
Authenticated Garbling and Efficient Maliciously Secure
Two-Party Computation

Xiao Wang
University of Maryland

wangxiao@cs.umd.edu

Samuel Ranellucci
University of Maryland

George Mason University

samuel@umd.edu

Jonathan Katz
University of Maryland

jkatz@cs.umd.edu

Abstract

We propose a simple and efficient framework for obtaining efficient constant-round protocols for
maliciously secure two-party computation. Our framework uses a function-independent preprocess-
ing phase to generate authentication information for the two parties; this information is then used
to construct a single “authenticated” garbled circuit which is then transmitted and evaluated.

We also show how to efficiently instantiate the preprocessing phase using our own optimized
version of the TinyOT protocol. Our overall protocol outperforms existing work in both the single-
execution and amortized settings, with or without preprocessing:

• In the single-execution setting, our protocol evaluates an AES circuit with malicious security
in 37 ms total with an online time of just 1 ms. Previous work with the best online time (also
1 ms) requires 124 ms in total; previous work with the best total time requires 62 ms (with
14 ms online time).

• In the amortized setting where the time is amortized over 1024 executions, each AES com-
putation runs in just 6.7 ms overall, with roughly the same online time as above. The best
previous work in this setting requires roughly the same total time but does not support
preprocessing independent of the function to be evaluated.

Our work shows that the performance penalty for maliciously secure two-party computation
(vs. semi-honest security) is much smaller than previously believed.

As a by-product of our framework, we also obtain the first constant-round maliciously-secure
two-party computation withO(|C|κ) bits of communication, by instantiating the preprocessing using
the IPS compiler under the Φ-hiding assumption. This protocol achieves a constant communication
overhead compared to Yao’s semi-honest protocol.

1 Introduction

Protocols for secure two-party computation (2PC) allow two parties to compute an agreed-upon
function of their inputs without revealing anything additional to each other. Although originally
viewed as impractical, protocols for generic 2PC in the semi-honest setting have been attracting the
interest of the security community since the Fairplay implementation [MNPS04] of Yao’s garbled-
circuit protocol [Yao86], leading to several subsequent improvements [HEKM11, ZRE15, KS08,

1

KMR14, ALSZ13, BHKR13, PSSW09]. The field has advanced to the point where semi-honest
secure computations that were considered out of reach 10 years ago can now be done easily. For
example, Fairplay was able to evaluate 30 gates per second; we can evaluate 6 million gates per
second using off-the-shelf hardware.

While these results are impressive, semi-honest security—which assumes that both parties follow
the protocol yet may try to learn additional information from the execution—is clearly not sufficient
for all applications, and this has motivated researchers to explore the stronger notion of malicious
security. There have been incredible advances in the efficiency of protocols for maliciously secure
two-party computation over the last decade. One popular approach for designing such protocols is to
apply the “cut-and-choose” technique [LP07, SS11, LP11, HKE13, Lin13, Bra13, FJN14, AMPR14]
to Yao’s garbled-circuit protocol [Yao86] for (semi-honest) secure two-party computation. For sta-
tistical security 2−ρ, the best protocols using this paradigm require ρ garbled circuits (which is
optimal for that approach). Recently, Wang et al. [WMK17] showed a protocol based on this
technique that can securely evaluate an AES circuit (in the single-execution setting with no pre-
processing) in only 65 ms with moderate hardware.

The cut-and-choose approach incurs significant overhead when large circuits are evaluated pre-
cisely because ρ garbled circuits need to be transmitted (typically ρ ≥ 40). In order to mitigate this,
recent works have explored secure computation in an amortized setting where the same function
is evaluated multiple times (on different inputs) [HKK+14, LR14, LR15]. When amortizing over
τ executions, only O(ρ

log τ) garbled circuits are needed per execution. Rindal and Rosulek [RR16]
recently reported a time of 6.4 ms to evaluate an AES circuit over a 10 Gbps network, amortized
over 1024 executions.

Other techniques for constant-round, maliciously secure two-party computation, with asymp-
totically better performance than cut-and-choose (without amortization), have also been explored.
The LEGO protocol and subsequent optimizations [NO09, FJN+13, FJNT15, HZ15, NST17] are
based on a gate-level cut-and-choose approach that can be done during a preprocessing phase be-
fore the circuit to be evaluated is known. This class of protocols has good asymptotic performance
(see Table 2) and very small online time; however, the total cost of the state-of-the-art LEGO
implementation [NST17] is still higher than the total cost of the best protocol based on the cut-
and-choose approach applied at the garbled-circuit level. In Table 1, we summarize the performance
of state-of-the-art protocols based on different approaches under the same hardware and network
conditions.

The Beaver-Micali-Rogaway compiler [BMR90] provides yet another approach to construct-
ing constant-round protocols secure against malicious adversaries. This compiler uses an “outer”
secure-computation protocol to generate a garbled circuit that can then be evaluated. Lindell et
al. [LPSY15] applied this idea using SPDZ [DPSZ12] as the outer protocol. Compared to their work,
our protocol is asymptotically more efficient in the function-independent preprocessing phase; more
importantly, the concrete efficiency of our protocol is much better for several reasons: (1) our work
is compatible with free-XOR and we do not suffer from any blowup in the size of the circuit being
evaluated; (2) Lindell et al. require five SPDZ-style multiplications per AND gate of the underlying
circuit, while we only need one TinyOT-style AND computation per AND gate. We provide a more
thorough comparison in Section 8.2.

There are also protocols using a larger number of communication rounds. The TinyOT pro-
tocol [NNOB12] adds malicious security to the classical GMW protocol [GMW87] by adding
information-theoretic MACs to shares held by both parties. TinyOT has smaller communication

2

AES Evaluation

Single-Execution Setting Amortized Setting (1024 executions)

[NST17] [WMK17] This paper [LR15] [RR16] [NST17] This paper

Ind. Phase 89.6 ms - 10.9 ms - - 13.84 ms 4.9 ms
Dep. Phase 13.2 ms 28 ms 4.78 ms 74 ms 5.1 ms 0.74 ms 0.53 ms

Online 1.46 ms 14 ms 0.93 ms 7 ms 1.3 ms 1.13 ms 1.23 ms

Total 104.26 ms 42 ms 16.61 ms 81 ms 6.4 ms 15.71 ms 6.66 ms

Semi-Honest 2.1 ms

SHA-256 Evaluation

Single-Execution Setting Amortized Setting (1024 executions)

[NST17] [WMK17] This paper [LR15] [RR16] [NST17] This paper

Ind. Phase 478.5 ms - 96 ms - - 183.5 ms 64.8 ms
Dep. Phase 164.4 ms 350 ms 51.7 ms 206 ms 48 ms 11.7 ms 8.7 ms

Online 11.2 ms 84 ms 9.3 ms 33 ms 8.4 ms 9.6 ms 11.3 ms

Total 654.1 ms 434 ms 157 ms 239 ms 56.4 ms 204.8 ms 84.8 ms

Semi-Honest 9.6 ms

Table 1: Summary of state-of-the-art constant-round maliciously secure 2PC protocols.
All timings are based on an Amazon EC2 c4.8xlarge instance over a LAN. Single-execution time
does not include the base-OTs, which are the same for all protocols (∼20 ms). Timings for the
semi-honest protocol are based on the same garbling code used in our protocol, and also do not
include time for the base-OTs. See Section 8 for more details.

Function-independent Function-dependent Online
Protocol preprocessing preprocessing phase Storage

Cut-and-choose [Lin13, AMPR14, WMK17] — O (|C|ρ) O(I|ρ) O(|C|ρ)

Amortized [HKK+14, LR14] — O
(
|C| ρ

log τ

)
O

(
|I| ρ

log τ

)
O

(
|C|ρ
log τ

)
LEGO [NO09, FJN+13] O

(
|C|ρ

log τ+log |C|

)
O(|C|) O((|I|+ |O|)) O

(
|C|ρ

log τ+log |C|

)
SPDZ-BMR [LPSY15, KOS16]∗ O(|C|κ) O(|C|) O((|I|+ |O|)) O(|C|)

This paper (with Section 6) O
(

|C|ρ
log τ+log |C|

)
O(|C|) |I|+ |O| O(|C|)

This paper (with IPS) O(|C|) O(|C|) |I|+ |O| O(|C|)

Table 2: Communication and computational complexity of constant-round 2PC proto-
cols. |I| represents the length of the inputs, |O| the length of the outputs, and |C| the circuit size.
The first three columns show the number of symmetric-key operations, which is also the number
of symmetric-key ciphertexts sent. The statistical security parameter is ρ, and the computational
security parameter is κ ≥ ρ. We let τ be the number of protocol executions in the amortized
setting. “Storage” is the size of the state generated by the preprocessing phase(s).
∗ Although the complexity of function-independent preprocessing can be reduced to O(|C|κ) using
somewhat homomorphic encryption [DPSZ12], doing so requires a number of public-key operations
proportional to |C|.

3

complexity than the LEGO family of protocols, but it—just like the GMW protocol—has round
complexity linear in the depth of the circuit being evaluated. The IPS compiler [IPS08, LOP11]
has asymptotic complexity (in the OT-hybrid model) proportional to the size of the circuit being
evaluated. It, too, has the disadvantage of requiring a number of rounds linear in the depth of
the circuit. A more serious drawback is that the concrete complexity of the protocol is unclear,
since it has not yet been implemented (and appears quite difficult to implement). Note that these
protocols suffer a lot from the network latency. Even in the LAN setting, each round-trip requires
at least 0.5 ms: for the AES circuit with a depth about 50, this means that the cost will be at least
25 ms.

In Table 2, we summarize the complexity of various constant-round 2PC protocols. Follow-
ing [NST17], we divide execution of protocols into three phases:

• Function-independent preprocessing. During this phase, the parties do not need to
know their inputs nor the function to be computed (beyond an upper bound on the number
of gates).

• Function-dependent preprocessing. In this phase, the parties know what function they
will compute, but do not need to know their inputs.

Often, the first two phases are combined and referred to simply as the offline phase.

• Online phase. In this phase, two parties evaluate the agreed-upon function on their respec-
tive inputs.

Our contributions. We propose a new approach for constructing constant-round 2PC protocols
with extremely high efficiency. At a high level (further details are in Section 3), and following
ideas of [NNOB12], our protocol relies on a function-independent preprocessing phase to realize
an ideal functionality that we call FPre. This preprocessing phase is used to set up correlated
randomness between the two parties that they can use during the online phase for information-
theoretic authentication of different values. In contrast to [NNOB12], however, the parties in
our protocol use this information in the online phase to generate a single “authenticated” garbled
circuit. (Conceptually similar ideas were used by Damg̊ard and Ishai [DI05] in the context of multi-
party computation with honest majority, and by Choi et al. [CKMZ14] for three-party computation
with dishonest majority.) As in the semi-honest case, this garbled circuit can then be transmitted
and evaluated in just one additional round.

Regardless of how we realize FPre, our protocol is extremely efficient in the function-dependent
preprocessing phase and the online phase. Specifically, compared to the semi-honest garbled-
circuit protocol, the cost of the function-dependent preprocessing phase of our protocol is only
about 2× higher (assuming 128-bit computational security and 40-bit statistical security), and the
cost of the online phase is essentially unchanged.

We also show how to instantiate FPre efficiently using an improved version of the TinyOT proto-
col [NNOB12] that we develop (see Section 6). Instantiating our framework in this way, we obtain
an efficient protocol with the same asymptotic communication complexity as recent protocols based
on LEGO, but with two advantages. First, our protocol has better concrete efficiency (see Table 1
and Section 8). For example, it requires only 16.6 ms total to evaluate AES, a 6× improvement
compared to a recent implementation of a LEGO-style approach [NST17]. Furthermore, the storage
needed by our protocol between the offline phase and the online phase is (asymptotically) smaller
(see Table 2). The latter is especially important when very large circuits are evaluated.

4

Functionality FPre

• Upon receiving ∆A from PA and init from PB, and assuming no values ∆A,∆B are currently stored, choose
uniform ∆B ∈ {0, 1}ρ and store ∆A,∆B. Send ∆B to PB.

• Upon receiving (random, r,M[r],K[s]) from PA and random from PB, sample uniform s ∈ {0, 1} and set
K[r] := M[r]⊕ r∆B and M[s] := K[s]⊕ s∆A. Send (s,M[s],K[r]) to PB.

