
Practical Non-Malleable Codes from `-more Extractable Hash

Functions

Aggelos Kiayias∗†, Feng-Hao Liu§, and Yiannis Tselekounis∗‡

†Univ. of Edinburgh, email: akiayias@inf.ed.ac.uk
§Florida Atlantic University, email: fenghao.liu@fau.edu
‡Univ. of Edinburgh, email: ytselekounis@ed.ac.uk

May 20, 2018

Abstract

In this work, we significantly improve the efficiency of non-malleable codes in the split
state model, by constructing a code with codeword length |s|+O(k), where |s| is the length
of the message, and k is the security parameter. This is a substantial improvement over
previous constructions, both asymptotically and concretely.

Our construction relies on a new primitive which we define and study, called `-more
extractable hash functions. This notion, which may be of independent interest, guaran-
tees that any adversary that is given access to ` ∈ N precomputed hash values v1, . . . , v`,
and produces a new valid hash value ṽ, then it must know a pre-image of ṽ. This is a
stronger notion that the one by Bitansky et al. (Eprint ’11) and Goldwasser et al. (ITCS
’12, Eprint ’14), which considers adversaries that get no access to precomputed hash values
prior to producing their own value. By appropriately relaxing the extractability requirement
(without hurting the applicability of the primitive) we instantiate `-more extractable hash
functions under the same assumptions used for the previous extractable hash functions by
Bitansky et al. and Goldwasser et al. (a variant of the Knowledge of Exponent Assumption).

Keywords. Non-malleable codes, hash functions, split-state model.

∗Research partly supported by ERC project CODAMODA (# 259152) and H2020 project PANORAMIX (#
653497).

Contents

1 Introduction 2
1.1 Our Results . 3
1.2 Technical Overview . 5
1.3 Related work . 7

2 Preliminaries 8

3 `-more extractable hash function families 10

4 A non-malleable code against split-state tampering 11

5 Constructing 1-more extractable hash functions 17
5.1 1-more extractable hash functions from RSS-NM codes against affine functions . 17
5.2 Constructing RSS-NM codes . 20
5.3 Our resulting instantiation . 22

6 Constructing `-more extractable hash 22

7 Instantiating authenticated encryption 22

A Preliminaries and Definitions 26
A.1 Basic notions . 26
A.2 Randomness extractors and universal hash function families 28
A.3 Instantiating authenticated, semantically secure symmetric encryption, against

one time leakage . 29
A.4 Multi-codeword Randomness Simulatable NMC 31

B Proofs 31
B.1 Proof of Lemma 3.2 . 31
B.2 Proof of Lemma 3.5 . 32
B.3 Proof (sketch) of Lemma 6.2 . 33

1 Introduction

Non-malleable codes were introduced by Dziembowski et al. [35] as a relaxation of error cor-
rection and error detection codes. They provide security in the following sense: any modified
codeword decodes to the original message or to a completely unrelated one, with overwhelming
probability. Non-malleability is defined through a simulation-based definition, which informally
states that, for any tampering function f , we require the existence of a simulator that simu-
lates the tampering effect, by only inspecting f , i.e., without making any assumptions on the
distribution of the encoded message.

Various applications of non-malleable codes have been proposed, such as CCA secure encryp-
tion schemes [23], non-malleable commitments [5], and most notably, their application against
malicious modification attacks, also known as tampering attacks. Indeed, using non-malleable
codes to secure implementations against tampering attacks was the motivation in the original
work by Dziembowski et al. [35]. Due to their important application, constructing non-malleable
codes has drawn a lot of attention, as we elaborate below.

The split-state model [35, 51]. Ideally, we would like to achieve non-malleability against
arbitrary function classes, yet, this task is not achievable, as it is also not achievable in the
case of error correction/detection codes. As discussed in [35], assuming a tampering function f
that computes the decoding of the codeword c = Enc(s), where s is the private message, and
computes c̃ = Enc(s+ 1), we receive a tampered codeword, c̃, that decodes to a message, highly

2

related to the original one. Therefore, no secure construction can exist against any function
class that contains f , which concludes that, restricting the function class, is inherent.

Motivated by the above, various function classes have been studied, and in particular, the
split-state function class has been identified and extensively studied in the literature. Briefly
speaking, in the split-state model, private memory is split in two parts, L, R, and the attacker
may apply any function f = (f1, f2) that results in a tampered memory equal to (f1(L), f2(R)).
This is a plausible model since in many cases sensitive data may be split in two storage devices
that are physically separated. Note that the model can generalize to multiple split states, with
the two-state variant being the hardest to achieve; we only consider the two state variant in this
paper.

Broadly speaking, (explicit) constructions of non-malleable codes in the split-state model can
be categorized into information-theoretic and computational.1 In a recent breakthrough result
[4], Aggarwal et al. provide the first polynomial-time, information-theoretic, non-malleable code
for multi-bit messages, thus significantly improving over the work of [34], which only supports
single-bit messages. The encoder produces codewords of length O((|s|+ k)7), where |s| denotes
the length of the encoded message, s, and k is the security parameter.2 Later Aggarwal et al. [3]
proposed another construction that achieves codeword length roughly O(|s|) (for sufficiently
large |s|).3

In the computational setting, Liu and Lysyanskaya [51] construct a non-malleable code us-
ing cryptographic tools such as leakage resilient public-key encryption [54], and robust non-
interactive zero-knowledge (NIZK) proofs [31]. The rate of their construction is not given in the
original paper and a textbook instantiation with public-key encryption combined with NIZKs,
would not yield a rate 1 code; however, using state of the art tools, we can provide a better
instantiation of [51], with codeword length |s| + O(k2), see Table 1.1. Recently, Aggarwal et
al. [2] presented a compiler that transforms any low rate, non-malleable code, to a rate 1, com-
putationally secure, non-malleable code. The underlying encoding must satisfy a notion, strictly
stronger than non-malleability, called augmented non-malleability, which, as it is stated in [2],
can be satisfied by the construction of [4]. Thus, by instantiating the compiler of [2] with the
construction of [4], the codeword’s length becomes |s|+O(k7).

Although the above constructions achieve “rate 1” asymptotically, i.e., the ratio of message
to codeword length is 1, as the message length, |s|, goes to infinity, in practice, the induced
overhead can still be too large, when considering short messages (e.g., a 160-bit cryptographic
key), even without counting the potentially large hidden constants in the asymptotic notation.
Thus, even though the problem of “optimal-rate” has been solved in theory, it is still unclear
what the practical implications of those constructions are. Given the current state of the art,
as discussed above, constructing codes with very small overhead, including the hidden constant,
remains still one of the most important open questions in the area. Note, that the natural lower
bound for code length is merely |s|+ k, and none of the known, computational or information-
theoretic, constructions, match it, even asymptotically.

1.1 Our Results

In this work, we tackle the challenge to construct truly efficient non-malleable codes in the
split-state model. To achieve this goal, we introduce a new cryptographic primitive, called `-
more extractable hash function family, and then we construct an efficient code, using our new
tool. Our approach is modular: first we propose and formalize `-more extractable hash function
families, and then we demonstrate their application to non-malleable codes.

1The work of [35] showed that in the random oracle model, there exist efficient non-malleable codes against
split-state tampering functions. However, their approach uses a probabilistic argument thus providing only a
proof of existence and not an explicit construction. Therefore, their random oracle result does not count as an
explicit construction. Currently, there is no known explicit constructions in the random oracle model to our
knowledge. We note that in this work we do not consider the random oracle model as we model the tampering
function to have non-black box access to the hash function.

2The result of [4] can be further improved assuming specific conjectures.
3 The hidden constants might be “astronomical” as they depend on results in additive combinatorics, as

pointed out in the conclusion of their work [3].

3

Briefly speaking, `-more extractable hash function families capture the idea that, if an ad-
versary, given ` hash values v1, . . . , v`, produces a new valid hash value ṽ, then it must know a
pre-image of ṽ. This is a generalization of the notion of extractable hash functions by Bitansky
et al. [11] and Goldwasser et al. [61], which corresponds to the ` = 0 case (i.e., the adversary gets
no access to valid hash values, prior to producing its own value), and is somewhat reminiscent
of the strengthening of simulation-soundness in the context of zero-knowlege proofs [60]. Our
generalization is strict: we prove the following (informally stated):

Theorem 1.1 (Informal). Extractable hash 6=⇒ 1-more extractable hash.

The subtlety comes from the fact that the `-more attacker might get an “unfair advantage”
in producing a valid hash value, for which it does not possess a pre-image, because of the `
additional inputs; e.g., by modifying the vi’s in some suitable way. Indeed, we show that the
extractable hash function family of Bitansky et al. [11] is easily malleable, and thus exploitable
by “1-more” attackers. This demonstrates that our new notion of `-more extractability might
be different than the previous one.

Our next step is to achieve this notion. We show that, by requiring the attacker not only to
produce a valid hash ṽ but also to come up with a valid pre-image for ṽ, `-more extractability
can be achieved under the same assumptions used by the construction of Bitansky et al. [11], i.e.,
a variant of the Knowledge of Exponent Assumption (KEA) and DLog. Thus, we conclude
that KEA and DLog are still sufficient to achieve `-more extractable hash functions with a
weaker form of extractability.

Theorem 1.2 (Informal). DLog and (a variant of) KEA imply `-more extractable hash.

We remark that KEA is non-falsifiable (cf. [53]), and it is indeed a strong assumption.
However, one can argue that non-falsifiability might be inherent for extractable hash functions,
and thus `-more extractability. We recall that Bitansky et al. [11] showed that, extractable
hash function families imply succinct non-interactive argument of knowledge (SNARK), and
Gentry and Wichs [43] showed that SNARK is unlikely to be constructed based on falsifiable
assumptions. Thus, non-falsifiable assumptions are likely to be inherent for achieving (`-more)
extractability. We note that some variants of KEA were shown to contradict (public-coin)
differing-inputs obfuscation and indistinguishability obfuscation [13, 14]; the variant we use is
suitably defined to circumvent this contradiction.

Next, we construct non-malleable codes using `-more extractable hash functions. The crux of
our methodology is to adapt the “public-key-encrypt-and-prove” method of [51], using our new
`-more extractable hash, yielding effectively a “(one-time-symmetric-key-encrypt)-and-hash” ap-
proach for obtaining non-malleable codes. In particular, we prove the following (informally
stated):

Theorem 1.3 (Informal). `-more extractable hash (with some additional properties) implies
non-malleable codes in the split-state model.

Our scheme produces codewords of length |s|+9 ·k+2 · log2(k) (or |s|+18k depending on the
instantiation, cf. Sections 7, A.3). In Table 1.1 we compare our construction with the current
state of the art on the split-state setting. Our scheme is truly efficient in terms of codeword
length, and it is one order of magnitude better than the combination of [51] + [2] + [54] + [45],
which is the most competitive scheme that can be constructed,4 based on the current state of
the art. We note that, existing constructions in the information-theoretic setting, such as [3,4],
and the work built on top of them, e.g., [2], might require very large constants, inherited by the
results in additive combinatorics (cf. conclusion of the work [3]).

4For the sake of this comparison, we instantiate [51] with the efficient zero-knowledge proofs of [45] and the
leakage resilient public-key encryption of [54]; moreover we observe that the resulting code is compatible with the
compiler of [2] (it satisfies “augmented non-malleability”, a property defined in the latter paper) and thus we can
make the resulting system rate 1. This provides codeword length |s| + O(k2), cited in Table 1.1.

5The size of the CRS is O(k), see [45]. The size of the CRS in our construction is roughly 32k bits, cf.
Section 4. CRS size is independent of |s|.

4

Scheme Codeword length Model Assumption

[4] O
(
(|s|+ k)7 log7(|s|+ k)

)
Information-theoretic N/A

[3]3 O(max{|s|, k}) Information-theoretic N/A

[4] + [2] |s|+O
(
k7
)

Computational Authenticated Encryption (AE)

[51] + [2] + [54] + [45] |s|+O
(
k2
)

Computational, CRS5 Leakage-Resilient PKE + robust NIZK

This work |s|+ 9 · k + 2 · log2(k) Computational, CRS 1-time Leakage-Resilient AE + KEA

Table 1: Comparison of multi-bit NMC’s in the split-state model. k is the security parameter.
In the information-theoretic setting, typically security breaks with probability ε = 2−Ω(k); in the
computational setting, we have ε = negl(k), e.g., ε = k−ω(1) or 2−Ω(k), depending on how strong
the underlying computational assumption is.

1.2 Technical Overview

Concepts of extractability and `-more extractability. Informally, a family of functions,
H, is extractable, if for a uniform h ∈ H, sampling an element v ∈ Image(h), without actually
evaluating the function on a pre-image s, such that h(s) = v, is infeasible. This idea is formalized
in the following way: for any algorithm Av, there exists an extractor EAv , such that, if Av
produces some v ∈ Image(h), EAv outputs s, such that h(s) = v. Clearly, such families are
interesting only if they posses some sort of hardness property, like one-wayness, otherwise the
problem is trivial.

In this work, we introduce the notion of `-more extractable hash function families, for which
the extractability property holds, even if Av is given access to ` valid hash values. Even though
`-more extractability looks similar to extractability (0-more extractability in our definition), we
provide a separation between those two primitives. Before explaining further details, we first
recall the underlying assumption, t-KEA, and the construction of Bitansky et al. [11].

t-KEA and the extractable hash function family of [11]. Assuming a group G, of prime
order p, the Knowledge of Exponent Assumption (KEA), introduced by Damg̊ard [30], states
the following: any adversary that is given a generator, g, of G, and a random group element ga,
produces the pair (gs, gas), only if it “knows” the exponent s. The assumption was later extended
by [9, 46], by requiring that, given gr1 , gar1 , gr2 , gar2 , it is infeasible to produce v = gr1s1+r2s2

and va, without “knowing” s1, s2. This assumption, generalized for t = poly(log |G|) pairs gri ,
gari , is referred to as t-KEA by [11].

An element from the hash function family of [11] is described by the pair (gr, gar), for
uniformly random vector r, and element a. Note that, gr denotes the value (gr1 , . . . , grt), where
r = (r1, . . . , rt). The hash of a message s = (s1, . . . , st), is the pair (g〈r,s〉, ga〈r,s〉), where 〈r, s〉
denotes the inner product of r, s. It is not hard to see that the hash value can be computed
efficiently given the message and the description of the hash function, and assuming the t-KEA,
the above hash function family is extractable, or in our terminology, 0-more extractable. As we
argue in the next paragraph, this family is not 1-more extractable, and thus, extractability does
not imply `-more extractability.

