
Five Rounds are Sufficient and Necessary for the
Indifferentiability of Iterated Even-Mansour

Yuanxi Dai?, Yannick Seurin??, John Steinberger? ? ?, and
Aishwarya Thiruvengadam†

February 24, 2017

Abstract. We prove that the 5-round iterated Even-Mansour (IEM)
construction with a non-idealized key-schedule (such as the trivial key-
schedule, where all round keys are equal) is indifferentiable from an ideal
cipher. In a separate result, we also prove that five rounds are necessary
by describing an attack against the corresponding 4-round construction.
This closes the gap regarding the exact number of rounds for which the
IEM construction with a non-idealized key-schedule is indifferentiable
from an ideal cipher, which was previously only known to lie between 4
and 12. Moreover, the security bound we achieve is comparable to (in
fact, slightly better than) the previously established 12-round bound.

1 Introduction

Background. A large number of block ciphers are so-called key-alternating
ciphers. Such block ciphers alternatively apply two types of transformations to the
current state: the addition (usually bitwise) of a secret key and the application
of a public permutation. In more detail, an r-round key-alternating cipher with
message space {0, 1}n is a transformation of the form

y = kr ⊕ Pr(kr−1 ⊕ Pr−1(· · ·P2(k1 ⊕ P1(k0 ⊕ x)) · · ·)), (1)

where (k0, . . . , kr) are n-bit round keys (usually derived from a master key k
of size close to n), where P1, . . . , Pr are fixed, key-independent permutations
and where x and y are the plaintext and ciphertext, respectively. In particular,
virtually all1 SPNs (Substitution-Permutation Networks) have this form, including,
e.g., the AES family.

A recent trend has been to analyze this class of block ciphers in the so-called
Random Permutation Model (RPM), which models the permutations P1, . . . , Pr
as oracles that the adversary can only query (from both sides) in a black-box way,
? Tsinghua University, P.R. China. E-mail: dyx13@mails.tsinghua.edu.cn
?? ANSSI, Paris, France. E-mail: yannick.seurin@m4x.org

? ? ? Tsinghua University, P.R. China. E-mail: jpsteinb@gmail.com
† University of Maryland, United States. E-mail: aish@cs.umd.edu
1 Some SPNs do not adhere to the key-alternating abstraction because they introduce
the key at the permutation stage as well—e.g., by using keyed S-boxes.

each behaving as a perfectly random permutation. This approach allows to assert
the nonexistence of generic attacks, i.e., attacks not exploiting the particular
structure of “concrete” permutations endowed with short descriptions. This
approach dates back to Even and Mansour [EM97] who studied the case r = 1.
For this reason, construction (1), once seen as a way to define a block cipher from
an arbitrary tuple of permutations P = (P1, . . . , Pr), is often called the iterated
Even-Mansour (IEM) construction. The general case of r ≥ 2 rounds was only
considered more than 20 years later in a series of papers [BKL+12, Ste12, LPS12,
CS14, CLL+14, HT16], primarily focusing on the standard security notion for
block ciphers, namely pseudorandomness, which requires that no computationally
bounded adversary with (usually two-sided) black-box access to a permutation
can distinguish whether it is interacting with the block cipher under a random key
or a perfectly random permutation. Pseudorandomness of the IEM construction
with independent round keys is by now well understood, the security bound
increasing beyond the “birthday bound” (the original bound proved for the
1-round Even-Mansour construction [EM97, DKS12]) as the number of rounds
increases [CS14, HT16].

The Ideal Cipher Model. Although pseudorandomness has been the primary
security requirement for a block cipher, in some cases this property is not enough
to establish the security of higher-level cryptosystems using the block cipher.
For example, the security of some real-world authenticated encryption protocols
such as 3GPP confidentiality and integrity protocols f8 and f9 [IK04] rely on
the stronger block cipher security notion of indistinguishability under related-key
attacks [Bih94, BK03]. Problems also arise in the context of block-cipher based
hash functions [LM92, PGV93] where the adversary can control both the message
and the key of the block cipher, and hence can exploit “known-key” or “chosen-key”
attacks [KR07, BKN09] in order to break the collision- or preimage-resistance of
the hash function.

Hence, cryptographers have come to view a good block cipher as something
close to an ideal cipher (IC), i.e., a family of 2κ uniformly random and inde-
pendent permutations, where κ is the key-length of the block cipher. Perhaps
not surprisingly, this view turned out to be very fruitful for proving the se-
curity of constructions based on a block cipher when the PRP assumption is
not enough [Win84, Mer89, BRS02, KR96, BPR00, Des00, Gra02, BR06], an
approach often called the ideal cipher model (ICM). This ultimately remains a
heuristic approach, as one can construct (artificial) schemes that are secure in
the ICM but insecure for any concrete instantiation of the block cipher, similarly
to the random oracle model [Bla06, FS86, BR93]. On the other hand, a proof in
the ideal cipher model is typically considered a good indication of security from
the point of view of practice.

Indifferentiability. While an IC remains unachievable in the standard model
for reasons stated above (and which boil down to basic considerations on the
amount of entropy in the system), it remains an interesting problem to “build”
ICs (secure in some provable sense) from other ideal primitives. This is precisely

2

the approach taken by the indifferentiability framework, introduced by Maurer
et al. [MRH04] and popularized by Coron et al. [CDMP05]. Indifferentiability
is a simulation-based framework that helps assess whether a construction of a
target primitive A (e.g., a block cipher) from a lower-level ideal primitive B (e.g.,
for the IEM construction, a small number of random permutations P1, . . . , Pr)
is “structurally close” to the ideal version of A (e.g., an IC). Indifferentiability
comes equipped with a composition theorem [MRH04] which implies that a large
class of protocols (see [RSS11, DGHM13] for restrictions) are provably secure in
the ideal-B model if and only if they are provably secure in the ideal-A model.

We note that indifferentiability does not presuppose the presence of a private
key; indeed, a number of indifferentiability proofs concern the construction of a
keyless primitive (such as a hash function, compression function or permutation)
from a lower-level primitive [CDMP05, HKT11, ABD+13]. In the case of a block
cipher, thus, the key is “just another input” to the construction.

Previous Results. Two papers have previously explored the indifferentiability
of the IEM construction from an ideal cipher, modeling the underlying permu-
tations as random permutations. Andreeva et al. [ABD+13] showed that the
5-round IEM construction with an idealized key-schedule (i.e., the function(s)
mapping the master key onto the round key(s) are modeled as random oracles) is
indifferentiable from an IC. Lampe and Seurin [LS13] showed that the 12-round
IEM construction with the trivial key-schedule, i.e., in which all round keys
are equal, is also indifferentiable from an IC. Moreover, both papers included
impossibility results for the indifferentiability of the 3-round IEM construction
with a trivial key-schedule, showing that at least four rounds must be necessary in
that context. In both settings, the question of the exact number of rounds needed
to make the IEM construction indifferentiable from an ideal cipher remained
open.

Our Results. We improve both the positive and negative results for the
indifferentiability of the IEM construction with the trivial (and more generally,
non-idealized) key-schedule. Specifically, we show an attack on the 4-round IEM
construction, and prove that the 5-round IEM construction is indifferentiable
from an IC, in both cases for the trivial key-schedule.2 Hence, our work resolves
the question of the exact number of rounds needed for the IEM construction
with a non-idealized key-schedule to achieve indifferentiability from an IC.

Our 4-round impossibility result improves on the afore-mentioned 3-round
impossibility results [ABD+13, LS13]. It can be seen as an extension of the attack
against the 3-round IEM with the trivial key-schedule [LS13]. But unlike this
3-round attack, our new 4-round attack does not merely consist in finding a
tuple of key/plaintext/ciphertext triples for the construction satisfying a so-called
“evasive” relation (i.e., a relation which is hard to find with only black-box access

2 Actually we consider a slight variant of the trivial key-schedule where the first and last
round keys are omitted, but both our negative and positive results are straightforward
to extend to the “standard” trivial key-schedule. See Section 2 for a discussion.

3

to an ideal cipher, e.g. a triple (k, x, y) such that x ⊕ y = 0). Instead, it relies
on relations on the “internal” variables of the construction (which makes the
attack harder to analyze rigorously). We note that a simple “evasive-relation-
finding” attack against four rounds had previously been excluded by Cogliati and
Seurin [CS15] (in technical terms, they proved that the 4-round IEM construction
is sequentially-indifferentiable from an IC, see Remark 2 in Section 3) so the
extra complexity of our 4-round attack is in a sense inevitable.

Our 5-round feasibility result can be seen as improving both the 5-round
result for the IEM construction with idealized key-schedules [ABD+13] (albeit
see the fine-grained metrics below) and on the 12-round feasibility result for the
IEM construction with the trivial key-schedule [LS13]. Our simulator runs in
time O(q5), makes O(q5) IC queries, and achieves security 241 · q12/2n, where q is
the number of distinguisher queries. By comparison, these metrics are respectively

O(q3), O(q2), 234 · q10/2n

for the 5-round simulator of Andreeva et al. [ABD+13] with idealized key-schedule,
and

O(q4), O(q4), 291 · q12/2n

for the 12-round simulator of Lampe and Seurin [LS13]. Hence, as far as the
security bound is concerned at least, we achieve a slight improvement over the
previous (most directly comparable) work.

A Glimpse at the Simulator. Our 5-round simulator follows the tradi-
tional “chain detection/completion” paradigm, pioneered by Coron et al. [CPS08,
HKT11, CHK+16] for proving indifferentiability of the Feistel construction, which
has since been used for the IEM construction as well [ABD+13, LS13]. However,
it is, in a sense, conceptually simpler and more “systematic” than previous
simulators for the IEM construction (something we pay for by a more complex
“termination” proof). In a nutshell, our new 5-round simulator detects and com-
pletes any path of length 3, where a path is a sequence of adjacent permutation
queries “chained” by the same key (and which might “wrap around” the ideal
cipher). In contrast, the 12-round simulator of [LS13] used a much more parsimo-
nious chain detection strategy (inherited from [CPS08, Seu09, HKT11, CHK+16])
which allowed a much simpler termination argument.

Once a tentative simulator has been determined, the indifferentiability proof
usually entails two technical challenges: on the one hand, proving that the
simulator works hard enough to ensure that it will never be trapped in an
inconsistency, and on the other hand, proving that it does not work in more than
polynomial time. Finding the right balance between these two requirements is at
the heart of the design of a suitable simulator.

The proof that our new 5-round simulator remains consistent with the IC
roughly follows the same ideas as in previous indifferentiability proofs. In short,
since the simulator completes all paths of length 3, at the moment the distinguisher
makes a permutation query, only incomplete paths of length at most two can
exist. Hence any incomplete path has three “free” adjacent positions, two of which

4

(the ones on the edge) will be sampled at random, while the middle one will be
adapted to match the IC. The most delicate part consists in proving that no path
of length 3 can appear “unexpectedly” and remain unnoticed by the simulator
(which will therefore not complete it), except with negligible probability.

The more innovative part of our proof lies in the “termination argument”,
i.e., proving that the simulator is efficient and that the recursive chain detec-
tion/completion process does not “chain react” beyond a fixed polynomial bound.
As in many previous termination arguments [CPS08, Seu09, HKT11, CHK+16,
DSSL16] the proof starts by observing that certain types of paths (namely those
that wrap around the IC) are only ever detected and completed if the distin-
guisher made the corresponding IC query. Hence, assuming the distinguisher
makes at most q queries, at most q such paths will be triggered and completed.
In virtually all previous indifferentiability proofs, this fact easily allows to upper
bound the size of permutation histories for all other “detect zones” used by the
simulator, and hence to upper bound the total number of paths that will ever
be detected and completed. (Indeed, all of the indifferentiability results in the
afore-mentioned list actually have quite simple termination arguments!) But in
the case of our 5-round simulator this observation only allows us to upper bound
the size of the middle permutation P3, which by itself is not sufficient to upper
bound the number of other detected paths. To push the argument further we
make some additional observations—essentially, we note that every triggered
path that is not a “wraparound” path associated to some distinguisher query is
uniquely (i.e., injectively) associated to one of: (i) a pair of P3 and P1 entries,
where the P1 entry was directly queried by the distinguisher, or (ii) symmetri-
cally, a pair of P3 and P5 entries, where the P5 entry was directly queried by the
distinguisher, or (iii) a pair of P3 entries. (In some sense, the crucial “trick” that
allows to fall back on (iii) in all other cases is the observation that every query
that is left over from a previous query cycle and that is not the direct result of a
distinguisher query is in a completed path, and this completed path contains a
query at P3.) This suffices, because the distinguisher makes only q queries and
because of the afore-mentioned bound on the size of P3. In order to show that
the association described above is truly injective, a structural property of P2 and
P4 is needed, namely that the table maintaining answers of the simulator for
P2 (resp. P4) never contains 4 distinct input/output pairs (x(i), y(i)), such that⊕

1≤i≤4(x(i) ⊕ y(i)) = 0. Since some queries are “adapted” to fit the IC, proving
this part ends up being a source of some tedium as well.

Related Work. Several papers have studied security properties of the IEM con-
struction that are stronger than pseudorandomness yet weaker than indifferentia-
bility, such as resistance to related-key [FP15, CS15], known-key [ABM13, CS16],
or chosen-key attacks [CS15, GL15]. A recent preprint shows that the 3-round
IEM construction with a (non-invertible) idealized key-schedule is indifferentiable
from an IC [GL16]. This complements our work by settling the problem analogous
to ours in the case of idealized key-schedules. In both cases, the main open
question is whether the concrete indifferentiability bounds (which are typically
poor) can be improved.

5

Organization. Preliminary definitions are given in Section 2. The attack against
the 4-round IEM construction is given in Section 3. Our 5-round simulator is
described in Section 4, while the indifferentiability proof is in Section 5.

2 Preliminaries

General Definitions and Notation. Throughout the paper, n will denote
the block length of permutations P1, . . . , Pr of the IEM construction and will
play the role of security parameter for asymptotic statements. Given a finite
non-empty set S, we write s←$ S to mean that an element is drawn uniformly
at random from S and assigned to s.

A distinguisher is an oracle algorithm D with oracle access to a finite list of
oracles (O1,O2, . . .) and that outputs a single bit b, which we denote DO1,O2,... = b
or D[O1,O2, . . .] = b. A block cipher with key space {0, 1}κ and message space
{0, 1}n is a mapping E : {0, 1}κ × {0, 1}n → {0, 1}n such that for any key
k ∈ {0, 1}κ, x 7→ E(k, x) is a permutation. An ideal cipher with block length n
and key length κ is a block cipher drawn uniformly at random from the set of all
block ciphers with block length n and key length κ.

The IEM Construction. Fix integers n, r ≥ 1. Let f = (f0, . . . , fr) be a
(r + 1)-tuple of functions from {0, 1}n to {0, 1}n. The r-round iterated Even-
Mansour construction EM[n, r, f] specifies, from any r-tuple P = (P1, . . . , Pr)
of permutations of {0, 1}n, a block cipher with n-bit keys and n-bit messages,
simply denoted EMP in all the following (parameters [n, r, f] will always be clear
from the context), which maps a plaintext x ∈ {0, 1}n and a key k ∈ {0, 1}n to
the ciphertext defined by

EMP(k, x) = fr(k)⊕ Pr(fr−1(k)⊕ Pr−1(· · ·P2(f1(k)⊕ P1(f0(k)⊕ x)) · · ·)).

We say that the key-schedule is trivial when all fi’s are the identity.
Note that the first and last key additions do not play any role for indiffer-

entiability where the key is just a “public” input to the construction, much like
the plaintext/ciphertext. What provides security are the random permutations,
that remain secret for inputs that have not been queried by the attacker. So, we
will focus on a slight variant of the trivial key-schedule where f0 = fr = 0 (see
Fig. 3), but our results carry over to the trivial key-schedule (and more generally
to any non-idealized key-schedule where the fi’s are permutations on {0, 1}n).

Indifferentiability. We recall the standard definition of indifferentiability for
the IEM construction.

Definition 1. The construction EMP with access to an r-tuple P = (P1, . . . , Pr)
of random permutations is (tS , qS , ε)-indifferentiable from an ideal cipher IC if
there exists a simulator S = S(q) such that S runs in total time tS and makes at
most qS queries to IC, and such that∣∣Pr[DEMP,P = 1]− Pr[DIC,SIC

= 1]
∣∣ ≤ ε

6

for every (information-theoretic) distinguisher D making at most q queries in
total.

We say that the r-round IEM construction is indifferentiable from an ideal
cipher if for any q polynomial in n, it is (tS , qS , ε)-indifferentiable from an ideal
cipher with tS , qS polynomial in n and ε negligible in n.

Remark 1. Definition 1 allows the simulator S to depend on the number of
queries q. In fact, our simulator (cf. Figs. 4 and 5) does not depend on q, but is
efficient only with high probability. In Theorem 47 in Section 5.5, we discuss an
optimized implementation of our simulator that, among others, uses knowledge
of q to abort whenever its runtime exceeds the limit of a “good” execution, thus
ensuring that it is efficient with probability 1.

3 Attack Against 4-Round Simulators

We describe an attack against the 4-round IEM construction3, improving previous
attacks against 3 rounds [ABD+13, LS13]. Consider the distinguisher D whose
pseudocode is given in Fig. 1 (see also Fig. 2 for an illustration of the attack).
This distinguisher can query the permutations/simulator through the interface
Query(i, δ, z), and the EM construction/ideal cipher through interfaces Enc(k, x)
and Dec(k, y).

1 y3 ←$ {0, 1}n
2 x4 ←$ {0, 1}n
3 x′4 ←$ {0, 1}n \ {x4}
4 k := y3 ⊕ x4
5 k′ := y3 ⊕ x′4
6 y4 := Query(4,+, x4)
7 y′4 := Query(4,+, x′4)
8 x1 := Dec(k, y4)
9 x′1 := Dec(k′, y′4)

10 if x1 = x′1 then
11 return 0
12 y1 := Query(1,+, x1)
13 y′1 := Query(1,+, x′1)
14 x2 := y1 ⊕ k
15 x′2 := y′1 ⊕ k′

16 k′′ := y1 ⊕ x′2
17 k′′′ := k′′ ⊕ k ⊕ k′
18 y′′4 := Enc(k′′, x1)
19 y′′′4 := Enc(k′′′, x′1)
20 if y4, y

′
4, y
′′
4 , y
′′′
4 are not distinct then

21 return 0
22 draw b←$ {0, 1}
23 if b = 1 then
24 y′′4 ←$ {0, 1}n \ {y4, y

′
4}

25 y′′′4 ←$ {0, 1}n \ {y4, y
′
4, y
′′
4 }

26 x′′4 := Query(4,−, y′′4)
27 x′′′4 := Query(4,−, y′′′4)
28 if b = 0 then
29 return x′′4 ⊕ x′′′4 = x4 ⊕ x′4
30 else (b = 1)
31 return x′′4 ⊕ x′′′4 6= x4 ⊕ x′4

Fig. 1. Pseudocode of the attack against the 4-round IEM construction.

3 For simplicity, we consider the construction without the first and the last round keys,
but the attack can be straightforwardly extended to such a construction.

7

P1 P2 P3 P4

x1

x′
1

y1

y′
1

x2

x′
2

y2

y′
2

x3

x′
3

y3

y′
3

x4

x′
4

x′′
4

x′′′
4

y4

y′
4

y′′
4

y′′′
4

k k′ k′′ k′′′

Fig. 2. Illustration of the attack against the 4-round IEM construction. The circled
dots correspond to queries made by the distinguisher to the permutations/simulator.

We prove that D has advantage close to 1/2 against any simulator making a
polynomial number of queries to the IC. More formally, we have the following
result.

Theorem 1. Let S be any simulator making at most σ IC queries when interact-
ing with D. Then the advantage of D in distinguishing (EMP,P) and (IC,SIC)
is at least

1
2 −

4σ
2n −

7
2n .

Proof. We start by showing that the distinguisher returns 1 with probability
close to one when interacting with the real world (EMP,P). For this, we denote

x3 = P−1
3 (y3),

y2 = x3 ⊕ k,
y′2 = x3 ⊕ k′.

Then, it is easy to check that P−1
2 (y2) = x2 and P−1

2 (y′2) = x′2, where x2 and x′2
are the values obtained by the distinguisher at lines 14 and 15 respectively.

We first observe that the probability that D returns 0 at line 11 or 21 is
negligible. Consider line 11 first. One has

x1 = x′1 ⇔ y1 = y′1 ⇔ x2 ⊕ x′2 = k ⊕ k′ ⇔ P−1
2 (y2)⊕ P−1

2 (y′2) = k ⊕ k′.

By construction, y2 and y′2 are distinct and k ⊕ k′ 6= 0, so that the last equality
above is satisfied with probability exactly 2−n over the randomness of P2. Next,
we observe that, assuming x1 6= x′1, then the four keys (k, k′, k′′, k′′′) are distinct.
Indeed, by construction k 6= k′, which implies that k′′ 6= k′′′. Hence, the only
possibilities of equality are k′′ = k (which is equivalent to k′′′ = k′) or k′′ = k′

(which is equivalent to k′′′ = k). Note that

k′′ = y1 ⊕ x′2 = x2 ⊕ k ⊕ x′2 = k ⊕ P−1
2 (y2)⊕ P−1

2 (y′2).

Since y2 6= y′2 by construction, we see that k′′ = k is impossible, while k′′ = k′ iff
P−1

2 (y2)⊕P−1
2 (y′2) = k⊕k′, which turns out to be equivalent to x1 = x′1, as seen

8

above. Hence the claim. Consider now line 21. By construction, we have y4 6= y′4.
Moreover, since the four keys (k, k′, k′′, k′′′) are distinct, y′′4 and y′′′4 are uniformly
random, so that y′′4 ∈ {y4, y

′
4} with probability 2/2n, and y′′′4 ∈ {y4, y

′
4, y
′′
4} with

probability 3/2n. All in all,we have

Pr [D outputs 0 at line 11 or 21] ≤ 6
2n . (2)

Then, we show that conditioned on D not returning 0 at line 11 or 21, it
returns 1 with probability very close to one. Consider first the case where b = 0,
which corresponds to y′′4 = Enc(k′′, x1) and y′′′4 = Enc(k′′′, x′1). Then x′′4 and x′′′4
are the input values to P4 when encrypting respectively x1 with key k′′ and x′1
with key k′′′. It is easy to check that these two encryptions share the common
input x′3 := y′2 ⊕ k′′ = y2 ⊕ k′′′ to P3. Let y′3 = P3(x′3). Then x′′4 = y′3 ⊕ k′′ and
x′′′4 = y′3 ⊕ k′′′, which implies

x′′4 ⊕ x′′′4 = k′′ ⊕ k′′′ = k ⊕ k′ = x4 ⊕ x′4.

Hence, the distinguisher always outputs 1 when b = 0.
Consider now the case b = 1. Then y′′4 is sampled uniformly at random from

{0, 1}n\{y4, y
′
4}, and y′′4 is sampled uniformly at random from {0, 1}n\{y4, y

′
4, y
′′
4}.

This is equivalent to sampling x′′4 uniformly at random from {0, 1}n \ {x4, x
′
4}

and x′′′4 from {0, 1}n \ {x4, x
′
4, x
′′
4}. Hence, x′′4 ⊕ x′′′4 = x4 ⊕ x′4 with probability

1/(2n − 3) and the distinguisher returns 1 with probability at least 1 − 2/2n
(assuming n ≥ 3). All in all, we have

Pr
[
D[EMP,P] = 1

∣∣¬(D outputs 0 at line 11 or 21)
]
≥ 1− 1

2n . (3)

Gathering (2) and (3), we obtain

Pr
[
D[EMP,P] = 1

]
≥
(

1− 6
2n

)(
1− 1

2n

)
≥ 1− 7

2n .

We now consider what happens in the ideal world (IC,SIC). Intuitively,
unless it makes an IC query with one of the four keys (k, k′, k′′, k′′′) used by the
distinguisher, the simulator is unable to guess the bit b drawn by the distinguisher
at line 22, and without knowing b the simulator has chance ∼ 1/2 of causing
D to output 1. We make this idea formal in what follows. The main technical
ingredient here is a “domain separation lemma” by Boneh and Shoup [BS]. For
completeness, we also provide a simple proof (based on Patarin’s H-coefficient
technique) of this lemma in Appendix A.

Let Dz, z = 0, 1, be obtained from D by hard-wiring b = z at line 22. We
consider D0 and D1 as two separate worlds for S to interact with; for ? ∈ {=, 6=}
and z ∈ {0, 1} let

Pr[SDz → ?]

denote the probability that while interacting with Dz, the game reaches line 27
(i.e., that Dz does not return early at line 11 or 21) and that S outputs a value

9

x′′′4 at line 27 such that x′′4 ⊕ x′′′4 ? x4 ⊕ x′4. (E.g.,

Pr[SD0 → =]

is the probability that while interacting with D0, the game reaches line 27 and S
outputs x′′′4 = x′′4 ⊕ x4 ⊕ x′4 at that line.) Then S’s chance of making D output 1
is

1
2 Pr[SD0 → =] + 1

2 Pr[SD1 → 6=]

since b is selected uniformly at random on line 22. Since

Pr[SD1 → 6=] ≤ 1− Pr[SD1 → =]

(the inequality could be strict, as line 27 might not even be reached), S’s proba-
bility of making D output 1 is at most

1
2 + 1

2(Pr[SD0 → =]− Pr[SD1 → =]) = 1
2 + 1

2∆S(D0,D1)

where
∆S(D0,D1) := Pr[SD0 → =]− Pr[SD1 → =]

is S’s “distinguishing advantage” at telling D0 from D1.
We will upper bound ∆S(D0,D1) by introducing two intermediate worlds

D0∗ and D1∗. Briefly, Dz∗ is identical to Dz except that S is given a “dummy”
ideal cipher oracle IC∗ in Dz∗ that is independent from the “real” ideal cipher
oracle IC (notated Enc/Dec in the pseudocode) being used by Dz. Since

∆S(D0,D1) = ∆S(D0,D0∗) +∆S(D0∗,D1∗) +∆S(D1∗,D1)

where

∆S(D0,D0∗) := Pr[SD0 → =]− Pr[SD0∗ → =]
∆S(D0∗,D1∗) := Pr[SD0∗ → =]− Pr[SD1∗ → =]
∆S(D1∗,D1) := Pr[SD1∗ → =]− Pr[SD1 → =]

it will be sufficient to upper bound the latter three distinguishing advantages.
(The probabilities Pr[SD0∗ → =], Pr[SD1∗ → =] have the obvious meanings.)
The transition from D0∗ to D1∗ is quite trivial, while the Domain Separation
Lemma will be used for the transitions from D0 to D0∗ and from D1∗ to D1.

To introduce this lemma, consider finite sets U , V and a function f : U → V .
An adversary A is given two-way oracle access to a family of permutations
{πu : u ∈ U} indexed by U where πu : {0, 1}n → {0, 1}n for each u ∈ U . I.e., A
can make a queries of the form (u, x, 1) or of the form (u, y,−1), to be answered by
πu(x) and π−1

u (y) respectively. We consider two different possible instantiations
of the permutation family {πu : u ∈ U}: in the “ideal world” each πu is an
independent random permutation, whereas in the “real world” πu := τf(u) where
{τv : v ∈ V } is a family of independent random permutations indexed by V .

