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Abstract

We propose a simple and efficient framework for obtaining communication-efficient, constant-
round protocols for (malicious) secure two-party computation. Our framework uses a prepro-
cessing phase to generate authentication information for the two parties; in the online phase, this
information is used to construct a single “authenticated” garbled circuit which is transmitted
and evaluated. We also discuss various instantiations of our framework:

• The preprocessing phase can be instantiated efficiently using, e.g., TinyOT. Using this ap-
proach with our improvements to TinyOT, we obtain a protocol in which secure evaluation
of an AES circuit (at 128-bit computational security and 40-bit statistical security) uses
roughly 6 MB of communication in total. Most of the communication is circuit indepen-
dent. A single execution of our protocol performs even better than the best previous work
supporting circuit-independent preprocessing when amortized over 1024 executions.

• If the preprocessing phase is instantiated using the IPS compiler, we obtain a constant-
round protocol whose communication complexity is asymptotically as small as a semi-
honest garbled-circuit protocol in the OT-hybrid model.

• If the preprocessing phase is carried out by a trusted server, we obtain a constant-round
protocol whose communication complexity is essentially the same as in the linear-round
protocol of Mohassel et al. in the analogous setting.

1 Introduction

There have been incredible advances in the efficiency of protocols for (malicious) secure two-party
computation (2PC) over the last decade. One popular approach for designing such protocols is to
apply the “cut-and-choose” technique [LP07, SS11, LP11, HKE13, Lin13, Bra13, FJN14, AMPR14]
to Yao’s garbled-circuit protocol [Yao86] for constant-round (semi-honest) secure two-party com-
putation. For statistical security 2−ρ, the best protocols using this paradigm require the parties to
generate, send, and evaluate ρ garbled circuits, which is optimal for the cut-and-choose approach.
Recently, Wang et al. [WMK16] showed a protocol based on this technique that can securely eval-
uate an AES circuit (in the single-execution setting with no preprocessing) in only 65 ms.

The above approach incurs significant overhead when large circuits are evaluated precisely
because ρ garbled circuits need to be transmitted. In order to mitigate this drawback, recent works
have explored secure computation in an amortized setting where the same function is evaluated
multiple times (on different inputs) [HKK+14, LR14, LR15, RR16]. When amortizing over τ
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Circuit-independent Circuit-dependent Online
Protocol preprocessing preprocessing phase Storage

Cut-and-choose — O (|C|ρκ) O(I|ρκ) O(|C|ρκ)

Amortized — O
(
|C| ρ

log τ κ
)

O
(
|I| ρ

log τ κ
)

O
(

|C|ρκ
log τ

)
LEGO O

(
|C|ρκ

log τ+log |C|

)
O(|C|κ) O(|I|κ) O

(
|C|ρκ

log τ+log |C|

)
SPDZ-BMR1 [LPSY15] O(|C|κ2) O(|C|κ) O(|I|κ) O(|C|κ)

This work with TinyOT O
(

|C|ρκ
log τ+log |C|

)
O(|C|κ) |I|κ O(|C|κ)

This work with IPS2 O(|C|κ)

Table 1: Communication complexity of constant-round 2PC protocols. |I| represents
the length of the inputs, and |C| denotes the circuit size. The statistical security parameter is ρ,
and κ ≥ ρ denotes the computational security parameter. τ is the number of executions for
protocols in the amortized setting. Storage is expressed as the amount of data to be stored after
the preprocessing phase(s). Terms that are independent of the input/circuit size are ignored.

executions, only O( ρ
log τ ) garbled circuits are needed per execution. Rindal and Rosulek [RR16]

recently reported 6.4 ms for evaluation of an AES circuit, amortized over 1024 executions.
Other techniques for secure two-party computation, with asymptotically better performance

than cut-and-choose (without amortization), have also been investigated. The LEGO protocol and
subsequent optimizations [NO09, FJN+13, FJNT15, HZ15, NST17] are based on a gate-level cut-
and-choose approach that can be carried out during a preprocessing phase before the circuit to be
evaluated is known. This class of protocols has good asymptotic performance (see Table 1) and
small online time; however, the overall cost of the state-of-the-art LEGO implementation [NST17] is
still slightly higher than the overall cost of the best protocol based on the cut-and-choose approach
applied at the garbled-circuit level.

The Beaver-Micali-Rogaway compiler [BMR90] provides yet another approach to construct-
ing constant-round protocols secure against malicious adversaries. This compiler uses an “outer”
secure-computation protocol to generate a garbled circuit. Lindell et al. [LPSY15] apply a similar
idea using SPDZ [DPSZ12] as the outer protocol.

Protocols running in a super-constant number of rounds have also been investigated. The
TinyOT protocol [NNOB12] adds malicious security to the classical GMW protocol [GMW87]
by adding an information-theoretic MAC to the shares held by the parties. TinyOT has smaller
communication complexity than the LEGO family of protocols, but—just like the GMW protocol—
has round complexity linear in the depth of the circuit being evaluated. (In contrast, all the results
cited previously run in a constant number of rounds.) The IPS compiler [IPS08, LOP11] has
asymptotic communication complexity (in the OT-hybrid model) proportional to the size of the
underlying circuit being evaluated. It, too, has the disadvantage of requiring a number of rounds
linear in the depth of the circuit. A more serious drawback is that the concrete complexity of the
protocol is unclear, since it has not yet been implemented (and appears quite difficult to implement).

1Based on [KOS16]; the complexity of circuit-independent preprocessing can be reduced to O(|C|κ) using somewhat
homomorphic encryption [DPSZ12], but at the expense of requiring a number of public-key operations proportional
to the circuit size.

2In the bit-OT-hybrid model.
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In Table 1, we summarize the communication complexity of the various approaches for con-
structing constant-round 2PC protocols. Following [NST17], we divide execution of protocols into
three phases:

• Function-independent preprocessing. During this phase, the parties need not know their
inputs nor the function to be computed (beyond an upper bound on the number of gates).

• Function-dependent preprocessing. In this phase, the parties know what function they
will compute, but need not know their inputs.

Often, the first two phases are combined and referred to simply as the offline phase.

• Online phase. In this phase, two parties evaluate the agreed-upon function on their respec-
tive inputs.

Our contribution. We propose a new approach for constant-round 2PC protocols with extremely
low communication complexity. At a high level (further details are given in Section 3), our pro-
tocol relies on a function-independent preprocessing phase to realize an ideal functionality that
we call FPre. Following ideas of [NNOB12], we use this preprocessing phase to set up correlated
information at the two parties that they can use during the online phase for information-theoretic
authentication of different values. In contrast to [NNOB12], however, the parties in our protocol
use this information in the online phase to distributively generate a single “authenticated” garbled
circuit. (Conceptually similar ideas were used by Damg̊ard and Ishai [DI05] in the context of multi-
party computation with honest majority, and by Choi et al. [CKMZ14] for three-party computation
with dishonest majority.) As in the semi-honest case, this garbled circuit can then be transmitted
and evaluated using just one additional round of interaction.

Frederiksen et al. [FJNT15] introduces the notion of interactive garbling schemes and how to
use it to construct a 2PC protocol. Our work also constructs garbled circuits interactively, but the
underlying techniques and ideas are fundamentally different: in our protocol, garbled circuits are
distributed to two parties and authenticated to the evaluator.

