

Abstract. We point out the risks of providing security to relational databases via search-
able encryption schemes by mounting a novel inference attack exploiting the structure of
relational databases together with the leakage of searchable encryption schemes. We discuss
some techniques to reduce the effectiveness of inference attacks against searchable encryption
schemes. Moreover, we show that record-injection attacks mounted on relational databases
have worse consequences than their file-injection counterparts on unstructured databases
which have been recently proposed at USENIX 2016.

1 Introduction

One of the practical solutions for searching on encrypted data is provided by searchable symmet-
ric encryption (SSE) schemes. The very first such scheme was proposed by Song et al. in [28].
Later, Curtmola et al.’s [14] introduced two security notions for SSE schemes, namely, the non-
adaptive semantic security definition and the adaptive semantic security definition. Subsequent
SSE schemes [10,9,8] are all based on Curtmola et al.’s security model. The price of the efficiency
offered by searchable symmetric encryption schemes comes at the cost of leaking the frequency of
each keyword after it has been queried. This makes them vulnerable to frequency attacks. Besides
SSE schemes, there are several practical solutions proposed to execute SQL queries on an en-
crypted database. Recently, Popa et al. proposed CryptDB as a solution to protect confidentiality
for applications using SQL databases [26]. CryptDB uses column-level encryption to encrypt the
database tables. CryptDB uses a trusted proxy server to communicate between the client appli-
cation and the cloud server. The proxy server translates the SQL queries in plaintext format to
an encrypted format to enable the cloud server in executing the SQL on the encrypted tables.
To enable equality searches, CryptDB uses deterministic encryption [4]. Order preserving encryp-
tion [2,5] is used to enable range and comparison queries on encrypted data. This is the weakest
encryption scheme used in CryptDB whose design concept is based on the trade-off between func-
tionality and confidentiality. Recently, Naveed et al. [24] mounted frequency analysis attacks that
recovered the plaintext from CryptDB’s columns protected by deterministic encryption and order
preserving encryption schemes.

Another line of research in preserving database privacy is achieved by distributing and frag-
menting the database table across two or more servers [1,11,13]. The fragmentation technique
employed in all the previous schemes is vertical fragmentation where the tables’ columns are par-
titioned across the servers. Privacy in [1] is provided under the assumption that the two cloud
servers are unable to communicate directly with each other while the privacy in [11,13] is achieved
without such assumption. The idea here is to use encryption as little as possible. In general, frag-
mentation is preferred over encryption to break the associations among the attributes. In [12],
privacy is preserved by using fragmentation only and no encryption is employed. This comes at
the cost of saving sensitive data in the clear at the data owner, i.e. the client. All these privacy
constraints schemes are efficient but at the cost of having plaintext fields and only encrypting sen-
sitive data makes them vulnerable to be attacked by an adversary with background information
about the database. Also adding or modifying a record reveals the relation among the fragments
to a passive adversary monitoring the fragments.

1

Traditionally, SSE schemes are designed to protect a set of unstructured documents (e.g. email
archive or a backup or any set of sensitive text files). However, recently under the Intelligence
Advanced Research Project Activity (IAPRA) SPAR program [27], researchers from IBM along
with other researchers proposed an efficient and elegant SSE scheme at Crypto 2013 [9] which in
their own words, and I quote from [9], page 4, “We develop the first non-generic sublinear SSE
schemes supporting conjunctive keyword search (and more general Boolean queries, see below) with
a non-trivial combination of security and efficiency. The schemes performance scales to very large
datasets and arbitrarily-structured data, including free-text search.”, targets relational databases
as well as unstructured data. Besides providing confidentiality to data and queries in relational
databases and unstructured data, their solution also provides more functionality compared to
previous SSE schemes by supporting a large subset of Boolean queries as well as better efficiency
as it achieves a query speed that is comparable to the unprotected MySQL (release 5.5) query but
with a storage cost of up to seven times the unencrypted data [9,17]. Later, under another IARPA
project, a dynamic SSE scheme is proposed to support the protection of dynamic databases [8].
To the best of our knowledge, the SSE schemes developed under the IARPA projects are the first
SSE schemes aiming towards protecting relational databases using SSE schemes by improving the
functionality in [9] and the efficiency and secure support for updates in [8].

Comparing the above methods for searching on encrypted relational databases in terms of
security, one can argue that SSE schemes offer better security than deterministic or order pre-
serving encryption schemes since they do not leak the frequency of an attribute-value pair before
querying it. They also provide better security than the data fragmentation method via privacy
constraints [11] since they encrypt all the plaintext data and they can also securely manage a
dynamic database [8]. However, to the best of our belief, the security gain from protecting re-
lational databases via SSE schemes has not been studied and analyzed before as the security of
SSE schemes have only been studied against inference attacks [18,7] in their traditional use case
scenario where documents datasets such as email archive are protected. These inference attacks
represent a major threat against SSE schemes since they can be launched by passive adversaries
with background information about the target data. Therefore, in this paper, we study the impli-
cations of inference attacks on searchable encrypted relational databases (i.e. relational databases
that are protected via SSE schemes). Our work basically shows that the structure of relational
databases adds more leakage that enables an attacker to infer more information about the at-
tribute names of protected queries which represent very sensitive information since revealing them
will obviously enable an attacker to collect all queries sharing the same attribute name in a single
column and consequently apply frequency analysis attacks similar to the ones proposed by Naveed
et al [24]. We also study the effect of the recent file-injection attacks [30] on relational databases.

In order for our attacks to work, the attacker needs a background information about the
target relational database table under attack such as the structural metadata of the database
table in addition to the number of records. It is important to note that our attacks do not target
the SSE schemes [9,8] developed under the IARPA projects as they specifically do not leak the
number of records needed to launch our attack. However, it might be reasonable to assume that
the attacker knows the number of records especially in relational databases that are static (e.g.
archived databases).

Our Contribution. We show the severe consequences of inference attacks [18,7] on a relational
database secured via an SSE scheme. We propose a novel inference attack on SSE schemes that
exploits the structure of relational databases besides the access pattern’s leakage inherent in SSE
schemes. Moreover, we show that record-injection attacks are a serious threat for SSE schemes that
are not forward secure. Furthermore, we propose a suitable inference control to safeguard relational
databases secured via SSE schemes from being completely recovered by strong adversaries with
background knowledge about the relational database. Specifically, our inference control is the use
of privacy constraints [1,11,13] to distribute the encrypted index of an SSE scheme into several
fragments or servers to reduce the effectiveness of inference attacks exploiting the access pattern
leakage [18,7] which is inherent in SSE schemes.

2

Related Work. Query recovery attacks exploiting the access pattern leakage of SSE schemes were
proposed by Islam et al. [18] and later improved by Cash et al. [7]. By exploiting the structure of
relational databases, our new attack requires lesser background information about the relational
database under attack compared to full database knowledge required by Cash et al. and Islam
et al. Moreover, we empirically emphasize the obvious observation that the query recovery at-
tacks in [18,7] might lead to complete record-recovery attacks when the dataset under attack is a
relational database. Furthermore, the padding countermeasure against query recovery attacks pro-
posed in [18,7] does not fully prevent the generalized Count attack proposed in [7] (cf. Section 5).
Therefore, in this work, we propose the use of privacy constraints as an additional countermeasure
that should be used together with padding to reduce the effectiveness of frequency attacks. Note
that the privacy constraints as defined in [1,11,13] were mainly used to depart completely from
the use of encryption or to use encryption as less as possible. However, in this paper, we propose
using them to strengthen the security of SSE schemes against frequency attacks.