1-more Extractable Collision Resistant Hash (ECRH). Suppose the adversary receives
a hash value v = h(s) = (g〈r,s〉, ga〈r,s〉), for some unknown message s, and then computes
v′ = vx = (g〈r,xs〉, ga〈r,xs〉), for some non-zero x, of its choice. Clearly, the new hash value v′

equals h(xs), and thus, it is valid. Then, assuming an extractor for the current family, under
the “1-more” setting, we can retrieve the original message s, by first extracting xs and then
dividing it by x. This idea can be turned into a DLog solver, and thus, assuming the hardness
of DLog with respect to G, we show in Lemma 3.5, that the above construction is not 1-more
extractable.

Next we present our strategy for constructing 1-more ECRH. Our main observation is that,
even though the above hash function family is malleable, the modified hash value, v′, has some
structure: it is the hash value of the message yielded after applying an affine transformation on
the original message, s, (in the above case, the affine transformation was x · s). Interestingly, we
show that under the t-KEA, applying an affine transformation is the only thing the adversary
can do! In particular, we show that, if the adversary outputs a valid, new hash value, v′, then

5

there exists an extractor that extracts an affine transformation on the underlying message. So, in
order to make the hash non-malleable (and then 1-more extractable), we first encode c← Enc(s)
using a non-malleable code against affine functions, and then we compute v = (g〈r,c〉, ga〈r,c〉).
This approach can be viewed as a computational analogue of a non-malleable reduction, as
previously used by [4], and then formally presented by [3] (both are in the information-theoretic
setting).

It turns out that, in order to apply the methodology described above, a slightly stronger
flavor of non-malleability is required for the underlying code, which we formalize as randomness
simulatable non-malleable codes. Below, we briefly discuss this notion and we give the main idea
of the proposed scheme.

Randomness simulatable NM codes against affine tampering. This notion of non-
malleability is stronger than the standard one, in the sense that, besides simulating the pre-image
of the tampered codeword, s̃, the simulator, also produces the randomness of the encoder, s̃r,
such that the encoding of s̃ with randomness s̃r, produces the tampered codeword. The main
idea of our construction method is given in the next paragraph.

For any message s, the encoder secret shares s into (s1, s2), using a two-out-of-two, additive,
secret sharing scheme, and outputs c = (s1, s2, s

2
1, s

2
2). Then, for any codeword c = (s1, s2, s

′
1, s
′
2),

decoding proceeds as follows: if s2
i = s′i, for i ∈ {1, 2}, the decoder outputs s1 + s2, otherwise,

it outputs ⊥. An affine tampering function, f , against the code is described by the pair (b, d),
and the application of f on a codeword c, yields the codeword d ·c+b. We prove security of the
above code by considering the following cases (roughly). If d = 0, then the tampered codeword
is completely overwritten by b, and clearly, the output of the decoder depends only on b. If
d 6= 0, then, we argue that, either the attack leaves the codeword intact, i.e., d = 1,b = 0, or
the decoding of the tampered codeword is ⊥, with overwhelming probability.

In Section 5.2, we formally define randomness simulatable, non-malleable codes, and prove
security for the proposed scheme. It is worth to point out that the idea of constructing a
NM-code for affine functions, as an intermediate step for providing split-state codes, was also
followed by [4], still, our technique differs significantly, and their code does not directly satisfy
our requirements. Moreover, in [24] the authors construct AMD codes, still their notions are
slightly different and do fit in our framework.

NM codes against split-state tampering. Our construction of non-malleable codes is in-
spired by the one of Liu and Lysyanskaya [51], so we first recall their construction. To encode
a message s, their encoder outputs (sk, (pk,Epk(s), π)), where E is the encryption algorithm of a
leakage resilient, semantically secure, public-key encryption scheme (KGen,E,D), sk, pk, denote
the secret key and public key, respectively, and π is a non-interactive proof of knowledge (robust
NIZK), that proves the existence of a valid secret key, decrypting the ciphertext to the message
s.

Our construction significantly improves the efficiency of [51] by refining their approach: (1)
we replace the leakage resilient public key encryption with a one-time, symmetric-key, leakage
resilient authenticated encryption; (2) we replace the (robust) NIZK proof with our 1-more-

ECRH. Our encoder works as follows: to encode a message s, the encoder outputs
(

(r, sk), (e =

Esk(s), v = h(r, sk))
)

, where E is the encryption algorithm of a symmetric, leakage resilient

authenticated encryption scheme, sk is the secret key and h is a (randomized) 1-more ECRH.
Here the reader can easily observe that, using a function h that is extractable, or in our

terminology, 0-more extractable, is not a good idea. Since generic authenticated encryption
schemes guarantee security only if the secret key remains the same, it is possible to break security
if one modifies sk as well. In fact, it is possible to construct an authenticated encryption such
that it becomes insecure if the secret key is modified. Therefore, if the hash is malleable, then
the tampering function may compute (e′ = Esk′(s + 1), v′ = h(r, sk′)), where the sk′ is a bad key
that does not provide security. The tampered codeword clearly decodes to a related message,
and thus cannot be non-malleable. Our 1-more extractability property resolves this issue: even
if the attacker is given access to a valid hash value v, it cannot produce a valid hash value v′,

6

unless it knows a valid pre-image. Proving security for the above construction requires to handle
multiple subtleties, and we refer the reader to Section 4 for further details.

Putting things together. We construct a one-time, symmetric, leakage resilient authenticated
encryption scheme, that in order to sustain 2 · k + log2 k bits of leakage, it requires key and
ciphertext length |s|+ 5 ·k+ 2 · log2(k) (cf. Sections 7, A.3)). In addition, for our 1-more ECRH
we have |r| = |v| = 2k (see Constructions 5.8 and 5.2). Therefore, the total codeword length is
|s| + 9 · k + 2 · log2(k) (or |s| + 18k, cf. A.3). The encoding and decoding procedures require
128 group operations (64 exponentiations plus 64 multiplications), independently of the message
length, plus the cost of one-time authenticated encryption and decryption, respectively.

1.3 Related work

The first non-malleable code in the split-state model, for the information-theoretic setting was
proposed by [34], yet their scheme can only encode single-bit messages. Subsequent construc-
tions for multi-bit messages are discussed in the previous section. Non-malleable codes for
other function classes have been extensively studied, e.g., bit-wise independent tampering [35],
bounded-size function classes [39], the k-split setting [20], block-wise tampering [18, 22], and
bounded depth and fan-in circuits [6]. The work of [3] develops beautiful connections among
different function classes.

Other aspects of non-malleable codes have also been studied, such as rate-function class
tradeoff, in the information-theoretic setting [21]. Other variants of non-malleable codes have
been proposed, such as continuous non-malleable codes [37], augmented non-malleable codes [2],
locally decodable/updatable non-malleable codes [19, 27, 28, 38], which were used to secure the
implementation of RAM computation, and non-malleable codes with split-state refresh [36].
Leakage resilience was also considered as an additional feature, e.g., [19, 28,36,51].

A related line of work in tamper resilience aims to protect circuit computation against tam-
pering attacks on circuit wires [25, 26, 40, 48] or gates [50]. In this setting, using non-malleable
codes for protecting the circuit’s private memory is an option, still in order to achieve security
the encoding and decoding procedures should be protected against fault injection attacks using
the techniques from [25,26,40,48,50].

KEAs and previous work. In [30], Damg̊ard introduces KEA to construct a CCA-secure
encryption scheme. In [9, 46], the authors extend the assumption of [30], and construct three-
round, zero-knowledge arguments. Abe and Fehr [1] construct the first perfect NIZK for NP with
adaptive soundness, by extending the assumption of [9]. Prabhakaran and Xue [59] constructed
statistically-hiding sets for trapdoor DDH groups [32], by introducing a new knowledge assump-
tion. Gennaro et al. [42] proved that a modified version of the Okamoto-Tanaka key-agreement
protocol [56] satisfies perfect forward secrecy against fully active attackers, by introducing a
new knowledge assumption. In [10–12, 41, 44], the authors construct succinct, non-interactive,
arguments of knowledge (SNARKs), and NIZKs, while in [52], Mie presents a private informa-
tion retrieval (PIR), scheme. In [15, 16, 29], Canetti and Dakdouk provide an extensive study
on extractable functions. In [57], Parno et al. show how to perform verifiable computation,
efficiently.

In [13, 14], the authors show that, assuming indistinguishability obfuscation [8], extractable
one-way functions, and thus ECRHs, does not exist against adversaries receiving arbitrary,
polynomial-size, auxiliary input, if the extractor is fixed before the attacker’s auxiliary input.
On the other hand, they show that, under standard assumptions, extractable one-way functions,
may exist against adversaries with bounded auxiliary input.

In this work, and as it is suggested by [13], we consider individual auxiliary, i.e., we allow
the auxiliary info of the extractor to depend on the attacker’s auxiliary info, and therefore, we
do not contradict the impossibility results of [13,14].

7

2 Preliminaries

In this section we present basic primitives and notation that we use in our constructions.

Definition 2.1 (Notation). N+, R+, denote the set of positive natural and real numbers, re-
spectively. For t ∈ N+, [t] is the set {1, . . . , t}. For vectors x,y, 〈x,y〉 is the inner product of
x, y, and [x]i is the i-th coordinate of x. For strings x, y, x||y, is the concatenation of x, y,
and |x| denotes the length of x. For a distribution D over a set X , x← D, denotes sampling an

element x ∈ X , according to D, x
$← X , denotes sampling a uniform element x, from X , and UX

denotes the uniform distribution over X . The statistical distance between two random variables
X, Y , with range D, is denoted by ∆(X,Y), i.e., ∆(X,Y) = 1

2

∑
u∈D |Pr[X = u]− Pr[Y = u]|.

Moreover, “≈” and “≈c”, denote statistical and computational indistinguishability, respectively.
A function f : N→ R+ is negligible, if for every positive polynomial poly(·), and all sufficiently
large k, f(k) ≤ 1/poly(k), and negl(k) denotes an unspecified, negligible function, in k. For a
random variable X, H∞(X) and H̃∞(X), denote the min-entropy, and average min-entropy, of
X, respectively. Finally, for any element g and vector r = (r1, . . . , rt), g

r = (gr1 , . . . , grt).

Below, we define coding schemes, based on the definitions of [35,51].

Definition 2.2. (Coding scheme in the Common Reference String (CRS) Model [51])
A (κ, ν)-coding scheme in the CRS model, κ, ν ∈ N, is a triple of algorithms (Init,Enc,Dec) such
that: Init is a randomized algorithm which receives 1k, where k denotes the security parameter,
and produces a common reference string Σ ∈ {0, 1}poly(k), and (Enc(1k,Σ, ·),Dec(1k,Σ, ·)) is a
(κ, ν)-coding scheme, κ, ν = poly(k).

For brevity, 1k will be omitted from the inputs of Enc and Dec. In Section A of the Appendix
we provide the standard definitions of coding schemes and non-malleability. Now we state the
definition of strong non-malleability in the CRS model based on the definitions of [35,51].

Definition 2.3 (Strong non-malleability in the CRS model [35, 51]). Let (Init,Enc,Dec) be a
(κ, ν)-coding scheme in the common reference string model, and F be a family of functions
f : {0, 1}ν → {0, 1}ν . For any CRS Σ, f ∈ F and s ∈ {0, 1}κ, define the tampering experiment

TamperΣ,fs
def
=

{
c← Enc(Σ, s), c̃← fΣ(c), s̃ = Dec(Σ, c̃)
Output same∗ if c̃ = c, and s̃ otherwise.

}
which is a random variable over the randomness of Enc and Dec. The coding scheme (Init,Enc,Dec)
is strongly non-malleable with respect to the function family F , if for each f ∈ F and any s0,
s1 ∈ {0, 1}κ, {(

Σ,TamperΣ,fs0

)}
k∈N
≈
{(

Σ,TamperΣ,fs1

)}
k∈N

,

where Σ← Init(1k), and “≈” may refer to statistical, or computational, indistinguishability, with
parameter k.

According to the standard definition of non-malleability, the decoding procedure is not ran-
domized, however, as it is suggested by Ball et al. [6] Dec may be randomized.

Next we state the t-variant, due to [11], of the Knowledge of Exponent assumption (KEA),
[9, 30, 46], with individual auxiliary inputs for adversary and extractor, which is known not to
contradict the impossibility results of [13,14].

Assumption 2.4 (t-KEA assumption). Let t ∈ N. There exists a group generation algorithm
G, such that for any pair (G, g) sampled according to G(1k), where G is a group of prime order
p ∈ (2k−1, 2k), the following holds: for any PPT algorithm A with auxiliary input auxA ∈
{0, 1}poly(k), there exist PPT extractor EA with auxiliary input auxE ∈ {0, 1}poly(k), such that for
all sufficiently large k ∈ N,

Pr
(G,g)←G(1k)

(a,r)
$←Zp×Zt

p

[
(v, v′)← A(gr, gar, auxA), v′ = va :

x← EA(gr, gar, auxE) ∧ g〈r,x〉 6= v

]
≤ negl(k).

8

Below, we define the class of affine functions.

Definition 2.5 (The function family Faff). For any set M and any t ∈ N+, we define the
following function class

Faff = {f(s) = d · s + b | b, s ∈Mt, d ∈M}.

Next we recall the definition of extractable hash of [11]. The definition can be modified to
have different auxiliary inputs for adversary and extractor as the t-KEA above.

Definition 2.6 (Extractable hash [11]). An efficiently samplable hash function ensemble H =
{Hk}k∈N is extractable, if for any PPT algorithm A, there exists a PPT extractor EHA , such that
for all large k ∈ N and any auxiliary input aux ∈ {0, 1}poly(k):

Pr
h←Hk

[
y ← A(h, aux),∃x : h(x) = y :
x′ ← EHA (h, aux) ∧ h(x′) 6= y

]
≤ negl(k).

Below, we define the split-state functions class, Fss, and the λ-bit leakage function class Lλ.
A definition for split-state leakage functions was considered in [51].