Regardless of how we realize FPre, our protocol is extremely efficient in the function-dependent
preprocessing phase and the online phase. Specifically, compared to a semi-honest garbled-circuit
protocol, the cost of the function-dependent preprocessing phase of our protocol is only about
30% higher (assuming 128-bit computational security and 40-bit statistical security), and the cost
of the online phase is essentially unchanged. The cost of the function-independent preprocessing
phase—and thus the cost of the entire protocol—depends on precisely how we realize FPre:

• If FPre is instantiated using TinyOT, the asymptotic communication complexity of our pro-
tocol is as good as in protocols based on LEGO, but with two advantages. First, our protocol
has better concrete communication complexity (see Section 8), especially in the online phase,
and overall cost. Furthermore, the amount of storage needed by our protocol between the
preprocessing phase and the online phase is (asymptotically) smaller. The latter is espe-
cially important when very large circuits are evaluated (see Table 1). We further improve the
concrete efficiency by describing several improvements to TinyOT in Section 6.

Compared to the protocol of Lindell et al. [LPSY15], our protocol is asymptotically more
efficient in the function-independent preprocessing phase; more importantly, the concrete
efficiency of our protocol is much better since our work is compatible with free-XOR and we
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do not suffer from any blowup in the size of the circuit being evaluated. In particular, Lindell
et al. require five SPDZ-style multiplications per AND gate of the underlying circuit, while
we only need one TinyOT-style AND computation per AND gate.

• When FPre is instantiated using the IPS compiler, we obtain what is (to the best of our
knowledge) the first constant-round protocol with communication complexity O(|C|κ) in the
OT-hybrid model. Note that this (asymptotically) matches the communication complexity
of semi-honest secure two-party computation based on garbled circuits.

• We can also realize FPre using a (semi-)trusted server. In that case we obtain a constant-
round protocol for server-aided 2PC with total communication O(|C|κ). Previous work in
the same model [MOR16] achieves the same communication complexity but with number of
rounds proportional to the circuit depth.

2 Notations and Preliminaries

We use κ to denote the computational security parameter (i.e., security should hold against attackers
running in time ≈ 2κ), and ρ for the statistical security parameter (i.e., an adversary should succeed
in cheating with probability at most 2−ρ). We use = to denote equality and := to denote assignment.

A circuit is represented as a list of gates having the format (α, β, γ, T ), where α and β denote
the input-wire indices of the gate, γ denotes the output-wire index of the gate, and T ∈ {⊕,∧}
denotes the type of the gate. We use I1 to denote the set of input-wire indices for PA’s input, I2

to denote the set of input-wire indices for PB’s input, W to denote the set of output-wire indices of
all AND gates, and O to denote the set of output-wire indices of the circuit. We denote the parties
running the secure-computation protocol by PA and PB.

2.1 Information-theoretic MACs

We use the information-theoretic message authentication codes (IT-MAC) of [NNOB12]. PA holds
a random global key ∆A ∈ {0, 1}ρ. A bit b known by PB can be authenticated by having PA hold
a random key K[b] and having PB hold the corresponding tag M[b] := K[b] ⊕ b∆A. Symmetrically,
PB holds an independent global key ∆B; a bit b known by PA is authenticated by having PB hold
a random key K[b] and having PA hold the tag M[b] := K[b] ⊕ b∆B. We use [b]A to denote an
authenticated bit known to PA (i.e., [b]A means that PA holds (b,M[b]) and PB holds K[b]), and [b]B
is defined symmetrically.

Observe that this MAC is XOR-homomorphic: given [b]A and [c]A, the parties can (locally)
compute [b⊕c]A by having PA compute M[b⊕c] = M[b]⊕M[c] and PB compute K[b⊕c] := (K[b]⊕K[c]).

It is possible to extend the above idea to XOR-shared values by having each party’s share
be authenticated. That is, say we have a value λ := r ⊕ s, where PA knows r and PB knows s.
Then by having PA hold (r,M[r],K[s]) and PB hold (s,K[r],M[s]), we end up with an authenticated
secret-sharing of λ. It can be observed that this scheme is also XOR-homomorphic.

As described in the Introduction, we use a preprocessing phase that realizes a stateful ideal
functionality FPre. This functionality, described in Figure 1, is used to set up correlated values
between the players along with their corresponding IT-MACs. The functionality chooses uniform
global keys (once-and-for-all) for each party, with the malicious party being allowed to choose its
global key. Then, when the parties request a random authenticated bit, the functionality generates

4



Functionality FPre

• Upon receiving ∆A from PA and init from PB, and assuming no values ∆A,∆B are currently stored, choose
uniform ∆B ∈ {0, 1}ρ and store ∆A,∆B. Send ∆B to PB.

• Upon receiving (random, r,M[r],K[s]) from PA and random from PB, sample uniform s ∈ {0, 1} and set
K[r] := M[r]⊕ r∆B and M[s] := K[s]⊕ s∆A. Send (s,M[s],K[r]) to PB.

• Upon receiving (AND, (r1,M[r1],K[s1]), (r2,M[r2],K[s2]), r3,M[r3],K[s3]) from PA, and (AND,
(s1,M[s1],K[r1]), (s2,M[s2],K[r2])) from PB, verify that M[ri] = K[ri]⊕ri∆B and that M[si] = K[si]⊕si∆A

for i ∈ {1, 2} and send cheat to PB if not. Otherwise, set s3 := r3 ⊕ ((r1 ⊕ s1) ∧ (r2 ⊕ s2)) and set
K[r3] := M[r3]⊕ r3∆B and M[s3] := K[s3]⊕ s3∆A. Send (s3,M[s3],K[r3]) to PB.

Figure 1: The preprocessing functionality, assuming PA is corrupted. (It is defined symmetrically
if PB is corrupted. If neither party is corrupted, the functionality is adapted in the obvious way.)

an authenticated secret sharing of the random bit r ⊕ s. (The malicious party may choose the
“random values” it receives, but note that this does not reveal anything about r ⊕ s or the other
party’s global key to the adversary.) Finally, the parties may also submit their authenticated shares
for two bits; the functionality then computes a (fresh) authenticated share of the AND of those
bits. We defer until Section 4.2 a discussion of how FPre can be instantiated.

3 Protocol Intuition

We give a high-level overview of the core of our protocol in the FPre-hybrid model. Our protocol
is based on a garbled circuit that the parties compute in a distributed fashion, where the garbled
circuit is “authenticated” in the sense that the circuit generator (PA in our case) cannot change the
logic of the circuit. We describe the intuition behind the garbled circuit we use in several steps.

We begin by reviewing standard garbled circuits. Each wire α of a circuit is associated with
a random “mask” λα ∈ {0, 1} known to PA. If the true value (i.e., the value when the circuit is
evaluated on the parties’ inputs) of that wire is x, then the masked value observed by the circuit
evaluator (namely, PB) on that wire will be x̄ = x ⊕ λα. Each wire α is also associated with two
labels Lα,0 and Lα,1 := Lα,0 ⊕∆ known to PA (here we are using the free-XOR technique[KS08]).
If the masked bit on that wire is x̄, then PB learns Lα,x̄.

Let H be a hash function modeled as a random oracle. The garbled table for, e.g., an and-gate
(α, β, γ,∧) is given by:

x̄ = x⊕ λα ȳ = y ⊕ λβ Truth Table Garbled Table

0 0 z̄00 = (λα ∧ λβ)⊕ λγ H(Lα,0, Lβ,0, γ, 00)⊕ (z̄00, Lγ,z̄00 )
0 1 z̄01 = (λα ∧ λ̄β)⊕ λγ H(Lα,0, Lβ,1, γ, 01)⊕ (z̄01, Lγ,z̄01 )
1 0 z̄10 = (λ̄α ∧ λβ)⊕ λγ H(Lα,1, Lβ,0, γ, 10)⊕ (z̄10, Lγ,z̄10 )
1 1 z̄11 = (λ̄α ∧ λ̄β)⊕ λγ H(Lα,1, Lβ,1, γ, 11)⊕ (z̄11, Lγ,z̄11 )

PB, holding (x̄, Lα,x̄) and (ȳ, Lβ,ȳ), evaluates this garbled gate by picking the (x̄, ȳ)-row and
decrypting using the garbled labels it holds, thus obtaining (z̄, Lγ,z̄).