10

(Permutations that are different in the ideal world thus become collapsed in the
real world according to f .)

We say that A learns a triple (u, x, y) if it makes the query (u, x, 1) and
this query is answered by y or if it makes the query (u, y,−1) and this query
is answered by x. We say that a collision occurs if A learns two distinct tuples
(u, x, y), (u′, x′, y′) such that (x = x′ ∨ y = y′) and such that f(u) = f(u′).
(Necessarily, in this case, u 6= u′.) Then:

Lemma 2. (Domain Separation Lemma) A’s advantage at distinguishing the
real and ideal worlds is upper bounded by A’s probability of causing a collision in
the ideal world.

The Domain Separation Lemma is meant to be invoked with an adversary A
that has a predetermined structure. In our case, e.g., A will be obtained as an
agglomeration of D and S, where D and S will be making queries to different
halves of U by construction.

In more detail, we will apply the lemma by setting V = {0, 1}n, U =
{0, 1}n × {0, 1}, f((v, 0)) = f((v, 1)) = v for all v ∈ {0, 1}n. The set of random
permutations {τv : v ∈ V } corresponds to the ideal cipher IC, while if each πu
is a random permutation (i.e., if we are in the ideal world) then {πu : u ∈ U}
should be understood as the “original” IC from the real world, to which D makes
queries, plus a “dummy” independent ideal cipher IC’, to which S makes queries.

In other words, we will run the experiment SDz (for z = 0 or z = 1) with S
and Dz banding together to form the adversary A, while imposing the requirement
that S makes IC queries with keys (values u ∈ U , more exactly) of the form
(v, 1) ∈ {0, 1}n × {0, 1}, while Dz makes IC queries with keys of the form
(v, 0) ∈ {0, 1}n × {0, 1}. In this case the real world precisely coincides with
SDz (because the permutations π(v,1), π(v,0) are collapsed to a single random
permutation τv for each v ∈ {0, 1}n), whereas the ideal world precisely coincides
with SDz∗ (because S is given oracle access to its own “bogus” copy of IC).

To upper bound ∆S(D0,D0∗) (e.g.), it thus suffices to upper bound the
probability that a collision occurs in the experiment SD0∗ , as defined by the
Domain Separation Lemma. From the definition, specifically, a collision occurs
if and only if A = (S,D0) learns a pair of tuples of the form ((v, 0), x, y),
((v, 1), x′, y′) for some v ∈ {0, 1}n such that (x = x′ ∨ y = y′). Note that by
construction, the tuple ((v, 0), x, y) must be the result of a query made by D0
while the tuple ((v, 1), x′, y′) must be the result of a query made by S. Moreover
D0 contributes at most four tuples, which are

((k, 0), x1, y4), ((k′, 0), x′1, y′4), ((k′′, 0), x1, y
′′
4), ((k′′′, 0), x′1, y′′′4).

On the other hand, S’s only information about the values k, k′, k′′, k′′′ used by
D0 in this experiment comes from the values x4, x′4, x1, x′1 and y′′4 , y′′′4 that D0
queries to S and from the values y1, y′1 returned by S to D, since S’s IC oracle is
now completely pointless! However, it is easy to see that each of k, k′, k′′ and k′′′
maintains n bits of entropy (individually) subject to this information; hence, S’s

11

chance of causing a collision in SD0∗ is at most 4σ/2n by a union bound. Thus

∆S(D0,D0∗) ≤
4σ
2n

by the Domain Separation Lemma. One also shows that

∆S(D1,D1∗) ≤
4σ
2n

by an identical argument. (Indeed, y′′4 , y′′′4 don’t actually carry any information
about k, k′, k′′ and k′′′ in either SD0∗ or SD1∗ .)

It remains to upper bound the distinguishability of D0∗ and D1∗. Given that
S’s IC oracle is useless in each of these worlds, however, the argument is trivial:
from S’s standpoint, y′′4 and y′′′4 are distinct values sampled uniformly at random
from {0, 1}n\{y4, y

′
4} in both worlds. Hence ∆(D0∗,D1∗) = 0.

Combining these bounds, we find

∆S(D0,D1) ≤ 4σ
2n + 0 + 4σ

2n

and
Pr[D[IC,SIC] = 1] ≤ 1

2 + 1
2 ·

8σ
2n = 1

2 + 4σ
2n

and

Pr
[
D[EMP,P] = 1

]
− Pr

[
D[IC,SIC] = 1

]
≥
(

1− 7
2n

)
−
(

1
2 + 4σ

2n

)
= 1

2 −
4σ
2n −

7
2n

as claimed.

Remark 2. Say a distinguisher is sequential [MPS12, CS15] if it first queries
only its right interface (random permutations/simulator), and then only its left
interface (IEM construction/ideal cipher), but not its right interface anymore.
Many “natural” attacks against indifferentiability are sequential (in particular,
the attack against 5-round Feistel of [CPS08] and the attack against 3-round IEM
of [LS13]), running in two phases: first, the distinguisher looks for input/output
pairs satisfying some relation which is hard to satisfy for an ideal cipher (a
so-called “evasive” relation) by querying the right interface; then, it checks
consistency of these input/output pairs by querying the left interface (since the
relation is hard to satisfy for an ideal cipher, any polynomially-bounded simulator
will fail to consistently simulate the inner permutations in the ideal world). We
note that the attack described in this section is not sequential. This does not
come as a surprise since Cogliati and Seurin [CS15] showed that the 4-round IEM
construction is sequentially indifferentiable from an IC, i.e. indifferentiable from
an IC by any sequential distinguisher. Hence, our new attack yields a natural
separation between (full) indifferentiability and sequential indifferentiability.

12

x P1 P2

k

P3

k

P4

k

P5

k

y

Fig. 3. The 5-round iterated Even-Mansour construction with independent permutations
and identical round keys. The first and last round key additions are omitted since they
do not play any role for the indifferentiability property.

4 The 5-Round Simulator

We describe our simulator for proving indifferentiability of the 5-round IEM
construction from an ideal cipher.

Informal Description. We start with a high-level overview of how the simu-
lator S works, deferring the formal description in pseudocode to Section 4.1. For
each i ∈ {1, . . . , 5}, the simulator maintains a pair of tables Pi and P−1

i with 2n
entries containing either an n-bit value or a special symbol ⊥, allowing the simula-
tor to keep track of values that have already been assigned internally for the i-th
permutation. Initially, these tables are empty, meaning that Pi(x) = P−1

i (y) = ⊥
for all x, y ∈ {0, 1}n. The simulator sets Pi(x)← y, P−1

i (y)← x to indicate that
the i-th permutation maps x to y. The simulator never overwrites entries in Pi
or P−1

i , and always keeps these two tables consistent, so that Pi always encodes
a “partial permutation” of {0, 1}n. We sometimes write x ∈ Pi (resp. y ∈ P−1

i)
to mean that Pi(x) 6= ⊥ (resp. P−1

i (y) 6= ⊥).
The simulator offers a single public interface Query(i, δ, z) allowing the dis-

tinguisher to request the value Pi(z) when δ = + or P−1
i (z) when δ = − for

z ∈ {0, 1}n. Upon reception of a query (i, δ, z), the simulator checks whether
P δi (z) has already been defined, and returns the corresponding value if this
is the case. Otherwise, it marks the query (i, δ, z) as “pending” and starts a
“chain detection/completion” mechanism, called a permutation query cycle in the
following, in order to maintain consistency between its answers and the IC as we
now explain. (We stress that some of the wording introduced here is informal
and that all notions will be made rigorous in the next sections.)

We say that a triple (i, xi, yi) is table-defined if Pi(xi) = yi and P−1
i (yi) = xi

(that is, the simulator internally decided that xi is mapped to yi by permutation
Pi). Let us informally call a tuple of j − i + 1 ≥ 2 table-defined permutation
queries at adjacent positions ((i, xi, yi), . . . , (j, xj , yj)) (indices taken mod 5) such
that xi+1 = yi ⊕ k if i 6= 5 and xi+1 = IC−1(k, yi) if i = 5 a “k-path of length
j + i− 1” (hence, paths might “wrap around” the IC).

The very simple idea at the heart of the simulator is that, before answering any
query of the distinguisher to some simulated permutation, it ensures that any path
of length three (or more) has been preemptively extended to a “complete” path
of length five ((1, x1, y1), . . . , (5, x5, y5)) compatible with the ideal cipher (i.e.,
such that IC(k, x1) = y5). For this, assume that at the moment the distinguisher
makes a permutation query (i, δ, z) which is not table-defined yet (otherwise the

13

simulator just returns the existing answer), any path of length three is complete.
This means that any existing incomplete path has length at most two. These
length-2 paths will be called (table-defined4) 2chains in the main body of the
proof, and will play a central role. For ease of the discussion to come, let us call
the pair of adjacent positions (i, i+ 1) of the table-defined queries constituting
a 2chain the type of the 2chain. (Note that as any path, a 2chain can “wrap
around”, i.e., consists of two table-defined queries (5, x5, y5) and (1, x1, y1) such
that IC(k, x1) = y5, so that possible types are (1, 2), (2, 3), (3, 4), (4, 5), and
(5, 1).) Let us also call the direct input to permutation Pi+2 and the inverse input
to permutation Pi−1 when extending the 2chain in the natural way the right
endpoint and left endpoint of the 2chain, respectively.5

The “pending” permutation query (i, δ, z) asked by the distinguisher might
create new incomplete paths of length 3 (once answered by the simulator) when
combined with adjacent 2chains, that is, 2chains at position (i− 2, i− 1) for a
direct query (i,+, xi) or 2chains at position (i + 1, i + 2) for an inverse query
(i,−, yi). Hence, just after having marked the initial query of the distinguisher as
“pending”, the simulator immediately detects all 2chains that will form a length-3
path with this pending query, and marks these 2chains as “triggered”. Following
the high-level principle of completing any length-3 path, any triggered 2chain
should (by the end of the query cycle) be extended to a complete path.

To ease the discussion, let us slightly change the notation and assume that
the query that initiates the query cycle is either a forward query (i+ 2,+, xi+2)
or an inverse query (i− 1,−, yi−1). In both cases, adjacent 2chains that might
be triggered are of type (i, i+ 1). For each such 2chain, the simulator computes
the endpoint opposite the initial query, and marks it “pending” as well. Thus
if the initiating query was (i + 2,+, xi+2), new pending queries of the form
(i− 1,−, ·) are (possibly) created, while if the initiating query was (i− 1,−, yi−1),
new pending queries of the form (i+ 2,+, ·) are (possibly) created. For each of
these new pending queries, the simulator recursively detects whether they form a
length-3 path with other (i, i+ 1)-2chains, marks these 2chains as “triggered”,
and so on. Hence, if the initiating query of the distinguisher was of the form
(i+ 2,+, ·) or (i− 1,−, ·), all “pending” queries will be of the form (i+ 2,+, ·) or
(i− 1,−, ·), and all triggered 2chains will be of type (i, i+ 1). For this reason, we
say that such a query cycle is of “type (i, i+ 1)”. Note that while this recursive
process is taking place, the simulator does not assign any new values to the
partial permutations P1, . . . , P5—indeed, each pending query remains defined
only “at one end” during this phase.

Once all 2chains that must eventually be completed have been detected as
described above, the simulator starts the completion process. First, it randomly
samples the missing endpoints of all “pending” queries. (Thus, a pending query of
the form (i+ 2,+, xi+2) will see a value of yi+2 sampled; a pending query of the

4 While the difference between a table-defined and table-undefined 2chain will be
important in the formal proof, we ignore this subtlety for the moment.

5 Again, there is a slight subtlety for the left endpoint of a (1, 2)-2chain and the right
endpoint of a (4, 5)-2chain since this involves the ideal cipher, but we ignore it here.

14

form (i− 1,−, yi−1) will see a value of xi−1 sampled. The fact that each pending
query really does have a missing endpoint to be sampled is argued in the proof.)
Secondly, for each triggered 2chain, the simulator adapts the corresponding path
by computing the corresponding input xi+3 and output yi+3 at position i + 3
and “forcing” Pi+3(xi+3) = yi+3. If an overwrite attempt occurs when trying to
assign a value for some permutation, the simulator aborts. This completes the
high-level description of the simulator’s behavior. The important characteristics
of an (i, i+ 1)-query cycle are summarized in Table 1.

Table 1. The five types of (i, i+ 1)-query cycles of the simulator.

Type Initiating query/ReadTape call type Adapt at
(i, i+ 1) (i− 1,−) and (i+ 2,+) i+ 3
(1,2) (5,−) and (3,+) 4
(2,3) (1,−) and (4,+) 5
(3,4) (2,−) and (5,+) 1
(4,5) (3,−) and (1,+) 2
(5,1) (4,−) and (2,+) 3

4.1 Pseudocode of the Simulator and Game Transitions

We now give the full pseudocode for the simulator, and by the same occasion
describe the intermediate worlds that will be used in the indifferentiability proof.
The distinguisher D has access to the public interface Query(i, δ, z), which in the
ideal world is answered by the simulator, and to the ideal cipher/IEM construction
interface, that we formally capture with two interfaces Enc(k, x) and Dec(k, y)
for encryption and decryption respectively. We will refer to queries to any of
these two interfaces as cipher queries, by opposition to permutation queries
made to interface Query(·, ·, ·). In the ideal world, cipher queries are answered
by an ideal cipher IC. We make the randomness of IC explicit through two
random tapes ic, ic−1 : {0, 1}n × {0, 1}n → {0, 1}n such that for any k ∈ {0, 1}n,
ic(k, ·) is a uniformly random permutation and ic−1(k, ·) is its inverse. Hence,
in the ideal world, a query Enc(k, x), resp. Dec(k, y), is simply answered with
ic(k, x), resp. ic−1(k, y). The randomness used by the simulator for lazily sampling
permutations P1, . . . , P5 when needed is also made explicit in the pseudocode
through uniformly random permutations tapes p = (p1, p

−1
1 , . . . , p5, p

−1
5) where

pi : {0, 1}n → {0, 1}n is a uniformly random permutation and p−1
i is its inverse.

Hence, randomness in game G1 is fully captured by ic and p.
Since we will use two intermediate games, the real world will be denoted G4.

In this world, queries to Query(·, ·, ·) are simply answered with the corresponding
value stored in the random permutation tapes p, while queries to Enc or Dec are
answered by the IEM construction based on random permutations p. Randomness
in G4 is fully captured by p.

15

Intermediate Games. The indifferentiability proof relies on two intermediate
games G2 and G3. In game G2, following an approach of [HKT11], the Check
procedure used by the simulator (see line 30 of Fig. 4) to detect new external
chains is modified such that it does not make explicit queries to the ideal cipher;
instead, it first checks to see if the entry exists in table T recording cipher
queries and if not, returns false. In game G3, the ideal cipher is replaced with the
5-round IEM construction that uses the same random permutation tapes p as
the simulator (and hence both the distinguisher and the simulator interact with
the 5-round IEM construction instead of the IC).

Summing up, randomness is fully captured by ic and p in games G1 and G2,
and by p in games G3 and G4 (since the ideal cipher is replaced by the IEM
construction EMp when transitioning from G2 to G3).

Notes about the Pseudocode. The pseudocode for the public (i.e., accessible
by the distinguisher) procedures Query, Enc, and Dec is given in Fig. 4, together
with helper procedures that capture the changes from games G1 to G4. The
pseudocode for procedures that are internal to the simulator is given in Fig. 5.
Lines commented with “\\Gi” apply only to game Gi. In the pseudocode and
more generally throughout this paper, the result of arithmetic on indices in
{1, 2, 3, 4, 5} is automatically wrapped into that range (e.g., i+ 1 = 1 if i = 5).
For any table or tape T and δ ∈ {+,−}, we let T δ be T if δ = + and be T −1 if
δ = −. Given a list L, L←↩ x means that x is appended to L. If the simulator
aborts (line 86), we assume it returns a special symbol ⊥ to the distinguisher.

Tables T and T−1 are used to record the cipher queries that have been issued
(by the distinguisher or the simulator). Note that tables Pi and P−1

i are modified
only by procedure Assign. The table entries are never overwritten, due to the
check at line 86.

5 Proof of Indifferentiability

5.1 Main Result and Proof Overview

Our main result is the following theorem:

Theorem 3. The 5-round iterated Even-Mansour construction EMP with random
permutations P = (P1, . . . , P5) is (tS , qS , ε)-indifferentiable from an ideal cipher
with tS = O(q5), qS = O(q5) and ε = 2× 1012q12/2n.

Moreover, the bounds hold even if the distinguisher is allowed to make q
permutation queries in each position (i.e., it can call Query(i, ∗, ∗) q times for
each i ∈ {1, 2, 3, 4, 5}) and make q cipher queries (i.e., Enc and Dec can be called
q times in total).

Proof. We use the indifferentiability simulator described in Section 4. The upper
bounds on the simulator’s running time and query complexity are given in
Theorem 47. The upper bound on the distinguisher’s distinguishing advantage is
given in Theorem 58.

16

1 Game Gi(ic,p), i = 1, 2 / Gi(p), i = 3, 4

2 Variables:
3 Tables of cipher queries T, T−1

4 Tables of defined permutation queries Pi, P−1
i , i ∈ {1, . . . , 5}

5 Ordered list of pending queries Pending
6 Ordered list of triggered paths Triggered

7 public procedure Query(i, δ, z):
8 return SimQuery(i, δ, z) \\ G1,G2,G3

9 return pδi (z) \\ G4

10 public procedure Enc(k, x1):
11 if T (k, x1) = ⊥ then
12 y5 ← ic(k, x1) \\ G1,G2
13 y5 ← EM(k, x1) \\ G3,G4
14 T (k, x1)← y5, T−1(k, y5)← x1
15 return T (k, x1)

16 public procedure Dec(k, y5):
17 if T−1(k, y5) = ⊥ then
18 x1 ← ic−1(k, y5) \\ G1,G2
19 x1 ← EM−1(k, y5) \\ G3,G4
20 T (k, x1)← y5, T−1(k, y5)← x1
21 return T−1(k, y5)

22 private procedure EM(k, x1):
23 for i = 1 to 4 do
24 xi+1 = pi(xi)⊕ k
25 return p5(x5)

26 private procedure EM−1(k, y5):
27 for i = 5 to 2 do
28 yi−1 = p−1

i (yi)⊕ k
29 return p−1

1 (y1)

30 private procedure Check(k, x1, y5):
31 return Enc(k, x1) = y5 \\ G1
32 return T (k, x1) = y5 \\ G2,G3,G4

Fig. 4. Public procedures Query, Enc, and Dec for games G1 - G4, and helper procedures
EM, EM−1, and Check. This set of procedures captures all changes from game G1 to
G4, namely: from game G1 to G2 only procedure Check is modified; from game G2 to
G3, the only change is in procedures Enc and Dec where the ideal cipher is replaced by
the IEM construction; and from game G3 to G4, only procedure Query is modified to
return directly the value read in random permutation tables p.

17

33 private procedure SimQuery(i, δ, z):
34 if P δi (z) = ⊥ then
35 Pending← ((i, δ, z)), Triggered← ∅
36 forall (i, δ, z) in Pending do FindNewPaths(i, δ, z)
37 forall (i, δ, z) in Pending do ReadTape(i, δ, z)
38 forall (i, i+ 1, yi, xi+1, k) in Triggered do AdaptPath(i, i+ 1, yi, xi+1, k)
39 return P δi (z)

40 private procedure FindNewPaths(i, δ, z):
41 case (δ = +):
42 xi ← z
43 forall (xi−2, xi−1) in (Pi−2, Pi−1) do
44 yi−2 ← Pi−2(xi−2), yi−1 ← Pi−1(xi−1)
45 if i = 2 then k ← yi−1 ⊕ xi
46 else k ← yi−2 ⊕ xi−1
47 C ← (i− 2, i− 1, yi−2, xi−1, k)
48 if C ∈ Triggered then continue
49 case i ∈ {1, 2}:
50 if ¬Check(k, x1, y5) then
51 continue
52 case i ∈ {3, 4, 5}:
53 if Next(i− 1, yi−1, k) 6= xi then
54 continue
55 Triggered←↩ C
56 yi−3 ← Prev(i− 2, xi−2, k)
57 if (i− 3,−, yi−3) /∈ Pending then
58 Pending←↩ (i− 3,−, yi−3)

59 case (δ = −):
60 yi ← z
61 forall (xi+1, xi+2) in (Pi+1, Pi+2) do
62 yi+1 ← Pi+1(xi+1), yi+2 ← Pi+2(xi+2)
63 if i = 4 then k ← yi ⊕ xi+1
64 else k ← yi+1 ⊕ xi+2
65 C ← (i+ 1, i+ 2, yi+1, xi+2, k)
66 if C ∈ Triggered then continue
67 case i ∈ {4, 5}:
68 if ¬Check(k, x1, y5) then
69 continue
70 case i ∈ {1, 2, 3}:
71 if Prev(i+ 1, xi+1, k) 6= yi then
72 continue
73 Triggered←↩ C
74 xi+3 ← Next(i+ 2, yi+2, k)
75 if (i+ 3,+, xi+3) /∈ Pending then
76 Pending←↩ (i+ 3,+, xi+3)

77 private procedure ReadTape(i, δ, z):
78 if δ = + then Assign(i, z, pi(z)) else Assign(i, p−1

i (z), z)

79 private procedure AdaptPath(i, i+ 1, yi, xi+1, k):
80 yi+1 ← Pi+1(xi+1), xi+2 ← Next(i+ 1, yi+1, k), yi+2 ← Pi+2(xi+2)
81 xi+3 ← Next(i+ 2, yi+2, k)
82 xi ← P−1

i (yi), yi−1 ← Prev(i, xi, k), xi−1 ← P−1
i−1(yi−1)

83 yi−2 ← Prev(i− 1, xi−1, k)
84 Assign(i+ 3, xi+3, yi−2) \\ subscripts are equal because of the wrapping

85 private procedure Assign(i, xi, yi):
86 if Pi(xi) 6= ⊥ or P−1

i (yi) 6= ⊥ then abort
87 Pi(xi)← yi, P−1

i (yi)← xi

88 private procedure Next(i, yi, k):
89 if i = 5 then return Dec(k, yi)
90 else return yi ⊕ k

91 private procedure Prev(i, xi, k):
92 if i = 1 then return Enc(k, xi)
93 else return xi ⊕ k

Fig. 5. Private procedures used by the simulator.

18

Proof Structure. Our proof uses a sequence of games G1, G2, G3 and G4 as
described in Section 4.1, with G1 being the simulated world and G4 being the
real world.

Throughout the proof we will fix an arbitrary information-theoretic distin-
guisher D that can make a total of 6q queries: at most q cipher queries and at
most q queries to Query(i, ·, ·) for each i ∈ {1, . . . , 5}, as stipulated in Theorem 3.
(Giving the distinguisher q queries at each position is a trick introduced by [DS16].
It gives the distinguisher more power while not significantly affecting the proof or
the bounds, and the distinguisher’s extra power actually leads to better bounds
at the final stages of the proof.6) We can assume without loss of generality that
D is deterministic, as any distinguisher can be derandomized using the “optimal”
random tape and achieve at least the same advantage.

Without loss of generality, we assume that D outputs 1 with higher probability
in the simulated world G1 than in the real world G4. We define the advantage of
D in distinguishing between Gi and Gj by

∆D(Gi,Gj) := Pr
Gi

[DQuery,Enc,Dec = 1]− Pr
Gj

[DQuery,Enc,Dec = 1].

Our primary goal is to upper bound ∆D(G1,G4), while the secondary goals
of upper bounding the simulator’s query complexity and running time will be
obtained as corollaries along the way.

Our proof starts with discussions about the game G2, which is in some sense
the “anchor point” of the first two game transitions. As usual, there are bad
events that might cause the simulator to fail. We will prove that bad events
are unlikely, and show properties of good executions in which bad events don’t
occur. The proof of efficiency of the simulator (in good executions of G2) is the
most interesting part of this paper; the technical content is in Section 5.4, and a
separate high-level overview of the argument is also included immediately below
(see “Termination Argument”). During the proof of efficiency we also obtain
upper bounds on the sizes of the tables and on the number of calls to each
procedure, which will be a crucial component for the transition to G4 (see below).

For the G1-G2 transition , note that the only difference between the two games
is in Check. If the simulator is efficient, the probability that the two executions
diverge in a call to Check is negligible, as argued in Lemma 45. Therefore, if
an execution of G2 is good, it is identical to the G1-execution with the same
random tapes except with negligible probability. In particular, this implies that
an execution of G1 is efficient with high probability; the details can be found in
Theorem 47, where a modified version of the simulator (namely one that knows
the value of q, as discussed after Definition 1) is used.

For the G2-G3 transition, we use a standard randomness mapping argument.
We will map the randomness of good executions of G2 to the randomness of non-
aborting executions of G3, so that the G3-executions with the mapped randomness
6 In the randomness mapping, we will need to convert an arbitrary distinguisher to
one that “completes all paths”. If the distinguisher is only allowed q arbitrary queries
in total, the number of queries will balloon up to 6q; but if D is given extra power as
described here, the reduction only increases q to 2q.

19

are identical to the G2-executions with the preimage randomness. We will show
that if a G3-execution has a preimage, then the answers of the permutation queries
output by the simulator must be compatible with the random permutation tapes
(cf. Lemma 55). Thus the G3-execution is identical to the G4-execution with
the same random tapes, where the permutation queries are answered by the
corresponding entries of the random tapes. This enables a transition directly
from G2 to G4 using the randomness mapping, which is a small novelty of our
proof.

Termination Argument. Since the termination argument—i.e., the fact that
our simulator doesn’t run amok with excessive path completions, except with
negligible probability—is one of the more novel aspects of our proof, we provide
a separate high-level overview of this argument here.

To start with, observe that at the moment when an (i, i+ 1)-path is triggered,
3 queries on the path are either already in existence or already scheduled for
future existence regardless of this event: the queries at position i and i+ 1 are
already defined, while the pending query that triggers the path was already
scheduled to become defined even before the path was triggered; hence, each
triggered path only “accounts” for 2 new queries, positioned either at i+ 2, i+ 3
or at i− 1, i− 2 (= i+ 3), depending on the position of the pending query.

A second observation is that...

– (1, 2)-2chains triggered by pending queries of the form (5,−, ·), and
– (4, 5)-2chains triggered by pending queries of the form (1,+, ·), and
– (5, 1)-2chains triggered by either pending queries of the form (2,+, ·) or

(4,−, ·)

...all involve a cipher query (equivalently, a call to Check, in G2) to check the
trigger condition, and one can argue that this query must have been made by
the distinguisher itself. (Because when the simulator makes a query to Enc/Dec
that is not for the purpose of detecting paths, it is for the purpose of completing
a path.) Hence, because the distinguisher only has q cipher queries, only q such
path completions should occur in total. Moreover, these three types of path
completions are exactly those that “account” for a new (previously unscheduled)
query to be created at P3. Hence, and because the only source of new queries are
path completions and queries coming directly from the distinguisher, the size of
P3 never grows more than q + q = 2q, with high probability.