• Upon receiving (AND, (r1,M[r1],K[s1]), (r2,M[r2],K[s2]), r3,M[r3],K[s3]) from PA, and (AND,
(s1,M[s1],K[r1]), (s2,M[s2],K[r2])) from PB, verify that M[ri] = K[ri]⊕ri∆B and that M[si] = K[si]⊕si∆A

for i ∈ {1, 2} and send cheat to PB if not. Otherwise, set s3 := r3 ⊕ ((r1 ⊕ s1) ∧ (r2 ⊕ s2)) and set
K[r3] := M[r3]⊕ r3∆B and M[s3] := K[s3]⊕ s3∆A. Send (s3,M[s3],K[r3]) to PB.

Figure 1: The preprocessing functionality, assuming PA is corrupted. (It is defined symmetrically
if PB is corrupted. If neither party is corrupted, the functionality is adapted in the obvious way.)

Instantiating our framework with the realization of FPre described in Section 6 yields a protocol
with the best concrete efficiency, and is the main focus of this paper. However, it is interesting to
observe that our framework can also be instantiated in other ways:

• When FPre is instantiated using the IPS compiler [IPS08] and the bit-OT protocol by Ishai et
al. [IKOS09], we obtain what is (to the best of our knowledge) the first maliciously secure
constant-round 2PC protocol with complexity O(|C|κ). Note that, up to constant factors,
this matches the complexity of semi-honest secure two-party computation based on garbled
circuits.

• We can also realize FPre using an offline, (semi-)trusted server. In that case we obtain a
constant-round protocol for server-aided 2PC with complexity O(|C|κ). Previous work in the
same model [MOR16] achieves the same complexity but with number of rounds proportional
to the circuit depth.

1.1 Other Related Work

Nielsen and Orlandi [NO16] proposed a maliciously secure 2PC protocol that can achieve constant
amortized overhead but only when the number of executions is at least linear in the size of the
circuit being computed (which is potentially impractical). Further, the amortization is over parallel
executions only, where all evaluations must be done at the same time. In contrast, we can handle
amortization with sequential executions, where inputs to different executions do not need to be
known all at once.

2 Notation and Preliminaries

We use κ to denote the computational security parameter (i.e., security should hold against attackers
running in time ≈ 2κ), and ρ for the statistical security parameter (i.e., an adversary should succeed
in cheating with probability at most 2−ρ). We use = to denote equality and := to denote assignment.
We denote the parties running the 2PC protocol by PA and PB.

A circuit is represented as a list of gates having the format (α, β, γ, T), where α and β denote
the input-wire indices of the gate, γ denotes the output-wire index of the gate, and T ∈ {⊕,∧}

5

x⊕ λα y ⊕ λβ PA’s share of garbled table PB’s share of garbled table

0 0 H(Lα,0, Lβ,0, γ, 00)⊕ (r00,M[r00], R00 ⊕ Lγ,z̄00) (s00 = z̄00 ⊕ r00,K[r00], R00)
0 1 H(Lα,0, Lβ,1, γ, 01)⊕ (r01,M[r01], R01 ⊕ Lγ,z̄01) (s01 = z̄01 ⊕ r01,K[r01], R01)
1 0 H(Lα,1, Lβ,0, γ, 10)⊕ (r10,M[r10], R10 ⊕ Lγ,z̄10) (s10 = z̄10 ⊕ r10,K[r10], R10)
1 1 H(Lα,1, Lβ,1, γ, 11)⊕ (r11,M[r11], R11 ⊕ Lγ,z̄11) (s11 = z̄11 ⊕ r11,K[r11], R11)

Table 3: An authenticated garbled table for an AND gate.

denotes the type of the gate. We use I1 to denote the set of input-wire indices for PA’s input, I2

to denote the set of input-wire indices for PB’s input, W to denote the set of output-wire indices
of all the AND gates, and O to denote the set of output-wire indices of the circuit itself.

2.1 Information-theoretic MACs

We use the information-theoretic message authentication codes (IT-MACs) of [NNOB12]. PA holds
a random global key ∆A ∈ {0, 1}ρ. A bit b known by PB is authenticated by having PA hold a
random key K[b] and having PB hold the corresponding tag M[b] := K[b] ⊕ b∆A. Symmetrically,
PB holds an independent global key ∆B; a bit b known by PA is authenticated by having PB hold
a random key K[b] and having PA hold the tag M[b] := K[b] ⊕ b∆B. We use [b]A to denote an
authenticated bit known to PA (i.e., [b]A means that PA holds (b,M[b]) and PB holds K[b]), with
[b]B defined symmetrically.

Observe that this MAC is XOR-homomorphic: given [b]A and [c]A, the parties can (locally)
compute [b ⊕ c]A by having PA compute M[b ⊕ c] := M[b] ⊕ M[c] and PB compute K[b ⊕ c] :=
(K[b]⊕ K[c]).

It is possible to extend the above idea to XOR-shared values by having each party’s share
be authenticated. That is, say we have a value λ := r ⊕ s, where PA knows r and PB knows s.
Then by having PA hold (r,M[r],K[s]) and PB hold (s,K[r],M[s]), we end up with an authenticated
secret-sharing of λ. It can be observed that this scheme is also XOR-homomorphic.

As described in the Introduction, we use a preprocessing phase that realizes a stateful ideal
functionality FPre. This functionality, described in Figure 1, is used to set up correlated values
between the players along with their corresponding IT-MACs. The functionality chooses uniform
global keys (once-and-for-all) for each party, with the malicious party being allowed to choose its
global key. Then, when the parties request a random authenticated bit, the functionality generates
an authenticated secret sharing of the random bit r ⊕ s. (The malicious party may choose the
“random values” it receives, but note that this does not reveal anything about r ⊕ s or the other
party’s global key to the adversary.) Finally, the parties may also submit their authenticated shares
for two bits; the functionality then computes a (fresh) authenticated share of the AND of those
bits. We defer until Section 4.2 a discussion of how FPre can be instantiated.

3 Protocol Intuition

We give a high-level overview of the core of our protocol in the FPre-hybrid model. Our protocol
is based on a garbled circuit that the parties compute in a distributed fashion, where the garbled
circuit is “authenticated” in the sense that the circuit generator (PA in our case) cannot change the
logic of the circuit. We describe the intuition behind the garbled circuit we use in several steps.

6

x⊕ λα y ⊕ λβ PA’s share of garbled table PB’s share of garbled table

0 0 H(Lα,0, Lβ,0, γ, 00)⊕ (r00,M[r00], Lγ,0 ⊕ r00∆A ⊕ K[s00]) (s00 = z̄00 ⊕ r00,K[r00],M[s00])
0 1 H(Lα,0, Lβ,1, γ, 01)⊕ (r01,M[r01], Lγ,0 ⊕ r01∆A ⊕ K[s01]) (s01 = z̄01 ⊕ r01,K[r01],M[s01])
1 0 H(Lα,1, Lβ,0, γ, 10)⊕ (r10,M[r10], Lγ,0 ⊕ r10∆A ⊕ K[s10]) (s10 = z̄10 ⊕ r10,K[r10],M[s10])
1 1 H(Lα,1, Lβ,1, γ, 11)⊕ (r11,M[r11], Lγ,0 ⊕ r11∆A ⊕ K[s11]) (s11 = z̄11 ⊕ r11,K[r11],M[s11])

Table 4: The final construction of an authenticated garbled table for an AND gate.

We begin by reviewing standard garbled circuits. Each wire α of a circuit is associated with
a random “mask” λα ∈ {0, 1} known to PA. If the true value (i.e., the value when the circuit is
evaluated on the parties’ inputs) of that wire is x, then the masked value observed by the circuit
evaluator (namely, PB) on that wire will be x̄ = x ⊕ λα. Each wire α is also associated with two
labels Lα,0 and Lα,1 := Lα,0 ⊕∆ known to PA (here we are using the free-XOR technique[KS08]).
If the masked bit on that wire is x̄, then PB learns Lα,x̄.

Let H : {0, 1}∗ → {0, 1}1+2κ be a hash function modeled as a random oracle. The garbled table
for, e.g., an AND gate (α, β, γ,∧) is given by:

x⊕ λα y ⊕ λβ truth table garbled table

0 0 z̄00 = (λα ∧ λβ)⊕ λγ H(Lα,0, Lβ,0, γ, 00)⊕ (z̄00, Lγ,z̄00)
0 1 z̄01 = (λα ∧ λ̄β)⊕ λγ H(Lα,0, Lβ,1, γ, 01)⊕ (z̄01, Lγ,z̄01)
1 0 z̄10 = (λ̄α ∧ λβ)⊕ λγ H(Lα,1, Lβ,0, γ, 10)⊕ (z̄10, Lγ,z̄10)
1 1 z̄11 = (λ̄α ∧ λ̄β)⊕ λγ H(Lα,1, Lβ,1, γ, 11)⊕ (z̄11, Lγ,z̄11)

PB, holding (x̄, Lα,x̄) and (ȳ, Lβ,ȳ), evaluates this garbled gate by picking the (x̄, ȳ)-row and
decrypting using the garbled labels it holds, thus obtaining (z̄, Lγ,z̄).

The standard garbled circuit just described ensures security against a malicious PB, since (in an
intuitive sense) PB learns no information about the true values on any of the wires. Unfortunately,
it provides no security against a malicious PA who can potentially cheat by corrupting rows in the
various garbled tables. One particular attack PA can carry out is a selective-failure attack. Say, for
example, that a malicious PA corrupts only the (0, 0)-row of the garbled table for the gate above,
and assume PB aborts if it detects an error during evaluation. If PB aborts, then PA learns that
the masked values on the input wires of the gate above were x̄ = ȳ = 0, from which it learns that
the true values on those wires were λα and λβ.

The selective-failure attack just mentioned can be prevented if the masks are hidden from PA.
(In that case even if PA learns the masked wire values as before, it learns nothing about the true
wire values.) Since knowledge of the garbled table would leak information about the masks to PA,
the garbled table must be hidden from PA as well. That is, we now want to set up a situation in
which PA and PB hold secret shares of the garbled table, as follows:

x⊕ λα y ⊕ λβ PA’s share of garbled table PB’s share

0 0 H(Lα,0, Lβ,0, γ, 00)⊕ (r00, R00 ⊕ Lγ,z̄00) (s00 = z̄00 ⊕ r00, R00)
0 1 H(Lα,0, Lβ,1, γ, 01)⊕ (r01, R01 ⊕ Lγ,z̄01) (s01 = z̄01 ⊕ r01, R01)
1 0 H(Lα,1, Lβ,0, γ, 10)⊕ (r10, R10 ⊕ Lγ,z̄10) (s10 = z̄10 ⊕ r10, R10)
1 1 H(Lα,1, Lβ,1, γ, 11)⊕ (r11, R11 ⊕ Lγ,z̄11) (s11 = z̄11 ⊕ r11, R11)

Once PA sends its shares of all the garbled gates, PB can evaluate the garbled circuit: Given (x̄, Lα,x̄)
and (ȳ, Lβ,ȳ), it picks the appropriate row, decrypts PA’s share of that row using the garbed labels
it holds, and then XORs the result with its own shares of that same row to obtain (z̄, Lγ,z̄).

7

Informally, the above modification ensures privacy against a malicious PA since (intuitively) the
result of any changes PA introduces will depend on the random masks but be independent of PB’s
inputs. However, PA can still affect correctness by, e.g., flipping the masked value in one of the
rows of a garbled gate. This can be addressed by adding an information-theoretic MAC on PA’s
share of the masked bit. That is, the shares of the garbled table now take the form in Table 3.

Once PA sends its shares of the garbled circuit to PB, the garbled circuit can be evaluated as
before. Now, however, PB will verify the MAC on PA’s share of each masked bit that it learns.
This limits PA to only being able to cause PB to abort; as before, though, any such abort will occur
independent of PB’s actual input.

Efficient realization. Although the above idea is powerful, it still remains to design an efficient
protocol that allows the parties to distributively compute shares of a garbled table of the above
form even when one of the parties is malicious. One key observation is that PA’s shares of the
wire labels need not be authenticated; in the worst-case, incorrect values used by PA will cause an
input-independent abort.

We also observe that, for example,

Lγ,z̄00 = Lγ,0 ⊕ z̄00∆A

= Lγ,0 ⊕ (r00 ⊕ s00)∆A

= Lγ,0 ⊕ r00∆A ⊕ s00∆A

= (Lγ,0 ⊕ r00∆A ⊕ K[s00])⊕ (K[s00]⊕ s00∆A).