The standard garbled circuit just described ensures security against a malicious PB, since (in an
intuitive sense) PB learns no information about the true values on any of the wires. Unfortunately,
it provides no security against a malicious PA who can potentially cheat by corrupting rows in the
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various garbled tables. One particular attack a malicious PA can carry out is a selective-failure
attack. Say, for example, that a malicious PA corrupts only the (0, 0)-row of the garbled table for
the gate above, and assume PB aborts if it detects an error during evaluation. If PB aborts, then
PA learns that the masked values on the input wires of the gate above were x̄ = ȳ = 0, from which
it learns that the true values on those wires were λα and λβ.

The selective-failure attack just mentioned can be prevented if the masks are hidden from PA.
(In that case even if PA learns the masked wire values as before, it learns nothing about the true
wire values.) Since knowledge of the garbled table would leak information about the masks to PA,
the garbled table must be hidden from PA as well. That is, we now want to set up a situation in
which PA and PB hold secret shares of the garbled table, as follows:

x̄ = x⊕ λα ȳ = y ⊕ λβ Truth Table PA’s share of Garbled Table PB’s share of Garbled Table

0 0 z̄00 = (λα ∧ λβ)⊕ λγ H(Lα,0, Lβ,0, γ, 00)⊕ (r00, R00 ⊕ Lγ,z̄00 ) (s00 = z̄00 ⊕ r00, R00)
0 1 z̄01 = (λα ∧ λ̄β)⊕ λγ H(Lα,0, Lβ,1, γ, 01)⊕ (r01, R01 ⊕ Lγ,z̄01 ) (s01 = z̄01 ⊕ r01, R01)
1 0 z̄10 = (λ̄α ∧ λβ)⊕ λγ H(Lα,1, Lβ,0, γ, 10)⊕ (r10, R10 ⊕ Lγ,z̄10 ) (s10 = z̄10 ⊕ r10, R10)
1 1 z̄11 = (λ̄α ∧ λ̄β)⊕ λγ H(Lα,1, Lβ,1, γ, 11)⊕ (r11, R11 ⊕ Lγ,z̄11 ) (s11 = z̄11 ⊕ r11, R11)

Once PA sends its shares of all the garbled gates, PB can evaluate the garbled circuit: Given (x̄, Lα,x̄)
and (ȳ, Lβ,ȳ), it picks the appropriate row, decrypts PA’s share of that row using the garbed labels
it holds, and then XORs the result with its own shares of that same row to obtain (z̄, Lγ,z̄).

Informally, the above modification ensures privacy against a malicious PA since (intuitively) the
result of any changes PA introduces will depend on the random masks but be independent of PB’s
inputs. However, PA can still affect correctness by, e.g., flipping the masked value in one of the
rows of a garbled gate. This can be addressed by adding an information-theoretic MAC on PA’s
share of the masked bit. That is, the shares of the garbled table now take the following form:

x̄ = x⊕ λα ȳ = y ⊕ λβ PA’s share of Garbled Table PB’s share of Garbled Table

0 0 H(Lα,0, Lβ,0, γ, 00)⊕ (r00,M[r00], R00 ⊕ Lγ,z̄00 ) (s00 = z̄00 ⊕ r00,K[r00], R00)
0 1 H(Lα,0, Lβ,1, γ, 01)⊕ (r01,M[r01], R01 ⊕ Lγ,z̄01 ) (s01 = z̄01 ⊕ r01,K[r01], R01)
1 0 H(Lα,1, Lβ,0, γ, 10)⊕ (r10,M[r10], R10 ⊕ Lγ,z̄10 ) (s10 = z̄10 ⊕ r10,K[r10], R10)
1 1 H(Lα,1, Lβ,1, γ, 11)⊕ (r11,M[r11], R11 ⊕ Lγ,z̄11 ) (s11 = z̄11 ⊕ r11,K[r11], R11)

Once PA sends its shares of the garbled circuit to PB, the garbled circuit can be evaluated as before.
Now, however, PB will verify the MAC on PA’s share of each masked bit that it learns. This limits
PA to only being able to cause PB to abort; as before, though, any such abort will occur independent
of PB’s actual input.

Efficient realization. Although the above idea is powerful, it still remains to design an efficient
protocol that allows the parties to distributively compute shares of a garbled table of the above
form even when one of the parties is malicious. One key observation is that PA’s shares of the
wire labels need not be authenticated; in the worst-case, incorrect values used by PA will cause an
input-independent abort. Note further that, for example,

Lγ,z̄00 = Lγ,0 ⊕ z̄00∆A

= Lγ,0 ⊕ (r00 ⊕ s00)∆A

= Lγ,0 ⊕ r00∆A ⊕ s00∆A

= (Lγ,0 ⊕ r00∆A ⊕ K[s00])⊕ (K[s00]⊕ s00∆A).
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Our next key observation is that if s00 is an authenticated bit known to PB, then PA can locally
compute Lγ,0 ⊕ r00∆A ⊕ K[s00]; then the other share K[s00] ⊕ s00∆A is just the MAC on s00 that
PB already knows! Thus, we can rewrite the garbled table as follows:

x⊕ λα y ⊕ λβ PA’s share of Garbled Table PB’s share of Garbled Table

0 0 H(Lα,0, Lβ,0, γ, 00)⊕ (r00,M[r00], Lγ,0 ⊕ r00∆A ⊕ K[s00]) (s00 = z̄00 ⊕ r00,K[r00],M[s00])
0 1 H(Lα,0, Lβ,1, γ, 01)⊕ (r01,M[r01], Lγ,0 ⊕ r01∆A ⊕ K[s01]) (s01 = z̄01 ⊕ r01,K[r01],M[s01])
1 0 H(Lα,1, Lβ,0, γ, 10)⊕ (r10,M[r10], Lγ,0 ⊕ r10∆A ⊕ K[s10]) (s10 = z̄10 ⊕ r10,K[r10],M[s10])
1 1 H(Lα,1, Lβ,1, γ, 11)⊕ (r11,M[r11], Lγ,0 ⊕ r11∆A ⊕ K[s11]) (s11 = z̄11 ⊕ r11,K[r11],M[s11])

(The {Rij} values are no longer needed since the {sij} are unknown to PA, and that is enough
to hide the masks from PA. ) Shares of the table then become easy to compute in a distributed
fashion.

Final optimization. One final optimization is based on the simple observation that the entries
in the truth table are linearly dependent. More precisely,

z̄00 = (λα ∧ λβ)⊕ λγ
z̄01 = (λα ∧ λ̄β)⊕ λγ = z̄00 ⊕ λα
z̄10 = (λ̄α ∧ λβ)⊕ λγ = z̄00 ⊕ λβ
z̄11 = (λ̄α ∧ λ̄β)⊕ λγ = z̄01 ⊕ λβ ⊕ 1

Therefore, in order to jointly compute the above table, the parties just need to get MACs on shares
of the masks λα, λβ, λγ , and then compute the MACs on shares of the bit λα ∧ λβ.

4 Framework for Our Protocols

4.1 Protocol in the FPre-Hybrid Model

In Figure 2, we give the complete description of our main protocol in the FPre-hybrid model. Note
that the calls to FPre can be performed in parallel, so the protocol runs in constant rounds. Since we
show below that FPre can be realized efficiently by constant-round protocols, this gives a protocol
(in the plain model) with overall constant round complexity.

Although our protocol calls FPre in the function-dependent preprocessing phase, it is easy to
push this to the function-independent phase using standard techniques. The protocol can be easily
extended to support reactive computation. We leave it as future work to figure out further details.

4.2 Instantiation of FPre

In the following, we discuss various ways FPre can be instantiated.

