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Abstract

In this work we study the problem of private set-intersection in the multi-party setting and design two
protocols with the following improvements compared to prior work. First, our protocols are designed
in the so-called star network topology, where a designated party communicates with everyone else, and
take a new approach of leveraging the 2PC protocol of [FNP04]. This approach minimizes the usage
of a broadcast channel, where our semi-honest protocol does not make any use of such a channel and
all communication is via point-to-point channels. In addition, the communication complexity of our
protocols scales with the number of parties.

More concretely, (1) our first semi-honest secure protocol implies communication complexity that
is linear in the input sizes, namely O((

∑n
i=1 mi) · κ) bits of communication where κ is the security

parameter and mi is the size of Pi’s input set, whereas overall computational overhead is quadratic in
the input sizes only for a designated party, and linear for the rest. We further reduce this overhead by
employing two types of hashing schemes. (2) Our second protocol is proven secure in the malicious
setting. This protocol induces communication complexity O((n2 + nmMAX + nmMIN logmMAX)κ) bits
of communication where mMIN (resp. mMAX) is the minimum (resp. maximum) over all input sets sizes
and n is the number of parties.

Keywords: Scalable Multi-Party Computation, Private Set-Intersection

1 Introduction

Background on secure multi-party computation. Secure multi-party computation enables a set of par-
ties to mutually run a protocol that computes some function f on their private inputs, while preserv-
ing a number of security properties. Two of the most important properties are privacy and correctness.
The former implies data confidentiality, namely, nothing leaks by the protocol execution but the com-
puted output. The latter requirement implies that the protocol enforces the integrity of the computations
made by the parties, namely, honest parties learn the correct output. Feasibility results are well estab-
lished [Yao86, GMW87, MR91, Bea91], proving that any efficient functionality can be securely computed
under full simulation-based definitions (following the ideal/real paradigm). Security is typically proven with
respect to two adversarial models: the semi-honest model (where the adversary follows the instructions of
the protocol but tries to learn more than it should from the protocol transcript), and the malicious model
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(where the adversary follows an arbitrary polynomial-time strategy), and feasibility holds in the presence of
both types of attacks.

Following these works, many constructions focused on improving the efficiency of the computational
and communication costs. Conceptually, this line of works can be split into two sub-lines: (1) Improved
generic protocols that compute any boolean/arithmetic circuit; see [IPS08, LOP11, BDOZ11, DPSZ12,
LPSY15] for just a few examples. (2) Protocols for concrete functionalities. In the latter approach attention
is given to constructing efficient protocols for specific functions while exploiting their internal structure.
While this approach has been proven useful for many different two-party functions in both the semi-honest
and malicious settings such as calculating the kth ranked element [AMP04], pattern matching and related
search problems [HT10, Ver11], set-intersection [JL09, HN12], greedy optimizations [SV15] and oblivious
pseudorandom function (PRF) evaluation [FIPR05], only minor progress has been achieved for concrete
multi-party functions.

2PC private set-intersection. The set-intersection problem is a fundamental functionality in secure com-
putation and has been widely studied in the past decade. In this problem a set of parties P1, . . . , Pn, holding
input sets X1, . . . , Xn of sizes m1, . . . ,mn, respectively, wish to compute X1 ∩ X2 ∩ . . . ∩ Xn. In the
two-party setting this problem has been intensively studied by researchers in the last few years mainly due
to its potential applications for dating services, datamining, recommendation systems, law enforcement and
more, culminating with highly efficient protocols with practically linear overhead in the set sizes; see for
instance [FNP04, DSMRY09, JL09, HL10, HN12, Haz15]. For example, consider two security agencies
that wish to compare their lists of suspects without revealing their contents, or an airline company that would
like to check its list of passengers against the list of people that are not allowed to go abroad.

Two common approaches are known to concretely solve this problem securely in the plain model for
two parties: (1) oblivious polynomial evaluation (OPE) and (2) committed oblivious PRF evaluation.

In the first approach based on OPE, one party, say P1, computes a polynomial Q(·) such that Q(x) = 0
for all x ∈ X1. The set of coefficients of Q(·) are then encrypted using a homomorphic encryption scheme
and sent to the other party P2, who then computes the encryption of rx′ · Q(x′) + x′ for all x′ ∈ X2 using
fresh randomness rx′ via homomorphic evaluation. Finally, P1 decrypts these computed ciphertexts and
outputs the intersection of its input set X1 and these plaintexts. This is the approach (and variants thereof)
taken by the works [FNP04, DSMRY09, HN12].

The second approach uses a secure implementation of oblivious PRF evaluation. More precisely, in this
approach, party P1 chooses a PRF key K and computes the set PRFX1 = {PRFK(x)}x∈X1 . The parties then
execute an oblivious PRF protocol where P1 inputs the key K and P2 inputs its private set X2. At the end of
this protocol P2 learns the set PRFX2 = {PRFK(x′)}x′∈X2 . Finally, P1 sends the set PRFX1 to P2, and P2

computes S = PRFX1 ∩ PRFX2 and outputs the corresponding elements x′ ∈ X2 whose PRF values are in
S as the actual intersection. This idea was introduced in [FIPR05] and further used in [HL10, JL09, JL10].
Other solutions in the random oracle model such as [CT10, CKT10, ACT11] take a different approach by
applying the random oracle on (one of) the sets members, or apply oblivious transfer extension [DCW13] to
implement a garbled Bloom filter.

By now, major progress had already been achieved for general two-party protocols [KSS12, FJN+13,
GLNP15, Lin16]. Moreover, it has been surprisingly demonstrated that general protocols can be more
efficient than the concrete “custom-made” protocols for set-intersection [HEK12].

MPC private set-intersection. While much progress has been made towards achieving practical protocols
in the two-party setting to realize set-intersection, only few works have considered so far the multi-party
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setting. Moreover, most of the previous approaches fail to leverage the highly efficient techniques that were
developed for the two-party case with scalable efficiency. Specifically, while several recent works improve
the efficiency of generic multi-party protocols [LPSY15, LSS16, KOS16], they still remain inefficient for
concrete applications on big data.

The first concrete protocols that securely implemented the set-intersection functionality were designed
by Kissner and Song [KS05]. The core technique underlying these protocols is based on OPE and extends
the [FNP04] approach, relying on expensive generic zero-knowledge proofs to achieve correctness. Fol-
lowing that, Sang and Shen introduced a new protocol with quadratic overhead in the size of the input sets
[SS07], which was followed by another protocol in the honest majority setting based on Bilinear groups
[SS08]. Cheon et al. improved the communication complexity of these works by reducing the dependency
on the input sets from quadratic to quasi linear [CJS12]. Nevertheless, each party still needs to broadcast
O(mi) elements, where mi is the size of its input set, implying that the overall communication complexity
and group multiplications per player grow quadratically with the number of parties. In [DMRY11], the
authors considered a new approach based on multivariate polynomials achieving broadcast communication
complexity of O(n ·mMAX+mMAX · log2mMAX) and computational complexity O(n ·m2

MAX), where mMAX

is the maximum over all input sets sizes and n is the number of parties. Finally, in a recent work [MN15],
Miyaji and Nishida introduced a semi-honest secure protocol based on Bloom filters that achieves commu-
nication complexity O(n ·mMAX) and computational complexity O(n ·mMAX) for the designated party.

One can also consider using standard secure computation to securely realize set-intersection. One
popular approach for efficient protocols is [DPSZ12] protocol, dubbed SPDZ, that describes a flavour of
[GMW87] protocol for arithmetic circuits. This protocol consists of a preprocessing phase that uses some-
what homomorphic encryption scheme to generate correlated randomness, that is later used in an informa-
tion theoretic online phase. The total overhead of this approach is O(n · s + n3) where s is the size of the
computed circuit. An alternative approach to compute the offline phase, avoiding these costly primitives,
was recently introduced in [KOS16]. This protocol achieves a significant improvement, and is only six times
less efficient than a semi-honest version of the protocol ((where their experiments were shown for up to five
parties), yet its cost still approaches O(n2) overhead per multiplication triple. Finally, we note that the round
complexity of this approach is proportional to the circuit’s multiplication depth.