Naveed et al. [24] proposed a number of attacks targeting relational database columns encrypted
using deterministic encryption [4] or order preserving encryption algorithms [2,5] in CryptDB [26]
where encrypted values belonging to the same column whose name is encrypted are collected
together as one set or more precisely one column vector. While seems similar, their column finder
procedure is different than our attribute recovery attack in SSE schemes. It takes as input the
set of encrypted values (i.e. column vector of encrypted values) belonging to the same unknown
column whose name is encrypted. It recovers the encrypted name by matching the number of
distinct encrypted values with each column’s cardinality defined in the set of plaintext columns
(i.e. a column name and its possible values are known) belonging to the attacker’s auxiliary or
background data. Their procedure relies mainly on the attributes’ (i.e. columns) cardinalities. In
contrast, our attack described in Algorithm 1 takes as input all the observed encrypted queries
in an SSE scheme. Then using the access pattern leakage inherent in SSE schemes in addition
to basic background data about the number of records and attributes’ cardinalities, it divides
the observed encrypted queries into different classes where each class contains a set of encrypted
queries belonging to the same attribute. Thus, each class or set of encrypted queries found by our
attack is actually the input used by Naveed et al’s column finder procedure.

The recently proposed file-injection attack by Zhang et al. at USENIX 2016 [30] recovers
only the set of keywords in an encrypted document (and not the actual plaintext document) and
could be prevented by limiting the content of each injected file. However, in this paper, we show
that record-injection attacks while being similar to file-injection attacks, they have more severe
consequences represented in an almost full record recovery or reconstruction attack on a relational
database. Moreover, record-injection attacks cannot be simply prevented by limiting the content
of an injected record as done to prevent file-injection attacks [30] since that would hinder the
addition of new complete records to the relational database.

The recent generic attacks [20] proposed at CCS 2016 target any secure database systems
supporting range queries but leaking the access pattern without any prior knowledge about the
dataset under attack. Moreover, their generic attacks target even secure encrypted search methods
supporting range queries leaking communication volume such as fully homomorphic encryption or
ORAM schemes. However, their attacks only target systems supporting range queries and they
require the attacker to gather at least N4 queries (N is the domain size) to mount the attack
successfully. Our work targets only relational databases protected by SSE schemes.

Organization of the paper. Section 2 gives a brief overview of SSE schemes and the frequency
attacks on them. In Section 3, we point out the security risks of using SSE schemes in relational
databases by proposing a new frequency attack exploiting the properties of relational databases.
In Section 4, we revisit the file-injection attacks in the context of relational databases. In Section 5,
we propose the use of privacy constraints as an inference control and countermeasure to reduce
the risk of inference attacks.

3

2 Background about SSE Schemes

In this Section, we define SSE schemes and explain their leakage. We also explain the inference
attacks exploiting the leakage of SSE schemes. Let DB denote a database of n documents and
m unique keywords. Let ID = (idi)

n
i=1 denote the set of all records’ (or documents’) identifiers

in DB and let W = (wj)
m
j=1 denote the set of all unique attribute-value pairs (or documents’

keywords) in DB. Let |W| denote the number of unique attribute-value pairs (or unique keywords
in a set of unstructured documents) in the database. The database can be represented as an
inverted index where each unique attribute-value (or keyword) is associated with a list of records
(or documents) identifiers, i.e. DB = (wi,DB(wi))

m
i=1 where DB(wi) denotes the set of records (or

documents’) identifiers containing the attribute-value pair wi = (attributei, value) or (keyword
wi). Let |DB(wi)| denote size of DB(wi).

Definition. An SSE scheme takes as inputs the plaintext index (wi,DB(wi))
m
i=1 together with

the client’s secret keys and outputs an encrypted and frequency-hiding database index EINDEX
where a keyword w is transformed into a token t using a deterministic encryption algorithm and
its corresponding record (or document) identifiers are encrypted using a randomized encryption
algorithm. The SSE scheme also encrypts the original database records (or documents) using a
randomized encryption algorithm and stores it in an encrypted database EDB indexed by the
record (or document) identifiers. Both the encrypted index EINDEX and the encrypted database
EDB are sent to the cloud server. To search for a keyword w, the client generates its token t and
sends it to the server which retrieves the corresponding encrypted record (or document) identifiers
from EINDEX and decrypts them and consequently sends the corresponding encrypted records (or
documents) from EDB to the client.

Leakage Profile. An SSE scheme leaks the access pattern: the result of the query or the record
(or document) IDs corresponding to the queried keyword wi, DB(wi), and also leaks the search
pattern: the fact that whether two searches are the same or not.
Attack Model. All recent SSE schemes follow the adaptive security definition proposed by Curt-
mola et al. [14] where security is achieved against an honest-but-curious server. That means a
passive adversary following the protocol but curious to use the leakage profile to learn about the
queries (tokens) and the encrypted records (or documents).

Inference Attacks on SSE Schemes. Classical ciphers were broken by frequency analysis which
is a standard example of an inference attack where an attacker can recover a plaintext character by
inferring some information about its corresponding ciphertext character using language statistics.
Similarly, using publicly-available auxiliary data, an inference attack can be mounted on adaptive
SSE schemes to recover the plaintext of queries (tokens) involved on previous queries issued by the
client and observed by the attacker (e.g. honest-but-curious server or passive external attacker).
This kind of attack performs query recovery and was proposed by Islam, Kuzu, and Kantarcioglu
(IKK) in [18]. Their attack, known in the literature as the IKK attack, targets the strongest kinds
of SSE schemes which are those proved to be secure under the adaptive security definition. The
IKK attack assumes knowledge about the joint frequency (or co-occurrence count) of any two
plaintext keywords wi, wj ∈ W and also assumes knowledge about a subset of queries (tokens)
issued by the client in plaintext. A similar inference attack has been proposed recently by Cash et
al. is called the Count attack [7]. The Count attack also assumes knowledge about the frequency
of each keyword (attribute-value pair) over all the documents (records) which means |DB(wi)|
where wi ∈W and DB is the original plaintext dataset. We denote this knowledge by KF . Similar
to the IKK attack, it also requires knowledge about the joint frequency (or co-occurrence count)
of any two keywords (attribute-value pairs) wi, wj ∈ W. Both, the IKK and the Count attacks,
represent the joint frequency knowledge in a matrix called the co-occurrence knowledge-matrix,
Cw. Therefore, both attacks could require a complete knowledge about the dataset under attack
in order to form the co-occurrence knowledge-matrix. Both attacks exploit the access pattern
leakage inherent in SSE schemes to compute the result size of any observed query (token) and also
compute the joint frequency of any two observed queries (tokens) which is equal to the size of the
set resulting from the intersection between the result sets of the two queries. A joint co-occurrence

4

token-matrix, Ct, is then formed and compared to the co-occurrence knowledge-matrix, Cw in both
attacks.
Active Attacks on SSE Schemes. The above inference attacks are passive attacks mounted
by an honest-but-curious server who knows all or a significant number of the client’s plaintext
dataset. Another class of attacks outlined by Cash et al. [7] are the chosen-document attacks
and the chosen-query attacks. Both attacks are mounted by an active adversary who is somehow
capable of deceiving the client into including her own chosen-document into the documents set
as well as into choosing her favorite queries respectively. Recently, Zhang et al. [30] presented
a concrete description of a chosen-document attack (file-injection) where the attacker is able to
recover all the queries without any prior knowledge about the client’s dataset under attack. The
equivalent of file-injection in the context of searchable encrypted relational databases would be
record-injection and it could have worse consequences that go beyond query-recovery such as full
database record recovery or partial record recovery.