Our next key insight is that if s00 is an authenticated bit known to PB, then PA can locally compute
Lγ,0 ⊕ r00∆A ⊕K[s00]; then the other share K[s00]⊕ s00∆A is just the MAC on s00 that PB already
knows! Thus, we can rewrite the garbled table as in Table 4. (The {Rij} values are no longer
needed since the {sij} are unknown to PA, and that is enough to hide the masks from PA.) Shares
of the table then become easy to compute in a distributed fashion.

One final optimization is based on the simple observation that the entries in the truth table are
linearly dependent. More precisely,

z̄00 = (λα ∧ λβ)⊕ λγ
z̄01 = (λα ∧ λ̄β)⊕ λγ = z̄00 ⊕ λα
z̄10 = (λ̄α ∧ λβ)⊕ λγ = z̄00 ⊕ λβ
z̄11 = (λ̄α ∧ λ̄β)⊕ λγ = z̄01 ⊕ λβ ⊕ 1.

Therefore, in order to jointly compute the above garbled table, the parties just need to compute
MACs on shares of the masks λα, λβ, λγ , and then compute MACs on shares of the bit λα ∧ λβ.

4 Our Framework and Its Instantiations

4.1 Protocol in the FPre-Hybrid Model

In Figure 2, we give the complete description of our main protocol in the FPre-hybrid model. For
clarity, we set ρ = κ in the protocol. In section 7, we discuss how to support other values of ρ in
general. Note that the calls to FPre can be performed in parallel, so the protocol runs in constant
rounds. Since FPre can be instantiated efficiently in constant rounds (see, e.g., Section 6), we can
use our approach to obtain constant-round 2PC protocols.

8

Although our protocol calls FPre in the function-dependent preprocessing phase, it is easy to
push this to the function-independent phase using standard techniques similar to those used with
multiplication triples [Bea92].

4.2 Instantiating FPre

We now discuss various ways FPre can be instantiated.

TinyOT-based instantiation. We obtain the best concrete efficiency by instantiating FPre using
an improved variant of TinyOT [NNOB12]. This is the instantiation we focus on for the rest of the
paper.

Our variant of TinyOT, which gives a 2.7× improvement as compared to the original TinyOT
protocol, is described in detail in Section 6. At a high level, the two parties execute a semi-honest
secure protocol to compute shares of an AND gate and related IT-MACs as described in regard
to FPre. Additional checks are performed such that an adversary who attempts a selective-failure
attack is caught only with probability 1/2; with the remaining probability it may learn one bit
of additional information about the AND gate. For this reason, we refer to these as “leaky AND
gates.” Note that with probability at most 2−ρ can an attacker learn information about ρ or more
of these leaky AND gates without being caught.

We compute n leaky AND gates. Then, following [NNOB12], we randomly permute and par-
tition the leaky AND gates into n/B buckets, each containing B = ρ/ log n leaky AND gates. It
can be proven that with all but negligible probability, each bucket contains at least one leaky AND
gate for which the attacker has learned no information (although we don’t know which one it is).
For each bucket, we now combine all leaky AND gates into one AND gate in a way that guarantees
that as long as one of them is not leaked, the resulting AND gate is secure.

One technical issue is that the functionality defined in the TinyOT paper [NNOB12] includes
a global key query for technical reasons. This can be added to our FPre functionality without
affecting the proof much. We will provide further details in the full version.

IPS-based instantiation. We obtain better asymptotic performance by using the IPS pro-
tocol [IPS08] to realize FPre. In the function-dependent preprocessing phase, we need to pro-
duce a sharing of λi for each wire i, and a sharing of λσ = (λα ∧ λβ) ⊕ λγ for each AND gate
(α, β, γ,∧). These can be computed by a constant-depth circuit with O((κ + ρ) · |C|) gates. For
securely evaluating a circuit of depth d and size `, the IPS protocol uses communication complex-
ity O(`) + poly(κ, d, log `) and O(d) rounds of communication. When applied to our setting, this
translates to a communication complexity of O((κ+ ρ) · |C|) + poly(κ, log |C|); for sufficiently large
circuits, the leading term is O((κ+ ρ) · |C|).

Using a (semi-)trusted server. It is straightforward to instantiate FPre using a (semi-)trusted
server. By applying the techniques of Mohassel et al. [MOR16], the offline phase can also be
decoupled from the identity of other party; we refer to their paper for further details.

5 Proof of Security

Theorem 5.1. The protocol in Figure 2, where H is modeled as a random oracle securely com-
putes f (against malicious adversaries) with statistical security 2−ρ in the FPre-hybrid.

9

Protocol Π2pc

Inputs: In the function-dependent phase, the parties agree on a circuit for a function f : {0, 1}|I1|×{0, 1}|I2| → {0, 1}|O|.
In the input-processing phase, PA holds x ∈ {0, 1}|I1| and PA holds y ∈ {0, 1}|I2|.
Function-independent preprocessing:

1. PA and PB send init to FPre, which sends ∆A to PA and ∆B to PB.

2. For each wire w ∈ I1 ∪ I2 ∪W, parties PA and PB send random to FPre. In return, FPre sends (rw,M[rw],K[sw])
to PA and (sw,M[sw],K[rw]) to PB, where λw = sw ⊕ rw. PA also picks a uniform κ-bit string Lw,0.

Function-dependent preprocessing:

3. For each gate G = (α, β, γ,⊕), PA computes (rγ ,M[rγ],K[sγ]) := (rα ⊕ rβ ,M[rα] ⊕ M[rβ],K[sα] ⊕ K[sβ]) and
Lγ,0 := Lα,0 ⊕ Lβ,0. PB computes (sγ ,M[sγ],K[rγ]) := (sα ⊕ sβ ,M[rβ]⊕M[rβ],K[rα]⊕ K[rβ]).

4. Then, for each gate G = (α, β, γ,∧):

(a) PA (resp., PB) sends (and, (rα,M[rα],K[sα]), (rβ ,M[rβ],K[sβ])) (resp., (and, (sα,M[sα],K[rα]), (sβ , M[sβ],
K[rβ]))) to FPre. In return, FPre sends (rσ ,M[rσ],K[sσ]) to PA and (sσ ,M[sσ],K[rσ]) to PB, where sσ⊕rσ = λα∧λβ .

(b) PA computes the following locally:

(rγ,0,M[rγ,0],K[sγ,0]) := (rσ ⊕ rγ , M[rσ]⊕M[rγ], K[sσ]⊕ K[sγ])
(rγ,1,M[rγ,1],K[sγ,1]) := (rσ ⊕ rγ ⊕ rα, M[rσ]⊕M[rγ]⊕M[rα], K[sσ]⊕ K[sγ]⊕ K[sα])
(rγ,2,M[rγ,2],K[sγ,2]) := (rσ ⊕ rγ ⊕ rβ , M[rσ]⊕M[rγ]⊕M[rβ], K[sσ]⊕ K[sγ]⊕ K[sβ])
(rγ,3,M[rγ,3],K[sγ,3]) := (rσ ⊕ rγ ⊕ rα ⊕ rβ , M[rσ]⊕M[rγ]⊕M[rα]⊕M[rβ], K[sσ]⊕ K[sγ]⊕ K[sα]⊕ K[sβ]⊕∆A)

(c) PB computes the following locally:

(sγ,0,M[sγ,0],K[rγ,0]) := (sσ ⊕ sγ , M[sσ]⊕M[sγ], K[rσ]⊕ K[rγ])
(sγ,1,M[sγ,1],K[rγ,1]) := (sσ ⊕ sγ ⊕ sα, M[sσ]⊕M[sγ]⊕M[sα], K[rσ]⊕ K[rγ]⊕ K[rα])
(sγ,2,M[sγ,2],K[rγ,2]) := (sσ ⊕ sγ ⊕ sβ , M[sσ]⊕M[sγ]⊕M[sβ], K[rσ]⊕ K[rγ]⊕ K[rβ])
(sγ,3,M[sγ,3],K[rγ,3]) := (sσ ⊕ sγ ⊕ sα ⊕ sβ ⊕ 1, M[sσ]⊕M[sγ]⊕M[sα]⊕M[sβ], K[rσ]⊕ K[rγ]⊕ K[rα]⊕ K[rβ])

(d) PA computes Lα,1 := Lα,0 ⊕∆A and Lβ,1 := Lβ,0 ⊕∆A, and then sends the following to PB.

Gγ,0 := H(Lα,0, Lβ,0, γ, 0)⊕ (rγ,0,M[rγ,0], Lγ,0 ⊕ K[sγ,0]⊕ rγ,0∆A)
Gγ,1 := H(Lα,0, Lβ,1, γ, 1)⊕ (rγ,1,M[rγ,1], Lγ,0 ⊕ K[sγ,1]⊕ rγ,1∆A)
Gγ,2 := H(Lα,1, Lβ,0, γ, 2)⊕ (rγ,2,M[rγ,2], Lγ,0 ⊕ K[sγ,2]⊕ rγ,2∆A)
Gγ,3 := H(Lα,1, Lβ,1, γ, 3)⊕ (rγ,3,M[rγ,3], Lγ,0 ⊕ K[sγ,3]⊕ rγ,3∆A)

Input processing:

5. For each w ∈ I1, PA sends (rw,M[rw]) to PB, who checks that (rw,K[rw],M[rw]) is valid. PB then sends yw⊕λw :=
sw ⊕ yw ⊕ rw to PA. Finally, PA sends Lw,yw⊕λw to PB.

6. For each w ∈ I2, PB sends (sw,M[sw]) to PA, who checks that (sw,K[sw],M[sw]) is valid. PA then sends xw⊕λw :=
sw ⊕ xw ⊕ rw and Lw,xw⊕λw to PB.

Circuit evaluation:

7. PB evaluates the circuit in topological order. For each gate G = (α, β, γ, T), PB initially holds (zα ⊕ λα, Lα,zα⊕λα)
and (zβ ⊕ λβ , Lβ,zβ⊕λβ), where zα, zβ are the underlying values of the wires.

(a) If T = ⊕, PB computes zγ ⊕ λγ := (zα ⊕ λα)⊕ (zβ ⊕ λβ) and Lγ,zγ⊕λγ := Lα,zα⊕λα ⊕ Lβ,zβ⊕λβ .

(b) If T = ∧, PB computes i := 2(zα ⊕ λα) + (zβ ⊕ λβ) followed by (rγ,i,M[rγ,i], Lγ,0 ⊕ K[sγ,i] ⊕ rγ,i∆A) :=
Gγ,i ⊕H(Lα,zα⊕λα , Lβ,zβ⊕λβ , γ, i). Then PB checks that (rγ,i,K[rγ,i],M[rγ,i]) is valid and, if so, computes

zγ ⊕ λγ := (sγ,i ⊕ rγ,i) and Lγ,zγ⊕λγ := (Lγ,0 ⊕ K[sγ,i]⊕ rγ,i∆A)⊕M[sγ,i].

Output determination:

8. For each w ∈ O, PA sends (rw,M[rw]) to PB, who checks (rw,K[rw],M[rw]) is valid. If so, PB computes zw :=
(λw ⊕ zw)⊕ rw ⊕ sw.

Figure 2: Our protocol in the FPre-hybrid model. Here ρ = κ for clarity, but this is not needed (cf.
Section 7).

10

(Recall that we set ρ = κ in Figure 2 for simplicity of exposition. When modified as described
in Section 7, our protocol achieves statistical security 2−ρ.)

Proof. We consider separately the case where PA or PB is malicious.

Malicious PA. Let A be an adversary corrupting PA. We construct a simulator S that runs
A as a subroutine and plays the role of PA in the ideal world involving an ideal functionality F
evaluating f . S is defined as follows.

1-4 S interacts with A acting as an honest PB, where S also plays the role of FPre, recording all
values that are sent to A.

5 S interacts with A acting as an honest PB using input y = 0.

6 S interacts with A acting as an honest PB. For each wire w ∈ I1, S receives x̄w and computes
xw = x̄w ⊕ rw ⊕ sw, where rw, sw are values S used to play the role of FPre in previous steps.
S sends x to F .

7-8 S interacts with A acting as an honest PB. If PB would abort, S outputs whatever A outputs
and aborts; otherwise S sends continue to F .

We now show that the joint distribution over the outputs of A and the honest PB in the real world
is indistinguishable from the joint distribution over the outputs of S and PB in the ideal world. We
prove this by considering a sequence of experiments, the first of which corresponds to the execution
of our protocol and the last of which corresponds to execution in the ideal world, and showing that
successive experiments are computationally indistinguishable.