A different approach was taken in [BMR90], extending the celebrated garbled circuits technique of
[Yao86] to the multi-party setting. This constant-round protocol, developed by Beaver, Micali and Rog-
away, has proven secure in the presence of semi-honest adversaries (and malicious adversaries in the honest
majority setting). It is comprised of an offline phase for which the garbled circuit is created, and an online
phase for which the garbled circuit is evaluated. Recently, Lindell et al. [LPSY15] extended the [BMR90]
protocol to the malicious honest majority setting. For the offline phase the authors presented an instantiation
based on [DPSZ12]. In a more recent work, Lindell et al. [LSS16] introduced a concretely efficient MPC
protocol with malicious security, focusing on reducing the round complexity into 9 rounds. The efficiency
of this approach is dominated by the efficiency of the protocol that realizes the offline phase.

Our main motivation in this paper is to develop a new approach for securely realizing set-intersection
in the multi-party setting. Concretely, we study whether the multi-party variant of set-intersection can
be reduced to the two-party case. Meaning, can we securely realize private multi-party set-intersection
using two-party set-intersection protocols. Generally speaking, the paradigm of constructing multi-party
protocols from two-party protocols has several important advantages. First, it may require using a broadcast
channel fewer times than in the classic approach (where every party typically communicates with everyone
else all the time). Moreover, it enables to leverage the extensive knowledge and experience gained while
studying the two-party variant in order to achieve efficient multi-party protocols. Finally, the mere idea of
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working on smaller pieces of the inputs/problems also implies that we can achieve better running times and
implementations. Our new approach has not been considered yet in the past, specifically because it is quite
challenging to use two-party protocols for intermediate computations without violating the privacy of the
multi-party construction, and required pursuing a new approach.

In light of this overview we pose the following questions,

Can we securely realize the set-intersection functionality with linear communication complexity
(and sub-quadratic computational complexity) in the input sets sizes?

In particular, to what extent can multi-party set-intersection be reduced to its two-party variant. Con-
sidering the set-intersection functionality, at first sight, it seems that the answer to this question is negative
as any 2PC protocol that operates only on two input sets leaks information about the these intersections,
which is more than what should be leaked about the outputs by the protocol. One potential solution would
be to split the parties into pairs that repetitively compute their pairwise intersection. While it is not clear
how to prevent any leakage within iterations, we further note that the round complexity induced by such an
approach is O(log n) where n is the number of parties, and that the number of 2PC invocations is quadratic.
It is worth noting that [CKMZ14] also considered an approach of designing a three parties protocol by
emulating a two-party protocol, yet their techniques are quite different.

1.1 Our Results

In this paper we devise new protocols that securely compute the set-intersection functionality in the multi-
party setting while exploiting known techniques from the two-party setting. In particular, we are able to save
on quadratic overhead in pairwise communication that is incurred in typical multiparty protocols and obtain
efficient protocols. More specifically, we consider a different network topology than point-to-point fully
connected network for which a single designated party communicates with every party (i.e. star topology).
An added benefit of this topology is that not all parties must be online at the same time. This topology has
been recently considered in [HLP11] in a different context. In this work we consider both the semi-honest
and malicious settings.

The semi-honest setting. The main building block in our design is a threshold additively homomorphic
public-key encryption scheme (PKE). Our main observation is that one can employ the 2-round semi-honest
variant of the [FNP04] protocol, where a designated party P1 first interacts individually with every other
party via a variant of this protocol and learns the (encrypted) cross intersection with every other party. Then
in a second stage, P1 combines these results and computes the outcome. More specifically, we leverage
the following core insight, where any element in P1’s input that appears in all other input sets is part of
the set-intersection. On the other hand, if some element from P1’s set does not appear in one of the other
sets then surely this element is not part of the set-intersection. Therefore, it is sufficient to only examine
P1’s set against the other sets rather than examine all pairwise sets, which is the common approach in prior
works. Note that our protocol is the first multi-party protocol for realizing private set-intersection that does
not need to employ any broadcast channel at any phase during its execution, since all the communication is
conducted directly between P1 and each other party at a point-to-point level. More formally,

Theorem 1.1 (Informal). Assume the existence of a threshold additively homomorphic encryption scheme.
Then, there exists a protocol that securely realizes the private set-intersection functionality in the presence
of semi-honest adversaries with no use of a broadcast channel and for n ≥ 2 parties.
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Moreover, the communication complexity of our protocol is linear in the input sets sizes, namely,
O((

∑n
i=1mi)·κ) bits of communication where κ is the security parameter, whereas the computational over-

head is quadratic in the input sizes only the designated party P1, namely O(m2
1) exponentiations (where the

overhead of the rest of the parties is a linear number of exponentiations in their input sets). Consequently,
the designated party can be set as the party with the smallest input set. Finally, by employing hash functions
techniques, as in [FNP04], we can further reduce P1’s overhead by splitting the input elements into bins.
We consider two hash schemes: simple hashing and balanced allocation hashing. For simple hashing, this
approach induces O((n− 1) ·mMIN · logmMAX) overhead where mMIN (resp. mMAX) is the minimum (resp.
maximum) over all input sets sizes and n is the number of parties. Whereas for balanced allocation hash
functions this approach induces O((n−1)·mMIN ·log logmMAX) overhead. In both cases the communication
complexity is O(B ·M · (n− 1)) where B is the number of bins and M is the maximum bin size.

We note that the first variant based on simple hashing induces a simpler protocol and the modification
compared to the original protocol are minor. On the other hand, the protocol based on balanced allocation
hashing is slightly more complicated as this hashing, that uses two hash functions, implies two oblivious
polynomial evaluations per elements from P1’s input. Consequently, P1 must somehow learn which of the
evaluations (if any) has evaluated to zero. We solve this issue in two ways: either the parties communicate
and compute the product of the two evaluations, or the underlying additively homomorphic encryption
scheme supports single multiplication as well (e.g., [BGN05]). Finally, we note that our approach is the first
to employ these techniques due to its internal design that heavily relies on a 2PC approach.

The malicious setting. Next, we extend our semi-honest approach for the malicious setting. In this setting
we need to work harder in order to ensure correctness since a corrupted P1 can easily cheat, by using different
input sets in the 2PC executions against different parties. It is therefore crucial that P1 first broadcasts its
committed input to the rest of the parties. Where later, each 2PC protocol is carried out with respect to these
commitments. It turns out that even by adding this broadcast phase it is not enough to boost the security
of our semi-honest protocol since P1 may still abuse the security of the [FNP04] protocol. Specifically, the
main challenge is to prevent P1 from learning additional information about the intersection with individual
parties as a corrupted P1 may use ill formed ciphertexts or ciphertexts for which it does not know their
corresponding plaintexts, exploiting the honest parties as a decryption oracle.

We recall that the [FNP04] follows by having the parties send encryptions of polynomials defined by
their input sets (as explained above). Then, towards achieving malicious security, we design a polynomial
check that verifies that P1 indeed assembled the encrypted polynomials correctly. This check follows by
asking the parties to sample a random element u which they later evaluate their encrypted polynomials
on and then compare these outcomes against the evaluation of the combined protocol (which is publicly
known). To avoid malleability issues, we enforce correctness using a non-malleable proof of knowledge
that is provided by each party relative to its computation. This crucial phase allows the simulator to extract
the parties’ inputs by rewinding them on distinct random values. Interestingly, this proof is only invoked
once and thus induces an overhead that is independent of the set sizes. We prove the following theorem.

Theorem 1.2 (Informal). Assume the existence of a threshold additively homomorphic encryption scheme
and simulation sound zero-knowledge proof of knowledge. Then, there exists a protocol that securely realizes
the private set-intersection functionality in the presence of malicious adversaries and for n ≥ 2 parties.

The communication complexity of the maliciously secure protocol is bounded by O((n2 + nmMAX +
nmMIN · logmMAX)κ) bits of communication where mMIN (resp. mMAX) is the minimum (resp. maximum)
over all input sets sizes and n is the number of parties. The significant term in this complexity is O(n·mMAX ·
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κ) and this is linearly dependent on both the number of parties and the database size. In contrast, previous
works required higher complexity [DMRY11, CJS12]. In terms of of computational overhead, except for
party P1, the computational complexity of each party Pi is O(mMAX) exponentiations plus O(mMIN ·mMAX)
groups multiplications, whereas party P1 needs to perform O(m1 ·mMAX) exponentiations.