3 On the use of SSE to secure relational databases

The previously discussed inference attacks on adaptively secure SSE schemes are query recovery
attacks that only recover the keyword of a query token. It allows us to the keywords associated
with a document or but do not translate to full or partial document recovery which is the case
for some less-secure searchable schemes with higher leakage as shown in [7] (such schemes are not
secure under adaptive security definition [14]). However, when an adaptive SSE scheme protects
a relational database, the implications of inference attacks will not be similar to the case where
SSE schemes protect unstructured databases. Obviously, inference attacks on any adaptive SSE
scheme protecting a relational database will probably lead to a partial or full record recovery since
query recovery directly translates to partial record recovery in this case. This is because recovering
a query in the context of searchable encrypted relational databases means recovering one cell of
a database record (i.e. an attribute-value pair). To recover a record with identity idi, one has to
look in the access pattern leakage of an SSE scheme for all (or part of) the unique queries (tokens)
corresponding to the record with identity idi. Thus if all the queries (tokens) are recovered using,
for example, the above Count attack. Then, one can fully reconstruct some target records by
creating a forward index from the access pattern leakage of the observed queries (tokens) and
replacing each query (token) with its corresponding plaintext keyword obtained before through
the Count attack. We see this as a real obvious threat which puts relational databases secured via
SSE schemes at risk (cf. Section 3.2).

Moreover, the structure of relational databases does enable an attack on them without resort-
ing to the co-occurrence knowledge-matrix Cw about the dataset under attack. In the following,
we describe a new attack called “Attribute Recovery” targeting relational databases protected
by SSE schemes. The attack recovers the attribute names of queries (tokens) which are also sen-
sitive information beside the attribute values, hence the name “Attribute Recovery”. Under the
assumption that enough queries have been observed and that the attacker knows only the number
of records, the unique attribute or column names A and cardinalities of the dataset under attack.
We define this as the attacker’s basic background knowledge KB. This is definitely much less than
the prior knowledge required by previously discussed inference attacks and can be easily guessed
or acquired. For example, if an honest-but-curious server located at a hospital holds an encrypted
database, then an attacker can easily acquire the columns’ or attributes’ names of the protected
dataset by referring to publicly-available information such as the meta data about database tables
used in standard medical software applications such as OpenEMR [25] which is well-known open
source medical software supporting Electronic Medical Records (EMR). The number of records,
which can be dynamic depending on the protected dataset under attack, could be gained either
through a guess-and-determine process especially for small size datasets or through a leakage of
the SSE scheme under attack as some notable SSE schemes such as [10,29,23,19] already leak the
number of documents or records.

Moreover, our attack could also recover the attribute value of a given attribute name ‘a’ under
the assumption that the attacker knows KF . Similar to Cash et al.’s Count attack, the knowledge

5

of KF enables the attacker to recover the queries (tokens) ti whose result-size |ti| is unique.
Also similar to the Count attack, we use the observed co-occurrence token-matrix Ct. However,
the Count attack resolves the queries (tokens) with non-unique frequency values using the co-
occurrence knowledge-matrix Cw about the dataset whereas our attack resolves such queries by
exploiting the properties of relational databases (cf. Observation 1). This is a clear advantage over
Cash et al.’s Count attack when it comes to attacking relational databases since it does not require
any co-occurrence knowledge-matrix Cw as done by Cash et al. [7] and Islam et al. [18] but only
KB if the attacker’s goal is to recover the attribute names of queries and KF if the attacker’s goal
is to recover the value of each query whose attribute name is recovered.

3.1 Attribute Recovery Attack

We make use of the following simple observation about the joint frequency (or the co-occurrence
count) of observed queries (tokens) sharing the same attribute name on searchable encrypted
relational databases.

Observation 1. The joint frequency (or the co-occurrence count) is zero for any two different
queries (tokens) with the same attribute name that are observed from the access pattern leakage of
an SSE scheme protecting a relational database.

The observation should be clear from the fact that each relational database record has only one
value for each column or attribute name. For example, let t1 be the token corresponding to
“Sex : Male”, t2 be the token corresponding to “Sex : Female”, and t3 be the token corresponding
to “Age : 18”. Now, the joint frequency of t1 and t2 must be zero as there cannot be a relational
database record whose “Sex” value is both “Male” and “Female”. Also there is no guarantee that
the joint frequency of t1 and t3 (or t2 and t3) is zero since their corresponding attribute names are
different. More generally, Observation 1 might allow an attacker to answer the following question
“Do the queries tokens ti and tj have the same attribute name ?”. Here the attacker does not need
any knowledge other than the observed access pattern leakage Ct. If the value Ct[ti, tj] does not
equal zero, then ti and tj definitely have different attribute names. Otherwise, the attacker cannot
answer. Our attribute recovery attack is based on Proposition 1 which follows immediately from
Observation 1 and the fact that the total frequency of all the domain values of an attribute a in a
searchable encrypted relational database EDB equals the number of records in EDB. Going back
to our previous example and assuming that the number of records in EDB is n, one can see that
since t1 and t2 have the same attribute name and |Sex| = 2 (i.e. the cardinality of “Sex”) then
the following equation will be satisfied: |t1| + |t2| = n. This gives an example that explains the
following proposition.

Proposition 1. Let t = {t1, · · · , tl} be the tokens set of observed queries. Let |ti| denote the
result size of query token ti. Let Ct be the observed co-occurrence token-matrix. Let n be number of
records in a searchable encrypted relational database EDB. Let ‘a’ be an attribute name in the EDB
whose cardinality |a| is unique. Then there exists a subset s ⊆ t where

∑
ti∈s |ti| = n, |s| = |a| and

∀ti, tj ∈ s , Ct[ti, tj] = 0.

One can see that the above proposition can be used to develop an algorithm that distinguishes
between observed queries (tokens). Such distinguisher can be mounted by a weak attacker who
observes only the access pattern leakage of queries and has no prior knowledge other than KB (i.e.
number of records, attribute names and their cardinalties). Algorithm 1 takes a set of observed
query tokens t = {t1, ..., tl} and the attacker’s basic background knowledge KB. It divides these
tokens according to their attribute name into different sets where each set Ga represents the tokens
whose attribute name is ‘a’.
Discussion about Algorithm 1. One way to look at Algorithm 1, is to consider the co-occurrence
token-matrix as the adjacency matrix of a weighted graph GCo whose nodes are the queries and any
two nodes are connected by an edge whose weight is the joint frequency (or co-occurrence count)
value between the two connected nodes (i.e. A zero value for the joint frequency (or co-occurrence

6

Algorithm 1 Attribute Recovery Attack

Require: KB∨ Observed tokens t = {t1, ..., tl} and their results. |a| ≡ cardinality of a ∈ A and |ti| ≡
result size of query token ti.

Ensure: Recover the attribute name of observed queries.
1: Set R = {}. Compute the co-occurrence token-matrix Ct for observed queries tokens t = {t1, ..., tl}.
2: For each ti, create a list Qi holding ti (Qi[1] = ti) and all other tokens tj ’s where Ct[ti, tj] = 0.
3: Sort all the lists Qi according to their size in ascending order.
4: Add all the sorted lists Qi’s to a lists’ container L. . L[i, j] is the jth entry in the ith list L[i].
5: Choose an attribute a ∈ A where |a| is the minimum cardinality.
6: Set Ga ← {} and ctr = 1.
7: for all S ⊆ L[ctr] where |S| = |a| & L[ctr, 1] ∈ S do
8: if

∑
tu∈S |tu| = n & Ct[tu, tv] = 0 ∀tu, tv ∈ S then

9: Ga ← S
10: R← R ∪Ga

11: L[ctr]← ∅
12: for all i do
13: if L[i, 1] ∈ Ga then
14: L[i]← ∅
15: else
16: L[i]← L[i]\Ga

17: A ← A\a
18: if A = ∅ then return R
19: else
20: goto Step 5

21: ctr = ctr + 1.
22: if ctr ≤ l then
23: goto Step 7.
24: else
25: print(“No valid subset found corresponding to the chosen attribute ”,a) and goto Step 5.

count) means no edge or edge with weight zero). This allows us to consider the elements of the list
L[ctr] created in Algorithm 1 as nodes in another smaller weighed graph GL[ctr] whose adjacent
matrix is a submatrix of the co-occurrence token-matrix (i.e. adjacent matrix of the bigger graph
GCo containing all queries). Now rather than looking at the subsets of L[ctr] (Note that the first
element L[ctr, 1] should be included in all subsets) whose size is equivalent to a given cardinality
|a|, one can look at the independent sets of the graph GL[ctr] corresponding to the list L[ctr]
whose size is equivalent to |a| with the additional condition that the total sum of the frequency
of each node (i.e. query) equals the total number of records n. This is the known independent set
NP-Complete problem with an additional filtering condition.