Definition 2.7 (The split-state function family Fss). For any, even, ν ∈ N and any efficiently
computable function f : {0, 1}ν → {0, 1}ν , f ∈ Fss, if there exist efficiently computable functions
f1 : {0, 1}ν/2 → {0, 1}ν/2, f2 : {0, 1}ν/2 → {0, 1}ν/2, such that for every x1, x2 ∈ {0, 1}ν/2 ×
{0, 1}ν/2, f(x1||x2) = f1(x1)|| f2(x2).

Definition 2.8 (The λ-bit leakage function class Lλ). For any λ ∈ N, Lλ is the set of the
efficiently computable functions that output λ bits, i.e., for any g ∈ Lλ, g : {0, 1}∗ → {0, 1}λ.

Next, we state the definition of semantically secure authenticated encryption, against one
time leakage.

Definition 2.9. (Semantically secure authenticated encryption against one time leak-
age) Let k be the security parameter, let (KGen,E,D) be a symmetric encryption scheme and
let L be a set of functions. Then, (KGen,E,D) is authenticated, semantically secure against
one-time leakage with respect to L, if

1. (Correctness): For every message s, Pr[Dsk(Esk(s)) = s] = 1, where sk← KGen(1k).

2. (Semantic security): for any function g ∈ L and any two messages s0, s1, the following
distributions are (either computationally or statistically) indistinguishable:(

Esk(s0), g(sk)
)
≈
(
Esk(s1), g(sk)

)
,

where sk← KGen(1k).

3. (Unforgeability): For every PPT algorithm A = (A1,A2),

Pr

[
e′ 6= e ∧ Dsk(e′) 6= ⊥

∣∣∣∣ sk← KGen(1k); (s, st)← A1(1k);
e← Esk(s); e′ ← A2(e, st)

]
≤ negl(k).

Here, it should be noted that the leakage function is being defined by the attacker before
receiving the challenge ciphertext, otherwise semantic security breaks.

9

3 `-more extractable hash function families

In this section we define the notion of `-more extractable hash function families, and we provide
a general discussion on the primitive.

Definition 3.1 (`-more extractable hash function families). For ` ∈ N, an efficiently samplable
hash function ensemble H = {Hk}k∈N, is `-more extractable, if for any PPT algorithm Av and
any auxAv ∈ {0, 1}poly(k), there exist a PPT extractor EHAv

and auxE ∈ {0, 1}poly(k), such that for
all PPT algorithms As, any large k ∈ N and any vector of messages s = (s1, . . . , s`),

Pr
hz←Hk

[
Exps,hzAv ,As,EHAv

(`, auxAv , auxE) = 1

]
≤ negl(k),

where,

Exps,hzAv ,As,EHAv

(`, auxAv , auxE) :

∀i ∈ [`], sri ← U{0,1}poly(k) , vi = hz(sri , si) (hash computation)

sr = (sr1 , . . . , sr`),v = (v1, . . . , v`)
(ṽ, st)← Av(hz,v, auxAv) (hash tampering)
(ŝr, ŝ)← EHAv

(hz,v, auxE) (pre-image extraction)

(s̃r, s̃)← As (hz, sr, s, st) (pre-image tampering)

If hz(s̃r, s̃) = ṽ ∧ ∀i : ṽ 6= vi ∧ hz(ŝr, ŝ) 6= ṽ, return 1
otherwise, return 0

The main steps in the above experiment are the following. Initially, we sample randomness
for the hash, and perform the hash computation over ` ∈ N, pre-images. For deterministic hash
function families we just omit randomness sampling, and we compute the hash, only using the
messages. The challenge for the attacker Av, is to produce a valid hash value ṽ, given ` has
values, denoted as v, and auxiliary information auxAv . Then, the extractor EHAv

is executed,
given v and its own auxiliary input auxE . Notice, that, we allow the auxiliary input of the
extractor to depend on the attacker’s auxiliary input.6 Finally, the adversary As produces a
valid pre-image for ṽ, while given all information generated during the execution. The output
of the experiment is 1, if Av produces a valid hash value ṽ, As produces a valid pre-image for
ṽ, while the extractor fails.

Leaving aside the fact that the above definition considers randomized function families, the
major difference between the current definition and the one given by Bitansky et al. [10, 11]
(Definition 2.6), is two-fold: first the “`-more” generalization that allows the attacker to have
access to ` valid hash values for which it does not know the pre-images, prior to delivering
its own hash value. Second, the introduction of the algorithm As, that takes the place of the
existential quantifier that appears in the original definition. This is in fact a weakening of the
original definition, in the sense that the extractor is allowed to fail in case a pre-image exists
but is not efficiently computable based on the view of the adversary (this would not be allowed
in the original definition).

Note that, weaker extractability does not hurt the applicability of the primitive, as there are
many settings in which the attacker, is not only required to produce a valid hash value ṽ, but also
to provide a valid pre-image for it. For instance, in our application on non-malleable codes, our
codeword stores a secret key and its hash value, and any attacker that modifies the hash value, it
also needs to come up with a valid pre-image, otherwise it creates an invalid codeword, assuming
the collision resistance property of the hash function family. In addition, the existence of As
does not trivialize the problem for the extractor since the extractor is challenged to produce a
valid pre-image for ṽ, given only the code of Av and its own auxiliary input (and in particular
it lacks access to the state of Av and the program of As).

6For this reason our definition is not contradicting the impossibility results of [13, 14].

10

It is easy to see that, constructing `-more extractable hash function families that are non-
compressing, can be achieved using existing tools, such as robust NIZKs [31]. Here we con-
struct an `-more extractable, collision resistant, hash (ECRH) function family, achieving length-
efficiency comparable to that of a regular hash function.

In the following lemma we prove that, for any `-more ECRH function family, the output
of the extractor should match the output of As, in case both of them output valid pre-images,
otherwise we break collision resistance.

Lemma 3.2. Let H = {Hk}k∈N be a collision resistant, `-more extractable, efficiently samplable,
hash function ensemble. Then, for any Av, auxAv , EHAv

, auxE , As, s = (s1, . . . , s`), `, as they
were defined in Definition 3.1

Pr
hz←Hk

[
Exps,hzAv ,As,EHAv

(`, auxAv , auxE) = 0, hz(s̃r, s̃) = ṽ, ṽ 6= vi, i ∈ [`] :

(ŝr, ŝ) 6= (s̃r, s̃)

]
≤ negl(k).

Proof. For the proof see Section B of the Appendix. �

Next, we show a separation of 0-more extractability and general `-more extractability as we
discussed in the introduction. In particular, we prove that the 0-more extractable hash of [11]
is not 1-more extractable. Before doing so, we first revisit their construction, which is based on
the t-KEA assumption (Assumption 2.4).

Construction 3.3 (0-more extractable hash from t-KEA [11]). Let G be a group-generation
algorithm. An instance of a (kt, 2k)-compressing, hash function family, H∗ = (Gen∗, h∗), with
respect to G, is defined as follows:

1. Gen∗(1k): sample (G, g, p) ← G(1k), p ∈ (2k−1, 2k), (a, r)
$← Zp × Ztp, where p = |G|, and

output z = (G, gr, gar).

2. Hashing computation: on input s, compute h∗z(s) = (g〈r,s〉, g〈ar,s〉).

In [11] the authors prove that Construction 3.3 is collision resistant.

Lemma 3.4 (Collision resistance for Construction 3.3 [11]). Assuming the hardness of the
discrete logarithm problem, with respect to a group G, Construction 3.3 is collision resistant,
with respect to G.

The above construction is also extractable with respect to Definition 2.6 and 0-more ex-
tractable, where both properties follow from the t-KEA assumption. In the following lemma we
prove that Construction 3.3 is not 1-more extractable.

Lemma 3.5 (Construction 3.3 is not 1-more extractable). Let H∗ be the hash function family of
Construction 3.3, with respect to a group generation algorithm G. Then, assuming the difficulty
of the discrete logarithm problem for G (Definition A.2), H∗ is not 1-more extractable.

In the introduction, we argued that the hash function family of Construction 3.3 is highly
malleable, and thus not 1-more extractable, under the discrete logarithm assumption. We for-
malize the proof in Section B of the Appendix.

4 A non-malleable code against split-state tampering

In this section, we present our construction of non-malleable codes against split-state tampering
functions. Our construction requires (i) a one-time, authenticated, symmetric-key encryption
scheme that is also leakage resilient, and (ii) a 1-more ECRH.

Construction 4.1. Let Hk = (Gen, h) be a hash function family, and let (KGen,E,D) be a
symmetric encryption scheme. We define a coding scheme (Init,Enc,Dec), as follows:

11

• Init(1k): sample z ← Gen(1k) and set Σ = z.

• Enc(Σ, ·): let s be the input to the encoder. The encoder samples sk ← KGen(1k), r
$←

{0, 1}poly(k), e← Esk(s), and outputs
(
r, sk, e, hz(r, sk)

)
. In particular, the left part of the

codeword is (r, sk), while the right part is (e, hz(r, sk)).

• Dec(Σ, ·): let (r, sk, e, v) be the input to Dec. If hz(r, sk) = v, the decoder outputs Dsk(e),
otherwise, it outputs ⊥.

Since the input message to hz, sk, possesses adequate entropy, it is possible to omit r in the
above construction, still for the sake of clarity we stick to the formulation provided in Definition
3.1 and we use independent randomness for hashing sk.

In what follows we prove that Construction 4.1 is strongly non-malleable against Fss (Defi-
nition 2.7), assuming that for any f = (f1, f2) ∈ Fss, f1, f2, affect (r, sk) and (e, v), respectively,
i.e., we assume the strings r||sk, e||v, are of length ν/2, where ν is the length the codeword.7

Intuition for the construction. Before formally analyzing the construction, we first discuss
the ideas on why our construction is secure. Consider a split-state tampering function (f1, f2),
where f1 is applied to (r, sk), and f2 is applied to (e, v). To prove non-malleability, roughly
speaking, we need to simulate the tampering experiment without knowing the underlying mes-
sage distribution. A first idea is to simulate the left side with (r′, sk′), and the right side with
(e′ = Esk′(0), v′ = h(r′, sk′)), where r′, sk′ is fresh randomness and key, respectively, hoping to
infer the final outcome of the tampering experiment correctly due to the semantic security of
the encryption.

There are several subtleties in doing so. First and foremost, the simulator needs to be able
to produce the decoding of the codeword in case v′ is modified by f2. This is where 1-more
extractability will be used to obtain a valid pre-image, (r̂, ŝk). It might be very tempting to
conclude the simulation by outputting the decrypted message Dŝk(ê) (where ê is the modified
codeword). However, this may not be consistent with the real-world experiment, as the values
produced by the extractor (r̂, ŝk) might not be consistent with the output of f1. To check
consistency, the simulator would want to check the output of f1, yet such a simulation would
be impossible to prove since it depends on sk, where the indistinguishability between e′ and e
does not hold in the presence of it. To go around this, we use a similar technique to Liu and
Lysyanskaya [51], who observed that, the equality test between f1(r̂, ŝk) and f1(r, sk) can be
performed via the leakage of a universal hash (cf. Definition A.8) with log2 k bits of output.
Putting this to our setting, by requiring the encryption (KGen,E,D) to be a one-time semantically
secure, symmetric-key authenticated encryption, that is secure under 2k+ log2 k bits of leakage,
is sufficient to facilitate the simulation. We also note that the case when v′ is not modified by
f2 can be easily taken care of by the security of the authenticated encryption: as long as the
key is not modified, any attempt to modify the ciphertext will result in an invalid ciphertext.

Theorem 4.2. Let k be the security parameter, Hk be a 1-more extractable hash function family
that outputs β(k) bits, β(k) = poly(k), and let (KGen,E,D) be an authenticated, semantically
secure, symmetric encryption scheme, that is leakage resilient against Lλ, λ(k) = ω(log k)+β(k).
Then, Construction 4.1 is strongly non-malleable against Fss.

Proof. Following the definition of strong non-malleability (Definition 2.3), we need to prove that
for any f = (f1, f2) ∈ Fss and any pair of messages s0, s1, (Σ,Tamperf,Σs0) ≈c (Σ,Tamperf,Σs1),
where Σ ← Init(1k). We introduce a series of hybrids (see Figure 1), and the proof can be
derived directly from the indistinguishability between adjacent hybrids. We first explain the
hybrids and define the notation used in those experiments.

• Given a tampering function f = (f1, f2) and message s, the first experiment, Expf,Σ,s0 , is
exactly the original tampering game, Tamperf,Σs , of Definition 2.3.

7This can always be achieved using padding.

12

• In Expf,Σ,s1 , we slightly modify the previous hybrid by checking whether the function f2

has modified the hash value v. Intuitively, by the collision resistance property of the hash
function family Hk, if f2 does not modify v, then the attack produces a valid codeword, c̃,
only if the parts of c̃ that constitute the pre-image of ṽ, are kept intact, i.e., (r, sk) = (r̃, s̃k),
otherwise there is a collision. In addition, assuming sk = s̃k, we have that, if ẽ 6= e, then
the output of the decoder should be ⊥, otherwise we break the authenticity under leakage
(v is considered as leakage over sk) property of the encryption scheme. On the other hand,

if v 6= ṽ, the output of the current experiment is produced as in Expf,Σ,s0 .

• In Expf,Σ,s2 , we modify the previous experiment for the case in which v is modified: instead
of using the real decoding procedure, we use the extractor of the hash function family, to
extract a pre-image (r̂, ŝk), for ṽ, and then compute the output, s̃, with respect to that pre-
image. However, we cannot output s̃ directly as we still need to check consistency with the
output of f , i.e., we need to check whether (r̂, ŝk) is equal to (r̃, s̃k). The indistinguishability
between the current hybrid and the previous one, follows by the 1-more extractability
property of the hash function, which, informally, guarantees that if c̃ is a valid codeword,
then EHAv

produces a valid pre-image for ṽ, with overwhelming probability. If the extracted
pre-image is consistent with the one output by f , the current hybrid outputs a non-bottom
value, equal to the one output by the decoding procedure of Expf,Σ,s1 . On the other hand,

if (r̂, ŝk) 6= (r̃, s̃k), Lemma 3.2 guarantees that (r̃, s̃k) is not a valid pre-image for ṽ, with
overwhelming probability, and the current experiment properly outputs ⊥. Finally, it is
straightforward to see, that if ṽ is invalid, both experiments output ⊥.