Finally, we note that our building blocks can be instantiated based on the El Gamal [Gam85] or Piallier
[Pai99] public key encryptions schemes for the semi-honest protocol. In the malicious setting, we either
consider the El Gamal scheme together with a Σ-protocol zero-knowledge proof of knowledge, that can be
made non-interactive using the FiatShamir heuristic [FS86] which is analyzed in the Random Oracle Model
of Bellare and Rogaway [BR93]. The analysis in this model implies the simulation soundness property we
need for non-malleability. A second instantiation can be shown based on the [BBS04] public key encryption
scheme and the simulation-sound non-interactive zero-knowledge (NIZK) by Groth [Gro06].

2 Preliminaries

2.1 Basic Notations

We denote the security parameter by κ. We say that a function µ : N→ N is negligible if for every positive
polynomial p(·) and all sufficiently large κ it holds that µ(κ) < 1

p(κ) . We use the abbreviation PPT to denote
probabilistic polynomial-time. We further denote by a ← A the random sampling of a from a distribution
A, by [d] the set of elements (1, . . . , d) and by [0, d] the set of elements (0, . . . , d).

We now specify the definition of computationally indistinguishable.

Definition 2.1. Let X = {X(a, κ)}a∈{0,1}∗,κ∈N and Y = {Y (a, κ)}a∈{0,1}∗,κ∈N be two distribution en-

sembles. We say that X and Y are computationally indistinguishable, denoted X
c≈ Y , if for every PPT

machine D, every a ∈ {0, 1}∗, every positive polynomial p(·) and all sufficiently large κ:∣∣Pr [D(X(a, κ), 1κ) = 1]− Pr [D(Y (a, κ), 1κ) = 1]
∣∣ < 1

p(κ)
.

We define a d-degree polynomial Q(·) by its set of coefficients (q0, . . . , qd), or simply write Q(x) =
q0 + q1x + . . . qdx

d. Typically, these coefficients will be picked from Zp for a prime p. We further write
gQ(·) to denote the coefficients of Q(·) in the exponent of a generator g of a multiplicative group G of prime
order p.

2.2 Hardness Assumptions

Let G be a group generation algorithm, which outputs (p,G,G1, e, g) given 1κ, where G,G1 is the descrip-
tion of groups of prime order p, e is a bilinear mapping (see below) and g is a generator of G.

Definition 2.2 (DLIN). We say that the decisional linear problem is hard relative to G, if for any PPT
distinguisher D there exists a negligible function negl such that

(p,G,G1, e, g, g
x, gy, gxr, gys, gr+s) ≈c (p,G,G1, e, g, g

x, gy, gxr, gys, gd)

where (p,G,G1, e, g)← G(1κ) and x, y, r, s, d← Zp.

6



Definition 2.3 (DDH). We say that the decisional Diffie-Hellman (DDH) problem is hard relative to G, if
for any PPT distinguisher D there exists a negligible function negl such that∣∣∣Pr [D(G, p, g, gx, gy, gz) = 1]− Pr [D(G, p, g, gx, gy, gxy) = 1]

∣∣∣ ≤ negl(κ),

where (G, p, g)← G(1κ) and the probabilities are taken over the choices of x, y, z ←R Zp.

Definition 2.4 (Bilinear pairing). Let G, GT be multiplicative cyclic groups of prime order p and let g be a
generator of G. A map e : G×G→ GT is a bilinear map for G if it has the following properties:

1. Bi-linearity: ∀u, v ∈ G, ∀a, b ∈ Zp, e(ua, vb) = e(u, v)ab.

2. Non-degeneracy: e(g, g) generates GT .

3. e is efficiently computable.

We assume that the D-linear assumption holds in G.

2.3 Public Key Encryption Schemes (PKE)

We specify first the definitions of public key encryption and IND-CPA.

Definition 2.5 (PKE). We say that Π = (Gen,Enc,Dec) is a public key encryption scheme if Gen,Enc,Dec
are polynomial-time algorithms specified as follows:

• Gen, given a security parameter 1κ, outputs keys (PK, SK), where PK is a public key and SK is a
secret key. We denote this by (PK, SK)← Gen(1κ).

• Enc, given the public key PK and a plaintext message m, outputs a ciphertext c encrypting m. We
denote this by c ← EncPK(m); and when emphasizing the randomness r used for encryption, we
denote this by c← EncPK(m; r).

• Dec, given the public key PK, secret key SK and a ciphertext c, outputs a plaintext message m s.t.
there exists randomness r for which c = EncPK(m; r) (or ⊥ if no such message exists). We denote
this by m← DecPK,SK(c).

For a public key encryption scheme Π = (Gen,Enc,Dec) and a non-uniform adversary A = (A1,A2),
we consider the following IND-CPA game:

(PK, SK)← Gen(1κ).

(m0,m1, history)← A1(PK), s.t. |m0| = |m1|.
c← EncPK(mb), where b← {0, 1}.
b′ ← A2(c, history).

A wins if b′ = b.

Denote by ADVΠ,A(κ) the probability that A wins the IND-CPA game.

Definition 2.6 (IND-CPA). A public key encryption scheme Π = (Gen,Enc,Dec) has indistinguishable
encryptions under chosen plaintext attacks (IND-CPA), if for every non-uniform adversary A = (A1,A2)
there exists a negligible function negl such that ADVΠ,A(κ) ≤ 1

2 + negl(κ).
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2.3.1 Additively Homomorphic PKE

A public key encryption scheme is additively homomorphic if given two ciphertexts c1 = EncPK(m1; r1)
and c2 = EncPK(m2; r2) it is possible to efficiently compute EncPK(m1 +m2; r) with independent r, and
without the knowledge of the secret key. Clearly, this assumes that the plaintext message space is a group;
we actually assume that both the plaintext and ciphertext spaces are groups (with respective group operations
+ or ·). We abuse notation and use EncPK(m) to denote the random variable induced by EncPK(m; r) where
r is chosen uniformly at random. We have the following formal definition,

Definition 2.7 (Homomorphic PKE). We say that a public key encryption scheme (Gen,Enc,Dec) is homo-
morphic if for all k and all (PK, SK) output by Gen(1κ), it is possible to define groupsM, C such that:

• The plaintext space isM, and all ciphertexts output by EncPK(·) are elements of C.1

• For every m1,m2 ∈M it holds that

{PK, c1 = EncPK(m1), c1 · EncPK(m2)} ≡ {PK,EncPK(m1),EncPK(m1 +m2)}

where the group operations are carried out in C and M, respectively, and the randomness for the
distinct ciphertexts are independent.

Note that any such a scheme supports a multiplication of a plaintext by a scalar. We implicitly assume
that each homomorphic operation on a set of ciphertexts is concluded with a refresh operation, where the
party multiplies the result ciphertext with an independently generated ciphertext that encrypts zero. This is
required in order to ensure that the randomness of the outcome ciphertext is not related to the randomness
of the original set of ciphertexts.

2.3.2 Threshold PKE

In a distributed scheme, the parties hold shares of the secret key so that the combined key remains a secret.
In order to decrypt, each party uses its share to generate an intermediate computation which are eventually
combined into the decrypted plaintext. To formalize this notion, we consider two multi-party functionalities:
One for securely generating a secret key while keeping it a secret from all parties, whereas the second
functionality jointly decrypts a given ciphertext. We denote the key generation functionality by FGEN,
which is defined as follows,

(1κ, . . . , 1κ) 7→
(
(PK, SK1), . . . , (PK, SKn)

)
where (PK, SK) ← Gen(1κ), and SK1 through SKn are random shares of SK. In the simulation, the
simulator obtains a public key P̃K, either from the trusted party or from the reduction, and enforces that
outcome. Namely, that PK = P̃K. Moreover, the decryption functionality FDEC is defined by,

(c, PK, . . . , PK) 7→
(
(m : c = EncPK(m)),−, . . . ,−

)
.