Another way to look at Algorithm 1 is to consider that Step 7 and Step 8 form the known
k-SUM problem (i.e. Given A = {a1, · · · , as} and a target sum t. Is there any subset of indices

{i1, · · · , ik} such that
∑k

j=1 |aij | = t ?) with an additional condition that the joint frequency (or
co-occurrence count) value between any two elements in the subset is zero. The k-Sum problem is
a parameterized version of the subset sum problem which is a known NP-complete problem. The
brute force algorithm for the k-SUM problem takes O(sk) where s is the size of the given set. There

are simple algorithms solving this problem in O(s
k
2 log s) when k is even and O(s

k+1
2) when k is

odd [3,15,16]. However, employing the joint frequency (or co-occurrence count) condition might
reduce the above complexity times but this needs further investigation. Obviously, Algorithm 1
performs well when k is small (i.e. the attribute cardinality is small). When the target sum t is not
very large (i.e. number of records n is not very large), one can use the known dynamic programming
technique to solve the subset sum problem in pseudo-polynomial time O(st) [21]. Now, one can ask,
which approach (i.e. independent set algorithms or k-SUM algorithms or dynamic programming of
subset sum) is better to implement Step 7 and Step 8 in Algorithm 1. The answer depends on the
dataset under attack and the available queries. We have implemented the dynamic programming

7

algorithm for the subset problem where all the solutions are traced back and the joint frequency
(or co-occurrence count) condition is evaluated after finding each solution. This is practical when
O(st) is pseudo-polynomial which means that the number of records t is not large and for each
cardinality there exists a constructed list L[ctr] whose size s is not large. As future work, we
leave investigating the other approaches, namely, the independent set problem with the additional
filtering condition (total sum of frequencies) and the k-SUM approach with the additional zero
joint frequency (or co-occurrence count) filtering condition.

To appreciate what Algorithm 1 achieves, we note that Cash et al [7] showed, in one of their
experiments about query recovery rate on the Enron dataset protected by an SSE scheme, that
neither the IKK attack nor the Count attack succeed in recovering any query without assuming
that the attacker has more than 50% of the complete knowledge about the dataset which is
needed to compute the co-occurrence matrix-knowledge Cw and acquire the KF knowledge used
in the Count attack. Now, assume that an attacker have observed enough queries on a searchable
encrypted relational database, then Algorithm 1 can give us an answer to: “Have all possible values
about attribute ‘x’ been queried ?”. To answer such a question, an attacker needs to know the
number of records n which could be possible if the relational database is static and not dynamic
such as Archive databases. The attacker also needs to know |x| which could also be possible
as many relational database tables are standard such as the sensitive OpenEMR [25] relational
databases. Employing Algorithm 1, under enough available queries, will return all the queries
with the same attribute that have result sizes whose sum is equivalent to n. If there is only one
attribute whose cardinality equals ‘|x|’, then Algorithm 1 will yield one solution if all values of ‘x’
have been queried. The ability to answer the above question does break the query privacy meant
to be provided by using SSE and confirms that the leakage resulting from protecting relational
databases with SSE schemes is more than the leakage resulting from protecting unstructured data
with SSE schemes.

Recovering Attribute Values. Algorithm 1 might enable an attacker to recover the attribute
names of some queries without any knowledge except KB. Now with the basic knowledge KB,
the attacker knows the domain or space values of a given attribute name. Moreover, with the
access pattern leakage, the attacker knows the result set size (i.e. number of records holding the
corresponding attribute-value pair for the query token) of each observed query. However, in order
to recover the attribute values of observed queries (tokens) whose attribute names are recovered
with Algorithm 1, without any prior knowledge such as those used in the Count attack KF and Cw,
an attacker needs to know at least the rank-size or rank-frequency distribution 1 of the attribute
values. Using rank-size distribution knowledge only instead of KF knowledge, an attacker can
create a list La containing the attribute values of an attribute named a that is sorted according to
their rank-size in descending order. Let Lq be a list containing the result-size of of each query such
that Lq[i] contains the result size of query ti. Let Sort(Lq) be the list obtained after sorting Lq in
descending order. Let Find(Sort(Lq), Lq[i]) be a function that gives the location corresponding to
ti in the sorted list. Then the value of the token ti will be La[Find(Sort(Lq), Lq[i])]. If all the result
sizes of queries in Lq are unique, then the above attack succeeds with probability one. Otherwise,
there might be an error whenever we have a tie in the result sizes between two or more queries in
Lq.

Using KF knowledge which is a very strong assumption compared to the rank-size distribution
knowledge, an attacker can populate a list of lists data structure, say La, where La[j] gives the
value (or a list of values) of the attribute ‘a’ whose frequency value (values) equals j. Assuming,
for example, that Algorithm 1 has recovered the attribute name of a token ti to be ‘a’, then one
can see that by adding the result-size of observed queries (tokens) to a dictionary Dq (i.e. Dq[ti]
gives the result-size of query token ti), then La[Dq[ti]] will be the attribute value (or the possible
attribute values) of an observed query token ti whose attribute name is a. If each list in La (i.e.

1 The knowledge of the rank-size or rank-frequency distribution of a given attribute value does not
necessarily imply the knowledge of the frequency of each attribute value KF . For example, an attacker
might know that in a certain country, from Census data, that the number of females exceeds the number
of males without knowing the exact numbers.

8

La[j]) has size 1, then this process yields one value for the token ti whose frequency matches the
result-size of ti, Dq[ti]. Otherwise, it will return the list of all the possible values of the token ti
which appear Dq[ti] times over all the database records.

The two above procedures are standard frequency analysis attacks similar to the one described
by Naveed et al. [24] for attacking columns of a relational database encrypted using deterministic
encryption. However, they target searchable encrypted relational databases by firstly recovering
the attribute name of a given query through Algorithm 1 and then secondly recovering its value.

Our second attack procedure employs Algorithm 1 to gather all the queries belonging to a
specific attribute name and then uses KF knowledge to recover the value. This can be considerably
improved by firstly using KF knowledge to recover the observed queries (tokens) whose result sizes
are unique and secondly employing a variant of Algorithm 1 to recover the observed queries (tokens)
whose result sizes are non-unique without resorting to any co-occurrence knowledge-matrix. One
can see that the KF knowledge will speed up the attack as the queries with non-unique result
size can be resolved with a subset sum problem that is easier to solve. The new improved attack
procedure can be described as follows. We start by recovering the observed queries Q with unique
result size using the attacker’s KF knowledge. Then, we divide the recovered queries Q into subsets
according to their attribute names. Let Ga be the subset of Q containing the recovered queries of
a discrete attribute ‘a’. We focus here on discrete attributes, non-discrete and variable attributes
can be recovered using a guess-and-determine attack where at each attempt a different cardinality
is guessed until the right one is determined. Now, we find the number of missing values of the
attribute a in Ga, say ma = |a| − |Ga| (note that |a| is known from KB). If ma = 0, then we have
already recovered all queries whose attribute is ‘a’. Otherwise (ma > 0), we try to find the missing
values from the set of unresolved queries Q′. In order to do so, we create a list Q′

a and add to it
each element in Q′ that has a zero joint frequency with all the elements in Ga. Now we have three
cases according to |Q′

a| . We treat them as follows.