Of the remaining types of 2chain completions (i.e., those that don’t involve the
presence of a previously made “wraparound” cipher query), those that contribute
a new entry to P2 are the following:

– (3, 4)-2chains triggered by pending queries of the form (5,+, ·)
– (4, 5)-2chains triggered by pending queries of the form (3,−, ·)

We can observe that either type of chain completion involves values y3, x4, y4,
x5 that are well-defined at the time the chain is detected. We will analyze both
types of path completion simultaneously, but dividing into two cases according

20

to whether (a) the distinguisher ever made the query Query(5,+, x5), or else
received the value x5 as an answer to a query of the form Query(5,−, y5), or
(b) the query P5(x5) is being defined / is already defined as the result of a path
completion. (Crucially, (a) and (b) and the only two options for x5.)

For (a), at most q such values of x5 can ever exist, since the distinguisher makes
at most q queries to Query(5, ·, ·); moreover, there are at most 2q possibilities for
y3, as already noted; and we have the relation

y3 ⊕ x5 = x4 ⊕ y4 (4)

from the fact that y3, x4, y4 and x5 lie on a common path. One can show that,
with high probability,

x4 ⊕ y4 6= x′4 ⊕ y′4
for all x4, y4, x′4, y′4 such that P4(x4) = y4, P4(x′4) = y′4 and such that x4 6= x′4.7
Hence, with high probability (4) has at most a unique solution x4, y4 for each
y3, x5, and scenario (a) accounts for at most 2q2 path completions (one for each
possible left-hand side of (4)) of either type above.

For (b), there must exist a separate (table-defined) 2chain (3, x′3, y′3), (4, x′4, y′4)
whose right endpoint is x5. (This is the case if x5 is part of a previously completed
path, and is also the case if (5,+, x5) became a pending query during the current
query cycle without being the initiating query.) The relation

y′3 ⊕ x′4 ⊕ y′4 = y3 ⊕ x4 ⊕ y4

(both sides are equal to x5) implies

y3 ⊕ y′3 = x4 ⊕ y4 ⊕ x′4 ⊕ y′4 (5)

and, similarly to (a), one can show that (with high probability)

x4 ⊕ y4 ⊕ x′4 ⊕ y′4 6= X4 ⊕ Y4 ⊕X ′4 ⊕ Y ′4

for all table-defined queries (4, x4, y4), . . . , (4, X ′4, Y ′4) such that {(x4, y4), (x′4, y′4)} 6=
{(X4, Y4), (X ′4, Y ′4)}. Thus we have (modulo the ordering of (x4, y4) and (x′4, y′4)8)
at most one solution to the RHS of (5) for each LHS; hence, scenario (b) accounts
for at most 4q2 path completions9 of either type above, with high probability.

Combining these bounds, we find that P2 never grows to size more than
2q + 2q2 + 4q2 = 6q2 + 2q with high probability, where the term of 2q accounts
for (the sum of) direct distinguisher queries to Query(2, ·, ·) and “wraparound”
7 Probabilistically speaking, this trivially holds if P4 is a random partial permutation
defined at only polynomially many points, though our proof is made more complicated
by the fact that P4 also contains “adapted” queries.

8 As argued within the proof, this ordering issue does not actually introduce an extra
factor of two into the bounds.

9 Or more exactly, to at most 2q(2q − 1) path completions, which leads to slightly
better bounds used in the proof.

21

path completions involving a distinguisher cipher query. Symmetrically, one can
show that P4 also has size at most 6q2 + 2q, with high probability.

One can now easily conclude the termination argument; e.g., the number of
(2, 3)- or (3, 4)-2chains that trigger path completions is each at most 2q · (6q2 +2q)
(the product of the maximum size of P3 with the maximum size of P2/P4); or,
e.g., the number of (1, 2)-2chains triggered by a pending query (3,+, ·) is at most
2q · (6q2 + 2q) (the product of the maximum size of P3 with the maximum size of
P2), and so forth.

5.2 Executions of G2: Definitions and Basic Properties

Here, we define a set of bad events that may occur in G2. An execution of G2 is
good if none of these bad events occurs. We will prove that in good executions of
G2, the simulator does not abort and runs in polynomial time.

5.2.1 Notation and Definitions
Queries and 2chains. The central notion for reasoning about the simulator is
the notion of 2chain, that we develop below.

Definition 2. A permutation query is a triple (i, δ, z) where 1 ≤ i ≤ 5, δ ∈ {+,−}
and z ∈ {0, 1}n. We call i the position of the query, δ the direction of the query,
and the pair (i, δ) the type of the query.

Definition 3. A cipher query is a triple (δ, k, z) where δ ∈ {+,−} and k, z ∈
{0, 1}n. We call δ the direction and k the key of the cipher query.

Definition 4. A permutation query (i, δ, z) is table-defined if P δi (z) 6= ⊥, and
table-undefined otherwise. Similarly, a cipher query (δ, k, z) is table-defined if
T δ(k, z) 6= ⊥, and table-undefined otherwise.

For permutation queries, we may omit i and δ when clear from the context and
simply say that xi, resp. yi, is table-(un)defined to mean that (i,+, xi), resp.
(i,−, yi), is table-(un)defined.

Note that if (i,+, xi) is table-defined and Pi(xi) = yi, then necessarily (i,−, yi)
is also table-defined and P−1

i (yi) = xi. Indeed, tables Pi and P−1
i are only

modified in procedure Assign, where existing entries are never overwritten due to
the check at line 86. Thus the two tables always encode a partial permutation and
its inverse, i.e., Pi(xi) = yi if and only if P−1

i (yi) = xi. In fact, we will often say
that a triple (i, xi, yi) is table-defined as a shorthand to mean that both (i,+, xi)
and (i,−, yi) are table-defined with Pi(xi) = yi, P−1

i (yi) = xi.
Similarly, if a cipher query (+, k, x) is table-defined and T (k, x) = y, then

necessarily (−, k, y) is table-defined and T−1(k, y) = x. Indeed, these tables
are only modified by calls to Enc/Dec, and always according to the IC tape
ic, hence these two tables always encode a partial cipher and its inverse, i.e.,
T (k, x) = y if and only if T−1(k, y) = x. Similarly, we will say that a triple
(k, x, y) is table-defined as a shorthand to mean that both (+, k, x) and (−, k, y)
are table-defined with T (k, x) = y, T−1(k, y) = x.

22

Definition 5 (2chain). An inner 2chain is a tuple (i, i+ 1, yi, xi+1, k) such that
i ∈ {1, 2, 3, 4}, yi, xi+1 ∈ {0, 1}n, and k = yi ⊕ xi+1. A (5,1)-2chain is a tuple
(5, 1, y5, x1, k) such that y5, x1, k ∈ {0, 1}n. An (i, i + 1)-2chain refers either to
an inner or a (5, 1)-2chain, and is generically denoted (i, i + 1, yi, xi+1, k). We
call (i, i+ 1) the type of the 2chain.

Remark 3. Note that for a 2chain of type (i, i+ 1) with i ∈ {1, 2, 3, 4}, given yi
and xi+1, there is a unique key k such that (i, i+ 1, yi, xi+1, k) is a 2chain (hence
k is “redundant” in the notation), while for a 2chain of type (5, 1), the key might
be arbitrary. This convention allows to have a unified notation independently of
the type of the 2chain. See also Remark 4 below.

Definition 6. An inner 2chain (i, i+1, yi, xi+1, k) is table-defined if both (i,−, yi)
and (i+ 1,+, xi+1) are table-defined permutation queries, and table-undefined
otherwise. A (5,1)-2chain (5, 1, y5, x1, k) is table-defined if both (5,−, y5) and
(1,+, x1) are table-defined permutation queries and if T (k, x1) = y5, and table-
undefined otherwise.

Remark 4. Our definitions above ensure that whether a tuple (i, i+ 1, yi, xi+1, k)
is a 2chain or not is independent of the state of tables Pi/P−1

i and T/T−1. Only
the fact that a 2chain is table-defined or not depends on these tables.

Definition 7 (endpoints). Let C = (i, i+1, yi, xi+1, k) be a table-defined 2chain.
The right endpoint of C, denoted r(C) is defined as

r(C) = Pi+1(xi+1)⊕ k if i ∈ {1, 2, 3, 5}
= T−1(k, P5(x5)) if i = 4 and (−, k, P5(x5)) is table-defined
= ⊥ if i = 4 and (−, k, P5(x5)) is table-undefined.

The left endpoint of C, denoted `(C) is defined as

`(C) = P−1
i (yi)⊕ k if i ∈ {2, 3, 4, 5}

= T (k, P−1
1 (y1)) if i = 1 and (+, k, P−1

1 (y1)) is table-defined
= ⊥ if i = 1 and (+, k, P−1

1 (y1)) is table-undefined.

We say that an endpoint is dummy when it is equal to ⊥, and non-dummy
otherwise. Hence, only the right endpoint of a 2chain of type (4, 5) or the left
endpoint of a 2chain of type (1, 2) can be dummy.

We sometimes identify the right and left (non-dummy) endpoints r(C), `(C)
of an (i, i+1)-2chain C with the corresponding permutation queries (i+2,+, r(C))
and (i− 1,−, `(C)). In particular, if we say that r(C) or `(C) is “table-defined”
this implicitly means that the endpoint in question is non-dummy and that the
corresponding permutation query is table-defined. More importantly—and more
subtly!—when we say that one of the endpoints of C is “table-undefined” we also
implicitly mean that it is non-dummy. (Hence, an endpoint is in exactly one of
these three possible states: dummy, table-undefined, table-defined.)

23

Complete Path. Another useful concept is the one of “complete path”.

Definition 8. A complete path (with key k) is a 5-tuple of table-defined permu-
tation queries ((1, x1, y1), . . . , (5, x5, y5)) such that

yi ⊕ xi+1 = k for i = 1, 2, 3, 4 and T (k, x1) = y5. (6)

The five table-defined queries (i, xi, yi) and the five table-defined 2chains (i, i+
1, yi, xi+1, k), i ∈ {1, . . . , 5}, are said to belong to the (complete) path.

A 2chain C is also said to be complete if it belongs to some complete path. Note
that such a 2chain is table-defined; also, its endpoints r(C), `(C) are (non-dummy
and) table-defined.

Lemma 4. In any execution of G2, any 2chain belongs to at most one complete
path.

Proof. This follows from the fact that, by definition, a 2chain stiupulates a value
of k, and from the fact that the tables Pi/P−1

i as well as T (k, ·)/T−1(k, ·) encode
partial permutations.

Query Cycles. When the distinguisher makes a permutations query (i, δ, z)
that is already table-defined, the simulator returns the answer immediately. The
definition below introduces some vocabulary related to the simulator’s behavior
when the distinguisher makes a permutation query that is table-undefined.

Definition 9 (query cycle). A query cycle is the period of execution between
when the distinguisher issues a permutation query (i0, δ0, z0) which is table-
undefined and when the answer to this query is returned by the simulator. We
call (i0, δ0, z0) the initiating query of the query cycle.

A query cycle is called an (i, i + 1)-query cycle if the initiating query is of
type (i− 1,−) or (i+ 2,+) (see Lemma 5 (a) and Table 1).

The portion of the query cycle consisting of calls to FindNewPaths at line 36
is called the detection phase of the query cycle; the portion of the query cycle
consisting of calls to ReadTape at line 37 and to AdaptPath at line 38 is called
the completion phase of the query cycle.

Definition 10 (cipher query cycle). A cipher query cycle is the period of
execution between when the distinguisher issues a table-undefined cipher query
(δ, k, z) and when the answer to this query is returned. We call (δ, k, z) the
initiating query of the cipher query cycle.

Remark 5. Note that a “query cycle” as defined above is a “permutation query
cycle” in the informal description in Section 4, and cipher query cycles are not a
special case of query cycles. Both query cycles and cipher query cycles require
the initiating query to be table-undefined, since otherwise the answer already
exists in the tables and is directly returned.

24

Definition 11 (pending queries, triggered 2chains). During a query cycle, we
say that a permutation query (i, δ, z) is pending (or that z is pending when i
and δ are clear from the context) if it is appended to list Pending at line 35, 58,
or 76. We say that a 2chain C = (i, i+ 1, yi, xi+1, k) is triggered if the simulator
appends C to the list Triggered at line 55 or 73.

We present a few lemmas below that give some basic properties of query cycles
that will be used throughout the proof. Part (a) justifies the name “(i, i+1)-query
cycle”.

Lemma 5. During an (i, i+1)-query cycle whose initiating query was (i0, δ0, z0),
the following properties always hold:

(a) Only 2chains of type (i, i+ 1) are triggered.
(b) Only permutations queries of type (i− 1,−), (i+ 2,+) become pending.
(c) Any 2chain that is triggered was table-defined at the beginning of the query

cycle.
(d) At the end of the detection phase, any pending query is either the initiating

query, or the endpoint of a triggered 2chain.
(e) If a 2chain C is triggered during the query cycle, and the simulator does not

abort, then C is complete at the end of the query cycle.

Proof. The proof of (a) and (b) proceeds by inspection of the pseudocode: note
that calls to FindNewPaths(i− 1,−, ·) can only add 2chains of type (i, i+ 1) to
Triggered and permutations queries of type (i+ 2,+) to Pending, whereas calls to
FindNewPaths(i+ 2,+, ·) can only add 2chains of type (i, i+ 1) to Triggered and
permutations queries of type (i− 1,−) to Pending. Hence, if the initiating query
is of type (i− 1,−) or (i+ 2,+), only 2chains of type (i, i+ 1) will ever be added
to Triggered, and only permutation queries of type (i−1,−) or (i+ 2,+) will ever
be added to Pending. The proof of (c) also follows easily from inspection of the
pseudocode. The sole subtlety is to note that for a (5, 1)-query cycle (where calls
to FindNewPaths are of the form (2,+, ·) and (4,−, ·)), for a (5, 1)-2chain to be
triggered one must obviously have x1 ∈ P1 and y5 ∈ P−1

5 , but also T (k, x1) = y5
since otherwise the call to Check(k, x1, y5) would return false. The proof of (d) is
also immediate, since for a permutation query to be added to Pending, it must be
either the initiating query, or computed at line 56 or line 74 as the endpoint of a
triggered 2chain. Finally, the proof of (e) follows from the fact that, assuming the
simulator does not abort, all values computed during the call to AdaptPath(C)
form a complete path to which C belongs.

Lemma 6. In any execution of G2, the following properties hold:

(a) During a (1, 2)-query cycle, tables T/T−1 are only modified during the detec-
tion phase by calls to Enc(·, ·) resulting from calls to Prev(1, ·, ·) at line 56.

(b) During a (2, 3)-query cycle, tables T/T−1 are only modified during the com-
pletion phase by calls to Enc(·, ·) resulting from calls to Prev(1, ·, ·) at line 83.

(c) During a (3, 4)-query cycle, tables T/T−1 are only modified during the com-
pletion phase by calls to Dec(·, ·) resulting from calls to Next(5, ·, ·) at line 81.

25

(d) During a (4, 5)-query cycle, tables T/T−1 are only modified during the detec-
tion phase by calls to Dec(·, ·) resulting from calls to Next(5, ·, ·) at line 74.

(e) During a (5, 1)-query cycle, tables T/T−1 are not modified.

Proof. This follows by inspection of the pseudocode. The only non-trivial point
concerns (1, 2)-, resp. (4, 5)-query cycles, since Prev(1, ·, ·), resp. Next(5, ·, ·) are
also called during the completion phase, but they are always called with arguments
(x1, k), resp. (y5, k) that were previously used during the detection phase, so that
this cannot modify the tables T/T−1.

Lemma 7. Consider any execution of G2. Assume that two table-defined (i, i+1)-
2chains C = (i, i + 1, yi, xi+1, k) and C ′ = (i, i + 1, y′i, x′i+1, k

′) have the same
key and a common non-dummy endpoint, i.e., are such that k = k′ and r(C) =
r(C ′) 6= ⊥ or `(C) = `(C ′) 6= ⊥. Then C = C ′.

Proof. We show the result for the case where k = k′ and r(C) = r(C ′), the case
where `(C) = `(C ′) is similar. Consider first the case where i ∈ {1, 2, 3, 5}. By
definition of the right endpoint, this implies that Pi+1(xi+1) = Pi+1(x′i+1) and
hence xi+1 = x′i+1 since Pi+1 always encodes a partial permutation. It follows
that yi = xi+1 ⊕ k = x′i+1 ⊕ k′ = y′i if i ∈ {1, 2, 3}, and yi = T (k, xi+1) =
T (k′, x′i+1) = y′i if i = 5, and hence C = C ′. Consider now the case i = 4, and let
C = (4, 5, y4, x5, k) and C ′ = (4, 5, y′4, x′5, k′). By assumption, r(C) = r(C ′) 6= ⊥.
Then, by definition of the right endpoint, P5(x5) = T (k, r(C)) = T (k′, r(C ′)) =
P5(x′5), which implies that x5 = x′5 since P5 always encodes a partial permutation.
It follows that y4 = x5 ⊕ k = x′5 ⊕ k′ = y′4 and hence C = C ′.

5.2.2 Bad Events
In order to define certain bad events that may happen during an execution of G2,
we introduce the following definitions.

Definition 12 (H, K and E). Consider a permutation query (i0, δ0, z0) or a
cipher query (δ0, k0, z0) made by the distinguisher. The following sets are defined
with respect to the state of tables when the query occurs. We define the “history”
H as the multiset consisting of the following elements (each n-bit string may
appear and be counted multiple times):

– for each table-defined permutation query (i, xi, yi), H contains corresponding
elements xi, yi and xi ⊕ yi.

– for each table-defined cipher query (k, x1, y5), H contains corresponding
elements k, x1 and y5.

We define K as the multiset of all keys of 2chains triggered in the current query
cycle, and E as the multiset of non-dummy endpoints of all table-defined 2chain
plus the value z0 (the query issued by the distinguisher).

Remark 6. When referring to sets H, K and E with respect to a query cycle, we
mean with respect to its initiating permutation query (and the state of tables at

26

the beginning of the query cycle). These sets are time-dependent, but they don’t
change during a query cycle (in particular, the set of triggered 2chains do not
depend on the queries that become table-defined during the query cycle). Also
note that K only concerns 2chains triggered in the query cycle, while E concerns
all 2chains that are table-defined at the beginning of the query cycle.

Definition 13 (P, P∗, A and C). Given a query cycle, let P be the multiset of
random values read by ReadTape on tapes (p1, p

−1
1 , . . . , p5, p

−1
5) in the current

query cycle, and P∗ be the multiset of xi ⊕ pi(xi) and yi ⊕ p−1
i (yi) for each

random value pi(xi) or p−1
i (yi) read from the tapes in the current query cycle.

Let A be the multiset of the values of xi⊕ yi for each adapted query (i, xi, yi)
with i ∈ {2, 4}. Note that A is non-empty only for (4, 5)- and (1, 2)-query cycles.

Given a query cycle or a cipher query cycle, we denote C the multiset of
random values read by Enc and Dec on tapes ic or ic−1.10

We define the operations ∩, ∪ and ⊕ of two multisets S1,S2 in the natural
way: For each element e that appears s1 and s2 times (s1, s2 ≥ 0) in S1 and S2
respectively, S1 ∩S2 contains min{s1, s2} copies of e and S1 ∪S2 contains s1 + s2
copies of e. To define S1 ⊕ S2, we start from an empty multiset; for each pair of
e1 ∈ S1 and e2 ∈ S2 that appear s1 and s2 times respectively (s1, s2 ≥ 1), add
s1 · s2 copies of e1 ⊕ e2 to the multiset.

Definition 14. Let H⊕i be the multiset of values equal to the exclusive-or of
exactly i distinct elements in H, and let H⊕0 := {0}. The multisets K⊕i, E⊕i,
P⊕i, P∗⊕i, A⊕i and C⊕i are defined similarly.11

We are now ready to define the afore-mentioned “bad events” on executions of
G2.

Definition 15. BadPerm is the event that at least one of the following occurs
in a query cycle:

– P⊕i ∩H⊕j 6= ∅ for i ≥ 1 and i+ j ≤ 4;
– P∗⊕i ∩H⊕j 6= ∅ for i ≥ 1 and i+ j ≤ 4;
– P ∩ E 6= ∅, P ∩ (E ⊕ K) 6= ∅, P ∩ (K ⊕H) 6= ∅, P ∩ (K ⊕H⊕2) 6= ∅;
– P⊕2 ∩ K⊕2 6= ∅ or P⊕2 ∩ (H⊕K) 6= ∅;
– P∗ ∩ (H⊕ E) 6= ∅.

Definition 16. BadAdapt is the event that in a (1, 2)- or (4, 5)-query cycle,
A⊕i ∩H⊕j 6= ∅ for i ≥ 1 and i+ j ≤ 4.

Definition 17. BadIC is the event that in a query cycle or in a cipher query
cycle, either C ∩ (H ∪ E) 6= ∅ or C contains two equal entries.
10 For a query cycle, these Enc/Dec queries are made by the simulator, while for a

cipher query cycle, a single call to Enc or Dec is made by the distinguisher.
11 Since H, K, E , P, P∗, A and C are multisets, two distinct elements may be equal.

Because of the distinctness requirement, we have H⊕2 6= H⊕H, etc.

27

Note that P⊕i, P∗⊕i, A⊕i and C⊕i are random sets built from values read from
tapes (p1, p

−1
1 , . . . , p5, p

−1
5) and ic/ic−1 during the query cycle, while H⊕i, K⊕i

and E⊕i are fixed and determined by the states of the tables at the beginning of
the query cycle.

Definition 18 (Good Executions). An execution of G2 is said to be good if none
of BadPerm, BadAdapt and BadIC occurs in the execution.

5.3 The Simulator Does not Abort in Good Executions

Our goal in this section is to prove that during a good execution of G2, the
simulator never aborts. This is a two-step process: we first show that this holds
under a natural assumption on query cycles (namely, that they are safe, see
definition below); then we show that all query cycles are indeed safe.

Definition 19. A query cycle is said to be safe if for any 2chain C triggered
during the query cycle, both endpoints of C were dummy or table-undefined12 at
the beginning of the query cycle.

Informally, the assumption that a query cycle is safe is more or less equivalent to
the assumption that at the beginning of the query cycle, no incomplete path of
length 3 exists (but we do need to formalize this further).

Definition 20. A (cipher) query cycle is said to be good if no bad event (BadPerm,
BadAdapt or BadIC) occurs in the (cipher) query cycle.

In a good execution of G2, all query cycles and cipher query cycles are good since
no bad event occurs throughout the execution.

As just explained, our first step will be to prove that the simulator does not
abort during a safe query cycle. The simulator can only abort in procedure Assign
which is only called during the completion phase. Moreover, this completion
phase can be split into two sub-phases: first, the simulator calls ReadTape(i, δ, z)
for each pending query (i, δ, z), and then it calls AdaptPath(C) for each triggered
2chain C. We will consider each sub-phase in turn, showing that for a safe query
cycle, the simulator aborts in neither of them.

Consider a query cycle during which a 2chain C is triggered. By Lemma 5 (c),
C must be table-defined at the beginning of the query cycle, hence, by definition
of the set of endpoints E , any endpoint of C which was non-dummy at the
beginning of the query cycle is in E . The following lemma clarifies the situation
in case a triggered 2chain has a dummy endpoint at the beginning of the query
cycle.

Lemma 8. In any execution of G2, if a 2chain triggered during a query cycle
had a dummy endpoint at the beginning of the query cycle, then this endpoint is
non-dummy when the completion phase starts and moreover it is in C, the set of
values read on tapes ic or ic−1 during the query cycle.
12 Recall that when we say that an endpoint is table-undefined, this implicitly means it

is non-dummy.

28

Proof. Recall that only the right, resp. left endpoint of a (4, 5)-, resp. (1, 2)-
2chain can be dummy. We consider the case of the right endpoint of a triggered
(4, 5)-2chain, the other case follows by symmetry. A table-defined (4, 5)-2chain
C = (4, 5, y4, x5, k) can be triggered either during a call to FindNewPaths(3,−, ·)
or to FindNewPaths(1,+, ·) in a (4, 5)-query cycle. We first consider the case
where it is triggered during a call to FindNewPaths(3,−, ·). Inspection of the
pseudocode then shows that right after C has been triggered, a call to Dec(k, y5)
resulting from a call to Next(5, y5, k) at line 74 will make C’s right endpoint non-
dummy, and moreover r(C) = ic−1(k, y5) ∈ C. Next, we consider the case where
a (4, 5)-2chain C was triggered during a call to FindNewPaths(1,+, ·). Note that
during a call to FindNewPaths(1,+, x1), the simulator triggers a table-defined
2chain C = (4, 5, y4, x5, k) only if Check(k, x1, y5), where y5 = P5(x5), is true,
which can never be if r(C) = ⊥. This implies that C had a non-dummy right
endpoint at the beginning of the query cycle. This is because by Lemma 6, we
know that in a (4, 5)-query cycle the entries in tables T/T−1 are modified only
during the detection phase by calls to Dec(·, ·) resulting from calls to Next(5, ·, ·)
at line 74. By inspection of the pseudocode, this call occurs right after a (4, 5)-
2chain C ′ has been triggered. If this call changed the right endpoint of C from
dummy to non-dummy, we have C = C ′ by Lemma 7 since C and C ′ share a key
and a non-dummy endpoint and C ′ will not be triggered again in the query cycle
by the check at line 48 in the pseudocode.

Lemma 9. Consider a good and safe query cycle in an execution of G2. The
simulator does not abort during the calls to ReadTape in the query cycle.