TinyOT-based instantiation. We can instantiate FPre using TinyOT. (We describe some im-
provements to the TinyOT protocol in Section 6.) In fact, rather than using TinyOT itself to realize
the FPre functionality, we can instantiate FPre directly based on the FDEAL functionality defined
in the TinyOT paper. One technical issue is that the FDEAL functionality defined there includes
a “global key query” for technical reasons. This can be added to our FPre functionality without
affecting the proof much. We will provide further details in the full version.

IPS-based instantiation. We can use the IPS protocol to realize the FPre functionality. In
the function-dependent preprocessing phase, we need to produce a sharing of λi for each wire i,
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Protocol Π2pc

Inputs: In the function-dependent phase, the parties agree on a circuit for a function f : {0, 1}|I1|×{0, 1}|I2| → {0, 1}|O|.
In the input-processing phase, PA holds x ∈ {0, 1}|I1| and PA holds y ∈ {0, 1}|I2|.
Function-independent preprocessing:

1. PA and PB send init to FPre, which sends ∆A to PA and ∆B to PB.

2. For each wire w ∈ I1 ∪ I2 ∪W, parties PA and PB send random to FPre. In return, FPre sends (rw,M[rw],K[sw])
to PA and (sw, ,M[sw],K[rw]) to PB, where λw = sw ⊕ rw. PA also picks a uniform κ-bit string Lw,0.

Function-dependent preprocessing:

3. For each gate G = (α, β, γ,⊕), PA computes (rγ ,M[rγ ],K[sγ ]) := (rα ⊕ rβ ,M[rα] ⊕ M[rβ ],K[sα] ⊕ K[sβ ]) and
Lγ,0 := Lα,0 ⊕ Lβ,0. PB computes (sγ ,M[sγ ],K[rγ ]) := (sα ⊕ sβ ,M[rβ ]⊕M[rβ ],K[rα]⊕ K[rβ ]).

4. Then, for each gate G = (α, β, γ,∧):

(a) PA (resp., PB) sends (and, (rα,M[rα],K[sα]), (rβ ,M[rβ ],K[sβ ])) (resp., (and, (sα,M[sα],K[rα]), (sβ , M[sβ ],
K[rβ ]))) to FPre. In return, FPre sends (rσ ,M[rσ ],K[sσ ]) to PA and (sσ ,M[sσ ],K[rσ ]) to PB, where sσ⊕rσ = λα∧λβ .

(b) PA computes the following locally:

(rγ,0,M[rγ,0],K[sγ,0]) := (rσ ⊕ rγ , M[rσ ]⊕M[rγ ], K[sσ ]⊕ K[sγ ] )
(rγ,1,M[rγ,1],K[sγ,1]) := (rσ ⊕ rγ ⊕ rα, M[rσ ]⊕M[rγ ]⊕M[rα], K[sσ ]⊕ K[sγ ]⊕ K[sα] )
(rγ,2,M[rγ,2],K[sγ,2]) := (rσ ⊕ rγ ⊕ rβ , M[rσ ]⊕M[rγ ]⊕M[rβ ], K[sσ ]⊕ K[sγ ]⊕ K[sβ ] )
(rγ,3,M[rγ,3],K[sγ,3]) := (rσ ⊕ rγ ⊕ rα ⊕ rβ , M[rσ ]⊕M[rγ ]⊕M[rα]⊕M[rβ ], K[sσ ]⊕ K[sγ ]⊕ K[sα]⊕ K[sβ ]⊕∆A )

(c) PB computes the following locally:

(sγ,0,M[sγ,0],K[rγ,0]) := (sσ ⊕ sγ , M[sσ ]⊕M[sγ ], K[rσ ]⊕ K[rγ ] )
(sγ,1,M[sγ,1],K[rγ,1]) := (sσ ⊕ sγ ⊕ sα, M[sσ ]⊕M[sγ ]⊕M[sα], K[rσ ]⊕ K[rγ ]⊕ K[rα] )
(sγ,2,M[sγ,2],K[rγ,2]) := (sσ ⊕ sγ ⊕ sβ , M[sσ ]⊕M[sγ ]⊕M[sβ ], K[rσ ]⊕ K[rγ ]⊕ K[rβ ] )
(sγ,3,M[sγ,3],K[rγ,3]) := (sσ ⊕ sγ ⊕ sα ⊕ sβ ⊕ 1, M[sσ ]⊕M[sγ ]⊕M[sα]⊕M[sβ ], K[rσ ]⊕ K[rγ ]⊕ K[rα]⊕ K[rβ ] )

(d) PA computes Lα,1 := Lα,0 ⊕∆A and Lβ,1 := Lβ,0 ⊕∆A, and then sends the following to PB:

Gγ,0 := H(Lα,0, Lβ,0, γ, 0)⊕ (rγ,0,M[rγ,0], Lγ,0 ⊕ K[sγ,0]⊕ rγ,0∆A)
Gγ,1 := H(Lα,0, Lβ,1, γ, 1)⊕ (rγ,1,M[rγ,1], Lγ,0 ⊕ K[sγ,1]⊕ rγ,1∆A)
Gγ,2 := H(Lα,1, Lβ,0, γ, 2)⊕ (rγ,2,M[rγ,2], Lγ,0 ⊕ K[sγ,2]⊕ rγ,2∆A)
Gγ,3 := H(Lα,1, Lβ,1, γ, 3)⊕ (rγ,3,M[rγ,3], Lγ,0 ⊕ K[sγ,3]⊕ rγ,3∆A)

Input processing:

5. For each w ∈ I1, PA sends (rw,M[rw]) to PB, who checks that (rw,M[rw],K[rw]) is valid. PB then sends yw⊕λw :=
sw ⊕ yw ⊕ rw to PA. Finally, PA sends Lw,yw⊕λw to PB.

6. For each w ∈ I2, PB sends (sw,M[sw]) to PA, who checks that (sw,M[sw],K[sw]) is valid. PA then sends xw⊕λw :=
sw ⊕ xw ⊕ rw and Lw,xw⊕λw to PB.

Circuit evaluation:

7. PB evaluates the circuit in topological order. For each gate G = (α, β, γ, T ), PB initially holds (zα ⊕ λα, Lα,zα⊕λα )
and (zβ ⊕ λβ , Lβ,zβ⊕λβ ), where zα, zβ are the underlying values of the wires.

(a) If T = ⊕, PB computes zγ ⊕ λγ := (zα ⊕ λα)⊕ (zβ ⊕ λβ) and Lγ,zγ⊕λγ := Lα,zα⊕λα ⊕ Lβ,zβ⊕λβ .

(b) If T = ∧, PB computes i := 2(zα ⊕ λα) + (zβ ⊕ λβ) followed by (rγ,i,M[rγ,i], Lγ,0 ⊕ K[sγ,i] ⊕ rγ,i∆A) :=
Gγ,i ⊕H(Lα,zα⊕λα , Lβ,zβ⊕λβ , γ, i). Then PB checks that (rγ,i,M[rγ,i],K[rγ,i]) is valid and, if so, computes

zγ ⊕ λγ := (sγ,i ⊕ rγ,i) and Lγ,zγ⊕λγ := (Lγ,0 ⊕ K[sγ,i]⊕ rγ,i∆A)⊕M[sγ,i].

Output determination:

8. For each w ∈ O, PA sends (rw,M[rw]) to PB, who checks that (rw,M[rw],K[rw]) is valid. If so, PB computes
zw := (λw ⊕ zw)⊕ rw ⊕ sw.