In the simulation, the simulator sends ciphertexts on behalf of the honest parties which do not necessarily
match the distribution of ciphertexts in the real execution (as it computes these ciphertexts based on arbitrary

1The plaintext and ciphertext spaces may depend on PK; we leave this implicit.
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inputs). Moreover, in the reduction the simulator is given a ciphertext (or more) from an external source and
must be able to decrypt it, jointly with the rest of the corrupted parties, without knowing the secret key.
We therefore require that in the simulation, the simulator cheats in the decryption by biasing the decrypted
value into some predefined plaintext mS . It is required that the corrupted parties’ view is computationally
indistinguishable in both real and simulated decryption protocols. One can view the pair of simulators
(SGEN,SDEC) as a stateful algorithm where SDEC obtains a state returned by SGEN which includes the public
key enforced by SGEN as well as the corrupted parties’ shares. For simplicity we leave this state implicit.
Finally, we consider a variation of FDEC, denoted by FDecZero, that allows the parties to learn whether a
ciphertext encrypts zero or not, but nothing more. Similarly to SDEC we can define a simulator SDecZero

that receives as output, either zero or a random group element and enforces that value as the outcome
plaintext. These functionalities can be securely realized relative to the El Gamal and [BBS04], and Paillier
and [BGN05], PKEs as specified next. We denote the corresponding protocols that respectively realizeFGEN

and FDEC in the semi-honest setting by πSH
GEN and πSH

DEC, and by πML
GEN and πML

DEC their malicious variants.

2.3.3 The El Gamal PKE

A useful implementation of homomorphic PKE is the El Gamal [Gam85] scheme that has two variations of
additive and multiplicative definitions (where the former is only useful for small domains plaintexts). In this
paper we exploit the additive variation. Let G be a group of prime order p in which DDH is hard. Then the
public key is a tuple PK = ⟨G, p, g, h⟩ and the corresponding secret key is SK = s, s.t. gs = h. Encryption
is performed by choosing r ← Zp and computing EncPK(m; r) = ⟨gr, hr · gm⟩. Decryption of a ciphertext
c = ⟨α, β⟩ is performed by computing gm = β · α−s and then finding m by running an exhaustive search.
Consequently, this variant is only applicable for small plaintext domains, which is the case in our work.

Threshold El Gamal. In El Gamal the parties first agree on a group G of order p and a generator g. Then,
each party Pi picks si ← Zp and sends hi = gsi to the others. Finally, the parties compute h =

∏n
i=1 hi

and set PK = ⟨G, p, g, h⟩. Clearly, the secret key s =
∑n

i=1 sn associated with this public key is correctly
shared amongst the parties. In order to ensure correct behavior, the parties must prove knowledge of their
si by running on (g, hi) the zero-knowledge proof πDL, specified in Section 2.6. To ensure simulation based
security, each party must commit to its share first and decommit this commitment only after the commit
phase is completed. Note that the simulator can enforce the public key outcome by rewinding the corrupted
parties after seeing their decommitment information.

Moreover, decryption of a ciphertext c = ⟨c1, c2⟩ follows by computing c2 · (
∏n

i=1 c
si
1 )

−1, where each
party sends c1 to the power of its share together with a corresponding proof for proving a Diffie-Hellman
relation. Here the simulator can cheat in the proof and return a share of the form c2/(mS ·

(∏
i∈I c

si
1

)
where I is the set of corrupted parties and mS is the message to be biased. Note that the simulated share
may not distribute as the real share (this happens in case mS is different than the actual plaintext within c).
Indistinguishability can be shown by a reduction to the DDH hardness assumption.

The variation of FDEC allows the parties to learn whether a ciphertext c = ⟨α, β⟩ encrypts zero or not,
but nothing more. This can be carried out as follows. Each party first raises c to a random non-zero power
and rerandomizes the result (proving correctness using a zero-knowledge proof). The parties then decrypt
the final ciphertext and conclude that m = 0 if and only if the masked plaintext was 0.
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2.4 The Paillier PKE

The Paillier encryption scheme [Pai99] is another example of a public-key encryption scheme that meets
Definition 2.7. We focus our attention on the following, widely used, variant of Paillier due to Damgård
and Jurik [DJ01]. Specifically, the key generation algorithm chooses two equal length primes p and q and
computes N = pq. It further picks an element g ∈ Z∗

Ns+1 such that g = (1 + N)jrN mod N s+1 for a
known j relatively prime to N and rN . Let λ be the least common multiple of p − 1 and q − 1, then the
algorithm chooses d such that d mod N ∈ Z∗

N and d = 0 mod λ. The public key is N, g and the secret key
is d. Next, encryption of a plaintext m ∈ ZNs is computed by gmrN

s
mod N s+1. Finally, decryption of a

ciphertext c follows by first computing cd mod N s+1 which yields (1+N)jmd mod Ns
, and then computing

the discrete logarithm of the result relative to (1 +N) which is an easy task.
In this work we consider a concrete case where s = 1. Thereby, encryption of a plaintext m with

randomness r ←R Z∗
N (ZN in practice) is computed by,

EncN (m, r) = (N + 1)m · rN mod N2.

Finally, decryption is performed by,

Decsk(c) =
[cϕ(N) mod N2]− 1

N
· ϕ(N)−1 mod N.

The security of Paillier is implied by the Decisional Composite Residuosity (DCR) hardness assumption.

Threshold Paillier. The threshold variant of Paillier PKE in the semi-honest setting can be found in
[Gil99], where the parties mutually generate an RSA composite N . A malicious variant realizing this
functionality can be found in [HMRT12]. These protocols are fully simulatable in the two-party setting, but
can be naturally extended to the multi-party setting (in fact, Hazay et al. also shows a variant that applies
for any number of parties). In addition to a key generation protocol, Hazay et al. also designed a threshold
decryption protocol which allows to bias the plaintext as required above.

2.4.1 The [BBS04] PKE

To setup the keys we choose at random x, y ← Z∗
p. The public key is (f, h) where f = gx, h = gy, and the

secret key is (x, y). To encrypt a message m ∈ G we choose r, s← Zp and let the ciphertext be (u, v, w) =
(f r, hs, gr+s · m). To decrypt a ciphertext (u, v, w) ∈ G3 we compute m = Dec(u, v, w) = w/uxvy.
This homomorphic scheme is IND-CPA secure assuming the hardness of the DLIN assumption and can be
viewed as an extension of the El Gamal PKE. Specifically, the protocols we discussed above with respect to
El Gamal can be directly extended for this PKE as well.

2.4.2 The [BGN05] PKE

The public key is PK = (N,G,G1, e, g, h) where N = q1q2, h = uq2 , g, u are random generators of G,
and the secret key is SK = q1. To encrypt a message m ∈ Zq2 we pick a random r ← [N − 1] and compute
gmhr. To decrypt a ciphertext c we observe that cq1 = (gmhr)q1 = (gq1)m. Security follows assuming
the subgroup decision problem. In a threshold variant, the parties first mutually generate a product of two
primes N , so that the factorization of N is shared amongst the parties. To decrypt, each party raises the
ciphertext to the power of its share. This scheme supports multiplication in the exponent via the pairing
operation, see Definition 2.4. Furthermore, the scheme is additively homomorphic in both groups.
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2.5 The Pedersen Commitment Scheme

The Pedersen commitment scheme [Ped91] is defined as follows. A key generation algorithm (p, g, h,G)←
G(1κ) for which the commitment key is |ck = (G, p, g, h). To commit to a message m ∈ Zp the committer
picks randomness r ← Zp and computes ComCK(m; r) = gmhr. The Pedersen commitment scheme is
computationally binding under the discrete logarithm assumption, i.e., any two different openings of the
same commitment are reduced to computing logg h. Finally, it is perfectly hiding since a commitment is
uniformly distributed in G. Another appealing property of this scheme is its additively homomorphism.

2.6 Zero-Knowledge Proofs

To prevent malicious behavior, the parties must demonstrate that they are well-behaved. To achieve this,
our protocols utilize zero-knowledge (ZK) proofs of knowledge. The following proof πDL is required for
proving consistency in our maliciously secure threshold decryption protocol. Namely, πDL is employed for
demonstrating the knowledge of a solution x to a discrete logarithm problem [Sch89]. Formally stating,

RDL = {((G, g, h), x) | h = gx} .

2.7 Hash Functions

The main computational overhead of our basic semi-honest protocol is carried out by P1, which essentially
has to do m1 ·mi comparisons for each i ∈ [2, n] in order to compare each of its inputs to each of the other
parties’ inputs. This overhead can be reduced using hashing, if both parties use the same hash scheme to
map their respective items into different B bins. In that case, the items mapped by some party to a certain
bin must only be compared to those mapped by P1 to the same bin. Thus the number of comparisons can be
reduced to be in the order of the number of P1’s inputs times the maximum number of items mapped to a
bin. (Of course, care must be taken to ensure that the result of the hashing does not reveal information about
the inputs.) In this work we consider two hash schemes: simple hashing and balanced allocations hashing;
see [FHNP16] for a thorough discussion.