Proof. Let τ0 denote the beginning of the query cycle. Assume towards a contra-
diction that the simulator aborts in a call to ReadTape during a safe (i, i+1)-query
cycle. By Lemma 5 (b), ReadTape can only be called for permutation queries
of type (i − 1,−) or (i + 2,+). Assume that the simulator aborts in a call to
ReadTape(i+ 2,+, xi+2) (the case of a call to ReadTape(i− 1,−, yi−1) is simi-
lar). This means that we have either xi+2 ∈ Pi+2 or pi+2(xi+2) ∈ P−1

i+2 (where
pi+2 is the random permutation tape) when the call occurs. Assume first that
xi+2 ∈ Pi+2 when the call to ReadTape occurs. We first show that xi+2 is table-
undefined (i.e., xi+2 /∈ Pi+2) just before the completion phase starts. Procedure
ReadTape is only called on pending queries, hence, by Lemma 5 (d), xi+2 is
either the initiating query, or the endpoint of some triggered 2chain. If this is the
initiating query, then it was table-undefined at τ0 (otherwise the simulator would
have returned immediately), and since permutation tables are not modified by
the detection phase, it is still table-undefined when the completion phase starts.
If this is the endpoint of a triggered 2chain C, then, by the assumption that the
query cycle is safe, this endpoint was either dummy or table-undefined at τ0. If it
was table-undefined at τ0, then xi+2 is still table-undefined when the completion
phase starts since permutation tables are not modified by the detection phase.
Otherwise, if it was dummy at τ0, then by Lemma 8, xi+2 = r(C) is non-dummy
when the completion phase starts and is in C. If xi+2 is table-defined when the
completion phase starts, then it was already table-defined at τ0, so that C∩H 6= ∅

29

and BadIC occurs, contradicting the assumption that the query cycle is good. In
all cases, we see that xi+2 is table-undefined just before the completion phase
starts. Hence, if xi+2 ∈ Pi+2 when the call to ReadTape occurs, this can only
be due to another call to ReadTape(i+ 2,+, xi+2) in the same query cycle. Yet
this is impossible since any permutation query is added at most once to Pending
in a given query cycle due to the checks at lines 57 and 75. Assume now that
pi+2(xi+2) ∈ P−1

i+2 when the call to ReadTape occurs. If pi+2(xi+2) ∈ P−1
i+2 at

the beginning of the query cycle, then pi+2(xi+2) ∈ P ∩H and BadPerm occurs.
Otherwise, this can only happen due to another call to ReadTape(i+ 2,+, x′i+2)
in the same query cycle, where x′i+2 6= xi+2 since any permutation query is added
at most once to Pending in a given query cycle. But again this is impossible since
pi+2 encodes a permutation, so that x′i+2 6= xi+2 implies pi+2(x′i+2) 6= pi+2(xi+2).
Hence, the simulator does not abort in a call to ReadTape.

Now that we have proved that during a good and safe query cycle, the
simulator does not abort during calls to ReadTape, we know it will try to “adapt”
each triggered 2chain C by calling AdaptPath(C). The lemma below shows that
the values used in the “adaptation” call to Assign when completing a 2chain are
random in some precise sense.

Lemma 10. Consider a good and safe (i, i+1)-query cycle in an execution of G2.
Let C = (i, i+1, yi, xi+1, k) be a triggered 2chain, and assume that AdaptPath(C)
is called during the completion phase.13 Consider the resulting call to Assign(i+ 3,
xi+3, yi+3)14 at line 84. Then

– if i 6= 3, xi+3 = pi+2(r(C))⊕ k where pi+2(r(C)) ∈ P and k ∈ K;
– if i = 3, xi+3 = x1 = ic−1(k, p5(r(C))) ∈ C;
– if i 6= 2, yi+3 = p−1

i−1(`(C))⊕ k where p−1
i−1(`(C)) ∈ P and k ∈ K;

– if i = 2, yi+3 = y5 = ic(k, p−1
1 (`(C))) ∈ C.

Proof. We only prove the result for xi+3, the result for yi+3 follows by symmetry.
For the case i 6= 3, the expression of xi+3 follows directly from the fact that the
simulator does not abort during the calls to ReadTape (Lemma 9) and inspection
of the pseudocode. Note that k is the key of C which is triggered, hence by
definition k ∈ K.

Now consider the case i = 3, i.e., the completion of a (3, 4)-2chain C =
(3, 4, y3, x4, k) during a (3, 4)-query cycle. By Lemma 9, the simulator does not
abort during the call to ReadTape(5,+, x5), where x5 = P4(x4) ⊕ k. Hence,
let y5 = p5(x5) ∈ P. When the call to AdaptPath(C) occurs, by inspection of
the pseudocode, a call to Next(5, y5, k) occurs at line 81, resulting in a call to
Dec(k, y5). If the cipher query (−, k, y5) is table-defined at the beginning of the
query cycle, by definition we have y5 ∈ H, so that P ∩ H 6= ∅ and BadPerm
occurs, contradicting the assumption that the query cycle is good. Thus (−, k, y5)
is table-undefined at the beginning of the query cycle and is table-defined after
13 The only reason why this call might not occur is because the simulator aborts before

the call, which we cannot assume does not happen at this point of the proof.
14 We denote the third argument yi+3 rather than yi−2 for clarity.

30

the call to Dec(k, y5). By Lemma 6, only Dec is called in the (3, 4)-query cycle.
Therefore, the cipher query must be defined in a call to Dec and hence we have
x1 = ic−1(k, y5) ∈ C.

We are now ready to prove that the simulator does not abort during the calls
to AdaptPath in a good and safe query cycle.

Lemma 11. Consider a good and safe query cycle in an execution of G2. Then
the simulator does not abort during the calls to AdaptPath in the query cycle.

Proof. Assume towards a contradiction that the simulator aborts in a call to
AdaptPath(C) during a good and safe (i, i + 1)-query cycle where C = (i, i +
1, yi, xi+1, k). Consider the resulting call to Assign(i+3, xi+3, yi+3). The simulator
aborts only if xi+3 ∈ Pi+3 or if yi+3 ∈ P−1

i+3. By symmetry, we only consider the
case where xi+3 ∈ Pi+3 when Assign(i+ 3, xi+3, yi+3) is called. We distinguish
the cases i 6= 3 and i = 3.

Consider first the case i 6= 3. Then, by Lemma 10, we have xi+3 = pi+2(xi+2)⊕
k, where xi+2 = r(C), pi+2(xi+2) ∈ P , and k ∈ K. If xi+3 ∈ Pi+3 at the beginning
of the query cycle, then by definition xi+3 ∈ H, so that P ∩ (H⊕K) 6= ∅, which
means BadPerm occurs. If xi+3 /∈ Pi+3 at the beginning of the query cycle,
xi+3 ∈ Pi+3 before the call to Assign(i + 3, xi+3, yi+3) only due to another
call to AdaptPath(C ′) for a distinct 2chain C ′ = (i, i + 1, y′i, x′i+1, k

′) and a
resulting call to Assign(i + 3, x′i+3, y

′
i+3) with x′i+3 = xi+3. By Lemma 10, we

have x′i+3 = pi+2(x′i+2)⊕ k′, where x′i+2 = r(C ′). Hence, x′i+3 = xi+3 implies

pi+2(xi+2)⊕ pi+2(x′i+2) = k ⊕ k′. (7)

Observe that we cannot have xi+2 = x′i+2 (i.e., r(C) = r(C ′)), as otherwise

k = pi+2(xi+2)⊕ xi+3 = pi+2(x′i+2)⊕ x′i+3 = k′

which by Lemma 7 implies C = C ′; but this is impossible since a 2chain is
triggered at most once in a query cycle because of the checks at lines 48 and 66.
Hence, xi+2 6= x′i+2 and Eq. (7) implies that P⊕2∩K⊕2 6= ∅, i.e., BadPerm occurs.

Consider now the case i = 3, i.e., we are in a (3,4)-query cycle, the 2chain for
which AdaptPath is called is C = (3, 4, y3, x4, k) and the resulting assignment
is Assign(1, x1, y1). Then, by Lemma 10, we have x1 = ic−1(k, y5) ∈ C, where
y5 = p5(r(C)). If x1 ∈ P1 at the beginning of the query cycle, then by definition
x1 ∈ H, so that C ∩ H 6= ∅, which means BadIC occurs. If x1 /∈ P1 at the
beginning of the query cycle, x1 ∈ P1 before the call to Assign(1, x1, y1) only
due to another call to AdaptPath(C ′) for a distinct 2chain C ′ = (3, 4, y′3, x′4, k′)
and a resulting call to Assign(1, x′1, y′1) with x′1 = x1. By Lemma 10, we have
x′1 = ic−1(k′, y′5) ∈ C, where y′5 = p5(r(C ′)). Hence, x′1 = x1 implies

ic−1(k, y5) = ic−1(k′, y′5). (8)

Observe that we cannot have (k, y5) = (k′, y′5) since this would imply r(C) =
p−1

5 (y5) = p−1
5 (y′5) = r(C ′), which by Lemma 7 would imply C = C ′; but this

31

is impossible since a 2chain is triggered at most once in a query cycle. Hence,
(k, y5) 6= (k′, y′5) and Eq. (8) implies that C contains two equal entries, so BadIC
occurs.

This concludes the proof.

Lemma 12. In an execution of G2, the simulator does not abort during a good
and safe query cycle.

Proof. This follows directly from Lemmas 9 and 11 since the simulator can only
abort during calls to ReadTape and AdaptPath.

Since all query cycles in a good execution are good, it remains now to show
that they are all safe. The key observation for this is that the simulator ensures
that, at the end of the completion phase, any table-defined 2chain with a table-
defined endpoint (one can think of it as a “3chain”) necessarily belongs to a
complete path as per Definition 8. We show that this property is preserved by
any cipher query cycle (a direct consequence of Lemma 13) and by any query
cycle (Lemmas 15, 16 and 17), and deduce that this holds at the beginning of
any query cycle (Lemma 19). We also show that a 2chain which is complete at
the beginning of a query cycle cannot be triggered (Lemma 21). From this we
are able to deduce that any query cycle is safe.

The lemma below says that a cipher query made by the distinguisher cannot
switch the state of a 2chain from table-undefined to table-defined, nor switch an
endpoint from dummy to table-defined.

Lemma 13. Consider a good cipher query cycle in an execution of G2. Let C be
a 2chain. Then the following two properties hold:

(a) If C is table-undefined before the cipher query cycle, then C is still table-
undefined at the end of the cipher query cycle.

(b) If C is table-defined and one of its endpoints is dummy before the cipher
query cycle, then this endpoint is dummy or table-undefined at the end of the
cipher query cycle.

Proof. We first prove (a). The result is obvious for an (i, i + 1)-2chain for i ∈
{1, 2, 3, 4} since whether such a 2chain is table-defined or not is independent
from tables T/T−1, so we only need to consider (5, 1)-2chains. Assume towards
a contradiction that there exists a (5, 1)-2chain C = (5, 1, y5, x1, k) which is
table-undefined before the cipher query cycle and is table-defined at the end of
the cipher query cycle. Since tables P1/P

−1
1 and P5/P

−1
5 are not modified in

a cipher query cycle, the permutation queries (1,+, x1) and (5,−, y5) must be
table-defined at the beginning of the cipher query cycle, implying x1, y5 ∈ H.
Moreover, since C is table-undefined before the cipher query cycle, the cipher
query (k, x1, y5) must be defined during the cipher query cycle, so either x1 ∈ C or
y5 ∈ C; in both cases C ∩ H 6= ∅ and BadIC occurs, contradicting the assumption
that the query cycle is good.

We then prove (b). By symmetry, we only give the proof for the case of the
right endpoint of a (4, 5)-2chain. Assume towards contradiction that there exists

32

a table-defined 2chain C = (4, 5, y4, x5, k) such that the right endpoint of C is
dummy before the cipher query cycle and is x1 ∈ P1 at the end of the query
cycle. Since no permutation query is defined during the cipher query cycle, both
(5, x5, y5) and (1, x1, y1) are table-defined at the beginning of the cipher query
cycle and hence y5, x1 ∈ H. The cipher query (k, x1, y5) must be defined during
the cipher query cycle, so we have x1 ∈ C or y5 ∈ C; in both cases C ∩H 6= ∅ and
BadIC occurs.

Lemmas 15, 16, and 17 below say, informally, that if a new “3chain” (i.e., a
table-defined 2chain with at least one table-defined endpoint) is created during
a query cycle, then it is necessarily complete at the end of the query cycle.
Unfortunately, the only way to prove this important result seems to be through a
delicate case analysis. Since there are many ways to “create a 3chain”, we phrase
it in three distinct lemmas depending on the state of the 2chain at the beginning
of the query cycle. Note also that the three lemmas assume a good and safe query
cycle, which by Lemma 12 implies that the simulator does not abort, which by
Lemma 5 (e) implies that any triggered 2chain is complete at the end of the
query cycle.

We say that a complete path has been triggered if any of the five 2chains
belonging to the complete path has been triggered15. By Lemma 5 (e), each
triggered 2chain belongs to a triggered complete path at the end of the query cycle
if the simulator doesn’t abort. We start with the following useful observation.

Lemma 14. If a cipher query (k, x1, y5) becomes table-defined during a query
cycle and the simulator doesn’t abort, then the 2chain (5, 1, y5, x1, k) belongs to a
complete path triggered in the query cycle.

Proof. This follows by inspection of the pseudocode and by Lemma 5 (e) (we
can check both y5 and x1 belong to the triggered complete path).

Lemma 15. Consider a good and safe query cycle in an execution of G2. Let C
be a 2chain which is table-defined at the beginning of the query cycle and such that
one of its endpoints is dummy at the beginning of the query cycle and non-dummy
at the end of the query cycle. Then, at the end of the query cycle, C belongs to a
complete path which was triggered during the query cycle.

Proof. We consider the case of the right endpoint of a (4, 5)-2chain. The case
of the left endpoint of a (1, 2)-2chain follows by symmetry. Let τ0 denote the
beginning of the query cycle and τ1 denote its end. Let C = (4, 5, y4, x5, k) be a
(4, 5)-2chain such that r(C) = ⊥ at τ0 and r(C) = x1 6= ⊥ at τ1. Let y5 = P5(x5).
This means that T−1(k, y5) = ⊥ at τ0 and T−1(k, y5) = x1 at τ1. We consider
the five possibilities for the type of query cycle.

– Case of a (1, 2)- or (2, 3)-query cycle. By Lemma 6, the simulator only calls
Enc during such query cycles. This means that y5 = ic(k, x1) must have been

15 Note that the complete path doesn’t exist at the point of the execution when the
2chain is triggered.

33

read during the query cycle, and since y5 ∈ H, C ∩ H 6= ∅ and BadIC occurs,
contradicting the assumption that the query cycle is good.

– Case of a (3, 4)-query cycle. By Lemma 6, the simulator only calls Dec
during the completion phase in this case. Moreover, it is easy to check from
the pseudocode that the call Dec(k, y5) can only occur during the call to
AdaptPath(D), whereD = (3, 4, y3, x4, k) with x4 = P−1

4 (y4) and y3 = x4⊕k.
By Lemma 5 (e), D is necessarily complete at τ1, and it is easy to check that
C belongs to the same complete path as D at τ1.

– Case of a (4, 5)-query cycle. By Lemma 6, the simulator only calls Dec during
the detection phase in this case. Moreover, it is easy to check from the
pseudocode that the call to Dec(k, y5) can only occur just after C has been
triggered. Hence, by Lemma 5 (e), C is necessarily complete at τ1.

– Case of a (5, 1)-query cycle. By Lemma 6, tables T/T−1 are not modified
during a (5, 1)-query cycle. Hence, r(C) cannot become non-dummy during
the query cycle.

Lemma 16. Consider a good and safe query cycle in an execution of G2. Let C
be a 2chain which is table-defined at the beginning of the query cycle and such
that one of the endpoints of C is table-undefined at the beginning of the query
cycle and table-defined at the end of the query cycle. Then, at the end of the
query cycle, C belongs to a complete path which was triggered during the query
cycle.

Proof. Assume that the query cycle we consider is an (i, i+ 1)-query cycle. Let
τ0 denote the beginning of the query cycle and τ1 denote its end. We consider
each possible type for the 2chain C.

Case of an (i, i + 1)-2chain C = (i, i + 1, yi, xi+1, k). We consider the case
where this is the right endpoint of C which goes from non-dummy and table-
undefined to table-defined during the query cycle (the case of the left endpoint
follows by symmetry). Since r(C) is non-dummy and table-undefined at τ0,
necessarily (i + 2,+, r(C)) became pending during the query cycle (otherwise
it would still be table-undefined at τ1). Since C is table-defined at τ0, C was
necessarily triggered (either during the call to FindNewPaths(i+ 2,+, r(C)), or
during the call the FindNewPaths(i−1,−, `(C)) which then made r(C) pending).
Hence, by Lemma 5 (e), C is complete at τ1.

Case of an (i + 1, i + 2)-2chain C = (i + 1, i + 2, yi+1, xi+2, k). First, note
that since Pi/P−1

i are not modified during the query cycle, the left endpoint
of C cannot go from non-dummy and table-undefined to table-defined during
the query cycle, hence this is necessarily the right endpoint of C which does.
Since r(C) is non-dummy at τ0, then by definition xi+3 := r(C) is in E . The only
way xi+3 can become table-defined during the query cycle is because of a call to
Assign(i+3, x′i+3, y

′
i+3) with x′i+3 = xi+3 resulting from a call to AdaptPath(C ′),

where C ′ = (i, i+ 1, y′i, x′i+1, k
′) has been triggered during the query cycle. By

Lemma 10, if i 6= 3 we have x′i+3 = pi+2(r(C ′))⊕k′ where k′ ∈ K and pi+2(r(C ′))
is read during the query cycle, so that P ∩ (E ⊕ K) 6= ∅ and BadPerm happens,

34

whereas if i = 3 then x′i+3 = x′1 = ic−1(k′, p5(r(C ′))) is read during the query
cycle, so that C ∩ E 6= ∅ and BadIC happens. In all cases this contradicts the
assumption that the query cycle is good.

Case of an (i+ 2, i+ 3)-2chain C = (i+ 2, i+ 3, yi+2, xi+3, k). First, note that
since Pi+1/P

−1
i+1 are not modified during the query cycle, the left endpoint of C

cannot go from non-dummy and table-undefined to table-defined during the query
cycle, hence this is necessarily the right endpoint of C which does. Note that
since xi+4 = xi−1 := r(C) is non-dummy at τ0, by definition xi−1 ∈ E . The only
way xi−1 can become table-defined during the (i, i+ 1)-query cycle is because of
a call to Assign(i− 1, p−1

i−1(yi−1), yi−1) with xi−1 = p−1
i−1(yi−1) resulting from a

call to ReadTape(i− 1,−, yi−1). This implies that P ∩E 6= ∅ and hence BadPerm
occurs, contradicting the assumption that the query cycle is good.

Other cases. The case of an (i− 2, i− 1)-, resp. of an (i− 1, i)-2chain, can be
deduced by symmetry from the case of an (i+2, i+3)-, resp. (i+1, i+2)-2chain.

Lemma 17. Consider a good and safe query cycle in an execution of G2. Let C
be a 2chain such that

(i) at the beginning of the query cycle, C is table-undefined;
(ii) at the end of the query cycle, C is table-defined and at least one of its two

endpoints is table-defined.

Then, at the end of the query cycle, C belongs to a complete path which was
triggered during the query cycle.

Proof. Assume that the query cycle we consider is an (i, i+ 1)-query cycle. Let
τ0 denote the beginning of the query cycle and τ1 denote its end. We consider
each possible type for the 2chain C.

Case of an (i, i + 1)-2chain C = (i, i + 1, yi, xi+1, k). Since Pi/P−1
i and

Pi+1/P
−1
i+1 are not modified during an (i, i+ 1)-query cycle, and moreover tables

T/T−1 are not modified during a (5, 1)-query cycle by Lemma 6, C cannot be
table-undefined before the query cycle and table-defined after, hence this case is
impossible.

Case of an (i + 1, i + 2)-2chain C = (i + 1, i + 2, yi+1, xi+2, k). First, note
that since tables Pi+1/P

−1
i+1 are not modified during the query cycle, yi+1 must

necessarily be table-defined at τ0 (so that in particular yi+1 ∈ H) for C to be
table-defined at τ1.

We start by showing that xi+2 was necessarily table-undefined at τ0. This
is clear for i 6= 4 (i.e., when C is an inner 2chain) since otherwise C would be
table-defined already at τ0. If i = 4, i.e., we are considering a (4, 5)-query cycle
and a (5, 1)-2chain C = (5, 1, y5, x1, k), and if x1 is already table-defined at τ0,
then C could become table-defined because of an assignment to T/T−1 due to a
simulator call to Next(k, y5) at line 74. Yet this would mean that x1 = ic−1(k, y5),

35

so that C ∩H 6= ∅ and BadIC occurs, contradicting the assumption that the query
cycle is good. In all cases, we see that xi+2 was necessarily table-undefined at τ0.

We now distinguish two cases depending on which endpoint of C is table-
defined at τ1. Assume first that this is the left endpoint, and let yi be the value of
`(C) at τ1. Since tables Pi/P−1

i are not modified during the query cycle, yi was
already table-defined at τ0. Let xi+1 = P−1

i+1(yi+1) and D = (i, i+ 1, yi, xi+1, k).
Then D was table-defined at τ0, its right endpoint was either dummy or equal to
xi+2 and hence table-undefined at τ0, and at τ1 its right endpoint is table-defined
since C is table-defined. Hence, by Lemmas 15 and 16, D belongs to a complete
path which was triggered during the query cycle, and it is easy to check that C
belongs to the same complete path as D at τ1.

Assume now that it is the right endpoint of C which is table-defined at τ1
and let xi+3 denote the value of r(C) at τ1. Since xi+2 was table-undefined at τ0
and we are considering an (i, i+ 1)-query cycle, xi+2 necessarily became pending
during the query cycle and a call to Assign(i+ 2, xi+2, pi+2(xi+2)) occurred. By
Lemma 5 (d), xi+2 is either the initiating query, in which case it is in E (by
definition), or the endpoint of some triggered (i, i+ 1)-2chain D, in which case it
is in E if r(D) is non-dummy at τ0, or in C if r(D) is dummy at τ0 (by Lemma 8).
(Note that r(D) can be dummy at τ0 only when i = 4.) We now distinguish three
sub-cases depending on i:
– Case i ∈ {1, 2, 5}. Then C is neither a (4, 5)- nor a (5, 1)-2chain and its

right endpoint is given by xi+3 = pi+2(xi+2)⊕ k = pi+2(xi+2)⊕ yi+1 ⊕ xi+2.
Assume first that xi+3 was table-defined already at τ0, so that xi+3 ∈ H.
The key k = yi+1 ⊕ xi+2 = pi+2(xi+2)⊕ xi+3, rearranging the terms we have
xi+2 ⊕ pi+2(xi+2) = yi+1 ⊕ xi+3 where the left-hand side is in P∗ and the
right-hand side is in H⊕2. This implies P∗ ∩H⊕2 6= ∅ and BadPerm occurs,
contradicting the assumption that the query cycle is good. Assume now that
xi+3 was table-undefined at τ0. Then it can only become table-defined during
the query cycle because of a call to Assign(i+ 3, x′i+3, y

′
i+3) with x′i+3 = xi+3

resulting from a call to AdaptPath(C ′), where C ′ = (i, i+ 1, y′i, x′i+1, k
′) has

been triggered during the query cycle. Since i ∈ {1, 2, 5}, the adapted query

x′i+3 = pi+2(x′i+2)⊕ k′ = pi+2(x′i+2)⊕ x′i+2 ⊕ y′i+1

where x′i+2 = r(C ′). From x′i+3 = xi+3, we have

pi+2(xi+2)⊕ yi+1 ⊕ xi+2 = pi+2(x′i+2)⊕ x′i+2 ⊕ y′i+1,

rearranging the terms we have

xi+2 ⊕ pi+2(xi+2)⊕ x′i+2 ⊕ pi+2(x′i+2) = yi+1 ⊕ y′i+1. (9)

Since C ′ is triggered in the query cycle, we have x′i+2 ⊕ pi+2(x′i+2) ∈ P∗ and
y′i+1 ∈ H. Hence, if xi+2 6= x′i+2, then P∗⊕2 ∩H⊕2 6= ∅ and BadPerm occurs,
whereas if xi+2 = x′i+2 then

k = pi+2(xi+2)⊕ xi+3 = pi+2(x′i+2)⊕ x′i+3 = k′,

and one can check that C belongs to the same completed path as C ′ at τ1.

36

– Case i = 3. Then we are considering a (3, 4)-query cycle, C = (4, 5, y4, x5, k)
is a (4, 5)-2chain, and its right endpoint at τ1 is given by xi+3 = x1 =
T−1(k, p5(x5)). If (−, k, p5(x5)) was already table-defined at τ0, then p5(x5) ∈
H, so that P ∩ H 6= ∅ and BadPerm occurs. Hence, (−, k, p5(x5)) became
table-defined during the query cycle, which implies that at τ1, the 2chain
(5, 1, p5(x5), x1, k) belongs to a complete path that was triggered during the
query cycle. It is easy to see that C belongs to the same complete path at τ1.

– Case i = 4. Then we are considering a (4, 5)-query cycle, C = (5, 1, y5, x1, k) is
a (5, 1)-2chain, and its right endpoint at τ1 is given by xi+3 = x2 = p1(x1)⊕k.
If (−, k, y5) was table-undefined at τ0, then it became table-defined during
the query cycle, so that by Lemma 14, C belongs to a complete path which
was triggered during the query cycle. Assume now that T−1(k, y5) = x1
already at τ0, so that k ∈ H. First, if x2 was table-defined already at τ0, then
since p1(x1) = x2 ⊕ k one has P ∩H⊕2 6= ∅ and BadPerm happens. If x2 was
table-undefined at τ0, then it can only become table-defined during the query
cycle because of a call to Assign(2, x′2, y′2) with x′2 = x2 resulting from a
call to AdaptPath(C ′), where C ′ = (4, 5, y′4, x′5, k′) has been triggered during
the query cycle. By Lemma 10, we have x′2 = p1(x′1)⊕ k′ where x′1 = r(C ′),
p1(x′1) ∈ P , and k′ ∈ K. Hence, x′2 = x2 implies that p1(x1)⊕p1(x′1) = k⊕k′.
If x1 6= x′1, then P⊕2 ∩ (H⊕K) 6= ∅ and BadPerm occurs, whereas if x1 = x′1,
then

k = p1(x1)⊕ x2 = p1(x′1)⊕ x′2 = k′,

and one can check that C belongs to the same completed path as C ′ at τ1.

Case of an (i+ 2, i+ 3)-2chain C = (i+ 2, i+ 3, yi+2, xi+3, k). Assume first
that the left endpoint of C is table-defined at τ1 and denote yi+1 the value of
`(C) at τ1. Since tables Pi+1/P

−1
i+1 are not modified during an (i, i + 1)-query

cycle, yi+1 is already table-defined at τ0. Let D = (i + 1, i + 2, yi+1, xi+2, k),
where xi+2 is the value of P−1

i+2(yi+2) at τ1. Then either D is table-undefined at
τ0 and table-defined with a table-defined right endpoint at τ1, in which case we
can apply the conclusion of the analysis for the case of a (i+ 1, i+ 2)-2chain, or
D is table-defined at τ0 and its right endpoint becomes table-defined during the
query cycle, in which case we can apply Lemmas 15 and 16. In all cases we can
conclude that D belongs to a complete path that was triggered during the query
cycle, and C belongs to the same complete path.

Assume now that the right endpoint of C is table-defined at τ1 and denote
xi−1 = xi+4 the value of r(C) at τ1. Since C is table-defined at τ1, let yi+3 =
Pi+3(xi+3).