1. If |Q′
a| = ma and the joint frequency between any two queries in Q′

a is zero, then all the queries
in Q′

a probably have the same attribute name which is probably ‘a’ similar to the elements of
Ga. However, there might be queries with attribute ‘a’ that have not yet been queried and thus
do not exist in the original unresolved queries set Q′ and at the same time there is another
attribute b where mb = ma and all the unresolved queries of the attribute ‘b’ have zero joint
frequency with all the resolved and unresolved queries with attribute ‘a’. In such case, if the
sum of the queries’ result sizes totalFreq(Q′

a) (i.e.
∑

ti∈Q′
a
|ti|) is equal to n minus the sum of

the resolved queries with attribute a, totalFreq(Ga), i.e. totalFreq(Q′
a) = n − totalFreq(Ga),

then with high probability, we are confident that the attribute name of the queries in Q′
a is

‘a’ unless totalFreq(Gb) = totalFreq(Ga). Thus, for a database whose attributes’ cardinalities
are unique, an attacker with KF knowledge will be able to match between the frequency of
the attribute-value pairs in KF whose attribute is ‘a’ and the result sizes of the queries in Q′

a.
In other words, the value of a query token ti ∈ Q′

a will be equivalent to a keyword w ∈ KF
whose frequency is the result size of the query token ti.

2. If |Q′
a| > ma, then there are

(|Q′
a|

ma

)
subsets of size ma. We add a subset S′ to the solution set

Sol(Ga) iff the joint frequency between any two elements in S′ is zero and at the same time
the total sum of frequencies of its elements totalFreq(S′) equals to n− totalFreq(Ga). Now, if
|Sol(Ga)| = 1, then we could easily recover the missing values of the attribute a in case all
the queries tokens in S′ ∈ Sol(Ga) have different result sizes as shown in the first case using
the KF knowledge. If there are some tokens in S′ with similar result sizes, then we will only
recover the queries in S′ with different result sizes and recover only the attribute name (i.e.
‘a’) for queries in S′ with similar result sizes. If the solution set has more than one solution,
|Sol(Ga)| > 1 which is a rare scenario, then performing matching between the frequency of
attribute-value pairs in KF and the result size of queries tokens in Q′

a will probably yield one
solution unless there are two different solutions in Sol(Ga) with similar result sizes.

3. If |Q′
a| < ma, then there are ma − |Q′

a| queries with attribute ‘a’ that have not yet been
queried. Now, the attacker can use his KF knowledge to see whether all the values of the
attribute ‘a’ have different frequency values. In case they have different frequencies, then the

9

attacker can easily match between the attribute-value pairs in KF knowledge and the result set
size of the queries of Q′

a and thus recovers the attribute values of the queries in Q′
a. Otherwise,

the attacker will only manage to recover the attribute name but not its value for queries in
Q′

a with similar result sizes.

Combined Count Attack and Attribute Attack. One can also combine the Count attack
with our attribute recovery attack in order to break the ties unresolved by the Count attack
through the co-occurrence knowledge-matrix Cw. However, this will only break ties between any
two queries with different attribute names but similar result sizes. So the gain here really depends
on the relational database under attack.

3.2 Experimental Results

We performed two experiments on a small relational database table. The first experiment (Exp. I)
shows the practical viability of Algorithm 1 where the attacker has no knowledge beyond the basic
knowledge KB and the observed co-occurrence token-matrix, Ct, computed from the SSE’s leakage.
The second experiment (Exp. II) shows that our attribute recovery attack can be used to recover
also the values if the attacker have only KF knowledge but not the joint frequency (co-occurrence
count) knowledge, Cw, assumed by the Count attack. We also made a comparison between our
attack and the Count attack about their query recovery rate under the same searchable encrypted
relational database. Moreover, we confirm the obvious observation that query recovery attacks via
the Count attack on small or medium-sized relational databases could lead to complete records
recoveries.

Target Relational Database Table. We used the Adult dataset [22] to extract a relational
database table in order to conduct our experiments. It consists of 32561 ≈ 215 rows (i.e. records)
and 14 columns (i.e. attributes). Out of these 14 attributes, eight have discrete values and six
are non-discrete values (variable or continuous). The Adult dataset has 498 distinct attribute-
value pairs. However, most of these attribute-value pairs belong to two non-discrete attributes,
namely, capital-gain and capital-loss. So for the sake of explaining the effectiveness of our attribute
recovery attack on discrete attributes and emphasizing our point that query recovery attacks
on small relational databases are equivalent to record recovery attacks, we extract a relational
database table from the Adult dataset by removing the capital-gain and capital-loss attributes 2.
The extracted relational database table contains only 287 distinct attribute-value pairs from 12
different attributes (8 discrete and 4 non-discrete). The eight attribute names are “sex” with
its two values, “race” with 5 possible values, “relationship” has 6 values, “marital-status” with 7
values, “work-class” with 8 possible values, “occupation” with 14 possible values, “education” with
16 possible values, and “native-country” with 41 possible values. Thus we have only 2 non-discrete
attributes namely “age” and “hours-per-week” since “education-num” (which is equivalent to the
discrete attribute “education”) and salary “class” have fixed values 16 and 2 respectively.

Query Generation. Our extracted relational database table is transformed to a searchable en-
crypted relational database table using a standard single-keyword SSE scheme where a Bitmap
encrypted index leaking the number of records n is used similar to the single-keyword Bitmap
index scheme described in [29,18]. The queries were chosen randomly from the set of all available
queries by a client and each query result set and its access pattern leakage were recorded by an
honest-but-curious server. Using this observed-queries knowledge, our attacker (i.e. the honest-
but-curious server) can compute the joint frequency (or co-occurrence count) value between any
two queries and thus the whole co-occurrence token-matrix, Ct. In Exp. I, we generated all the
possible queries (i.e. 287 queries) whereas different numbers of queries are generated in Exp. II,
namely 100, 150, 200, 250, and 287 queries.

Attribute Recovery Attack (Exp. I). Here we assume that our attacker knows only the basic
knowledge KB about the target data (i.e. Adult dataset) beside to the observed co-occurrence

2 To look for a specific integer or floating-point variable attribute such as capital-gain or capital-loss,
range queries are usually used. In such scenarios, applying the attack proposed in [20] is preferable.

10

token-matrix Ct computed from the leakage of the used SSE scheme. Algorithm 1 is implemented
using the known dynamic programming procedure to solve the subset sum problem in each set
L[ctr]. Since the number of records is ≈ 215, the time complexity taken by Algorithm 1 will be
O(215 · |L[ctr]|) where |L[ctr]| (averaged over all lists yields a value much less than the total number
of queries) beside the time taken to trace back all the possible solutions. The size of the first five
elements in the sorted list’s container L was below 20. All the discrete attributes with unique
cardinalities have been recovered successfully. However, attributes with the same cardianlity such
as the “sex” and salary “class”, where each has 2 values, have been distinguished from the other
attributes but we can not tell which of the 2 values point to the “sex” attribute and which point
to the “class” attribute. Similarly, each of the “education” and “education-num” attributes has 16
values3. However, all their values were in one list ranked at position 29 in the sorted lists’ container
and at the same time each value in each attribute has zero joint frequency (or co-occurrence count)
value with all the other values except one value. This makes it impossible to separate the values of
each attribute as we did for the “sex” and “class” attributes. In fact, our dynamic programming
implementation of Algorithm 1 generated exactly 32678 = 215 solutions. The reason is that the
first element of each list is included in each solution but each of all the other 15 values has two
possibilities which gives us in total 215 solutions. In such scenarios Algorithm 1 fails completely
to recover the attribute name of a class of queries.