Hybrid1. This is the hybrid-world protocol, where S plays the role of an honest PB using PB’s
actual input y. S also plays the role of FPre.

Hybrid2. Same as Hybrid1, except that in step 6, for each wire w ∈ I1 the simulator S receives
x̄w and computes xw = x̄w ⊕ rw ⊕ sw, where sw, rw are values S used when playing the role
of FPre. S sends x to F . If an honest PB would abort, S outputs whatever A outputs and
aborts; otherwise S sends continue to F .

The distributions on the view of the adversary in the two experiments above are exactly
identical. Lemma 5.1 shows that PB generates the same output in both experiments with
probability 1− 2−ρ.

Hybrid3. Same as Hybrid2, except that S computes {sw}w∈I2 as follows: S first randomly pick
{uw}w∈I2 , and then computes sw := uw ⊕ yw.

The above two experiments are identically distributed.

Hybrid4. Same as Hybrid3, except that S uses y = 0 as inputs throughout the protocol.

Note that although the value of y in Hybrid3 and Hybrid4 are different, the distributions of
sw⊕yw are exactly the same. The view of the adversary in the two experiments are therefore
the same. We next show that PB aborts with the same probability in two experiments.

Observe that the only place where PB’s abort can possibly depends on y is in step 7(b).
However, this abort depends on which row is selected to decrypt, that is the value of λα⊕ zα

11

and λβ ⊕ zβ, which are chosen uniformly and independently in both experiments. Therefore,
the two experiments are identically distributed.

Note that Hybrid4 corresponds to the ideal-world execution, so this completes the proof for a
malicious PA.

Malicious PB. Let A be an adversary corrupting PB. We construct a simulator S that runs
A as a subroutine and plays the role of PB in the ideal world involving an ideal functionality F
evaluating f . S is defined as follows.

1-4 S interacts with A acting as an honest PA and plays the functionality of FPre. If an honest
PA would abort, S output whatever A outputs and aborts.

5 S interacts with A acting as an honest PA, receives yw ⊕ λw from A, and computes yw :=
ȳw ⊕ sw ⊕ rw, where sw, rw are values S used when playing the role of FPre. S sends y to F ,
which sends z = f(x, y) to S.

6 S interacts with A acting as an honest PA using input x = 0. If an honest PA would abort,
S output whatever A outputs and aborts.

8 S computes z′ = f(0, y). For each w ∈ O, if z′w = zw, S sends (rw,M[rw]); otherwise, S sends
(rw ⊕ 1,M[rw]⊕∆B), where ∆B is the value S used when playing the role of FPre.

We now show that the joint distribution over the outputs of A and the honest PA in the real world
is indistinguishable from the joint distribution over the outputs of S and PA in the ideal world.

Hybrid1. Same as the hybrid-world protocol, where S plays the role of an honest PA using the
actual input x.

Hybrid2. Same as Hybrid1, except that, in step 5, S receives yw ⊕ λw from A, and computes
yw := ȳw ⊕ sw ⊕ rw, where sw, rw are values S used when playing the role of FPre. S then
sends y to F , and receives z = f(x, y). In Step 8, for each w ∈ O, S computes r′w := zw⊕ sw,
and sends (r′w,K[r′w]⊕ r′w∆B), where ∆B is the value S used to play the role of FPre.

PA does not have output; furthermore the view ofA does not change between the two Hybrids
since the value z that S obtains from F is the same as the one A obtains in Hybrid1.

Hybrid3. Same as Hybrid2, except that in step 6, S uses x = 0 as input.

Note that since S uses different values for x between two Hybrids, we also need to show
that the garbled rows PB opened are indistinguishable between two Hybrids. According to
Lemma 5.2, PB is able to open only one garble rows in each garbled table Gγ,i. Therefore,
given that {λw}w∈I1∪W values are not known to PB, masked values and garbled keys are
indistinguishable between the two Hybrids.

As Hybrid3 is the ideal-world execution, the proof is complete.

Lemma 5.1. Consider an A corrupting PA and denote xw := x̄w ⊕ sw ⊕ rw, where x̄w is the value
A sent to PB, sw, rw are the values from FPre. With probability 1 − 2−ρ, PB either aborts or only
learns z = f(x, y).

12

Proof. Define z∗w as the correct wire values computed using x defined above and y, zw as the actual
wire values PB holds in the evaluation.

We will first show that PB learns {zw ⊕ λw = z∗w ⊕ λw}w∈O by induction on topology of the
circuit.

Base step: It is obvious that {z∗w ⊕ λw = zw ⊕ λw}w∈I1∪I2 , unless A is able to forge an IT-MAC.

Induction step: Now we show that for a gate (α, β, γ, T), if PB has {z∗w ⊕ λw = zw ⊕ λw}w∈{α,β},
then PB also obtains z∗γ ⊕ λγ = zγ ⊕ λγ .

• T = ⊕: It is true according to the following: z∗γ ⊕ λγ = (z∗α ⊕ λα)⊕ (z∗β ⊕ λβ) = (zα ⊕ λα)⊕
(zβ ⊕ λβ)zγ ⊕ λγ

• T = ∧: According to the protocol, PB will open the garbled row defined by i := 2(zα ⊕
λα) + (zβ ⊕ λβ). If PB learns zγ ⊕ λγ 6= z∗γ ⊕ λγ , then it means that PB learns r∗γ,i 6= rγ,i.
However, this would mean that A forges a valid IT-MAC, which only happens with negligible
probability.

Now we know that PB learns correct masked output. PB can therefore learn correct output
f(x, y) unless A is able to flip {rw}w∈O, which, again, happens with negligible probability.

Lemma 5.2. Consider an A corrupting PB, with negligible, probability, PB learns both garbled keys
for some wire.

Proof. The proof is very similar to the proof of security for garbled circuits in the semi-honest
setting.

Base step: PB can only learn one garbled keys for each input wire, since PA only sends one garbled
wire, and PB cannot learn ∆A in the protocol.

Induction step: It is obvious that PB cannot learn the other label for an XOR gate and so we
focus on AND gates. Note that PB only learns one garbled key each for input wires α and β.
However, each row is encrypted using different combinations of {Lα,b}b∈{0,1} and {Lβ,b}b∈{0,1} . In
order for PB to open two rows in the garbled table, PB needs to learn both garbled keys for some
input wire, which contradict with assumptions in the induction step.

6 Improved TinyOT protocol

In this section, we describe an improvement to the TinyOT protocol. For a bucket size of B =
ρ

log |C| + 1, the original protocol requires 14B + 2 authenticated bits for each AND gate. In the
following, we will introduce an improved version where only 6B authenticated bits are needed for
each AND gate. For a circuit of size 220, with ρ = 40, this is an improvement of 2.4×.

6.1 Half Authenticated AND

Before describing the main protocol, we will first show how to compute an AND triple with only
x’s being authenticated (FHaAND). This will serve as a building block for the following sections.
The functionality FHaAND is described in Figure 3. It outputs authenticated bits [x1]A and [x2]B to
the two parties, it also gets y1 from PA and y2 from PB without authentication. The functionality
then outputs random shares of x1y2 ⊕ x2y1. Looking ahead to the next subsection, this prevents

13

Functionality FHaAND

1. The box picks random [x1]A and [x2]B and sends them to the two parties.

2. Upon receiving y1 from PA and y2 from PB, the box samples two random bits v1, v2 such that v1 ⊕ v2 =
x1y2 ⊕ x2y1. The box sends v1 to PA, v2 to PB.

Global Key Queries: The adversary at any point can send some (p,∆′) and will be told if ∆′ = ∆p.

Figure 3: Functionality FHaAND that computes a half authenticated AND triple.

Protocol ΠHaAND

1. PA and PB call Fabit to obtain [x1]A and [x2]B.

2. PA picks random bit s1 and computes H0 := Lsb(H(K[x2]))⊕ s1, H1 := Lsb(H(K[x2]⊕∆A))⊕ s1⊕ y1. PA

sends (H0, H1) to PB, who computes s2 := Hx2 ⊕ Lsb(H(M[x2])).

3. PB picks random bit t1 and computes H0 := Lsb(H(K[x1]))⊕ t1, H1 := Lsb(H(K[x1]⊕∆B))⊕ t1 ⊕ y2. PB

sends (H0, H1) to PA, who computes t2 := Hx1 ⊕ Lsb(H(M[x1])).

4. PA computes v1 := s1 ⊕ t2, PB computes v2 := s2 ⊕ t1.

Figure 4: Protocol ΠHaAND instantiating FHaAND.

parties from flipping x’s, which would cause a selective failure attack on y, but would still allows
parties to flip y’s, which would cause a selective failure attack on x. The protocol that instantiates
this functionality is simple due to the fact that not all bits are authenticated. In the proof, we will
essentially show that if an adversary “corrupts” any message, it is equivalent to using some other
input.

Lemma 6.1. Assuming H is a random oracle, the protocol in Figure 4 securely implements the
functionality in Figure 3 in the Fabit-hybrid model.

Proof. First we will show the correctness of the protocol. We will show that s1 ⊕ s2 = x2y1 and
that t1⊕ t2 = x1y2. Without loss of generality, we will show the first equation. There are two cases:

• x2 = 0. In this case, PB obtains s2 = s1.

• x2 = 1. In this case, PB obtains s2 = s1 ⊕ y1.

In both cases, the equation we want to show holds. The other equation can be proven in exactly
the same way. The correctness of the protocol follows immediately from these two equations.

In a part below, we will continue to the simulation proof. The proof is straightforward, mainly
due to the fact that each party’s input is not authenticated and therefore S can extract the values
easily.
Malicious PA. The simulator works as follows:

1. S plays the role of Fabit, and stores [x1]A, [x2]B.

2. S receives (H0, H1) from A, and computes s1 := H0 ⊕ Lsb(H(K[x2])), y1 := H1 ⊕ s1 ⊕
Lsb(H(K[x2]⊕∆A)). S sends y1 to FHaAND on behalf of PA and receives v1.

14

Functionality FLaAND

Honest parties: The box picks random [x1]A, [y1]A, [z1]A, and [x2]B, [y2]B, [z2]B, such that (x1⊕x2)∧ (y1⊕y2) =
z1 ⊕ z2.

Corrupted parties:

1. A corrupted PA gets to choose all its randomness. Furthermore, it can send g to the box trying to guess
x2. If g 6= x2 the box output fail and terminates, otherwise the box proceeds as normal.

2. A corrupted PB gets to choose all its randomness. Furthermore, it can send g to the box trying to guess
x1. If g 6= x1 the box output fail and terminates, otherwise the box proceeds as normal.

Global Key Queries: The adversary at any point can send some (p,∆′) and will be told if ∆′ = ∆p.

Figure 5: Functionality FLaAND for leaky AND triple generation.

Functionality FaAND

Honest parties: The box picks random [x1]A, [y1]A, [z1]A, and [x2]B, [y2]B, [z2]B, such that (x1⊕x2)∧ (y1⊕y2) =
z1 ⊕ z2.

Corrupted parties: A corrupted PA gets to choose all its randomness.

Global Key Queries: The adversary at any point can send some (p,∆′) and will be told if ∆′ = ∆p.

Figure 6: Functionality FaAND for generating AND triples

3. S computes Hx1 := Lsb(H(K[x1] ⊕ x1∆B)) ⊕ v1 ⊕ s1 and picks H1⊕x1 randomly, and sends
(H0, H1) to PA.

Honest PB has the same output according to the correctness proof. It is easy to see that the first
two steps are perfect simulation. The last step is also a perfect simulation: the joint distribution of
(H0, H1) and PB’s output is perfectly indistinguishable. 1) PA only knows either K[x1] or K[x1]⊕∆B,
which means Hx1⊕1 remains random as long as H is a random oracle. 2) PA obtains from Hx1

v1 ⊕ s1, which is the same for both hybrids.
Malicious PB. The simulation is essentially the same as the case when PA is malicious (ob-

serving that step 2 and step 3 can be done in any order).

6.2 New TinyOT Protocol

Assuming that two parties hold [x1]A, [y1]A, [x2]B, [y2]B. In the original TinyOT protocol, to com-
pute (x1⊕x2)(y1⊕ y2), PA and PB compute [x1y1]A, [x2y2]B, [x1y2 + r]A and [x2y1 + r]B separately,
with some random r ∈ {0, 1}, using various authenticated constructions proposed in their paper.
Computing each entry separately incurs a lot of unnecessary cost. We observe that it is possible to
compute a whole AND gate directly. Similar to the original TinyOT protocol, we propose a “leaky
AND” protocol (ΠLaAND), where the adversary is allowed to perform selective-failure attack on one
input, and later use bucketing to eliminate such leakage (ΠaAND). In the following, we will first
discuss the intuition of the protocol. The full protocol description is in Figure 7 and Figure 8.