2.7.1 Simple Hashing

Let h be a randomly chosen hash function mapping elements into bins numbered 1, . . . ,B. It is well known
that if the hash function h maps m items to random bins, then, if m ≥ B logB, each bin contains with high

probability at most M = m
B +

√
m logB

B (see, e.g., [RS98, Wie07]). Setting B = m/ logm and applying
the Chernoff bound shows that M = O(logm) except with probability (m)−s, where s is a constant that
depends on the exact value of M .2

2.7.2 Balanced Allocation

A different hash construction with better parameters is the balanced allocation scheme of [ABKU99] where
elements are inserted into B bins as follows. Let h0, h1 : {0, 1}p(n) → [B] be two randomly chosen hash
functions mapping elements from {0, 1}p(n) into bins 1, . . . ,B. An element x ∈ {0, 1}p(n) is inserted into

2As stated in [FHNP16], by setting B = m log logm/ logm we can make the error probability negligible in m. However, any
actual implementation will have to examine the exact value of B which results in a sufficiently small error probability for the input
sizes that are expected. As for theoretical analysis, the subsequent construction, based on balanced allocation hashing, presents a
negligible error probability.
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the less occupied bin from {h0(x), h1(x)}, where ties are broken arbitrarily. If m elements are inserted,
then except with negligible probability over the choice of the hash functions h0, h1, the maximum number
of elements allocated to any single bin is at most M = O(m/B + log logB). Setting B = m

log logm implies
that M = O(log logm).3

3 The Semi-Honest Construction

We begin with a description of a private MPC protocol that securely realizes the following functionality in
the presence of semi-honest adversaries. Specifically, the private set-intersection functionality FPSI for n
parties is defined by (X1, . . . , Xn) 7→ (X1∩ . . . ,∩Xn, λ, . . . , λ) where λ is the empty string. For simplicity
we consider a functionality where only the first party receives an output. Our protocol takes a new approach
where party P1 interacts with every party using a 2PC protocol that implements FPSI for two parties. At the
end, P1 combines the results of all these protocols and learns the intersection.

To be concrete, assume that P1 learns for each element xj1 ∈ X1 whether it is in Xi or not, for all
j ∈ [m1] and i ∈ [2, n]. Then, P1 can conclude the overall intersection. This is because an element from
X1 that intersects with all other sets must be in the overall intersection. On the other hand, any element that
is joint for all sets must be in X1 as well. Thus, we conclude that it is sufficient to individually compare X1

with all other sets. This protocol, of course, is insecure as it leaks the pairwise intersections (which is much
more information than P1 should learn from a secure realization of FPSI). In order to hide this leakage we
suggest to use a subprotocol for which P1 learns an encryption of zero in case the corresponding element
is in the intersection, and an encryption of a random element otherwise. If the encryption is additively
homomorphic then P1 can combine all the results with respect to each element xj1 ∈ X1, so that xj1 is in
the overall intersection if and only if the combined ciphertext encrypts the zero string. We implement this
subprotocol using a variant of the [FNP04] protocol; see below for a complete description.

The [FNP04] protocol (the semi-honest variant). More concretely, the [FNP04] protocol is based on
oblivious polynomial evaluation. The basic two-round semi-honest protocol, executed between parties P̃1

and P̃2 on the respective inputs X1 and X2 of sizes m1 and m2, works as follows:

1. Party P̃2 chooses encryption/decryption keys (PK, SK) ← Gen(1κ) for an additively homomorphic
encryption scheme (Gen,Enc,Dec).

P̃2 further computes the coefficients of a polynomial Q(·) of degree m2, with roots set to the m2

elements of X2, and sends the encrypted coefficients, as well as PK, to P̃1.

2. For each element xj1 ∈ X1 (in random order), party P̃1 chooses a random value rj (taken from an
appropriate set depending on the encryption scheme), and uses the homomorphic properties of the
encryption scheme to compute an encryption of rj ·Q(xj1)+xj1. P̃1 sends the encrypted values to P̃2.

3. Upon receiving these ciphertexts, P̃2 extracts X1 ∩X2 by decrypting each value and then checking if
the result is in X2. Note that if z ∈ X1 ∩X2 then by the construction of the polynomial Q(·) we get
that r ·Q(z) + z = r · 0 + z = z for any r. Otherwise, r ·Q(z) + z is a random value that reveals no
information about z and (with high probability) is not in X2.

3A constant factor improvement is achieved using the Always Go Left scheme in [Vöc03] where h0 : {0, 1}p(n) →
[1, . . . , B

2
], h1 : {0, 1}p(n) → [ b

2
+ 1, . . . ,B]. An element x is inserted into the less occupied bin from {h0(x), h1(x)}; in

case of a tie x is inserted into h0(x).
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Towards realizing FPSI we slightly modify the [FNP04] protocol as follows. The role of P̃2 remains almost
the same and played by all parties Pi for i ∈ [2, n], except that these parties do not generate a pair of keys but
rather use a public key that was previously generated by the whole set of parties in a key generation phase.
Whereas for each element xj1 ∈ X1 (picked in random order), P̃1 computes the encryption of rj · Q(xj1)
and keeps it for itself. This role is computed by party P1 that aggregates the polynomial evaluations and
concludes the intersection as explained in the beginning of this section. We denote P̃τ ’s message sent within
this modified protocol by πτ

FNP for τ ∈ {1, 2}.

Our complete protocol. Let (Gen,Enc,Dec) denote a threshold additively homomorphic cryptosystem
with a public key generation and decryption protocols πSH

GEN and πSH
DEC, respectively (in fact, we will be using

protocol πSH
DecZero; see Section 2.3.3). Then our protocol can be described using three phases. In the first

phase the parties run protocol πSH
GEN in order to agree on a public key without disclosing its corresponding

secret key to anyone. In the second 2PC phase P1 individually interacts with each party in order to generate
the set of ciphertexts as specified above (via the [FNP04] modified protocol). Finally, in the last phase, the
parties carry out protocol πSH

DecZero for which P1 concludes the overall intersection. More formally,

Protocol 1 (Protocol πPSI with semi-honest security).

• Input: Party Pi is given a set Xi of size mi for all i ∈ [n]. All parties are given a security parameter 1κ and a
description of a group G.

• The protocol:

– Key Generation. The parties mutually generate a public key PK and the corresponding secret key shares
(SK1, . . . , SKn) by running a semi-honestly secure protocol πSH

GEN that realizes FGEN.

– The 2PC phase. Party P1 engages in an execution of protocol (π1
FNP, π

2
FNP) specified above with each

party Pi, for every i ∈ [2, n]. Let (ci1, . . . , c
i
m1

) denote the outcome of party P1 from the (i − 1)th
execution of 2PC protocol. (Recall that P1 has m1 elements in its set.)

– Concluding the intersection.
1. The parties mutually decrypt for P1 the set of ciphertexts

n∏
i=2

ci1, . . . ,

n∏
i=2

cim1

by engaging in a semi-honestly secure protocol πSH
DecZero that realizes FDecZero.

2. P1 outputs xj only if the decryption of
∏n

i=2 c
i
j equals zero.

We continue with the proof of the following theorem,

Theorem 3.1. Assume that (Gen,Enc,Dec) is IND-CPA secure threshold additively homomorphic encryp-
tion scheme. Then, Protocol 1 securely realizes FPSI in the presence of semi-honest adversaries in the
{FGEN,FDecZero}-hybrid for n ≥ 2 parties.

Proof: We already argued for correctness, we thus directly continue with the privacy proof. We consider
two classes of adversaries. The first class involves adversaries that corrupt a subset of parties that includes
party P1, whereas the second class does not involve the corruption of P1. We provide a separate simulation
for each class.

Consider an adversary A that corrupts a strict subset I of parties from the set {P1, . . . , Pn}, including
P1. We define a simulator S as follows.
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1. Given {Xi}i∈I and Z = ∩ni=1Xi, the simulator invokes the corrupted parties on their corresponding
inputs and randomness.

2. S generates (PK, SK) ← Gen(1κ) and invokes the simulator SGEN(PK) for πSH
GEN in the key genera-

tion phase.

3. Next, S plays the role of the honest parties against P1 on arbitrary sets of inputs. Namely, S sends
ciphertexts encrypting the polynomials induced by these inputs.