Figure 2: Our main protocol in the FPre-hybrid model.

and a sharing of λσ = (λα ∧ λβ) ⊕ λγ for each and-gate (α, β, γ,∧). These can be realized by
a constant-depth circuit with O((κ + ρ) · |C|) gates. To evaluate a circuit of depth d and size
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`, the IPS protocol has communication complexity O(`) + poly(κ, d, log `) and O(d) rounds of
communication. When applied to our setting, this translates to a communication complexity of
O((κ+ρ) · |C|)+poly(κ, log |C|); for sufficiently large circuit size, the leading term is O((κ+ρ) · |C|).
By using the IPS protocol we thus gain asymptotic improvements in communication complexity in
the OT-hybrid model.

Using a trusted server. It is straightforward to instantiate FPre using a trusted server. By
applying the technique of Mohassel et al. [MOR16], the offline phase can also be decoupled from
the identity of other party; we refer to their paper for further details.

5 Proof

5.1 Proof Intuition

The intuition of the protocol in Section 3 also provides some intuition of the security of the protocol.
Here we provide more intuition on some key issues.

Selective-failure type attack. In most garbled circuit protocols, selective failure attacks can be
launched on the input (by corrupting some garbled keys sent to oblivious transfer), as well as some
internal wires (by corrupting some garbled rows in the garbled table). Input selective failure attack
is usually prevented using an XOR-tree, while internal wire selective failure is prevented by various
of ways, for example cut-and-choose and input recovery.

We argue that such selective failure attacks launched by PA does not help PA learn any infor-
mation in our protocol. The key observation is that all wires, including input wires and internal
wires are masked with some random masks (λ values) not known to PA. Therefore the best that
PA could learn is masked wire values, which appears random to PA.

Correctness of the garbled circuit. Note that the garbled circuit in our protocol is not guar-
anteed to be computed correctly (This does not lead to an attack as explained above). However PB

is still able to evaluate the circuit if PB does not abort. The key reason is that all permutation bits
in the truth table are masked. Therefore, PA cannot change the logic of the garbled table without
breaking an IT-MAC.

5.2 The Main Proof

Theorem 5.1. The protocol in Figure 2 securely instantiate F2pc in the FPre-hybrid model with
security negl(κ)

Proof. We consider separately the case where PA or PB is malicious.

Malicious PA. Let A be an adversary corrupting PA. We construct a simulator S that runs
A as a subroutine and plays the role of PA in the ideal world involving an ideal functionality F
evaluating f . S is defined as follows.

1-4 S interacts with A acting as an honest PB.

5 S interacts with A acting as an honest PB using input y = 0.

6 S interacts with A acting as an honest PB. For each wire w ∈ I1 S receives xw ⊕ λw and
computes xw = (xw ⊕ λw)⊕ rw ⊕ sw. S sends x to F2pc.

9



7-8 S interacts with A acting as an honest PB. If an honest PB would abort, S outputs whatever
A outputs and aborts; otherwise S sends continue to F2pc.

We now show that the joint distribution over the outputs of A and the honest PB in the real world
is indistinguishable from the joint distribution over the outputs of S and PB in the ideal world.

Hybrid1. Same as the hybrid-world protocol, where S plays the role of an honest PB using the
actual input y.

Hybrid2. Same as Hybrid1, except that in step 6, for each wire w ∈ I1 S receives xw ⊕ λw and
computes xw = (xw ⊕ λw) ⊕ rw ⊕ sw. S sends x to F2pc. If an honest PB would abort, S
outputs whatever A outputs and aborts; otherwise S sends continue to F2pc.

The view of the two Hybrids are exactly the same. According to Lemma 5.1, PB will learn
the same output in both Hybrids with all but negligible probability.

Hybrid3. Same as Hybrid2, except that S computes {sw}w∈I2 as follows: S first randomly pick
{uw}w∈I2 , and then computes sw := uw ⊕ yw.

The two Hybrids have exactly the same view.

Hybrid4. Same as Hybrid3, except that S uses y = 0 as inputs throughout the protocol.

Note that although the distribution of y in Hybrid3 and Hybrid4 are different, the distri-
bution of sw⊕yw are exactly the same. The view of the two Hybrids are therefore the same,
we will show that PB aborts with the same probability in two Hybrids.

Observe that the only place where PB’s abort can possibly depends on y is in step 7(b).
However, this abort depends on which row is selected to decrypt, that is the value of λα⊕ zα
and λβ ⊕ zβ, which are chosen independently random in both Hybrids.

As Hybrid4 is the ideal-world execution, this completes the proof for a malicious PA.

Malicious PB. Let A be an adversary corrupting PB. We construct a simulator S that runs
A as a subroutine and plays the role of PB in the ideal world involving an ideal functionality F
evaluating f . S is defined as follows.

1-4 S interacts with A acting as an honest PA and plays the functionality of FPre. If an honest
PA would abort, S output whatever A outputs and aborts.

5 S interacts with A acting as an honest PA, receives yw ⊕ λw from A, and computes yw :=
(yw ⊕ λw)⊕ sw ⊕ rw, where sw, rw are values S used when playing the role of FPre. S sends
y to F2pc, which sends z = f(x, y) to S.

6 S interacts with A acting as an honest PA using input x = 0. If an honest PA would abort,
S output whatever A outputs and aborts.

8 S computes z′ = f(0, y). For each w ∈ O, if z′w = zw, S sends (rw,M[rw]); otherwise, S sends
(rw ⊕ 1,M[rw]⊕∆B).

We now show that the joint distribution over the outputs of A and the honest PA in the real world
is indistinguishable from the joint distribution over the outputs of S and PA in the ideal world.
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Hybrid1. Same as the hybrid-world protocol, where S plays the role of an honest PA using the
actual input x.

Hybrid2. Same as Hybrid1, except that, in step 5, S receives yw ⊕ λw from A, and computes
yw := (yw ⊕ λw)⊕ sw ⊕ rw, where sw, rw are values S used when playing the role of FPre. S
then sends y to F2pc, and receives z = f(x, y).

PA does not have output; further the view of A does not change between two Hybrids.

Hybrid3. Same as Hybrid2, except that in step 6, S uses x = 0 as input and in step 8, S
computes z′ = f(0, y). For each w ∈ O, if z′w = zw, S sends (rw,M[rw]); otherwise, S sends
(rw ⊕ 1,M[rw]⊕∆B).

A has no knowledge of rw, therefore rw and rw ⊕ 1 are indistinguishable.

Note that since S uses different values for x between two Hybrids, we also need to show
that the garbled rows PB opened are indistinguishable between two Hybrids. According to
Lemma 5.2, PB is able to open only one garble rows in each garbled table Gγ,i. Therefore,
given that {λw}w∈I1∪W values are not known to PB, masked values and garbled keys are
indistinguishable between two Hybrids.

As Hybrid3 is the ideal-world execution, the proof is complete.

Lemma 5.1. Consider an A corrupting PA and denote xw := (xw⊕λw)⊕ sw⊕ rw, where xw⊕λw
is the value A sent to PB, sw, rw are the values from FPre. With probability all but negligible, PB

either aborts or learns z = f(x, y).

Proof. Define z∗w as the correct wire values computed using x defined above and y, zw as the actually
wire values PB holds in the evaluation.

We will first show that PB learns {zw ⊕ λw = z∗w ⊕ λw}w∈O by induction on topology of the
circuit.

Base step: It is obvious that {z∗w ⊕ λw = zw ⊕ λw}w∈I1∪I2 , unless A is able to forge an IT-MAC.

Induction step: Now we show that for a gate (α, β, γ, T ), if PB has {z∗w ⊕ λw = zw ⊕ λw}w∈{α,β},
then PB also obtains z∗γ ⊕ λγ = zγ ⊕ λγ .