In order to define the extractor EHAv
, introduced in Expf,Σ,s2 , we first need to define Av,

auxAv , with respect to hz, v, e, and f = (f1, f2). Formally, we define the following:

1. (Define Av): Av(hz, v, auxAv) := ([f2(auxAv , v)]2, st), where

st = (f2(auxAv , v), auxAv , v).

2. (Choose auxiliary info for Av): set auxAv = e.

3. (Existence of the extractor, EHAv
, and auxiliary input, auxE): Given Av and

auxAv , by the 1-more extractability property ofHk, there exists an extractor EHAv
, with

hardwired auxiliary info, auxE , that computes (r̂, ŝk)← EHAv
(hz, v). The extractor EHAv

is used in Expf,Σ,s2 and all subsequent experiments (for brevity we denote it as E).

We remind, that, for any vector v, [v]i, denotes the i-th coordinate of v.

• In Expf,Σ,s3 , we modify the consistency check procedure, so that we access the right part
of the codeword, only through leakage. Instead of checking consistency using directly the
output of f1, we do the check using a random hash function, h̄, from a universal family
(cf. Definition A.8), applied to the output of f1, plus one more bit, that indicates whether
f1 has modified its input. Here, the hash v is computed through leakage over sk. The
experiment differs from the previous one only when there is a collision against h̄, which
happens with negligible probability, as h̄ is a universal hash function.

Below, we formalize the above procedure: let h̄← H̄λ−1 be a random hash function from
a universal hash function family, that outputs λ − 1 bits. We define the function gh̄,hz(·)
as follows:

gh̄,hz(x, y) =

{
(0, h̄(f1(x, y)), hz(x, y)), if f1(x, y) = (x, y),

(1, h̄(f1(x, y)), hz(x, y)), if f1(x, y) 6= (x, y).

We view gh̄,hz as a leakage function that outputs λ = ω(log k) + β(k) bits in total. The
experiment will then use the leaked value to check consistency, instead of using the whole
string output by f1. Concretely, we introduce the random variable b, which depends on the
output of the leakage function, and we modify Expf,Σ,s2 , so that the condition “If (b = 1)”,

13

Expf,Σ,s0 :
(r, sk, e, v)← Enc(s), c = (r, sk, e, v)

(r̃, s̃k)← f1(r, sk), (ẽ, ṽ)← f2(e, v)

c̃ = (r̃, s̃k, ẽ, ṽ)
s̃ = Dec(c̃)

Output same∗ if c̃ = c, and s̃ otherwise.

Expf,Σ,s1 :
(r, sk, e, v)← Enc(s)

(r̃, s̃k)← f1(r, sk), (ẽ, ṽ)← f2(e, v)

c̃ = (r̃, s̃k, ẽ, ṽ)

If v = ṽ :

If (r, sk, e) = (r̃, s̃k, ẽ) : set s̃ = same∗

Else : set s̃ = ⊥
If v 6= ṽ :

Set s̃ = Dec(c̃)

Output s̃.

Expf,Σ,s2 :
(r, sk, e, v)← Enc(s)

(r̃, s̃k)← f1(r, sk), (ẽ, ṽ)← f2(e, v)

If v = ṽ :

If (r, sk, e) = (r̃, s̃k, ẽ) : set s̃ = same∗

Else : set s̃ = ⊥
If v 6= ṽ :

(r̂, ŝk)← E(hz, v)

set s̃ = ⊥
If (r̂, ŝk) = (r̃, s̃k) :

If hz(r̂, ŝk) = ṽ, set s̃ = Dŝk(ẽ)

Output s̃.

Expf,Σ,s3 :

sk← KGen(1k), e← Esk(s)

r
$← {0, 1}poly(k), h̄← H̄λ−1

(lmod, lhash, v)← gh̄,hz(r, sk) , (ẽ, ṽ)← f2(e, v)

b← (lmod = 0 ∧ e = ẽ)

If v = ṽ :

If (b = 1) : set s̃ = same∗

Else : set s̃ = ⊥
If v 6= ṽ :

(r̂, ŝk)← E(hz, v)
set s̃ = ⊥

If h̄(r̂, ŝk) = lhash :

If hz(r̂, ŝk) = ṽ, set s̃ = Dŝk(ẽ)
Output s̃.

Figure 1: Hybrid experiments for the proof of Theorem 4.2. Their programs are based on
(Enc,Dec), the encoding scheme, (KGen,E,D) the encryption scheme, and E , the extractor that
is specified in the proof. The gray part signifies the portion of the code that differs from the
previous experiment.

introduced in Expf,Σ,s3 , is exactly the same as the condition “If (r, sk, e) = (r̃, s̃k, ẽ)”, of

experiment Expf,Σ,s2 . This modification does not induce any statistical difference. In the

next modification, we check equality between (r̂, ŝk), (r̃, s̃k), by checking if h̄(r̂, ŝk) =
h̄(f1(r, sk)). Clearly, this part induces a statistical difference only if there is a collision
against h̄, which happens with negligible probability, since h̄ is a universal hash function,
chosen by the current experiment, independently.

• Finally, we are going to show that Expf,Σ,s3 is indistinguishable from Expf,Σ,
→
0

3 , for any

message s, where
→
0 denotes the zero-message. This follows by the semantic security of the

leakage resilient encryption scheme (Definition 2.9).

A concrete presentation of the hybrids, is given in Figure 1.
In the following claims we prove indistinguishability between the hybrids.

Claim 4.3. Assuming Hk is collision resistant and (KGen,E,D) is an authenticated leakage
resilient scheme for β(k) bits of leakage, for any f = (f1, f2) ∈ Fss and any message s,

Expf,Σ,s0 ≈c Expf,Σ,s1 , where Σ follows Init(1k).

Proof. We observe, that the only difference between those two experiments, is that Expf,Σ,s1

introduces the following branches of conditions: (1) (v = ṽ) ∧ (r, sk, e) = (r̃, s̃k, ẽ); (2) (v =
ṽ) ∧ (r, sk, e) 6= (r̃, s̃k, ẽ); and (3) v 6= ṽ. It follows directly that for the conditions (1) and (3),
the two experiments are identical. Denote as B the event in which (2) happens and the output

of Expf,Σ,s0 is not ⊥. From the above we have that Expf,Σ,s0 = Expf,Σ,s1 conditioned on ¬B. By a
standard analysis, we know that the statistical distance between the two experiments is bounded
by Pr[B].

14

Let E be the event in which (r, sk) = (r̃, s̃k). Then we have Pr[B] = Pr[B ∧E] + Pr[B ∧¬E].
We will prove that Pr[B ∧ E],Pr[B ∧ ¬E] ≤ negl(k). Towards contradiction, suppose there
exist function f ∈ Fss and message s, such that Pr[B ∧ ¬E] > ε, for some non-negligible ε.
Then, there exists a PPT adversary, A, that breaks the collision resistance property of Hk: the
adversary A just simulates the experiment Expf,Σ,s1 and outputs (r, sk), (r̃, s̃k). The function
f is computable in polynomial time, so the adversary is also polynomial-time. The adversary
wins if the event B ∧ ¬E happens, where by assumption we have Pr[B ∧ ¬E] > ε. Hence, the
attacker breaks collision resistance with non-negligible probability. Similarly, assuming there
exist function f ∈ Fss and message s, such that Pr[B ∧ E] > ε, for some non-negligible ε, we
have an attacker against the authenticity, under leakage, property of the encryption scheme:

the attacker samples hz ← Hk, r
$← {0, 1}poly(k), and issues a leakage query ghz(x) := hz(r, x),

against the secret key of the encryption scheme. Then, it receives v = hz(r, sk) and e← Esk(s),
executes (ẽ, ṽ)← f2(e, v), and outputs ẽ. Assuming Pr[B ∧E] > ε, we have that ẽ 6= e is a valid
ciphertext with respect to the secret key sk, and the authenticity under leakage property of the
encryption scheme breaks with non-negligible probability ε. �

Claim 4.4. Assuming Hk is 1-more extractable, for any f = (f1, f2) ∈ Fss and any message s,

Expf,Σ,s1 ≈c Expf,Σ,s2 , where Σ follows Init(1k).

Proof. Expf,Σ,s2 differs from Expf,Σ,s1 , in the following way: instead of using the real decoding
procedure, it simulates its output using the extractor of the 1-more extractable hash function
family, Hk. Below we show that those two experiments are computationally indistinguishable.

We first notice that if (r̂, ŝk) = (r̃, s̃k), i.e., if the extracted value matches the corresponding
value output by f , then, the two experiments are identical. So, our remaining task is to analyze
the case where the values are not the same, i.e., the case in which (r̂, ŝk) 6= (r̃, s̃k). We denote
such an event with E. Then, we partition E into three cases: (1) E ∧

(
hz(r̃, s̃k) 6= ṽ

)
; (2)

E ∧
(
hz(r̃, s̃k) = hz(r̂, ŝk) = ṽ

)
; and (3) E ∧

(
hz(r̃, s̃k) = ṽ ∧ hz(r̂, ŝk) 6= ṽ

)
. We denote those

events by E1, E2, E3, respectively, and we analyze them as follows:

• First, we observe that, whenever E1 takes place, the two experiments are identical, as
both output ⊥. Thus, the statistical distance between those two experiments can be
upper bounded by Pr[E2] + Pr[E3].

• Next, we observe, that E2 happens exactly when there is a collision against Hk, i.e.,
(r̂, ŝk, ê) 6= (r̃, s̃k, ẽ), and their hash values collide. By Lemma 3.2, we have Pr[E2] <
negl(k).

• Finally, we argue that Pr[E3] < negl(k), based on the 1-more extractability property of

Hk. In order to exploit that property, we need to relate Expf,Σ,s2 , with the experiment

of Definition 3.1, Exps
′,hz
Av ,As,EHAv

(1, auxAv , auxE), for some message s′, algorithms Av, As,

EHAv
, and strings auxE , auxAv . Recall, that, Av, auxAv , EHAv

and auxE , have already been
defined with respect to hz, v, sk, e, and f = (f1, f2), in the beginning of the proof. For
the remaining we have:

1. (Define As): on input sr, s, st, As(hz, sr, s, st) executes the following steps: samples
(s̃r, s̃)← f1(sr, s) and outputs (s̃r, s̃).

2. (Define message s′): set s′ = sk.

By the 1-more extractability property of Hk, we have

Pr
hz←Hk

[
Exps

′,hz
Av ,As,EHAv

(1, auxAv , auxE) = 1

]
≤ negl(k),

and notice, that whenever E3 happens, we also have Exps
′,hz
Av ,As,EHAv

(1, auxAv , auxE) = 1,

since Av produces a valid, new hash, ṽ, As, produces a valid pre-image for ṽ, still the
extractor fails. Thus, Pr[E3] < negl(k).

15

Therefore, we have Pr[E2] + Pr[E3] < negl(k), and the two experiments are computationally
indistinguishable. �

Claim 4.5. Assuming H̄λ−1 is a universal hash function family that outputs λ − 1 bits, where
λ = ω(log k), Expf,Σ,s2 ≈c Expf,Σ,s3 .

Proof. In Expf,Σ,s3 we unfold the encoding procedure, we present v as being leakage over sk (those

modifications do induce any statistical difference), and the main difference between Expf,Σ,s2 and

Expf,Σ,s3 is in the way we check the “if” statements of the code that indicate whether the pre-
image is modified. We note that the first condition, “If (b = 1)”, is exactly the same as the
condition “If (r, sk, e) = (r̃, s̃k, ẽ)”, since the first bit output by the leakage function indicates
weather f1 has modified (r, sk). Therefore, this modification does not induce any statistical
difference. Then, we analyze the next condition, and we observe that the only difference is when
h̄(r̂, ŝk) = lhash, still (r̂, ŝk) 6= (r̃, s̃k). This happens when the following event, denoted as B,
takes place: h̄(r̂, ŝk) = h̄(r̃, s̃k) ∧ (r̂, ŝk) 6= (r̃, s̃k). Clearly, the statistical difference between the
two experiments is bounded by Pr[B]. Next we note that the universal hash function h̄ is chosen
independently from its inputs, so for two distinct inputs, the collision probability is bounded by
2λ−1 = negl(k). The event B, is exactly the collision event, therefore we have Pr[B] ≤ negl(k).
The proof of the claim is complete. �

Claim 4.6. Assuming (KGen,E,D) is semantically secure against Lλ, we have that for any

f ∈ Fss and any message s, Expf,Σ,s4 ≈c Expf,Σ,
→
0

4 , where Σ ← Init(1k), and
→
0 is the zero-

message.

Proof. Towards contradiction, assume there exist f ∈ Fss, message s, and PPT distinguisher

D such that |Pr[D(Σ,Expf,Σ,s4) = 1] − Pr[D(Σ,Expf,Σ,
→
0

4)] = 1| > ε, for ε = 1/poly(k). We are
going to define an attacker A that breaks the semantic security against one-time leakage.

A has hardwired the leakage function as g′
r,h̄,hz

(sk) := gh̄,hz(r, sk) where r
$← {0, 1}poly(k), h̄

$←

H̄λ−1, hz
$← Hk, and two messages, s0 = s, s1 =

→
0 . Then, on input(

e← Esk(sb), (lmod, lhash, v) = g′r,h̄,hz(sk)
)

it sets q = Program(hz, h̄, e, v, lmod, lhash), Σ = z, and outputs D(Σ, q), where Program is defined
as follows

Program(hz, h̄, e, v, lmod, lhash) :
(ẽ, ṽ)← f2(e, v)
b← (lmod = 0 ∧ ẽ = e)
If v = ṽ :

If (b = 1) : set s̃ = same∗

Else : set s̃ = ⊥
If v 6= ṽ :

(r̂, ŝk)← E(hz, v)
set s̃ = ⊥

If h̄(r̂, ŝk) = lhash :

If hz(r̂, ŝk) = ṽ, set s̃ = Dŝk(ẽ)
Output s̃.