Attribute and Value Recovery Attack (Exp. II). In addition to the basic knowledge KB
and the observed co-occurrence token-matrix computed from the SSE’s leakage, our attacker have
KF knowledge (i.e. the number of occurrences of each attribute-value pair over all the original
records in the relational database) but does not know the co-occurrence knowledge-matrix Cw

required by both the IKK attack and the Count attack. So the attacker first recovers queries
with unique result size using his KF knowledge and then applies a variant of Algorithm 1 (i.e.
the three cases) outlined in Appendix A to resolve queries with non-unique result sizes. Figure 1
shows that the attacker managed to recover more queries with our attack compared to a standard
unique-frequency attack that recovers only queries with unique result sizes. However, the Count
attack is clearly more effective than our attack since it assumes that the attacker has co-occurrence
knowledge-matrix Cw about the relational datasbase.

Record Recovery via Count Attack (Exp. II). The query recovery during our second ex-
periment using the Count attack leads to complete record recovery as pointed above in Section 3.
Figure 1 shows that the Count attack recovered approximately 90-99% of the available queries (re-
gardless of the amount of available queries). Figure 2 shows that the average recovery per record is
dependent on the number of available queries, ranging between 30% and 100%. One might argue
that our keyword space is too small but this is often the case in a single relational database table
especially if it only holds discrete attributes or non-discrete attributes with small domain. There-
fore, we believe that this result shows that protecting small or moderate-size relational databases
via SSE schemes could be a risk.

4 Record-Injection Attacks

Zhang et al.’s non-adaptive file-injection binary attack [30] cannot be applied exactly here since
we are dealing with a structured text governed by a relational database rather than unstructured
text. Depending on the relational database under attack, there might be a large number of records
needed to be injected in order to recover all the possible encrypted queries if the database contains
attributes whose values are variables (not discrete) with a big range. However, if the attacker is
concerned about a small subset of attribute-value pairs. Then he can inject a number of records
by focusing on some attributes whose values are discrete with a small range. This will reduce the

3 There is one-to-one correspondence between education and education-num. If we know the value of
education, we can determine the value of education-num with probability 1. While it might be awkward
to include them in one database table, this serves as a good example to explain when Algorithm 1 can
fail.

11

25% 50% 75% 100%
50%

75%

100%

Percentage of available queries

A
v
e
ra

g
e
p
e
rc

e
n
ta

g
e
re

c
o
v
e
re

d

Count-Attack

Attribute-Recovery

Unique-Count

Fig. 1: Shows the query recovery of available
queries with three different attacks, i.e. Unique-
Count, Attribute-Recovery and Count-Attack.

25% 50% 75% 100%
25%

50%

75%

100%

Percentage of available queries

A
v
e
ra

g
e
p
e
rc

e
n
ta

g
e
re

c
o
v
e
re

d
Fig. 2: Shows the average percentage of records re-
covered of the entire dataset given different num-
bers of available queries.

number of injected records and will lead to query recovery and consequently partial record recovery
without any prior knowledge. In the following, we discuss how to estimate the minimum number
of records needed to be injected in order to completely recover a searchable encrypted relational
database. Our focus here is on non-adaptive record injections as adaptive injection attacks need
background knowledge about the target encrypted database and they can be prevented by using a
forward secure SSE scheme. Similar to Zhang et al. [30], we assume that the attacker can identify
the record ID of each injected record. Let D be a relational database with n records and m
attributes or columns where each attribute is denoted by ai and its cardinality is denoted by |ai|,
1 ≤ i ≤ m. Assume that the number of records need to be injected in D in order to cover the
whole attribute-value pair space |W| or a target subset of attribute-value pairs S is l. Suppose that
R = r1r2 · · · rl is the search result on the injected records regarding an observed query q, where
ri = 1 iff the ith injected record is part of the result set of the query q, otherwise ri = 0. Clearly
l ≥ |ai| for all i, otherwise the injected records will not recover all the values of the attribute ai.

Assume that there are t attributes (ai1, · · · , ait) with the same cardinality d, then in order
to cover all the d · t values one can construct a bijective mapping from the attribute-value pairs
to the search result string by simply injecting d · t records in a certain way, as follows. Let the
first d records contain all the values of the 1st attribute and the other attributes belonging to S
are empty. Also, let the second d records contain all the values of the 2nd attribute and the other
attributes belonging to S are empty and so on until the last and tth d records containing all the
values of the tth attribute and the other attributes belonging to S are empty. Now one can see that
the search result on the injected records regarding any attribute-value pair in S will yield a binary
string with Hamming weight one where the location of the active bit i indicates that the attribute
value is located at position i mod d (or last position if i mod d = 0) in the di/deth attribute.
However, one can do better by injecting much less number of records by gradually incrementing
the number of records l starting from l = d and checking whether it is possible to construct a
bijective mapping between attribute values and search results on injected records.

The following proposition enables us to estimate and come close to the number of injected
records. One can brute-force search for the smallest number l satisfying the inequality below
l ≤ d · t ≤

(
l

l/d

)
in order to find the minimum number of injected records needed to uniquely

identify and recover all the queries.

12

Proposition 2. Let S be a subset of attributes of size t. Let all the attributes of S have the same
cardinality d. Then the number of injected records l needed to uniquely identify all the values of S
satisfies the inequality l ≤ d · t ≤

(
l

l/d

)
.

Proof. Assume that l/d is an integer. Clearly injecting d · t records would allow unique encodings
for the search results on the injected records. So l ≤ d · t. However, it is also possible to inject
a much smaller number of records l that is strictly smaller than d · t and still uniquely identify
all the attribute-value pairs. In order for such number of records to yield a unique search result
on the injected records for all the d · t attribute value pairs, we need to make sure that each
attribute-value pair can be uniquely represented by an l-bit string representing the search result
on the injected records and has Hamming weight equal to l/d. This can be done by constructing
a bijective mapping between the attribute-value pairs and the l-bit search result on the injected
records. Replacing each occurrence of an attribute-value pair in a column in the injected records
by ‘1’ and each non-occurrence by ‘0’ yields a binary string with Hamming weight l/d equivalent
to the search result of the attribute-value pair on the injected records. Consequently, we get a
bijective mapping. Now, to enable the unique encoding of all possible d · t attribute-value pairs,
the number of l-bit strings

(
l

l/d

)
should be ≥ d · t since otherwise all the possible attribute-value

pairs will not be covered. ut

The corollary below follows from the above proposition and it gives a sufficient number of
records that need to be injected in order to obtain a unique search result on the injected records
for all possible attribute-value pairs.

Corollary 1. Let S be a set of m attributes. Let amax be the maximum cardinality in the set S.
Then injecting 2 · amax records is enough to get a unique search result on the injected records as
long as m ≤ 2 · amax − 1.

Proof. If the number of injected records can uniquely hold the maximum number of possible
keywords amax ·m, then it will be able to uniquely hold any number of keywords less than amax ·
m. Therefore we assume that all the m attributes have cardinality amax. Then using the above
inequality where d = amax, t = m and l = 2amax, we find

amax ·m ≤
(

2amax

2

)
= 2a2max − amax

Thus, m ≤ 2amax − 1. ut

The following corollary gives the precise minimum number of injected records needed to cover all
the keyword space for some datasets whose maximum cardinality is more than or equal to the
double of the cardinality of other attributes.