4. Finally, at the concluding phase the simulator completes the decryption protocol as follows. For each
xj1 ∈ Z, S invokes SDecZero(0), forcing the decryption outcome to be zero. Whereas for each xj1 /∈ Z,
the simulator invokes SDecZero(r) for a uniformly distributed r ← G.

Note that the difference between the two views is with respect to the encrypted polynomials sent by the
simulator as opposed to the real parties. Then indistinguishability follows from the privacy of πDecZero

which boils down to the privacy of the threshold homomorphic encryption scheme. This can be shown via
a reduction to the indistinguishability of ciphertexts of the encryption scheme. More formally, assume by
construction the existence of an adversary A and a distinguisher D that distinguishes the real and simulated
executions with non-negligible probability. We construct an adversary AΠ that distinguishes two sets of
ciphertexts. Concretely, upon receiving a public key PK, AΠ invokes the simulator SGEN(PK) as would the
simulator S do. Next, it outputs two sets of vectors. One corresponds to the set of polynomials computed
from the honest parties’ inputs. Whereas the other set is arbitrarily fixed as generated in the simulation.
Upon receiving the vector of ciphertexts c̃ from its oracle,AΠ sends c̃ to the corrupted P1 and completes the
reduction as in the simulation.

Note that if c̃ corresponds to encryptions of the honest parties’ inputs, then the adversary’s view is
distributed as in the real execution. In particular, AΠ always knows the correct plaintext to be decrypted
(which is either zero or a random value where this randomness is also known in the semi-honest model).
Therefore, the shares handed byAΠ are as in the real execution. On the other hand, in case c̃ corresponds to
the set of arbitrary inputs, then the adversary’s view is distributed as in the simulation since the decrypted
plaintext is not correlated with the actual plaintext. This concludes the proof.

Next, we consider an adversary which does not corrupt P1. In this case the simulator S is defined as
follows.

1. Given {Xi}i∈I and Z = ∩ni=1Xi, the simulator invokes the corrupted parties on their corresponding
inputs and randomness.

2. S generates (PK, SK) ← Gen(1κ) and invokes the simulator SGEN(PK) for πGEN in the key genera-
tion phase.

3. Next, S plays the role of P1 against the corrupted parties on an arbitrary set of inputs and concludes
the simulation by playing the role of P1 on these arbitrary inputs. (Note that this corruption case is
even simpler as only P1 learns the output. In case all parties should learn the output then we apply the
same simulation technique as in the previous corruption case.)

Note that the difference is with respect to the polynomial evaluations made by the simulated P1 which uses
an arbitrary input. Then the indistinguishability argument follows similarly as above via a reduction to the
privacy of the encryption scheme as only P1 receives an output.
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3.1 Communication and Computation Complexities

Note that the complexity of the protocol is dominated by the overhead of the threshold cryptosystem as well
as the underlying 2PC protocol for implementing F2PC

PSI . We instantiate the latter using the [FNP04] and
either the El Gamal PKE [Gam85] or the Paillier PKE [Pai99] for the former. Note that the communication
complexity of the [FNP04] variant we consider here is linear in m2, as m2 + 1 encrypted values are sent
from P̃2 to P̃1 (these are the encrypted coefficients of Q(·)). However, the work performed by P̃1 is high,
as each of the m1 oblivious polynomial evaluations includes performing O(m2) exponentiations, totaling
in O(m1 ·m2) exponentiations. To save on computational work, Freedman et al. introduced hash functions
into their schemes. Below we consider two instantiations of simple hashing (cf. Section 2.7.1) and balanced
allocation hash function (cf. Section 2.7.2).

Furthermore, the underlying threshold additively homomorphic encryption scheme can be instantiated
using either the additive variant of the El Gamal PKE, for which the public key can be generated using
the Diffie-Hellman approach [DH76], or the Paillier PKE for which the public key can be generated using
[Gil99]. Finally, we note that our protocol is constant round and does not need to use any broadcast channel.

Improved computation using simple hashing. In our protocol, the hash function h will be picked by one
of the parties (say P̃2) and known to both. Moreover, P̃2 defines a polynomial of degree M for each bin
by fixing its mapped elements to be the set of roots. As some of the bins contain less than M elements, P̃2

pads each polynomial with zero coefficients up to degree M , so that the total degree of the polynomial is
M (since P2 must hide the actual number of elements allocated to each bin). This results in B polynomials,
all of degree M , with exactly m2 non-zero roots. The rest of the protocol remains unchanged. Now, P̃1

needs to first map each element xj1 in its set and then obliviously evaluate the polynomial that corresponds
to that bin. Neglecting small constant factors, the communication complexity is not affected as P̃i now sends
B ·Mi = O(mi) encrypted values. There is, however, a dramatic reduction in the work performed by P̃1 as
each of the oblivious polynomial evaluations amounts now to performing just O(Mi) exponentiations, and
hence P̃1 performs O(m1 ·

∑
iMi) exponentiations overall, where Mi is a bin size for allocating Pi’s input.

Improved computation using balanced allocation hashing. Loosely speaking, they used the balanced
allocation scheme of [ABKU99] with B = m2

log logm2
bins, each of size M = O(m2/B + log logB) =

O(log logm2). Party P̃2 now uses the balanced allocation scheme to hash every x ∈ X into one of the B
bins resulting (with high probability) with each bin’s load being at most M . Instead of a single polynomial
of degree m2 party P̃2 now constructs a degree-M polynomial for each of the B bins, i.e., polynomials
Q1(·), . . . , QB(·) such that the roots of Qi(·) are the elements put in the ith bin. Upon receiving the en-
crypted polynomials, party P̃1 obliviously evaluates the encryption of rj0 ·Qh0(x1

j )
(x1j ) and rj1 ·Qh1(x1

j )
(x1j )

for each of the two bins h0(x1j ), h1(x
1
j ) in which x1j can be allocated, enabling P̃1 to extract X∩Y as above.

The communication and computational overheads are as above. Nevertheless, a subtlety emerges in our
semi-honest protocol that employs this tool, as P1 cannot tell which of the two bins contains the particular
element. Consequently, it cannot tell which of the two associated polynomials is evaluated to zero, where this
information is crucial in order to conclude the intersection. We suggest two solutions in order to overcome
this issue. Our first solution supports the El Gamal and Paillier PKEs but requires more communication.
Namely, the parties run a protocol to compute the encryption of the product of plaintexts. This is easily
done by having P̃1 additively mask the two evaluations and then have P̃2 multiply the decrypted results
and send the encrypted product back to P̃1. At the end, P̃1 unmasks this cipehrtext and continues with the
protocol execution. Note that all the products can be computed in parallel.
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Our second solution uses an encryption scheme that is additively homomorphic and multiplicative with
respect to a single plaintexts multiplication. In this case, it is possible to multiply the two results of the
polynomials evaluations, which will result zero if one of the evaluations is zero. An additively homomorphic
encryption scheme that supports such a property is due to Boneh et al. [BGN05] (cf. Section 2.4.2).

4 The Malicious Construction

Towards designing a protocol with stronger security we need to handle new challenges that emerge due to
the fact that party P1 may behave maliciously. The main challenge is to prevent P1 from learning additional
information about the intersection with individual parties. To be concrete, we recall that our semi-honest
protocol follows by having P1 individually interacting with each party via 2PC protocol, where this stage
is followed by decrypting the combined ciphertexts generated in these executions. Then upon corrupting a
subset of parties which includes P1, a malicious adversary may use ill formed ciphertexts or ciphertexts for
which it does not know their corresponding plaintext, exploiting the honest parties as a decryption oracle.
Towards dealing with malicious attacks we modify Protocol 1 as follows (for simplicity we concretely
consider the El Gamal PKE and adapt our ZK proofs for this encryption scheme).

1. First, P1 broadcasts commitments to its input X1 together with a zero-knowledge proof. This phase is
required in order to ensure that P1 uses the same input against every underlying 2PC evaluation with
every other party. One particular instantiation for this commitment scheme can be based in Pedersen’s
scheme (cf. Section 2.5). This scheme is consistent with El Gamal PKE (cf. 2.3.3) and the BBS PKE
(cf. 2.4.1). An alternative scheme, e.g. [DN02], can be considered when using the Paillier or the BGN
PKEs (cf. Sections 2.4 and 2.4.2, respectively); see below for more details.