It is straightforward to see that A simulates Expf,Σ,sb3 , so the advantage of A in breaking the
semantic security of the leakage resilient encryption is the same with the advantage of D, in
distinguishing between Expf,Σ,s03 and Expf,Σ,s13 , which by assumption is non-negligible. This leads
to a contradiction and the proof of the claim is complete. �

From the above claims we have that for any function f and any message s, TamperΣ,fs ≈c
Expf,Σ,

→
0

3 , which implies that for any f and any pair of messages s0, s1, TamperΣ,fs0 ≈c TamperΣ,fs1 ,
and the proof is complete. �

16

Length of the CRS. The length of the CRS in our construction is roughly 32k bits: we need
to hash a 6k-bit (roughly) key of an authenticated encryption scheme and then encrypt the
message using that key; this would require the parameters for the 16-KEA to be on the CRS,
resulting in the 32k bits length.

5 Constructing 1-more extractable hash functions
In this section, we present our construction of 1-more extractable hash function families. Our
construction is in two steps: (1) we first present a construction assuming a coding scheme that
satisfies randomness simulatable non-malleability (RSS-NM), against affine tampering func-
tions, and (2) we show how to construct such a code. Finally, we present Corollary 5.10 to
summarize our overall construction, by putting all things together in a single statement. As
we have already discussed on the introduction, the idea of constructing a NM-code for affine
functions, as an intermediate step for providing split-state codes, was also followed by [4], still,
our technique differs significantly, and their code does not directly satisfy our requirements.
Moreover, in [24] the authors construct AMD codes, still their notions are slightly different and
do fit in our framework.

5.1 1-more extractable hash functions from RSS-NM codes against affine
functions

In this section we construct a collision resistant, 1-more extractable hash function family. Before
doing so, we present the notion of “randomness simulatable, strongly non-malleable codes” (RSS-
NMC). This notion is stronger than strong non-malleability in the sense that besides simulating
the pre-image, s̃, of the tampered codeword, the simulator also needs to produce the randomness
of the encoder, s̃r, such that the encoding of s̃ with randomness s̃r, produces the tampered
codeword. To ease the presentation of RSS-NMC, we modify the syntax of non-malleable codes,
so that the Dec algorithm returns, not only the decoded message s̃, but also the randomness
string s̃r for the encoder Enc. This is the string that in the tampering experiment the simulator
should be able to match.8

Definition 5.1 (Randomness simulatable, strongly non-malleable code). Let (Enc,Dec) be a
(κ, ν)-coding scheme and F be a family of functions f : {0, 1}ν → {0, 1}ν . For every f ∈ F and
s ∈ {0, 1}κ, define the tampering experiment

Tamperfs
def
=

{
c← Enc(s), c̃← f(c), (s̃r, s̃) = Dec(c̃)

Output same∗ if c̃ = c, and (s̃r, s̃) otherwise.

}
which is a random variable over the randomness of Enc and Dec. A coding scheme (Enc,Dec) is
randomness simulatable, strongly non-malleable (RSS-NM), with respect to the function family
F , if for every f ∈ F and any s0, s1 ∈ {0, 1}κ, we have:{

Tamperfs0

}
k∈N
≈
{
Tamperfs1

}
k∈N

where “≈” may refer to statistical, or computational, indistinguishability. For coding schemes
in the common reference string model, the definition is analogous.

Next we present our construction:

Construction 5.2 (1-more extractable hash). Let G be a group-generation algorithm and let
(Enc,Dec) be a (kt, kt′)-coding scheme, t, t′ = O(poly(k)). An instance of a (kt, 2k)-compressing
hash function family H = (Gen, h) is defined as follows:

1. Gen(1k): sample (G, g, p) ← G(1k), (a, r)
$← Zp × Zt′p , where p = |G|, and output z =

(G, gr, gar).
8It is possible to define RSS-NMC without modifying the operation of Dec at the expense of slightly com-

plicating the definition of non-malleability. Due to the fact that our RSS-NMC construction conforms to the
modified syntax, we opt for the simpler alternative.

17

2. Hashing computation: on input s = (s1, . . . , st), sample sr
$← U{0,1}poly(k), compute

hz(sr, s) = (g〈r,c〉, g〈ar,c〉), where c← Enc(sr, s).

For coding schemes (Init,Enc,Dec) in the CRS model, Gen(1k) outputs (z,Σ), where Σ← Init(1k).

In the following we prove that Construction 5.2, which is a composition of a coding scheme
(Enc,Dec), with construction 3.3 (the 0-more extractable hash function by Bitansky et al. [11]),
is collision resistant, 1-more extractable, and uniform under leakage, assuming that (Enc,Dec),
satisfies certain properties. Then, in Section 5.2, we instantiate (Enc,Dec) with the desired
properties. Below, we prove that Construction 5.2 is collision resistant.

Lemma 5.3. Let G be any group generation algorithm. Then, assuming the hardness of the
discrete logarithm problem on G, and the underlying encoding algorithm is injective, Construction
5.2 is collision resistant with respect to G.

Proof. In [11] the authors prove that the hash function family of Construction 3.3, i.e., H∗,
is collision resistant, assuming the difficulty of the discrete logarithm problem. We note that
Construction 5.2 is a composition of Enc(·) and H∗. Following a simple fact that any injective
function composed with a collision resistant hash function still results in a collision resistant
hash function (composition in any order), we can conclude that the hash function family of
Construction 5.2 is collision resistant, under the same assumption.

�

In the following theorem, we prove that, under certain assumptions, Construction 5.2, is
1-more extractable.

Theorem 5.4. Let t(k), t′(k) = O(poly(k)), (Enc,Dec) be any RSS-non-malleable, (kt, kt′)-
coding scheme, against Faff , let H be the hash function family of Construction 5.2 with respect to
(Init,Enc,Dec), and assume that for any message s, H∞ (Enc(s)) ≥ k+ω(log k). Then, assuming
t′-KEA and the hardness of DLog, H is 1-more extractable, with respect to (Init,Enc,Dec).

Proof. For k ∈ N, let (Enc,Dec) be an RSS-NM, (kt, kt′)-coding scheme, against Faff , t(k), t′(k) =
O(poly(k)), and let H be the (kt, 2k)-compressing, collision-resistant, hash function family of
Construction 5.2. Following Definition 3.1, we need to prove that for any PPT algorithm Av
with auxiliary input auxAv , there exist extractor EHAv

and auxiliary input auxE , such that for any
PPT algorithm As, any large k and every message s = (s1, . . . , st) ∈ Ztp,

Pr
hz←Hk

[
Exps,hzAv ,As,EHAv

(1, auxAv , auxE) = 1

]
≤ negl(k). (1)

Clearly, if Av fails to produce a new valid hash, or, if As fails to produce a valid pre-image
for the new hash, the experiment simply outputs 0, and there is no challenge for the extractor.
Therefore, the interesting case is when Av produces a valid hash value, say ṽ, while having
access to an element in the range of the hash, say v, and As produces a valid pre-image for ṽ,
while having access to s, v, ṽ, and any other state information produced by Av. Hence, for the
rest of the proof we assume ṽ 6= v, and (s̃r, s̃) is a valid pre-image for ṽ, i.e., hz(s̃r, s̃) = ṽ.

Given any Av with auxiliary input auxAv , the idea behind the definition of the extractor,
EHAv

, and its auxiliary input, auxE , goes as follows:

• First we define an adversary against the hash function family H∗, of Construction 3.3:
Āv(h∗z′ , auxAv) := Av(hz, v, auxAv), where Āv first interprets the description of the hash
function h∗z′ , as (hz, v), i.e., as a description of a hash function in H and a hash value v,
and then executes Av(hz, v, auxAv). The function h∗z′ will be stated concretely below.

• SinceH∗ is a 0-more extractable hash function family, and assuming h∗z′ is indistinguishable
from an element in H∗, there exists an extractor ĒH∗Āv

with its auxiliary input auxĒ , that

extracts a valid pre-image for ṽ, with respect to h∗z′ (see Claim 5.5). We define the auxiliary
input auxE := auxĒ .

18

The extractor is defined below.

The extractor EHAv
:

Input: (z = (gr, gar), v = (gr
′
, gar

′
), auxE).

1. Set z′ = (gr, gr
′
, gar, gar

′
). Here, we interpret z′ as a description of hash function h∗z′ ∈ H∗,

for vector messages with t′ + 1 coordinates.

2. Sample (b1, . . . , bt′ , d)← ĒH∗Āv
(h∗z′ , auxE) and set f = (b1, . . . , bt′ , d) = (b, d) ∈ Zt′+1

p .

3. Interpret f as an affine function that on input (x1, . . . , xt′) outputs (dx1 + b1, dx2 +
b2, . . . , dxt′ + bt′), and then sample (ŝr, ŝ) ← Daff

f , where Daff
f is the simulator of the

underlying RSS-NM code, (Enc,Dec), parameterized by the affine function f .

4. Output: (ŝr, ŝ).

The extractor is defined with respect to any input v, still by the definition of the `-more ex-
periment, v is always a valid hash value, i.e., v = hz(s) = (g〈r,c〉, ga〈r,c〉), where c ← Enc(sr, s),
for some message s. Then, for any As, and message s, we are going to analyze the execution of
Exps,hzAv ,As,EHAv

(1, auxAv , auxE). We first prove that with overwhelming probability, the following

events happen:

• E1: h∗z′(b1, . . . , bt′ , b0) = ṽ. Recall that ṽ is the output of Av on input (hz, v).

• E2: Enc(s̃r, s̃) = f(c). Recall that (s̃r, s̃) is the output of As.

We formalize those ideas in the following claims.

Claim 5.5. Let hz, Av, auxAv , EHAv
and auxE , be as they where defined above. Then, for any

As and message s, Pr[¬E1] < negl(k) under the experiment Exps,hzAv ,As,EHAv

(1, auxAv , auxE).

Proof. We recall that the experiment selects a random hash function hz = (gr, gar), and
then computes v = hz(s) = (g〈r,c〉, ga〈r,c〉), where c ← Enc(sr, s). In order to show that
f = (b1, . . . , bt′ , d) is a valid pre-image for ṽ with respect to h∗z′ , we need to prove that h∗z′ =
(gr, g〈r,c〉, gar, ga〈r,c〉) is indistinguishable from an element in H∗. We analyze this probability,
Pr[E1], under this distribution, say D1, for z′, by considering Pr[E1] under another related distri-
bution, D2, for which v = (gr

′
, gar

′
), for a uniformly random r′, in which z′ = (gr, gr

′
, gar, gar

′
).

Since H∞ (Enc(s)) ≥ k + ω(log k), and since the randomness of the encoder is independent of
Z = (auxAv , hz), (those values are fixed before sampling randomness for the hash), we have
H∞ (Enc(s) | Z) ≥ k + ω(log k), and therefore, H̃∞(Enc(s) | Z) ≥ k + ω(log k). By the above
argument, the Left-Over Hash Lemma (Lemma A.9) and the universality of the inner product
function (Lemma A.11), the distribution 〈r, c〉 is statistically close to uniform, under the partial
execution of the “1-more” experiment, i.e., up to the point we execute the extractor. This im-
plies that D1 is statistically close to D2, (i.e., (gr, g〈r,c〉, gar, ga〈r,c〉) is close to (gr, gr

′
, gar, gar

′
)),

and thus Pr[E1] differs by a negligible quantity under the two distributions.
In [11] the authors showed that H∗ is a 0-more extractable, which implies that the extractor

ĒH∗Āv
extracts a pre-image for ṽ, with respect to h∗z′ (i.e., event E1 happens), with overwhelming

probability, under the distribution D2. Therefore, we conclude that event E1 happens with
overwhelming probability under the distribution D1. This completes the proof of the claim. �

Claim 5.6. Let hz, Av, auxAv , EHAv
and auxE , be as they where defined above. Then, for any

As and message s, Pr[¬E2] < negl(k) under the experiment Exps,hzAv ,As,EHAv

(1, auxAv , auxE).

Proof. By a simple formula we have Pr[¬E2] = Pr[¬E2∧E1] + Pr[¬E2∧¬E1], and by the above
claim we have Pr[¬E1] < negl(k). Therefore, it suffices to show that Pr[¬E2 ∧ E1] < negl(k).
Thus, below we focus on the event ¬E2 ∧ E1.

19

Recall that, in order to exclude the trivial cases, we have assumed that (s̃r, s̃) is a valid
pre-image for ṽ, i.e., hz(s̃r, s̃) = ṽ, which by construction implies that h∗z(Enc(s̃r, s̃)) = ṽ.
In addition, when E1 happens we have h∗z′(b1, . . . , bt′ , d) = ṽ, which can be re-written as(
g〈r,dc+b〉, ga〈r,dc+b〉) =

(
g〈r,f(c)〉, ga〈r,f(c)〉) = ṽ. From the last relation we receive that h∗z(f(c)) =

ṽ. Now, recall that, by Lemma 3.4, the family H∗ is collision resistant, assuming the hardness
of DLog. Assuming that Pr[¬E2 ∧ E1] happens with non-negligible probability, we have that
Enc(s̃r, s̃) 6= f(c), while h∗z(Enc(s̃r, s̃)) = h∗z(f(c)), with non-negligible probability. Thus, by
simulating the 1-more experiment, we find such a collision with non-negligible probability, as
long as ¬E2 ∧ E1 happens. This reaches a contradiction and completes the proof of the claim.

�

Finally, we argue that, with overwhelming probability the output of the extractor, (ŝr, ŝ), is
a valid pre-image for ṽ, i.e., hz(ŝr, ŝ) = ṽ. Here, recall that (ŝr, ŝ) is the output of the simulator
Daff
f , of the underlying RSS-NM code. Concretely, we prove the following claim.

Claim 5.7. Let hz, Av, auxAv , EHAv
and auxE , be as they where defined above. Then, for any As

and message s, Pr[(s̃r, s̃) 6= (ŝr, ŝ)] < negl(k), under the experiment Exps,hzAv ,As,EHAv

(1, auxAv , auxE).