• T = ⊕: It is true according to the following: z∗γ ⊕ λγ = (z∗α ⊕ λα)⊕ (z∗β ⊕ λβ) = (zα ⊕ λα)⊕
(zβ ⊕ λβ)zγ ⊕ λγ

• T = ∧: According to the protocol, PB will open the garbled row defined by i := 2(zα⊕ λα) +
(zβ ⊕ λβ). If PB learns zγ ⊕ λγ 6= z∗γ ⊕ λγ , then it means that PB learns r∗γ,i 6= rγ,i. However,
this would mean that A forge a valid IT-MAC, happening with negligible probability.

Now we know that PB learns correct masked output. PB can therefore learn correct output
f(x, y) unless A is able to flip {rw}w∈O, which, again, happens with negligible probability.

Lemma 5.2. Consider an A corrupting PB, with negligible, probability, PB learns both garbled keys
for some wire.
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Functionality FLaAND

Honest parties: The box picks random [x1]A, [y1]A, [z1]A, and [x2]B, [y2]B, [z2]B, such that (x1⊕x2)∧ (y1⊕y2) =
z1 ⊕ z2.

Corrupted parties:

1. A corrupted PA gets to choose all its randomness. Further, it can send g to the box trying to guess x2. If
g 6= x2 the box output fail and terminate, otherwise the box process as normal.

2. A corrupted PB gets to choose all its randomness. Further, it can send g to the box trying to guess x1. If
g 6= x1 the box output fail and terminate, otherwise the box process as normal.

Global Key Queries: The adversary at any point can send some (p,∆′) and will be told if ∆′ = ∆p.

Figure 3: Functionality FLaAND for leaky AND triple generation.

Functionality FaAND

Honest parties: The box picks random [x1]A, [y1]A, [z1]A, and [x2]B, [y2]B, [z2]B, such that (x1⊕x2)∧ (y1⊕y2) =
z1 ⊕ z2.

Corrupted parties: A corrupted PA gets to choose all its randomness.

Global Key Queries: The adversary at any point can send some (p,∆′) and will be told if ∆′ = ∆p.

Figure 4: Functionality FaAND for generating AND triples

Proof. The proof is very similar to the proof of security for garbled circuits in the semi-honest
setting.

Base step: PB can only learn one garbled keys for each input wire, since PA only sends one garbled
wire, and PB cannot learn ∆A in the protocol.

Induction step: It is obvious that PB cannot learn the other label for an XOR gate and we will
focus on AND gates.

Note that PB only learns one garbled keys for input wire α and β. However, each row is
encrypted using different combinations of {Lα,b}b∈{0,1} and {Lβ,b}b∈{0,1} . In order for PB to open
two rows in the garbled table, PB needs to learn both garbled keys for some input wire, which
contradict with assumptions in the induction step.

6 Improved TinyOT protocol

In this section, we describe an improvement to the TinyOT protocol. For a bucket size of B =
ρ

log |C| + 1, the original protocol requires 14B + 2 authenticated bits for each AND gate. In the
following, we will introduce an improved version where only 6B authenticated bits are needed for
each AND gate. For a circuit of size 220, with ρ = 40, this is an improvement of 2.4×.

Assuming that two parties hold [x1]A, [y1]A, [x2]B, [y2]B. In the original TinyOT protocol, to
compute (x1 ⊕ x2)(y1 ⊕ y2), PA and PB compute [x1y1]A, [x2y2]B, [x1y2 + r]A and [x2y1 + r]B
separately , with some random r ∈ {0, 1}, using various authenticated constructions proposed in
their paper. Computing each entry separately incurs a lot of unnecessary cost. We observe that
it is possible to compute a whole AND gate directly. Similar to the original TinyOT protocol, we
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Protocol ΠLaAND

1. PA and PB obtain random authenticated bits [x1]A, [y1]A, [z1]A, [x2]B, [y2]B, [r]B.

2. PA parses K[x2] := [x2]B,K[y2] := [y2]B and sends the following four bits to PB.

G0,0 := Lsb(H(K[x2], K[y2] ))⊕ (0⊕ x1) ∧ (0⊕ y1)⊕ z1

G1,0 := Lsb(H(K[x2]⊕∆A, K[y2] ))⊕ (1⊕ x1) ∧ (0⊕ y1)⊕ z1

G0,1 := Lsb(H(K[x2], K[y2]⊕∆A ))⊕ (0⊕ x1) ∧ (1⊕ y1)⊕ z1

G1,1 := Lsb(H(K[x2]⊕∆A, K[y2]⊕∆A ))⊕ (1⊕ x1) ∧ (1⊕ y1)⊕ z1

3. PB parses (x2,M[x2]) := [x2]B, (y2,M[y2]) := [y2]B and computes z2 := Lsb(H(M[x2],M[y2]))⊕Gx2,y2 . PB

announces d := r ⊕ z2 to PA. Two parties compute [z2]B = [r]B ⊕ d.

4. PB checks the correctness as follows:

(a) PB computes:

T0 := H(K[x1],K[z1]⊕ z2∆B)
U0 := T0 ⊕H(K[x1]⊕∆B,K[y1]⊕ K[z1]⊕ (y2 ⊕ z2)∆B)
T1 := H(K[x1],K[y1]⊕ K[z1]⊕ (y2 ⊕ z2)∆B)
U1 := T1 ⊕H(K[x1]⊕∆B,K[z1]⊕ z2∆B)

(b) PB sends Ux2 to PA.

(c) PA randomly picks a κ-bit string R and computes

V0 := H(M[x1],M[z1]) V1 := H(M[x1],M[z1]⊕M[y1])
W0,0 := H(K[x2])⊕ V0 ⊕R W0,1 := H(K[x2]⊕∆A)⊕ V1 ⊕R
W1,0 := H(K[x2])⊕ V1 ⊕ U ⊕R W1,1 := H(K[x2]⊕∆A)⊕ V0 ⊕ U ⊕R

(d) PA sends Wx1,0,Wx1,1 to PB and sends R to FEQ.

(e) PB computes R′ := Wx1,x2 ⊕H(M[x2])⊕ Tx2 and sends R′ to FEQ.

5. PA checks the correctness as follows:

(a) PA computes:

T0 := H(K[x2],K[z2]⊕ z1∆A)
U0 := T0 ⊕H(K[x2]⊕∆A,K[y2]⊕ K[z2]⊕ (y1 ⊕ z1)∆A)
T1 := H(K[x2],K[y2]⊕ K[z2]⊕ (y1 ⊕ z1)∆A)
U1 := T1 ⊕H(K[x2]⊕∆A,K[z2]⊕ z1∆A)

(b) PA sends Ux1 to PB.

(c) PB randomly picks a κ-bit string R and computes

V0 := H(M[x2],M[z2]) V1 := H(M[x2],M[z2]⊕M[y2])
W0,0 := H(K[x1])⊕ V0 ⊕R W0,1 := H(K[x1]⊕∆B)⊕ V1 ⊕R
W1,0 := H(K[x1])⊕ V1 ⊕ U ⊕R W1,1 := H(K[x1]⊕∆B)⊕ V0 ⊕ U ⊕R

(d) PB sends Wx2,0,Wx2,1 to PA and sends R to FEQ,

(e) PA computes R′ := Wx2,x1 ⊕H(M[x1])⊕ Tx1 and sends R′ to FEQ.

Figure 5:

propose a “leaky AND” protocol (ΠLaAND), where adversary is allowed to perform selective failure
attack on one input, and later use bucketing and combining to eliminate such leakage (ΠaAND).
In the following, we will first discuss intuition of the protocol. The full protocol description is in
Figure 5 and Figure 6.

Compute the triple in the honest case. The first step of the protocol is to generate the triple
securely assuming that both parties are honest. Since x1, y1, z1, x2, y2 are all random, we just need
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Protocol ΠaAND

1. PA and PB call FLaAND `′ = `B times and obtains {[xi1]A, [y
i
1]A, [z

i
1]A, [x

i
2]B, [y

i
2]B, [z

i
2]B}`

′
i=1.