2. To prevent P1 from cheating when assembling the encrypted polynomial, each party chooses a random
element λi ← G and encrypts the product of each coefficient of Qi(·) with λi. More specifically, Pi

sends an encryption of polynomial λi · Qi(·), where the underlying set of roots remains unchanged.
This later allows the other parties to verify the correctness of P1’s computation, which will allow to
claim that P1 can only learn a random group element upon deviating.

3. Next, the parties pick a random group element u← G and compare the evaluation of P1’s combined
polynomial against the evaluations of their own individual polynomials. Namely, each party broad-
casts the value

∑
j(c

i
j)

uj
together with a zero-knowledge proof of knowledge. If concluded correctly,

this phase is followed by the parties verifying the equality of the following equation

mMAX∑
j=1

(cj)
xj

=

n∑
i=2

λ̃i

where mMAX is the maximum over all input sets sizes and n is the number of parties. Note that equal-
ity is performed over the ciphertexts. For this reason we can only work with additively homomorphic
PKEs for which the homomorphic operation does not add noise to the ciphertext. Our crucial ob-
servation here is that the simulator can run the extractor of the proof of knowledge and obtain the
polynomials evaluations. Now, if the adversary convinces the honest parties with a non-negligible
probability that it indeed knows the plaintext, then the simulator can rewind it sufficiently many times
in order to extract enough evaluation points for which it can fully recover the corrupted parties’ poly-
nomials, and hence their inputs.
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4. Finally, P1 must prove that it correctly evaluated the combined polynomial on its committed input X1

from Item 1. This phase is backed up with a ZK proof due to Bayer and Groth [BG13], denoted by
πEVAL, and formally stated in Section 2.6.

Building blocks. Our protocol uses the following sub-protocols.

1. A coin tossing protocol πCOIN employed in order to sample a random group element u ← G. Our
protocol employs πCOIN only once, where u is locally substituted by the parties in their private poly-
nomials. These values are then used by the parties to verify the behaviour of P1. The overhead of
πCOIN is O(n2) where n is the number of parties.

2. A ZK proof of knowledge πEXP for demonstrating the knowledge of the message with respect to
an additively homomorphic commitment scheme. We employ this proof in two distinct places in
our protocol, and for two different purposes. First, when P1 broadcasts its polynomial in Step 2
and proves the knowledge of these coefficients and second, in Step 4c when each party sends its
polynomial evaluation. As we demonstrate below, for both instantiations we can use the same proof
for the two purposes. Importantly, since we are in the multi-party setting, where each party uses a
homomorphic encryption to encrypt its polynomial, we must avoid the case for which an adversary
may “reuse” one of the encrypted polynomials as the polynomial of one of the corrupted parties. We
will require the proof to be simulation-extractable. We will ensure this by showing that our proofs are
non-malleable and straight-line extractable.

3. A ZK proof of knowledge πEVAL for demonstrating the correctness of a polynomial evaluation for a
secret committed value [BG13]. This proof is an argument of knowledge such that given a polynomial
P (·) = (p0, . . . , pd) and two commitments com, com′, proves the knowledge of a pair v, u such
that P (v) = u where com = Com(u), com′ = Com(v) and Com(·) denotes an homomorphic
commitment scheme (as noted in [BG13] any homomorphic commitment can be used). Moreover,
the polynomial can be committed as well. Formally stating,

REVAL =

(
P (·) = (p0, . . . , pd), com, com′), (r, r′, u, v) | com = Com(u; r)

∧ com′ = Com(v; r′)
∧ P (u) = v

 .

Importantly, the communication complexity of this proof is logarithmic in the degree of the polyno-
mial, whereas the computational overhead by the verifier is O(d) multiplications.

We next formally describe our protocol.

Protocol 2 (Protocol πML with malicious security).

• Input: Party Pi is given a set Xi = {x1
i , . . . , x

mi
i } of size mi for all i ∈ [n]. All parties are given a security

parameter 1κ and a description of a group G.

• The protocol:

1. Key Generation. The parties mutually generate a public key PK and the corresponding secret key shares
(SK1, . . . , SKn) by running a maliciously secure protocol πML

GEN that realizes FGEN.

2. The commitment phase. P1 creates commitments to its inputs {com1, . . . , comm1} and broadcasts them
to all parties and proves the knowledge of their decommitments using threshold πEXP.
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3. The 2PC phase. For all i ∈ [2, n], party Pi computes the coefficients of a polynomial Qi(·) =
(qi0, . . . , q

i
mi

) of degree mi, with roots set to the mi elements of Xi. In addition, Pi chooses a ran-
dom element λi ← G and computes the product λi · qij for every coefficient within Qi. Finally, Pi sends
P1 the sets of ciphertexts

(
ci1, . . . , c

i
mi

)
, encrypting the coefficients of λi ·Qi(·).

4. Concluding the intersection.
(a) Upon receiving the ciphertexts from all parties, party P1 combines the following ciphertexts

c1 =
n∏

i=2

ci1, . . . , cmMAX =
n∏

i=2

cimMAX

where mMAX = max(m2, . . . ,mn). Note that P1 calculates the ciphertexts encrypting the coeffi-
cients of the combined polynomial λ2 · Q2(·) + · · · + λn · Qn(·). P1 then broadcasts ciphertexts(
c1, . . . , cmMAX

)
to all parties.

(b) Next, the parties verify the correctness of these ciphertexts. Specifically, the parties first agree on a
random element u from the appropriate plaintext domain using the coin tossing protocol πCOIN.

(c) Then, each party broadcasts the ciphertext computed by
∑

j(c
i
j)

uj

, denoted by λ̃i, together with a
ZK proof of knowledge πEXP for proving the knowledge of the plaintext.
If all the proofs are verified correctly, then the parties check that

∑mMAX

j=1 (cj)
xj

=
∑n

i=2 λ̃i using
the homomorphic property of the encryption scheme.

(d) If the verification phase is completed correctly, for every xj
1 ∈ X1, P1 evaluates the polynomial

that is induced by the coefficients encrypted within ciphertexts
(
c1, . . . , cmMAX

)
on xj

1 and proves
consistency with the commitments from Step 2 using the ZK proof πEVAL.

(e) Upon completing the evaluation, the parties decrypt the evaluation outcomes for P1 using protocol
πML

DecZero, who concludes the intersection.

We continue with the proof for this theorem,

Theorem 4.1. Assume that (Gen,Enc,Dec) is IND-CPA secure threshold additively homomorphic encryp-
tion scheme, and that πCOIN, πEXP, πEVAL, πGEN and πDecZero are as above. Then, Protocol 2 securely realizes
FPSI in the presence of malicious adversaries for n ≥ 2 parties.

Proof: Intuitively, correctness follows easily due to a similar argument as in the semi-honest case , where
each element in P1’s set must zero all the other polynomials if it belongs to the intersection. Next, we
consider two classes of adversaries. The first class involves adversaries that corrupt a subset of parties that
includes party P1, whereas the second class does not involve the corruption of P1. We provide a separate
simulation for each class.

Consider an adversary A that corrupts a strict subset I of parties from the set {P1, . . . , Pn}, including
P1. We define a simulator S as follows.

1. Given {Xi}i∈I the simulator invokes the corrupted parties on their corresponding inputs and random-
ness.

2. S generates (PK, SK) ← Gen(1κ) and invokes the simulator SGEN(PK) for πML
GEN in the key genera-

tion phase.

3. Next, S extracts the input X ′
1 of P1 by invoking the extractor of the proof of knowledge πEXP.

4. S plays the role of the honest parties against P1 on arbitrary sets of inputs.
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5. Finally, at the concluding phase the simulator completes the execution of the protocol as follows. S
completes the verification phase as the honest parties would do. If the verification phase fails S aborts,
sending ⊥ to the trusted party.

6. Otherwise, S extracts the corrupted parties’ inputs (excluding party P1 for which its input has already
been extracted). More concretely, the simulator repetitively rewinds the adversary to the beginning of
Step 4b, where for every iteration the parties evaluate their polynomial at a randomly chosen point u
and the simulator extracts the individual evaluations by running the extractor of the proof of knowl-
edge πEXP and records these values only if they pass the verification phase.