Proof. As above, we can upper bound Pr[(s̃r, s̃) 6= (ŝr, ŝ)], by Pr[(s̃r, s̃) 6= (ŝr, ŝ) ∧ E1 ∧ E2] +
Pr[(s̃r, s̃) 6= (ŝr, ŝ)∧¬E1∧E2] + Pr[(s̃r, s̃) 6= (ŝr, ŝ)∧E1∧¬E2] + Pr[(s̃r, s̃) 6= (ŝr, ŝ)∧¬E1∧¬E2].
By the above claims, we have Pr[¬E1] < negl(k), Pr[¬E2] < negl(k). Therefore, in order to show
the current claim, it suffices to prove that Pr[(s̃r, s̃) 6= (ŝr, ŝ) ∧ E1 ∧ E2] < negl(k). Thus, in the
rest of the proof we focus on the event (s̃r, s̃) 6= (ŝr, ŝ) ∧ E1 ∧ E2.

By Claims 5.5, 5.6, we have that Enc(s̃r, s̃) = f(c) and h∗z(f(c)) = ṽ, with overwhelming
probability. Moreover, in order to exclude the trivial cases with respect to the task that needs
to accomplished by the extractor, we have assumed that ṽ 6= v = h∗z(c). Since v 6= ṽ, we have
c 6= f(c); since f(c) = Enc(s̃r, s̃), f(c) is a valid codeword. Thus, by the previous observations
we have that Dec(f(c)) 6= ⊥. Moreover, by the security of the underlying coding scheme, we
know that Pr[Enc(ŝr, ŝ) 6= f(c)] < negl(k). Since Enc is injective, this implies Pr[(s̃r, s̃) 6=
(ŝr, ŝ) ∧ E1 ∧ E2] < negl(k). This completes the proof of the claim.

�

Note, that, for any As and message s, the experiment Exps,hzAv ,As,EHAv

(1, auxAv , auxE) outputs

1 if hz(s̃r, s̃) = ṽ ∧ ṽ 6= v ∧ hz(ŝr, ŝ) 6= ṽ. By the above claims, hz(ŝr, ŝ) 6= ṽ, with negligible
probability, assuming that hz(s̃r, s̃) = ṽ and ṽ 6= v. Therefore, we conclude that

Pr
hz←Hk

[
Exps,hzAv ,As,EHAv

(1, auxAv , auxE) = 1

]
≤ negl(k).

This completes the proof of the theorem. �

5.2 Constructing RSS-NM codes

In this section, we construct RSS-NM codes as required by the previous section.

Construction 5.8 (The code for Faff). For any k ∈ N, t = O(poly(k)), we define a (kt, (2t +
4)k)-coding scheme (Init,Enc,Dec) in the CRS model,9 as follows:

• Init(1k): sample a k-bit prime p ∈ (2k−1, 2k) and set Σ = p.

• Enc(Σ, ·): let s = (s1, . . . , st) ∈ Ftp be the input to Enc. Sample two random field elements

v, r
$← Fp, and then output

c =
(
v, v2, r, r2, u1, u

2
1, . . . , ut, u

2
t

)
∈ F2t+4

p ,

where ui = si − r for i ∈ [t].

9Note that the CRS is not essential for this encoding, but for simplicity we describe the code in this model.

20

• Dec(Σ, ·): on input c = (v, v̄, r, r̄, u1, ū1, . . . , ut, ūt), the decoder checks whether v̄ = v2, r̄ =
r2, and ūi = u2

i for all i ∈ [t]. If so, then it outputs (v, r, u1 + r, u2 + r, . . . , ut + r),
otherwise, outputs ⊥.

All operations are performed modulo p. We also consider the deterministic version of Enc by
allowing the randomness to be given on the input. In that case we have c = Enc(Σ, sr, s), where
sr = (v, r).

Notice, that, the randomness employed by the above construction is 2k, independently of
the message length.

Theorem 5.9. The code of Construction 5.8 is randomness simulatable, strongly non-malleable
(Definition 5.1), with respect to Faff . In addition, for any message s, H∞ (Enc(s)) ≥ k+ω(log k).

Proof. Let f ∈ Faff be a tampering function against the code, defined by the pair (b, d) ∈
F2t+4
p × Fp, where b = (bv, b

′
v, br, b

′
r, b1, b

′
1, . . . , bt, b

′
t) and f(c) = dc + b. Following the def-

inition of rss-non-malleability, we need to show that for any s0, s1,
{(

Σ,TamperΣ,fs0

)}
k∈N ≈{(

Σ,TamperΣ,fs1

)}
k∈N, i.e., the output of the tampering experiment is independent of the mes-

sage and decidable only by inspecting the function f .
Now, recall that, any codeword has the following form

c =
(
v, v2, r, r2, u1, u

2
1, . . . , ut, u

2
t

)
.

We then consider the following cases:

1. (d = 0): such an attack completely overwrites c with b, which is independent of the
original message, s. Therefore, for any of the two messages s0 and s1, the tampering
experiment outputs Dec(c̃) = Dec(b). This is identical for both cases.

2. (d = 1 and b = 0): this attack leaves the codeword intact for both experiments, and thus
they both output same∗.

3. (d = 1 and b 6= 0): assume that (bz, b
′
z) 6= (0, 0) for some z ∈ [t] ∪ {v, r}.10 We know

that the tampering experiment outputs a non-bottom value only if the following equation
is satisfied: (duz + bz)

2 = du2
z + b′z. (For simplicity, and in order to cover the cases of r, v,

we denote ur := r, uv := v). We argue that this happens with negligible probability, which
implies that both experiments output ⊥, with overwhelming probability.

By expanding the equation and plugging in d = 1, we have 2bzuz+b2z−b′z = 0. We consider
two cases with respect to (bz, b

′
z): (a) bz 6= 0; (b) bz = 0, b′z 6= 0. For case (b), clearly, the

output in both experiments is ⊥. Regarding case (a), the equation is linear, and therefore,
it possesses at most one solution. By our choice of uz (recall that uz = sz − r where r is
a random field element), we know that its marginal distribution is uniform, and thus the
probability that the equation is satisfied is at most 1/p.

4. d ∈ Fp \ {0, 1}: as above, we argue that the two experiments output ⊥ with overwhelming
probability. As me discussed above, the tampering experiments output non-bottom values
only if (duz + bz)

2 = du2
z + b′z is satisfied, for all z ∈ [t] ∪ {r, v}. This probability can be

upper bounded by the probability that a particular equation is satisfied. Without loss of
generality, we consider the equation d(d−1)u2

1 +2db1u1 +b21−b′1 = 0. Since a ∈ Fp \{0, 1},
the above equation is of degree 2, and by the Schwartz-Zippel lemma, it possesses at most
two solutions. As we argued above, the marginal distribution of u1 is uniformly random.
Thus, the probability that the equation is satisfied is at most 2/p.

The above case analysis covers all possibilities for (b, d), and the proof of the first part of the
theorem is complete. For the second part, by construction we have that any codeword consists
of two random field elements (r, v), having length 2k, and thus H∞ (Enc(s)) = 2k > k+ω(log k).
This completes the proof of the theorem. �

10Here, we treat v, r, as special symbols, not integers.

21

5.3 Our resulting instantiation

By plugging Construction 5.8, as the underlying coding scheme to Construction 5.2, we receive
the following corollary.

Corollary 5.10. Under the DLog assumption and t-KEA, there exists a 1-more extractable,
collision resistant, hash function family Hk.

Proof. Let (Init,Enc,Dec) be the (kt, (2t + 4)k), RSS-NM code of Construction 5.8. Then we
constructHk by plugging in (Init,Enc,Dec), as the underlying coding scheme to the hash function
family of Construction 5.2. Clearly, by Lemma 5.3, Hk is collision resistant as the underlying
encoding algorithm is injective. By Theorem 5.9, the underlying coding scheme is RSS-non-
malleable against Faff , and moreover, for any message s, H∞ (Enc(s)) ≥ k + ω(log k). Thus, by
Theorem 5.4, Hk is 1-more extractable. This concludes the proof of this corollary. �

6 Constructing `-more extractable hash

In the “`-more” setting, the attacker is given v1, . . . , v`, hash values, and produces a new hash
value ṽ. Having the techniques from the “1-more” setting, one can easily argue the attack against
ṽ (in the `-more setting), can be reduced to an affine attack against the codewords c1, . . . , c`, that
are related to v1, . . . , v`, respectively. In order to construct `-more ECRH, for ` > 1, we generalize
the notion of RSS-NM codes, for multiple codewords. The generalization is a straightforward
extension of Definition 5.1, where the tampering function receives ` codewords and the simulator
needs to recover the message and randomness in case the output of the tampering function is not
among the given codewords. The formal is definition is given in Section A.4 of the Appendix.

Clearly, for ` = 1, the notion of multi-codeword RSS-NMC matches Definition 5.1. In order
to construct, `-more ECRH, for ` > 1, we need an RSS-NM code, for the following function
class.

Definition 6.1 (The function class F̄ `aff). We define the following function class

F̄ `aff = {f(x1, . . . , x`) = f1(x1) + . . .+ f`(x`) | fi ∈ Faff}.

We present the following lemma.

Lemma 6.2. The code of Construction 5.8, (Enc,Dec), is a multi-codeword RSS-NM code
against F̄ `aff , for ` > 1.

Proof. A proof sketch is given in Section B of the Appendix. �

In the “`-more” setting the attacker receives vi = (g〈r,ci〉, ga〈r,ci〉), i ∈ [`], and constructs a
valid hash ṽ. The proof of Theorem 5.4 easily extends to the “`-more” setting by proving that

ṽ = g〈r,
∑`

i=1 fi(ci)〉, ga〈r,
∑`

i=1 fi(ci)〉), where (f1, . . . , f`) ∈ F̄ `aff , and we achieve extractability using
the simulator of the underlying, rss-nmc for multiple codewords. Thus, we are able to show
the following theorem.

Theorem 6.3. Under the DLog assumption and t-KEA, Construction 5.2, instantiated with
the coding scheme of Construction 5.8, is an `-more extractable hash function family.

The proof is essentially the same as that of Theorem 5.4, as we discussed above.

7 Instantiating authenticated encryption

In the following we instantiate one-time leakage-resilient, authenticated, semantically secure
symmetric encryption (Definition 2.9), against λ bits of leakage. The idea is to combine a
leakage-resilient pseudorandom generator [58] with a message authentication code that outputs
k bits.

22

Construction 7.1 (Authenticated encryption). Let PRG be a pseudo-random generator, i.e.,
PRG : {0, 1}2λ → {0, 1}|s|+k, and let (Gen,Mac,Vrfy) be a message authentication code that
outputs tags of length k (cf. [49]). We define a symmetric encryption scheme (KGen,E,D), as
follows:

• KGen(1k): sample sk
$← {0, 1}2λ.

• Esk(·): On input message s, compute (r0, r1) = PRG(sk), where |r0| = |s| and |r1| = k,
e = r0 + s, t = Macr1(e), and outputs (e, t).

• Dsk(·): On input (e, t), compute (r0, r1) = PRG(sk), and if Vrfyr1
(e, t) = 1, output s =

r0 − e, otherwise output ⊥.

The PRG of [58] considers |sk| = 2λ/α, and sustains αλ bits of leakage (cf. [62]), where
α ∈ [0, 1] depends on how strong the underlying assumption is. In the above construction we
use the strongest assumption, i.e., α = 1, which yields |sk| = 2λ, assuming weak pseudorandom
functions against exponential adversaries. The ciphertext length is |s| + k, and by setting
λ = 2k + log2 k, which is adequate for our needs, we receive |sk|+ |e|+ |t| = 5k + 2 log2 k + |s|.
In the Appendix (cf. Section A.3) we provide an instantiation that uses regular PRG. By
plugging the above instantiation to our split-state non-malleable code, the total codeword length
is |s| + 9 · k + 2 · log2(k), since the hash and the randomness for computing it, are of size 2k,
each.

References

[1] Masayuki Abe and Serge Fehr. Perfect nizk with adaptive soundness. In TCC, pages
118–136, 2007.

[2] Divesh Aggarwal, Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and
Manoj Prabhakaran. Optimal computational split-state non-malleable codes. Cryptology
ePrint Archive, Report 2015/1063, 2015.

[3] Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and Maciej Obremski. Non-malleable
reductions and applications. In STOC, pages 459–468, 2015.

[4] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive
combinatorics. In STOC, pages 774–783, 2014.

[5] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prab-
hakaran. CRYPTO, chapter Explicit Non-malleable Codes Against Bit-Wise Tampering
and Permutations, pages 538–557. 2015.

[6] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Advances in Cryp-
tology – EUROCRYPT 2016, chapter Non-malleable Codes for Bounded Depth, Bounded
Fan-In Circuits. 2016.

[7] Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira, Krzysztof Pietrzak, François-
Xavier Standaert, and Yu Yu. Leftover hash lemma, revisited. In CRYPTO, pages 1–20.
2011.

[8] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1–18.
2001.

[9] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In CRYPTO, pages 273–289. 2004.

23

[10] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Ru-
binstein, and Eran Tromer. The hunting of the snark. Cryptology ePrint Archive, Report
2014/580, 2014.

[11] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In ITCS,
pages 326–349, 2012.

[12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition
and bootstrapping for snarks and proof-carrying data. In STOC, pages 111–120, 2013.

[13] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable
one-way functions. In STOC, pages 505–514, 2014.

[14] Elette Boyle and Rafael Pass. Limits of extractability assumptions with distributional
auxiliary input. In ASIACRYPT, pages 236–261. 2015.

[15] Ran Canetti and RonnyRamzi Dakdouk. Extractable perfectly one-way functions. In
Automata, Languages and Programming, pages 449–460. 2008.

[16] Ran Canetti and RonnyRamzi Dakdouk. Towards a theory of extractable functions. In
TCC, pages 595–613. 2009.

[17] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions (extended
abstract). In STOC, pages 106–112, 1977.

[18] Nishanth Chandran, Vipul Goyal, Pratyay Mukherjee, Omkant Pandey, and Jalaj Upad-
hyay. Block-wise non-malleable codes. IACR Cryptology ePrint Archive, page 129, 2015.

[19] Nishanth Chandran, Bhavana Kanukurthi, and Srinivasan Raghuraman. Information-
Theoretic Local Non-malleable Codes and Their Applications, pages 367–392. TCC 2016-A.
2016.

[20] E. Chattopadhyay and D. Zuckerman. Non-malleable codes against constant split-state
tampering. In FOCS, pages 306–315, 2014.

[21] Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. In ITCS,
pages 155–168, 2014.

[22] Seung Geol Choi, Aggelos Kiayias, and Tal Malkin. Bitr: Built-in tamper resilience, 2011.