Corollary 2. Let S be a set of m attributes. Let there be a single attribute with the maximum
cardinality in S, amax. If there is no any attribute b such that amax < 2|b|. Then injecting amax

records where each attribute c contains amax/|c| instances of each possible column value is the
minimum number needed to uniquely identify all the possible keyword values of S as long as m ≤
2|b|.

Proof. Similar to the proof of Corollary 1 except here we set t = m − 1 (excluding the attribute
column with maximum cardinality), l = 2 · |b| and d = |b| to get m ≤ 2 · |b|. Note that l = 2 · |b|
will cover all attributes except the ones with maximum cardinality amax. So we need to inject not
less than amax records to cover the keywords about the values of the attribute with the maximum
cardinality. Since amax > l then injecting amax is the exact number needed to cover all possible
keywords. ut

Following the above corollaries, the number of records will be in the interval [amax, c · amax] where
c ≥ 1 is a small constant. If we have an attribute a whose values are not discrete, then amax

might be large which makes it difficult to recover all the values of the the non-discrete attribute
a. However, one can reduce the number of injected records by predicting a small and dominant
subset of all the possible values of the non-discrete attribute a.

13

Discussion. It is clear that once an attacker is able to inject his own records then record-injection
will lead to query recovery and eventually could lead to full record recovery as pointed above in
our second experiment where we showed that the Count attack could lead to complete record
recovery. The above record injection attack works under the assumption that the attacker can
identify the record identifiers of the injected records. This assumption is also adopted by Zhang et
al. [30]. If the client updates one record at a time, then the attacker will always be able to identify
the identifiers of the injected records. However, if the client does only batch updates, then the
attacker should inject records in a way such that each attribute-value pair has a unique number
of appearances in all the injected records.

The file-injection countermeasure proposed by Zhang et al. [30] which restricts the number of
keywords per document to a certain threshold T (e.g. T � |W|/2) cannot be applied here since a
relational database record has a certain number of keywords equivalent to its number of attributes
and any restriction would hinder the work of any application using the SSE-encrypted database.
So one needs to use a forward secure SSE scheme such as the one proposed in [6] in order to protect
relational databases against adaptive injection attacks (Note that the above described attacks are
non-adaptive attacks but an adaptive injection attacks similar to the one proposed in [30] can
easily be realized). Note that a forward secure SSE scheme does not provide protection against
non-adaptive injection attacks. So additional system-based or application-based countermeasures
protecting the update process of the the encrypted database from being attacked by an active
adversary performing record-injection attacks need to be employed.

5 Countermeasures Against Attacks on SSE Schemes

Countermeasures against inference attacks must be used in order to reduce the effectiveness of
the inference attacks demonstrated above. A well known technique is padding which is proposed
in [18,7] as a potential countermeasure to reduce the effectiveness of inference attacks. Basically,
during the setup of the encrypted database, the client adds dummy record (or document) IDs
to each attribute-value pair (or keyword) in the index order to hide the actual frequency of the
keyword. Also, the client adds an encrypted dummy record (or document) corresponding to each
dummy ID added in the index. Later, during search, the client filters out the dummy records (or
documents). Experiments in [7], show that a padding level that increases the index size by 15%
for a real world sample dataset and 30% for another real world sample dataset, does not affect
the success rate of the generalized Count attack [7] which is a slight improvement of the Count
attack. It basically does not depend on resolving queries with unique frequency which will not
exist in a padded SSE scheme but it initially guesses these queries. The detection of a wrong
guess is done during the co-occurrence testing phase which does equality matches in a window or
a range of a fixed size to nullify the noise coming from the dummy records (or documents) causing
false co-occurrence count values. Thus, the generalized Count attack presented in [7] suggests that
padding alone does not reduce the effectiveness of frequency attacks as matches in a range can be
done through the observed co-occurrence matrix.

Countermeasure Against Attribute Recovery. The above padding countermeasure which
hides the actual result size of each query prevents our attribute recovery attack. However, de-
pending on the padding level, a variant of the attribute recovery attack that does not look for the
exact number of records could still work. So another countermeasure is needed such as requiring
a unified cardinality for some or all attributes to prevent distinguishing attributes with unique
cardinalities. This can be done by adding dummy values for each attribute together with their
corresponding dummy record identifiers in order to have at least two attributes with equivalent
cardinalities. As shown in Exp. I, attributes with equivalent cardinalities are difficult to distinguish
from each other using only the basic knowledge KB. Also requiring the minimum cardinality to be
large would increase the time complexity of Algorithm 1 and thus makes our attack impractical.
Moreover, an SSE scheme leaking the number of records n should not be used unless dummy
records are added before encrypting the index in order to hide the actual number of records n.

14

All these countermeasures prevent our attack at the expense of more storage and time efficiency
of SSE schemes.

Countermeasure Against the Count Attack. Beside reducing the effectiveness of the actual
query result size by padding, one might think of reducing the effectiveness of the observed query
co-occurrence token-matrix Ct by forcing the observed joint frequency between some queries to
be zero. One can see that if qi and qj are distributed in different fragments according to a defined
privacy constraints, then Ct[qi, qj] will be zero when each query is executed in only one fragment
and the fragments are not allowed to interact with each other to evaluate any query. Now an
equality match or a window equality match with the background knowledge-matrix Cw[si, tj] as
done in [7] will never happen which will significantly reduce the effectiveness of the Count attack.
This can be done by applying vertical fragmentation to a relational database table according to
a pre-defined set of privacy constraints on its columns. The aim behind the privacy constraints is
hiding the association among the attributes which means that there should be no joint appearance
of the attributes in the privacy constraints [1,11,13]. For example, consider the above Adult dataset.
The privacy constraint c1 = {sex,occupation} prevents the “sex” column and “occupation” column
from being together in one fragment. We note that the privacy constraints should be used to
produce the minimal amount of fragments possible using the heuristic algorithm proposed in [11].
After applying the fragmentation, we need to ensure that each query is executed in only one
fragment in order to prevent an attacker monitoring all the fragments (or collaborative honest-
but-curious fragment servers) from gaining any information about the correlation of the records
between any two fragments which will obviously break the pre-defined the privacy constraints set
by the data owner. Moreover, we need to have different record IDs for the same record at each
fragment in order to achieve security against an attacker monitoring all fragments (or collaborative
honest-but-curious fragment servers) and also apply random shuffling for the fragment’s records.
After that, we can apply the same SSE scheme in each fragment using a different key. This ensures
that applying inference attacks on each fragment is not effective since the encrypted attributes
within each fragment does not provide sufficient information if they are recovered. Note that the
generalized Count attack is effective in each fragment and it could probably recover entire records
in each fragment. However, the fragments are defined according to the privacy constraints which
means that the recovered records are unlinkable and thus will not reveal useful information. If
all fragments are recovered, the attacker will not be able to link or combine them to recover the
original record before fragmentation. This is because each fragment is shuffled differently and
each fragment’s record has a different record ID for the same original record. Security Gain.
Vertical fragmentation using privacy constraints prevents full record recovery but the fragmented
SSE scheme will still leak the access pattern inside each fragment as well as leaking the attribute
of the queries in each fragment. We performed an experiment to show the amount of security
gained when we employ vertical fragmentation via privacy constraints. In this experiment, the
relational database table extracted from the Adult dataset is split into three different fragments.
All fragments are protected using the same SSE scheme (without any padding countermeasures)
but each fragment has its own secret keys and has its own encrypted index. No interaction between
the fragments are allowed during an execution of a query. We applied the Count attack on each
fragment. Figure 3 shows the results of this experiment. Each of the first and third fragments
contain few attributes, so when all possible queries in each fragment are queried, we are able
to recover all the queries using the Count attack and thus consequently recover all the records
in each fragment. However, an attacker cannot recover the same record distributed between the
three fragments since each fragment is shuffled differently and attribute-value pairs belonging to
the same record are fragmented into three records with different IDs. One can see that in the
second fragment which contains 7 attributes, we have only recovered approximately less than 75%
of each record in the second fragment and thus around 43.75% of each record in the original dataset
before fragmentation. This is a clear advantage compared to the record recovery attacks shown in
Figure 2 which recovers almost 100% of each record when all the possible queries are available.