2. PA and PB randomly partition all objects into ` buckets, each with B objects.

3. For each bucket, two parties combine B Leaky ANDs into one non-leaky AND. To combine two leaky
ANDs, namely ([x′1]A, [y

′
1]A, [z

′
1]A, [x

′
2]B, [y

′
2]B, [z

′
2]B) and [x′′1 ]A, [y

′′
1 ]A, [z

′′
1 ]A, [x

′′
2 ]B, [y

′′
2 ]B, [z

′′
2 ]B

(a) Two parties reveal d′ := y′1 ⊕ y′′1 , d′′ = y′2 ⊕ y′′2 with their MAC checked, and compute d := d′ ⊕ d′′.
(b) Set [x1]A := [x′1]A⊕ [x′′1 ]A, [x2]B := [x′2]B⊕ [x′′2 ]B, [y1]A := [y′1]A, [y2]A := [y′2]A, [z1]A := [z′1]A⊕ [z′′1 ]A⊕

d[x′′1 ]A, [z2]B := [z′2]B ⊕ [z′′2 ]B ⊕ d[x′′2 ]B.

Two parties iterate all B leaky objects, by taking the resulted object and combine with the next element.

Figure 6: Protocol ΠaAND instantiating FaAND.

PB to learn z2 = (x1 ⊕ x2) ∧ (y1 ⊕ y2) ⊕ z1. Our idea is to generate a garbled table for AND.
We observe that if we treat K[x2],K[y2] as zero garbled label, then M[x2],M[y2] are garbled labels
representing the underlying values, that is we do not need oblivious transfer to let PB obtain the
label. Further, authenticity is not needed in our case, which means we do not need PB to learn the
whole label, as long as PB learns the output. Inspired by these, our construction only requires 4
bits in order for PB to learn z2 (step 1 to 3 in Figure 5).

Verifying the correctness. The above steps are not enough for malicious security: a malicious
PA can cheat by sending incorrect garbled tables and a malicious PB can annouce a incorrect d
in step 3. Therefore, both parties needs to check the correctness of the output. In the protocol,
we designed a verification protocol that check the correctness while allowing a malicious party to
perform a selective failure attack on x values.

The initial idea was to adopt the check from TinyOT to our case. If x2⊕ x1 = 0, then we want
to check that z2 = z1; if x2⊕x1 = 1, then to check y1⊕ z1 = y2⊕ z2. However, an obvious problem
is that no party knows the value of x1⊕x2. To solve this problem, when PB checks the correctness,
we let PB construct the checking depending on the value of x2. PA will perform the checking twice,
as if x2 is 0 and 1.

For example, using notations in the protocol, when x1 = 0, PA computes V0, V1. PA and PB

should have performed an equality check between Vx2 and Tx2 . All different cases (depending on
the value of x1 and x2) are summarized in the following table.

x1 = 0 x1 = 1

x2 = 0 V0 = T0 V0 ⊕ U0 = T0

x2 = 1 V1 = T1 V1 ⊕ U1 = T1

However, PA should not learn x2, while PB should not learn V1⊕x2 . One idea is to let PA

“encrypt” the response (V0, V1) such that PB can only learn the response for the value of x2 (Vx2),
then PB can compare locally. (This is possible because PB’s bit x2 is authenticated by PA). However,
the problem is that PA is not able to learn the outcome of the comparison. To solve this, we let PA

send encrypted V0 ⊕ R and V1 ⊕ R for some random R such that PB learns Vx2 ⊕ R, and learn R
from it. Now PA and PB can check the equality on R using the FEQ functionality in the TinyOT
paper that allows both parties get the outcome. Note that this allows PA to perform an additional
selective failure attack on x2, by sending some corrupted encrypted values. This does not introduce
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additional leakage, since x2 is allowed to be learnt by A anyway. Now A is allowed to guess x2

twice, once in step 4 and once in step 5. If the guesses are inconsistent, it is guaranteed to abort.

Combining leaky ANDs. The above check is vulnerable to selective failure attack, from which a
malicious party can learn the value of x1/x2 with a risk of caught with one-half probability. In order
to get rid of the leakage, bucketing is performed similar to TinyOT. Here, the key is to devise a
way to combine leaky objects. Assuming that two triple are ([x′1]A, [y

′
1]A, [z

′
1]A, [x

′
2]B, [y

′
2]B, [z

′
2]B) and

[x′′1]A, [y
′′
1 ]A, [z

′′
1 ]A, [x

′′
2]B, [y

′′
2 ]B, [z

′′
2 ]B. Note that for each triple, only x1, x2 can be leaked. Therefore,

one natural way is to set [x1]A := [x′1]A ⊕ [x′′1]A, [x2]B := [x′2]B ⊕ [x′′2]B. By doing this, [x1]A, [x2]B
are non-leaky as long as one triple is non-leaky. We can also set [y1]A := [y′1]A, [y2]B := [y′2]B and
reveal the bit d := y′1 ⊕ y′2 ⊕ y′′1 ⊕ y′′2 , since y’s bits are all private. Now observe that

(x1 ⊕ x2)(y1 ⊕ y2) = (x′1 ⊕ x′2 ⊕ x′′1 ⊕ x′′2)(y′1 ⊕ y′2)

= (x′1 ⊕ x′2)(y′1 ⊕ y′2)⊕ (x′′1 ⊕ x′′2)(y′1 ⊕ y′2)

= (x′1 ⊕ x′2)(y′1 ⊕ y′2)⊕ (x′′1 ⊕ x′′2)(y′′1 ⊕ y′′2)⊕ (x′′1 ⊕ x′′2)(y′1 ⊕ y′2 ⊕ y′′1 ⊕ y′′2)

= (z′1 ⊕ z′2)⊕ (z′′1 ⊕ z′′2 )⊕ d(x′′1 ⊕ x′′2)

= (z′1 ⊕ z′′1 ⊕ dx′′1)⊕ (z′2 ⊕ z′′2 ⊕ dx′′2)

Therefore, we could just set [z1]A := [z′1]A ⊕ [z′′1 ]A ⊕ d[x′′1]A, [z2]A := [z′2]A ⊕ [z′′2 ]A ⊕ d[x′′2]A. The
security of this bucketing and merging can be proved as in [NNOB12, Appendix I].

6.1 Proof Sketch

In the following, we will discuss from a high-level view how the proof works for the new TinyOT
protocol. We will focus on the security of ΠLaAND protocol, since the security of ΠaAND is fairly
straightforward given the proof in the original paper [NNOB12].

Lemma 6.1. The protocol in Figure 5 securely implements the functionality in Figure 3 against
corrupted PA in the (Fabit,FEQ)-Hybrid model.

Proof. We will construct a simulator as follows:

1 S interacts with A and receive (x1,M[x1]), (y1,M[y1]), (z1,M[z1]),K[x2],K[y2],K[r],∆A that A
sent to Fabit. S picks a random bit s, sets K[z2] := K[r]⊕s∆A, and sends (x1,M[x1]), (y1,M[y1]),
(z1,M[z1]),K[x2],K[y2],K[z2],∆A) to FLaAND, which sends (x2,M[x2]), (y2,M[y2])(z2,M[z2]),K[x1],
K[y1],K[z1],∆B) to PB.

2-3 S randomly picks one row of Gi,j and check its correctness. If it is not computed correctly, S
aborts; otherwise, S annouce s⊕ z2.

4 S sends a random U∗ to A, and receives some W0,W1 and computes some R0, R1, such
that, if x1 = 0, W0 := H(K[x2]) ⊕ V0 ⊕ R1,W1 := H(K[x2] ⊕ ∆A) ⊕ V1 ⊕ R2; otherwise,
W0 := H(K[x2])⊕ V1 ⊕ U∗ ⊕R1 and W1 := H(K[x2]⊕∆A)⊕ V0 ⊕ U∗ ⊕R2.