15

Protocol ΠLaAND

1. PA and PB obtain random authenticated bits [y1]A, [z1]A, [y2]B, [r]B. PA and PB also calls FHaAND, receiving
[x1]A and [x2]B.

2. PA sends y1 to FHaAND, PB sends y2 to FHaAND, which sends v1 to PA and v2 to PB.

3. PA computes u = v1 ⊕ x1y1 and sends to PB. PB computes z2 := u⊕ x2y2 ⊕ v2 and sends d := r ⊕ z2 to
PA. Two parties compute [z2]B = [r]B ⊕ d.

4. PB checks the correctness as follows:

(a) PB computes:

T0 := H(K[x1],K[z1]⊕ z2∆B)
U0 := T0 ⊕H(K[x1]⊕∆B,K[y1]⊕ K[z1]⊕ (y2 ⊕ z2)∆B)
T1 := H(K[x1],K[y1]⊕ K[z1]⊕ (y2 ⊕ z2)∆B)
U1 := T1 ⊕H(K[x1]⊕∆B,K[z1]⊕ z2∆B)

(b) PB sends Ux2 to PA.

(c) PA randomly picks a κ-bit string R and computes

V0 := H(M[x1],M[z1]) V1 := H(M[x1],M[z1]⊕M[y1])
W0,0 := H(K[x2])⊕ V0 ⊕R W0,1 := H(K[x2]⊕∆A)⊕ V1 ⊕R
W1,0 := H(K[x2])⊕ V1 ⊕ U ⊕R W1,1 := H(K[x2]⊕∆A)⊕ V0 ⊕ U ⊕R

(d) PA sends Wx1,0,Wx1,1 to PB and sends R to FEQ.

(e) PB computes R′ := Wx1,x2 ⊕H(M[x2])⊕ Tx2 and sends R′ to FEQ.

5. PA checks the correctness as follows:

(a) PA computes:

T0 := H(K[x2],K[z2]⊕ z1∆A)
U0 := T0 ⊕H(K[x2]⊕∆A,K[y2]⊕ K[z2]⊕ (y1 ⊕ z1)∆A)
T1 := H(K[x2],K[y2]⊕ K[z2]⊕ (y1 ⊕ z1)∆A)
U1 := T1 ⊕H(K[x2]⊕∆A,K[z2]⊕ z1∆A)

(b) PA sends Ux1 to PB.

(c) PB randomly picks a κ-bit string R and computes

V0 := H(M[x2],M[z2]) V1 := H(M[x2],M[z2]⊕M[y2])
W0,0 := H(K[x1])⊕ V0 ⊕R W0,1 := H(K[x1]⊕∆B)⊕ V1 ⊕R
W1,0 := H(K[x1])⊕ V1 ⊕ U ⊕R W1,1 := H(K[x1]⊕∆B)⊕ V0 ⊕ U ⊕R

(d) PB sends Wx2,0,Wx2,1 to PA and sends R to FEQ,

(e) PA computes R′ := Wx2,x1 ⊕H(M[x1])⊕ Tx1 and sends R′ to FEQ.

Figure 7

6.3 Intuition

Compute the triple in the honest case. The first step of the protocol is to generate the triple
securely assuming that both parties are honest. Since x1, y1, z1, x2, y2 are all random, we just need
PB to learn z2 = (x1 ⊕ x2) ∧ (y1 ⊕ y2) ⊕ z1. Our idea is to use the FHaAND to compute the cross
terms. Note that, because y1, y2 are not authenticated in FHaAND, a malicious party can perform a
selective failure attack by switching the value of y’s. If there is no abort, it means that x1⊕x2 = 0.
Similarly, PA can also flip u (or similarly, PB can flip d) to guess if x1 ⊕ x2 = 1. Such attacks on
x’s are allowed in the leaky functionality and will be eliminated by bucketing.

16

Protocol ΠaAND

1. PA and PB call FLaAND `′ = `B times and obtains {[xi1]A, [y
i
1]A, [z

i
1]A, [x

i
2]B, [y

i
2]B, [z

i
2]B}`

′
i=1.

2. PA and PB randomly partition all objects into ` buckets, each with B objects.

3. For each bucket, two parties combine B Leaky ANDs into one non-leaky AND. To combine two leaky
ANDs, namely ([x′1]A, [y

′
1]A, [z

′
1]A, [x

′
2]B, [y

′
2]B, [z

′
2]B) and [x′′1]A, [y

′′
1]A, [z

′′
1]A, [x

′′
2]B, [y

′′
2]B, [z

′′
2]B

(a) Two parties reveal d′ := y′1 ⊕ y′′1 , d′′ = y′2 ⊕ y′′2 with their MAC checked, and compute d := d′ ⊕ d′′.
(b) Set [x1]A := [x′1]A⊕ [x′′1]A, [x2]B := [x′2]B⊕ [x′′2]B, [y1]A := [y′1]A, [y2]A := [y′2]A, [z1]A := [z′1]A⊕ [z′′1]A⊕

d[x′′1]A, [z2]B := [z′2]B ⊕ [z′′2]B ⊕ d[x′′2]B.

Two parties iterate all B leaky objects, by taking the resulted object and combine with the next element.

Figure 8: Protocol ΠaAND instantiating FaAND.

Verifying the correctness. After the above steps, the correctness is not guaranteed with ma-
licious security: a malicious party can corrupt the correctness of an AND triple. Therefore, both
parties need to check the correctness of the output. In the protocol, we design a verification proto-
col that checks the correctness while allowing a malicious party to perform a selective-failure attack
on x values.

The initial idea is to adopt the check from TinyOT to our case. If x2⊕x1 = 0, then we want to
check that z2 = z1; if x2⊕ x1 = 1, then to check y1⊕ z1 = y2⊕ z2. However, an obvious problem is
that no party knows the value of x1 ⊕ x2. To solve this problem, when PB checks the correctness,
we let PB construct the checking depending on the value of x2. PA will perform the checking twice,
as if x2 is 0 and 1.

For example, using the notation in the protocol, when x1 = 0, PA computes V0, V1. PA and PB

should have performed an equality check between Vx2 and Tx2 . All different cases (depending on
the value of x1 and x2) are summarized in the following table.

x1 = 0 x1 = 1

x2 = 0 V0 = T0 V0 ⊕ U0 = T0

x2 = 1 V1 = T1 V1 ⊕ U1 = T1

However, PA should not learn x2, while PB should not learn V1⊕x2 . One idea is to let PA

“encrypt” the response (V0, V1) such that PB can only learn the response for the value of x2 (Vx2),
then PB can compare locally. (This is possible because PB’s bit x2 is authenticated by PA). However,
the problem is that PA is not able to learn the outcome of the comparison. To solve this, we let PA

send encrypted V0 ⊕R and V1 ⊕R for some random R such that PB learns Vx2 ⊕R, and learns R
from it. Now PA and PB can check the equality on R using the FEQ functionality in the TinyOT
paper that allows both parties get the outcome. Note that this allows PA to perform an additional
selective-failure attack on x2, by sending some corrupted encrypted values. This does not introduce
additional leakage, since x2 is allowed to be learnt by A anyway. Now A is allowed to guess x2

twice, once in step 4 and once in step 5. If the guesses are inconsistent, it is guaranteed to abort.

Combining leaky ANDs. The above check is vulnerable to a selective-failure attack, from which
a malicious party can learn the value of x1/x2 with one-half probability of being caught. In order to
get rid of the leakage, bucketing is performed similar to TinyOT. Here, the key is to devise a way
to combine leaky objects. Assuming that two triple are ([x′1]A, [y

′
1]A, [z

′
1]A, [x

′
2]B, [y

′
2]B, [z

′
2]B) and

17

[x′′1]A, [y
′′
1]A, [z

′′
1]A, [x

′′
2]B, [y

′′
2]B, [z

′′
2]B. Note that for each triple, only x1, x2 can be leaked. Therefore,

one natural way is to set [x1]A := [x′1]A ⊕ [x′′1]A, [x2]B := [x′2]B ⊕ [x′′2]B. By doing this, [x1]A, [x2]B
are non-leaky as long as one triple is non-leaky. We can also set [y1]A := [y′1]A, [y2]B := [y′2]B and
reveal the bit d := y′1 ⊕ y′2 ⊕ y′′1 ⊕ y′′2 , since y’s bits are all private. Now observe that

(x1 ⊕ x2)(y1 ⊕ y2) = (x′1 ⊕ x′2 ⊕ x′′1 ⊕ x′′2)(y′1 ⊕ y′2)

= (x′1 ⊕ x′2)(y′1 ⊕ y′2)⊕ (x′′1 ⊕ x′′2)(y′1 ⊕ y′2)

= (x′1 ⊕ x′2)(y′1 ⊕ y′2)⊕ (x′′1 ⊕ x′′2)(y′′1 ⊕ y′′2)

⊕ (x′′1 ⊕ x′′2)(y′1 ⊕ y′2 ⊕ y′′1 ⊕ y′′2)

= (z′1 ⊕ z′2)⊕ (z′′1 ⊕ z′′2)⊕ d(x′′1 ⊕ x′′2)

= (z′1 ⊕ z′′1 ⊕ dx′′1)⊕ (z′2 ⊕ z′′2 ⊕ dx′′2)

Therefore, we could just set [z1]A := [z′1]A ⊕ [z′′1]A ⊕ d[x′′1]A, [z2]A := [z′2]A ⊕ [z′′2]A ⊕ d[x′′2]A. The
security of this bucketing and merging can be proved as in [NNOB12, Appendix I].

6.4 Proof Sketch

In the following, we will discuss from a high-level view how the proof works for the new TinyOT
protocol. We will focus on the security of ΠLaAND protocol, since the security of ΠaAND is fairly
straightforward given the proof in the original paper [NNOB12].

Correctness

Without loss of generality, we want to show that if both players followed the protocol then in step
4.e that Wx1,x2 ⊕M[x2]⊕ Tx2 = R. Checks in step 5 are perfectly symmetric to ones in step 4. We
will proceed on a case per case basis.

Case 1: x1 = 0, x2 = 0
The value of x1, x2 means that M[x1] = K[x1] and that M[x2] = K[x2]. Since x1 ⊕ x2 = 0, we know
that z1 = z2, which further implies that

M[z1] = K[z1]⊕ z1∆B = K[z1]⊕ z2∆B

The equation holds based on the following:

Wx1,x2 ⊕H(M[x2])⊕ Tx2

= H(K[x2])⊕ V0 ⊕R⊕H(M[x2])⊕H(K[x1],K[z1]⊕ z2∆B)

= V0 ⊕ T0 ⊕R
= H(M[x1],M[z1])⊕H(K[x1],K[z1]⊕ z2∆B)⊕R
= R

Case 2: x1 = 0, x2 = 1

Similar to the previous case, we know that M[x1] = K[x1] and that M[x2] = K[x2]⊕∆B. x1⊕x2 = 1
also implies that

M[z1]⊕M[y1]

= K[y1]⊕ K[z1]⊕ (y1 ⊕ z1)∆B

= K[y1]⊕ K[z1]⊕ (y2 ⊕ z2)∆B

18

The equation holds based on the following:

Wx1,x2 ⊕H(M[x2])⊕ Tx2

= Wx1,x2 ⊕H(M[x2])⊕ T1

= H(K[x2]⊕∆A)⊕ V1 ⊕R⊕H(M[x2])⊕ T1

= V1 ⊕ T1 ⊕R
= H(M[x1],M[z1]⊕M[y1])

⊕H(K[x1],K[z1]⊕ z2∆B ⊕ K[y1]⊕ y2∆B)⊕R
= R

Case 3: x1 = 1, x2 = 0

Similar to the previous cases, we know that M[x1] = K[x1] ⊕∆B, M[x2] = K[x2] and that M[z1] ⊕
M[y1] = K[y1]⊕ K[z1]⊕ (y2 ⊕ z2)∆B, which will be used to prove the following:

Wx1,x2 ⊕H(M[x2])⊕ Tx2

= Wx1,x2 ⊕H(M[x2])⊕ T0

= H(K[x2])⊕ V1 ⊕ U ⊕R⊕H(M[x2])⊕ T0

= V1 ⊕ U ⊕R⊕ T0

= H(M[x1],M[z1]⊕M[y1])⊕R⊕ T0

⊕ T0 ⊕H(K[x1]⊕∆B,K[y1]⊕ K[z1]⊕ (y2 ⊕ z2)∆B)

= R

Case 4: x1 = 1, x2 = 1

Similar to the previous cases, we know that M[x1] = K[x1] ⊕ ∆B, M[x2] = K[x2] ⊕ ∆B and that
M[z1] = K[z1]⊕ z2∆B, which will be used to prove the following:

Wx1,x2 ⊕H(M[x2])⊕ Tx2

= Wx1,x2 ⊕H(M[x2])⊕ T1

= H(K[x2]⊕∆A)⊕ V0 ⊕ U ⊕R⊕H(M[x2])⊕ T1

= V0 ⊕ U ⊕R⊕ T1

= H(M[x1],M[z1])⊕R⊕ T1

⊕ T1 ⊕H(K[x1]⊕∆B,K[z1]⊕ z2∆B)

= R

Unforgeability

Lemma 6.2. If (x1 ⊕ x2) ∧ (y1 ⊕ y2) 6= (z1 ⊕ z2) then the protocol will result in an abort except
with negligible probability.