[23] Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi. TCC, chapter From
Single-Bit to Multi-bit Public-Key Encryption via Non-malleable Codes, pages 532–560.
2015.

[24] Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel Wichs. Detection
of algebraic manipulation with applications to robust secret sharing and fuzzy extractors.
In EUROCRYPT, pages 471–488. 2008.

[25] Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits against constant-rate
tampering. In Proceedings of the 32Nd Annual Cryptology Conference on Advances in
Cryptology — CRYPTO 2012 - Volume 7417, pages 533–551, 2012.

[26] Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits and protocols against
1/poly(k) tampering rate. In Yehuda Lindell, editor, Theory of Cryptography: 11th The-
ory of Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014.
Proceedings. 2014.

[27] Dana Dachman-Soled, Mukul Kulkarni, and Aria Shahverdi. Tight upper and lower bounds
for leakage-resilient, locally decodable and updatable non-malleable codes. Cryptology
ePrint Archive, Report 2017/015, 2017. http://eprint.iacr.org/2017/015.

24

http://eprint.iacr.org/2017/015

[28] Dana Dachman-Soled, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. TCC 2015, chapter
Locally Decodable and Updatable Non-malleable Codes and Their Applications, pages 427–
450. 2015.

[29] Ramzi Ronny Dakdouk. Theory and application of extractable functions, 2009.

[30] Ivan Damg̊ard. Towards practical public key systems secure against chosen ciphertext
attacks. In CRYPTO, pages 445–456. 1992.

[31] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit
Sahai. Robust non-interactive zero knowledge. In CRYPTO, pages 566–598. 2001.

[32] AlexanderW. Dent and StevenD. Galbraith. Hidden pairings and trapdoor ddh groups. In
Algorithmic Number Theory, pages 436–451. 2006.

[33] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. In EUROCRYPT, pages 523–540. 2004.

[34] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from
two-source extractors. In CRYPTO, pages 239–257. 2013.

[35] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. D.: Non-malleable codes. In
ICS, 2010.

[36] Antonio Faonio and Jesper Buus Nielsen. Non-malleable codes with split-state refresh.
Cryptology ePrint Archive, Report 2016/1192, 2016. http://eprint.iacr.org/2016/

1192.

[37] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. TCC 2014,
chapter Continuous Non-malleable Codes, pages 465–488. 2014.

[38] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. PKC 2015,
chapter A Tamper and Leakage Resilient von Neumann Architecture, pages 579–603. 2015.

[39] Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. EUROCRYPT,
chapter Efficient Non-malleable Codes and Key-Derivation for Poly-size Tampering Circuits,
pages 111–128. 2014.

[40] Sebastian Faust, Krzysztof Pietrzak, and Daniele Venturi. Tamper-proof circuits: How
to trade leakage for tamper-resilience. In Automata, Languages and Programming: 38th
International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings,
Part I, pages 391–402, 2011.

[41] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. EUROCRYPT ’13,
chapter Quadratic Span Programs and Succinct NIZKs without PCPs, pages 626–645. 2013.

[42] Rosario Gennaro, Hugo Krawczyk, and Tal Rabin. Okamoto-tanaka revisited: Fully au-
thenticated diffie-hellman with minimal overhead. In ACNS, pages 309–328. 2010.

[43] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. Cryptology ePrint Archive, Report 2010/610, 2010.

[44] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASI-
ACRYPT, pages 321–340. 2010.

[45] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In
EUROCRYPT, pages 415–432, 2008.

[46] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge protocols.
In CRYPTO ’98, pages 408–423. 1998.

25

http://eprint.iacr.org/2016/1192
http://eprint.iacr.org/2016/1192

[47] Johan HÅstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, pages 1364–1396, 1999.

[48] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private circuits ii:
Keeping secrets in tamperable circuits. In Advances in Cryptology - EUROCRYPT 2006,
St. Petersburg, Russia, May 28 - June 1, 2006. Proceedings. Springer Berlin Heidelberg,
2006.

[49] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. 2007.

[50] Aggelos Kiayias and Yiannis Tselekounis. Tamper resilient circuits: The adversary at the
gates. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology - ASIACRYPT
2013, Bengaluru, India, December 1-5, 2013, Proceedings, Part II. 2013.

[51] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state
model. In CRYPTO, pages 517–532. 2012.

[52] Thilo Mie. Polylogarithmic two-round argument systems, 2008.

[53] Moni Naor. CRYPTO ’03, chapter On Cryptographic Assumptions and Challenges, pages
96–109. 2003.

[54] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. SIAM Journal
on Computing, pages 772–814, 2012.

[55] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, pages 43–52, 1993.

[56] E. Okamoto and K. Tanaka. Key distribution system based on identification information.
Selected Areas in Communications, IEEE Journal on, pages 481–485, 1989.

[57] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In Security and Privacy, pages 238–252, 2013.

[58] Krzysztof Pietrzak. Advances in Cryptology - EUROCRYPT 2009: 28th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Cologne,
Germany, April 26-30, 2009. Proceedings, chapter A Leakage-Resilient Mode of Operation.
2009.

[59] Manoj Prabhakaran and Rui Xue. Statistically hiding sets. In CT-RSA, pages 100–116.
2009.

[60] Amit Sahai. Simulation-sound non-interactive zero knowledge. Technical report, IBM
RESEARCH REPORT RZ 3076, 2001.

[61] Aviad Rubinstein Shafi Goldwasser, Huijia Lin. Delegation of computation without re-
jection problem from designated verifier cs-proofs. Cryptology ePrint Archive, Report
2011/456, 2011.

[62] François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques Quisquater, Moti Yung,
and Elisabeth Oswald. chapter Leakage Resilient Cryptography in Practice, pages 99–134.
2010.

A Preliminaries and Definitions

A.1 Basic notions

First we provide formal definitions for collision resistant hash function families and the hardness
of the discrete logarithm problem (cf. [49]).

26

Definition A.1 (Collision resistant hash function family [49]). A fixed length, collision resistant,
hash function family, is a pair of probabilistic algorithms Hk = (Gen, h) satisfying the following:

• Gen is a PPT algorithm which receives as input a security parameter 1k and outputs a key
z.

• h receives z, and x ∈ {0, 1}p1(k) and outputs hz(x) ∈ {0, 1}p2(k), p1(k), p2(k) = poly(k),
p2(k) < p1(k).

• For all PPT adversaries A, the collision-finding experiment HcollA,Hk
, which is defined

bellow, satisfies the following property:

Pr[HcollA,Hk
(1k) = 1] = negl(k),

for some negligible function negl(·).

HcollA,Hk
(k):

– A key z is generated by executing Gen(1k).

– A is given z and outputs x,x′.

– If x 6= x′ and hz(x) = hz(x
′) output 1, otherwise output 0.

Definition A.2 (Hardness of the discrete logarithm problem [49]). For any k ∈ N and any
group-generation algorithm G, we say that the discrete logarithm problem is hard relative to G,
if for all PPT algorithms A there exists a negligible function negl such that

Pr[DLogA,G(k) = 1] ≤ negl(k),

where,
DLogA,G(k) :

(G, g, p)← G(1k), |G| = p

s′
$← Zp, w := gs

′

s← A(G, g, p, w)

If gs = w, return 1
otherwise, return 0

Next we recall the definitions of coding schemes and non-malleability (cf. [35]).

Definition A.3 (Coding scheme [35]). A (κ, ν)-coding scheme, κ, ν ∈ N, is a pair of algorithms
(Enc,Dec) such that: Enc : {0, 1}κ → {0, 1}ν is an encoding algorithm, Dec : {0, 1}ν → {0, 1}κ ∪
{⊥} is a decoding algorithm, and for every s ∈ {0, 1}κ, Pr[Dec(Enc(s)) = s] = 1, where the
probability runs over the randomness used by (Enc,Dec).

Note that, the encoder may also receive 1k, where k denotes the security parameter, and is
independent of κ, still for brevity, we omit 1k from the input of Enc.

Definition A.4 (Non-Malleability [35]). Let (Enc,Dec) be a (κ, ν)-coding scheme and F be a
family of functions f : {0, 1}ν → {0, 1}ν . For every f ∈ F and s ∈ {0, 1}κ, define the tampering
experiment

Tamperfs
def
=

{
c← Enc(s), c̃← f(c), s̃ = Dec(c̃)

Output : s̃.

}
which is a random variable over the randomness of Enc and Dec. A coding scheme (Enc,Dec) is
non-malleable with respect to the function family F , if for each f ∈ F , there exists a distribution
Df over {0, 1}κ ∪ {⊥, same∗}, such that for all s ∈ {0, 1}κ, we have:

Tamperfs ≈
{

s̃← Df

Output s if s̃ = same∗, and s̃ otherwise.

}
and Df is efficiently samplable given oracle access to f . Here, “≈” may refer to statistical, or
computational, indistinguishability.

27

Next we provide the definition of a one-time secure message authentication codes (MAC).

Definition A.5 (One-time MAC). Let k be the security parameter. A message authentication
code Π = (Gen,Mac,Vrfy) is one-time ε-secure if for all algorithms A = (A1,A2),

Pr[Mac− forgeA,Π(k) = 1] ≤ ε,

where,
Mac− forgeA,Π(k) :

sk← Gen(1k)
(s, st)← A1(1k)
t← Macsk(s)
(s′, t′)← A2(t, st)
Output 1 if Vrfysk(s′, t′) = 1 and s′ 6= s.

The definition of leakage-resilient one-time MAC follows.

Definition A.6 (One-time MAC against leakage). Let k be the security parameter and L be a
function class. A message authentication code Π = (Gen,Mac,Vrfy) is one-time ε-secure against
L if for all algorithms A = (A1,A2,A3),

Pr[LRMac− forgeA,Π(k) = 1] ≤ ε,

where,
LRMac− forgeA,Π(k) :

sk← Gen(1k)
g ← A1(1k), g ∈ L
(s, st)← A2(1k, g(sk))
t← Macsk(s)
(s′, t′)← A3(t, st)
Output 1 if Vrfysk(s′, t′) = 1 and s′ 6= s.

A.2 Randomness extractors and universal hash function families

Using extractors [55] we can extract randomness from sources that produce weakly-random
values, assuming those values have sufficient min-entropy. Here, we follow the definition given
by [33], that uses average conditional min-entropy H̃∞(·).

Definition A.7 (Randomness Extractor [33]). A polynomially time computable function Ext :
M× {0, 1}n → {0, 1}k is an average case, strong, (m, ε)-extractor, if for all random variables
S, Z, where S is a variable over M and H̃∞(S|Z) ≥ m, it holds that

∆(Ext(S;R), Uk | (R,Z)) ≤ ε,

where R denotes the random coins of Ext. The value L = m−k is called the entropy loss of Ext,
and n is the seed length of Ext.

Universal hash functions are good randomness extractors, and they are defined as follows:

Definition A.8 (ρ-Universal Hashing [17]). A family H of deterministic functions h : M →
{0, 1}k is called a ρ-universal hash family, if for any s1 6= s2 ∈ M, Prh←H[h(s1) = h(s2)] ≤ ρ.
If ρ = 1/2k, H is called universal.

Now we state the leftover-hash lemma [47], following the definition given in [7].

Lemma A.9 (Leftover-Hash Lemma [7, 47]). Assume that the family H of functions h :M→
{0, 1}k is a 1+γ

2k
-universal hash family. Then, the extractor Ext(s;h) = h(s), where h is sampled

according to H, is an average case, strong (m, ε)-extractor, where ε = 1
2 ·
√
γ + 1

2L
and L = m−k

is the entropy loss.

28

Below, we define the inner product hash function family and in Lemma A.11 we prove that
it is universal.

Definition A.10 (The inner product hash function family). Let Fp be a finite field of prime order
p, where p is a k-bit integer. For any t ∈ N, the inner-product function family Hip = (Gen, h),
for messages over Ftp is defined as follows:

• Gen(1k): sample (r1, . . . , rt)
$← Ftp and set z = (r1, . . . , rt).

• Hash computation: on input message s = (s1, . . . , st) ∈ Ftp, compute hz(s) =
∑t

i=1 si ·ri,
where the summation refers to the addition operation, and · is the multiplication operation,
over Fp.

Lemma A.11. The function family Hip of Definition A.10 is universal.

Proof. For any k in N, let Fp be any field of order p, where p is a k-bit integer, and let s =
(s1, . . . , st), s̄ = (s̄1, . . . , s̄t) be two distinct messages, i.e., s and s̄ differ in at least one coordinate.
Without loss of generality, we assume that s1 6= s̄1. Then,

Pr
hz←Hip

[hz(s) = hz(s̄)] = Pr

[
t∑
i=1

ri · (si − s̄i) = 0

]
= Pr

[
r1 =

−
∑t

i=2 ri · (si − s̄i)
(s1 − s̄1)−1

]

Hence, for any choice of r2, . . . , rt, there is a unique r1 for which hz(s) = hz(s̄). Since r1 is
random over Fp, we have that Pr[hz(s) = hz(s̄)] ≤ 1/p ≤ 1/2k. �

A.3 Instantiating authenticated, semantically secure symmetric encryption,
against one time leakage

In the following we present a one-time leakage-resilient, authenticated, semantically secure sym-
metric encryption (Definition 2.9), against λ bits of leakage.

Lemma A.12. Any ε-secure one-time message authentication code Π = (Gen,Mac,Vrfy) is
2λε-secure against λ bits of leakage.

Proof. (proof sketch) Towards contradiction, assume an attacker A = (A1,A2,A3), issuing a
single leakage query g ∈ Lλ against the secret key sk of Π, and breaking its security with
probability greater than 2λε. We build an attackerA′ that acts as follows: it samples g ← A1(1k),
makes a guess g on g(sk), and executes the rest of the LRMAC− forge experiment with (A2,A3).
Clearly, the probability of wining is equal to the probability of making a correct guess on g(sk),
say p1, times the probability that A breaks Π in the presence of leakage, say p2, which by
assumption is greater then 2λε. Assuming H∞(g(sk)) = λ, the winning probability of A′ is
p1 · p2 > ε, which is a contradiction. �

Construction A.13 (One-time MAC). Let Hpi be a pair-wise independent hash function family,
Hpi = {h : K ×M → T }. A one-time message authentication code (Gen,Mac,Vrfy) is defined
as follows:

• Gen: sample z ← K, and output hz.