– Case i ∈ {1, 4, 5}. Then C is neither a (4, 5)- nor a (5, 1)-2chain, hence its
right endpoint is given by xi−1 = yi+3 ⊕ k with k = yi+2 ⊕ xi+3, hence

yi+2 ⊕ xi+3 ⊕ yi+3 ⊕ xi−1 = 0. (10)

We will distinguish all possible sub-cases depending on whether yi+2, xi+3,
yi+3, and xi−1 are table-defined at τ0 (in which case these values are in H) or

37

not. Note that at least one of the two queries yi+2 and xi+3 is table-undefined
at τ0 since C is table-undefined at τ0 (and is not a (5, 1)-2chain). Moreover,
since we are considering an (i, i+ 1)-query cycle, then
• if yi+2 was table-undefined at τ0, then it became table-defined because

of a call to ReadTape(2,+, xi+2) and hence yi+2 = pi+2(xi+2) ∈ P
• if xi+3 (and hence yi+3) was table-undefined at τ0, then it became table-

defined because of a call to Assign(i+ 3, xi+3, yi+3) resulting from a call
to AdaptPath(C ′), where C ′ = (i, i + 1, y′i, x′i+1, k

′) has been triggered
during the query cycle. By Lemma 10, we have xi+3 = pi+2(x′i+2)⊕k′ and
yi+3 = p−1

i−1(y′i−1)⊕ k′, so xi+3 ⊕ yi+3 = pi+2(x′i+2)⊕ p−1
i−1(y′i−1) ∈ P⊕2.

• if xi−1 was table-undefined at τ0, then it became table-defined because
of a call to ReadTape(i− 1,−, y′′i−1) and xi−1 = p−1

i−1(y′′i−1) ∈ P.
Finally, note that for the case where xi+3 was table-undefined at τ0, we can
assume that xi+2 6= x′i+2 and y′′i−1 6= y′i−1, since otherwise k = k′ and C
belongs to the same completed path as C ′ at τ1. Hence, we see that when
substituting all possibilities in (10) with at least yi+2 or xi+3 table-undefined
at τ0 (and hence involving an element of P), we always end up with an
equation implying that P⊕i ∩H⊕4−i 6= ∅ for some 1 ≤ i ≤ 4 (For example,
if we assume yi+2, xi+3, yi+3, and xi−1 were all table-undefined at τ0, then
Eq. (10) yields

pi+2(xi+2)⊕ pi+2(x′i+2)⊕ p−1
i−1(y′i−1)⊕ p−1

i−1(y′′i−1) = 0

and hence P⊕4 ∩H⊕0 6= ∅.)
– Case i = 2. Then we are considering a (2, 3)-query cycle, C = (4, 5, y4, x5, k) is

a (4, 5)-2chain, and its right endpoint at τ1 is given by xi+4 = x1 = T−1(k, y5)
where y5 = P5(x5). If the cipher query (−, k, y5) was table-undefined at τ0,
then it became table-defined during the query cycle, which implies that at
τ1, the 2chain (5, 1, y5, x1, k) belongs to a complete path which was triggered
during the query cycle, and C belongs to the same complete path. Assume now
that the cipher query (k, x1, y5) was table-defined at τ0, so that k, x1, y5 ∈ H.
Since C is table-undefined at τ0, either y4 or x5 is table-undefined at τ0.
Assume first that x5 was table-undefined at τ0. Then it could only become
table-defined because of a call to Assign(5, x5, y5) resulting from a call to
AdaptPath(C ′) where C ′ was triggered during the query cycle. By Lemma 10,
we have y5 ∈ C, so that C ∩ H 6= ∅ and BadIC happens. Finally, assume that
x5 was table-defined but y4 was table-undefined at τ0 (hence x5 ∈ H). Then
y4 became table-defined because of a call ReadTape(4,+, x4) and hence
y4 = p4(x4) ∈ P. Moreover, y4 = x5 ⊕ k where k ∈ H, so that P ∩H⊕2 6= ∅
and BadPerm happens.

– Case i = 3. Then we are considering a (3, 4)-query cycle, C = (5, 1, y5, x1, k)
is a (5, 1)-2chain, and its right endpoint at τ1 is given by x2 = y1 ⊕ k where
y1 = P1(x1). If the cipher query (k, x1, y5) was table-undefined at τ0, then
it became table-defined during the query cycle, which implies that at τ1,
C belongs to a complete path which was triggered during the query cycle.
Assume now that the cipher query (k, x1, y5) was table-defined at τ0, then we

38

have k, x1, y5 ∈ H and either x1 or y5 was table-undefined at τ0. Assume that
y5 was table-undefined at τ0, then y5 became table-defined because of a call
ReadTape(5,+, x5), so that y5 = p5(x5) ∈ P . Hence, P∩H 6= ∅ and BadPerm
occurs. Assume now that x1 was table-undefined at τ0. Then it could only
become table-defined because of a call to Assign(1, x1, y1) resulting from a
call to AdaptPath(C ′) where C ′ was triggered during the query cycle. By
Lemma 10, we have x1 ∈ C, so that C ∩ H 6= ∅ and BadIC happens.

Other cases. The case of an (i− 2, i− 1)-, resp. of an (i− 1, i)-2chain, can be
deduced by symmetry from the case of an (i+2, i+3)-, resp. (i+1, i+2)-2chain.

We collect Lemmas 15, 16, and 17 under a simpler to grasp form in the
following lemma. To state it more concisely, we introduce the following definition.

Definition 21. We say a 2chain C induces a 3chain if C is table-defined and at
least one of its endpoints is table-defined.

Lemma 18. Consider a good and safe query cycle in an execution of G2. Let C
be a 2chain which does not induce a 3chain at the beginning of the query cycle,
but induces a 3chain at the end of the query cycle. Then, at the end of the query
cycle, C belongs to a complete path which was triggered during the query cycle.

Proof. Note that the opposite of “C induces a 3chain” is “C is table-defined and
its two endpoints are dummy or table-undefined, or C is table-undefined”. Hence,
Lemmas 15, 16, and 17 cover all possible cases for a 2chain to not induce a 3chain
at the beginning of a query cycle and induce a 3chain at the end of the query
cycle.

Lemma 19. Consider a point τ0 in an execution of G2 which is either the
beginning of a (cipher) query cycle, or the end of the execution, and assume that
all query cycles were safe and no bad event has occurred until τ0. Let C be a
2chain. Assume that at τ0, C is table-defined and at least one of the two endpoints
of C is table-defined. Then C is complete at τ0.

Proof. By assumption in the lemma, C induces a 3chain at time τ0. Recall
that the opposite of “C induces a 3chain” is “C is table-defined and its two
endpoints are dummy or table-undefined, or C is table-undefined”. Consider the
last assignment to a table before C induces a 3chain. This cannot have been an
assignment to T/T−1 in a cipher query cycle (which was good by assumption);
indeed, by Lemma 13, such an assignment cannot switch the state of a 2chain
from table-undefined to table-defined, nor switch the endpoint of a table-defined
2chain from dummy to table-defined (and besides it is clear that it cannot switch
an endpoint from non-dummy and table-undefined to table-defined). Hence this
can only have happened during a query cycle that occurred before τ0 (which was
necessarily good and safe by assumption). But according to Lemma 18, at the
end of this previous query cycle, C was complete, and this still holds at τ0, hence
the result.

39

Lemma 20. Consider an (i, i+ 1)-query cycle with initiating query (i0, δ0, z0)
in an execution of G2. As long as BadIC doesn’t occur, if an (i, i+ 1)-2chain C
is triggered during the query cycle, there exists a sequence of (i, i+ 1)-2chains
(C0, . . . , Ct) triggered in this order such that Ct = C, and, at the beginning of the
query cycle, either z0 = r(C0) 6= ⊥, `(C1) = `(C0) 6= ⊥, r(C2) = r(C1) 6= ⊥, etc.
if (i0, δ0) = (i + 2,+), or `(C0) = z0, r(C1) = r(C0) 6= ⊥, `(C2) = `(C1) 6= ⊥,
etc. if (i0, δ0) = (i− 1,−).

Proof. The existence of sequence (C0, . . . , Ct) follows easily from inspection of the
pseudocode, the only non-trivial point to prove is that all endpoints are already
non-dummy at the beginning of the query cycle. But this follows easily from the
fact that a (4, 5)-2chain with a right dummy endpoint cannot be triggered by a
call to FindNewPaths(1,+, ·), and that if a (4, 5)-2chain C ′ with a right dummy
endpoint is triggered by a call to FindNewPaths(3,−, ·), then by Lemma 8 its
right endpoint r(C ′) is in C after getting non-dummy, and hence the call to
FindNewPaths(1,+, r(C ′)) cannot trigger any 2chain unless C ∩E 6= ∅ and BadIC
happens (and from the symmetric observations for a (1, 2)-2chain with a dummy
left endpoint).

Corollary 1. Consider a query cycle in an execution of G2. Let R be the set of
2chains satisfying the condition (of being triggered) in Lemma 20. Then we have:

– The set R is determined by the state of tables at the beginning of the query
cycle;

– As long as BadIC doesn’t occur, only 2chains in R can be triggered;
– If BadIC doesn’t occur in the query cycle, R is the set of triggered 2chains in
the query cycle.

Proof. The set R is determined by the table states at the beginning of the query
cycle by definition (cf. Lemma 20). As long as BadIC hasn’t occur in the query
cycle, by Lemma 20 only 2chains in R can be triggered. Moreover, by inspection
of the pseudocode, we can see that every 2chain satisfying the condition in
Lemma 20 will be triggered in the query cycle. Therefore, if BadIC occurs, a
2chain is triggered if and only if it is in R.

Lemma 21. Consider an (i, i + 1)-query cycle in an execution of G2, before
which no bad event has occurred and in which BadIC doesn’t occur. Assume that
all previous query cycles were safe. Then, if an (i, i+ 1)-2chain is complete at
the beginning of the query cycle, it cannot be triggered during this query cycle.

Proof. Let τ0 denote the beginning of the query cycle. Assume towards a contra-
diction that there exists an (i, i+ 1)-2chain C which is complete at τ0 and is trig-
gered during the query cycle. Denote (i0, δ0, z0) the initiating query of the query
cycle. By Lemma 20, there exists a sequence (C0, . . . , Ct) of triggered (i, i+ 1)-
2chains such that Ct = C, and, at τ0, either r(C0) = z0, `(C1) = `(C0) 6= ⊥,
r(C2) = r(C1) 6= ⊥, etc., or `(C0) = z0, r(C1) = r(C0) 6= ⊥, `(C2) = `(C1) 6= ⊥,
etc.

40

By definition of a complete 2chain, r(C) and `(C) are non-dummy and table-
defined at τ0. Since C and Ct−1 have a common endpoint, Ct−1 is table-defined
and has one of its endpoints non-dummy and table-defined at τ0, which by
Lemma 19 implies that Ct−1 is complete at τ0. By recursion, it follows that C0
is complete at τ0, which implies that the initiating query was table-defined at
the beginning of the query cycle, a contradiction.

Lemma 22. In an execution of G2, a query cycle is safe if no bad event has
occurred before the query cycle and BadIC doesn’t occur in the query cycle. In
particular, any query cycle in a good execution of G2 is safe.

Proof. Assume towards a contradiction that this is false, and consider the first
query cycle for which this does not hold (hence, all previous query cycles were
safe). This means that during this query cycle, some 2chain C was triggered such
that C had a table-defined endpoint at the beginning of the query cycle. Since by
Lemma 5 (c), any triggered 2chain is table-defined before the query cycle begins,
this implies that when the query cycle started, C was table-defined and one of
its endpoints was table-defined. But according to Lemma 19, since all previous
query cycles were safe and no bad event has occurred, this implies that C was
complete at the beginning of the query cycle, which by Lemma 21 (and again
the fact that all previous query cycles were safe and no bad event has occurred)
implies that C cannot be triggered during the query cycle, a contradiction.

The main result of this section now follows.

Lemma 23. The simulator does not abort in a good execution of G2.

Proof. This is a direct consequence of Lemmas 12 and 22.

5.4 Efficiency of the Simulator

Now that we have established that the simulator does not abort in good executions
of G2, we prove that it also runs in polynomial time.

From Lemma 22, we know that any query cycle in a good execution is safe,
i.e., for any 2chain C triggered during the query cycle, the endpoints of the
2chain were either table-undefined or dummy at the beginning of the query cycle.
Moreover, by Lemma 23, we know that the simulator does not abort in a good
execution. Throughout this section, when we assume a good execution of G2, we
will use these properties (without repeatedly referring to Lemmas 22 or 23).

First we prove some properties of good executions that will be useful in the
termination argument.

Lemma 24. In a good execution of G2, for i ∈ {2, 4}, there do not exist two
distinct table-defined queries (i, xi, yi) and (i, x′i, y′i) such that xi ⊕ yi = x′i ⊕ y′i.

Proof. Let i = 2 and assume towards a contradiction that there exist distinct
table-defined queries (2, x2, y2) and (2, x′2, y′2) such that

x2 ⊕ y2 = x′2 ⊕ y′2 (11)

41

(the case with i = 4 is symmetric).
First we consider the case where (2, x2, y2) and (2, x′2, y′2) get defined in

different query cycles. Let (2, x2, y2) be defined in an earlier query cycle. Consider
the query cycle in which (2, x′2, y′2) gets defined, at the beginning of which
(2, x2, y2) is table-defined and hence x2 ⊕ y2 ∈ H (recall Definition 12). We
discuss the possible ways that (2, x′2, y′2) gets defined.

If (2, x′2, y′2) is defined in a call to ReadTape(2,+, x′2) or ReadTape(2,−, y′2),
then we have x′2⊕y′2 ∈ P∗. Equation (11) implies P∗∩H 6= ∅ and hence BadPerm
occurs. If (2, x′2, y′2) is adapted, we have x′2⊕ y′2 ∈ A; (11) implies A∩H 6= ∅ and
BadAdapt occurs.

Then we consider the case where (2, x2, y2) and (2, x′2, y′2) get defined in the
same query cycle. Again we discuss how they are defined, which depends on the
type of the query cycle. The query cycle cannot be a (1, 2)- or (2, 3)-query cycle,
in which no permutation query at position 2 gets defined.

If the query cycle is a (3, 4)-query cycle, then the queries are defined through
calls to ReadPath(2,+, x2) and ReadPath(2,+, x′2) respectively. Thus, x2 ⊕ y2
and x′2 ⊕ y′2 are different elements of P∗; (11) implies P∗⊕2 ∩ H⊕0 6= ∅ and
BadPerm occurs. If the query cycle is a (5, 1)-query cycle, the queries are defined
through calls to ReadPath(2,−, y2) and ReadPath(2,−, y′2), and the rest of the
proof is the same as the last case. If the query cycle is a (4, 5)-query cycle, then
both (2, x2, y2) and (2, x′2, y′2) are adapted and thus x2⊕y2, x

′
2⊕y′2 ∈ A. Equation

(11) implies A⊕2 ∩H⊕0 6= ∅ and BadAdapt occurs.

The following lemma can be thought of as a “harder version” of Lemma 24,
and the proof ideas of the two lemmas are similar.

Lemma 25. In a good execution of G2, for i ∈ {2, 4} there never exist four
distinct table-defined queries (i, x(j)

i , y
(j)
i) with j = 1, 2, 3, 4 such that

4∑
j=1

(x(j)
i ⊕ y

(j)
i) = 0. (12)

Proof. By symmetry, we only consider i = 2. Assume towards a contradiction that
there exist distinct table-defined queries (2, x(j)

2 , y
(j)
2) for j = 1, 2, 3, 4 satisfying

Eq. (12). We assume without loss of generality that (2, x(1)
2 , y

(1)
2) is the last to

be table-defined among the four queries.
Consider the query cycle in which (2, x(1)

2 , y
(1)
2) gets defined. The other queries

are either table-defined at the beginning of the query cycle or are defined during
the same query cycle. The query cycle cannot be a (1, 2)- or (2, 3)-query cycle, in
which no permutation query at position 2 gets defined.

First we consider the case where the query cycle is a (3, 4)-query cycle. If
(2, x(j)

2 , y
(j)
2) gets defined in the query cycle, it must be defined through a call

to ReadTape(2,+, x(j)
2) and x

(j)
2 ⊕ y(j)

2 ∈ P∗; otherwise the query should be
table-defined at the beginning of the query cycle and x(j)

2 ⊕ y
(j)
2 ∈ H. If t of the

four queries get defined in the query cycle (1 ≤ t ≤ 4 since we are considering

42

the query cycle in which (1, x(1)
2 , y

(1)
2) gets defined), then the other 4− t queries

are table-defined at the beginning of the query cycle. Equation (12) implies
P∗⊕t ∩H⊕(4−t) 6= ∅ with 1 ≤ t ≤ 4 (note that the entries in P∗ are not canceled
because the queries are distinct), so BadPerm occurs.

The case where the query cycle is a (5, 1)-query cycle is similar to the last
case (the queries are defined through calls to ReadPath(2,−, y(j)

2) in this case).
Then we consider the case where the query cycle is a (4, 5)-query cycle. If

(2, x(j)
2 , y

(j)
2) gets defined in the query cycle, it must be adapted and x(j)

2 ⊕y
(j)
2 ∈ A.

Similarly, assume t of the four queries are adapted in the query cycle (1 ≤ t ≤ 4),
then the other 4− t queries are table-defined at the beginning of the query cycle.
Equation (12) implies A⊕t ∩ H⊕(4−t) 6= ∅ (the entries in A are not canceled
because the queries are distinct) and BadAdapt occurs.

We analyze the running time of the simulator in a good execution of G2. A large
part of this analysis consists of upper bounding the size of tables T, T−1, Pi, P

−1
i .

Since |T | = |T−1| and |Pi| = |P−1
i | we state the results only for T and Pi.

Note that during a query cycle, any triggered 2chain C can be associated with
the query that became pending just before C was triggered and, reciprocally, any
pending query (i, δ, z), except the initiating query, can be associated with the
2chain C that was triggered just before (i, δ, z) became pending. We make these
observations formal through the following definitions.

Definition 22. During a query cycle, we say that a 2chain C is triggered by
query (i, δ, z) if it is added to Triggered during a call to FindNewPaths(i, δ, z).
We say C is an (i, δ)-triggered 2chain if it is triggered by a query of type (i, δ).

By Lemma 5 (b), a triggered (i, i+ 1)-2chain is either (i− 1,−)- or (i+ 2,+)-
triggered. For brevity, we group 4 special types of triggered 2chains under a
common name.

Definition 23. A (triggered) wrapping 2chain is either

– a (4, 5)-2chain that was (1,+)-triggered,
– a (1, 2)-2chain that was (5,−)-triggered,
– a (5, 1)-2chain that was either (2,+)- or (4,−)-triggered.

Note that wrapping 2chains are exactly those for which the simulator makes a
call to procedure Check to decide whether to trigger the 2chain or not.

Definition 24. Consider a query cycle with initiating query (i0, δ0, z0) and a
permutation query (i, δ, z) 6= (i0, δ0, z0) which becomes pending. We call the
(unique) 2chain that was triggered just before (i, δ, z) became pending the 2chain
associated with (i, δ, z).

Note that uniqueness of the 2chain associated with a non-initiating pending query
follows easily from the checks at lines 57 and 75.

Lemma 26. Consider a good execution of G2, and assume that a complete path
exists at the end of the execution. Then at most one of the five 2chains belonging
to the complete path has been triggered during the execution.

43

Proof. Consider a complete path Π existing at the end of the execution, and
consider the first 2chain C belonging to Π which was triggered (if any) at some
point in the execution. Since the simulator does not abort in a good execution,
by Lemma 5 (e), at the end of the query cycle in which C is triggered, C belongs
to a complete path which must be Π by Lemma 4. By Lemma 21, this implies
that neither C nor any other 2chain belonging to Π will ever be triggered in any
subsequent query cycle.

Lemma 27. For i ∈ {1, . . . , 5}, the number of table-defined permutation queries
(i, xi, yi) during an execution of G2 can never exceed the sum of the number of

– distinguisher’s calls to Query(i, ·, ·),
– (i+ 1, i+ 2)-2chains that were (i+ 3,+)-triggered,
– (i− 2, i− 1)-2chains that were (i− 3,−)-triggered,
– (i+ 2, i+ 3)-2chains that were either (i+ 1,−)- or (i+ 4,+)-triggered.

Proof. Entries are added to Pi/P
−1
i either by a call to ReadTape during an

(i+ 1, i+ 2)- or an (i− 2, i− 1)-query cycle or by a call to AdaptPath during an
(i+ 2, i+ 3)-query cycle (see Table 1).

We first consider entries that were added by a call to ReadTape during an
(i+ 1, i+ 2)- or an (i− 2, i− 1)-query cycle. The number of such table-defined
queries cannot exceed the sum of the total number Ni,+ of queries of type (i,+)
that became pending during an (i−2, i−1)-query cycle and the total number Ni,−
of queries of type (i,−) that became pending during an (i+ 1, i+ 2)-query cycle.
Ni,+ cannot exceed the sum of the total number of initiating and non-initiating
pending queries of type (i,+) over all (i−2, i−1)-query cycles. The total number
of initiating queries of type (i,+) is at most the number of distinguisher’s calls
to Query(i,+, ·), while the total number of non-initiating pending queries of
type (i,+) over all (i − 2, i − 1)-query cycles cannot exceed the total number
of (i− 3,−)-triggered 2chains (as a non-initiating pending query of type (i,+)
cannot be associated with an (i,+)-triggered (i−2, i−1)-2chain). Similarly, Ni,−
cannot exceed the sum of the total number of distinguisher’s call to Query(i,−, ·)
and the total number of (i− 3,−)-triggered (i+ 1, i+ 2)-2chains. All in all, we
see that the total number of triples (i, xi, yi) that became table-defined because
of a call to ReadTape cannot exceed the sum of

– the number of distinguisher’s calls to Query(i, ·, ·),
– the number of (i+ 1, i+ 2)-2chains that were (i+ 3,+)-triggered,
– the number of (i− 2, i− 1)-2chains that were (i− 3,−)-triggered.

Consider now a triple (i, xi, yi) which became table-defined during a call to
AdaptPath in an (i + 2, i + 3)-query cycle. The total number of such triples
cannot exceed the total number of (i+ 2, i+ 3)-2chains that are triggered over
all (i + 2, i + 3)-query cycles (irrespective of whether they are (i + 1,−)- or
(i+ 4,+)-triggered). The result follows.

The following lemma contains the standard “bootstrapping” argument introduced
in [CPS08]:

44

Lemma 28. In a good execution of G2, at most q wrapping 2chains are triggered
in total.

Proof. We show that there is a one-to-one mapping from the set of triggered
wrapping 2chains to the set of distinguisher’s call to Enc/Dec. The lemma will
follow from the assumption that the distinguisher makes at most q cipher queries.

By inspection of the pseudocode, we see that for each triggered wrapping
2chain C, there is a triple (k, x1, y5) such that Check(k, x1, y5) was true, i.e.,
(k, x1, y5) was table-defined when C was triggered. We show that this mapping is
one-to-one, i.e., no two distinct wrapping 2chains can be triggered by the same
triple (k, x1, y5). For this, note that there is exactly one 2chain of each type in
{(1, 2), (4, 5), (5, 1)} which can be triggered by a specific call Check(k, x1, y5).
Hence, this is clear for two 2chains of the same type, while for two 2chains of
distinct type this follows from the fact that once a chain C of a specific type was
triggered by a call to Check(k, x1, y5), this 2chain will be complete (unless the
simulator aborts) and the two other 2chains of remaining types which could be
triggered by the same call to Check(k, x1, y5) belong to the same complete path
as C, hence cannot be triggered by Lemma 21.

Thus, each triggered wrapping 2chain can be mapped to a distinct table-
defined cipher query (k, x1, y5). This cipher query became table-defined because
of a call to Enc/Dec made either by the distinguisher or the simulator. It
remains to show that the corresponding call cannot have been made by the
simulator. By Lemma 6, when the simulator makes a cipher query which modifies
T/T−1, the corresponding 2chain should have already been triggered. This 2chain
will be complete at the end of the query cycle and can’t be triggered again
(Lemma 26).

Lemma 29. In a good execution of G2, one always has |P3| ≤ 2q.

Proof. By Lemma 27, the number of table-defined permutation queries (3, x3, y3)
(and hence the size of P3) cannot exceed the sum of

– the number of distinguisher’s calls to Query(3, ·, ·),
– the number of (4, 5)-2chains that were (1,+)-triggered,
– the number of (1, 2)-2chains that were (5,−)-triggered,
– the number of (5, 1)-2chains that were either (2,+)- or (4,−)-triggered.

The number of entries of the first type is at most q by the assumption that the
distinguisher makes at most q oracle queries to each permutation. Further note
that any 2chain mentioned for the 3 other types are wrapping 2chains. Hence, by
Lemma 28, there are at most q such entries in total, so that |P3| ≤ 2q.

Lemma 30. In a good execution of G2, the sum of the total numbers of (3,−)-
and (5,+)-triggered 2chains, resp. of (1,−)- and (3,+)-triggered 2chains, is at
most 6q2 − 2q.

Proof. Let C be a 2chain which is either (3,−)- or (5,+)-triggered during the
execution. (The case of (1,−)- or (3,+)-triggered 2chains is similar by symmetry.)

45

By Lemma 5 (e), C belongs to a complete path ((1, x1, y1), . . . , (5, x5, y5)) at the
end of the execution (since the simulator does not abort), and C = (3, 4, y3, x4, k)
if it was (5,+)-triggered, whereas C = (4, 5, y4, x5, k) if it was (3,−)-triggered.

Note that when C was triggered, (5,+, x5) was necessarily table-defined or
pending. If C = (4, 5, y4, x5, k) was (3,−)-triggered, (5,+, x5) must be table-
defined. If C = (3, 4, y3, x4, k) was (5,+)-triggered, then it was necessarily during
the call to FindNewPaths(5,+, x5) which implies that x5 was pending.

We now distinguish two cases depending on how (5,+, x5) became table-
defined or pending. Assume first that this was because of a distinguisher’s call to
Query(5, ·, ·). There are at most q such calls, hence there are at most q possibilities
for x5. There are at most 2q possibilities for y3 by Lemma 29. Moreover, for each
possible pair (y3, x5), there is at most one possibility for the table-defined query
(4, x4, y4) since otherwise this would contradict Lemma 24 (note that one must
have x4 ⊕ y4 = y3 ⊕ x5). Hence there are at most 2q2 possibilities in that case.

Assume now that (5,+, x5) was a non-initiating pending query in the same
query cycle in which C was triggered, or became table-defined during a previous
query cycle than the one where C was triggered and for which (5,+, x5) was
neither the initiating query nor became table-defined during the ReadTape call
for the initiating query. In all cases there exists a table-defined (3, 4)-2chain C ′ =
(3, 4, y′3, x′4, k′) distinct from (3, 4, y3, x4, k) such that x5 = r(C ′) = y′4 ⊕ x′4 ⊕ y′3.
Since we also have x5 = y4 ⊕ x4 ⊕ y3, we obtain x4 ⊕ y4 ⊕ x′4 ⊕ y′4 = y3 ⊕ y′3.
If y3 = y′3, by Lemma 24 we have x4 = x′4 and C ′ = (3, 4, y3, x4, k) = C,
contradicting our assumption. On the other hand, for a fixed (orderless) pair of
y3 6= y′3, the (orderless) pair of (4, x4, y4) and (4, x′4, y′4) is unique by Lemmas 24
and 25 (otherwise, one of the lemmas must be violated by the two pairs). There
are at most

(2q
2
)

= q(2q − 1) choices of y3 and y′3; for each pair there is at most
one (orderless) pair of (4, x4, y4) and (4, x′4, y′4), so there are 2 ways to combine
the queries to form two 2chains. Moreover, C ′ must either have been completed
during a previous query cycle than the one where C is triggered, or must have
been triggered before C in the same query cycle and have made x5 pending
(in which case C was triggered by (5,+, x5)). Thus each way to combine y3,
y′3, (4, x4, y4) and (4, x′4, y′4) to form two 2chains corresponds to at most one
(3,+)- or (5,−)-triggered 2chain, so at most 4q2 − 2q such 2chains are triggered.
Combining both cases, the number of (3,−)- or (5,+)-triggered 2chains is at
most 6q2 − 2q.