Upon recording d + 1 values for each corrupted party, the simulator reconstructs their polynomials
and calculates the set of roots Xi of each polynomial λi ·Qi(·) for i ∈ I. In case S fails to record this
many values, it outputs ⊥.

7. S sends {Xi}i∈I to the trusted party, receiving Z. S further verifies the πEVAL proofs and aborts in
case the verification fails.

8. Finally, for every xj1 ∈ Z, S biases the decryption of the combined polynomials to be zero. Whereas
for each xj1 /∈ Z, the simulator biases the decryption into a random group element by running the
simulator SML

DecZero on the appropriate plaintext.

We briefly discuss the running time of the simulator. Observe that its running time is dominated by Step
6, when it repeatedly rewinds the adversary. Nevertheless, using a standard analysis, the expected number
of rewindings can be shown to be polynomial. We next prove that the real and simulated executions are
computationally indistinguishable. Note that the difference between the executions boils down to the privacy
of the encryption scheme. Namely, the simulator sends encryptions of polynomials that were computed
based on arbitrary inputs, as opposed to the honest parties’ real inputs. Our proof follows via a sequence
of hybrid games. We will begin with a scenario where P1 is in the set of corrupted parties I. When P1 is
honest, the proof is simpler and we discuss this at the end.

Hybrid0: The first game is the real execution.

Hybrid1: This hybrid is identical to the real world with the exception that the simulator S1 in this ex-
periment extracts the corrupted parties inputs as in the simulation. More precisely, it extracts the inputs
of all corrupted parties from πEXP and πEVAL, and aborts if it fails to extract. Since the probability that
the simulator fails to extract is negligible, it follows that this hybrid is statistically close to the real world
execution. Specifically, consider two cases. If the adversary passes the verification check in Step 4b with
non-negligible probability, then using a standard argument the simulator will be able to extract enough
evaluation points. On the other hand, if the probability that the simulator reaches the rewinding phase is
negligible then indistinguishability will follow from the aborting views output by the simulator.

Hybrid2: In this hybrid, the simulator extracts just as in Hybrid1 with the following modifications.
First, it invokes simulator SGEN for protocol πGEN in Step 1. In addition, if the simulator does not abort
when executing Step 4b, it computes the set-intersection result Z based on the extracted inputs and the
honest parties’ inputs (which it knows in this hybrid). Next, it invokes simulator SDecZero of the decryption
protocols that is invoked in Step 4e. Note that SDecZero is handed as plaintexts result of the set-intersection
and needs to bias the outcome towards these set of plaintexts. That is, for each element z ∈ X1 substituted
in the combined polynomial in Step 4d, the simulator enforces the decryption to be zero, and a random
element otherwise. Note that indistinguishability follows from the properties of the threshold decryption.
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In particular, the adversary’s view in the previous hybrid includes the real execution of protocols πGEN and
πDEC, whereas in the current hybrid the adversary’s view includes the simulated protocols executions. We
further claim that the adversary’s set-intersection result is identical in both executions condition on the even
that extraction follows successfully. This is due to the correctness enforced by the decryption protocol.

Hybrid3: In this hybrid, the simulator changes all the proofs given by the honest parties in Step 4b to sim-
ulated ones. Moreover, recall that the simulator continues to extract the inputs of the corrupted parties. Now,
since the zero-knowledge proof we employ in this step is simulation extractable, it follows that Hybrid2

and Hybrid3 are computationally indistinguishable. Namely, as we require this proof to be non-malleable
and straight-line extractable, indistinguishability follows by simply posting either the real or the simulated
proofs.

Hybrid4: In this hybrid, the simulator changes the inputs of the honest parties in the 2PC phase to random
inputs. Namely, the simulator sends the encryptions of a random polynomial on behalf of each honest party
in Step 3. Then indistinguishability of Hybrid3 and Hybrid4 follows from the IND-CPA security of
the underlying encryption scheme. Specifically, the simulator never needs to know the secret key of the
encryption scheme, so that the ciphertexts obtained from the encryption oracle in the IND-CPA reduction
can be directly plugged into the protocol. More concretely, a simple reduction can follow by providing
an adversary A′, who wishes to break the IND-CPA security of the underlying PKE, a public-key PK
and a sequence of ciphertexts that either encrypt the real honest parties’ polynomials or a set of random
polynomials. A′ emulates the simulator for this hybrid, with the exception that it plugs-in these ciphertexts
on behalf of the honest parties in Step 3. Note that the adversary’s view is either distributed according to the
current or the prior hybrid execution, where the no information about the polynomials is revealed in Step 4c
due to the random λ masks that yield random polynomials evaluations.

As Hybrid4 is identical to the real simulator, the proof of indistinguishabiliy follows via a standard
hybrid argument.

Next, in the case that P1 is not corrupted, the simulator further plays the role of this party in the sim-
ulation. In this case the proof follows almost as above with the difference that now the simulator uses a
fake input for P1 when emulating Step 4d. This requires two extra hybrid games in the proof for which the
simulator switches to P1’s real input, reducing security to the privacy of the underlying encryption scheme
and the zero-knowledge property of πEVAL.

4.1 An Instantiation of πEXP Based on DDH and the Random Oracle

Our first instantiation uses the following building blocks. First, we use the El Gamal PKE as the threshold
additively homomorphic encryption scheme; we elaborate in Section 2.3.3 regarding this scheme. We further
consider Pedersen’s commitment scheme [Ped91] for the commitment scheme made by P1 in Step 2 (see
Section 2.5 for the details of this commitment scheme). Finally we realize πEXP using a standard Σ-protocol
for the following relation

REXP =
{
((G, g, h, h′), (m, r)) | h′ = gmhr

}
.

We invoke this proof in two places in our protocol. First, P1 proves the knowledge of its committed input
in Step 2. Next, the parties prove the knowledge of their evaluated polynomial in Step 4b (where for any
El Gamal type ciphertext ⟨c1, c2⟩ = ⟨gr, hr · gm⟩ it is sufficient to prove the knowledge with respect to
the second group element c2, which can be viewed as a Pedersen’s commitment). Importantly, as the latter
proof must meet the non-malleability property, we consider its non-interactive variant using the Fiat-Shamir
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heuristic [FS86] which is analyzed in the Random Oracle Model of Bellare and Rogaway [BR93]. Finally,
we note that the overhead of this proof is constant. As mentioned before, we need the proofs to satisfy the
stronger simulation-extractability property. If we assume the stronger programmability property of random
oracles, we can show that these proofs are non-malleable and straight-line extractable. For more details, see
[?].

4.2 An Instantiation of πEXP Based on the DLIN Hardness Assumption

Our second instantiation is based on the [BBS04] PKE that is based on the DLIN hardness assumption and
the simulation-sound NIZK by Groth [Gro06]. In this work, Groth demonstrates NIZK proofs of knowledge
for Pedersen’s commitment scheme, which can be used by P1 in Step 2 as in the previous instantiation,
and for a plaintext knowledge relative to [BBS04] which can be used by the parties in Step 4b. To achieve
non-malleability we will require that an independent common reference string is sampled between every
pair of parties.

4.3 Communication and Computation Complexities

Denoting by mMIN (resp. mMAX) the minimum (resp. maximum) over all input sets sizes and n is the number
of parties, we set m1 = mMIN. Next, note that the communication complexity of Protocol 2 is dominated
by the following factors: (1) First, O(n2) groups elements in the threshold key generation phase in Step 1,
in the coin tossing generation phase in Step 4b and in Step 4c where the parties broadcast their polynomial
evaluation. (2) Second, the 2PC step for which each party Pi computes its own polynomial boils down to
O(

∑
imi) and finally, (3) the broadcast of the combined protocol and the overhead of the zero-knowledge

proof πEVAL yield O(n ·mMAX + n ·mMIN · logmMAX). All together this implies O((n2 + n ·mMAX + n ·
mMIN · logmMAX)κ) bits of communication.

In addition to the above, except for party P1, the computational complexity of each party Pi is O(mMAX)
exponentiations plus O(mMIN ·mMAX) groups multiplications, whereas party P1 needs to perform O(m1 ·
mMAX) exponentiations.
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[DJ01] Ivan Damgård and Mads Jurik. A generalisation, a simplification and some applications of paillier’s
probabilistic public-key system. In PKC, pages 119–136, 2001.

[DMRY11] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Secure efficient multiparty com-
puting of multivariate polynomials and applications. In ACNS, pages 130–146, 2011.
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