We will proceed on a case per case basis. We assume that PB is honest and that the adversary
corrupts PA. By symmetry, this would also show that the protocol would abort when PB is corrupt
and PA is honest.

Case 1: x1 = 0, x2 = 0

19

The adversary to pass the test would have to produce a pair R and W0,0 such that:

W0,0 = H(M[x2])⊕ Tx2 ⊕R
W0,0 = H(M[x2])⊕R

⊕H(K[x1],K[z1]⊕ z2∆B)

Since z1 ⊕ z2 = 1, the last line requires the adversary to compute K[z1] ⊕ z2∆B = M[z1] ⊕ ∆B.
This is equivalent to forging a mac and is thus infeasible. Alternatively, the adversary could try
to compute T0 from U0 = T0 ⊕ H(K[x1] ⊕ ∆B,K[y1] ⊕ K[z1] ⊕ (y2 ⊕ z2)∆B). Fortunately, since
K[x1]⊕∆B = M[x1]⊕∆B. This is also infeasible. This implies that an adversary cannot pass the
test.

Case 2: x1 = 0, x2 = 1

The adversary to pass the test would have to produce a pair R and W0,1 such that:

W0,1 = H(M[x2])⊕ Tx2 ⊕R
W0,1 = H(M[x2])⊕R

⊕H(K[x1],K[z1]⊕ z2∆B ⊕ K[y1]⊕ y2∆B)

However, since z1⊕ z2⊕ y1⊕ y2 = 1, the last line requires the adversary to compute K[y1]⊕K[z1]⊕
(z2 ⊕ y2)∆B = M[y1] ⊕ M[z1] ⊕ ∆B. This is equivalent to forging a mac tag which is infeasible.
Alternatively, the adversary could try to compute T1 from U1 = T1⊕H(K[x1]⊕∆B,K[z1]⊕ z2∆B).
Fortunately, since K[x1]⊕∆B = M[x1]⊕∆B. This is also infeasible. This implies that an adversary
cannot pass the test.

Case 3: x1 = 1, x2 = 0

The adversary to pass the test would have to produce R, W1,0 such that:

W1,0 = H(M[x2])⊕ Tx2 ⊕R
W1,0 = H(M[x2])⊕R

⊕H(K[x1],K[z1]⊕ z2∆B)

Since x1 = 1, the last line requires the adversary to compute K[x1] = M[x1]⊕∆B. This is equiv-
alent to forging a mac tag which is infeasible. Alternatively, the adversary could try to compute T0

from U0 = T0⊕H(K[x1]⊕∆B,K[y1]⊕K[z1]⊕ (y2⊕ z2)∆B). Fortunately, since y1⊕ y2⊕ z1⊕ z2 = 1
then K[y1]⊕K[z1]⊕ (y2⊕ z2)∆B = M[y1]⊕M[z1]⊕∆B This is also infeasible. This implies that an
adversary cannot pass the test.

Case 4: x1 = 1, x2 = 1

The adversary to pass the test would have to produce R and W1,1 such that:

W1,1 = H(M[x2])⊕ Tx2 ⊕R
W1,1 = H(M[x2])⊕R

⊕H(K[x1],K[z1]⊕ z2∆B ⊕ K[y1]⊕ y2∆B)

Since x1 = 1, the last line requires the adversary to compute K[x1] = M[x1] ⊕ ∆B. This
is equivalent to forging a mac tag which is infeasible. Alternatively, the adversary could try to

20

compute T1 from U1 = T1 ⊕ H(K[x1] ⊕ ∆B,K[z1] ⊕ z2∆B). Fortunately, since z1 ⊕ z2 = 1 then
K[z1]⊕ z2∆B = M[z1]⊕∆B. Thus, this is also infeasible.

Completed proof

Now we will proceed with the complete proof.

Lemma 6.3. The protocol in Figure 7 securely implements the functionality in Figure 5 against
corrupted PA in the (Fabit,FHaAND,FEQ)-Hybrid model.

Proof. We will construct a simulator as follows:

1 S interacts with A and receives (x1,M[x1]), (y1,M[y1]), (z1,M[z1]),K[x2],K[y2],K[r], and ∆A

that A sent to Fabit. S picks a random bit s, sets K[z2] := K[r]⊕ s∆A, and sends (x1,M[x1]),
(y1,M[y1]), (z1,M[z1]), K[x2],K[y2],K[z2],∆A) to FLaAND, which sends (x2,M[x2]), (y2,M[y2]),
(z2,M[z2]),K[x1], K[y1],K[z1],∆B) to PB.

2-3 S plays the role of FHaAND obtaining the inputs from A, namely y′1 and the value A sent,
namely u′. S uses y1 and u to denote the value that an honest PB would use. If y′1 6= y1, u

′ 6= u,
S sets g0 = 1⊕ x1, if y′1 6= y1, u

′ = u, S sets g0 = x1.

4 S sends a random U∗ to A, and receives some W0,W1 and computes some R0, R1, such
that, if x1 = 0, W0 := H(K[x2]) ⊕ V0 ⊕ R0,W1 := H(K[x2] ⊕ ∆A) ⊕ V1 ⊕ R1; otherwise,
W0 := H(K[x2])⊕ V1 ⊕ U∗ ⊕R0 and W1 := H(K[x2]⊕∆A)⊕ V0 ⊕ U∗ ⊕R1.

S also obtains R that A sent to FEQ. If R does not equal to either R0 or R1, S aborts;
otherwise S computes g1 such that R 6= Rg1 for some g1 ∈ {0, 1}.

5 S receives U , picks random W ∗0 ,W
∗
1 and sends them to A. S obtains R′ that A sent to FEQ.

• If both U,R′ are honestly computed, S proceeds as normal.

• If U is not honestly computed and that R′ = W ∗x1
⊕H(M[x1])⊕Tx1 is honestly computed,

S set g2 = 0

• If either of the following is true: 1) x1 = 0 and R′ = W ∗x1
⊕H(M[x1])⊕ U ⊕H(K[x1]⊕

∆B,K[y1]⊕(y2⊕z2)∆B); 2) x1 = 1 and R′ = W ∗x1
⊕H(M[x1])⊕U⊕H(K[x1]⊕∆B,K[z1]⊕

z2∆B), S sets g2 = 1.

• Otherwise S aborts.

6 For each value g ∈ {g0, g1, g2}, if g 6= ⊥, S sends g to FLaAND. If FLaAND abort after any
guess, S aborts.

Note that the first 3 steps are perfect simulations. However, an malicious PA can flip the value of
y1 and/or u used. According to the unforgeability proof, the protocol will abort if the relationship
(x1 ⊕ x2)∧ (y1 ⊕ y2)⊕ (z1 ⊕ z2) = 0 does not hold. Therefore, if A flip y1, it is essentially guessing
that x1 ⊕ x2 = 0; if A flip both y1 and u, it is guessing that x1 ⊕ x2 = 1. Such selective failure
attack is extracted by S and answered accordingly.

In step 4, U∗ is sent in the simulation, while Ux2 is sent. This is a perfect simulation unless
both of the input to random oracle in Ux2 get queried. This does not happen during the protocol,
since ∆B in not known to A. In step 5, W ∗0 ,W

∗
1 are sent in the simulation, while Wx2,0,Wx2,0 are

21

Bucket size 3 4 5

ρ = 40 280K 3.1K 320
ρ = 64 1.2G 780K 21K
ρ = 80 300G 32M 330K

Table 5: Least number of AND gates needed in the bucketing, for different bucket sizes and
statistical security parameters.

sent in the real protocol. This is also a perfect simulation unless PA gets ∆B: both R and one of
H(K[x1]) and H(K[x1]⊕∆B) are random.

Another difference is that PB always aborts in the simulation if Gx2,y2 is not honestly computed.
This is also the case in the real protocol unless A learns ∆B.

Lemma 6.4. The protocol in Figure 7 securely implements the functionality in Figure 5 against
corrupted PB in the (Fabit,FHaAND,FEQ)-Hybrid model.

Proof. We will construct a simulator as follows:

1. S interacts with A and receive (x2,M[x2]), (y2,M[y2]), (r,M[r]),K[x1],K[y1],K[z1],∆B that
A sent to Fabit. S picks a random bit s, sets (z2,M[z2]) := (r ⊕ s,M[z2] ⊕ s∆B), and sends
(x2,M[x2]), (y2,M[y2]), (z2,M[z2]),K[x1],K[y1],K[z1]) to FLaAND, which sends (x1,M[x1]), (y1,M[y1]),
(z1,M[z1]),K[x2], K[y2],K[z2]) to PB.

2-3 S plays the role of FHaAND and obtains y′2 A sent. S also obtains d′ sent by PB. Denoting
y′2, d as values an honest PB would use, if y′2 6= y2, d

′ 6= d, S sets g0 = 1⊕x2, if y′2 6= y2, d
′ = d,

S sets g0 = x2.

4-6 Note that step 4 and step 5 of the protocol are the same with the exception that the roles of
PA and PB are switched. We denote S′ the simulator that was defined for the case where PA

is corrupted. S will employ in step 4 the same strategy that was employed by S′ in step 5. S
will employ in step 5, the same strategy that was employed by S′ in step 4.

The first three steps are perfect simulation, with a malicious PB having a chance to perform a
selective failure attack similar to when PA is malicious. If PB flip y2, it is guessing that x1⊕x2 = 0;
if PB flip y2 and d, PB is guessing x1⊕x2 = 1. The proof for step 4 and 5 are the same as the proof
for malicious PA (with order of steps switched).

6.5 More optimizations.

Note that the protocol description in Figure 7 does not include all possible optimizations for ease
of understanding. In the following we will briefly discuss additional optimizations.

1. For clarity, R was chosen randomly in ΠLaAND. It is possible to perform garbled row reduction
so that W0,0,W1,0 are zero. This saves two ciphertexts per leaky AND.

2. Only ρ bits of the R and U values need to be sent.

22

Circuit n1 n2 n3 |C|

AES 128 128 128 6800
SHA-128 256 256 160 37300
SHA-256 256 256 256 90825

Hamming Dist. 1048K 1048K 22 2097K
Integer Mult. 2048 2048 2048 4192K

Sorting 131072 131072 131072 10223K

Table 6: Circuits used in our evaluation.

3. Since the efficiency depends on the bucket size B = ρ/ log |C|, we calculated the smallest
circuit size needed for each bucket size based on the exact formula, so that the bucket size
can be minimized. Table 5 shows the least number of AND gates needed in order to use
different bucket size(B), under different statistical security parameter (ρ).

7 Extensions and Optimizations

Reducing the size of the authenticated garbled table. In the original protocol, all MACs
and keys are κ-bit values, which may not always be necessary. For ρ-bit statistical security, M[r00]
encrypted in step 4(d) only needs to be of length ρ. Further, the bits rγ,i need not be put in the
garbled table, since the MAC M[rγ,i] is already enough for PB to learn and validate the bit. This
reduces the size of a garbled table from 8κ+ 4 bits to 4(κ+ ρ) bits.

Partial garbled row reduction. Even with the above optimization, the value Lγ,0 is still uniform,
which means we can further reduce the size of garbled tables using ideas similar to garbled row
reduction [PSSW09]. In detail, instead of picking Lγ,0 randomly, it will be set such that Lγ,0 =
H(Lα,0, Lβ,0, γ, 0)[0 : κ], where X[0 : κ] refers to the κ least-significant bits of a string X.