Lemma 31. In a good execution of G2, |P2| ≤ 6q2 and |P4| ≤ 6q2.

Proof. By Lemma 27, the number of table-defined queries (2, x2, y2) (and hence
the size of P2) cannot exceed the sum of

– the number of distinguisher’s calls to Query(2, ·, ·),
– the number of (3, 4)-2chains that were (5,+)-triggered,
– the number of (5, 1)-2chains that were (4,−)-triggered,
– the number of (4, 5)-2chains that were either (3,−)- or (1,+)-triggered.

There are at most q entries of the first type by the assumption that the distin-
guisher makes at most q oracle queries. Any 2chain mentioned for the other cases

46

are either wrapping, (3,−)-triggered, or (5,+)-triggered 2chains. By Lemmas 28
and 30, there are at most q + 6q2 − 2q entries of the three other types in total.
Thus, we have |P2| ≤ q + q + 6q2 − 2q = 6q2. Symmetrically, |P4| ≤ 6q2.

Lemma 32. In a good execution of G2, at most 12q3 2chains are triggered in
total.

Proof. Since the simulator doesn’t abort in good executions by Lemma 23, any
triggered 2chain belongs to a complete path at the end of the execution. By
Lemma 26, at most one of the five 2chains belonging to a complete path is
triggered in a good execution. Hence, there is a bijective mapping from the set of
triggered 2chains to the set of complete paths existing at the end of the execution.
Consider all (3, 4)-2chains which are table-defined at the end of the execution.
Each such 2chain belongs to at most one complete path by Lemma 4. Hence,
the number of complete paths at the end of the execution cannot exceed the
number of table-defined (3, 4)-2chains, which by Lemmas 29 and 31 is at most
2q · 6q2 = 12q3.

Lemma 33. In a good execution of G2, we have |T | ≤ 12q3 + q.

Proof. Recall that the table T is used to maintain the cipher queries that have
been issued. In G2, no new cipher query is issued in Check called in procedure
Trigger. So the simulator issues a table-undefined cipher query only if the path
containing the cipher query has been triggered. The number of triggered paths is
at most 12q3, while the distinguisher issues at most q cipher queries. Thus the
number of table-defined cipher queries is at most 12q3 + q.

Lemma 34. In a good execution of G2, |P1| ≤ 12q3 + q and |P5| ≤ 12q3 + q.

Proof. By Lemma 27, the number of table-defined queries (1, x1, y1) (and hence
the size of P1) cannot exceed the sum of the number of distinguisher’s call to
Query(1, ·, ·), which is at most q, and the total number of triggered 2chains, which
is at most 12q3 by Lemma 32. Therefore, the size of |P1| is at most 12q3 + q. The
same reasoning applies to |P5|.

Lemma 35. In good executions of G2, the simulator runs in time O(q8) and
uses O(q3) space.

Proof. By Lemmas 29, 31 and 34, the total number of queries that are defined
during an execution is O(q3). In a non-aborting execution, every call to Assign
results in an undefined query becoming defined. Therefore, Assign is called O(q3)
times, which implies ReadTape and AdaptPath are called O(q3) times. These
procedures run in constant time, so their total running time is O(q3).

The procedure FindNewPaths is called once for each pending query. In a non-
aborting execution, pending queries become distinct defined queries at the end of
the execution, which implies the total number of pending queries in position i is
upper bounded by |Pi| at the end of the proof. In a call to FindNewPaths(i, δ, z),
each iteration runs in constant time; the running time of the call is either

47

|Pi−2| · |Pi−1| or |Pi+1| · |Pi+2|16. Take the sum over the positions, the total
running time of FindNewPaths is at most 2

∑
i |Pi| · |Pi+1| · |Pi+2|, which is O(q8)

by Lemmas 29, 31 and 34. The tables Pi, P−1
i , Pending and Paths have size at

most O(q3), and the local variables use constant space. Thus the simulator uses
O(q3) space in total.

5.4.1 Probability of Good Executions
2chain-Cycles. We start by introducing the notions of 2cycle and 4cycle.

Definition 25 (2cycle). We say that 2 table-defined 2chains

Cj = (i, i+ 1, y(j)
i , x

(j)
i+1, k

(j)), j ∈ {1, 2},

form a 2cycle at (i, i+ 1) if they satisfy the following conditions:

1. C1 6= C2;
2. both endpoints of 2chains C1 and C2 are non-dummy and table-undefined;
3. `(C1) = `(C2), r(C2) = r(C1).

Definition 26 (4cycle). We say that 4 table-defined 2chains

Cj = (i, i+ 1, y(j)
i , x

(j)
i+1, k

(j)), j ∈ {1, 2, 3, 4},

form a 4cycle at (i, i+ 1) if they satisfy the following conditions:

1. C1 6= C2, C2 6= C3, C3 6= C4, C4 6= C1;
2. both endpoints of all 2chains are non-dummy and table-undefined;
3. `(C1) = `(C2), r(C2) = r(C3), `(C3) = `(C4), r(C4) = r(C1).

In the next few lemmas, we will prove that at the end of a query cycle in a
good execution of G2, there does not exist a 2cycle or a 4cycle at (4, 5) or at (1, 2).
Note that 2cycle are a “special case” of a 4cycle as we can concatenate a 2cycle
with itself to obtain a 4cycle (this is formalized in the proof of Corollary 2).

Lemma 36. In an execution of G2, a 4cycle doesn’t appear at (4, 5) or at (1, 2)
for the first time in a good cipher query cycle.

Proof. Assume towards a contradiction that table-defined 2chains (C1, C2, C3, C4)
form a 4cycle for the first time in a good cipher query cycle where Cj =
(4, 5, y(j)

4 , x
(j)
5 , k(j)), i.e. the 4cycle did not exist before the cipher query cycle.

If (δ, k, z) is already table-defined when the cipher query is issued, then no new
queries are defined and the 4cycle cannot be formed. If (δ, k, z) is table-undefined,
then only the cipher query itself gets table-defined during the cipher query cycle
16 Here Pi−2, Pi−1, Pi+1 and Pi+2 refer to the states of the tables when FindNewPaths

is called, which is different from the previous Pi referring to the state at the end of
the execution. In this proof we will not distinguish between the states at different
time points, since they are all subject to Lemmas 29, 31 and 34.

48

of (δ, k, z). For the 4cycle to appear, the cipher query should cause (−, k(j), y
(j)
5)

to be table-defined for some j ∈ {1, . . . , 4}. Without loss of generality assume the
new cipher query defined T−1(k(1), y

(1)
5) to be x(1)

1 which leads to the 4cycle. Then,
r(C1) = r(C4) by definition of a 4cycle, implying x(1)

1 = x
(4)
1 = T−1(k(4), y

(4)
5).

Let (δ, k, z) = (−, k(1), y
(1)
5). Then, x(1)

1 ∈ C. Since the cipher query was the
only one to be defined, we have x(4)

1 ∈ H. Hence, we have x(1)
1 = x

(4)
1 where

x
(1)
1 ∈ C and x(4)

1 ∈ H. On the other hand, if (δ, k, z) = (+, k(1), x
(1)
1), we have

y
(1)
5 ∈ C; however, we also have y(1)

5 ∈ H since C1 is table-defined. Thus BadIC
occurs regardless of the direction of the cipher query as we have C ∩ H 6= ∅.

By a similar case analysis, we can show that in a good execution of G2 a 4cycle
does not appear at (1, 2) due to a cipher query made by the distinguisher.

Lemma 37. Consider a good query cycle in an execution of G2. If a 4cycle does
not exist at (4, 5) or at (1, 2) at the beginning of the query cycle, then a 4cycle
does not exist at (4, 5) or at (1, 2) at the end of the query cycle.

Proof. We prove by contradiction. Without loss of generality, assume that a
4cycle (C1, C2, C3, C4) at (4, 5) exists at the end of the query cycle, where
Cj = (4, 5, y(j)

4 , x
(j)
5 , k(j)).

Recall that by Definition 26, the endpoints of the 2chains are non-dummy
and table-undefined. Let r(Cj) = T−1(k(j), y

(j)
5) = x

(j)
1 6= ⊥.

First we show the cipher queries T (k(j), x
(j)
1) = y

(j)
5 are table-defined at the

beginning of the query cycle. If T (k(j), x
(j)
1) = y

(j)
5 is table-undefined at the

beginning of the query cycle, it must get defined during the query cycle. By
Lemma 14, the 2chain (5, 1, x(j)

1 , y
(j)
5 , k(j)) belongs to a complete path which

was triggered during the query cycle. In particular, x(j)
1 , an endpoint of Cj , is

table-defined at the end of the query cycle, contradicting Definition 26. Hence,
we have k(j) ∈ H, x(j)

1 ∈ H and y(j)
5 ∈ H for j ∈ {1, . . . , 4}.

Since the 4cycle first appears after the query cycle, at least one of the
permutation queries (4, x(j)

4 , y
(j)
4) and (5, x(j)

5 , y
(j)
5) is table-undefined at the

beginning of the query cycle and gets defined during the query cycle. Without
loss of generality, we assume (4, x(1)

4 , y
(1)
4) or (5, x(1)

5 , y
(1)
5) gets table-defined

during the query cycle. We consider the possible types of the query cycle.

Case of a (1, 2)-query cycle. From Table 1, we can see that in a (1, 2)-query
cycle, calls to ReadTape(5,−, ·) occur and adaptations occur at position 4.

If (4, x(1)
4 , y

(1)
4) is table-defined at the beginning of the query cycle, then accord-

ing to our assumption, (5, x(1)
5 , y

(1)
5) gets defined in a call to ReadTape(5,−, y(1)

5)
and hence x(1)

5 ∈ P. We also have x(1)
5 = y

(1)
4 ⊕ k(1) ∈ H⊕2, which implies that

P ∩H⊕2 6= ∅ and BadPerm occurs.
If (4, x(1)

4 , y
(1)
4) is adapted during the query cycle, let C ′ = (1, 2, y′1, x′2, k′) de-

note the triggered 2chain such that Assign(4, x(1)
4 , y

(1)
4) is called in AdaptPath(C ′).

49

By Lemma 10, we have y(1)
4 = p−1

5 (y′5)⊕ k′ where y′5 = `(C ′), p−1
5 (y′5) ∈ P and

k′ ∈ K. Note that
p−1

5 (y′5)⊕ k′ = y
(1)
4 = x

(1)
5 ⊕ k(1) (13)

where k(1) ∈ H; we consider the following two cases:

– If (5, x(1)
5 , y

(1)
5) is table-defined at the beginning of the query cycle, then

x
(1)
5 ∈ H and (13) implies P ∩ (H⊕2 ⊕K) 6= ∅.

– If (5, x(1)
5 , y

(1)
5) gets defined in a call to ReadTape(5,−, y(1)

5) during the query
cycle, we have x(1)

5 = p−1
5 (y(1)

5) ∈ P . If y(1)
5 = y′5, then the 2chain C1 belongs

to the complete path containing the triggered 2chain C ′ and cannot be in
the 4cycle (cf. Definition 26). If y(1)

5 6= y′5, (13) implies P⊕2 ∩ (H⊕K) 6= ∅.

BadPerm occurs in both cases.

Case of a (2, 3)-query cycle. From Table 1, we can see that in a (2, 3)-query
cycle, calls to ReadTape(4,+, ·) occur and adaptations occur at position 5.

If (5, x(1)
5 , y

(1)
5) gets adapted during the query cycle, then by Lemma 10 we

have y(1)
5 ∈ C. Since y(1)

5 ∈ H (recall that this is because the cipher query is
table-defined at the beginning of the query cycle), we have C ∩ H 6= ∅ and BadIC
occurs.

If (5, x(1)
5 , y

(1)
5) is table-defined at the beginning of the query cycle, then by

our assumption (4, x(1)
4 , y

(1)
4) must be defined in a call to ReadTape(4,+, x(1)

4)
and y(1)

4 = p4(x(1)
4) ∈ P . We also have y(1)

4 = x
(1)
5 ⊕ k(1) ∈ H⊕2, so P ∩H⊕2 6= ∅

and BadPerm occurs.

Case of a (3, 4)-query cycle. From Table 1, we can see that in a (3, 4)-query
cycle, calls to ReadTape(5,+, ·) occur and no new permutation query of the form
(4, ·, ·) gets table-defined.

By our assumption, (5, x(1)
5 , y

(1)
5) is defined in a call to ReadTape(5,+, x(1)

5)
and hence y(1)

5 = p5(x(1)
5) ∈ P . Since y(1)

5 ∈ H, we have P ∩H 6= ∅ and BadPerm
occurs.

Case of a (4, 5)-query cycle. In a (4, 5)-query cycle, no new permutation
queries of the form (4, ·, ·) or (5, ·, ·) get table-defined.

Case of a (5, 1)-query cycle. From Table 1, we can see that in a (5, 1)-query
cycle, calls to ReadTape(4,−, ·) occur and no new permutation query of the form
(5, ·, ·) gets table-defined.

By our assumption, (4, x(1)
4 , y

(1)
4) is defined in a call to ReadTape(4,−, y(1)

4)
and we have x(1)

4 = p−1
4 (y(1)

4) ∈ P. By Definition 26, we have

x
(1)
4 ⊕ k(1) = y

(1)
3 = y

(2)
3 = x

(2)
4 ⊕ k(2) (14)

where y(1)
3 = `(C1) and y

(2)
3 = `(C2), and where k(1), k(2) ∈ H. We consider

whether (4, x(2)
4 , y

(2)
4) is table-defined at the beginning of the query cycle.

50

If (4, x(2)
4 , y

(2)
4) is table-defined at the beginning of the query cycle, we have

x
(2)
4 ∈ H. Then (14) implies P ∩H⊕3 6= ∅, so BadPerm occurs.
If (4, x(2)

4 , y
(2)
4) gets defined in a call to ReadTape(4,−, y(2)

4) during the query
cycle, we have x(2)

4 = p−1
4 (y(2)

4) ∈ P. If y(1)
4 = y

(2)
4 , we have x(1)

4 = x
(2)
4 and,

by (14), k(1) = k(2). Then x(1)
5 = y

(1)
4 ⊕ k(1) = y

(2)
4 ⊕ k(2) = x

(2)
5 , which implies

C1 = C2, violating Definition 26. If y(1)
4 6= y

(2)
4 , (14) implies P⊕2 ∩H⊕2 6= ∅ and

BadPerm occurs.

Lemma 38. At the beginning of a query cycle in an execution of G2, if no bad
event has occurred, there does not exist a 4cycle at (4, 5) or at (1, 2).

Proof. This follows immediately from Lemmas 36 and 37.

Corollary 2. At the beginning of a query cycle in an execution of G2, if no bad
event has occurred, there does not exist a 2cycle at (4, 5) or at (1, 2).

Proof. We only need to prove that a 2cycle exists at (4, 5) or (1, 2) only if a
4cycle exists at the same position, and this is a direct corollary of Lemma 38.

Assume there exists a 2cycle at (say) (4, 5) consisting of table-defined 2chains
C = (4, 5, y4, x5, k) and C ′ = (4, 5, y4, x5, k). By Definition 25, we have C 6= C ′,
both endpoints of C and C ′ are non-dummy and table-undefined, and `(C) = `(C ′)
and r(C ′) = r(C).

Then there exists a 4cycle at (4, 5) consisting of chains Cj for j = 1, . . . , 4,
where Cj = C if j = 1, 3 and Cj = C ′ if j = 2, 4. This is because we have
Cj 6= Cj+1 (where Cj+1 = C1 when j = 4) for all j since C 6= C ′. We know
that both endpoints of C and C ′ are non-dummy and table-undefined. Finally,
`(Cj) = `(Cj+1) if j = 1, 3 since `(C) = `(C ′) and r(Cj) = r(Cj+1) if j = 2, 4
since r(C ′) = r(C).

Probability of Good Executions. In this section, we upper bound the
probability of the bad events. Since we don’t assume the execution is good, the
lemmas that assume the execution to be good cannot be used. However, most
lemmas hold as long as no bad event has occurred in the execution; indeed, the
only property of good executions used in the proof is that “the bad events never
occur”. The following lemma gives a stronger observation.

Lemma 39. Consider a query cycle or a cipher query cycle in an execution
of G2, before which no bad event has occurred. Then as long as BadIC hasn’t
occurred in the current (cipher) query cycle, we have

(a) (Triggered 2chains, only applies to a query cycle) At most 12q3 2chains are
triggered, including those triggered in the current query cycle;

(b) (Table sizes) We have |P1| ≤ 13q3, |P2| ≤ 6q2, |P3| ≤ 2q, |P4| ≤ 6q2,
|P5| ≤ 13q3 and |T | ≤ 13q3; the bounds hold even if we include the queries
that are about to be defined when completing the triggered 2chains.

51

Proof. First we prove the lemma assuming the current (cipher) query cycle is
good and is completed. We can treat the partial execution until the end of
the current (cipher) query cycle as a shorter good execution (the execution is
good since no bad event occurs before or during the (cipher) query cycle). Then
property (a) follows by Lemma 32 and (b) follows by Lemmas 29, 31, 33 and 34.
(We note that the distinguisher issues less queries in the shorter execution, so
the lemmas actually give a stronger bound.)

For the case of a cipher query cycle, only one cipher query is made and BadIC
is the only possible bad event, so the cipher query cycle is good if BadIC doesn’t
occur for the distinguisher’s cipher query, and the above result suffices.

For the case of a query cycle, by Corollary 1, let R define the set of triggered
2chains when the query cycle is good. Then R is determined by the state at the
beginning of the query cycle. As long as BadIC hasn’t occurred, by Corollary 1,
the 2chains triggered in the query cycle must belong to R, i.e., only a subset of
2chains triggered in good query cycle are triggered. Therefore, the number of
triggered paths and the number of queries about to be defined is no more than
those when the query cycle is good and is complete. This generalizes the result
(in the first paragraph of the proof) to the more general case where we only
require BadIC hasn’t occurred (instead of requiring the query cycle is good).

Lemma 40. Consider a query cycle or a cipher query cycle in an execution of G2,
before which no bad event has occurred. The sizes of H and E are upper bounded
by 159q3 and 386q5 respectively. Moreover, as long as BadIC hasn’t occurred, the
size of K is upper bounded by 12q3.

Proof. Adding up the bounds in Lemma 39 (b), there are at most 40q3 table-
defined permutation queries and 13q3 table-defined cipher queries at the beginning
of the query cycle. By Definition 12, the size of H is at most

3 · 40q3 + 3 · 13q3 ≤ 159q3.

By Definition 6, the number of table-defined (5, 1)-2chains is upper bounded by
|T | ≤ 13q3 (since each cipher query in T uniquely determines a (5, 1)-2chain),
and the total number of table-defined (i, i+ 1)-2chains for i = 1, 2, 3, 4 is at most
2(13q3 · 6q2 + 6q2 · 2q) ≤ 180q5 (since each pair of table-defined queries uniquely
determine an (i, i+ 1)-2chain). Thus, the size of E can be upper bounded by

2 · (13q3 + 180q5) ≤ 386q5.

By Lemma 39 (a), as long as BadIC doesn’t occur, at most 12q3 2chains are
triggered in the current query cycle, so the size of K is at most 12q3.

Lemma 41. Consider a cipher query in an execution of G2, before which no
bad event has occurred. If the cipher query is already table-defined, then BadIC
doesn’t occur; otherwise, BadIC occurs with probability at most 1116q5/2n.

Proof. The lemma trivially holds if 13q3 > 2n−1, so we can assume 13q3 < 2n−1

in this proof. Without loss of generality, we consider a cipher query to Enc(k, x1).

52

If x1 ∈ T when the query occurs, BadIC doesn’t occur because the tape ic/ic−1

is not read. Now we consider the case (k, x1) /∈ T . Assume the tape entry being
read is ic(k, x1) = y5, which implies y5 ∈ C.

In the following proof, we let C̄ denote the subset of C that contains only the
entries of ic/ic−1 read before ic(k, x1). I.e., C̄ contains the elements of C that are
fixed before ic(k, x1) is sampled.

By assumption, BadIC hasn’t occurred in the current query cycle or cipher
query cycle, so by Lemma 39 (b) we have |T | ≤ 13q3. Hence, C̄ contains at most
13q3 elements (since each of them corresponds to a distinct defined cipher query).
Moreover, the size of H and E are upper bounded by 159q3 and 386q5 respectively
(cf. Lemma 40). BadIC occurs if the value of ic(k, x1) is in C̄, H or E , and the
three sets contain at most 13q3 + 159q3 + 386q5 ≤ 558q5 values in total.

Since ic(k, ·)/ic−1(k, ·) encodes a permutation and at most 13q3 entries of
ic/ic−1 have been read (cf. Lemma 39), the value of ic(k, x1) is uniformly dis-
tributed among at least 2n − 13q3 ≥ 2n−1 values. Therefore, each value is chosen
with probability at most 1/2n−1, so BadIC occurs with probability at most
558q5/2n−1 = 1116q5/2n.

When upper bounding the probabilities of BadPerm and BadAdapt, we assume
BadIC does not occur during the query cycle, which allows us to use Lemmas 22
and 39 and Corollary 1. In particular, the number of triggered 2chains (and thus
the number of pending and adapted queries) in the query cycle are determined
at the beginning of the query cycle and can be upper bounded.

Lemma 42. Consider a query cycle in an execution of G2, before which no bad
event has occurred. Let R be defined as in Corollary 1 and let s be the size of
R. Assuming BadIC doesn’t occur, then BadPerm occurs in the query cycle with
probability at most 1.84× 107 · (s+ 1)q9/2n.

Proof. If 13q3 ≥ 2n−1, the lemma trivially holds. Thus we can assume 13q3 < 2n−1

in this proof.
By Corollary 1, the 2chains in R are triggered. Thus, s 2chains are triggered

and there are at most s+1 pending queries in the query cycle (since each triggered
2chain adds at most one pending query). Thus, at most s+ 1 entries of pi/p−1

i

are read in the query cycle. We consider these entries in the same order as they
are read, and compute the probability that BadPerm occurs for the first time
when each entry is read.

Without loss of generality, we consider an entry pi(xi) (the case of p−1
i (yi) is

symmetric). In the following proof, we let P̄ and P̄∗ denote the subsets of P and
P∗ that contain only the elements corresponding to the tape entries which are
read before pi(xi).

We first consider the sub-events of BadPerm involving the set P. As we are
computing the probability that BadPerm occurs for the first time after pi(xi) is
read, the event must involve the entry pi(xi). Then the probability of a sub-event
of the form P⊕i ∩ S is the probability that pi(xi) hits a value in P̄⊕i−1 ⊕ S.
Therefore, we need to compute the probability that the value of pi(xi) is in H⊕3,
P̄ ⊕ H⊕2, P̄⊕2 ⊕H, P̄⊕3, E , E ⊕ K, K ⊕H, K ⊕H⊕2, P̄ ⊕ K⊕2 or P̄ ⊕ H ⊕K.

53

The sub-events involving P∗ are similar: the new entry of P∗ is pi(xi)⊕ xi
where xi is determined at the beginning of the query cycle and pi(xi) is an
independent random value. BadPerm occurs for the first time if the value of
xi ⊕ pi(xi) is in H⊕3, P̄∗ ⊕H⊕2, P̄∗⊕2 ⊕H, P̄∗⊕3 or H⊕ E .

Since there are s+ 1 pending queries in the query cycle, the sizes of P̄ and
P̄∗ cannot exceed s ≤ 12q3 where the inequality is due to Lemma 39 (a). By
Lemma 40, we have |H| ≤ 159q3, |E| ≤ 386q5 and |K| ≤ 12q3. Since |S⊕i| ≤ |S|i
and |S1 ⊕ S2| = |S1| · |S2|, the sum of sizes of the aforementioned multisets (in
both sub-cases) is no more than 9.2× 106q9.

Since pi/p−1
i encodes a permutation and at most 13q3 entries of pi/p−1

i have
been read (by Lemma 39 and the observation that entries that have been read
correspond to distinct table-defined queries), the value of pi(xi) is uniformly
distributed among at least 2n− 13q3 ≥ 2n−1 values, with each value being chosen
with probability at most 1/2n−1. Hence, the probability that pi(xi) or xi⊕ pi(xi)
hits a value in the corresponding multisets is at most 1.84× 107q9/2n.

By a union bound over the s+ 1 entries read in the query cycle, we obtain
the bound stated in the lemma.

Lemma 43. Consider a (1, 2)- or (4, 5)-query cycle of a G2 execution, before
which no bad event has occurred. Let R be defined as in Corollary 1 and let s be
the size of R. Assuming BadIC doesn’t occur, then BadAdapt occurs in the query
cycle with probability at most 8.9× 106 · sq9/2n.

Proof. If 13q3 ≥ 2n−1, the lemma trivially holds. Thus we can assume 13q3 ≤ 2n−1

in this proof. We only give the proof for a (4, 5)-query cycle; the proof for a
(1, 2)-query cycle is symmetric.

By Corollary 1, the 2chains in R are triggered in the query cycle. Thus s
queries are adapted in the query cycle.

Recall BadAdapt is the event that A⊕i ∩H⊕j 6= ∅ for i ≥ 1 and i+ j ≤ 4, i.e.,
there exist adapted queries (2, x(t)

2 , y
(t)
2) for t ∈ [1, i] such that

i∑
t=1

x
(t)
2 ⊕ y

(t)
2 ∈ H⊕j . (15)

For i = 1, 2, 3, 4, we consider each fixed i-tuple of distinct adapted queries and
upper bound the probability of (15), assuming BadIC doesn’t occur.

Let Ct = (4, 5, y(t)
4 , x

(t)
5 , k(t)) be the triggered 2chain in which (2, x(t)

2 , y
(t)
2) is

adapted. Since the adapted queries are distinct, Ct are distinct 2chains.
Let y(t)

3 = `(Ct) and x(t)
1 = r(Ct), where the evaluation takes place after the

cipher query T−1(k(t), y
(t)
5) has been defined (the cipher query must be defined

before or during the query cycle since Ct is triggered) and hence x(t)
1 6= ⊥. Then

x
(t)
2 ⊕ y

(t)
2 = p1(x(t)

1)⊕ p−1
3 (y(t)

3) where p1(x(t)
1), p−1

3 (y(t)
3) ∈ P are sampled in the

current query cycle. The left-hand side of (15) is
i∑
t=1

x
(t)
2 ⊕ y

(t)
2 =

i∑
t=1

p1(x(t)
1)⊕ p−1

3 (y(t)
3) (16)

54

and we show that the random values of P at the right-hand side of (16) are not
all canceled out. This is obvious if i = 1, 3 since the number of p1(x(t)

1) is odd
and the random values can only be canceled out in pairs.