Performance Gain. The drawback with the fragmentation approach is the additional compu-
tational work in the use case of a multi-keyword query whose keywords or attribute-value pairs

15

25% 50% 75% 100%
25%

50%

75%

100%

Percentage of available queries

A
v
e
ra

g
e
p
e
rc

e
n
ta

g
e
re

c
o
v
e
re

d

Frag 1

Frag 2

Frag 3

Fig. 3: Shows the result of the average percentage recovered per record for the fragmented dataset. Frag.
1 includes “sex, marital-status and relationship”, which totals at approximately 5% of the attribute-value
pair space. Frag. 2 includes “age, work-class, education, education-num, occupation, hours-per-week and
salary class”, which totals at approximately 78% of the attribute-value pair space. Frag. 3 includes “native-
country and race”, which totals at approximately 17% of the attribute-value pair space. All queries are
single keyword searches where for each experiment the queries are split between the three fragments but
not uniformly split as this depends on the distribution of attributes’ values in each fragment.

exist in different fragments. But this can be improved using a fragmentation algorithm which takes
usage data into account [13]. This usage data is compiled in the form of an affinity matrix. For
each pair of attributes there exists an affinity value. This value defines the frequency for which
this specific pair of attributes exist in a multi-keyword query. This will allow us to find a suitable
minimal fragmentation providing efficient execution for multi-keyword queries and the same time
meeting the security demands set by the privacy constraints.

6 Conclusion

In this paper, we proposed a novel attack exploiting the structure of relational databases. Our
attack targets small relational databases and requires the access pattern leakage inherent in all
SSE schemes besides basic information about the target relational database. Our attack can be
easily prevented by requiring some or all attributes to have the same cardinality which can be by
adding dummy values to each attribute. Moreover, we showed that record-injection attacks also
pose a real threat for searchable encrypted relational databases. Furthermore, we proposed the
use of privacy constraints together with padding on top of any SSE scheme in order to reduce
the effectiveness of the frequency attacks proposed in [18,7]. Clearly, the privacy constraints would
affect the performance of SSE schemes. However, several optimizations similar to the ones proposed
in [13] can be performed to improve the performance.

Acknowledgments

We would like to thank Erik Zenner for helpful comments and suggestions on an earlier draft of
this paper. This work was supported by European Union’s Horizon 2020 research and innovation
programme under grant agreement No 644814, the PaaSword project within the ICT Programme
ICT- 07-2014: Advanced Cloud Infrastructures and Services.

16

References

1. G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, R. Motwani, U. Srivastava,
D. Thomas, and Y. Xu. Two can keep a secret: A distributed architecture for secure database services.
CIDR 2005.

2. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving encryption for numeric data. In
Proceedings of the 2004 ACM SIGMOD international conference on Management of data.

3. N. Ailon and B. Chazelle. Lower bounds for linear degeneracy testing. Journal of the ACM (JACM),
2005.

4. M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryption. In
Annual International Cryptology Conference, 2007.

5. A. Boldyreva, N. Chenette, and A. O’Neill. Order-preserving encryption revisited: Improved security
analysis and alternative solutions. In Crypto 2011.

6. R. Bost. σoϕoς: Forward secure searchable encryption. In CCS 2016.
7. D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse attacks against searchable encryption.

In CCS 2015.
8. D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Dynamic searchable

encryption in very-large databases: Data structures and implementation. IACR Cryptology ePrint
Archive, 2014.

9. D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Roşu, and M. Steiner. Highly-scalable searchable
symmetric encryption with support for boolean queries. In Advances in Cryptology–CRYPTO 2013.

10. M. Chase and S. Kamara. Structured encryption and controlled disclosure. In Advances in Cryptology-
ASIACRYPT 2010.

11. V. Ciriani, S. Di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Fragmentation
and encryption to enforce privacy in data storage. In ESORICS 2007.

12. V. Ciriani, S. Di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Keep a few:
Outsourcing data while maintaining confidentiality. In ESORICS 2009.

13. V. Ciriani, S. Di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Combining frag-
mentation and encryption to protect privacy in data storage. ACM Transactions on Information and
System Security (TISSEC), 2010.

14. R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption: improved
definitions and efficient constructions. In CCS, 2006.

15. J. Erickson. Lower bounds for linear satisfiability problems. In SODA 1995.
16. O. Gold and M. Sharir. Improved bounds for 3sum, k-sum, and linear degeneracy. CoRR,

abs/1512.05279, 2015.
17. IARPA. Poster about protecting privacy and civil liberties. https://www.iarpa.gov/images/files/

programs/spar/09-SPAR_final_v21.pdf.
18. M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on searchable encryption:

Ramification, attack and mitigation. In NDSS 2012.
19. S. Kamara and C. Papamanthou. Parallel and dynamic searchable symmetric encryption. In Financial

Cryptography and Data Security, 2013.
20. G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill. Generic attacks on secure outsourced databases.

In CCS, 2016.
21. J. Kleinberg and E. Tardos. Algorithm design. Pearson Education India, 2006.
22. R. Kohavi and B. Becker. Adult data set. https://archive.ics.uci.edu/ml/machine-learning-

databases/adult/, 1996. [Last Accessed 2016-10-18].
23. K. Kurosawa and Y. Ohtaki. Uc-secure searchable symmetric encryption. In International Conference

on Financial Cryptography and Data Security, 2012.
24. M. Naveed, S. Kamara, and C. Wright. Inference attacks on property-preserving encrypted databases.

In CCS 2015.
25. OpenEMR. http://www.open-emr.org/. Accessed: March 2017.
26. R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan. Cryptdb: protecting confidentiality with

encrypted query processing. In ACM Symposium on Operating Systems Principles 2011.
27. IARPA. Security and Privacy Assurance Research (SPAR) Program BAA, 2011. https://www.iarpa.

gov/index.php/research-programs/spar.
28. D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data. In IEEE

Security and Privacy. S&P 2000.
29. P. Van Liesdonk, S. Sedghi, J. Doumen, P. Hartel, and W. Jonker. Computationally efficient searchable

symmetric encryption. In Workshop on Secure Data Management, 2010.

17

https://www.iarpa.gov/images/files/programs/spar/09-SPAR_final_v21.pdf
https://www.iarpa.gov/images/files/programs/spar/09-SPAR_final_v21.pdf
http://www.open-emr.org/
https://www.iarpa.gov/index.php/research-programs/spar
https://www.iarpa.gov/index.php/research-programs/spar

30. Y. Zhang, J. Katz, and C. Papamanthou. All your queries are belong to us: The power of file-
injection attacks on searchable encryption. Cryptology ePrint Archive, Report 2016/172, 2016. http:
//eprint.iacr.org/2016/172.

18

http://eprint.iacr.org/2016/172
http://eprint.iacr.org/2016/172

	Inference and Record-Injection Attacks on Searchable Encrypted Relational Databases