Pushing computation to earlier phases. For clarity of presentation, in our description of the
protocol we send {rw,M[rw]}w∈I1 and {sw,M[sw]}wI2 in steps 5 and 6. However, they can be sent
in step 4 before knowing the input, which reduces the online communication from |I|(κ+ ρ) + |O|ρ
to |I|κ+ |O|ρ.

8 Evaluation

8.1 Implementation and Evaluation Setup

We implement our protocol to verify its efficiency. In the evaluation below, the computational
security parameter is set to κ = 128, and the statistical security parameter is set to ρ = 40.
Garbling and related operations are implemented using fixed-key AES-NI operations as in Bel-
lare et al. [BHKR13]. Multithreading, Streaming SIMD Extensions (SSE), and Advanced Vector
Extensions (AVX) are also used to improve performance whenever possible.

Our implementation consists mainly of three parts:

1. Authenticated bits. The protocol to compute authenticated bits is very similar to random
OT extension [NNOB12]. Therefore, we adopt the most recent OT extension protocol by

23

LAN WAN

Ind. Phase Dep. Phase Online Total Ind. Phase Dep. Phase Online Total

AES [WMK17] - 28 ms 14 ms 42 ms - 425 ms 416 ms 841 ms
AES [NST17] 89.6 ms 13.2 ms 1.46 ms 104.3 ms 1882 ms 96.7 ms 83.2 ms 2061.9 ms

Here 10.9 ms 4.78 ms 0.93 ms 16.6 ms 821 ms 461 ms 77.2 ms 1359.2 ms

SHA1 [WMK17] - 139 ms 41 ms 180 ms - 1414 ms 472 ms 1886 ms
Here 41.4 ms 21.3 ms 3.6 ms 66.3 ms 1288 ms 603 ms 78.4 ms 1969.4 ms

SHA256 [WMK17] - 350 ms 84 ms 434 ms - 2997 ms 514 ms 3511 ms
SHA256 [NST17] 478.5 ms 164.4 ms 11.2 ms 654.1 ms 2738 ms 350 ms 93.9 ms 3182 ms

Here 96 ms 51.7 ms 9.3 ms 157 ms 1516 ms 772 ms 88 ms 2376 ms

Table 7: Comparison in the single-execution setting

LAN WAN

τ Ind. Phase Dep. Phase Online Total Ind. Phase Dep. Phase Online Total

32 - 45 ms 1.7ms 46.7 ms - 282 ms 190 ms 472 ms
[RR16] 128 - 16 ms 1.5 ms 17.5 ms - 71 ms 191 ms 262 ms

1024 - 5.1 ms 1.3 ms 6.4 ms - 34 ms 189 ms 223 ms

32 54.5 ms 0.85 ms 1.23 ms 56.6 ms 235.8 ms 5.2 ms 83.2 ms 324.2 ms
[NST17] 128 21.5 ms 0.7 ms 1.2 ms 23.4 ms 95.8 ms 3.9 ms 83.7 ms 183.4 ms

1024 14.7 ms 0.74 ms 1.13 ms 16.6 ms 42.1 ms 2.1 ms 83.2 ms 127.4 ms

32 8.9 ms 0.6 ms 0.97 ms 10.47 ms 75.2 ms 8.7 ms 76 ms 160 ms
Here 128 5.4 ms 0.54 ms 0.99 ms 6.93 ms 36.6 ms 8.4 ms 75 ms 120 ms

1024 4.9 ms 0.53 ms 1.23 ms 6.66 ms 30.0 ms 7.5 ms 76 ms 113.5 ms

Table 8: Evaluation of AES in the amortized setting. τ is the number of executions.

Keller et al. [KOS15] along with the optimization of Nielsen et al. [NST17]. The resulting
protocol requires κ+ ρ bits of communication per authenticated bit.

2. FPre functionality. In order to improve the running time, we spawn multiple threads that
each generate a set of leaky AND gates. After all leaky AND gates are generated, bucketing
and combining are done in a single thread.

3. Our protocol. The function-independent phase invokes the above two parts to generate
random AND triples with IT-MACs. In the function-dependent phase, these random AND
triples are used to construct a single garbled table. Note that in the single-execution setting,
we use only one thread to construct the garbled circuit; in the amortized setting, we use
multiple threads, each constructing a different garbled circuit for the same function but
different executions. The online phase is always done using a single thread.

Evaluation setup. Our evaluation focuses on two settings:

• LAN: Amazon EC2 with instance c4.8xlarge machines both in the North Virginia region
connected with 10 Gbps bandwidth and less than 1ms roundtrip time.

• WAN: One machine in North Virginia and one in Ireland, both of which are of the type
c4.8xlarge. Single thread communication bandwidth is about 224 Mbps; the maximum
total bandwidth is about 3 Gbps with multiple threads.

24

LAN WAN

Ind. Phase Dep. Phase Online Total Ind. Phase Dep. Phase Online Total

Hamming Dist. 1867 ms 1226 ms 74 ms 3167 ms 11531 ms 6592 ms 133 ms 18256 ms
Integer Mult. 2860 ms 1921 ms 301 ms 5081 ms 20218 ms 9843 ms 376 ms 30437 ms

Sorting 7096 ms 5508 ms 1021 ms 13625 ms 45155 ms 25582 ms 1918 ms 72655 ms

Table 9: More examples with a much larger range of input/circuit size.

In Section 8.2, we first compare the performance of our protocol with previous protocols in
similar settings; here we focus on three circuits commonly used by other works, including AES,
SHA-1, and SHA-256 (details in Table 6). Our results show that these circuits may no longer be
large enough to serve as the benchmark circuits for malicious 2PC. Therefore, in Section 8.3, we
also show the performance of our protocol on some larger circuits (see Table 6). We will make
these circuit files publicly available upon publication of our work. In Section 8.4 and Section 8.5,
we study the scalability of the protocol and compare the concrete communication complexity of
our protocol with prior work.

8.2 Comparison with Previous Work

Single-execution setting. First we compare the performance of our protocol to state-of-the-
art 2PC protocols in the single-execution setting. In particular, we compare with the protocol
of Wang et al. [WMK17], which is based on circuit-level cut-and-choose and is tailored for the
single-execution setting, as well as the protocol of Nielsen et al. [NST17], which is based on gate-
level cut-and-choose and is able to perform function-independent preprocessing. To make a fair
comparison, we ran the implementation by Wang et al. using the same hardware; the results by
Nielsen et al. are obtained from their paper, since the hardware configuration is the same. Our
reported timings do not include the time for the base-OTs for the same reason as in [NST17]: the
performance of base-OTs depends on the details of how the base-OTs are instantiated and is not
the focus of our work. For completeness, though, we note that our base-OT implementation (based
on the protocol by Chou and Orlandi [CO15]) takes about 20 ms in the LAN setting and 240 ms
in the WAN setting.

As shown in Table 7, our protocol performs better than previous protocols in terms of both
overall cost and online time. Compared with the protocol by Wang et al., we achieve a speed up
of 2.7× overall and an improvement of about 10× for online time. Compared with the protocol by
Nielsen et al., the online cost is roughly the same but our offline time is significantly better: we are
4–7× better in the LAN setting, and 1.3-1.5× better in the WAN setting.

Amortized Setting. We observed that in the amortized setting, our protocol is also better than
previous protocols. In particular, we achieve an improvement about 4.5× to 5.5× if only amortized
over 32 executions. When the number of executions grows to 1024, [NST17] is no longer better
than [RR16] in terms of total time but our protocol still outperform both protocol: in the LAN
setting, the total cost is about the same as [RR16], but most of the computation are done in
function-independent phase; in the WAN setting, we are 2× better than [RR16] in terms of total
cost and 3× better in terms of online cost.

Comparison with Lindell et al. [LPSY15]. Since the protocol by Lindell et al. is not imple-
mented, we perform a back-of-the-envelope calculation to argue that our protocol is faster. For a

25

... 221 222 223 224

Number of Bits in P1’s Input

0 0

5 5

10 10

15 15

20 20

25 25

30 30

R
un

ni
ng

T
im

e
(s

ec
on

d)
WAN, 1.56µs / bit
LAN, 0.35µs / bit

(a) Increasing PA’s input size (n1).

... 221 222 223 224

Number of Bits in P2’s Input

0 0

5 5

10 10

15 15

20 20

25 25

30 30

R
un

ni
ng

T
im

e
(s

ec
on

d)

WAN, 1.57µs / bit
LAN, 0.35µs / bit

(b) Increasing PB’s input size (n2).

... 221 222 223 224

Number of Bits in the Output

0.0 0.0

0.5 0.5

1.0 1.0

1.5 1.5

2.0 2.0

2.5 2.5

3.0 3.0

3.5 3.5

R
un

ni
ng

T
im

e
(s

ec
on

d)

WAN, 0.13µs / bit
LAN, 0.03µs / bit

(c) Increasing output size (n3).

... 221 222 223 224

Number of AND Gates

0 0

10 10

20 20

30 30

40 40

50 50

60 60

70 70

80 80

R
un

ni
ng

T
im

e
(s

ec
on

d)

WAN, 4.48µs / gate
LAN, 1.19µs / gate

(d) Increasing circuit size (|C|).

Figure 9: Scalability of our protocol. Initially input sizes and output size are all set to 128 bit
with a circuit of size 1024 gate. For each figure, one of the following values increases monotonically:
PA’s input size, PB’s input size, output size, circuit size.

circuit of size |C|, their protocol requires 5|C| SPDZ multiplications. Over a 10 Gbps network, the
recent work of Keller et al. [KOS16] can generate in principle 55,000 triples per second using an
ideal implementation that fully saturates the network. Therefore, the best end-to-end speed their
protocol can achieve in the two-party setting is 11,000 AND gates per second. On the other hand,
our actual implementation computes 833,333 AND gates per second as shown by the scalability
evaluation in Section 8.4. Therefore, our protocol is at least 75× better than the best possible
implementation of their protocol.

Comparison with linear-round protocols. The AES circuit has depth 50 [LR15]. Therefore,
even in the LAN setting with 0.5 ms roundtrip time, and ignoring all computation and communi-
cation, any linear-round protocol for securely computing AES would require at least 25 ms, which
is already 1.5× slower than our protocol.

The best linear-round protocol that allows amortization is by Damg̊ard et al. [DLT14], which
only supports parallel execution (where inputs to all executions need to be known at the same time).
They report an amortized time for evaluating AES of 14.65 ms per execution, amortized over 680
execution. This is roughly in par with our single-execution performance without any preprocessing.
When comparing their results to our amortized performance, we are more than 2× faster, and we
are not limited to parallel execution.

26

Circuit n1 n2 n3 |C|

LAN 0.35 0.35 0.03 1.19
WAN 1.56 1.57 0.13 4.48

Table 10: Scalability of the protocol. All numbers in microseconds.

8.3 Larger Circuits

As we can see from the previous section, evaluating an AES circuit takes less time than generating
the base-OT. This means that due to recent advances in 2PC, existing benchmark circuits are no
longer large enough for a meaningful evaluation. We propose three new examples and evaluate
their performance. The configuration of the circuits are shown in Table 6; we will briefly discuss
the functionality of them:

• Hamming Dist. Each party inputs a bit string of length 1048576 bits; the output of the
circuit is a 22-bit number containing the hamming distance of the two bit string from each
party. The circuit complexity is O(n) for n-bit strings.

• Integer Mult. Each party inputs a 2048-bit number; the circuit compute the multiplication
of them, ignoring the high 2048 bits of the result. The circuit complexity is O(n2) for n bit
numbers.

• Sorting. Each party inputs XOR-share of 4096 32-bit numbers; the circuit first XOR them
to recover the underlying numbers and then sort the these numbers. The circuit complexity
is O(nl log2 n) to sort n numbers each with l bits.

Table 9 shows the performance of new examples described above. We can see that the difference
of online time between LAN and WAN is about 75 ms, which is roughly the roundtrip time of
the WAN network we used. This is also consistent with the fact that our protocol requires only
one round of online communication (one message from each party). According to the Table, our
protocol is able to sort 4096 32-bit numbers in less than 14 seconds with an online time only 1
second. Other timings can be interpreted similarly.

8.4 Scalability

To explore the concrete performance of our protocol for circuits with different input, output and
circuit sizes, we conduct a scalability evaluation: we start with a circuit with input and output
sizes of 128 bits and 1024 AND gates and, at each time, increase one size monotonically up to
224 bits/gates. The result of the evaluation is shown in Figure 9. Trend lines are also included to
show the asymptotical performance. Since the bucket size of our protocol reduces as the circuit
size increases, these lines are regression of the points when the bucket size is 3.