If i = 2 and the random values in the RHS of (16) all cancel out, we have
x

(1)
1 = x

(2)
1 and y(1)

3 = y
(2)
3 . We show that both cipher queries T−1(k(1), y

(1)
5) and

T−1(k(2), y
(2)
5) are table-defined at the beginning of the query cycle, otherwise

BadIC occurs: note that if T−1(k(t), y
(t)
5) is defined during the query cycle, it is

defined in a call to Dec by Lemma 6 and hence x(t)
1 ∈ C. If both T−1(k(1), y

(1)
5)

and T−1(k(2), y
(2)
5) are defined during the query cycle, then C contains two equal

entries and BadIC occurs. If one of the cipher queries is table-defined at the
beginning of the query cycle and the other is defined during the query cycle, we
have x(1)

1 = x
(2)
1 ∈ C ∩ H and BadIC also occurs.

Since BadIC doesn’t occur by assumption, both cipher queries are table-
defined at the beginning of the query cycle and so the endpoints of C1 and C2
are non-dummy. By Lemma 22, the query cycle is safe, so the endpoints of the
triggered 2chains C1 and C2 are table-undefined at the beginning of the query
cycle. By Definition 25, C1 and C2 form a 2cycle at the beginning of the query
cycle, contradicting Corollary 2.

If i = 4 and the random values in the RHS of (16) all cancel out, assume
without loss of generality that x(1)

1 = x
(2)
1 and x(3)

1 = x
(4)
1 . Similarly to the case

of i = 2, we can prove that the cipher queries T−1(k(t), y
(t)
5) are table-defined

at the beginning of the query cycle, otherwise BadIC occurs. We discuss the
following possibilities, omitting the detailed arguments that the 2chains form a
2cycle/4cycle (the first two conditions of Definition 25/26 are proved similarly to
the case of i = 2, and the last condition is given explicitly in the discussion):

– y
(1)
3 = y

(2)
3 and y(3)

3 = y
(4)
3 : The 2chains C1 and C2 form a 2cycle at (4, 5) at

the beginning of the query cycle, contradicting Corollary 2.
– y

(2)
3 = y

(3)
3 and y(4)

3 = y
(1)
3 : The 2chains C1, C2, C3 and C4 form a 4cycle at

(4, 5) at the beginning of the query cycle, contradicting Lemma 38.
– y

(1)
3 = y

(3)
3 and y(2)

3 = y
(4)
3 : the same as the last item except with C1 and C2

swapped, so it also contradicts Lemma 38.

Hence, the random values in the RHS of (16) cannot all cancel out.
As discussed in the proof of Lemma 42, the values of p1(x(t)

1) and p−1
3 (y(t)

3)
are uniformly and independently distributed among at least 2n − 13q3 ≥ 2n−1

values. The right-hand side of (16) contains at least one of these random values,
so it equals any specific value with probability at most 1/2n−1 (indeed, with all
but one random value fixed, it is uniformly distributed over at least 2n−1 values).

By Lemma 40, the multiset H contains at most 159q3 elements, so the sum of
sizes of the multisets H⊕j , j = 0, . . . , 4− i, is at most (159q3 +1)4−i ≤ (160q3)4−i.
The probability that (16) hits a value in H⊕j for some 0 ≤ j ≤ 4− i is at most
(160q3)4−i/2n−1.

By Lemma 39 (a), at most 12q3 paths are triggered in the query cycle, so
s ≤ 12q3. There are at most si ways to choose i distinct adapted queries. With a

55

union bound over the possible values of i and the choices of the i adapted queries,
the probability that BadAdapt occurs in the query cycle is at most

4∑
i=1

si · (160q3)4−i

2n−1 ≤
4∑
i=1

s · (12q3)i−1(160q3)4−i

2n−1 ≤ 8.9× 106 · sq
9

2n

Theorem 44. An execution of G2 is good with probability at least

1− 4.2× 108q12/2n.

Proof. Consider an execution of G2. We compute the probability that a bad event
occurs for the first time in each query cycle or cipher query cycle. In this proof,
we let the execution terminate right after any bad event occurs.

For a cipher query cycle, only BadIC can occur, whose probability is at most
1116q5/2n by Lemma 41.

Now we consider the ith query cycle. Let Ri be the set of 2chains satisfying
the condition of being triggered as defined in Corollary 1, and let si be the size
of Ri. Recall that Ri and si are determined at the beginning of the query cycle.
Since the execution terminates whenever a bad event occurs, only 2chains in Ri
can be triggered. This implies that at most si 2chains are triggered and hence
at most si cipher queries are made during the query cycle. With a union bound
over the cipher queries and by Lemma 41, BadIC occurs with probability at most
1116siq5/2n.

Since for any events A and B we have Pr[A|B] ≥ Pr[A ∧B], by Lemmas 42
and 43 and using a union bound, the probability that BadIC doesn’t occur but
BadPerm or BadAdapt occurs in the query cycle is at most

1.84× 107 · (si + 1)q9/2n + 8.9× 106 · siq9/2n.

Now we consider a G2-execution. The distinguisher makes q permutation
queries to each position and q cipher queries, so there are 5q query cycles and q
cipher queries cycles in total. The probability that no bad event occurs during
the execution is

1−
(1116q5

2n q + 1116q5

2n
5q∑
i=1

si+

1.84× 107q9

2n
5q∑
i=1

(si + 1) + 8.9× 106q9

2n
5q∑
i=1

si

)
(17)

where the four terms in the parentheses correspond to the probability of BadIC in
cipher query cycles, the probabilities of BadIC, BadPerm and BadAdapt in query
cycles respectively.

By Lemma 39, as long as no bad event occurs before the current query
cycle and BadIC doesn’t occur in the current query cycle, at most 12q3 2chains

56

are triggered; this holds even if any bad event occurs since by assumption the
execution terminates right after a bad event occurs17. Thus we have

5q∑
i=1

si ≤ 12q3 (18)

and the lemma follows by combining (17) and (18).

5.5 Transition from G1 to G2

Recall that the only difference between G1 and G2 is in procedure Check (line 32):
in G2, it does not call Enc and hence does not modify tables T/T−1.

We say two executions of G1 and G2 are identical if every procedure call
returns the same value in the two executions. In particular, the view of the
distinguisher D is the same in the two executions, so D outputs the same value
in identical executions.

Lemma 45. The probability that a G2-execution is good and is identical to the
G1-execution with the same random tapes is at least 1− 4.3× 108q12/2n, where
the probability is taken over the random choice of the tapes.

Proof. The bound trivially holds if 13q3 > 2n−2, so we assume 13q3 ≤ 2n−2.
Recall that the only difference between G1 and G2 is in Check. The only

side effect of Check is that the call to Enc may add a new entry to the tables
T/T−1. The tables T/T−1 are only used in Enc, Dec and the G2-version of
Check; moreover, the answers of Enc and Dec are always consistent with the
cipher encoded by ic regardless of the state of T/T−1. Therefore, if every call
to Check returns the same value in the two executions, the two executions can
never “diverge” and are identical.

Observe that a call to Check(k, x1, y5) returns different value in the two
executions only if ic(k, x1) = y5 and (k, x1) /∈ T in the execution of G2. Since
the event can be characterized in G2 only, we will compute its probability by
considering a G2-execution with random tapes. We will assume the execution of
G2 is good when computing the probability of divergence.

As discussed above, divergence would not occur if (k, x1) ∈ T at the moment
Check(k, x1, y5) is called. This implies that the cipher tape entry ic(k, x1) hasn’t
been read in the execution, since the tape ic is only read in Enc and Dec, where
a corresponding entry is immediately added to T . Therefore, the value of ic(k, x1)
is uniformly distributed over {0, 1}n \{y | y = T (k, x) for some x}. By Lemma 33,
the size of T is at most 12q3 + q ≤ 13q3, so the probability that ic(k, x1) = y5
is at most 1/(2n − 13q3). Moreover, if Check(k, x1, y5) is called multiple times
and divergence doesn’t occur in the first call, then divergence wouldn’t occur
in the subsequent calls to Check(k, x1, y5). To upper bound the probability of
divergence, we only need to consider the first call to Check with each argument.
17 If the execution terminates early, we let si := 0 for the subsequent query cycles. The

upper bound (17) still holds.

57

The procedure Check is only called in FindNewPaths. It is easy to see from
Fig. 5 that if Check(k, x1, y5) is called, we either have k = y4 ⊕ x5 and the
three queries (4,−, y4), (5, x5, y5) and (1,+, x1) are pending or defined, or have
k = y1 ⊕ x2 and the three queries (5,−, y5), (1, x1, y1) and (2,+, x2) are pending
or defined. Since good executions don’t abort, the pending queries are defined at
the end of the execution. By Lemmas 31 and 34, there are

(12q3 + q)2 · 6q2 + (12q3 + q)2 · 6q2 ≤ 2028q8

ways to choose three defined queries in positions (4, 5, 1) or (5, 1, 2).
With a union bound over all distinct arguments, the probability that di-

vergence occurs in the first call to Check with some argument is at most
2028q8/(2n − 13q3) ≤ 2704q8/2n, where the inequality is due to the assumption
that q3 ≤ 2n−2.

With a union bound, the probability that either the execution of G2 is bad or
the executions of G1 and G2 diverge is at most

4.2× 108q12/2n + 2704q8/2n ≤ 4.3× 108q12/2n

where the probability of bad execution is upper bounded by Theorem 44.

Lemma 46. We have

∆D(G1,G2) ≤ 4.3× 108q12/2n.

Proof. Since D outputs the same value in identical executions of G1 and G2, this
is a direct corollary of Lemma 45.

Theorem 47. With an optimized implementation, the simulator runs in time
O(q5) and makes at most O(q5) queries to the cipher oracle in the simulated
world G1.

Proof. By Lemma 35, the simulator runs in time O(q8) and uses O(q3) space
in good executions of G2. The simulator has the same running time in identical
executions of G1 and G2, so by Lemma 45, the simulator runs in time O(q8) with
high probability in G1.

Using a similar trick as [DS16], we can trade off more space for a better
running time. In particular, the simulator can be implemented to run in O(q5)
time and O(q5) space. In the following proof, we consider the running time of
a G1-execution that is identical to a good execution of G2, so we can use the
bounds proved in good executions of G2.18 Note that the optimized simulator
always has the same behavior as the one described in the pseudocode, even in
“bad” executions.

In the proof of Lemma 35, the running time is dominated by FindNewPaths.
We observe that it is unnecessary to check every pair of table-defined queries in
18 Most of the bounds hold in G1, except for the bound on the size of T since the

simulator issues more queries to the cipher oracle in G1.

58

FindNewPaths. Indeed, the simulator only needs to go through defined queries
in the adjacent position, and the query in the next position is fixed and can be
computed. E.g., in a call to FindNewPaths(2,+, x2), instead of iterating through
every pair in P1 × P−1

5 , the simulator can iterate through x1 ∈ P1, compute
y5 := Enc(y1 ⊕ x2, x1), and check if y5 ∈ P−1

5 .
However, the trick doesn’t apply to calls of the form (1,+, ∗) or (5,−, ∗),

since the simulator doesn’t know if Enc(k, x1) = y5 for some key k. To handle
these calls, the simulator maintains a hash table that maps each (table-undefined)
query (1,+, x1) or (5,−, y5) to the 2chains it should trigger. Specifically, a
query (1,+, x1) is mapped to a set of pairs (y4, x5) ∈ P−1

4 × P5 such that
Dec(y4 ⊕ x5, y5) = x1, and (5,−, y5) is mapped to a set of (x1, x2) ∈ P1 × P2
such that Enc(y1 ⊕ x2, x1) = y5. Then in a call to FindNewPaths(1,+, ∗) or
FindNewPaths(5,−, ∗), it only takes a table lookup to find all triggered 2chains.

The table should be updated every time a query at position 1, 2, 4 or 5
becomes table-defined. For example, when a query (1, x1, y1) is defined, for each
table-defined query (2, x2, y2) the set mapped from (5,−, y5) should be updated,
where y5 := Enc(y1 ⊕ x2, x1). By Lemmas 31 and 34, there are O(q5) pairs of
defined queries in positions (1, 2) or (4, 5), thus the size of the table is O(q5) and
it takes O(q5) time to update.

The new implementation of FindNewPaths now only takes O(q5) time: There
are O(q3) calls of form (1,−, ∗) or (5,+, ∗), in which P2 or P4 is traversed and
each takes O(q2) running time. The O(q3) calls of form (1,+, ∗) or (5,−, ∗) take
O(1) time to find triggered 2chains; there are at most O(q3) triggered 2chains
throughout the execution (cf. Lemma 32), so handling the triggered 2chains uses
O(q3) running time. There are O(q2) calls at positions 2, 3 or 4, and each call
uses O(q3) time to traverse a table.

Recall in the proof of Lemma 35 that the other procedures runs in O(q3)
time. Therefore, the total running time of the optimized implementation is still
dominated by FindNewPaths but has been improved to O(q5). Since each cipher
query takes constant time, the upper bound on the running time implies that at
most O(q5) cipher queries are issued by the simulator.

Finally, note that the above bound is only proved for the case when the
G1-execution is identical to a good G2-execution. However, since this holds except
with negligible probability (cf. Lemma 45) and since the simulator knows the
value of q (cf. Definition 1), we can let the simulator abort when the running
time or the number of cipher queries exceeds the corresponding bound. Then the
simulator is efficient with probability 1 and the change affects an execution only
with negligible probability.

5.6 Transition from G2 to G4

In this section, we will use a randomness mapping argument to prove the indis-
tinguishability of G2 and G4.

We start with a standard randomness mapping from G2 to G3, which has a
similar structure to the randomness mapping in [DS16].

59

Additional Assumption on D. Some of the lemmas in this section only hold
when the distinguisher completes all paths, as defined below:

Definition 27. A distinguisher D completes all paths if at the end of every non-
aborting execution, D has made queries Query(i,+, xi) = yi or Query(i,−, yi) =
xi for i = 1, 2, 3, 4, 5 where xi = yi−1 ⊕ k for i = 2, 3, 4, 5, for every pair of k and
x1 such that D has queried Enc(k, x1) = y′5 or Dec(k, y′5) = x1.19

In the rest of this section, we consider a fixed deterministic distinguisher
D that completes all paths. The definitions and lemmas that only apply to
distinguishers that complete all paths will be marked with (*). In Lemma 57,
we will get rid of this extra assumption and generalize the result to arbitrary
distinguishers using the following observation:

Lemma 48. Given an arbitrary distinguisher D with q queries in each position
(as described in Theorem 3), there exists an equivalent distinguisher D′ with 2q
queries in each position that completes all paths. D′ is equivalent with D in the
sense that in the executions (of G2 or G4) with the same random tapes, D′ always
outputs the same value as D.

Proof. We define D′ as follows: Let D′ run D until D outputs a value b. For
each cipher query that has been made by D, D′ issues the permutation queries
Query(i,+, xi) to “complete the path” as in Definition 27. Finally D′ outputs b,
ignoring the answers of the extra queries. The distinguisher D′ issues at most q
extra queries in each position.

Footprints. The random permutation tapes are used in both G2 and G3, while
the IC tapes ic is only used in G2. In this section, we will rename the random
permutation tapes in G3 as t = (t1, t−1

1 , . . . , t5, t
−1
5), in order to distinguish them

from p = (p1, p
−1
1 , . . . , p5, p

−1
5) in G2.

Similar to previous works, we will characterize an execution with its footprint,
which is basically the subsets of random tapes that have been read.

Definition 28. A partial random permutation tape is a pair of tables p̃, p̃−1 :
{0, 1}n → {0, 1}n ∪ {⊥}, such that p̃−1(p̃(x)) = x for all x satisfying p̃(x) 6= ⊥,
and such that p̃(p̃−1(y)) = y for all y satisfying p̃−1(y) 6= ⊥.

A partial ideal cipher tape is a pair of tables ĩc, ĩc−1 : {0, 1}2n → {0, 1}n∪{⊥},
such that ĩc−1(k, ĩc(k, u)) = u for all k, u such that ĩc(k, u) 6= ⊥, and such that
ĩc(k, ĩc−1(k, v)) = v for all k, v such that ĩc−1(k, v) 6= ⊥.

We will use partial random tape to refer to either a partial random permutation
tape or a partial ideal cipher tape. We note that p̃ determines p̃−1 and vice-versa,
therefore we can use either p̃ or p̃−1 to designate the pair p̃, p̃−1. Similarly for
the partial ideal cipher tape ic, ic−1.
19 Note that y′5 isn’t necessarily equal to y5; but in a good execution we always have
y5 = y′5.

60

Definition 29. Consider an execution of G2 with random tapes p1, p2, . . . , p5, ic.
The footprint of the execution is the set of partial random tapes p̃1, p̃2, . . . , p̃5, ĩc
consisting of entries of the corresponding tapes that are accessed20 at some point
during the execution.

Similarly, the footprint of an execution of G3 with random tapes t1, t2, . . . , t5
is the set of partial random tapes t̃1, t̃2, . . . , t̃5 consisting of entries of the corre-
sponding tapes that are accessed.

We note that with the fixed deterministic distinguisher D, the footprint of an
execution is determined by its random tapes. Among all possible footprints, only
a small portion of them are obtainable in executions with D. Let FP2 and FP3
denote the set of obtainable footprints in G2 and G3 respectively.

Also note that an execution can be recovered given its footprint, since the tape
entries not in the footprint are never used during the execution. This implies that
executions with the same footprint are identical; in particular, if an execution is
good (resp. non-aborting), then executions with the same footprint must also be
good (resp. non-aborting).

Definition 30. We say a random permutation tape p is compatible with a
partial random permutation tape p̃ if p(x) = p̃(x) for all x such that p̃(x) 6= ⊥.
Similarly, an ideal cipher tape ic is compatible with a partial ideal cipher tape ĩc
if ic(k, u) = ĩc(k, u) for all k, u such that ĩc(k, u) 6= ⊥.

We say the random tapes of an execution are compatible with a footprint ω if
each tape is compatible with the corresponding partial random tape in ω.

Lemma 49. For i = 2, 3 and an obtainable footprint ω ∈ FPi, an execution of
Gi has footprint ω if and only if the random tapes are compatible with ω.

Proof. The “only if” direction is trivial by the definition of footprints, so we only
need to prove the “if” direction.

Let T denote the set of random tapes of the execution. Since ω is obtainable,
there exists a set of random tapes T ′ such that the execution of Gi with tapes
T ′ has footprint ω. By the definition of footprints, only entries in ω are read
during the execution with T ′. If T is compatible with ω, the executions with T
and with T ′ can never diverge (recall that the distinguisher D is deterministic
by assumption) and thus are identical. In particular, they should have the same
footprint ω.

For i = 2, 3, let PrGi
[ω] denote the probability that the footprint of an

execution of Gi is ω. For a set of footprints S, let PrGi
[S] denote the probability

that the footprint of an execution of Gi is in S. Since each execution has exactly
one footprint, the events of obtaining different footprints are mutually exclusive
and hence

Pr
Gi

[S] =
∑
ω∈S

Pr
Gi

[ω]. (19)

20 Recall that p̃i is actually a pair p̃i, p̃−1
i ; an entry p̃i(xi) = yi can be accessed by

reading either p̃i(xi) or p̃−1
i (yi). Similarly for ĩc.

61

For an obtainable footprint ω ∈ FPi, PrGi
[ω] equals the probability that the

random tapes are compatible with ω by Lemma 49. Let |p̃i| (resp. |ĩc|) denote
the number of non-⊥ entries in p̃i (resp. ĩc), and let |ĩc(k)| denote the number of
non-⊥ entries of the form (k, ∗) in ĩc. For ω = (p̃1, p̃2, . . . , p̃5, ĩc) ∈ FP2, we have

Pr
G2

[ω] =
(5∏
i=1

|p̃i|−1∏
`=0

1
2n − `

)(∏
k∈{0,1}n

|ĩc(k)|−1∏
`=0

1
2n − `

)
, (20)

and for ω = (t̃1, t̃2, . . . , t̃5) ∈ FP3, we have

Pr
G3

[ω] =
5∏
i=1

|t̃i|−1∏
`=0

1
2n − ` . (21)

Randomness Mapping. Let FP∗2 ⊆ FP2 denote the set of footprints that can be
obtained by good executions of G2, and let FP∗3 ⊆ FP3 denote the set of footprints
that can be obtained by non-aborting executions of G3. Since an execution can be
recovered from the footprint and executions with the same footprint are identical,
any execution of G2 (resp. G3) with footprint in FP∗2 (resp. FP∗3) must be good
(resp. non-aborting).

We will define an injective mapping ζ that maps each footprint ω ∈ FP∗2 to
ζ(ω) ∈ FP∗3, such that the executions with footprints ω and ζ(ω) are “identical”
and such that ω and ζ(ω) are obtained with similar probability (in G2 and G3
respectively).

Definition 31. (*) We define the injection ζ : FP∗2 → FP∗3 as follows: for
ω = (p̃1, p̃2, . . . , p̃5, ĩc) ∈ FP∗2, let ζ(ω) = (t̃1, t̃2, . . . , t̃5) where

t̃i = {(x, y) ∈ {0, 1}n × {0, 1}n : Pi(x) = y}

in which Pi refers to the state of the table Pi at the end of the execution of G2
with footprint ω.

The mapping ζ is well-defined because the execution of G2 can be recovered
from its footprint ω and, in particular, the states of the tables at the end of the
execution can be recovered from ω. We still need to prove that ζ(ω) is in FP∗3
and that ζ is injective.

Lemma 50. (*) At the end of a good execution of G2, for each table entry
T (k, x1) = y5 the 2chain (5, 1, y5, x1, k) belongs to a complete path which has
been triggered during the execution.

Proof. By Lemma 5 (e) and since good executions don’t abort, a 2chain that
has been triggered must belong to a complete path at the end of the execution.
We only need to prove that for each T (k, x1) = y5, (5, 1, y5, x1, k) belongs to the
same complete path as a triggered 2chain (we say 2chains that belong to the
same complete path are equivalent for short).

62

We assume without loss of generality that T (k, x1) = y5 is defined in a call
to Enc(k, x1); the proof is symmetric if it is defined in a call to Dec(k, y5).

If Enc(k, x1) is called by the distinguisher: since the distinguisher completes
all paths (cf. Definition 27), the simulator has issued permutation queries (i, xi, yi)
for i = 1, 2, 3 with x2 = y1 ⊕ k and x3 = y2 ⊕ k. We consider the first query
cycle at the end of which the three queries are all table-defined, i.e., the 2chain
C = (1, 2, y1, x2, k) is table-defined and its right endpoint is table-defined. By
Lemma 18 and since query cycles in good executions must be safe (cf. Lemma 22),
C belongs to a complete path which was triggered during the query cycle. The
lemma then follows from the fact that C is equivalent to (5, 1, y5, x1, k).

If Enc(k, x1) is called by the simulator: note that the simulator only makes
cipher queries in FindNewPaths and AdaptPath; we can observe from the pseu-
docode that (5, 1, y5, x1, k) is equivalent to the triggered 2chain that is being
handled when the call occurs.

The only difference between G2 and G3 is in the procedures Enc and Dec:
in G3, the cipher queries are answered by the 5-round IEM construction of the
permutations encoded by tapes t, while in G2 they are answered by the ideal
cipher encoded by ic.

The distinguisher and the simulator are identical in the two worlds, so we
can say an execution of G2 is identical to an execution of G3 if the views of the
distinguisher and the simulator are identical in the two executions. In particular,
we have the following observations:
– the distinguisher outputs the same value in identical executions;
– an execution of G3 is non-aborting if it is identical to a non-aborting execution

of G2.

Lemma 51. (*) For ω ∈ FP∗2, the footprint ζ(ω) is obtainable in G3. Moreover,
the execution of G2 with footprint ω ∈ FP∗2 is identical to the execution of G3 with
footprint ζ(ω).

Proof. Let ω = (p̃1, . . . , p̃5, ĩc) and ζ(ω) = (t̃1, . . . , t̃5). Let T = (t1, . . . , t5) be an
arbitrary set of random permutation tapes compatible with ζ(ω) (which can be
obtained by arbitrarily expanding the partial tapes in ζ(ω)). We will prove that
the execution of G3 with T is identical to the execution of G2 with footprint ω,
and that the execution has footprint ζ(ω).

We prove the two executions are identical by running them in parallel and
prove by induction that they never diverge. The executions can diverge only
when the distinguisher or the simulator accesses the tapes or the cipher oracle.
By symmetry, we only consider the forward queries (i.e., when tape entry pi(xi)
is read or when Enc is called).

A tape entry pi(xi) = yi is read only in the procedure ReadTape. In G2, the
simulator adds a corresponding table entry Pi(xi) = yi immediately after reading
the tape, which is never overwritten and exists at the end of the execution. By
the definition of the mapping, ζ(ω) contains the same entry t̃(xi) = yi and, as T
is compatible with ζ(ω), T also contains t(xi) = yi. Thus the tape entry being
read in G3 is the same as the one in G2.

63

If the distinguisher or the simulator calls Enc, the value of T (k, x1) = y5 is
returned. In G2, the table T is a subset of the cipher encoded by ic and its entries
are never overwritten, so we have T (k, x1) = y5 at the end of the execution. The
execution of G2 with footprint ω is good; by Lemma 50, the 2chain (5, 1, y5, x1, k)
is complete, i.e., there exists a complete path consisting of queries (i, xi, yi),
i = 1, 2, 3, 4, 5, satisfying (6). Similarly to the discussion in the last case, we have
ti(xi) = yi for i = 1, 2, 3, 4, 5. It is easy to check that these entries are used in a
call to EM(k, x1) or EM−1(k, y5), so in G3 we also have T (k, x1) = y5 and the
two executions don’t diverge on cipher queries. Hence, the two executions never
diverge and are identical.

Now we prove the G3-execution with T has footprint ζ(ω). The above proof
already shows that all tape entries read by the simulator or by the cipher oracle
(in EM and EM−1) are in ζ(ω). We only need to prove every entry t̃(xi) = yi in
ζ(ω) has been read during the G3-execution.

By Definition 31, t̃(xi) = yi corresponds to an entry Pi(xi) = yi at the end of
the execution (this is true for the G3-execution as well since it is identical to the
G2-execution), which is assigned in a call to ReadTape or AdaptPath.

If Pi(xi) = yi is assigned in ReadTape, then the simulator should have
read ti(xi) or t−1

i (yi) in the same procedure call. If Pi(xi) = yi is assigned in
AdaptPath, then consider the complete path in which the query is adapted:
there exist defined queries (j, xj , yj) for j ∈ {1, 2, 3, 4, 5} \ {i} and a cipher query
T (k, x1) = y5 such that xj+1 = yj ⊕ k for j = 1, 2, 3, 4. In the call to EM(k, x1)
or EM−1(k, y5) where T (k, x1) = y5 was assigned, the entries tj(xj) = yj for
j = 1, 2, 3, 4, 5 are read (note that ti(xi) = yi is among these entries).