• Mac(z, ·): on input message s, output t := hz(s).

• Vrfy(z, ·): on input s, t, if hz(s) = t, output 1, otherwise output 0.

It is not hard to see that by instantiating the above construction with ha,b(s) = a · s + b
mod p, where p is a k-bit prime, (a, b) is a 2k-bit key and M = T = Zp, we receive an 1/2k-
secure message authentication code (this is standard one-time information theoretic MAC).
By combining that code with a semantically secure, leakage resilient encryption scheme, we
construct an authenticated, semantically secure encryption scheme against λ-bits of leakage.

29

Construction A.14. (Authenticated one-time LR-encryption against λ-bits of leak-
age) Let H̄ be a hash function family, that outputs k bits, let PRG be a pseudo-random generator,
PRG : {0, 1}k → {0, 1}|s|, where |s| denotes the length of the message. We define a symmetric
encryption scheme (KGen,E,D), as follows:

• KGen(1k): sample r
$← {0, 1}(k+log2 k+λ), and two random integers a, b, over {0, 1}k+λ,

and output sk = (r, a, b).

• Esk(·): On input message s, the encryption algorithm computes h̄
$← H̄, e = PRG(h̄(r))+s,

t = ha,b(h̄||e) and outputs (h̄, e, t), where ha,b(s) := as+ b mod p and p is a k + log2 k +
λ+ |s|-bit prime.

• Dsk(·): On input (h̄, e, t), if t = ha,b(h̄||e) output s = PRG(h̄(r))− e, otherwise output ⊥.

Theorem A.15. Assuming H̄ is a universal hash function family, H is pairwise independent
(ha,b ∈ H), and one-way functions, Construction A.14 is a one-time leakage-resilient, semanti-
cally secure, authenticated encryption scheme against Lλ.

Proof. (proof sketch)
Clearly, the above scheme satisfies correctness. Regarding semantic security, by construction we
have H∞(r|g(sk)) ≥ k + log2 k, for any g ∈ Lλ. Thus, by the LeftOver Hash Lemma (Lemma
A.9), h̄(r) is statistically close to uniform over {0, 1}k, and PRG(h(r)) + s, is computationally
indistinguishable from a uniform element in {0, 1}|s|. Since the tag, t, is computed over (h̄, e),
it does not reveal any information about the message s, and semantic security follows.

Since ha,b belongs to a pairwise independent hash function family (see above), any attacker
without leakage access on (a, b), makes a forgery against the above scheme with probability
at most 1/2(k+λ). Thus, by Lemma A.12 unforgeability against λ bits of leakage breaks with
probability 2λ · 1/2(k+λ) = negl(k), and the unforgeability property of the scheme breaks with
negligible probability in k, even given λ bits of leakage. �

In the above construction, the length of the secret key is 3k+3λ+log2 k bits while the length
of the ciphertext is 2k+2 log2 k+2λ+2|s| bits, giving a total of l(λ, s) := 5k+5λ+3 log2 k+2|s|
bits.

Clearly, the above scheme is not sufficient for getting a rate-1 non-malleable code, thus we
combine the above scheme with the following authenticated encryption scheme for which we do
not require leakage resilience.

Construction A.16 (Authenticated encryption). Let PRG be a pseudo-random generator,
PRG : {0, 1}k → {0, 1}|s|+k, where |s| denotes the length of the message, and let (Gen,Mac,Vrfy)
be a CBC message authentication code that outputs tags of length k (cf. [49]). We define a
symmetric encryption scheme (KGen′,E′,D′), as follows:

• KGen′(1k): sample r
$← {0, 1}k, and output sk = r.

• E′sk(·): On input message s, the encryption algorithm computes (r0, r1) = PRG(sk), where
|r0| = |s| and |r1| = k, e = r0 + s, t = Macr1(e), and outputs (e, t).

• D′sk(·): On input (e, t), compute (r0, r1) = PRG(sk), and if Vrfyr1
(e, t) = 1, output s =

e− r0, otherwise output ⊥.

It is not hard to see that the above construction is secure: r0 is indistinguishable from
random, thus e is indistinguishable from random over the message space. Moreover, the un-
forgeability property of the message authentication code guarantees the authenticity of the
encryption scheme. In the above construction the length of secret key and ciphertext is 2k+ |s|.

The final construction is a combination between constructions A.16 and A.14, for λ = 2k +
log2 k bits of leakage. In order to encrypt a message s, we execute sk′ ← KGen′(1k) and sk ←

30

KGen(1k) and we output (e1 = Esk(sk′), e2 = E′
sk′

(s)), i.e., we encrypt the secret key of an
authenticated encryption scheme using leakage-resilient authenticated encryption, and then we
encrypt the message using the former scheme. The decryption procedure is straightforward: if
Dsk(e1) = sk′′ 6= ⊥, output D′

sk′′
(e2), otherwise, output ⊥. Correctness and semantic security

follow directly by the correctness and semantic security of the underlying schemes. Now, if the
attacker modifies e1, then with very high probability sk′′ = ⊥ by the authenticity property of
Construction A.14. Assuming, the attacker does not modify e1, if e2 is modified then, D′

sk′′
(e2) =

⊥, with overwhelming probability, by the authenticity property of Construction A.16. The final
construction has ciphertext and key length l(2k + log2 k, k) + k + |s| = 18k + 8 log2 k + |s|.

A.4 Multi-codeword Randomness Simulatable NMC

Definition A.17 (Multi-codeword RSS-NMC). Let (Enc,Dec) be a (κ, ν)-coding scheme and F
be a family of functions f : {0, 1}ν → {0, 1}ν . For every f ∈ F and s = (s1, . . . , s`) ∈ ({0, 1}κ)`,
define the tampering experiment

MultiTamperfs
def
=

{
ci ← Enc(si), i ∈ [`], c̃← f(c1, . . . , c`), (s̃r, s̃) = Dec(c̃)

Output same∗ if ∃i : c̃ = ci, and (s̃r, s̃) otherwise.

}
which is a random variable over the randomness of Enc and Dec. A coding scheme (Enc,Dec)
is multi-codeword, randomness simulatable, strongly non-malleable, with respect to the function
family F , if for every f ∈ F and any s0, s1 ∈ ({0, 1}κ)`, we have

{
MultiTamperfs0

}
k∈N ≈{

MultiTamperfs1
}
k∈N, where “≈” may refer to statistical, or computational, indistinguishability.

For coding schemes in the common reference string model, the definition is analogous.

B Proofs

B.1 Proof of Lemma 3.2

Proof. We are given that the output of Exps,hzAv ,As,EHAv

(`, auxAv , auxE) is 0, and As succeeds in

producing a valid pre-image (s̃r, s̃) for a new hash, ṽ. Since the output of the experiment is 0,
we know that EHAv

produces a valid pre-image (ŝr, ŝ) for ṽ. Assuming, (ŝr, ŝ) 6= (s̃r, s̃), we break
the collision resistance property of Hk.

Concretely, assume there exist Av with auxiliary info auxAv , extractor EHAv
with auxiliary

info auxE , algorithm As, and vector of messages s, such that

Pr
hz←Hk

[
Exps,hzAv ,As,EHAv

(`, auxAv , auxE) = 0, hz(s̃r, s̃) = ṽ, ṽ 6= vi, i ∈ [`] :

(ŝr, ŝ) 6= (s̃r, s̃)

]
> ε,

(2)

for ε = 1/poly(k). We define an adversary A who simulates Exps,hzAv ,As,EHAv

(`, auxAv , auxE) while

playing against the collision finding experiment HcollA,Hk
. A is defined as follows:

• A1 outputs the security parameter, k, the experiment samples z ← Gen(1k), and sends z
to A.

• A2 simulates Exps,hzAv ,As,EHAv

(`, auxAv , auxE) and outputs x1 = (s̃r, s̃) and x2 = (ŝr, ŝ), i.e.,

x1 is the output of As and x2 is the output of EHAv
, received during the execution of the

experiment.

Then, assuming Relation 2 holds, we have hz(x1) = hz(x2), and the collision resistance property
of hz breaks, with non-negligible probability. �

31

B.2 Proof of Lemma 3.5

Proof. Let k ∈ N, t = O(poly(k)), and let G be a group-generation algorithm, for which the
discrete logarithm problem is hard. Assuming the hash function family H∗ is 1-more extractable
with respect to G, we define a PPT attacker A = (A1,A2) that breaks the hardness assumption
on the discrete logarithm problem with non-negligible probability in k. A executes the following
steps

1. (Define Av, auxAv): Av(h∗z, v, auxAv) = (vx, st), where x is a fixed, non-zero, element in
Zp, and auxAv , st, are zero-length strings.

2. (Define As): As(h∗z, s, st) = xs.

3. (Interact with DLogA,G):

(a) A1 supplies the experiment DLogA,G with k; the experiment sends (G, g, p, w) to A,

where w = gs
′

and s′ is uniform over Zp.

(b) A2 samples (a, r, s)
$← Zp×Ztp×Zt−1

p , s = (s1, . . . , st−1), i.e., it samples a hash function
fromH∗ and a vector message s with t−1 coordinates. It then sets z = (G, gr, gar) and

partially simulates Exp
s′,h∗z
Av ,As,EH

∗
Av

(1, auxAv , auxE), where s′ = (s′, s1, . . . , st−1), without

accessing s′. Here, EH∗Av
and auxE are totally defined by Av and auxAv , since we assume

that H∗ is 1-more extractable. Then, A2 executes the following steps:

i. computes h∗z(s
′, s1, . . . , st−1) while not having access to s′, i.e., computes v =

((gs
′
)r1 · gd, (gs′)ar1 · gad), where d = 〈[r](2:t), s〉.

ii. samples (ṽ, st)← Av(h∗z, v, auxAv), where by definition

ṽ = vx =
((
g(r1s′+d)

)x
,
(
ga(r1s′+d)

)x)
.

iii. samples ŝ← EH∗Av
(h∗z, v, auxE), and sends s = r−1

1 (x−1〈r, ŝ〉 − d) to DLogA,G .

It is not hard to see that v and ṽ are valid hash values with respect to H∗, and the execution of
As(h∗z, s′, st) would yield xs′ = (xs′, xs1, . . . , xst−1), which is a valid pre-image for ṽ. Moreover,

A, that is not aware of s′, does not need to fully simulate Exp
s′,h∗z
Av ,As,EH

∗
Av

(1, auxAv , auxE), since

the extractor, EH∗Av
, does not depend on As. In other words, with overwhelming probability, in

the execution of Exp
s′,h∗z
Av ,As,EH

∗
Av

(1, auxAv , auxE), As would output the right pre-image for ṽ while

having access to s′, still we don’t have to trigger the specific event in order for EH∗Av
to output a

valid pre-image for ṽ. Concretely, and assuming H∗ is 1-more extractable we have

Pr
h∗z←H∗k

[h∗z(ŝ) = ṽ] ≥ 1− negl(k), (3)

where

Pr
h∗z←H∗k

[h∗z(ŝ) = ṽ] = Pr
[(
g<r,ŝ>, g<ar,ŝ>

)
=
(
gx(r1s′+d), gax(r1s′+d)

)]
= Pr[< r, ŝ >= x(r1s

′ + d)]

= Pr[r−1
1 (x−1 < r, ŝ > −d) = s′] = Pr[s = s′]. (4)

By Relations (3) and (4) we have

Pr[s = s′] ≥ 1− negl(k),

and DLogA,G(k) = 1, i.e., gs = gs
′
, with non-negligible probability in k. �

32

B.3 Proof (sketch) of Lemma 6.2

Proof. Recall that, any f ∈ Faff produces a valid, new codeword, c̃, with respect to (Enc,Dec),
only when c̃ is independent of the original codeword. Moreover, the output of Tamperfs is same∗,
only if f = (0, 1), where Tamper is the tampering experiment of Definition 5.1 (for brevity we
omit the CRS). Those facts imply that, when considering multiple codewords/messages and
the code (Enc,Dec) against Faff , any tampering function f = (f1, . . . , f`) ∈ F̄ `aff , makes the
tampering experiment of Definition A.17 to output same∗, only if a single fm = (bm, dm) is the
identity function, i.e., bm = 0, dm = 1, while the remaining functions are the zero-functions, i.e.,
bj = 0, dj = 0, j ∈ [`]\{m}. We will refer to such a tampering function using the term projection
function. Now, given a tampering function f = (f1, . . . , f`) ∈ F̄ `aff , and messages s = (s1, . . . , s`),

we can easily construct f ′ ∈ Faff , s′, for which MultiTamperfs = Tamperf
′

s′ , where MultiTamper is
the tampering experiment of Definition A.17. If f ′ is a projection function with respect to index
m, we set f ′ = (0, 1) and s′ = sm, and clearly, both experiments output same∗. Otherwise,
assuming f1 = (b1, d1), we compute b =

∑`
i=2 fi(Enc(si)) and we set f ′ = (b + b1, d1), s′ = s1,

and we can prove, exactly as in the proof of Theorem 5.9, that either the tampered codeword is
independent of the original, and the outputs for both experiments are decidable by inspecting
the tampering function, or both experiments output ⊥. Thus, assuming that we can distinguish
between MultiTamperfs0 and MultiTamperfs1 , for some f ∈ F̄ `aff and messages s0, s1, we can

construct f ′ ∈ Faff , s′0, s′1, and distinguish between Tamperf
′

s′0
and Tamperf

′

s′1
, breaking RSS-non-

malleability for Construction 5.8. �

33

	Introduction
	 Our Results
	Technical Overview
	Related work

	Preliminaries
	-more extractable hash function families
	A non-malleable code against split-state tampering
	Constructing 1-more extractable hash functions
	1-more extractable hash functions from RSS-NM codes against affine functions
	Constructing RSS-NM codes
	Our resulting instantiation

	Constructing -more extractable hash
	Instantiating authenticated encryption
	Preliminaries and Definitions
	Basic notions
	Randomness extractors and universal hash function families
	Instantiating authenticated, semantically secure symmetric encryption, against one time leakage
	Multi-codeword Randomness Simulatable NMC

	Proofs
	Proof of Lemma 3.2
	Proof of Lemma 3.5
	Proof (sketch) of Lemma 6.2