S also obtains R that A sent to FEQ. If R does not equal to either R0 or R1, S aborts;
otherwise S computes g1 such that R 6= Rg1 for some g1 ∈ {0, 1}.

5 S receives U , picks random W ∗0 ,W
∗
1 and sends them to A. S obtains R′ that A sent to FEQ.

• If both U,R′ are honestly computed, S proceeds as normal.
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• If U is not honestly computed and that R′ = W ∗x1
⊕H(M[x1])⊕Tx1 is honestly computed,

S set g2 = 0

• If either of the following is true: 1) x1 = 0 and R′ = W ∗x1
⊕H(M[x1])⊕ U ⊕H(K[x1]⊕

∆B,K[y1]⊕(y2⊕z2)∆B); 2) x1 = 1 and R′ = W ∗x1
⊕H(M[x1])⊕U⊕H(K[x1]⊕∆B,K[z1]⊕

z2∆B), S sets g2 = 1.

• Otherwise S aborts.

6 If g1 6= g2, S aborts; otherwise, S sends g1 to FLaAND. If FLaAND abort, S aborts.

Note that the first 3 steps are perfect simulation. In step 4, U∗ is sent in the simulation, while Ux2

is sent. This is a perfect simulation unless both of the input to Random Oracle in Ux2 get queried.
This does not happen during the protocol, since ∆B in not known to A. In step 5, W ∗0 ,W

∗
1 are sent

in the simulation, while Wx2,0,Wx2,0 are sent in the real protocol. This is also a perfect simulation
unless PA gets ∆B: both R and one of H(K[x1]) and H(K[x1]⊕∆B) are random.

Another difference is that PB always aborts in the simulation if Gx2,y2 is not honestly computed.
This is also the case in the real protocol unless A learns ∆B.

Lemma 6.2. The protocol in Figure 5 securely implements the functionality in Figure 3 against
corrupted PB in the (Fabit,FEQ)-Hybrid model.

Proof. We will construct a simulator as follows:

1. S interacts with A and receive (x2,M[x2]), (y2,M[y2]), (r,M[r]),K[x1],K[y1],K[z1],∆B that
A sent to Fabit. S picks a random bit s, sets (z2,M[z2]) := (r ⊕ s,M[z2] ⊕ s∆B), and sends
(x2,M[x2]), (y2,M[y2]), (z2,M[z2]),K[x1],K[y1],K[z1]) to FLaAND, which sends (x1,M[x1]), (y1,M[y1]),
(z1,M[z1]),K[x2], K[y2],K[z2]) to PB.

2-3 S sends A four random bits.

4-5 The simulation are the symmetric to the simulation for malicious PA.

The first three steps are perfect simulation; the proof for step 4 and 5 are the same as the proof
for malicious PA (with order of steps switched).

7 Extensions and Optimizations

Reducing the size of the garbled table. In the original protocol, all MAC keys are κ-bit values,
which may not be necessary. For ρ-bit statistical security, M[r00] encrypted in step 4(d) only needs
to be of size ρ bit. This reduces the size of a garbled table from 8κ bits to 4(κ+ ρ) bits.

Partial garbled row reduction (PGGR). After applying the above optimization, the size of a
garbled table is 4(κ+ ρ+ 1). However, we observe that randomness in Lγ,0 are not utilized, which
means we can potentially perform Garbled Row Reduction but only on part of the first row. In
particular, instead of picking Lγ,0 randomly, it will be set as Lγ,0 = H(Lα,0, Lβ,0, γ, 0)[0 : κ], where
[0 : κ] means obtaining the lower κ bits.

Note that this optimization does not increase the round trip of the protocol, because there is
no interaction needed at the time to send the garbled tables.
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Bucket size 3 4 5

ρ = 40 280K 3.1K 320
ρ = 64 1.2G 780K 21K
ρ = 80 300G 32M 330K

Table 2: Least number of AND gates needed in the bucketing, for different bucket size and statistical
security parameter.

Pushing computation to earlier phases. In our protocol, it requires online communication
complexity |I|(κ + ρ) + |O|ρ. It is easy to eliminate the term |O|ρ, by sending encryption of
{(rw,M[rw])}w∈O and commitment of the key used in the encryption. There is no increase in
communication, round trip or total computation. Further, IT-MACs in step 5 and step 6 can also
be sent in the function independent phase. Further, IT-MAC associated with input masks can also
be sent in the function dependent phase. The resulting online phase has communication |I|κ.

Extending to a two-output protocol. Our protocol can be extended to a two-output version
such that generator also gets an output. Denoting O1 as the set of output wire-indices for PA, then
after step 7, PB learns {Lw,z⊕λw}w∈O1 . Instead of following step 8, PB sends {sw,M[sw], Lw,z⊕λw}w∈O1

to PA, who check the validity of sw, computes λw, and computes z using Lw,z⊕λw and λw. PB is
not able to obtain PA’s input, since the values are masked by some value unknown to PB; PB also
cannot flip the output, which requires either knowing ∆1 or forging an IT-MAC.

More TinyOT optimizations. In the following we will briefly discuss more optimizations when
FPre is instantiated using our TinyOT protocol.

1. For clarity, R was chosen randomly in ΠLaAND. It is possible to perform garbled row reduction,
such that W0,0,W1,0 are zero. This saves two ciphertext per leaky AND.

2. For the value of R’s and U ’s, only ρ bits of the values are needed to be sent.

8 Evaluation

We are planning to implement our protocol. In the following, we will discuss the communication
complexity of our scheme compared to other schemes as well as the cost at each stage. Throughout
this section, all numbers will be given with κ = 128, ρ = 40.

We count the communication of TinyOT based on optimization mentioned in previous sections.
After applying the optimization from Nielsen et al. [NST17] for the authenticated bit, the commu-
nication for each authenticated bit is 21 bytes and the communication for authenticated AND is
about 94B bytes from each party, where B is the bucket size.

In Table 2 we calculated the smallest number of gates needed in the TinyOT protocol in order
to make the bucketing works. The calculation is based on the formula in Appendix B of their
paper, which is tighter. In Table 3 we compare the communication complexity of our protocol with
other related works. Similar to previous papers, only one way communication is counted. As we
can see, our total communication is 3× to 6× less than Nielsen et al.’s protocol. Further, our cost
with single execution is also twice less than the cost of Nielsen et al.’s with 1024 circuits. Note that
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Protocol #execution Ind. Process Dep. Process Online

[RR16]
32 - 3.75 MB 25.76 kB
128 - 2.5 MB 21.31 kB
1024 - 1.56 MB 16.95 kB

[NST17]

1 14.94 MB 226.86 kB 16.13 kB
32 8.74 MB 226.86 kB 16.13 kB
128 7.22 MB 226.86 kB 16.13 kB
1024 6.42 MB 226.86 kB 16.13 kB

This paper

1 2.56 MB 464.3 kB 4.1 kB
32 2.56 MB 464.3 kB 4.1 kB
128 1.92 MB 464.3 kB 4.1 kB
1024 1.92 MB 464.3 kB 4.1 kB

Table 3: Comparison of communication with previous protocols for an AES circuit. Data are
counted as the amount sent to evaluator. Total communication will be roughly doubled for [RR16]
and this paper.

for protocols based on cut-and-choose, the total communication to send 40 AES garbled circuit
is 8.7 MB, which is already higher than the total communication of ours in the single execution
setting.

We also observe that our function dependent processing is higher than Nielsen et al. this is due
to that we need to send 3κ + 4ρ bits per gate while they only need to send 2κ bits. On the other
hand, our online communication is extremely small: it is about 4× smaller than in the protocol of
Nielsen et al. and 4–6× smaller than in the protocol of Rindal and Rosulek.
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