Lemma 52. (*) The mapping ζ is an injection from FP∗2 to FP∗3.

Proof. Since the simulator doesn’t abort in good executions of G2 (cf. Lemma 23),
Lemma 51 implies that the execution of G3 with footprint ζ(ω) is non-aborting
and hence ζ(ω) ∈ FP∗3.

Lemma 51 also implies that the ζ is injective: given a fixed ζ(ω), the G2-
execution with footprint ω is identical to the G3-execution with footprint ζ(ω),
which can be recovered from ζ(ω). Then ω = (p̃1, . . . , p̃5, ĩc) can be uniquely
reconstructed as follows: p̃i contains entries that are read by the simulator during
the execution; ĩc contains cipher queries that are issued by the distinguisher or
the simulator.

Lemma 53. (*) For ω = (p̃1, . . . , p̃5, ĩc) ∈ FP∗2 and ζ(ω) = (t̃1, . . . , t̃5), we have

5∑
i=1
|t̃i| =

5∑
i=1
|p̃i|+ |ĩc|. (22)

Proof. Consider the good G2-execution with footprint ω: The state of Pi at the
end of the execution is the same as the partial tape t̃i (cf. Definition 31). On the
other hand, p̃i contains an entry p̃i(xi) = yi if and only if Pi(xi) = yi is assigned
in a call to ReadTape. Thus the difference between the sizes of t̃i and p̃i equals
the number of adapted queries assigned in AdaptPath. From the pseudocode, we

64

observe that AdaptPath is called for each triggered 2chain, in which exactly one
query is assigned.

We only need to prove the number of triggered 2chains equals the size of ĩc.
Note that ĩc contains the same queries as the table T at the end of the execution.
By Lemma 50, for each T (k, x1) = y5, a 2chain equivalent to (5, 1, y5, x1, k) has
been triggered. On the other hand, each triggered 2chain is completed at the end
of the good execution, and by Lemma 26 the triggered 2chains are not equivalent.
Thus the triggered 2chains belong to distinct complete paths, each containing a
distinct query in T . Thus there is a one-one correspondence between triggered
2chains and entries in T , implying |T | = |ĩc| equals the number of triggered
2chains.

Lemma 54. (*) For ω ∈ FP∗2, we have

Pr
G3

[ζ(ω)] ≥ Pr
G2

[ω] · (1− 169q6/2n)

Proof. The lemma trivially holds if 13q3 ≥ 2n, so we can assume 13q3 < 2n in
the following proof.

Let ω = (p̃1, . . . , p̃5, ĩc) and ζ(ω) = (t̃1, . . . , t̃5). Consider the G2-execution
with footprint ω. The execution is good since ω ∈ FP∗2. By Lemma 33, we have
|T | ≤ 12q3 + q ≤ 13q3 at the end of the execution. Since ĩc contains the entries
of T at the end of the execution and for any k ∈ {0, 1}n, ĩc(k) is a subset of ĩc,
we have

|ĩc(k)| ≤ |ĩc| ≤ 13q3. (23)
Pi contains every entry of p̃i because they are read in ReadTape, so at the end
of the execution we have |p̃i| ≤ |Pi| = |t̃i|. By (20) and (21), we have

PrG3 [ζ(ω)]
PrG2 [ω] =

(5∏
i=1

|t̃i|−1∏
`=|p̃i|

1
2n − `

)(∏
k

|ĩc(k)|−1∏
`=0

(2n − `)
)

≥
(

1
2n

)∑5
i=1

(|t̃i|−|p̃i|)
(2n − 13q3)

∑
k
|ĩc(k)|

=
(

2n − 13q3

2n

)|ĩc|
≥
(

2n − 13q3

2n

)13q3

≥ 1− 169q6

2n .

where the first inequality uses (23), the second equality uses (22) and the fact
that

∑
k |ĩc(k)| = |ĩc|, and the second inequality uses (23) and the assumption

that 13q3 < 2n.

Lemma 55. (*) Consider a G3-execution with footprint ζ(ω) for ω ∈ FP∗2, and
the G4-execution with the same random tapes. The views of the distinguisher D
in the two executions are identical. In particular, D outputs the same value in
the two executions.

65

Proof. Let ζ(ω) = (t̃1, . . . , t̃5) and let T = (t1, . . . , t5) be the set of tapes used in
the two executions.

We prove the views of D are identical by running the two executions in
parallel, and prove by induction that D always receives the same answer in the
two executions. Since D is deterministic, its behaviors (i.e., its queries and its
output) are identical in the two executions as long as all the previous queries
have the same answers.

The cipher oracle Enc/Dec is the same in G3 and G4, whose answers only
depend on the tapes. The two executions use the same tapes, so Enc/Dec returns
the same answers in the two executions.

Then we consider a distinguisher’s call to Query(i,+, xi) (Query(i,−, yi) is
symmetric). In the G3-execution, SimQuery(i,+, xi) is called, which eventually
returns the value of yi = Pi(xi). The table Pi is never overwritten, so Pi(xi) = yi
at the end of the execution. Since the G3-execution is identical to the G2-execution
with footprint ω (cf. Lemma 51), we have Pi(xi) = yi at the end of the G2-
execution and hence t̃i(xi) = yi (cf. Definition 31).

In the G4-execution, the call to Query(i,+, xi) returns ti(xi). Since ti is
compatible with t̃i, we have ti(xi) = yi. So the call returns the same value in the
two executions.

Lemma 56. (*) If the distinguisher D completes all paths, we have

∆D(G2,G4) ≤ 4.2× 108q12/2n + 169q6/2n

Proof. Let FP∗2(1) ⊆ FP∗2 be the set of footprints of good G2-executions in which
D outputs 1, and let FP∗3(1) ⊆ FP∗3 be the set of footprints of non-aborting
G3-executions in which D outputs 1.

By Lemma 51, for ω ∈ FP∗2(1) we have ζ(ω) ∈ FP∗3(1). Moreover, by Lemma 55,
if a G3-execution has footprint ζ(ω) ∈ FP∗3(1), D outputs 1 in the G4-execution
with the same random tapes. Since ζ is injective, the probability that D outputs
1 in G4 is at least

∑
ω∈FP∗2(1)

Pr
G3

[ζ(ω)] ≥
∑

ω∈FP∗2(1)

Pr
G2

[ω] ·
(
1− 169q6

2n
)

= Pr
G2

[FP∗2(1)] ·
(
1− 169q6

2n
)

≥ Pr
G2

[FP∗2(1)]− 169q6

2n (24)

where the first inequality uses Lemma 54, where the equality uses (19), and where
the second inequality is due to PrG2 [FP∗2(1)] ≤ 1.

The probability that D outputs 1 in G2 is the sum of two parts: the probability
that the execution is good and D outputs 1, which equals PrG2 [FP∗2(1)], and the
probability that the execution is not good and D outputs 1, which is no larger

66

than the probability that the execution is not good. Combined with (24),

∆D(G2,G4) ≤ Pr
G2

[FP∗2(1)] +
(
1− Pr

G2
[FP∗2]

)
−
(

Pr
G2

[FP∗2(1)]− 169q6

2n
)

= 1− Pr
G2

[FP∗2] + 169q6/2n

≤ 4.2× 108q12/2n + 169q6/2n

where the last inequality uses Theorem 44.

Lemma 57. For an arbitrary distinguisher D with q queries in each position,
we have

∆D(G2,G4) ≤ 1.73× 1012q12/2n.

Proof. By Lemma 48, there exists a distinguisher D′ equivalent to D that com-
pletes all paths and makes at most 2q queries in each position. Since D′ is subject
to Lemma 56, we have

∆D(G2,G4) = ∆D′(G2,G4) ≤ 4.2× 108 · (2q)12/2n + 169(2q)6/2n

≤ 1.73× 1012q12/2n.

5.7 Indistinguishability of G1 and G4

Theorem 58. Any distinguisher with q queries cannot distinguish G1 from G4
with advantage more than 2× 1012q12/2n.

Proof. For any distinguisher D we have

∆D(G1,G4) = ∆D(G1,G2) +∆D(G2,G4)
≤ 4.3× 108q12/2n + 1.73× 1012q12/2n

≤ 2× 1012q12/2n

where the first inequality uses Lemmas 46 and 57.

Acknowledgments

We thank Dana Dachman-Soled and Jonathan Katz for discussions that led to
the termination argument used in this work.

Work of the fourth author was performed under financial assistance award
70NANB15H328 from the U.S. Department of Commerce, National Institute of
Standards and Technology.

67

References

[ABD+13] Elena Andreeva, Andrey Bogdanov, Yevgeniy Dodis, Bart Mennink, and
John P. Steinberger. On the Indifferentiability of Key-Alternating Ciphers.
In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology -
CRYPTO 2013 (Proceedings, Part I), volume 8042 of LNCS, pages 531–
550. Springer, 2013. Full version available at http://eprint.iacr.org/
2013/061.

[ABM13] Elena Andreeva, Andrey Bogdanov, and Bart Mennink. Towards Un-
derstanding the Known-Key Security of Block Ciphers. In Shiho Moriai,
editor, Fast Software Encryption - FSE 2013, volume 8424 of LNCS, pages
348–366. Springer, 2013.

[Bih94] Eli Biham. New Types of Cryptanalytic Attacks Using Related Keys. J.
Cryptology, 7(4):229–246, 1994.

[BK03] Mihir Bellare and Tadayoshi Kohno. A Theoretical Treatment of Related-
Key Attacks: RKA-PRPs, RKA-PRFs, and Applications. In Eli Biham,
editor, Advances in Cryptology - EUROCRYPT 2003, volume 2656 of
LNCS, pages 491–506. Springer, 2003.

[BKL+12] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, François-Xavier
Standaert, John P. Steinberger, and Elmar Tischhauser. Key-Alternating
Ciphers in a Provable Setting: Encryption Using a Small Number of Public
Permutations - (Extended Abstract). In David Pointcheval and Thomas
Johansson, editors, Advances in Cryptology - EUROCRYPT 2012, volume
7237 of LNCS, pages 45–62. Springer, 2012.

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Distinguisher and
Related-Key Attack on the Full AES-256. In Shai Halevi, editor, Advances
in Cryptology - CRYPTO 2009, volume 5677 of LNCS, pages 231–249.
Springer, 2009.

[Bla06] John Black. The Ideal-Cipher Model, Revisited: An Uninstantiable Block-
cipher-Based Hash Function. In Matthew J.B. Robshaw, editor, Fast
Software Encryption - FSE ’06, volume 4047 of LNCS, pages 328–340.
Springer, 2006.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated
Key Exchange Secure against Dictionary Attacks. In Bart Preneel, editor,
Advances in Cryptology - EUROCRYPT 2000, volume 1807 of LNCS,
pages 139–155. Springer, 2000.

[BR93] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A
Paradigm for Designing Efficient Protocols. In ACM Conference on Com-
puter and Communications Security, pages 62–73, 1993.

[BR06] Mihir Bellare and Phillip Rogaway. The Security of Triple Encryption and
a Framework for Code-Based Game-Playing Proofs. In Serge Vaudenay,
editor, Advances in Cryptology - EUROCRYPT 2006, volume 4004 of
LNCS, pages 409–426. Springer, 2006. Full version available at http:
//eprint.iacr.org/2004/331.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box Analysis
of the Block-Cipher-Based Hash-Function Constructions from PGV. In
Moti Yung, editor, Advances in Cryptology - CRYPTO 2002, volume 2442
of LNCS, pages 320–335. Springer, 2002.

[BS] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptogra-
phy. Available at http://toc.cryptobook.us.

68

http://eprint.iacr.org/2013/061
http://eprint.iacr.org/2013/061
http://eprint.iacr.org/2004/331
http://eprint.iacr.org/2004/331
http://toc.cryptobook.us

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant
Puniya. Merkle-Damgård Revisited: How to Construct a Hash Function.
In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005, volume
3621 of LNCS, pages 430–448. Springer, 2005.

[CHK+16] Jean-Sébastien Coron, Thomas Holenstein, Robin Künzler, Jacques
Patarin, Yannick Seurin, and Stefano Tessaro. How to Build an Ideal
Cipher: The Indifferentiability of the Feistel Construction. J. Cryptology,
29(1):61–114, 2016.

[CLL+14] Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John P.
Steinberger. Minimizing the Two-Round Even-Mansour Cipher. In Juan A.
Garay and Rosario Gennaro, editors, Advances in Cryptology - CRYPTO
2014 (Proceedings, Part I), volume 8616 of LNCS, pages 39–56. Springer,
2014. Full version available at http://eprint.iacr.org/2014/443.

[CPS08] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The Random
Oracle Model and the Ideal Cipher Model Are Equivalent. In David
Wagner, editor, Advances in Cryptology - CRYPTO 2008, volume 5157 of
LNCS, pages 1–20. Springer, 2008.

[CS14] Shan Chen and John Steinberger. Tight Security Bounds for Key-
Alternating Ciphers. In Phong Q. Nguyen and Elisabeth Oswald, ed-
itors, Advances in Cryptology - EUROCRYPT 2014, volume 8441 of
LNCS, pages 327–350. Springer, 2014. Full version available at http:
//eprint.iacr.org/2013/222.

[CS15] Benoît Cogliati and Yannick Seurin. On the Provable Security of the
Iterated Even-Mansour Cipher against Related-Key and Chosen-Key At-
tacks. In Elisabeth Oswald and Marc Fischlin, editors, Advances in
Cryptology - EUROCRYPT 2015 (Proceedings, Part I), volume 9056
of LNCS, pages 584–613. Springer, 2015. Full version available at
http://eprint.iacr.org/2015/069.

[CS16] Benoît Cogliati and Yannick Seurin. Strengthening the Known-Key Secu-
rity Notion for Block Ciphers. In Thomas Peyrin, editor, Fast Software
Encryption - FSE 2016, volume 9783 of LNCS, pages 494–513. Springer,
2016.

[Des00] Anand Desai. The Security of All-or-Nothing Encryption: Protecting
against Exhaustive Key Search. In Mihir Bellare, editor, Advances in Cryp-
tology - CRYPTO 2000, volume 1880 of LNCS, pages 359–375. Springer,
2000.

[DGHM13] Grégory Demay, Peter Gazi, Martin Hirt, and Ueli Maurer. Resource-
Restricted Indifferentiability. In Thomas Johansson and Phong Q. Nguyen,
editors, Advances in Cryptology - EUROCRYPT 2013, volume 7881 of
LNCS, pages 664–683. Springer, 2013. Full version available at http:
//eprint.iacr.org/2012/613.

[DKS12] Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in Cryptog-
raphy: The Even-Mansour Scheme Revisited. In David Pointcheval and
Thomas Johansson, editors, Advances in Cryptology - EUROCRYPT 2012,
volume 7237 of LNCS, pages 336–354. Springer, 2012.

[DS16] Yuanxi Dai and John P. Steinberger. Indifferentiability of 8-Round Feistel
Networks. In Matthew Robshaw and Jonathan Katz, editors, Advances
in Cryptology - CRYPTO 2016 (Proceedings, Part I), volume 9814 of
LNCS, pages 95–120. Springer, 2016. Full version available at http:
//eprint.iacr.org/2015/1069.

69

http://eprint.iacr.org/2014/443
http://eprint.iacr.org/2013/222
http://eprint.iacr.org/2013/222
http://eprint.iacr.org/2015/069
http://eprint.iacr.org/2012/613
http://eprint.iacr.org/2012/613
http://eprint.iacr.org/2015/1069
http://eprint.iacr.org/2015/1069

[DSSL16] Yevgeniy Dodis, Martijn Stam, John P. Steinberger, and Tianren Liu.
Indifferentiability of Confusion-Diffusion Networks. In Marc Fischlin and
Jean-Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT
2016 (Proceedings, Part II), volume 9666 of LNCS, pages 679–704. Springer,
2016.

[EM97] Shimon Even and Yishay Mansour. A Construction of a Cipher from a
Single Pseudorandom Permutation. J. Cryptology, 10(3):151–162, 1997.

[FP15] Pooya Farshim and Gordon Procter. The Related-Key Security of Iterated
Even-Mansour Ciphers. In Gregor Leander, editor, Fast Software Encryp-
tion - FSE 2015, volume 9054 of LNCS, pages 342–363. Springer, 2015.
Full version available at http://eprint.iacr.org/2014/953.

[FS86] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions
to Identification and Signature Problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology - CRYPTO ’86, volume 263 of LNCS, pages
186–194. Springer, 1986.

[GL15] Chun Guo and Dongdai Lin. Separating invertible key derivations from
non-invertible ones: sequential indifferentiability of 3-round Even-Mansour.
Designs, Codes and Cryptography, pages 1–21, 2015. Available at http:
//dx.doi.org/10.1007/s10623-015-0132-0.

[GL16] Chun Guo and Dongdai Lin. Indifferentiability of 3-Round Even-Mansour
with Random Oracle Key Derivation. IACR Cryptology ePrint Archive,
Report 2016/894, 2016. Available at http://eprint.iacr.org/2016/894.

[Gra02] Louis Granboulan. Short Signatures in the Random Oracle Model. In
Yuliang Zheng, editor, Advances in Cryptology - ASIACRYPT 2002, volume
2501 of LNCS, pages 364–378. Springer, 2002.

[HKT11] Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The Equivalence
of the Random Oracle Model and the Ideal Cipher Model, Revisited. In
Lance Fortnow and Salil P. Vadhan, editors, Symposium on Theory of
Computing - STOC 2011, pages 89–98. ACM, 2011. Full version available
at http://arxiv.org/abs/1011.1264.

[HT16] Viet Tung Hoang and Stefano Tessaro. Key-Alternating Ciphers and Key-
Length Extension: Exact Bounds and Multi-user Security. In Matthew
Robshaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO
2016 (Proceedings, Part I), volume 9814 of LNCS, pages 3–32. Springer,
2016.

[IK04] Tetsu Iwata and Tadayoshi Kohno. New Security Proofs for the 3GPP
Confidentiality and Integrity Algorithms. In Bimal K. Roy and Willi
Meier, editors, Fast Software Encryption - FSE 2004, volume 3017 of
LNCS, pages 427–445. Springer, 2004.

[KR96] Joe Kilian and Phillip Rogaway. How to Protect DES Against Exhaustive
Key Search. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO
’96, volume 1109 of LNCS, pages 252–267. Springer, 1996.

[KR07] Lars R. Knudsen and Vincent Rijmen. Known-Key Distinguishers for
Some Block Ciphers. In Kaoru Kurosawa, editor, Advances in Cryptology -
ASIACRYPT 2007, volume 4833 of LNCS, pages 315–324. Springer, 2007.

[LM92] Xuejia Lai and James L. Massey. Hash Function Based on Block Ciphers.
In Rainer A. Rueppel, editor, Advances in Cryptology - EUROCRYPT
’92, volume 658 of LNCS, pages 55–70. Springer, 1992.

[LPS12] Rodolphe Lampe, Jacques Patarin, and Yannick Seurin. An Asymptotically
Tight Security Analysis of the Iterated Even-Mansour Cipher. In Xiaoyun

70

http://eprint.iacr.org/2014/953
http://dx.doi.org/10.1007/s10623-015-0132-0
http://dx.doi.org/10.1007/s10623-015-0132-0
http://eprint.iacr.org/2016/894
http://arxiv.org/abs/1011.1264

Wang and Kazue Sako, editors, Advances in Cryptology - ASIACRYPT
2012, volume 7658 of LNCS, pages 278–295. Springer, 2012.

[LS13] Rodolphe Lampe and Yannick Seurin. How to Construct an Ideal Cipher
from a Small Set of Public Permutations. In Kazue Sako and Palash
Sarkar, editors, Advances in Cryptology - ASIACRYPT 2013 (Proceedings,
Part I), volume 8269 of LNCS, pages 444–463. Springer, 2013. Full version
available at http://eprint.iacr.org/2013/255.

[Mer89] Ralph C. Merkle. One Way Hash Functions and DES. In Gilles Brassard,
editor, Advances in Cryptology - CRYPTO ’89, volume 435 of LNCS, pages
428–446. Springer, 1989.

[MPS12] Avradip Mandal, Jacques Patarin, and Yannick Seurin. On the Public
Indifferentiability and Correlation Intractability of the 6-Round Feistel
Construction. In Ronald Cramer, editor, Theory of Cryptography Confer-
ence - TCC 2012, volume 7194 of LNCS, pages 285–302. Springer, 2012.
Full version available at http://eprint.iacr.org/2011/496.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferen-
tiability, Impossibility Results on Reductions, and Applications to the
Random Oracle Methodology. In Moni Naor, editor, Theory of Cryptogra-
phy Conference- TCC 2004, volume 2951 of LNCS, pages 21–39. Springer,
2004.

[PGV93] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash Functions Based
on Block Ciphers: A Synthetic Approach. In Douglas R. Stinson, editor,
Advances in Cryptology - CRYPTO ’93, volume 773 of LNCS, pages
368–378. Springer, 1993.

[RSS11] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful
with Composition: Limitations of the Indifferentiability Framework. In
Kenneth G. Paterson, editor, Advances in Cryptology - EUROCRYPT
2011, volume 6632 of LNCS, pages 487–506. Springer, 2011.

[Seu09] Yannick Seurin. Primitives et protocoles cryptographiques à sécurité prou-
vée. PhD thesis, Université de Versailles Saint-Quentin-en-Yvelines, France,
2009.

[Ste12] John Steinberger. Improved Security Bounds for Key-Alternating Ciphers
via Hellinger Distance. IACR Cryptology ePrint Archive, Report 2012/481,
2012. Available at http://eprint.iacr.org/2012/481.

[Win84] Robert S. Winternitz. A Secure One-Way Hash Function Built from DES.
In IEEE Symposium on Security and Privacy, pages 88–90, 1984.

71

http://eprint.iacr.org/2013/255
http://eprint.iacr.org/2011/496
http://eprint.iacr.org/2012/481

A The Domain Separation Lemma

In this section we give a simple proof of the “Domain Separation Lemma” by
Boneh and Shoup (Lemma 2) using the H-coefficient technique. For the sake of
brevity we will include only a very brief sketch of the H-coefficient technique
itself; see [CS14] for further details.

We recall that in order to upper bound the distinguishability of “real” and
“ideal” worlds by a (fixed, deterministic) distinguisher D, Patarin’s H-coefficient
technique consists of dividing the set T of possible transcripts (sequences of
queries and responses) obtainable by D into “good” and “bad” varieties, that
we shall denote T1 and T2. If X and Y denote the transcript distributions in the
real and ideal worlds respectively (these are random variables over T), then one
can show that D’s distinguishing advantage is upper bounded by

εratio + εbad

where
εratio := max

τ∈T1

(
1− Pr[X = τ]

Pr[Y = τ]

)
(note this is a maximum taken over all “good” transcripts) and where

εbad := Pr[Y ∈ T2]

is the probability of obtaining a “bad” transcript in the ideal world. Another
key ingredient of the technique—necessary for lower bounding the ratio Pr[X=τ]

Pr[Y=τ] ,
τ ∈ T1—is the fact that

Pr[X = τ] = |RealRT ↓ τ |
|RealRT|

Pr[Y = τ] = |IdealRT ↓ τ |
|IdealRT|

where RealRT, IdealRT are the sets of all random tapes (or “oracles”) in the real
and ideal worlds, presuming these random tapes have a uniform distribution
in each case, and where “RealRT ↓ τ”, “IdealRT ↓ τ” denote the set of real and
ideal random tapes that are compatible with τ in the straightforward, naïve
sense. (Not to worry, we shall review these concepts below in the context of our
application.) In other words, and as can be conceptually useful,

Pr[X = τ] = Pr
ω∈RealRT

[ω ↓ τ]

Pr[Y = τ] = Pr
ω∈IdealRT

[ω ↓ τ]

where the probabilities are taken over a uniform random choice of a random
tape ω ∈ RealRT, IdealRT respectively, and where “ω ↓ τ” is a shorthand for
“ω ∈ (RealRT ↓ τ)” in the first line and for “ω ∈ (IdealRT ↓ τ)” in the second line.

72

In our case we recall that D’s oracle consists of a family of permutations
{πu : u ∈ U} on {0, 1}n. In the “ideal world” this family is instantiated by |U |
independent random permutations, hence an element

ω = IdealRT

is a |U |-tuple of permutations of {0, 1}n (and IdealRT consists exactly of all
(2n!)|U | distinct such |U |-tuples); in the “real world” this family is instantiated
by a family of |V | independent random permutations {νv : v ∈ V } via

πu := νf(u)

where f : U → V is some arbitrary function, hence an element

ω ∈ RealRT

is a |V |-tuple of permutations of {0, 1}n (and, moreover, RealRT consists of all
(2n!)|V | distinct such |V |-tuples). Refining our comments above, we say that a
transcript τ is compatible with a random tape ω ∈ RealRT ∪ IdealRT (i.e., that
ω ↓ τ) if and only if every query-response pair present in τ matches the relevant
entry in the relevant permutation specified by ω.

We also recall that in the terminology of Lemma 2 the distinguisher D causes
a collision if and only if its transcript contains two distinct queries (u, x, y),
(u′, x′, y′) such that f(u) = f(u′) and such that (x = x′ ∨ y = y′). We will define
the set of bad transcripts T2 to be those that contain a collision. Hence

εbad := Pr[Y ∈ T2]

is precisely the probability that the distinguisher causes a collision in the ideal
world.

On the other hand, if a transcript τ contains no collision, then we claim that

Pr[X = τ] ≥ Pr[Y = τ]

(i.e., the transcript is at least as likely in the real as in the ideal world). To see
this it suffices to argue that

Pr
ω∈RealRT

[ω ↓ τ] ≥ Pr
ω∈IdealRT

[ω ↓ τ].

Indeed, if τ contains mu queries under “key” u ∈ U , and if `v =
∑
u:f(u)=vmu,

then
Pr

ω∈RealRT
[ω ↓ τ] =

∏
v∈V

(2n − `v)!
2n!

whereas
Pr

ω∈IdealRT
[ω ↓ τ] =

∏
u∈U

(2n −mu)!
2n!

73

and it is easy to check that the latter product is less than or equal to the former.
Hence

Pr[X = τ]
Pr[Y = τ] ≥ 1

for all τ ∈ T1, so
εratio = 0

and D’s distinguishing advantage is upper bounded by

εratio + εbad = εbad

which is precisely D’s probability of causing a collision in the ideal world, as
stated by the Domain Separation Lemma.

74

	 Five Rounds are Sufficient and Necessary for the Indifferentiability of Iterated Even-Mansour
	Introduction
	Preliminaries
	Attack Against 4-Round Simulators
	The 5-Round Simulator
	Pseudocode of the Simulator and Game Transitions

	Proof of Indifferentiability
	Main Result and Proof Overview
	Executions of G2: Definitions and Basic Properties
	Notation and Definitions
	Bad Events

	The Simulator Does not Abort in Good Executions
	Efficiency of the Simulator
	Probability of Good Executions

	Transition from G1 to G2
	Transition from G2 to G4
	Indistinguishability of G1 and G4

	References
	The Domain Separation Lemma