According to the figures, our implementation scales linearly in the input, output and circuit
sizes as expected. We observe that, in the LAN setting, our protocol requires only 0.35 µs to
process each input bit and 0.03 µs to process each output bit. Note that this is much better than
circuit-level cut-and-choose protocols, mainly for two reasons: 1) Since only one garbled circuit
is constructed, only one set of garbled labels need to be transferred; this is an improvement of ρ

27

Protocol τ Ind. Phase Dep. Phase Online

[RR16]
32 - 3.8 MB 25.8 KB
128 - 2.5 MB 21.3 KB
1024 - 1.6 MB 17.0 KB

[NST17]

1 14.9 MB 0.22 MB 16.1 KB
32 8.7 MB 0.22 MB 16.1 KB
128 7.2 MB 0.22 MB 16.1 KB
1024 6.4 MB 0.22 MB 16.1 KB

1 2.86 MB 0.57 MB 4.86 KB
This 32 2.64 MB 0.57 MB 4.86 KB

Paper 128 2.0 MB 0.57 MB 4.86 KB
1024 2.0 MB 0.57 MB 4.86 KB

Table 11: Comparison of communication per execution for evaluating an AES circuit. Numbers
presented are for the amount of data sent from garbler to evaluator; this reflects the speed in
a duplex network. In the setting with a simplex network, the total communication of this work
and [RR16] should be doubled for a fair comparison.

times. 2) We do not need XOR-Tree or ρ-probe matrix to prevent selective failure, which can incur
a huge cost when the input is large [WMK17].

The figures also show that, in the WAN setting, the ratios are about 3–4× lower than the ratios
in the LAN setting. This roughly matches the ratio of network bandwidth between LAN and WAN
settings.

8.5 Communication Complexity

We also record the amount of communication used in the protocol based on our implementation.
In Table 11 we compare the amount of data sent from garbler to the evaluator with other related
works. In detail, we focused on the AES circuit with different number of executions. Our total
communication is 3× to 5× less than Nielsen et al.’s protocol. Furthermore, our cost in the
single-execution setting is even half the cost of Nielsen et al.’s protocol when amortized with 1024
executions. Note that for protocols based on cut-and-choose, the total communication to send
40 AES garbled circuit is 8.7 MB, which is already higher than the total communication of our
protocol in the single execution setting.

We also observe that our function dependent preprocessing is higher than Nielsen et al.; this is
due to the fact that we need to send 3κ + 4ρ bits per gate while they only need to send 2κ bits.
On the other hand, our online communication is extremely small: it is about 3× smaller than in
the protocol of Nielsen et al. and 3.5–5.3× smaller than the protocol of Rindal and Rosulek.

Acknowledgments

This material is based upon work supported by NSF awards #1111599 and #1563722; Samuel
Ranellucci is also supported by NSF award #1564088. The author would like to thank Roberto
Trifiletti, Yan Huang and Ruiyu Zhu for their helpful comments.

28

References

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient
oblivious transfer and extensions for faster secure computation. In 20th ACM Conf. on
Computer and Communications Security (CCS), pages 535–548. ACM Press, 2013.

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure
computation based on cut-and-choose. In Advances in Cryptology—Eurocrypt 2014,
volume 8441 of LNCS, pages 387–404. Springer, 2014.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Advances
in Cryptology—Crypto ’91, volume 576 of LNCS, pages 420–432. Springer, 1992.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient
garbling from a fixed-key blockcipher. In 2013 IEEE Symposium on Security & Privacy,
pages 478–492. IEEE, 2013.

[BMR90] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. In
22nd Annual ACM Symposium on Theory of Computing (STOC), pages 503–513. ACM
Press, 1990.

[Bra13] Lúıs T. A. N. Brandão. Secure two-party computation with reusable bit-commitments,
via a cut-and-choose with forge-and-lose technique. In Advances in Cryptology—
Asiacrypt 2013, Part II, volume 8270 of LNCS, pages 441–463. Springer, 2013.

[CKMZ14] Seung Geol Choi, Jonathan Katz, Alex J. Malozemoff, and Vassilis Zikas. Effi-
cient three-party computation from cut-and-choose. In Advances in Cryptology—
Crypto 2014, Part II, volume 8617 of LNCS, pages 513–530. Springer, 2014.

[CO15] Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer. LNCS,
pages 40–58, 2015.

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a black-
box pseudorandom generator. In Advances in Cryptology—Crypto 2005, volume 3621
of LNCS, pages 378–394. Springer, 2005.

[DLT14] Ivan Damg̊ard, Rasmus Lauritsen, and Tomas Toft. An empirical study and some
improvements of the MiniMac protocol for secure computation. In 9th Intl. Conf. on
Security and Cryptography for Networks (SCN), volume 8642 of LNCS, pages 398–415.
Springer, 2014.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Advances in Cryptology—
Crypto 2012, volume 7417 of LNCS, pages 643–662. Springer, 2012.

[FJN+13] Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Peter Sebastian
Nordholt, and Claudio Orlandi. MiniLEGO: Efficient secure two-party computation
from general assumptions. In Advances in Cryptology—Eurocrypt 2013, volume 7881
of LNCS, pages 537–556. Springer, 2013.

29

[FJN14] Tore Kasper Frederiksen, Thomas P. Jakobsen, and Jesper Buus Nielsen. Faster ma-
liciously secure two-party computation using the GPU. In 9th Intl. Conf. on Security
and Cryptography for Networks (SCN), volume 8642 of LNCS, pages 358–379. Springer,
2014.

[FJNT15] Tore Kasper Frederiksen, Thomas P. Jakobsen, Jesper Buus Nielsen, and Roberto
Trifiletti. TinyLEGO: An interactive garbling scheme for maliciously secure two-
party computation. Cryptology ePrint Archive, Report 2015/309, 2015. http:

//eprint.iacr.org/2015/309.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game, or a com-
pleteness theorem for protocols with honest majority. In 19th Annual ACM Symposium
on Theory of Computing (STOC), pages 218–229. ACM Press, 1987.

[HEKM11] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation using
garbled circuits. In 20th USENIX Security Symposium. USENIX Association, 2011.

[HKE13] Yan Huang, Jonathan Katz, and David Evans. Efficient secure two-party computation
using symmetric cut-and-choose. In Advances in Cryptology—Crypto 2013, Part II,
volume 8043 of LNCS, pages 18–35. Springer, 2013.

[HKK+14] Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex J.
Malozemoff. Amortizing garbled circuits. In Advances in Cryptology—Crypto 2014,
Part II, volume 8617 of LNCS, pages 458–475. Springer, 2014.

[HZ15] Yan Huang and Ruiyu Zhu. Revisiting LEGOs: Optimizations, analysis, and their
limit. Cryptology ePrint Archive, Report 2015/1038, 2015. http://eprint.iacr.

org/2015/1038.

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Extracting correla-
tions. In 50th Annual Symposium on Foundations of Computer Science (FOCS), pages
261–270. IEEE, 2009.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer—efficiently. In Advances in Cryptology—Crypto 2008, volume 5157 of LNCS,
pages 572–591. Springer, 2008.

[KMR14] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. FleXOR: Flexible garbling
for XOR gates that beats free-XOR. In Advances in Cryptology—Crypto 2014, Part II,
volume 8617 of LNCS, pages 440–457. Springer, 2014.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with
optimal overhead. In Advances in Cryptology—Crypto 2015, Part I, volume 9215 of
LNCS, pages 724–741. Springer, 2015.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arith-
metic secure computation with oblivious transfer. In 23rd ACM Conf. on Computer
and Communications Security (CCS), pages 830–842. ACM Press, 2016.

30

http://eprint.iacr.org/2015/309
http://eprint.iacr.org/2015/309
http://eprint.iacr.org/2015/1038
http://eprint.iacr.org/2015/1038

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates
and applications. In 35th Intl. Colloquium on Automata, Languages, and Programming
(ICALP), Part II, volume 5126 of LNCS, pages 486–498. Springer, 2008.

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adver-
saries. In Advances in Cryptology—Crypto 2013, Part II, volume 8043 of LNCS, pages
1–17. Springer, 2013.

[LOP11] Yehuda Lindell, Eli Oxman, and Benny Pinkas. The IPS compiler: Optimizations,
variants and concrete efficiency. In Advances in Cryptology—Crypto 2011, volume 6841
of LNCS, pages 259–276. Springer, 2011.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party com-
putation in the presence of malicious adversaries. In Advances in Cryptology—
Eurocrypt 2007, volume 4515 of LNCS, pages 52–78. Springer, 2007.

[LP11] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-
and-choose oblivious transfer. In 8th Theory of Cryptography Conference—
TCC 2011, volume 6597 of LNCS, pages 329–346. Springer, 2011. Available at
http://eprint.iacr.org/2010/284.

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient con-
stant round multi-party computation combining BMR and SPDZ. In Advances in
Cryptology—Crypto 2015, Part II, volume 9216 of LNCS, pages 319–338. Springer,
2015.

[LR14] Yehuda Lindell and Ben Riva. Cut-and-choose Yao-based secure computation in the
online/offline and batch settings. In Advances in Cryptology—Crypto 2014, Part II,
volume 8617 of LNCS, pages 476–494. Springer, 2014.

[LR15] Yehuda Lindell and Ben Riva. Blazing fast 2PC in the offline/online setting with secu-
rity for malicious adversaries. In 22nd ACM Conf. on Computer and Communications
Security (CCS), pages 579–590. ACM Press, 2015.

[MNPS04] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-party compu-
tation system. In Proc. 13th USENIX Security Symposium, pages 287–302. USENIX
Association, 2004.

[MOR16] Payman Mohassel, Ostap Orobets, and Ben Riva. Efficient server-aided 2PC for mobile
phones. Proc. Privacy Enhancing Technologies, 2016(2):82–99, 2016.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Advances
in Cryptology—Crypto 2012, volume 7417 of LNCS, pages 681–700. Springer, 2012.

[NO09] Jesper Buus Nielsen and Claudio Orlandi. LEGO for two-party secure computation.
In 6th Theory of Cryptography Conference—TCC 2009, volume 5444 of LNCS, pages
368–386. Springer, 2009.

31

[NO16] Jesper Buus Nielsen and Claudio Orlandi. Cross and clean: Amortized garbled circuits
with constant overhead. In Theory of Cryptography: 14th International Conference,
TCC 2016-B, Beijing, China, October 31-November 3, 2016, Proceedings, Part I, pages
582–603, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[NST17] Jesper Nielsen, Thomas Schneider, and Roberto Trifiletti. Constant-round maliciously
secure 2PC with function-independent preprocessing using LEGO. In Network and
Distributed System Security Symposium (NDSS), 2017.

[PSSW09] B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure two-party computation is
practical. In Advances in Cryptology—Asiacrypt 2009, volume 5912 of LNCS, pages
250–267. Springer, 2009.

[RR16] Peter Rindal and Mike Rosulek. Faster malicious 2-party secure computation with
online/offline dual execution. In Proc. 25th USENIX Security Symposium, pages 297–
314. USENIX Association, 2016.

[SS11] Abhi Shelat and Chih-Hao Shen. Two-output secure computation with malicious ad-
versaries. In Advances in Cryptology—Eurocrypt 2011, volume 6632 of LNCS, pages
386–405. Springer, 2011.

[WMK17] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. Faster two-party computation
secure against malicious adverstries in the single-execution setting. In Advances in
Cryptology—Eurocrypt 2017, LNCS. Springer, 2017.

[Yao86] Andrew C.-C. Yao. How to generate and exchange secrets. In 27th Annual Symposium
on Foundations of Computer Science (FOCS), pages 162–167. IEEE, 1986.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In Advances in Cryptology—Eurocrypt 2015,
LNCS, pages 220–250. Springer, 2015.

32

	Introduction
	Other Related Work

	Notation and Preliminaries
	Information-theoretic MACs

	Protocol Intuition
	Our Framework and Its Instantiations
	Protocol in the [Pre]-Hybrid Model
	Instantiating [Pre]

	Proof of Security
	Improved TinyOT protocol
	Half Authenticated AND
	New TinyOT Protocol
	Intuition
	Proof Sketch
	More optimizations.

	Extensions and Optimizations
	Evaluation
	Implementation and Evaluation Setup
	Comparison with Previous Work
	Larger Circuits
	Scalability
	Communication Complexity

